1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/bootmem.h> /* for max_low_pfn */
7 #include <linux/swapfile.h>
8 #include <linux/swapops.h>
9
10 #include <asm/set_memory.h>
11 #include <asm/e820/api.h>
12 #include <asm/init.h>
13 #include <asm/page.h>
14 #include <asm/page_types.h>
15 #include <asm/sections.h>
16 #include <asm/setup.h>
17 #include <asm/tlbflush.h>
18 #include <asm/tlb.h>
19 #include <asm/proto.h>
20 #include <asm/dma.h> /* for MAX_DMA_PFN */
21 #include <asm/microcode.h>
22 #include <asm/kaslr.h>
23 #include <asm/hypervisor.h>
24 #include <asm/cpufeature.h>
25 #include <asm/pti.h>
26
27 /*
28 * We need to define the tracepoints somewhere, and tlb.c
29 * is only compied when SMP=y.
30 */
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/tlb.h>
33
34 #include "mm_internal.h"
35
36 /*
37 * Tables translating between page_cache_type_t and pte encoding.
38 *
39 * The default values are defined statically as minimal supported mode;
40 * WC and WT fall back to UC-. pat_init() updates these values to support
41 * more cache modes, WC and WT, when it is safe to do so. See pat_init()
42 * for the details. Note, __early_ioremap() used during early boot-time
43 * takes pgprot_t (pte encoding) and does not use these tables.
44 *
45 * Index into __cachemode2pte_tbl[] is the cachemode.
46 *
47 * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
48 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
49 */
50 uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
51 [_PAGE_CACHE_MODE_WB ] = 0 | 0 ,
52 [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD,
53 [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD,
54 [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD,
55 [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD,
56 [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD,
57 };
58 EXPORT_SYMBOL(__cachemode2pte_tbl);
59
60 uint8_t __pte2cachemode_tbl[8] = {
61 [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB,
62 [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
63 [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
64 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC,
65 [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
66 [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
67 [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
68 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
69 };
70 EXPORT_SYMBOL(__pte2cachemode_tbl);
71
72 static unsigned long __initdata pgt_buf_start;
73 static unsigned long __initdata pgt_buf_end;
74 static unsigned long __initdata pgt_buf_top;
75
76 static unsigned long min_pfn_mapped;
77
78 static bool __initdata can_use_brk_pgt = true;
79
80 /*
81 * Pages returned are already directly mapped.
82 *
83 * Changing that is likely to break Xen, see commit:
84 *
85 * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
86 *
87 * for detailed information.
88 */
alloc_low_pages(unsigned int num)89 __ref void *alloc_low_pages(unsigned int num)
90 {
91 unsigned long pfn;
92 int i;
93
94 if (after_bootmem) {
95 unsigned int order;
96
97 order = get_order((unsigned long)num << PAGE_SHIFT);
98 return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
99 }
100
101 if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
102 unsigned long ret = 0;
103
104 if (min_pfn_mapped < max_pfn_mapped) {
105 ret = memblock_find_in_range(
106 min_pfn_mapped << PAGE_SHIFT,
107 max_pfn_mapped << PAGE_SHIFT,
108 PAGE_SIZE * num , PAGE_SIZE);
109 }
110 if (ret)
111 memblock_reserve(ret, PAGE_SIZE * num);
112 else if (can_use_brk_pgt)
113 ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
114
115 if (!ret)
116 panic("alloc_low_pages: can not alloc memory");
117
118 pfn = ret >> PAGE_SHIFT;
119 } else {
120 pfn = pgt_buf_end;
121 pgt_buf_end += num;
122 printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
123 pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
124 }
125
126 for (i = 0; i < num; i++) {
127 void *adr;
128
129 adr = __va((pfn + i) << PAGE_SHIFT);
130 clear_page(adr);
131 }
132
133 return __va(pfn << PAGE_SHIFT);
134 }
135
136 /*
137 * By default need 3 4k for initial PMD_SIZE, 3 4k for 0-ISA_END_ADDRESS.
138 * With KASLR memory randomization, depending on the machine e820 memory
139 * and the PUD alignment. We may need twice more pages when KASLR memory
140 * randomization is enabled.
141 */
142 #ifndef CONFIG_RANDOMIZE_MEMORY
143 #define INIT_PGD_PAGE_COUNT 6
144 #else
145 #define INIT_PGD_PAGE_COUNT 12
146 #endif
147 #define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
148 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
early_alloc_pgt_buf(void)149 void __init early_alloc_pgt_buf(void)
150 {
151 unsigned long tables = INIT_PGT_BUF_SIZE;
152 phys_addr_t base;
153
154 base = __pa(extend_brk(tables, PAGE_SIZE));
155
156 pgt_buf_start = base >> PAGE_SHIFT;
157 pgt_buf_end = pgt_buf_start;
158 pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
159 }
160
161 int after_bootmem;
162
163 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
164
165 struct map_range {
166 unsigned long start;
167 unsigned long end;
168 unsigned page_size_mask;
169 };
170
171 static int page_size_mask;
172
probe_page_size_mask(void)173 static void __init probe_page_size_mask(void)
174 {
175 /*
176 * For pagealloc debugging, identity mapping will use small pages.
177 * This will simplify cpa(), which otherwise needs to support splitting
178 * large pages into small in interrupt context, etc.
179 */
180 if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
181 page_size_mask |= 1 << PG_LEVEL_2M;
182 else
183 direct_gbpages = 0;
184
185 /* Enable PSE if available */
186 if (boot_cpu_has(X86_FEATURE_PSE))
187 cr4_set_bits_and_update_boot(X86_CR4_PSE);
188
189 /* Enable PGE if available */
190 __supported_pte_mask &= ~_PAGE_GLOBAL;
191 if (boot_cpu_has(X86_FEATURE_PGE)) {
192 cr4_set_bits_and_update_boot(X86_CR4_PGE);
193 __supported_pte_mask |= _PAGE_GLOBAL;
194 }
195
196 /* By the default is everything supported: */
197 __default_kernel_pte_mask = __supported_pte_mask;
198 /* Except when with PTI where the kernel is mostly non-Global: */
199 if (cpu_feature_enabled(X86_FEATURE_PTI))
200 __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
201
202 /* Enable 1 GB linear kernel mappings if available: */
203 if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
204 printk(KERN_INFO "Using GB pages for direct mapping\n");
205 page_size_mask |= 1 << PG_LEVEL_1G;
206 } else {
207 direct_gbpages = 0;
208 }
209 }
210
setup_pcid(void)211 static void setup_pcid(void)
212 {
213 if (!IS_ENABLED(CONFIG_X86_64))
214 return;
215
216 if (!boot_cpu_has(X86_FEATURE_PCID))
217 return;
218
219 if (boot_cpu_has(X86_FEATURE_PGE)) {
220 /*
221 * This can't be cr4_set_bits_and_update_boot() -- the
222 * trampoline code can't handle CR4.PCIDE and it wouldn't
223 * do any good anyway. Despite the name,
224 * cr4_set_bits_and_update_boot() doesn't actually cause
225 * the bits in question to remain set all the way through
226 * the secondary boot asm.
227 *
228 * Instead, we brute-force it and set CR4.PCIDE manually in
229 * start_secondary().
230 */
231 cr4_set_bits(X86_CR4_PCIDE);
232
233 /*
234 * INVPCID's single-context modes (2/3) only work if we set
235 * X86_CR4_PCIDE, *and* we INVPCID support. It's unusable
236 * on systems that have X86_CR4_PCIDE clear, or that have
237 * no INVPCID support at all.
238 */
239 if (boot_cpu_has(X86_FEATURE_INVPCID))
240 setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
241 } else {
242 /*
243 * flush_tlb_all(), as currently implemented, won't work if
244 * PCID is on but PGE is not. Since that combination
245 * doesn't exist on real hardware, there's no reason to try
246 * to fully support it, but it's polite to avoid corrupting
247 * data if we're on an improperly configured VM.
248 */
249 setup_clear_cpu_cap(X86_FEATURE_PCID);
250 }
251 }
252
253 #ifdef CONFIG_X86_32
254 #define NR_RANGE_MR 3
255 #else /* CONFIG_X86_64 */
256 #define NR_RANGE_MR 5
257 #endif
258
save_mr(struct map_range * mr,int nr_range,unsigned long start_pfn,unsigned long end_pfn,unsigned long page_size_mask)259 static int __meminit save_mr(struct map_range *mr, int nr_range,
260 unsigned long start_pfn, unsigned long end_pfn,
261 unsigned long page_size_mask)
262 {
263 if (start_pfn < end_pfn) {
264 if (nr_range >= NR_RANGE_MR)
265 panic("run out of range for init_memory_mapping\n");
266 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
267 mr[nr_range].end = end_pfn<<PAGE_SHIFT;
268 mr[nr_range].page_size_mask = page_size_mask;
269 nr_range++;
270 }
271
272 return nr_range;
273 }
274
275 /*
276 * adjust the page_size_mask for small range to go with
277 * big page size instead small one if nearby are ram too.
278 */
adjust_range_page_size_mask(struct map_range * mr,int nr_range)279 static void __ref adjust_range_page_size_mask(struct map_range *mr,
280 int nr_range)
281 {
282 int i;
283
284 for (i = 0; i < nr_range; i++) {
285 if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
286 !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
287 unsigned long start = round_down(mr[i].start, PMD_SIZE);
288 unsigned long end = round_up(mr[i].end, PMD_SIZE);
289
290 #ifdef CONFIG_X86_32
291 if ((end >> PAGE_SHIFT) > max_low_pfn)
292 continue;
293 #endif
294
295 if (memblock_is_region_memory(start, end - start))
296 mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
297 }
298 if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
299 !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
300 unsigned long start = round_down(mr[i].start, PUD_SIZE);
301 unsigned long end = round_up(mr[i].end, PUD_SIZE);
302
303 if (memblock_is_region_memory(start, end - start))
304 mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
305 }
306 }
307 }
308
page_size_string(struct map_range * mr)309 static const char *page_size_string(struct map_range *mr)
310 {
311 static const char str_1g[] = "1G";
312 static const char str_2m[] = "2M";
313 static const char str_4m[] = "4M";
314 static const char str_4k[] = "4k";
315
316 if (mr->page_size_mask & (1<<PG_LEVEL_1G))
317 return str_1g;
318 /*
319 * 32-bit without PAE has a 4M large page size.
320 * PG_LEVEL_2M is misnamed, but we can at least
321 * print out the right size in the string.
322 */
323 if (IS_ENABLED(CONFIG_X86_32) &&
324 !IS_ENABLED(CONFIG_X86_PAE) &&
325 mr->page_size_mask & (1<<PG_LEVEL_2M))
326 return str_4m;
327
328 if (mr->page_size_mask & (1<<PG_LEVEL_2M))
329 return str_2m;
330
331 return str_4k;
332 }
333
split_mem_range(struct map_range * mr,int nr_range,unsigned long start,unsigned long end)334 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
335 unsigned long start,
336 unsigned long end)
337 {
338 unsigned long start_pfn, end_pfn, limit_pfn;
339 unsigned long pfn;
340 int i;
341
342 limit_pfn = PFN_DOWN(end);
343
344 /* head if not big page alignment ? */
345 pfn = start_pfn = PFN_DOWN(start);
346 #ifdef CONFIG_X86_32
347 /*
348 * Don't use a large page for the first 2/4MB of memory
349 * because there are often fixed size MTRRs in there
350 * and overlapping MTRRs into large pages can cause
351 * slowdowns.
352 */
353 if (pfn == 0)
354 end_pfn = PFN_DOWN(PMD_SIZE);
355 else
356 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
357 #else /* CONFIG_X86_64 */
358 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
359 #endif
360 if (end_pfn > limit_pfn)
361 end_pfn = limit_pfn;
362 if (start_pfn < end_pfn) {
363 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
364 pfn = end_pfn;
365 }
366
367 /* big page (2M) range */
368 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
369 #ifdef CONFIG_X86_32
370 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
371 #else /* CONFIG_X86_64 */
372 end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
373 if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
374 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
375 #endif
376
377 if (start_pfn < end_pfn) {
378 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
379 page_size_mask & (1<<PG_LEVEL_2M));
380 pfn = end_pfn;
381 }
382
383 #ifdef CONFIG_X86_64
384 /* big page (1G) range */
385 start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
386 end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
387 if (start_pfn < end_pfn) {
388 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
389 page_size_mask &
390 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
391 pfn = end_pfn;
392 }
393
394 /* tail is not big page (1G) alignment */
395 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
396 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
397 if (start_pfn < end_pfn) {
398 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
399 page_size_mask & (1<<PG_LEVEL_2M));
400 pfn = end_pfn;
401 }
402 #endif
403
404 /* tail is not big page (2M) alignment */
405 start_pfn = pfn;
406 end_pfn = limit_pfn;
407 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
408
409 if (!after_bootmem)
410 adjust_range_page_size_mask(mr, nr_range);
411
412 /* try to merge same page size and continuous */
413 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
414 unsigned long old_start;
415 if (mr[i].end != mr[i+1].start ||
416 mr[i].page_size_mask != mr[i+1].page_size_mask)
417 continue;
418 /* move it */
419 old_start = mr[i].start;
420 memmove(&mr[i], &mr[i+1],
421 (nr_range - 1 - i) * sizeof(struct map_range));
422 mr[i--].start = old_start;
423 nr_range--;
424 }
425
426 for (i = 0; i < nr_range; i++)
427 pr_debug(" [mem %#010lx-%#010lx] page %s\n",
428 mr[i].start, mr[i].end - 1,
429 page_size_string(&mr[i]));
430
431 return nr_range;
432 }
433
434 struct range pfn_mapped[E820_MAX_ENTRIES];
435 int nr_pfn_mapped;
436
add_pfn_range_mapped(unsigned long start_pfn,unsigned long end_pfn)437 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
438 {
439 nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
440 nr_pfn_mapped, start_pfn, end_pfn);
441 nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
442
443 max_pfn_mapped = max(max_pfn_mapped, end_pfn);
444
445 if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
446 max_low_pfn_mapped = max(max_low_pfn_mapped,
447 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
448 }
449
pfn_range_is_mapped(unsigned long start_pfn,unsigned long end_pfn)450 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
451 {
452 int i;
453
454 for (i = 0; i < nr_pfn_mapped; i++)
455 if ((start_pfn >= pfn_mapped[i].start) &&
456 (end_pfn <= pfn_mapped[i].end))
457 return true;
458
459 return false;
460 }
461
462 /*
463 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
464 * This runs before bootmem is initialized and gets pages directly from
465 * the physical memory. To access them they are temporarily mapped.
466 */
init_memory_mapping(unsigned long start,unsigned long end)467 unsigned long __ref init_memory_mapping(unsigned long start,
468 unsigned long end)
469 {
470 struct map_range mr[NR_RANGE_MR];
471 unsigned long ret = 0;
472 int nr_range, i;
473
474 pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
475 start, end - 1);
476
477 memset(mr, 0, sizeof(mr));
478 nr_range = split_mem_range(mr, 0, start, end);
479
480 for (i = 0; i < nr_range; i++)
481 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
482 mr[i].page_size_mask);
483
484 add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
485
486 return ret >> PAGE_SHIFT;
487 }
488
489 /*
490 * We need to iterate through the E820 memory map and create direct mappings
491 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
492 * create direct mappings for all pfns from [0 to max_low_pfn) and
493 * [4GB to max_pfn) because of possible memory holes in high addresses
494 * that cannot be marked as UC by fixed/variable range MTRRs.
495 * Depending on the alignment of E820 ranges, this may possibly result
496 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
497 *
498 * init_mem_mapping() calls init_range_memory_mapping() with big range.
499 * That range would have hole in the middle or ends, and only ram parts
500 * will be mapped in init_range_memory_mapping().
501 */
init_range_memory_mapping(unsigned long r_start,unsigned long r_end)502 static unsigned long __init init_range_memory_mapping(
503 unsigned long r_start,
504 unsigned long r_end)
505 {
506 unsigned long start_pfn, end_pfn;
507 unsigned long mapped_ram_size = 0;
508 int i;
509
510 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
511 u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
512 u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
513 if (start >= end)
514 continue;
515
516 /*
517 * if it is overlapping with brk pgt, we need to
518 * alloc pgt buf from memblock instead.
519 */
520 can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
521 min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
522 init_memory_mapping(start, end);
523 mapped_ram_size += end - start;
524 can_use_brk_pgt = true;
525 }
526
527 return mapped_ram_size;
528 }
529
get_new_step_size(unsigned long step_size)530 static unsigned long __init get_new_step_size(unsigned long step_size)
531 {
532 /*
533 * Initial mapped size is PMD_SIZE (2M).
534 * We can not set step_size to be PUD_SIZE (1G) yet.
535 * In worse case, when we cross the 1G boundary, and
536 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
537 * to map 1G range with PTE. Hence we use one less than the
538 * difference of page table level shifts.
539 *
540 * Don't need to worry about overflow in the top-down case, on 32bit,
541 * when step_size is 0, round_down() returns 0 for start, and that
542 * turns it into 0x100000000ULL.
543 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
544 * needs to be taken into consideration by the code below.
545 */
546 return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
547 }
548
549 /**
550 * memory_map_top_down - Map [map_start, map_end) top down
551 * @map_start: start address of the target memory range
552 * @map_end: end address of the target memory range
553 *
554 * This function will setup direct mapping for memory range
555 * [map_start, map_end) in top-down. That said, the page tables
556 * will be allocated at the end of the memory, and we map the
557 * memory in top-down.
558 */
memory_map_top_down(unsigned long map_start,unsigned long map_end)559 static void __init memory_map_top_down(unsigned long map_start,
560 unsigned long map_end)
561 {
562 unsigned long real_end, start, last_start;
563 unsigned long step_size;
564 unsigned long addr;
565 unsigned long mapped_ram_size = 0;
566
567 /* xen has big range in reserved near end of ram, skip it at first.*/
568 addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
569 real_end = addr + PMD_SIZE;
570
571 /* step_size need to be small so pgt_buf from BRK could cover it */
572 step_size = PMD_SIZE;
573 max_pfn_mapped = 0; /* will get exact value next */
574 min_pfn_mapped = real_end >> PAGE_SHIFT;
575 last_start = start = real_end;
576
577 /*
578 * We start from the top (end of memory) and go to the bottom.
579 * The memblock_find_in_range() gets us a block of RAM from the
580 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
581 * for page table.
582 */
583 while (last_start > map_start) {
584 if (last_start > step_size) {
585 start = round_down(last_start - 1, step_size);
586 if (start < map_start)
587 start = map_start;
588 } else
589 start = map_start;
590 mapped_ram_size += init_range_memory_mapping(start,
591 last_start);
592 last_start = start;
593 min_pfn_mapped = last_start >> PAGE_SHIFT;
594 if (mapped_ram_size >= step_size)
595 step_size = get_new_step_size(step_size);
596 }
597
598 if (real_end < map_end)
599 init_range_memory_mapping(real_end, map_end);
600 }
601
602 /**
603 * memory_map_bottom_up - Map [map_start, map_end) bottom up
604 * @map_start: start address of the target memory range
605 * @map_end: end address of the target memory range
606 *
607 * This function will setup direct mapping for memory range
608 * [map_start, map_end) in bottom-up. Since we have limited the
609 * bottom-up allocation above the kernel, the page tables will
610 * be allocated just above the kernel and we map the memory
611 * in [map_start, map_end) in bottom-up.
612 */
memory_map_bottom_up(unsigned long map_start,unsigned long map_end)613 static void __init memory_map_bottom_up(unsigned long map_start,
614 unsigned long map_end)
615 {
616 unsigned long next, start;
617 unsigned long mapped_ram_size = 0;
618 /* step_size need to be small so pgt_buf from BRK could cover it */
619 unsigned long step_size = PMD_SIZE;
620
621 start = map_start;
622 min_pfn_mapped = start >> PAGE_SHIFT;
623
624 /*
625 * We start from the bottom (@map_start) and go to the top (@map_end).
626 * The memblock_find_in_range() gets us a block of RAM from the
627 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
628 * for page table.
629 */
630 while (start < map_end) {
631 if (step_size && map_end - start > step_size) {
632 next = round_up(start + 1, step_size);
633 if (next > map_end)
634 next = map_end;
635 } else {
636 next = map_end;
637 }
638
639 mapped_ram_size += init_range_memory_mapping(start, next);
640 start = next;
641
642 if (mapped_ram_size >= step_size)
643 step_size = get_new_step_size(step_size);
644 }
645 }
646
init_mem_mapping(void)647 void __init init_mem_mapping(void)
648 {
649 unsigned long end;
650
651 pti_check_boottime_disable();
652 probe_page_size_mask();
653 setup_pcid();
654
655 #ifdef CONFIG_X86_64
656 end = max_pfn << PAGE_SHIFT;
657 #else
658 end = max_low_pfn << PAGE_SHIFT;
659 #endif
660
661 /* the ISA range is always mapped regardless of memory holes */
662 init_memory_mapping(0, ISA_END_ADDRESS);
663
664 /* Init the trampoline, possibly with KASLR memory offset */
665 init_trampoline();
666
667 /*
668 * If the allocation is in bottom-up direction, we setup direct mapping
669 * in bottom-up, otherwise we setup direct mapping in top-down.
670 */
671 if (memblock_bottom_up()) {
672 unsigned long kernel_end = __pa_symbol(_end);
673
674 /*
675 * we need two separate calls here. This is because we want to
676 * allocate page tables above the kernel. So we first map
677 * [kernel_end, end) to make memory above the kernel be mapped
678 * as soon as possible. And then use page tables allocated above
679 * the kernel to map [ISA_END_ADDRESS, kernel_end).
680 */
681 memory_map_bottom_up(kernel_end, end);
682 memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
683 } else {
684 memory_map_top_down(ISA_END_ADDRESS, end);
685 }
686
687 #ifdef CONFIG_X86_64
688 if (max_pfn > max_low_pfn) {
689 /* can we preseve max_low_pfn ?*/
690 max_low_pfn = max_pfn;
691 }
692 #else
693 early_ioremap_page_table_range_init();
694 #endif
695
696 load_cr3(swapper_pg_dir);
697 __flush_tlb_all();
698
699 x86_init.hyper.init_mem_mapping();
700
701 early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
702 }
703
704 /*
705 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
706 * is valid. The argument is a physical page number.
707 *
708 * On x86, access has to be given to the first megabyte of RAM because that
709 * area traditionally contains BIOS code and data regions used by X, dosemu,
710 * and similar apps. Since they map the entire memory range, the whole range
711 * must be allowed (for mapping), but any areas that would otherwise be
712 * disallowed are flagged as being "zero filled" instead of rejected.
713 * Access has to be given to non-kernel-ram areas as well, these contain the
714 * PCI mmio resources as well as potential bios/acpi data regions.
715 */
devmem_is_allowed(unsigned long pagenr)716 int devmem_is_allowed(unsigned long pagenr)
717 {
718 if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
719 IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
720 != REGION_DISJOINT) {
721 /*
722 * For disallowed memory regions in the low 1MB range,
723 * request that the page be shown as all zeros.
724 */
725 if (pagenr < 256)
726 return 2;
727
728 return 0;
729 }
730
731 /*
732 * This must follow RAM test, since System RAM is considered a
733 * restricted resource under CONFIG_STRICT_IOMEM.
734 */
735 if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
736 /* Low 1MB bypasses iomem restrictions. */
737 if (pagenr < 256)
738 return 1;
739
740 return 0;
741 }
742
743 return 1;
744 }
745
free_init_pages(char * what,unsigned long begin,unsigned long end)746 void free_init_pages(char *what, unsigned long begin, unsigned long end)
747 {
748 unsigned long begin_aligned, end_aligned;
749
750 /* Make sure boundaries are page aligned */
751 begin_aligned = PAGE_ALIGN(begin);
752 end_aligned = end & PAGE_MASK;
753
754 if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
755 begin = begin_aligned;
756 end = end_aligned;
757 }
758
759 if (begin >= end)
760 return;
761
762 /*
763 * If debugging page accesses then do not free this memory but
764 * mark them not present - any buggy init-section access will
765 * create a kernel page fault:
766 */
767 if (debug_pagealloc_enabled()) {
768 pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
769 begin, end - 1);
770 set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
771 } else {
772 /*
773 * We just marked the kernel text read only above, now that
774 * we are going to free part of that, we need to make that
775 * writeable and non-executable first.
776 */
777 set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
778 set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
779
780 free_reserved_area((void *)begin, (void *)end,
781 POISON_FREE_INITMEM, what);
782 }
783 }
784
785 /*
786 * begin/end can be in the direct map or the "high kernel mapping"
787 * used for the kernel image only. free_init_pages() will do the
788 * right thing for either kind of address.
789 */
free_kernel_image_pages(void * begin,void * end)790 void free_kernel_image_pages(void *begin, void *end)
791 {
792 unsigned long begin_ul = (unsigned long)begin;
793 unsigned long end_ul = (unsigned long)end;
794 unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
795
796
797 free_init_pages("unused kernel image", begin_ul, end_ul);
798
799 /*
800 * PTI maps some of the kernel into userspace. For performance,
801 * this includes some kernel areas that do not contain secrets.
802 * Those areas might be adjacent to the parts of the kernel image
803 * being freed, which may contain secrets. Remove the "high kernel
804 * image mapping" for these freed areas, ensuring they are not even
805 * potentially vulnerable to Meltdown regardless of the specific
806 * optimizations PTI is currently using.
807 *
808 * The "noalias" prevents unmapping the direct map alias which is
809 * needed to access the freed pages.
810 *
811 * This is only valid for 64bit kernels. 32bit has only one mapping
812 * which can't be treated in this way for obvious reasons.
813 */
814 if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
815 set_memory_np_noalias(begin_ul, len_pages);
816 }
817
mem_encrypt_free_decrypted_mem(void)818 void __weak mem_encrypt_free_decrypted_mem(void) { }
819
free_initmem(void)820 void __ref free_initmem(void)
821 {
822 e820__reallocate_tables();
823
824 mem_encrypt_free_decrypted_mem();
825
826 free_kernel_image_pages(&__init_begin, &__init_end);
827 }
828
829 #ifdef CONFIG_BLK_DEV_INITRD
free_initrd_mem(unsigned long start,unsigned long end)830 void __init free_initrd_mem(unsigned long start, unsigned long end)
831 {
832 /*
833 * end could be not aligned, and We can not align that,
834 * decompresser could be confused by aligned initrd_end
835 * We already reserve the end partial page before in
836 * - i386_start_kernel()
837 * - x86_64_start_kernel()
838 * - relocate_initrd()
839 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
840 */
841 free_init_pages("initrd", start, PAGE_ALIGN(end));
842 }
843 #endif
844
845 /*
846 * Calculate the precise size of the DMA zone (first 16 MB of RAM),
847 * and pass it to the MM layer - to help it set zone watermarks more
848 * accurately.
849 *
850 * Done on 64-bit systems only for the time being, although 32-bit systems
851 * might benefit from this as well.
852 */
memblock_find_dma_reserve(void)853 void __init memblock_find_dma_reserve(void)
854 {
855 #ifdef CONFIG_X86_64
856 u64 nr_pages = 0, nr_free_pages = 0;
857 unsigned long start_pfn, end_pfn;
858 phys_addr_t start_addr, end_addr;
859 int i;
860 u64 u;
861
862 /*
863 * Iterate over all memory ranges (free and reserved ones alike),
864 * to calculate the total number of pages in the first 16 MB of RAM:
865 */
866 nr_pages = 0;
867 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
868 start_pfn = min(start_pfn, MAX_DMA_PFN);
869 end_pfn = min(end_pfn, MAX_DMA_PFN);
870
871 nr_pages += end_pfn - start_pfn;
872 }
873
874 /*
875 * Iterate over free memory ranges to calculate the number of free
876 * pages in the DMA zone, while not counting potential partial
877 * pages at the beginning or the end of the range:
878 */
879 nr_free_pages = 0;
880 for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
881 start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
882 end_pfn = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
883
884 if (start_pfn < end_pfn)
885 nr_free_pages += end_pfn - start_pfn;
886 }
887
888 set_dma_reserve(nr_pages - nr_free_pages);
889 #endif
890 }
891
zone_sizes_init(void)892 void __init zone_sizes_init(void)
893 {
894 unsigned long max_zone_pfns[MAX_NR_ZONES];
895
896 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
897
898 #ifdef CONFIG_ZONE_DMA
899 max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
900 #endif
901 #ifdef CONFIG_ZONE_DMA32
902 max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn);
903 #endif
904 max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
905 #ifdef CONFIG_HIGHMEM
906 max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
907 #endif
908
909 free_area_init_nodes(max_zone_pfns);
910 }
911
912 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
913 .loaded_mm = &init_mm,
914 .next_asid = 1,
915 .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */
916 };
917 EXPORT_PER_CPU_SYMBOL(cpu_tlbstate);
918
update_cache_mode_entry(unsigned entry,enum page_cache_mode cache)919 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
920 {
921 /* entry 0 MUST be WB (hardwired to speed up translations) */
922 BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
923
924 __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
925 __pte2cachemode_tbl[entry] = cache;
926 }
927
928 #ifdef CONFIG_SWAP
max_swapfile_size(void)929 unsigned long max_swapfile_size(void)
930 {
931 unsigned long pages;
932
933 pages = generic_max_swapfile_size();
934
935 if (boot_cpu_has_bug(X86_BUG_L1TF)) {
936 /* Limit the swap file size to MAX_PA/2 for L1TF workaround */
937 unsigned long long l1tf_limit = l1tf_pfn_limit();
938 /*
939 * We encode swap offsets also with 3 bits below those for pfn
940 * which makes the usable limit higher.
941 */
942 #if CONFIG_PGTABLE_LEVELS > 2
943 l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
944 #endif
945 pages = min_t(unsigned long long, l1tf_limit, pages);
946 }
947 return pages;
948 }
949 #endif
950