1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15
16 #include <linux/highmem.h>
17 #include <linux/hrtimer.h>
18 #include <linux/kernel.h>
19 #include <linux/kvm_host.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mm.h>
24 #include <linux/objtool.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 #include <linux/entry-kvm.h>
31
32 #include <asm/apic.h>
33 #include <asm/asm.h>
34 #include <asm/cpu.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/debugreg.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/api.h>
39 #include <asm/fpu/xstate.h>
40 #include <asm/idtentry.h>
41 #include <asm/io.h>
42 #include <asm/irq_remapping.h>
43 #include <asm/kexec.h>
44 #include <asm/perf_event.h>
45 #include <asm/mmu_context.h>
46 #include <asm/mshyperv.h>
47 #include <asm/mwait.h>
48 #include <asm/spec-ctrl.h>
49 #include <asm/virtext.h>
50 #include <asm/vmx.h>
51
52 #include "capabilities.h"
53 #include "cpuid.h"
54 #include "evmcs.h"
55 #include "hyperv.h"
56 #include "kvm_onhyperv.h"
57 #include "irq.h"
58 #include "kvm_cache_regs.h"
59 #include "lapic.h"
60 #include "mmu.h"
61 #include "nested.h"
62 #include "pmu.h"
63 #include "sgx.h"
64 #include "trace.h"
65 #include "vmcs.h"
66 #include "vmcs12.h"
67 #include "vmx.h"
68 #include "x86.h"
69
70 MODULE_AUTHOR("Qumranet");
71 MODULE_LICENSE("GPL");
72
73 #ifdef MODULE
74 static const struct x86_cpu_id vmx_cpu_id[] = {
75 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
76 {}
77 };
78 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
79 #endif
80
81 bool __read_mostly enable_vpid = 1;
82 module_param_named(vpid, enable_vpid, bool, 0444);
83
84 static bool __read_mostly enable_vnmi = 1;
85 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
86
87 bool __read_mostly flexpriority_enabled = 1;
88 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
89
90 bool __read_mostly enable_ept = 1;
91 module_param_named(ept, enable_ept, bool, S_IRUGO);
92
93 bool __read_mostly enable_unrestricted_guest = 1;
94 module_param_named(unrestricted_guest,
95 enable_unrestricted_guest, bool, S_IRUGO);
96
97 bool __read_mostly enable_ept_ad_bits = 1;
98 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
99
100 static bool __read_mostly emulate_invalid_guest_state = true;
101 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
102
103 static bool __read_mostly fasteoi = 1;
104 module_param(fasteoi, bool, S_IRUGO);
105
106 module_param(enable_apicv, bool, S_IRUGO);
107
108 bool __read_mostly enable_ipiv = true;
109 module_param(enable_ipiv, bool, 0444);
110
111 /*
112 * If nested=1, nested virtualization is supported, i.e., guests may use
113 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
114 * use VMX instructions.
115 */
116 static bool __read_mostly nested = 1;
117 module_param(nested, bool, S_IRUGO);
118
119 bool __read_mostly enable_pml = 1;
120 module_param_named(pml, enable_pml, bool, S_IRUGO);
121
122 static bool __read_mostly error_on_inconsistent_vmcs_config = true;
123 module_param(error_on_inconsistent_vmcs_config, bool, 0444);
124
125 static bool __read_mostly dump_invalid_vmcs = 0;
126 module_param(dump_invalid_vmcs, bool, 0644);
127
128 #define MSR_BITMAP_MODE_X2APIC 1
129 #define MSR_BITMAP_MODE_X2APIC_APICV 2
130
131 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
132
133 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
134 static int __read_mostly cpu_preemption_timer_multi;
135 static bool __read_mostly enable_preemption_timer = 1;
136 #ifdef CONFIG_X86_64
137 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
138 #endif
139
140 extern bool __read_mostly allow_smaller_maxphyaddr;
141 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
142
143 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
144 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
145 #define KVM_VM_CR0_ALWAYS_ON \
146 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
147
148 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
149 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
150 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
151
152 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
153
154 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
155 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
156 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
157 RTIT_STATUS_BYTECNT))
158
159 /*
160 * List of MSRs that can be directly passed to the guest.
161 * In addition to these x2apic and PT MSRs are handled specially.
162 */
163 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
164 MSR_IA32_SPEC_CTRL,
165 MSR_IA32_PRED_CMD,
166 MSR_IA32_TSC,
167 #ifdef CONFIG_X86_64
168 MSR_FS_BASE,
169 MSR_GS_BASE,
170 MSR_KERNEL_GS_BASE,
171 MSR_IA32_XFD,
172 MSR_IA32_XFD_ERR,
173 #endif
174 MSR_IA32_SYSENTER_CS,
175 MSR_IA32_SYSENTER_ESP,
176 MSR_IA32_SYSENTER_EIP,
177 MSR_CORE_C1_RES,
178 MSR_CORE_C3_RESIDENCY,
179 MSR_CORE_C6_RESIDENCY,
180 MSR_CORE_C7_RESIDENCY,
181 };
182
183 /*
184 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
185 * ple_gap: upper bound on the amount of time between two successive
186 * executions of PAUSE in a loop. Also indicate if ple enabled.
187 * According to test, this time is usually smaller than 128 cycles.
188 * ple_window: upper bound on the amount of time a guest is allowed to execute
189 * in a PAUSE loop. Tests indicate that most spinlocks are held for
190 * less than 2^12 cycles
191 * Time is measured based on a counter that runs at the same rate as the TSC,
192 * refer SDM volume 3b section 21.6.13 & 22.1.3.
193 */
194 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
195 module_param(ple_gap, uint, 0444);
196
197 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
198 module_param(ple_window, uint, 0444);
199
200 /* Default doubles per-vcpu window every exit. */
201 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
202 module_param(ple_window_grow, uint, 0444);
203
204 /* Default resets per-vcpu window every exit to ple_window. */
205 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
206 module_param(ple_window_shrink, uint, 0444);
207
208 /* Default is to compute the maximum so we can never overflow. */
209 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
210 module_param(ple_window_max, uint, 0444);
211
212 /* Default is SYSTEM mode, 1 for host-guest mode */
213 int __read_mostly pt_mode = PT_MODE_SYSTEM;
214 module_param(pt_mode, int, S_IRUGO);
215
216 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
217 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
218 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
219
220 /* Storage for pre module init parameter parsing */
221 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
222
223 static const struct {
224 const char *option;
225 bool for_parse;
226 } vmentry_l1d_param[] = {
227 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true},
228 [VMENTER_L1D_FLUSH_NEVER] = {"never", true},
229 [VMENTER_L1D_FLUSH_COND] = {"cond", true},
230 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true},
231 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
232 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
233 };
234
235 #define L1D_CACHE_ORDER 4
236 static void *vmx_l1d_flush_pages;
237
238 /* Control for disabling CPU Fill buffer clear */
239 static bool __read_mostly vmx_fb_clear_ctrl_available;
240
vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)241 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
242 {
243 struct page *page;
244 unsigned int i;
245
246 if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
247 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
248 return 0;
249 }
250
251 if (!enable_ept) {
252 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
253 return 0;
254 }
255
256 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
257 u64 msr;
258
259 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
260 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
261 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
262 return 0;
263 }
264 }
265
266 /* If set to auto use the default l1tf mitigation method */
267 if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
268 switch (l1tf_mitigation) {
269 case L1TF_MITIGATION_OFF:
270 l1tf = VMENTER_L1D_FLUSH_NEVER;
271 break;
272 case L1TF_MITIGATION_FLUSH_NOWARN:
273 case L1TF_MITIGATION_FLUSH:
274 case L1TF_MITIGATION_FLUSH_NOSMT:
275 l1tf = VMENTER_L1D_FLUSH_COND;
276 break;
277 case L1TF_MITIGATION_FULL:
278 case L1TF_MITIGATION_FULL_FORCE:
279 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
280 break;
281 }
282 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
283 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
284 }
285
286 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
287 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
288 /*
289 * This allocation for vmx_l1d_flush_pages is not tied to a VM
290 * lifetime and so should not be charged to a memcg.
291 */
292 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
293 if (!page)
294 return -ENOMEM;
295 vmx_l1d_flush_pages = page_address(page);
296
297 /*
298 * Initialize each page with a different pattern in
299 * order to protect against KSM in the nested
300 * virtualization case.
301 */
302 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
303 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
304 PAGE_SIZE);
305 }
306 }
307
308 l1tf_vmx_mitigation = l1tf;
309
310 if (l1tf != VMENTER_L1D_FLUSH_NEVER)
311 static_branch_enable(&vmx_l1d_should_flush);
312 else
313 static_branch_disable(&vmx_l1d_should_flush);
314
315 if (l1tf == VMENTER_L1D_FLUSH_COND)
316 static_branch_enable(&vmx_l1d_flush_cond);
317 else
318 static_branch_disable(&vmx_l1d_flush_cond);
319 return 0;
320 }
321
vmentry_l1d_flush_parse(const char * s)322 static int vmentry_l1d_flush_parse(const char *s)
323 {
324 unsigned int i;
325
326 if (s) {
327 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
328 if (vmentry_l1d_param[i].for_parse &&
329 sysfs_streq(s, vmentry_l1d_param[i].option))
330 return i;
331 }
332 }
333 return -EINVAL;
334 }
335
vmentry_l1d_flush_set(const char * s,const struct kernel_param * kp)336 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
337 {
338 int l1tf, ret;
339
340 l1tf = vmentry_l1d_flush_parse(s);
341 if (l1tf < 0)
342 return l1tf;
343
344 if (!boot_cpu_has(X86_BUG_L1TF))
345 return 0;
346
347 /*
348 * Has vmx_init() run already? If not then this is the pre init
349 * parameter parsing. In that case just store the value and let
350 * vmx_init() do the proper setup after enable_ept has been
351 * established.
352 */
353 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
354 vmentry_l1d_flush_param = l1tf;
355 return 0;
356 }
357
358 mutex_lock(&vmx_l1d_flush_mutex);
359 ret = vmx_setup_l1d_flush(l1tf);
360 mutex_unlock(&vmx_l1d_flush_mutex);
361 return ret;
362 }
363
vmentry_l1d_flush_get(char * s,const struct kernel_param * kp)364 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
365 {
366 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
367 return sprintf(s, "???\n");
368
369 return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
370 }
371
vmx_setup_fb_clear_ctrl(void)372 static void vmx_setup_fb_clear_ctrl(void)
373 {
374 u64 msr;
375
376 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES) &&
377 !boot_cpu_has_bug(X86_BUG_MDS) &&
378 !boot_cpu_has_bug(X86_BUG_TAA)) {
379 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
380 if (msr & ARCH_CAP_FB_CLEAR_CTRL)
381 vmx_fb_clear_ctrl_available = true;
382 }
383 }
384
vmx_disable_fb_clear(struct vcpu_vmx * vmx)385 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
386 {
387 u64 msr;
388
389 if (!vmx->disable_fb_clear)
390 return;
391
392 msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL);
393 msr |= FB_CLEAR_DIS;
394 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
395 /* Cache the MSR value to avoid reading it later */
396 vmx->msr_ia32_mcu_opt_ctrl = msr;
397 }
398
vmx_enable_fb_clear(struct vcpu_vmx * vmx)399 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
400 {
401 if (!vmx->disable_fb_clear)
402 return;
403
404 vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
405 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
406 }
407
vmx_update_fb_clear_dis(struct kvm_vcpu * vcpu,struct vcpu_vmx * vmx)408 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
409 {
410 vmx->disable_fb_clear = vmx_fb_clear_ctrl_available;
411
412 /*
413 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
414 * at VMEntry. Skip the MSR read/write when a guest has no use case to
415 * execute VERW.
416 */
417 if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
418 ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
419 (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
420 (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
421 (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
422 (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
423 vmx->disable_fb_clear = false;
424 }
425
426 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
427 .set = vmentry_l1d_flush_set,
428 .get = vmentry_l1d_flush_get,
429 };
430 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
431
432 static u32 vmx_segment_access_rights(struct kvm_segment *var);
433
434 void vmx_vmexit(void);
435
436 #define vmx_insn_failed(fmt...) \
437 do { \
438 WARN_ONCE(1, fmt); \
439 pr_warn_ratelimited(fmt); \
440 } while (0)
441
vmread_error(unsigned long field,bool fault)442 void vmread_error(unsigned long field, bool fault)
443 {
444 if (fault)
445 kvm_spurious_fault();
446 else
447 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
448 }
449
vmwrite_error(unsigned long field,unsigned long value)450 noinline void vmwrite_error(unsigned long field, unsigned long value)
451 {
452 vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%u\n",
453 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
454 }
455
vmclear_error(struct vmcs * vmcs,u64 phys_addr)456 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
457 {
458 vmx_insn_failed("kvm: vmclear failed: %p/%llx err=%u\n",
459 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
460 }
461
vmptrld_error(struct vmcs * vmcs,u64 phys_addr)462 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
463 {
464 vmx_insn_failed("kvm: vmptrld failed: %p/%llx err=%u\n",
465 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
466 }
467
invvpid_error(unsigned long ext,u16 vpid,gva_t gva)468 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
469 {
470 vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
471 ext, vpid, gva);
472 }
473
invept_error(unsigned long ext,u64 eptp,gpa_t gpa)474 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
475 {
476 vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
477 ext, eptp, gpa);
478 }
479
480 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
481 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
482 /*
483 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
484 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
485 */
486 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
487
488 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
489 static DEFINE_SPINLOCK(vmx_vpid_lock);
490
491 struct vmcs_config vmcs_config;
492 struct vmx_capability vmx_capability;
493
494 #define VMX_SEGMENT_FIELD(seg) \
495 [VCPU_SREG_##seg] = { \
496 .selector = GUEST_##seg##_SELECTOR, \
497 .base = GUEST_##seg##_BASE, \
498 .limit = GUEST_##seg##_LIMIT, \
499 .ar_bytes = GUEST_##seg##_AR_BYTES, \
500 }
501
502 static const struct kvm_vmx_segment_field {
503 unsigned selector;
504 unsigned base;
505 unsigned limit;
506 unsigned ar_bytes;
507 } kvm_vmx_segment_fields[] = {
508 VMX_SEGMENT_FIELD(CS),
509 VMX_SEGMENT_FIELD(DS),
510 VMX_SEGMENT_FIELD(ES),
511 VMX_SEGMENT_FIELD(FS),
512 VMX_SEGMENT_FIELD(GS),
513 VMX_SEGMENT_FIELD(SS),
514 VMX_SEGMENT_FIELD(TR),
515 VMX_SEGMENT_FIELD(LDTR),
516 };
517
vmx_segment_cache_clear(struct vcpu_vmx * vmx)518 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
519 {
520 vmx->segment_cache.bitmask = 0;
521 }
522
523 static unsigned long host_idt_base;
524
525 #if IS_ENABLED(CONFIG_HYPERV)
526 static bool __read_mostly enlightened_vmcs = true;
527 module_param(enlightened_vmcs, bool, 0444);
528
hv_enable_direct_tlbflush(struct kvm_vcpu * vcpu)529 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
530 {
531 struct hv_enlightened_vmcs *evmcs;
532 struct hv_partition_assist_pg **p_hv_pa_pg =
533 &to_kvm_hv(vcpu->kvm)->hv_pa_pg;
534 /*
535 * Synthetic VM-Exit is not enabled in current code and so All
536 * evmcs in singe VM shares same assist page.
537 */
538 if (!*p_hv_pa_pg)
539 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
540
541 if (!*p_hv_pa_pg)
542 return -ENOMEM;
543
544 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
545
546 evmcs->partition_assist_page =
547 __pa(*p_hv_pa_pg);
548 evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
549 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
550
551 return 0;
552 }
553
554 #endif /* IS_ENABLED(CONFIG_HYPERV) */
555
556 /*
557 * Comment's format: document - errata name - stepping - processor name.
558 * Refer from
559 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
560 */
561 static u32 vmx_preemption_cpu_tfms[] = {
562 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
563 0x000206E6,
564 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
565 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
566 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
567 0x00020652,
568 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
569 0x00020655,
570 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
571 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
572 /*
573 * 320767.pdf - AAP86 - B1 -
574 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
575 */
576 0x000106E5,
577 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
578 0x000106A0,
579 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
580 0x000106A1,
581 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
582 0x000106A4,
583 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
584 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
585 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
586 0x000106A5,
587 /* Xeon E3-1220 V2 */
588 0x000306A8,
589 };
590
cpu_has_broken_vmx_preemption_timer(void)591 static inline bool cpu_has_broken_vmx_preemption_timer(void)
592 {
593 u32 eax = cpuid_eax(0x00000001), i;
594
595 /* Clear the reserved bits */
596 eax &= ~(0x3U << 14 | 0xfU << 28);
597 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
598 if (eax == vmx_preemption_cpu_tfms[i])
599 return true;
600
601 return false;
602 }
603
cpu_need_virtualize_apic_accesses(struct kvm_vcpu * vcpu)604 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
605 {
606 return flexpriority_enabled && lapic_in_kernel(vcpu);
607 }
608
possible_passthrough_msr_slot(u32 msr)609 static int possible_passthrough_msr_slot(u32 msr)
610 {
611 u32 i;
612
613 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
614 if (vmx_possible_passthrough_msrs[i] == msr)
615 return i;
616
617 return -ENOENT;
618 }
619
is_valid_passthrough_msr(u32 msr)620 static bool is_valid_passthrough_msr(u32 msr)
621 {
622 bool r;
623
624 switch (msr) {
625 case 0x800 ... 0x8ff:
626 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
627 return true;
628 case MSR_IA32_RTIT_STATUS:
629 case MSR_IA32_RTIT_OUTPUT_BASE:
630 case MSR_IA32_RTIT_OUTPUT_MASK:
631 case MSR_IA32_RTIT_CR3_MATCH:
632 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
633 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */
634 case MSR_LBR_SELECT:
635 case MSR_LBR_TOS:
636 case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
637 case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
638 case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
639 case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
640 case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
641 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
642 return true;
643 }
644
645 r = possible_passthrough_msr_slot(msr) != -ENOENT;
646
647 WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
648
649 return r;
650 }
651
vmx_find_uret_msr(struct vcpu_vmx * vmx,u32 msr)652 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
653 {
654 int i;
655
656 i = kvm_find_user_return_msr(msr);
657 if (i >= 0)
658 return &vmx->guest_uret_msrs[i];
659 return NULL;
660 }
661
vmx_set_guest_uret_msr(struct vcpu_vmx * vmx,struct vmx_uret_msr * msr,u64 data)662 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
663 struct vmx_uret_msr *msr, u64 data)
664 {
665 unsigned int slot = msr - vmx->guest_uret_msrs;
666 int ret = 0;
667
668 if (msr->load_into_hardware) {
669 preempt_disable();
670 ret = kvm_set_user_return_msr(slot, data, msr->mask);
671 preempt_enable();
672 }
673 if (!ret)
674 msr->data = data;
675 return ret;
676 }
677
678 #ifdef CONFIG_KEXEC_CORE
crash_vmclear_local_loaded_vmcss(void)679 static void crash_vmclear_local_loaded_vmcss(void)
680 {
681 int cpu = raw_smp_processor_id();
682 struct loaded_vmcs *v;
683
684 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
685 loaded_vmcss_on_cpu_link)
686 vmcs_clear(v->vmcs);
687 }
688 #endif /* CONFIG_KEXEC_CORE */
689
__loaded_vmcs_clear(void * arg)690 static void __loaded_vmcs_clear(void *arg)
691 {
692 struct loaded_vmcs *loaded_vmcs = arg;
693 int cpu = raw_smp_processor_id();
694
695 if (loaded_vmcs->cpu != cpu)
696 return; /* vcpu migration can race with cpu offline */
697 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
698 per_cpu(current_vmcs, cpu) = NULL;
699
700 vmcs_clear(loaded_vmcs->vmcs);
701 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
702 vmcs_clear(loaded_vmcs->shadow_vmcs);
703
704 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
705
706 /*
707 * Ensure all writes to loaded_vmcs, including deleting it from its
708 * current percpu list, complete before setting loaded_vmcs->cpu to
709 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
710 * and add loaded_vmcs to its percpu list before it's deleted from this
711 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
712 */
713 smp_wmb();
714
715 loaded_vmcs->cpu = -1;
716 loaded_vmcs->launched = 0;
717 }
718
loaded_vmcs_clear(struct loaded_vmcs * loaded_vmcs)719 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
720 {
721 int cpu = loaded_vmcs->cpu;
722
723 if (cpu != -1)
724 smp_call_function_single(cpu,
725 __loaded_vmcs_clear, loaded_vmcs, 1);
726 }
727
vmx_segment_cache_test_set(struct vcpu_vmx * vmx,unsigned seg,unsigned field)728 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
729 unsigned field)
730 {
731 bool ret;
732 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
733
734 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
735 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
736 vmx->segment_cache.bitmask = 0;
737 }
738 ret = vmx->segment_cache.bitmask & mask;
739 vmx->segment_cache.bitmask |= mask;
740 return ret;
741 }
742
vmx_read_guest_seg_selector(struct vcpu_vmx * vmx,unsigned seg)743 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
744 {
745 u16 *p = &vmx->segment_cache.seg[seg].selector;
746
747 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
748 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
749 return *p;
750 }
751
vmx_read_guest_seg_base(struct vcpu_vmx * vmx,unsigned seg)752 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
753 {
754 ulong *p = &vmx->segment_cache.seg[seg].base;
755
756 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
757 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
758 return *p;
759 }
760
vmx_read_guest_seg_limit(struct vcpu_vmx * vmx,unsigned seg)761 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
762 {
763 u32 *p = &vmx->segment_cache.seg[seg].limit;
764
765 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
766 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
767 return *p;
768 }
769
vmx_read_guest_seg_ar(struct vcpu_vmx * vmx,unsigned seg)770 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
771 {
772 u32 *p = &vmx->segment_cache.seg[seg].ar;
773
774 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
775 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
776 return *p;
777 }
778
vmx_update_exception_bitmap(struct kvm_vcpu * vcpu)779 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
780 {
781 u32 eb;
782
783 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
784 (1u << DB_VECTOR) | (1u << AC_VECTOR);
785 /*
786 * Guest access to VMware backdoor ports could legitimately
787 * trigger #GP because of TSS I/O permission bitmap.
788 * We intercept those #GP and allow access to them anyway
789 * as VMware does.
790 */
791 if (enable_vmware_backdoor)
792 eb |= (1u << GP_VECTOR);
793 if ((vcpu->guest_debug &
794 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
795 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
796 eb |= 1u << BP_VECTOR;
797 if (to_vmx(vcpu)->rmode.vm86_active)
798 eb = ~0;
799 if (!vmx_need_pf_intercept(vcpu))
800 eb &= ~(1u << PF_VECTOR);
801
802 /* When we are running a nested L2 guest and L1 specified for it a
803 * certain exception bitmap, we must trap the same exceptions and pass
804 * them to L1. When running L2, we will only handle the exceptions
805 * specified above if L1 did not want them.
806 */
807 if (is_guest_mode(vcpu))
808 eb |= get_vmcs12(vcpu)->exception_bitmap;
809 else {
810 int mask = 0, match = 0;
811
812 if (enable_ept && (eb & (1u << PF_VECTOR))) {
813 /*
814 * If EPT is enabled, #PF is currently only intercepted
815 * if MAXPHYADDR is smaller on the guest than on the
816 * host. In that case we only care about present,
817 * non-reserved faults. For vmcs02, however, PFEC_MASK
818 * and PFEC_MATCH are set in prepare_vmcs02_rare.
819 */
820 mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
821 match = PFERR_PRESENT_MASK;
822 }
823 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
824 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
825 }
826
827 /*
828 * Disabling xfd interception indicates that dynamic xfeatures
829 * might be used in the guest. Always trap #NM in this case
830 * to save guest xfd_err timely.
831 */
832 if (vcpu->arch.xfd_no_write_intercept)
833 eb |= (1u << NM_VECTOR);
834
835 vmcs_write32(EXCEPTION_BITMAP, eb);
836 }
837
838 /*
839 * Check if MSR is intercepted for currently loaded MSR bitmap.
840 */
msr_write_intercepted(struct vcpu_vmx * vmx,u32 msr)841 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
842 {
843 if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
844 return true;
845
846 return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr);
847 }
848
__vmx_vcpu_run_flags(struct vcpu_vmx * vmx)849 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
850 {
851 unsigned int flags = 0;
852
853 if (vmx->loaded_vmcs->launched)
854 flags |= VMX_RUN_VMRESUME;
855
856 /*
857 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
858 * to change it directly without causing a vmexit. In that case read
859 * it after vmexit and store it in vmx->spec_ctrl.
860 */
861 if (unlikely(!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL)))
862 flags |= VMX_RUN_SAVE_SPEC_CTRL;
863
864 return flags;
865 }
866
clear_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit)867 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
868 unsigned long entry, unsigned long exit)
869 {
870 vm_entry_controls_clearbit(vmx, entry);
871 vm_exit_controls_clearbit(vmx, exit);
872 }
873
vmx_find_loadstore_msr_slot(struct vmx_msrs * m,u32 msr)874 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
875 {
876 unsigned int i;
877
878 for (i = 0; i < m->nr; ++i) {
879 if (m->val[i].index == msr)
880 return i;
881 }
882 return -ENOENT;
883 }
884
clear_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr)885 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
886 {
887 int i;
888 struct msr_autoload *m = &vmx->msr_autoload;
889
890 switch (msr) {
891 case MSR_EFER:
892 if (cpu_has_load_ia32_efer()) {
893 clear_atomic_switch_msr_special(vmx,
894 VM_ENTRY_LOAD_IA32_EFER,
895 VM_EXIT_LOAD_IA32_EFER);
896 return;
897 }
898 break;
899 case MSR_CORE_PERF_GLOBAL_CTRL:
900 if (cpu_has_load_perf_global_ctrl()) {
901 clear_atomic_switch_msr_special(vmx,
902 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
903 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
904 return;
905 }
906 break;
907 }
908 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
909 if (i < 0)
910 goto skip_guest;
911 --m->guest.nr;
912 m->guest.val[i] = m->guest.val[m->guest.nr];
913 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
914
915 skip_guest:
916 i = vmx_find_loadstore_msr_slot(&m->host, msr);
917 if (i < 0)
918 return;
919
920 --m->host.nr;
921 m->host.val[i] = m->host.val[m->host.nr];
922 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
923 }
924
add_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit,unsigned long guest_val_vmcs,unsigned long host_val_vmcs,u64 guest_val,u64 host_val)925 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
926 unsigned long entry, unsigned long exit,
927 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
928 u64 guest_val, u64 host_val)
929 {
930 vmcs_write64(guest_val_vmcs, guest_val);
931 if (host_val_vmcs != HOST_IA32_EFER)
932 vmcs_write64(host_val_vmcs, host_val);
933 vm_entry_controls_setbit(vmx, entry);
934 vm_exit_controls_setbit(vmx, exit);
935 }
936
add_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr,u64 guest_val,u64 host_val,bool entry_only)937 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
938 u64 guest_val, u64 host_val, bool entry_only)
939 {
940 int i, j = 0;
941 struct msr_autoload *m = &vmx->msr_autoload;
942
943 switch (msr) {
944 case MSR_EFER:
945 if (cpu_has_load_ia32_efer()) {
946 add_atomic_switch_msr_special(vmx,
947 VM_ENTRY_LOAD_IA32_EFER,
948 VM_EXIT_LOAD_IA32_EFER,
949 GUEST_IA32_EFER,
950 HOST_IA32_EFER,
951 guest_val, host_val);
952 return;
953 }
954 break;
955 case MSR_CORE_PERF_GLOBAL_CTRL:
956 if (cpu_has_load_perf_global_ctrl()) {
957 add_atomic_switch_msr_special(vmx,
958 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
959 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
960 GUEST_IA32_PERF_GLOBAL_CTRL,
961 HOST_IA32_PERF_GLOBAL_CTRL,
962 guest_val, host_val);
963 return;
964 }
965 break;
966 case MSR_IA32_PEBS_ENABLE:
967 /* PEBS needs a quiescent period after being disabled (to write
968 * a record). Disabling PEBS through VMX MSR swapping doesn't
969 * provide that period, so a CPU could write host's record into
970 * guest's memory.
971 */
972 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
973 }
974
975 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
976 if (!entry_only)
977 j = vmx_find_loadstore_msr_slot(&m->host, msr);
978
979 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
980 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
981 printk_once(KERN_WARNING "Not enough msr switch entries. "
982 "Can't add msr %x\n", msr);
983 return;
984 }
985 if (i < 0) {
986 i = m->guest.nr++;
987 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
988 }
989 m->guest.val[i].index = msr;
990 m->guest.val[i].value = guest_val;
991
992 if (entry_only)
993 return;
994
995 if (j < 0) {
996 j = m->host.nr++;
997 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
998 }
999 m->host.val[j].index = msr;
1000 m->host.val[j].value = host_val;
1001 }
1002
update_transition_efer(struct vcpu_vmx * vmx)1003 static bool update_transition_efer(struct vcpu_vmx *vmx)
1004 {
1005 u64 guest_efer = vmx->vcpu.arch.efer;
1006 u64 ignore_bits = 0;
1007 int i;
1008
1009 /* Shadow paging assumes NX to be available. */
1010 if (!enable_ept)
1011 guest_efer |= EFER_NX;
1012
1013 /*
1014 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1015 */
1016 ignore_bits |= EFER_SCE;
1017 #ifdef CONFIG_X86_64
1018 ignore_bits |= EFER_LMA | EFER_LME;
1019 /* SCE is meaningful only in long mode on Intel */
1020 if (guest_efer & EFER_LMA)
1021 ignore_bits &= ~(u64)EFER_SCE;
1022 #endif
1023
1024 /*
1025 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1026 * On CPUs that support "load IA32_EFER", always switch EFER
1027 * atomically, since it's faster than switching it manually.
1028 */
1029 if (cpu_has_load_ia32_efer() ||
1030 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1031 if (!(guest_efer & EFER_LMA))
1032 guest_efer &= ~EFER_LME;
1033 if (guest_efer != host_efer)
1034 add_atomic_switch_msr(vmx, MSR_EFER,
1035 guest_efer, host_efer, false);
1036 else
1037 clear_atomic_switch_msr(vmx, MSR_EFER);
1038 return false;
1039 }
1040
1041 i = kvm_find_user_return_msr(MSR_EFER);
1042 if (i < 0)
1043 return false;
1044
1045 clear_atomic_switch_msr(vmx, MSR_EFER);
1046
1047 guest_efer &= ~ignore_bits;
1048 guest_efer |= host_efer & ignore_bits;
1049
1050 vmx->guest_uret_msrs[i].data = guest_efer;
1051 vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1052
1053 return true;
1054 }
1055
1056 #ifdef CONFIG_X86_32
1057 /*
1058 * On 32-bit kernels, VM exits still load the FS and GS bases from the
1059 * VMCS rather than the segment table. KVM uses this helper to figure
1060 * out the current bases to poke them into the VMCS before entry.
1061 */
segment_base(u16 selector)1062 static unsigned long segment_base(u16 selector)
1063 {
1064 struct desc_struct *table;
1065 unsigned long v;
1066
1067 if (!(selector & ~SEGMENT_RPL_MASK))
1068 return 0;
1069
1070 table = get_current_gdt_ro();
1071
1072 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1073 u16 ldt_selector = kvm_read_ldt();
1074
1075 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1076 return 0;
1077
1078 table = (struct desc_struct *)segment_base(ldt_selector);
1079 }
1080 v = get_desc_base(&table[selector >> 3]);
1081 return v;
1082 }
1083 #endif
1084
pt_can_write_msr(struct vcpu_vmx * vmx)1085 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1086 {
1087 return vmx_pt_mode_is_host_guest() &&
1088 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1089 }
1090
pt_output_base_valid(struct kvm_vcpu * vcpu,u64 base)1091 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1092 {
1093 /* The base must be 128-byte aligned and a legal physical address. */
1094 return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1095 }
1096
pt_load_msr(struct pt_ctx * ctx,u32 addr_range)1097 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1098 {
1099 u32 i;
1100
1101 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1102 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1103 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1104 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1105 for (i = 0; i < addr_range; i++) {
1106 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1107 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1108 }
1109 }
1110
pt_save_msr(struct pt_ctx * ctx,u32 addr_range)1111 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1112 {
1113 u32 i;
1114
1115 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1116 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1117 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1118 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1119 for (i = 0; i < addr_range; i++) {
1120 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1121 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1122 }
1123 }
1124
pt_guest_enter(struct vcpu_vmx * vmx)1125 static void pt_guest_enter(struct vcpu_vmx *vmx)
1126 {
1127 if (vmx_pt_mode_is_system())
1128 return;
1129
1130 /*
1131 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1132 * Save host state before VM entry.
1133 */
1134 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1135 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1136 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1137 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1138 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1139 }
1140 }
1141
pt_guest_exit(struct vcpu_vmx * vmx)1142 static void pt_guest_exit(struct vcpu_vmx *vmx)
1143 {
1144 if (vmx_pt_mode_is_system())
1145 return;
1146
1147 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1148 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1149 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1150 }
1151
1152 /*
1153 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1154 * i.e. RTIT_CTL is always cleared on VM-Exit. Restore it if necessary.
1155 */
1156 if (vmx->pt_desc.host.ctl)
1157 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1158 }
1159
vmx_set_host_fs_gs(struct vmcs_host_state * host,u16 fs_sel,u16 gs_sel,unsigned long fs_base,unsigned long gs_base)1160 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1161 unsigned long fs_base, unsigned long gs_base)
1162 {
1163 if (unlikely(fs_sel != host->fs_sel)) {
1164 if (!(fs_sel & 7))
1165 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1166 else
1167 vmcs_write16(HOST_FS_SELECTOR, 0);
1168 host->fs_sel = fs_sel;
1169 }
1170 if (unlikely(gs_sel != host->gs_sel)) {
1171 if (!(gs_sel & 7))
1172 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1173 else
1174 vmcs_write16(HOST_GS_SELECTOR, 0);
1175 host->gs_sel = gs_sel;
1176 }
1177 if (unlikely(fs_base != host->fs_base)) {
1178 vmcs_writel(HOST_FS_BASE, fs_base);
1179 host->fs_base = fs_base;
1180 }
1181 if (unlikely(gs_base != host->gs_base)) {
1182 vmcs_writel(HOST_GS_BASE, gs_base);
1183 host->gs_base = gs_base;
1184 }
1185 }
1186
vmx_prepare_switch_to_guest(struct kvm_vcpu * vcpu)1187 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1188 {
1189 struct vcpu_vmx *vmx = to_vmx(vcpu);
1190 struct vmcs_host_state *host_state;
1191 #ifdef CONFIG_X86_64
1192 int cpu = raw_smp_processor_id();
1193 #endif
1194 unsigned long fs_base, gs_base;
1195 u16 fs_sel, gs_sel;
1196 int i;
1197
1198 vmx->req_immediate_exit = false;
1199
1200 /*
1201 * Note that guest MSRs to be saved/restored can also be changed
1202 * when guest state is loaded. This happens when guest transitions
1203 * to/from long-mode by setting MSR_EFER.LMA.
1204 */
1205 if (!vmx->guest_uret_msrs_loaded) {
1206 vmx->guest_uret_msrs_loaded = true;
1207 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1208 if (!vmx->guest_uret_msrs[i].load_into_hardware)
1209 continue;
1210
1211 kvm_set_user_return_msr(i,
1212 vmx->guest_uret_msrs[i].data,
1213 vmx->guest_uret_msrs[i].mask);
1214 }
1215 }
1216
1217 if (vmx->nested.need_vmcs12_to_shadow_sync)
1218 nested_sync_vmcs12_to_shadow(vcpu);
1219
1220 if (vmx->guest_state_loaded)
1221 return;
1222
1223 host_state = &vmx->loaded_vmcs->host_state;
1224
1225 /*
1226 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1227 * allow segment selectors with cpl > 0 or ti == 1.
1228 */
1229 host_state->ldt_sel = kvm_read_ldt();
1230
1231 #ifdef CONFIG_X86_64
1232 savesegment(ds, host_state->ds_sel);
1233 savesegment(es, host_state->es_sel);
1234
1235 gs_base = cpu_kernelmode_gs_base(cpu);
1236 if (likely(is_64bit_mm(current->mm))) {
1237 current_save_fsgs();
1238 fs_sel = current->thread.fsindex;
1239 gs_sel = current->thread.gsindex;
1240 fs_base = current->thread.fsbase;
1241 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1242 } else {
1243 savesegment(fs, fs_sel);
1244 savesegment(gs, gs_sel);
1245 fs_base = read_msr(MSR_FS_BASE);
1246 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1247 }
1248
1249 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1250 #else
1251 savesegment(fs, fs_sel);
1252 savesegment(gs, gs_sel);
1253 fs_base = segment_base(fs_sel);
1254 gs_base = segment_base(gs_sel);
1255 #endif
1256
1257 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1258 vmx->guest_state_loaded = true;
1259 }
1260
vmx_prepare_switch_to_host(struct vcpu_vmx * vmx)1261 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1262 {
1263 struct vmcs_host_state *host_state;
1264
1265 if (!vmx->guest_state_loaded)
1266 return;
1267
1268 host_state = &vmx->loaded_vmcs->host_state;
1269
1270 ++vmx->vcpu.stat.host_state_reload;
1271
1272 #ifdef CONFIG_X86_64
1273 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1274 #endif
1275 if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1276 kvm_load_ldt(host_state->ldt_sel);
1277 #ifdef CONFIG_X86_64
1278 load_gs_index(host_state->gs_sel);
1279 #else
1280 loadsegment(gs, host_state->gs_sel);
1281 #endif
1282 }
1283 if (host_state->fs_sel & 7)
1284 loadsegment(fs, host_state->fs_sel);
1285 #ifdef CONFIG_X86_64
1286 if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1287 loadsegment(ds, host_state->ds_sel);
1288 loadsegment(es, host_state->es_sel);
1289 }
1290 #endif
1291 invalidate_tss_limit();
1292 #ifdef CONFIG_X86_64
1293 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1294 #endif
1295 load_fixmap_gdt(raw_smp_processor_id());
1296 vmx->guest_state_loaded = false;
1297 vmx->guest_uret_msrs_loaded = false;
1298 }
1299
1300 #ifdef CONFIG_X86_64
vmx_read_guest_kernel_gs_base(struct vcpu_vmx * vmx)1301 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1302 {
1303 preempt_disable();
1304 if (vmx->guest_state_loaded)
1305 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1306 preempt_enable();
1307 return vmx->msr_guest_kernel_gs_base;
1308 }
1309
vmx_write_guest_kernel_gs_base(struct vcpu_vmx * vmx,u64 data)1310 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1311 {
1312 preempt_disable();
1313 if (vmx->guest_state_loaded)
1314 wrmsrl(MSR_KERNEL_GS_BASE, data);
1315 preempt_enable();
1316 vmx->msr_guest_kernel_gs_base = data;
1317 }
1318 #endif
1319
vmx_vcpu_load_vmcs(struct kvm_vcpu * vcpu,int cpu,struct loaded_vmcs * buddy)1320 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1321 struct loaded_vmcs *buddy)
1322 {
1323 struct vcpu_vmx *vmx = to_vmx(vcpu);
1324 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1325 struct vmcs *prev;
1326
1327 if (!already_loaded) {
1328 loaded_vmcs_clear(vmx->loaded_vmcs);
1329 local_irq_disable();
1330
1331 /*
1332 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1333 * this cpu's percpu list, otherwise it may not yet be deleted
1334 * from its previous cpu's percpu list. Pairs with the
1335 * smb_wmb() in __loaded_vmcs_clear().
1336 */
1337 smp_rmb();
1338
1339 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1340 &per_cpu(loaded_vmcss_on_cpu, cpu));
1341 local_irq_enable();
1342 }
1343
1344 prev = per_cpu(current_vmcs, cpu);
1345 if (prev != vmx->loaded_vmcs->vmcs) {
1346 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1347 vmcs_load(vmx->loaded_vmcs->vmcs);
1348
1349 /*
1350 * No indirect branch prediction barrier needed when switching
1351 * the active VMCS within a guest, e.g. on nested VM-Enter.
1352 * The L1 VMM can protect itself with retpolines, IBPB or IBRS.
1353 */
1354 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1355 indirect_branch_prediction_barrier();
1356 }
1357
1358 if (!already_loaded) {
1359 void *gdt = get_current_gdt_ro();
1360
1361 /*
1362 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1363 * TLB entries from its previous association with the vCPU.
1364 */
1365 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1366
1367 /*
1368 * Linux uses per-cpu TSS and GDT, so set these when switching
1369 * processors. See 22.2.4.
1370 */
1371 vmcs_writel(HOST_TR_BASE,
1372 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1373 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
1374
1375 if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1376 /* 22.2.3 */
1377 vmcs_writel(HOST_IA32_SYSENTER_ESP,
1378 (unsigned long)(cpu_entry_stack(cpu) + 1));
1379 }
1380
1381 vmx->loaded_vmcs->cpu = cpu;
1382 }
1383 }
1384
1385 /*
1386 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1387 * vcpu mutex is already taken.
1388 */
vmx_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1389 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1390 {
1391 struct vcpu_vmx *vmx = to_vmx(vcpu);
1392
1393 vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1394
1395 vmx_vcpu_pi_load(vcpu, cpu);
1396
1397 vmx->host_debugctlmsr = get_debugctlmsr();
1398 }
1399
vmx_vcpu_put(struct kvm_vcpu * vcpu)1400 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1401 {
1402 vmx_vcpu_pi_put(vcpu);
1403
1404 vmx_prepare_switch_to_host(to_vmx(vcpu));
1405 }
1406
vmx_emulation_required(struct kvm_vcpu * vcpu)1407 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1408 {
1409 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1410 }
1411
vmx_get_rflags(struct kvm_vcpu * vcpu)1412 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1413 {
1414 struct vcpu_vmx *vmx = to_vmx(vcpu);
1415 unsigned long rflags, save_rflags;
1416
1417 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1418 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1419 rflags = vmcs_readl(GUEST_RFLAGS);
1420 if (vmx->rmode.vm86_active) {
1421 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1422 save_rflags = vmx->rmode.save_rflags;
1423 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1424 }
1425 vmx->rflags = rflags;
1426 }
1427 return vmx->rflags;
1428 }
1429
vmx_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1430 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1431 {
1432 struct vcpu_vmx *vmx = to_vmx(vcpu);
1433 unsigned long old_rflags;
1434
1435 if (is_unrestricted_guest(vcpu)) {
1436 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1437 vmx->rflags = rflags;
1438 vmcs_writel(GUEST_RFLAGS, rflags);
1439 return;
1440 }
1441
1442 old_rflags = vmx_get_rflags(vcpu);
1443 vmx->rflags = rflags;
1444 if (vmx->rmode.vm86_active) {
1445 vmx->rmode.save_rflags = rflags;
1446 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1447 }
1448 vmcs_writel(GUEST_RFLAGS, rflags);
1449
1450 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1451 vmx->emulation_required = vmx_emulation_required(vcpu);
1452 }
1453
vmx_get_if_flag(struct kvm_vcpu * vcpu)1454 static bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1455 {
1456 return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1457 }
1458
vmx_get_interrupt_shadow(struct kvm_vcpu * vcpu)1459 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1460 {
1461 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1462 int ret = 0;
1463
1464 if (interruptibility & GUEST_INTR_STATE_STI)
1465 ret |= KVM_X86_SHADOW_INT_STI;
1466 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1467 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1468
1469 return ret;
1470 }
1471
vmx_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)1472 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1473 {
1474 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1475 u32 interruptibility = interruptibility_old;
1476
1477 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1478
1479 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1480 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1481 else if (mask & KVM_X86_SHADOW_INT_STI)
1482 interruptibility |= GUEST_INTR_STATE_STI;
1483
1484 if ((interruptibility != interruptibility_old))
1485 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1486 }
1487
vmx_rtit_ctl_check(struct kvm_vcpu * vcpu,u64 data)1488 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1489 {
1490 struct vcpu_vmx *vmx = to_vmx(vcpu);
1491 unsigned long value;
1492
1493 /*
1494 * Any MSR write that attempts to change bits marked reserved will
1495 * case a #GP fault.
1496 */
1497 if (data & vmx->pt_desc.ctl_bitmask)
1498 return 1;
1499
1500 /*
1501 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1502 * result in a #GP unless the same write also clears TraceEn.
1503 */
1504 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1505 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1506 return 1;
1507
1508 /*
1509 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1510 * and FabricEn would cause #GP, if
1511 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1512 */
1513 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1514 !(data & RTIT_CTL_FABRIC_EN) &&
1515 !intel_pt_validate_cap(vmx->pt_desc.caps,
1516 PT_CAP_single_range_output))
1517 return 1;
1518
1519 /*
1520 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1521 * utilize encodings marked reserved will cause a #GP fault.
1522 */
1523 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1524 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1525 !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1526 RTIT_CTL_MTC_RANGE_OFFSET, &value))
1527 return 1;
1528 value = intel_pt_validate_cap(vmx->pt_desc.caps,
1529 PT_CAP_cycle_thresholds);
1530 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1531 !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1532 RTIT_CTL_CYC_THRESH_OFFSET, &value))
1533 return 1;
1534 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1535 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1536 !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1537 RTIT_CTL_PSB_FREQ_OFFSET, &value))
1538 return 1;
1539
1540 /*
1541 * If ADDRx_CFG is reserved or the encodings is >2 will
1542 * cause a #GP fault.
1543 */
1544 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1545 if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1546 return 1;
1547 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1548 if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1549 return 1;
1550 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1551 if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1552 return 1;
1553 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1554 if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1555 return 1;
1556
1557 return 0;
1558 }
1559
vmx_can_emulate_instruction(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)1560 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1561 void *insn, int insn_len)
1562 {
1563 /*
1564 * Emulation of instructions in SGX enclaves is impossible as RIP does
1565 * not point at the failing instruction, and even if it did, the code
1566 * stream is inaccessible. Inject #UD instead of exiting to userspace
1567 * so that guest userspace can't DoS the guest simply by triggering
1568 * emulation (enclaves are CPL3 only).
1569 */
1570 if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1571 kvm_queue_exception(vcpu, UD_VECTOR);
1572 return false;
1573 }
1574 return true;
1575 }
1576
skip_emulated_instruction(struct kvm_vcpu * vcpu)1577 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1578 {
1579 union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1580 unsigned long rip, orig_rip;
1581 u32 instr_len;
1582
1583 /*
1584 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1585 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1586 * set when EPT misconfig occurs. In practice, real hardware updates
1587 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1588 * (namely Hyper-V) don't set it due to it being undefined behavior,
1589 * i.e. we end up advancing IP with some random value.
1590 */
1591 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1592 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1593 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1594
1595 /*
1596 * Emulating an enclave's instructions isn't supported as KVM
1597 * cannot access the enclave's memory or its true RIP, e.g. the
1598 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1599 * the RIP that actually triggered the VM-Exit. But, because
1600 * most instructions that cause VM-Exit will #UD in an enclave,
1601 * most instruction-based VM-Exits simply do not occur.
1602 *
1603 * There are a few exceptions, notably the debug instructions
1604 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1605 * and generate #DB/#BP as expected, which KVM might intercept.
1606 * But again, the CPU does the dirty work and saves an instr
1607 * length of zero so VMMs don't shoot themselves in the foot.
1608 * WARN if KVM tries to skip a non-zero length instruction on
1609 * a VM-Exit from an enclave.
1610 */
1611 if (!instr_len)
1612 goto rip_updated;
1613
1614 WARN(exit_reason.enclave_mode,
1615 "KVM: skipping instruction after SGX enclave VM-Exit");
1616
1617 orig_rip = kvm_rip_read(vcpu);
1618 rip = orig_rip + instr_len;
1619 #ifdef CONFIG_X86_64
1620 /*
1621 * We need to mask out the high 32 bits of RIP if not in 64-bit
1622 * mode, but just finding out that we are in 64-bit mode is
1623 * quite expensive. Only do it if there was a carry.
1624 */
1625 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1626 rip = (u32)rip;
1627 #endif
1628 kvm_rip_write(vcpu, rip);
1629 } else {
1630 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1631 return 0;
1632 }
1633
1634 rip_updated:
1635 /* skipping an emulated instruction also counts */
1636 vmx_set_interrupt_shadow(vcpu, 0);
1637
1638 return 1;
1639 }
1640
1641 /*
1642 * Recognizes a pending MTF VM-exit and records the nested state for later
1643 * delivery.
1644 */
vmx_update_emulated_instruction(struct kvm_vcpu * vcpu)1645 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1646 {
1647 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1648 struct vcpu_vmx *vmx = to_vmx(vcpu);
1649
1650 if (!is_guest_mode(vcpu))
1651 return;
1652
1653 /*
1654 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1655 * TSS T-bit traps and ICEBP (INT1). KVM doesn't emulate T-bit traps
1656 * or ICEBP (in the emulator proper), and skipping of ICEBP after an
1657 * intercepted #DB deliberately avoids single-step #DB and MTF updates
1658 * as ICEBP is higher priority than both. As instruction emulation is
1659 * completed at this point (i.e. KVM is at the instruction boundary),
1660 * any #DB exception pending delivery must be a debug-trap of lower
1661 * priority than MTF. Record the pending MTF state to be delivered in
1662 * vmx_check_nested_events().
1663 */
1664 if (nested_cpu_has_mtf(vmcs12) &&
1665 (!vcpu->arch.exception.pending ||
1666 vcpu->arch.exception.vector == DB_VECTOR) &&
1667 (!vcpu->arch.exception_vmexit.pending ||
1668 vcpu->arch.exception_vmexit.vector == DB_VECTOR)) {
1669 vmx->nested.mtf_pending = true;
1670 kvm_make_request(KVM_REQ_EVENT, vcpu);
1671 } else {
1672 vmx->nested.mtf_pending = false;
1673 }
1674 }
1675
vmx_skip_emulated_instruction(struct kvm_vcpu * vcpu)1676 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1677 {
1678 vmx_update_emulated_instruction(vcpu);
1679 return skip_emulated_instruction(vcpu);
1680 }
1681
vmx_clear_hlt(struct kvm_vcpu * vcpu)1682 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1683 {
1684 /*
1685 * Ensure that we clear the HLT state in the VMCS. We don't need to
1686 * explicitly skip the instruction because if the HLT state is set,
1687 * then the instruction is already executing and RIP has already been
1688 * advanced.
1689 */
1690 if (kvm_hlt_in_guest(vcpu->kvm) &&
1691 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1692 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1693 }
1694
vmx_inject_exception(struct kvm_vcpu * vcpu)1695 static void vmx_inject_exception(struct kvm_vcpu *vcpu)
1696 {
1697 struct kvm_queued_exception *ex = &vcpu->arch.exception;
1698 u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
1699 struct vcpu_vmx *vmx = to_vmx(vcpu);
1700
1701 kvm_deliver_exception_payload(vcpu, ex);
1702
1703 if (ex->has_error_code) {
1704 /*
1705 * Despite the error code being architecturally defined as 32
1706 * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1707 * VMX don't actually supporting setting bits 31:16. Hardware
1708 * will (should) never provide a bogus error code, but AMD CPUs
1709 * do generate error codes with bits 31:16 set, and so KVM's
1710 * ABI lets userspace shove in arbitrary 32-bit values. Drop
1711 * the upper bits to avoid VM-Fail, losing information that
1712 * does't really exist is preferable to killing the VM.
1713 */
1714 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code);
1715 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1716 }
1717
1718 if (vmx->rmode.vm86_active) {
1719 int inc_eip = 0;
1720 if (kvm_exception_is_soft(ex->vector))
1721 inc_eip = vcpu->arch.event_exit_inst_len;
1722 kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip);
1723 return;
1724 }
1725
1726 WARN_ON_ONCE(vmx->emulation_required);
1727
1728 if (kvm_exception_is_soft(ex->vector)) {
1729 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1730 vmx->vcpu.arch.event_exit_inst_len);
1731 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1732 } else
1733 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1734
1735 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1736
1737 vmx_clear_hlt(vcpu);
1738 }
1739
vmx_setup_uret_msr(struct vcpu_vmx * vmx,unsigned int msr,bool load_into_hardware)1740 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1741 bool load_into_hardware)
1742 {
1743 struct vmx_uret_msr *uret_msr;
1744
1745 uret_msr = vmx_find_uret_msr(vmx, msr);
1746 if (!uret_msr)
1747 return;
1748
1749 uret_msr->load_into_hardware = load_into_hardware;
1750 }
1751
1752 /*
1753 * Configuring user return MSRs to automatically save, load, and restore MSRs
1754 * that need to be shoved into hardware when running the guest. Note, omitting
1755 * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1756 * loaded into hardware when running the guest.
1757 */
vmx_setup_uret_msrs(struct vcpu_vmx * vmx)1758 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1759 {
1760 #ifdef CONFIG_X86_64
1761 bool load_syscall_msrs;
1762
1763 /*
1764 * The SYSCALL MSRs are only needed on long mode guests, and only
1765 * when EFER.SCE is set.
1766 */
1767 load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1768 (vmx->vcpu.arch.efer & EFER_SCE);
1769
1770 vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1771 vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1772 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1773 #endif
1774 vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1775
1776 vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1777 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1778 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1779
1780 /*
1781 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1782 * kernel and old userspace. If those guests run on a tsx=off host, do
1783 * allow guests to use TSX_CTRL, but don't change the value in hardware
1784 * so that TSX remains always disabled.
1785 */
1786 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1787
1788 /*
1789 * The set of MSRs to load may have changed, reload MSRs before the
1790 * next VM-Enter.
1791 */
1792 vmx->guest_uret_msrs_loaded = false;
1793 }
1794
vmx_get_l2_tsc_offset(struct kvm_vcpu * vcpu)1795 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1796 {
1797 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1798
1799 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1800 return vmcs12->tsc_offset;
1801
1802 return 0;
1803 }
1804
vmx_get_l2_tsc_multiplier(struct kvm_vcpu * vcpu)1805 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1806 {
1807 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1808
1809 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1810 nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1811 return vmcs12->tsc_multiplier;
1812
1813 return kvm_caps.default_tsc_scaling_ratio;
1814 }
1815
vmx_write_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)1816 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1817 {
1818 vmcs_write64(TSC_OFFSET, offset);
1819 }
1820
vmx_write_tsc_multiplier(struct kvm_vcpu * vcpu,u64 multiplier)1821 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
1822 {
1823 vmcs_write64(TSC_MULTIPLIER, multiplier);
1824 }
1825
1826 /*
1827 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1828 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1829 * all guests if the "nested" module option is off, and can also be disabled
1830 * for a single guest by disabling its VMX cpuid bit.
1831 */
nested_vmx_allowed(struct kvm_vcpu * vcpu)1832 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1833 {
1834 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1835 }
1836
vmx_feature_control_msr_valid(struct kvm_vcpu * vcpu,uint64_t val)1837 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1838 uint64_t val)
1839 {
1840 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1841
1842 return !(val & ~valid_bits);
1843 }
1844
vmx_get_msr_feature(struct kvm_msr_entry * msr)1845 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1846 {
1847 switch (msr->index) {
1848 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1849 if (!nested)
1850 return 1;
1851 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1852 case MSR_IA32_PERF_CAPABILITIES:
1853 msr->data = vmx_get_perf_capabilities();
1854 return 0;
1855 default:
1856 return KVM_MSR_RET_INVALID;
1857 }
1858 }
1859
1860 /*
1861 * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
1862 * Returns 0 on success, non-0 otherwise.
1863 * Assumes vcpu_load() was already called.
1864 */
vmx_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1865 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1866 {
1867 struct vcpu_vmx *vmx = to_vmx(vcpu);
1868 struct vmx_uret_msr *msr;
1869 u32 index;
1870
1871 switch (msr_info->index) {
1872 #ifdef CONFIG_X86_64
1873 case MSR_FS_BASE:
1874 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1875 break;
1876 case MSR_GS_BASE:
1877 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1878 break;
1879 case MSR_KERNEL_GS_BASE:
1880 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1881 break;
1882 #endif
1883 case MSR_EFER:
1884 return kvm_get_msr_common(vcpu, msr_info);
1885 case MSR_IA32_TSX_CTRL:
1886 if (!msr_info->host_initiated &&
1887 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1888 return 1;
1889 goto find_uret_msr;
1890 case MSR_IA32_UMWAIT_CONTROL:
1891 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1892 return 1;
1893
1894 msr_info->data = vmx->msr_ia32_umwait_control;
1895 break;
1896 case MSR_IA32_SPEC_CTRL:
1897 if (!msr_info->host_initiated &&
1898 !guest_has_spec_ctrl_msr(vcpu))
1899 return 1;
1900
1901 msr_info->data = to_vmx(vcpu)->spec_ctrl;
1902 break;
1903 case MSR_IA32_SYSENTER_CS:
1904 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1905 break;
1906 case MSR_IA32_SYSENTER_EIP:
1907 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1908 break;
1909 case MSR_IA32_SYSENTER_ESP:
1910 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1911 break;
1912 case MSR_IA32_BNDCFGS:
1913 if (!kvm_mpx_supported() ||
1914 (!msr_info->host_initiated &&
1915 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1916 return 1;
1917 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1918 break;
1919 case MSR_IA32_MCG_EXT_CTL:
1920 if (!msr_info->host_initiated &&
1921 !(vmx->msr_ia32_feature_control &
1922 FEAT_CTL_LMCE_ENABLED))
1923 return 1;
1924 msr_info->data = vcpu->arch.mcg_ext_ctl;
1925 break;
1926 case MSR_IA32_FEAT_CTL:
1927 msr_info->data = vmx->msr_ia32_feature_control;
1928 break;
1929 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
1930 if (!msr_info->host_initiated &&
1931 !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
1932 return 1;
1933 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
1934 [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
1935 break;
1936 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1937 if (!nested_vmx_allowed(vcpu))
1938 return 1;
1939 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1940 &msr_info->data))
1941 return 1;
1942 /*
1943 * Enlightened VMCS v1 doesn't have certain VMCS fields but
1944 * instead of just ignoring the features, different Hyper-V
1945 * versions are either trying to use them and fail or do some
1946 * sanity checking and refuse to boot. Filter all unsupported
1947 * features out.
1948 */
1949 if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu))
1950 nested_evmcs_filter_control_msr(vcpu, msr_info->index,
1951 &msr_info->data);
1952 break;
1953 case MSR_IA32_RTIT_CTL:
1954 if (!vmx_pt_mode_is_host_guest())
1955 return 1;
1956 msr_info->data = vmx->pt_desc.guest.ctl;
1957 break;
1958 case MSR_IA32_RTIT_STATUS:
1959 if (!vmx_pt_mode_is_host_guest())
1960 return 1;
1961 msr_info->data = vmx->pt_desc.guest.status;
1962 break;
1963 case MSR_IA32_RTIT_CR3_MATCH:
1964 if (!vmx_pt_mode_is_host_guest() ||
1965 !intel_pt_validate_cap(vmx->pt_desc.caps,
1966 PT_CAP_cr3_filtering))
1967 return 1;
1968 msr_info->data = vmx->pt_desc.guest.cr3_match;
1969 break;
1970 case MSR_IA32_RTIT_OUTPUT_BASE:
1971 if (!vmx_pt_mode_is_host_guest() ||
1972 (!intel_pt_validate_cap(vmx->pt_desc.caps,
1973 PT_CAP_topa_output) &&
1974 !intel_pt_validate_cap(vmx->pt_desc.caps,
1975 PT_CAP_single_range_output)))
1976 return 1;
1977 msr_info->data = vmx->pt_desc.guest.output_base;
1978 break;
1979 case MSR_IA32_RTIT_OUTPUT_MASK:
1980 if (!vmx_pt_mode_is_host_guest() ||
1981 (!intel_pt_validate_cap(vmx->pt_desc.caps,
1982 PT_CAP_topa_output) &&
1983 !intel_pt_validate_cap(vmx->pt_desc.caps,
1984 PT_CAP_single_range_output)))
1985 return 1;
1986 msr_info->data = vmx->pt_desc.guest.output_mask;
1987 break;
1988 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1989 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1990 if (!vmx_pt_mode_is_host_guest() ||
1991 (index >= 2 * vmx->pt_desc.num_address_ranges))
1992 return 1;
1993 if (index % 2)
1994 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1995 else
1996 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1997 break;
1998 case MSR_IA32_DEBUGCTLMSR:
1999 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
2000 break;
2001 default:
2002 find_uret_msr:
2003 msr = vmx_find_uret_msr(vmx, msr_info->index);
2004 if (msr) {
2005 msr_info->data = msr->data;
2006 break;
2007 }
2008 return kvm_get_msr_common(vcpu, msr_info);
2009 }
2010
2011 return 0;
2012 }
2013
nested_vmx_truncate_sysenter_addr(struct kvm_vcpu * vcpu,u64 data)2014 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2015 u64 data)
2016 {
2017 #ifdef CONFIG_X86_64
2018 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
2019 return (u32)data;
2020 #endif
2021 return (unsigned long)data;
2022 }
2023
vmx_get_supported_debugctl(struct kvm_vcpu * vcpu,bool host_initiated)2024 static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated)
2025 {
2026 u64 debugctl = 0;
2027
2028 if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
2029 (host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)))
2030 debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT;
2031
2032 if ((vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT) &&
2033 (host_initiated || intel_pmu_lbr_is_enabled(vcpu)))
2034 debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
2035
2036 return debugctl;
2037 }
2038
2039 /*
2040 * Writes msr value into the appropriate "register".
2041 * Returns 0 on success, non-0 otherwise.
2042 * Assumes vcpu_load() was already called.
2043 */
vmx_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2044 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2045 {
2046 struct vcpu_vmx *vmx = to_vmx(vcpu);
2047 struct vmx_uret_msr *msr;
2048 int ret = 0;
2049 u32 msr_index = msr_info->index;
2050 u64 data = msr_info->data;
2051 u32 index;
2052
2053 switch (msr_index) {
2054 case MSR_EFER:
2055 ret = kvm_set_msr_common(vcpu, msr_info);
2056 break;
2057 #ifdef CONFIG_X86_64
2058 case MSR_FS_BASE:
2059 vmx_segment_cache_clear(vmx);
2060 vmcs_writel(GUEST_FS_BASE, data);
2061 break;
2062 case MSR_GS_BASE:
2063 vmx_segment_cache_clear(vmx);
2064 vmcs_writel(GUEST_GS_BASE, data);
2065 break;
2066 case MSR_KERNEL_GS_BASE:
2067 vmx_write_guest_kernel_gs_base(vmx, data);
2068 break;
2069 case MSR_IA32_XFD:
2070 ret = kvm_set_msr_common(vcpu, msr_info);
2071 /*
2072 * Always intercepting WRMSR could incur non-negligible
2073 * overhead given xfd might be changed frequently in
2074 * guest context switch. Disable write interception
2075 * upon the first write with a non-zero value (indicating
2076 * potential usage on dynamic xfeatures). Also update
2077 * exception bitmap to trap #NM for proper virtualization
2078 * of guest xfd_err.
2079 */
2080 if (!ret && data) {
2081 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
2082 MSR_TYPE_RW);
2083 vcpu->arch.xfd_no_write_intercept = true;
2084 vmx_update_exception_bitmap(vcpu);
2085 }
2086 break;
2087 #endif
2088 case MSR_IA32_SYSENTER_CS:
2089 if (is_guest_mode(vcpu))
2090 get_vmcs12(vcpu)->guest_sysenter_cs = data;
2091 vmcs_write32(GUEST_SYSENTER_CS, data);
2092 break;
2093 case MSR_IA32_SYSENTER_EIP:
2094 if (is_guest_mode(vcpu)) {
2095 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2096 get_vmcs12(vcpu)->guest_sysenter_eip = data;
2097 }
2098 vmcs_writel(GUEST_SYSENTER_EIP, data);
2099 break;
2100 case MSR_IA32_SYSENTER_ESP:
2101 if (is_guest_mode(vcpu)) {
2102 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2103 get_vmcs12(vcpu)->guest_sysenter_esp = data;
2104 }
2105 vmcs_writel(GUEST_SYSENTER_ESP, data);
2106 break;
2107 case MSR_IA32_DEBUGCTLMSR: {
2108 u64 invalid;
2109
2110 invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated);
2111 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
2112 if (report_ignored_msrs)
2113 vcpu_unimpl(vcpu, "%s: BTF|LBR in IA32_DEBUGCTLMSR 0x%llx, nop\n",
2114 __func__, data);
2115 data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2116 invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2117 }
2118
2119 if (invalid)
2120 return 1;
2121
2122 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2123 VM_EXIT_SAVE_DEBUG_CONTROLS)
2124 get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2125
2126 vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2127 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2128 (data & DEBUGCTLMSR_LBR))
2129 intel_pmu_create_guest_lbr_event(vcpu);
2130 return 0;
2131 }
2132 case MSR_IA32_BNDCFGS:
2133 if (!kvm_mpx_supported() ||
2134 (!msr_info->host_initiated &&
2135 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2136 return 1;
2137 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2138 (data & MSR_IA32_BNDCFGS_RSVD))
2139 return 1;
2140
2141 if (is_guest_mode(vcpu) &&
2142 ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) ||
2143 (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS)))
2144 get_vmcs12(vcpu)->guest_bndcfgs = data;
2145
2146 vmcs_write64(GUEST_BNDCFGS, data);
2147 break;
2148 case MSR_IA32_UMWAIT_CONTROL:
2149 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2150 return 1;
2151
2152 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
2153 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2154 return 1;
2155
2156 vmx->msr_ia32_umwait_control = data;
2157 break;
2158 case MSR_IA32_SPEC_CTRL:
2159 if (!msr_info->host_initiated &&
2160 !guest_has_spec_ctrl_msr(vcpu))
2161 return 1;
2162
2163 if (kvm_spec_ctrl_test_value(data))
2164 return 1;
2165
2166 vmx->spec_ctrl = data;
2167 if (!data)
2168 break;
2169
2170 /*
2171 * For non-nested:
2172 * When it's written (to non-zero) for the first time, pass
2173 * it through.
2174 *
2175 * For nested:
2176 * The handling of the MSR bitmap for L2 guests is done in
2177 * nested_vmx_prepare_msr_bitmap. We should not touch the
2178 * vmcs02.msr_bitmap here since it gets completely overwritten
2179 * in the merging. We update the vmcs01 here for L1 as well
2180 * since it will end up touching the MSR anyway now.
2181 */
2182 vmx_disable_intercept_for_msr(vcpu,
2183 MSR_IA32_SPEC_CTRL,
2184 MSR_TYPE_RW);
2185 break;
2186 case MSR_IA32_TSX_CTRL:
2187 if (!msr_info->host_initiated &&
2188 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2189 return 1;
2190 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2191 return 1;
2192 goto find_uret_msr;
2193 case MSR_IA32_PRED_CMD:
2194 if (!msr_info->host_initiated &&
2195 !guest_has_pred_cmd_msr(vcpu))
2196 return 1;
2197
2198 if (data & ~PRED_CMD_IBPB)
2199 return 1;
2200 if (!boot_cpu_has(X86_FEATURE_IBPB))
2201 return 1;
2202 if (!data)
2203 break;
2204
2205 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2206
2207 /*
2208 * For non-nested:
2209 * When it's written (to non-zero) for the first time, pass
2210 * it through.
2211 *
2212 * For nested:
2213 * The handling of the MSR bitmap for L2 guests is done in
2214 * nested_vmx_prepare_msr_bitmap. We should not touch the
2215 * vmcs02.msr_bitmap here since it gets completely overwritten
2216 * in the merging.
2217 */
2218 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W);
2219 break;
2220 case MSR_IA32_CR_PAT:
2221 if (!kvm_pat_valid(data))
2222 return 1;
2223
2224 if (is_guest_mode(vcpu) &&
2225 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2226 get_vmcs12(vcpu)->guest_ia32_pat = data;
2227
2228 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2229 vmcs_write64(GUEST_IA32_PAT, data);
2230 vcpu->arch.pat = data;
2231 break;
2232 }
2233 ret = kvm_set_msr_common(vcpu, msr_info);
2234 break;
2235 case MSR_IA32_MCG_EXT_CTL:
2236 if ((!msr_info->host_initiated &&
2237 !(to_vmx(vcpu)->msr_ia32_feature_control &
2238 FEAT_CTL_LMCE_ENABLED)) ||
2239 (data & ~MCG_EXT_CTL_LMCE_EN))
2240 return 1;
2241 vcpu->arch.mcg_ext_ctl = data;
2242 break;
2243 case MSR_IA32_FEAT_CTL:
2244 if (!vmx_feature_control_msr_valid(vcpu, data) ||
2245 (to_vmx(vcpu)->msr_ia32_feature_control &
2246 FEAT_CTL_LOCKED && !msr_info->host_initiated))
2247 return 1;
2248 vmx->msr_ia32_feature_control = data;
2249 if (msr_info->host_initiated && data == 0)
2250 vmx_leave_nested(vcpu);
2251
2252 /* SGX may be enabled/disabled by guest's firmware */
2253 vmx_write_encls_bitmap(vcpu, NULL);
2254 break;
2255 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2256 /*
2257 * On real hardware, the LE hash MSRs are writable before
2258 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2259 * at which point SGX related bits in IA32_FEATURE_CONTROL
2260 * become writable.
2261 *
2262 * KVM does not emulate SGX activation for simplicity, so
2263 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2264 * is unlocked. This is technically not architectural
2265 * behavior, but it's close enough.
2266 */
2267 if (!msr_info->host_initiated &&
2268 (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2269 ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2270 !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2271 return 1;
2272 vmx->msr_ia32_sgxlepubkeyhash
2273 [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2274 break;
2275 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2276 if (!msr_info->host_initiated)
2277 return 1; /* they are read-only */
2278 if (!nested_vmx_allowed(vcpu))
2279 return 1;
2280 return vmx_set_vmx_msr(vcpu, msr_index, data);
2281 case MSR_IA32_RTIT_CTL:
2282 if (!vmx_pt_mode_is_host_guest() ||
2283 vmx_rtit_ctl_check(vcpu, data) ||
2284 vmx->nested.vmxon)
2285 return 1;
2286 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2287 vmx->pt_desc.guest.ctl = data;
2288 pt_update_intercept_for_msr(vcpu);
2289 break;
2290 case MSR_IA32_RTIT_STATUS:
2291 if (!pt_can_write_msr(vmx))
2292 return 1;
2293 if (data & MSR_IA32_RTIT_STATUS_MASK)
2294 return 1;
2295 vmx->pt_desc.guest.status = data;
2296 break;
2297 case MSR_IA32_RTIT_CR3_MATCH:
2298 if (!pt_can_write_msr(vmx))
2299 return 1;
2300 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2301 PT_CAP_cr3_filtering))
2302 return 1;
2303 vmx->pt_desc.guest.cr3_match = data;
2304 break;
2305 case MSR_IA32_RTIT_OUTPUT_BASE:
2306 if (!pt_can_write_msr(vmx))
2307 return 1;
2308 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2309 PT_CAP_topa_output) &&
2310 !intel_pt_validate_cap(vmx->pt_desc.caps,
2311 PT_CAP_single_range_output))
2312 return 1;
2313 if (!pt_output_base_valid(vcpu, data))
2314 return 1;
2315 vmx->pt_desc.guest.output_base = data;
2316 break;
2317 case MSR_IA32_RTIT_OUTPUT_MASK:
2318 if (!pt_can_write_msr(vmx))
2319 return 1;
2320 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2321 PT_CAP_topa_output) &&
2322 !intel_pt_validate_cap(vmx->pt_desc.caps,
2323 PT_CAP_single_range_output))
2324 return 1;
2325 vmx->pt_desc.guest.output_mask = data;
2326 break;
2327 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2328 if (!pt_can_write_msr(vmx))
2329 return 1;
2330 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2331 if (index >= 2 * vmx->pt_desc.num_address_ranges)
2332 return 1;
2333 if (is_noncanonical_address(data, vcpu))
2334 return 1;
2335 if (index % 2)
2336 vmx->pt_desc.guest.addr_b[index / 2] = data;
2337 else
2338 vmx->pt_desc.guest.addr_a[index / 2] = data;
2339 break;
2340 case MSR_IA32_PERF_CAPABILITIES:
2341 if (data && !vcpu_to_pmu(vcpu)->version)
2342 return 1;
2343 if (data & PMU_CAP_LBR_FMT) {
2344 if ((data & PMU_CAP_LBR_FMT) !=
2345 (vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT))
2346 return 1;
2347 if (!cpuid_model_is_consistent(vcpu))
2348 return 1;
2349 }
2350 if (data & PERF_CAP_PEBS_FORMAT) {
2351 if ((data & PERF_CAP_PEBS_MASK) !=
2352 (vmx_get_perf_capabilities() & PERF_CAP_PEBS_MASK))
2353 return 1;
2354 if (!guest_cpuid_has(vcpu, X86_FEATURE_DS))
2355 return 1;
2356 if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64))
2357 return 1;
2358 if (!cpuid_model_is_consistent(vcpu))
2359 return 1;
2360 }
2361 ret = kvm_set_msr_common(vcpu, msr_info);
2362 break;
2363
2364 default:
2365 find_uret_msr:
2366 msr = vmx_find_uret_msr(vmx, msr_index);
2367 if (msr)
2368 ret = vmx_set_guest_uret_msr(vmx, msr, data);
2369 else
2370 ret = kvm_set_msr_common(vcpu, msr_info);
2371 }
2372
2373 /* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2374 if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2375 vmx_update_fb_clear_dis(vcpu, vmx);
2376
2377 return ret;
2378 }
2379
vmx_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)2380 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2381 {
2382 unsigned long guest_owned_bits;
2383
2384 kvm_register_mark_available(vcpu, reg);
2385
2386 switch (reg) {
2387 case VCPU_REGS_RSP:
2388 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2389 break;
2390 case VCPU_REGS_RIP:
2391 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2392 break;
2393 case VCPU_EXREG_PDPTR:
2394 if (enable_ept)
2395 ept_save_pdptrs(vcpu);
2396 break;
2397 case VCPU_EXREG_CR0:
2398 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2399
2400 vcpu->arch.cr0 &= ~guest_owned_bits;
2401 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2402 break;
2403 case VCPU_EXREG_CR3:
2404 /*
2405 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2406 * CR3 is loaded into hardware, not the guest's CR3.
2407 */
2408 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2409 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2410 break;
2411 case VCPU_EXREG_CR4:
2412 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2413
2414 vcpu->arch.cr4 &= ~guest_owned_bits;
2415 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2416 break;
2417 default:
2418 KVM_BUG_ON(1, vcpu->kvm);
2419 break;
2420 }
2421 }
2422
cpu_has_kvm_support(void)2423 static __init int cpu_has_kvm_support(void)
2424 {
2425 return cpu_has_vmx();
2426 }
2427
vmx_disabled_by_bios(void)2428 static __init int vmx_disabled_by_bios(void)
2429 {
2430 return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2431 !boot_cpu_has(X86_FEATURE_VMX);
2432 }
2433
kvm_cpu_vmxon(u64 vmxon_pointer)2434 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2435 {
2436 u64 msr;
2437
2438 cr4_set_bits(X86_CR4_VMXE);
2439
2440 asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2441 _ASM_EXTABLE(1b, %l[fault])
2442 : : [vmxon_pointer] "m"(vmxon_pointer)
2443 : : fault);
2444 return 0;
2445
2446 fault:
2447 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2448 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2449 cr4_clear_bits(X86_CR4_VMXE);
2450
2451 return -EFAULT;
2452 }
2453
vmx_hardware_enable(void)2454 static int vmx_hardware_enable(void)
2455 {
2456 int cpu = raw_smp_processor_id();
2457 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2458 int r;
2459
2460 if (cr4_read_shadow() & X86_CR4_VMXE)
2461 return -EBUSY;
2462
2463 /*
2464 * This can happen if we hot-added a CPU but failed to allocate
2465 * VP assist page for it.
2466 */
2467 if (static_branch_unlikely(&enable_evmcs) &&
2468 !hv_get_vp_assist_page(cpu))
2469 return -EFAULT;
2470
2471 intel_pt_handle_vmx(1);
2472
2473 r = kvm_cpu_vmxon(phys_addr);
2474 if (r) {
2475 intel_pt_handle_vmx(0);
2476 return r;
2477 }
2478
2479 if (enable_ept)
2480 ept_sync_global();
2481
2482 return 0;
2483 }
2484
vmclear_local_loaded_vmcss(void)2485 static void vmclear_local_loaded_vmcss(void)
2486 {
2487 int cpu = raw_smp_processor_id();
2488 struct loaded_vmcs *v, *n;
2489
2490 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2491 loaded_vmcss_on_cpu_link)
2492 __loaded_vmcs_clear(v);
2493 }
2494
vmx_hardware_disable(void)2495 static void vmx_hardware_disable(void)
2496 {
2497 vmclear_local_loaded_vmcss();
2498
2499 if (cpu_vmxoff())
2500 kvm_spurious_fault();
2501
2502 intel_pt_handle_vmx(0);
2503 }
2504
2505 /*
2506 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2507 * directly instead of going through cpu_has(), to ensure KVM is trapping
2508 * ENCLS whenever it's supported in hardware. It does not matter whether
2509 * the host OS supports or has enabled SGX.
2510 */
cpu_has_sgx(void)2511 static bool cpu_has_sgx(void)
2512 {
2513 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2514 }
2515
2516 /*
2517 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2518 * can't be used due to errata where VM Exit may incorrectly clear
2519 * IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the
2520 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2521 */
cpu_has_perf_global_ctrl_bug(void)2522 static bool cpu_has_perf_global_ctrl_bug(void)
2523 {
2524 if (boot_cpu_data.x86 == 0x6) {
2525 switch (boot_cpu_data.x86_model) {
2526 case INTEL_FAM6_NEHALEM_EP: /* AAK155 */
2527 case INTEL_FAM6_NEHALEM: /* AAP115 */
2528 case INTEL_FAM6_WESTMERE: /* AAT100 */
2529 case INTEL_FAM6_WESTMERE_EP: /* BC86,AAY89,BD102 */
2530 case INTEL_FAM6_NEHALEM_EX: /* BA97 */
2531 return true;
2532 default:
2533 break;
2534 }
2535 }
2536
2537 return false;
2538 }
2539
adjust_vmx_controls(u32 ctl_min,u32 ctl_opt,u32 msr,u32 * result)2540 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2541 u32 msr, u32 *result)
2542 {
2543 u32 vmx_msr_low, vmx_msr_high;
2544 u32 ctl = ctl_min | ctl_opt;
2545
2546 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2547
2548 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2549 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2550
2551 /* Ensure minimum (required) set of control bits are supported. */
2552 if (ctl_min & ~ctl)
2553 return -EIO;
2554
2555 *result = ctl;
2556 return 0;
2557 }
2558
adjust_vmx_controls64(u64 ctl_opt,u32 msr)2559 static __init u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr)
2560 {
2561 u64 allowed;
2562
2563 rdmsrl(msr, allowed);
2564
2565 return ctl_opt & allowed;
2566 }
2567
setup_vmcs_config(struct vmcs_config * vmcs_conf,struct vmx_capability * vmx_cap)2568 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2569 struct vmx_capability *vmx_cap)
2570 {
2571 u32 vmx_msr_low, vmx_msr_high;
2572 u32 _pin_based_exec_control = 0;
2573 u32 _cpu_based_exec_control = 0;
2574 u32 _cpu_based_2nd_exec_control = 0;
2575 u64 _cpu_based_3rd_exec_control = 0;
2576 u32 _vmexit_control = 0;
2577 u32 _vmentry_control = 0;
2578 u64 misc_msr;
2579 int i;
2580
2581 /*
2582 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
2583 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
2584 * intercepts writes to PAT and EFER, i.e. never enables those controls.
2585 */
2586 struct {
2587 u32 entry_control;
2588 u32 exit_control;
2589 } const vmcs_entry_exit_pairs[] = {
2590 { VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL },
2591 { VM_ENTRY_LOAD_IA32_PAT, VM_EXIT_LOAD_IA32_PAT },
2592 { VM_ENTRY_LOAD_IA32_EFER, VM_EXIT_LOAD_IA32_EFER },
2593 { VM_ENTRY_LOAD_BNDCFGS, VM_EXIT_CLEAR_BNDCFGS },
2594 { VM_ENTRY_LOAD_IA32_RTIT_CTL, VM_EXIT_CLEAR_IA32_RTIT_CTL },
2595 };
2596
2597 memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2598
2599 if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL,
2600 KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL,
2601 MSR_IA32_VMX_PROCBASED_CTLS,
2602 &_cpu_based_exec_control))
2603 return -EIO;
2604 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2605 if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL,
2606 KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL,
2607 MSR_IA32_VMX_PROCBASED_CTLS2,
2608 &_cpu_based_2nd_exec_control))
2609 return -EIO;
2610 }
2611 #ifndef CONFIG_X86_64
2612 if (!(_cpu_based_2nd_exec_control &
2613 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2614 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2615 #endif
2616
2617 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2618 _cpu_based_2nd_exec_control &= ~(
2619 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2620 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2621 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2622
2623 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2624 &vmx_cap->ept, &vmx_cap->vpid);
2625
2626 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
2627 vmx_cap->ept) {
2628 pr_warn_once("EPT CAP should not exist if not support "
2629 "1-setting enable EPT VM-execution control\n");
2630
2631 if (error_on_inconsistent_vmcs_config)
2632 return -EIO;
2633
2634 vmx_cap->ept = 0;
2635 }
2636 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2637 vmx_cap->vpid) {
2638 pr_warn_once("VPID CAP should not exist if not support "
2639 "1-setting enable VPID VM-execution control\n");
2640
2641 if (error_on_inconsistent_vmcs_config)
2642 return -EIO;
2643
2644 vmx_cap->vpid = 0;
2645 }
2646
2647 if (!cpu_has_sgx())
2648 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING;
2649
2650 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
2651 _cpu_based_3rd_exec_control =
2652 adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL,
2653 MSR_IA32_VMX_PROCBASED_CTLS3);
2654
2655 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS,
2656 KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS,
2657 MSR_IA32_VMX_EXIT_CTLS,
2658 &_vmexit_control))
2659 return -EIO;
2660
2661 if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL,
2662 KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL,
2663 MSR_IA32_VMX_PINBASED_CTLS,
2664 &_pin_based_exec_control))
2665 return -EIO;
2666
2667 if (cpu_has_broken_vmx_preemption_timer())
2668 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2669 if (!(_cpu_based_2nd_exec_control &
2670 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2671 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2672
2673 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS,
2674 KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS,
2675 MSR_IA32_VMX_ENTRY_CTLS,
2676 &_vmentry_control))
2677 return -EIO;
2678
2679 for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) {
2680 u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control;
2681 u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control;
2682
2683 if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl))
2684 continue;
2685
2686 pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n",
2687 _vmentry_control & n_ctrl, _vmexit_control & x_ctrl);
2688
2689 if (error_on_inconsistent_vmcs_config)
2690 return -EIO;
2691
2692 _vmentry_control &= ~n_ctrl;
2693 _vmexit_control &= ~x_ctrl;
2694 }
2695
2696 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2697
2698 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2699 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2700 return -EIO;
2701
2702 #ifdef CONFIG_X86_64
2703 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2704 if (vmx_msr_high & (1u<<16))
2705 return -EIO;
2706 #endif
2707
2708 /* Require Write-Back (WB) memory type for VMCS accesses. */
2709 if (((vmx_msr_high >> 18) & 15) != 6)
2710 return -EIO;
2711
2712 rdmsrl(MSR_IA32_VMX_MISC, misc_msr);
2713
2714 vmcs_conf->size = vmx_msr_high & 0x1fff;
2715 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2716
2717 vmcs_conf->revision_id = vmx_msr_low;
2718
2719 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2720 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2721 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2722 vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control;
2723 vmcs_conf->vmexit_ctrl = _vmexit_control;
2724 vmcs_conf->vmentry_ctrl = _vmentry_control;
2725 vmcs_conf->misc = misc_msr;
2726
2727 return 0;
2728 }
2729
alloc_vmcs_cpu(bool shadow,int cpu,gfp_t flags)2730 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2731 {
2732 int node = cpu_to_node(cpu);
2733 struct page *pages;
2734 struct vmcs *vmcs;
2735
2736 pages = __alloc_pages_node(node, flags, 0);
2737 if (!pages)
2738 return NULL;
2739 vmcs = page_address(pages);
2740 memset(vmcs, 0, vmcs_config.size);
2741
2742 /* KVM supports Enlightened VMCS v1 only */
2743 if (static_branch_unlikely(&enable_evmcs))
2744 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2745 else
2746 vmcs->hdr.revision_id = vmcs_config.revision_id;
2747
2748 if (shadow)
2749 vmcs->hdr.shadow_vmcs = 1;
2750 return vmcs;
2751 }
2752
free_vmcs(struct vmcs * vmcs)2753 void free_vmcs(struct vmcs *vmcs)
2754 {
2755 free_page((unsigned long)vmcs);
2756 }
2757
2758 /*
2759 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2760 */
free_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2761 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2762 {
2763 if (!loaded_vmcs->vmcs)
2764 return;
2765 loaded_vmcs_clear(loaded_vmcs);
2766 free_vmcs(loaded_vmcs->vmcs);
2767 loaded_vmcs->vmcs = NULL;
2768 if (loaded_vmcs->msr_bitmap)
2769 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2770 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2771 }
2772
alloc_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2773 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2774 {
2775 loaded_vmcs->vmcs = alloc_vmcs(false);
2776 if (!loaded_vmcs->vmcs)
2777 return -ENOMEM;
2778
2779 vmcs_clear(loaded_vmcs->vmcs);
2780
2781 loaded_vmcs->shadow_vmcs = NULL;
2782 loaded_vmcs->hv_timer_soft_disabled = false;
2783 loaded_vmcs->cpu = -1;
2784 loaded_vmcs->launched = 0;
2785
2786 if (cpu_has_vmx_msr_bitmap()) {
2787 loaded_vmcs->msr_bitmap = (unsigned long *)
2788 __get_free_page(GFP_KERNEL_ACCOUNT);
2789 if (!loaded_vmcs->msr_bitmap)
2790 goto out_vmcs;
2791 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2792 }
2793
2794 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2795 memset(&loaded_vmcs->controls_shadow, 0,
2796 sizeof(struct vmcs_controls_shadow));
2797
2798 return 0;
2799
2800 out_vmcs:
2801 free_loaded_vmcs(loaded_vmcs);
2802 return -ENOMEM;
2803 }
2804
free_kvm_area(void)2805 static void free_kvm_area(void)
2806 {
2807 int cpu;
2808
2809 for_each_possible_cpu(cpu) {
2810 free_vmcs(per_cpu(vmxarea, cpu));
2811 per_cpu(vmxarea, cpu) = NULL;
2812 }
2813 }
2814
alloc_kvm_area(void)2815 static __init int alloc_kvm_area(void)
2816 {
2817 int cpu;
2818
2819 for_each_possible_cpu(cpu) {
2820 struct vmcs *vmcs;
2821
2822 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2823 if (!vmcs) {
2824 free_kvm_area();
2825 return -ENOMEM;
2826 }
2827
2828 /*
2829 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2830 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2831 * revision_id reported by MSR_IA32_VMX_BASIC.
2832 *
2833 * However, even though not explicitly documented by
2834 * TLFS, VMXArea passed as VMXON argument should
2835 * still be marked with revision_id reported by
2836 * physical CPU.
2837 */
2838 if (static_branch_unlikely(&enable_evmcs))
2839 vmcs->hdr.revision_id = vmcs_config.revision_id;
2840
2841 per_cpu(vmxarea, cpu) = vmcs;
2842 }
2843 return 0;
2844 }
2845
fix_pmode_seg(struct kvm_vcpu * vcpu,int seg,struct kvm_segment * save)2846 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2847 struct kvm_segment *save)
2848 {
2849 if (!emulate_invalid_guest_state) {
2850 /*
2851 * CS and SS RPL should be equal during guest entry according
2852 * to VMX spec, but in reality it is not always so. Since vcpu
2853 * is in the middle of the transition from real mode to
2854 * protected mode it is safe to assume that RPL 0 is a good
2855 * default value.
2856 */
2857 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2858 save->selector &= ~SEGMENT_RPL_MASK;
2859 save->dpl = save->selector & SEGMENT_RPL_MASK;
2860 save->s = 1;
2861 }
2862 __vmx_set_segment(vcpu, save, seg);
2863 }
2864
enter_pmode(struct kvm_vcpu * vcpu)2865 static void enter_pmode(struct kvm_vcpu *vcpu)
2866 {
2867 unsigned long flags;
2868 struct vcpu_vmx *vmx = to_vmx(vcpu);
2869
2870 /*
2871 * Update real mode segment cache. It may be not up-to-date if segment
2872 * register was written while vcpu was in a guest mode.
2873 */
2874 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2875 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2876 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2877 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2878 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2879 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2880
2881 vmx->rmode.vm86_active = 0;
2882
2883 __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2884
2885 flags = vmcs_readl(GUEST_RFLAGS);
2886 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2887 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2888 vmcs_writel(GUEST_RFLAGS, flags);
2889
2890 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2891 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2892
2893 vmx_update_exception_bitmap(vcpu);
2894
2895 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2896 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2897 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2898 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2899 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2900 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2901 }
2902
fix_rmode_seg(int seg,struct kvm_segment * save)2903 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2904 {
2905 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2906 struct kvm_segment var = *save;
2907
2908 var.dpl = 0x3;
2909 if (seg == VCPU_SREG_CS)
2910 var.type = 0x3;
2911
2912 if (!emulate_invalid_guest_state) {
2913 var.selector = var.base >> 4;
2914 var.base = var.base & 0xffff0;
2915 var.limit = 0xffff;
2916 var.g = 0;
2917 var.db = 0;
2918 var.present = 1;
2919 var.s = 1;
2920 var.l = 0;
2921 var.unusable = 0;
2922 var.type = 0x3;
2923 var.avl = 0;
2924 if (save->base & 0xf)
2925 printk_once(KERN_WARNING "kvm: segment base is not "
2926 "paragraph aligned when entering "
2927 "protected mode (seg=%d)", seg);
2928 }
2929
2930 vmcs_write16(sf->selector, var.selector);
2931 vmcs_writel(sf->base, var.base);
2932 vmcs_write32(sf->limit, var.limit);
2933 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2934 }
2935
enter_rmode(struct kvm_vcpu * vcpu)2936 static void enter_rmode(struct kvm_vcpu *vcpu)
2937 {
2938 unsigned long flags;
2939 struct vcpu_vmx *vmx = to_vmx(vcpu);
2940 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2941
2942 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2943 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2944 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2945 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2946 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2947 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2948 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2949
2950 vmx->rmode.vm86_active = 1;
2951
2952 /*
2953 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2954 * vcpu. Warn the user that an update is overdue.
2955 */
2956 if (!kvm_vmx->tss_addr)
2957 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2958 "called before entering vcpu\n");
2959
2960 vmx_segment_cache_clear(vmx);
2961
2962 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2963 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2964 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2965
2966 flags = vmcs_readl(GUEST_RFLAGS);
2967 vmx->rmode.save_rflags = flags;
2968
2969 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2970
2971 vmcs_writel(GUEST_RFLAGS, flags);
2972 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2973 vmx_update_exception_bitmap(vcpu);
2974
2975 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2976 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2977 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2978 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2979 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2980 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2981 }
2982
vmx_set_efer(struct kvm_vcpu * vcpu,u64 efer)2983 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2984 {
2985 struct vcpu_vmx *vmx = to_vmx(vcpu);
2986
2987 /* Nothing to do if hardware doesn't support EFER. */
2988 if (!vmx_find_uret_msr(vmx, MSR_EFER))
2989 return 0;
2990
2991 vcpu->arch.efer = efer;
2992 #ifdef CONFIG_X86_64
2993 if (efer & EFER_LMA)
2994 vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
2995 else
2996 vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
2997 #else
2998 if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm))
2999 return 1;
3000 #endif
3001
3002 vmx_setup_uret_msrs(vmx);
3003 return 0;
3004 }
3005
3006 #ifdef CONFIG_X86_64
3007
enter_lmode(struct kvm_vcpu * vcpu)3008 static void enter_lmode(struct kvm_vcpu *vcpu)
3009 {
3010 u32 guest_tr_ar;
3011
3012 vmx_segment_cache_clear(to_vmx(vcpu));
3013
3014 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3015 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3016 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3017 __func__);
3018 vmcs_write32(GUEST_TR_AR_BYTES,
3019 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3020 | VMX_AR_TYPE_BUSY_64_TSS);
3021 }
3022 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3023 }
3024
exit_lmode(struct kvm_vcpu * vcpu)3025 static void exit_lmode(struct kvm_vcpu *vcpu)
3026 {
3027 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3028 }
3029
3030 #endif
3031
vmx_flush_tlb_all(struct kvm_vcpu * vcpu)3032 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
3033 {
3034 struct vcpu_vmx *vmx = to_vmx(vcpu);
3035
3036 /*
3037 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3038 * the CPU is not required to invalidate guest-physical mappings on
3039 * VM-Entry, even if VPID is disabled. Guest-physical mappings are
3040 * associated with the root EPT structure and not any particular VPID
3041 * (INVVPID also isn't required to invalidate guest-physical mappings).
3042 */
3043 if (enable_ept) {
3044 ept_sync_global();
3045 } else if (enable_vpid) {
3046 if (cpu_has_vmx_invvpid_global()) {
3047 vpid_sync_vcpu_global();
3048 } else {
3049 vpid_sync_vcpu_single(vmx->vpid);
3050 vpid_sync_vcpu_single(vmx->nested.vpid02);
3051 }
3052 }
3053 }
3054
vmx_get_current_vpid(struct kvm_vcpu * vcpu)3055 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3056 {
3057 if (is_guest_mode(vcpu))
3058 return nested_get_vpid02(vcpu);
3059 return to_vmx(vcpu)->vpid;
3060 }
3061
vmx_flush_tlb_current(struct kvm_vcpu * vcpu)3062 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3063 {
3064 struct kvm_mmu *mmu = vcpu->arch.mmu;
3065 u64 root_hpa = mmu->root.hpa;
3066
3067 /* No flush required if the current context is invalid. */
3068 if (!VALID_PAGE(root_hpa))
3069 return;
3070
3071 if (enable_ept)
3072 ept_sync_context(construct_eptp(vcpu, root_hpa,
3073 mmu->root_role.level));
3074 else
3075 vpid_sync_context(vmx_get_current_vpid(vcpu));
3076 }
3077
vmx_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t addr)3078 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3079 {
3080 /*
3081 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3082 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3083 */
3084 vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3085 }
3086
vmx_flush_tlb_guest(struct kvm_vcpu * vcpu)3087 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3088 {
3089 /*
3090 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3091 * vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are
3092 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3093 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3094 * i.e. no explicit INVVPID is necessary.
3095 */
3096 vpid_sync_context(vmx_get_current_vpid(vcpu));
3097 }
3098
vmx_ept_load_pdptrs(struct kvm_vcpu * vcpu)3099 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3100 {
3101 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3102
3103 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3104 return;
3105
3106 if (is_pae_paging(vcpu)) {
3107 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3108 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3109 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3110 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3111 }
3112 }
3113
ept_save_pdptrs(struct kvm_vcpu * vcpu)3114 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3115 {
3116 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3117
3118 if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3119 return;
3120
3121 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3122 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3123 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3124 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3125
3126 kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3127 }
3128
3129 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3130 CPU_BASED_CR3_STORE_EXITING)
3131
vmx_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)3132 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3133 {
3134 struct vcpu_vmx *vmx = to_vmx(vcpu);
3135 unsigned long hw_cr0, old_cr0_pg;
3136 u32 tmp;
3137
3138 old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3139
3140 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3141 if (is_unrestricted_guest(vcpu))
3142 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3143 else {
3144 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3145 if (!enable_ept)
3146 hw_cr0 |= X86_CR0_WP;
3147
3148 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3149 enter_pmode(vcpu);
3150
3151 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3152 enter_rmode(vcpu);
3153 }
3154
3155 vmcs_writel(CR0_READ_SHADOW, cr0);
3156 vmcs_writel(GUEST_CR0, hw_cr0);
3157 vcpu->arch.cr0 = cr0;
3158 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3159
3160 #ifdef CONFIG_X86_64
3161 if (vcpu->arch.efer & EFER_LME) {
3162 if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3163 enter_lmode(vcpu);
3164 else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3165 exit_lmode(vcpu);
3166 }
3167 #endif
3168
3169 if (enable_ept && !is_unrestricted_guest(vcpu)) {
3170 /*
3171 * Ensure KVM has an up-to-date snapshot of the guest's CR3. If
3172 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3173 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3174 * KVM's CR3 is installed.
3175 */
3176 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3177 vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3178
3179 /*
3180 * When running with EPT but not unrestricted guest, KVM must
3181 * intercept CR3 accesses when paging is _disabled_. This is
3182 * necessary because restricted guests can't actually run with
3183 * paging disabled, and so KVM stuffs its own CR3 in order to
3184 * run the guest when identity mapped page tables.
3185 *
3186 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3187 * update, it may be stale with respect to CR3 interception,
3188 * e.g. after nested VM-Enter.
3189 *
3190 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3191 * stores to forward them to L1, even if KVM does not need to
3192 * intercept them to preserve its identity mapped page tables.
3193 */
3194 if (!(cr0 & X86_CR0_PG)) {
3195 exec_controls_setbit(vmx, CR3_EXITING_BITS);
3196 } else if (!is_guest_mode(vcpu)) {
3197 exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3198 } else {
3199 tmp = exec_controls_get(vmx);
3200 tmp &= ~CR3_EXITING_BITS;
3201 tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3202 exec_controls_set(vmx, tmp);
3203 }
3204
3205 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3206 if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3207 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3208
3209 /*
3210 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3211 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3212 */
3213 if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3214 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3215 }
3216
3217 /* depends on vcpu->arch.cr0 to be set to a new value */
3218 vmx->emulation_required = vmx_emulation_required(vcpu);
3219 }
3220
vmx_get_max_tdp_level(void)3221 static int vmx_get_max_tdp_level(void)
3222 {
3223 if (cpu_has_vmx_ept_5levels())
3224 return 5;
3225 return 4;
3226 }
3227
construct_eptp(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)3228 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3229 {
3230 u64 eptp = VMX_EPTP_MT_WB;
3231
3232 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3233
3234 if (enable_ept_ad_bits &&
3235 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3236 eptp |= VMX_EPTP_AD_ENABLE_BIT;
3237 eptp |= root_hpa;
3238
3239 return eptp;
3240 }
3241
vmx_load_mmu_pgd(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)3242 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3243 int root_level)
3244 {
3245 struct kvm *kvm = vcpu->kvm;
3246 bool update_guest_cr3 = true;
3247 unsigned long guest_cr3;
3248 u64 eptp;
3249
3250 if (enable_ept) {
3251 eptp = construct_eptp(vcpu, root_hpa, root_level);
3252 vmcs_write64(EPT_POINTER, eptp);
3253
3254 hv_track_root_tdp(vcpu, root_hpa);
3255
3256 if (!enable_unrestricted_guest && !is_paging(vcpu))
3257 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3258 else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3259 guest_cr3 = vcpu->arch.cr3;
3260 else /* vmcs.GUEST_CR3 is already up-to-date. */
3261 update_guest_cr3 = false;
3262 vmx_ept_load_pdptrs(vcpu);
3263 } else {
3264 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu);
3265 }
3266
3267 if (update_guest_cr3)
3268 vmcs_writel(GUEST_CR3, guest_cr3);
3269 }
3270
3271
vmx_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3272 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3273 {
3274 /*
3275 * We operate under the default treatment of SMM, so VMX cannot be
3276 * enabled under SMM. Note, whether or not VMXE is allowed at all,
3277 * i.e. is a reserved bit, is handled by common x86 code.
3278 */
3279 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3280 return false;
3281
3282 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3283 return false;
3284
3285 return true;
3286 }
3287
vmx_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3288 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3289 {
3290 unsigned long old_cr4 = vcpu->arch.cr4;
3291 struct vcpu_vmx *vmx = to_vmx(vcpu);
3292 /*
3293 * Pass through host's Machine Check Enable value to hw_cr4, which
3294 * is in force while we are in guest mode. Do not let guests control
3295 * this bit, even if host CR4.MCE == 0.
3296 */
3297 unsigned long hw_cr4;
3298
3299 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3300 if (is_unrestricted_guest(vcpu))
3301 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3302 else if (vmx->rmode.vm86_active)
3303 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3304 else
3305 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3306
3307 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3308 if (cr4 & X86_CR4_UMIP) {
3309 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3310 hw_cr4 &= ~X86_CR4_UMIP;
3311 } else if (!is_guest_mode(vcpu) ||
3312 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3313 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3314 }
3315 }
3316
3317 vcpu->arch.cr4 = cr4;
3318 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3319
3320 if (!is_unrestricted_guest(vcpu)) {
3321 if (enable_ept) {
3322 if (!is_paging(vcpu)) {
3323 hw_cr4 &= ~X86_CR4_PAE;
3324 hw_cr4 |= X86_CR4_PSE;
3325 } else if (!(cr4 & X86_CR4_PAE)) {
3326 hw_cr4 &= ~X86_CR4_PAE;
3327 }
3328 }
3329
3330 /*
3331 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3332 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
3333 * to be manually disabled when guest switches to non-paging
3334 * mode.
3335 *
3336 * If !enable_unrestricted_guest, the CPU is always running
3337 * with CR0.PG=1 and CR4 needs to be modified.
3338 * If enable_unrestricted_guest, the CPU automatically
3339 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3340 */
3341 if (!is_paging(vcpu))
3342 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3343 }
3344
3345 vmcs_writel(CR4_READ_SHADOW, cr4);
3346 vmcs_writel(GUEST_CR4, hw_cr4);
3347
3348 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3349 kvm_update_cpuid_runtime(vcpu);
3350 }
3351
vmx_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3352 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3353 {
3354 struct vcpu_vmx *vmx = to_vmx(vcpu);
3355 u32 ar;
3356
3357 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3358 *var = vmx->rmode.segs[seg];
3359 if (seg == VCPU_SREG_TR
3360 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3361 return;
3362 var->base = vmx_read_guest_seg_base(vmx, seg);
3363 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3364 return;
3365 }
3366 var->base = vmx_read_guest_seg_base(vmx, seg);
3367 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3368 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3369 ar = vmx_read_guest_seg_ar(vmx, seg);
3370 var->unusable = (ar >> 16) & 1;
3371 var->type = ar & 15;
3372 var->s = (ar >> 4) & 1;
3373 var->dpl = (ar >> 5) & 3;
3374 /*
3375 * Some userspaces do not preserve unusable property. Since usable
3376 * segment has to be present according to VMX spec we can use present
3377 * property to amend userspace bug by making unusable segment always
3378 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3379 * segment as unusable.
3380 */
3381 var->present = !var->unusable;
3382 var->avl = (ar >> 12) & 1;
3383 var->l = (ar >> 13) & 1;
3384 var->db = (ar >> 14) & 1;
3385 var->g = (ar >> 15) & 1;
3386 }
3387
vmx_get_segment_base(struct kvm_vcpu * vcpu,int seg)3388 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3389 {
3390 struct kvm_segment s;
3391
3392 if (to_vmx(vcpu)->rmode.vm86_active) {
3393 vmx_get_segment(vcpu, &s, seg);
3394 return s.base;
3395 }
3396 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3397 }
3398
vmx_get_cpl(struct kvm_vcpu * vcpu)3399 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3400 {
3401 struct vcpu_vmx *vmx = to_vmx(vcpu);
3402
3403 if (unlikely(vmx->rmode.vm86_active))
3404 return 0;
3405 else {
3406 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3407 return VMX_AR_DPL(ar);
3408 }
3409 }
3410
vmx_segment_access_rights(struct kvm_segment * var)3411 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3412 {
3413 u32 ar;
3414
3415 if (var->unusable || !var->present)
3416 ar = 1 << 16;
3417 else {
3418 ar = var->type & 15;
3419 ar |= (var->s & 1) << 4;
3420 ar |= (var->dpl & 3) << 5;
3421 ar |= (var->present & 1) << 7;
3422 ar |= (var->avl & 1) << 12;
3423 ar |= (var->l & 1) << 13;
3424 ar |= (var->db & 1) << 14;
3425 ar |= (var->g & 1) << 15;
3426 }
3427
3428 return ar;
3429 }
3430
__vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3431 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3432 {
3433 struct vcpu_vmx *vmx = to_vmx(vcpu);
3434 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3435
3436 vmx_segment_cache_clear(vmx);
3437
3438 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3439 vmx->rmode.segs[seg] = *var;
3440 if (seg == VCPU_SREG_TR)
3441 vmcs_write16(sf->selector, var->selector);
3442 else if (var->s)
3443 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3444 return;
3445 }
3446
3447 vmcs_writel(sf->base, var->base);
3448 vmcs_write32(sf->limit, var->limit);
3449 vmcs_write16(sf->selector, var->selector);
3450
3451 /*
3452 * Fix the "Accessed" bit in AR field of segment registers for older
3453 * qemu binaries.
3454 * IA32 arch specifies that at the time of processor reset the
3455 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3456 * is setting it to 0 in the userland code. This causes invalid guest
3457 * state vmexit when "unrestricted guest" mode is turned on.
3458 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3459 * tree. Newer qemu binaries with that qemu fix would not need this
3460 * kvm hack.
3461 */
3462 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3463 var->type |= 0x1; /* Accessed */
3464
3465 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3466 }
3467
vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3468 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3469 {
3470 __vmx_set_segment(vcpu, var, seg);
3471
3472 to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
3473 }
3474
vmx_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)3475 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3476 {
3477 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3478
3479 *db = (ar >> 14) & 1;
3480 *l = (ar >> 13) & 1;
3481 }
3482
vmx_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3483 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3484 {
3485 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3486 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3487 }
3488
vmx_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3489 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3490 {
3491 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3492 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3493 }
3494
vmx_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3495 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3496 {
3497 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3498 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3499 }
3500
vmx_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3501 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3502 {
3503 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3504 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3505 }
3506
rmode_segment_valid(struct kvm_vcpu * vcpu,int seg)3507 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3508 {
3509 struct kvm_segment var;
3510 u32 ar;
3511
3512 vmx_get_segment(vcpu, &var, seg);
3513 var.dpl = 0x3;
3514 if (seg == VCPU_SREG_CS)
3515 var.type = 0x3;
3516 ar = vmx_segment_access_rights(&var);
3517
3518 if (var.base != (var.selector << 4))
3519 return false;
3520 if (var.limit != 0xffff)
3521 return false;
3522 if (ar != 0xf3)
3523 return false;
3524
3525 return true;
3526 }
3527
code_segment_valid(struct kvm_vcpu * vcpu)3528 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3529 {
3530 struct kvm_segment cs;
3531 unsigned int cs_rpl;
3532
3533 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3534 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3535
3536 if (cs.unusable)
3537 return false;
3538 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3539 return false;
3540 if (!cs.s)
3541 return false;
3542 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3543 if (cs.dpl > cs_rpl)
3544 return false;
3545 } else {
3546 if (cs.dpl != cs_rpl)
3547 return false;
3548 }
3549 if (!cs.present)
3550 return false;
3551
3552 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3553 return true;
3554 }
3555
stack_segment_valid(struct kvm_vcpu * vcpu)3556 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3557 {
3558 struct kvm_segment ss;
3559 unsigned int ss_rpl;
3560
3561 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3562 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3563
3564 if (ss.unusable)
3565 return true;
3566 if (ss.type != 3 && ss.type != 7)
3567 return false;
3568 if (!ss.s)
3569 return false;
3570 if (ss.dpl != ss_rpl) /* DPL != RPL */
3571 return false;
3572 if (!ss.present)
3573 return false;
3574
3575 return true;
3576 }
3577
data_segment_valid(struct kvm_vcpu * vcpu,int seg)3578 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3579 {
3580 struct kvm_segment var;
3581 unsigned int rpl;
3582
3583 vmx_get_segment(vcpu, &var, seg);
3584 rpl = var.selector & SEGMENT_RPL_MASK;
3585
3586 if (var.unusable)
3587 return true;
3588 if (!var.s)
3589 return false;
3590 if (!var.present)
3591 return false;
3592 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3593 if (var.dpl < rpl) /* DPL < RPL */
3594 return false;
3595 }
3596
3597 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3598 * rights flags
3599 */
3600 return true;
3601 }
3602
tr_valid(struct kvm_vcpu * vcpu)3603 static bool tr_valid(struct kvm_vcpu *vcpu)
3604 {
3605 struct kvm_segment tr;
3606
3607 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3608
3609 if (tr.unusable)
3610 return false;
3611 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3612 return false;
3613 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3614 return false;
3615 if (!tr.present)
3616 return false;
3617
3618 return true;
3619 }
3620
ldtr_valid(struct kvm_vcpu * vcpu)3621 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3622 {
3623 struct kvm_segment ldtr;
3624
3625 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3626
3627 if (ldtr.unusable)
3628 return true;
3629 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3630 return false;
3631 if (ldtr.type != 2)
3632 return false;
3633 if (!ldtr.present)
3634 return false;
3635
3636 return true;
3637 }
3638
cs_ss_rpl_check(struct kvm_vcpu * vcpu)3639 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3640 {
3641 struct kvm_segment cs, ss;
3642
3643 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3644 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3645
3646 return ((cs.selector & SEGMENT_RPL_MASK) ==
3647 (ss.selector & SEGMENT_RPL_MASK));
3648 }
3649
3650 /*
3651 * Check if guest state is valid. Returns true if valid, false if
3652 * not.
3653 * We assume that registers are always usable
3654 */
__vmx_guest_state_valid(struct kvm_vcpu * vcpu)3655 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3656 {
3657 /* real mode guest state checks */
3658 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3659 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3660 return false;
3661 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3662 return false;
3663 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3664 return false;
3665 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3666 return false;
3667 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3668 return false;
3669 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3670 return false;
3671 } else {
3672 /* protected mode guest state checks */
3673 if (!cs_ss_rpl_check(vcpu))
3674 return false;
3675 if (!code_segment_valid(vcpu))
3676 return false;
3677 if (!stack_segment_valid(vcpu))
3678 return false;
3679 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3680 return false;
3681 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3682 return false;
3683 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3684 return false;
3685 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3686 return false;
3687 if (!tr_valid(vcpu))
3688 return false;
3689 if (!ldtr_valid(vcpu))
3690 return false;
3691 }
3692 /* TODO:
3693 * - Add checks on RIP
3694 * - Add checks on RFLAGS
3695 */
3696
3697 return true;
3698 }
3699
init_rmode_tss(struct kvm * kvm,void __user * ua)3700 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3701 {
3702 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3703 u16 data;
3704 int i;
3705
3706 for (i = 0; i < 3; i++) {
3707 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3708 return -EFAULT;
3709 }
3710
3711 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3712 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3713 return -EFAULT;
3714
3715 data = ~0;
3716 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3717 return -EFAULT;
3718
3719 return 0;
3720 }
3721
init_rmode_identity_map(struct kvm * kvm)3722 static int init_rmode_identity_map(struct kvm *kvm)
3723 {
3724 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3725 int i, r = 0;
3726 void __user *uaddr;
3727 u32 tmp;
3728
3729 /* Protect kvm_vmx->ept_identity_pagetable_done. */
3730 mutex_lock(&kvm->slots_lock);
3731
3732 if (likely(kvm_vmx->ept_identity_pagetable_done))
3733 goto out;
3734
3735 if (!kvm_vmx->ept_identity_map_addr)
3736 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3737
3738 uaddr = __x86_set_memory_region(kvm,
3739 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3740 kvm_vmx->ept_identity_map_addr,
3741 PAGE_SIZE);
3742 if (IS_ERR(uaddr)) {
3743 r = PTR_ERR(uaddr);
3744 goto out;
3745 }
3746
3747 /* Set up identity-mapping pagetable for EPT in real mode */
3748 for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) {
3749 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3750 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3751 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3752 r = -EFAULT;
3753 goto out;
3754 }
3755 }
3756 kvm_vmx->ept_identity_pagetable_done = true;
3757
3758 out:
3759 mutex_unlock(&kvm->slots_lock);
3760 return r;
3761 }
3762
seg_setup(int seg)3763 static void seg_setup(int seg)
3764 {
3765 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3766 unsigned int ar;
3767
3768 vmcs_write16(sf->selector, 0);
3769 vmcs_writel(sf->base, 0);
3770 vmcs_write32(sf->limit, 0xffff);
3771 ar = 0x93;
3772 if (seg == VCPU_SREG_CS)
3773 ar |= 0x08; /* code segment */
3774
3775 vmcs_write32(sf->ar_bytes, ar);
3776 }
3777
alloc_apic_access_page(struct kvm * kvm)3778 static int alloc_apic_access_page(struct kvm *kvm)
3779 {
3780 struct page *page;
3781 void __user *hva;
3782 int ret = 0;
3783
3784 mutex_lock(&kvm->slots_lock);
3785 if (kvm->arch.apic_access_memslot_enabled)
3786 goto out;
3787 hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3788 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3789 if (IS_ERR(hva)) {
3790 ret = PTR_ERR(hva);
3791 goto out;
3792 }
3793
3794 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3795 if (is_error_page(page)) {
3796 ret = -EFAULT;
3797 goto out;
3798 }
3799
3800 /*
3801 * Do not pin the page in memory, so that memory hot-unplug
3802 * is able to migrate it.
3803 */
3804 put_page(page);
3805 kvm->arch.apic_access_memslot_enabled = true;
3806 out:
3807 mutex_unlock(&kvm->slots_lock);
3808 return ret;
3809 }
3810
allocate_vpid(void)3811 int allocate_vpid(void)
3812 {
3813 int vpid;
3814
3815 if (!enable_vpid)
3816 return 0;
3817 spin_lock(&vmx_vpid_lock);
3818 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3819 if (vpid < VMX_NR_VPIDS)
3820 __set_bit(vpid, vmx_vpid_bitmap);
3821 else
3822 vpid = 0;
3823 spin_unlock(&vmx_vpid_lock);
3824 return vpid;
3825 }
3826
free_vpid(int vpid)3827 void free_vpid(int vpid)
3828 {
3829 if (!enable_vpid || vpid == 0)
3830 return;
3831 spin_lock(&vmx_vpid_lock);
3832 __clear_bit(vpid, vmx_vpid_bitmap);
3833 spin_unlock(&vmx_vpid_lock);
3834 }
3835
vmx_msr_bitmap_l01_changed(struct vcpu_vmx * vmx)3836 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
3837 {
3838 /*
3839 * When KVM is a nested hypervisor on top of Hyper-V and uses
3840 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
3841 * bitmap has changed.
3842 */
3843 if (static_branch_unlikely(&enable_evmcs))
3844 evmcs_touch_msr_bitmap();
3845
3846 vmx->nested.force_msr_bitmap_recalc = true;
3847 }
3848
vmx_disable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)3849 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3850 {
3851 struct vcpu_vmx *vmx = to_vmx(vcpu);
3852 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3853
3854 if (!cpu_has_vmx_msr_bitmap())
3855 return;
3856
3857 vmx_msr_bitmap_l01_changed(vmx);
3858
3859 /*
3860 * Mark the desired intercept state in shadow bitmap, this is needed
3861 * for resync when the MSR filters change.
3862 */
3863 if (is_valid_passthrough_msr(msr)) {
3864 int idx = possible_passthrough_msr_slot(msr);
3865
3866 if (idx != -ENOENT) {
3867 if (type & MSR_TYPE_R)
3868 clear_bit(idx, vmx->shadow_msr_intercept.read);
3869 if (type & MSR_TYPE_W)
3870 clear_bit(idx, vmx->shadow_msr_intercept.write);
3871 }
3872 }
3873
3874 if ((type & MSR_TYPE_R) &&
3875 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3876 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3877 type &= ~MSR_TYPE_R;
3878 }
3879
3880 if ((type & MSR_TYPE_W) &&
3881 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3882 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3883 type &= ~MSR_TYPE_W;
3884 }
3885
3886 if (type & MSR_TYPE_R)
3887 vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3888
3889 if (type & MSR_TYPE_W)
3890 vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3891 }
3892
vmx_enable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)3893 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3894 {
3895 struct vcpu_vmx *vmx = to_vmx(vcpu);
3896 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3897
3898 if (!cpu_has_vmx_msr_bitmap())
3899 return;
3900
3901 vmx_msr_bitmap_l01_changed(vmx);
3902
3903 /*
3904 * Mark the desired intercept state in shadow bitmap, this is needed
3905 * for resync when the MSR filter changes.
3906 */
3907 if (is_valid_passthrough_msr(msr)) {
3908 int idx = possible_passthrough_msr_slot(msr);
3909
3910 if (idx != -ENOENT) {
3911 if (type & MSR_TYPE_R)
3912 set_bit(idx, vmx->shadow_msr_intercept.read);
3913 if (type & MSR_TYPE_W)
3914 set_bit(idx, vmx->shadow_msr_intercept.write);
3915 }
3916 }
3917
3918 if (type & MSR_TYPE_R)
3919 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3920
3921 if (type & MSR_TYPE_W)
3922 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3923 }
3924
vmx_reset_x2apic_msrs(struct kvm_vcpu * vcpu,u8 mode)3925 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode)
3926 {
3927 unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
3928 unsigned long read_intercept;
3929 int msr;
3930
3931 read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3932
3933 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3934 unsigned int read_idx = msr / BITS_PER_LONG;
3935 unsigned int write_idx = read_idx + (0x800 / sizeof(long));
3936
3937 msr_bitmap[read_idx] = read_intercept;
3938 msr_bitmap[write_idx] = ~0ul;
3939 }
3940 }
3941
vmx_update_msr_bitmap_x2apic(struct kvm_vcpu * vcpu)3942 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
3943 {
3944 struct vcpu_vmx *vmx = to_vmx(vcpu);
3945 u8 mode;
3946
3947 if (!cpu_has_vmx_msr_bitmap())
3948 return;
3949
3950 if (cpu_has_secondary_exec_ctrls() &&
3951 (secondary_exec_controls_get(vmx) &
3952 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3953 mode = MSR_BITMAP_MODE_X2APIC;
3954 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3955 mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3956 } else {
3957 mode = 0;
3958 }
3959
3960 if (mode == vmx->x2apic_msr_bitmap_mode)
3961 return;
3962
3963 vmx->x2apic_msr_bitmap_mode = mode;
3964
3965 vmx_reset_x2apic_msrs(vcpu, mode);
3966
3967 /*
3968 * TPR reads and writes can be virtualized even if virtual interrupt
3969 * delivery is not in use.
3970 */
3971 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
3972 !(mode & MSR_BITMAP_MODE_X2APIC));
3973
3974 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3975 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
3976 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3977 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3978 if (enable_ipiv)
3979 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW);
3980 }
3981 }
3982
pt_update_intercept_for_msr(struct kvm_vcpu * vcpu)3983 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
3984 {
3985 struct vcpu_vmx *vmx = to_vmx(vcpu);
3986 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3987 u32 i;
3988
3989 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
3990 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
3991 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
3992 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
3993 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
3994 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3995 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3996 }
3997 }
3998
vmx_guest_apic_has_interrupt(struct kvm_vcpu * vcpu)3999 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
4000 {
4001 struct vcpu_vmx *vmx = to_vmx(vcpu);
4002 void *vapic_page;
4003 u32 vppr;
4004 int rvi;
4005
4006 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
4007 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
4008 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
4009 return false;
4010
4011 rvi = vmx_get_rvi();
4012
4013 vapic_page = vmx->nested.virtual_apic_map.hva;
4014 vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
4015
4016 return ((rvi & 0xf0) > (vppr & 0xf0));
4017 }
4018
vmx_msr_filter_changed(struct kvm_vcpu * vcpu)4019 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
4020 {
4021 struct vcpu_vmx *vmx = to_vmx(vcpu);
4022 u32 i;
4023
4024 /*
4025 * Redo intercept permissions for MSRs that KVM is passing through to
4026 * the guest. Disabling interception will check the new MSR filter and
4027 * ensure that KVM enables interception if usersepace wants to filter
4028 * the MSR. MSRs that KVM is already intercepting don't need to be
4029 * refreshed since KVM is going to intercept them regardless of what
4030 * userspace wants.
4031 */
4032 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
4033 u32 msr = vmx_possible_passthrough_msrs[i];
4034
4035 if (!test_bit(i, vmx->shadow_msr_intercept.read))
4036 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R);
4037
4038 if (!test_bit(i, vmx->shadow_msr_intercept.write))
4039 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W);
4040 }
4041
4042 /* PT MSRs can be passed through iff PT is exposed to the guest. */
4043 if (vmx_pt_mode_is_host_guest())
4044 pt_update_intercept_for_msr(vcpu);
4045 }
4046
kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu * vcpu,int pi_vec)4047 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
4048 int pi_vec)
4049 {
4050 #ifdef CONFIG_SMP
4051 if (vcpu->mode == IN_GUEST_MODE) {
4052 /*
4053 * The vector of the virtual has already been set in the PIR.
4054 * Send a notification event to deliver the virtual interrupt
4055 * unless the vCPU is the currently running vCPU, i.e. the
4056 * event is being sent from a fastpath VM-Exit handler, in
4057 * which case the PIR will be synced to the vIRR before
4058 * re-entering the guest.
4059 *
4060 * When the target is not the running vCPU, the following
4061 * possibilities emerge:
4062 *
4063 * Case 1: vCPU stays in non-root mode. Sending a notification
4064 * event posts the interrupt to the vCPU.
4065 *
4066 * Case 2: vCPU exits to root mode and is still runnable. The
4067 * PIR will be synced to the vIRR before re-entering the guest.
4068 * Sending a notification event is ok as the host IRQ handler
4069 * will ignore the spurious event.
4070 *
4071 * Case 3: vCPU exits to root mode and is blocked. vcpu_block()
4072 * has already synced PIR to vIRR and never blocks the vCPU if
4073 * the vIRR is not empty. Therefore, a blocked vCPU here does
4074 * not wait for any requested interrupts in PIR, and sending a
4075 * notification event also results in a benign, spurious event.
4076 */
4077
4078 if (vcpu != kvm_get_running_vcpu())
4079 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
4080 return;
4081 }
4082 #endif
4083 /*
4084 * The vCPU isn't in the guest; wake the vCPU in case it is blocking,
4085 * otherwise do nothing as KVM will grab the highest priority pending
4086 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest().
4087 */
4088 kvm_vcpu_wake_up(vcpu);
4089 }
4090
vmx_deliver_nested_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4091 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4092 int vector)
4093 {
4094 struct vcpu_vmx *vmx = to_vmx(vcpu);
4095
4096 if (is_guest_mode(vcpu) &&
4097 vector == vmx->nested.posted_intr_nv) {
4098 /*
4099 * If a posted intr is not recognized by hardware,
4100 * we will accomplish it in the next vmentry.
4101 */
4102 vmx->nested.pi_pending = true;
4103 kvm_make_request(KVM_REQ_EVENT, vcpu);
4104
4105 /*
4106 * This pairs with the smp_mb_*() after setting vcpu->mode in
4107 * vcpu_enter_guest() to guarantee the vCPU sees the event
4108 * request if triggering a posted interrupt "fails" because
4109 * vcpu->mode != IN_GUEST_MODE. The extra barrier is needed as
4110 * the smb_wmb() in kvm_make_request() only ensures everything
4111 * done before making the request is visible when the request
4112 * is visible, it doesn't ensure ordering between the store to
4113 * vcpu->requests and the load from vcpu->mode.
4114 */
4115 smp_mb__after_atomic();
4116
4117 /* the PIR and ON have been set by L1. */
4118 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4119 return 0;
4120 }
4121 return -1;
4122 }
4123 /*
4124 * Send interrupt to vcpu via posted interrupt way.
4125 * 1. If target vcpu is running(non-root mode), send posted interrupt
4126 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4127 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4128 * interrupt from PIR in next vmentry.
4129 */
vmx_deliver_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4130 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4131 {
4132 struct vcpu_vmx *vmx = to_vmx(vcpu);
4133 int r;
4134
4135 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4136 if (!r)
4137 return 0;
4138
4139 /* Note, this is called iff the local APIC is in-kernel. */
4140 if (!vcpu->arch.apic->apicv_active)
4141 return -1;
4142
4143 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4144 return 0;
4145
4146 /* If a previous notification has sent the IPI, nothing to do. */
4147 if (pi_test_and_set_on(&vmx->pi_desc))
4148 return 0;
4149
4150 /*
4151 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*()
4152 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is
4153 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a
4154 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE.
4155 */
4156 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR);
4157 return 0;
4158 }
4159
vmx_deliver_interrupt(struct kvm_lapic * apic,int delivery_mode,int trig_mode,int vector)4160 static void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4161 int trig_mode, int vector)
4162 {
4163 struct kvm_vcpu *vcpu = apic->vcpu;
4164
4165 if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4166 kvm_lapic_set_irr(vector, apic);
4167 kvm_make_request(KVM_REQ_EVENT, vcpu);
4168 kvm_vcpu_kick(vcpu);
4169 } else {
4170 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4171 trig_mode, vector);
4172 }
4173 }
4174
4175 /*
4176 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4177 * will not change in the lifetime of the guest.
4178 * Note that host-state that does change is set elsewhere. E.g., host-state
4179 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4180 */
vmx_set_constant_host_state(struct vcpu_vmx * vmx)4181 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4182 {
4183 u32 low32, high32;
4184 unsigned long tmpl;
4185 unsigned long cr0, cr3, cr4;
4186
4187 cr0 = read_cr0();
4188 WARN_ON(cr0 & X86_CR0_TS);
4189 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
4190
4191 /*
4192 * Save the most likely value for this task's CR3 in the VMCS.
4193 * We can't use __get_current_cr3_fast() because we're not atomic.
4194 */
4195 cr3 = __read_cr3();
4196 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
4197 vmx->loaded_vmcs->host_state.cr3 = cr3;
4198
4199 /* Save the most likely value for this task's CR4 in the VMCS. */
4200 cr4 = cr4_read_shadow();
4201 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4202 vmx->loaded_vmcs->host_state.cr4 = cr4;
4203
4204 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
4205 #ifdef CONFIG_X86_64
4206 /*
4207 * Load null selectors, so we can avoid reloading them in
4208 * vmx_prepare_switch_to_host(), in case userspace uses
4209 * the null selectors too (the expected case).
4210 */
4211 vmcs_write16(HOST_DS_SELECTOR, 0);
4212 vmcs_write16(HOST_ES_SELECTOR, 0);
4213 #else
4214 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4215 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4216 #endif
4217 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4218 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4219
4220 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */
4221
4222 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4223
4224 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4225 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4226
4227 /*
4228 * SYSENTER is used for 32-bit system calls on either 32-bit or
4229 * 64-bit kernels. It is always zero If neither is allowed, otherwise
4230 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4231 * have already done so!).
4232 */
4233 if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4234 vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4235
4236 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4237 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4238
4239 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4240 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4241 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4242 }
4243
4244 if (cpu_has_load_ia32_efer())
4245 vmcs_write64(HOST_IA32_EFER, host_efer);
4246 }
4247
set_cr4_guest_host_mask(struct vcpu_vmx * vmx)4248 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4249 {
4250 struct kvm_vcpu *vcpu = &vmx->vcpu;
4251
4252 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4253 ~vcpu->arch.cr4_guest_rsvd_bits;
4254 if (!enable_ept) {
4255 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4256 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4257 }
4258 if (is_guest_mode(&vmx->vcpu))
4259 vcpu->arch.cr4_guest_owned_bits &=
4260 ~get_vmcs12(vcpu)->cr4_guest_host_mask;
4261 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4262 }
4263
vmx_pin_based_exec_ctrl(struct vcpu_vmx * vmx)4264 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4265 {
4266 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4267
4268 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4269 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4270
4271 if (!enable_vnmi)
4272 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4273
4274 if (!enable_preemption_timer)
4275 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4276
4277 return pin_based_exec_ctrl;
4278 }
4279
vmx_vmentry_ctrl(void)4280 static u32 vmx_vmentry_ctrl(void)
4281 {
4282 u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4283
4284 if (vmx_pt_mode_is_system())
4285 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4286 VM_ENTRY_LOAD_IA32_RTIT_CTL);
4287 /*
4288 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically.
4289 */
4290 vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
4291 VM_ENTRY_LOAD_IA32_EFER |
4292 VM_ENTRY_IA32E_MODE);
4293
4294 if (cpu_has_perf_global_ctrl_bug())
4295 vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4296
4297 return vmentry_ctrl;
4298 }
4299
vmx_vmexit_ctrl(void)4300 static u32 vmx_vmexit_ctrl(void)
4301 {
4302 u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4303
4304 /*
4305 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for
4306 * nested virtualization and thus allowed to be set in vmcs12.
4307 */
4308 vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER |
4309 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER);
4310
4311 if (vmx_pt_mode_is_system())
4312 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4313 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4314
4315 if (cpu_has_perf_global_ctrl_bug())
4316 vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4317
4318 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4319 return vmexit_ctrl &
4320 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4321 }
4322
vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu * vcpu)4323 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4324 {
4325 struct vcpu_vmx *vmx = to_vmx(vcpu);
4326
4327 if (is_guest_mode(vcpu)) {
4328 vmx->nested.update_vmcs01_apicv_status = true;
4329 return;
4330 }
4331
4332 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4333
4334 if (kvm_vcpu_apicv_active(vcpu)) {
4335 secondary_exec_controls_setbit(vmx,
4336 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4337 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4338 if (enable_ipiv)
4339 tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4340 } else {
4341 secondary_exec_controls_clearbit(vmx,
4342 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4343 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4344 if (enable_ipiv)
4345 tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4346 }
4347
4348 vmx_update_msr_bitmap_x2apic(vcpu);
4349 }
4350
vmx_exec_control(struct vcpu_vmx * vmx)4351 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4352 {
4353 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4354
4355 /*
4356 * Not used by KVM, but fully supported for nesting, i.e. are allowed in
4357 * vmcs12 and propagated to vmcs02 when set in vmcs12.
4358 */
4359 exec_control &= ~(CPU_BASED_RDTSC_EXITING |
4360 CPU_BASED_USE_IO_BITMAPS |
4361 CPU_BASED_MONITOR_TRAP_FLAG |
4362 CPU_BASED_PAUSE_EXITING);
4363
4364 /* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */
4365 exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING |
4366 CPU_BASED_NMI_WINDOW_EXITING);
4367
4368 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4369 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4370
4371 if (!cpu_need_tpr_shadow(&vmx->vcpu))
4372 exec_control &= ~CPU_BASED_TPR_SHADOW;
4373
4374 #ifdef CONFIG_X86_64
4375 if (exec_control & CPU_BASED_TPR_SHADOW)
4376 exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING |
4377 CPU_BASED_CR8_STORE_EXITING);
4378 else
4379 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4380 CPU_BASED_CR8_LOAD_EXITING;
4381 #endif
4382 /* No need to intercept CR3 access or INVPLG when using EPT. */
4383 if (enable_ept)
4384 exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4385 CPU_BASED_CR3_STORE_EXITING |
4386 CPU_BASED_INVLPG_EXITING);
4387 if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4388 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4389 CPU_BASED_MONITOR_EXITING);
4390 if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4391 exec_control &= ~CPU_BASED_HLT_EXITING;
4392 return exec_control;
4393 }
4394
vmx_tertiary_exec_control(struct vcpu_vmx * vmx)4395 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx)
4396 {
4397 u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl;
4398
4399 /*
4400 * IPI virtualization relies on APICv. Disable IPI virtualization if
4401 * APICv is inhibited.
4402 */
4403 if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu))
4404 exec_control &= ~TERTIARY_EXEC_IPI_VIRT;
4405
4406 return exec_control;
4407 }
4408
4409 /*
4410 * Adjust a single secondary execution control bit to intercept/allow an
4411 * instruction in the guest. This is usually done based on whether or not a
4412 * feature has been exposed to the guest in order to correctly emulate faults.
4413 */
4414 static inline void
vmx_adjust_secondary_exec_control(struct vcpu_vmx * vmx,u32 * exec_control,u32 control,bool enabled,bool exiting)4415 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4416 u32 control, bool enabled, bool exiting)
4417 {
4418 /*
4419 * If the control is for an opt-in feature, clear the control if the
4420 * feature is not exposed to the guest, i.e. not enabled. If the
4421 * control is opt-out, i.e. an exiting control, clear the control if
4422 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4423 * disabled for the associated instruction. Note, the caller is
4424 * responsible presetting exec_control to set all supported bits.
4425 */
4426 if (enabled == exiting)
4427 *exec_control &= ~control;
4428
4429 /*
4430 * Update the nested MSR settings so that a nested VMM can/can't set
4431 * controls for features that are/aren't exposed to the guest.
4432 */
4433 if (nested) {
4434 if (enabled)
4435 vmx->nested.msrs.secondary_ctls_high |= control;
4436 else
4437 vmx->nested.msrs.secondary_ctls_high &= ~control;
4438 }
4439 }
4440
4441 /*
4442 * Wrapper macro for the common case of adjusting a secondary execution control
4443 * based on a single guest CPUID bit, with a dedicated feature bit. This also
4444 * verifies that the control is actually supported by KVM and hardware.
4445 */
4446 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4447 ({ \
4448 bool __enabled; \
4449 \
4450 if (cpu_has_vmx_##name()) { \
4451 __enabled = guest_cpuid_has(&(vmx)->vcpu, \
4452 X86_FEATURE_##feat_name); \
4453 vmx_adjust_secondary_exec_control(vmx, exec_control, \
4454 SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \
4455 } \
4456 })
4457
4458 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4459 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4460 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4461
4462 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4463 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4464
vmx_secondary_exec_control(struct vcpu_vmx * vmx)4465 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4466 {
4467 struct kvm_vcpu *vcpu = &vmx->vcpu;
4468
4469 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4470
4471 if (vmx_pt_mode_is_system())
4472 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4473 if (!cpu_need_virtualize_apic_accesses(vcpu))
4474 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4475 if (vmx->vpid == 0)
4476 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4477 if (!enable_ept) {
4478 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4479 enable_unrestricted_guest = 0;
4480 }
4481 if (!enable_unrestricted_guest)
4482 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4483 if (kvm_pause_in_guest(vmx->vcpu.kvm))
4484 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4485 if (!kvm_vcpu_apicv_active(vcpu))
4486 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4487 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4488 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4489
4490 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4491 * in vmx_set_cr4. */
4492 exec_control &= ~SECONDARY_EXEC_DESC;
4493
4494 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4495 (handle_vmptrld).
4496 We can NOT enable shadow_vmcs here because we don't have yet
4497 a current VMCS12
4498 */
4499 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4500
4501 /*
4502 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4503 * it needs to be set here when dirty logging is already active, e.g.
4504 * if this vCPU was created after dirty logging was enabled.
4505 */
4506 if (!vcpu->kvm->arch.cpu_dirty_logging_count)
4507 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4508
4509 if (cpu_has_vmx_xsaves()) {
4510 /* Exposing XSAVES only when XSAVE is exposed */
4511 bool xsaves_enabled =
4512 boot_cpu_has(X86_FEATURE_XSAVE) &&
4513 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4514 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4515
4516 vcpu->arch.xsaves_enabled = xsaves_enabled;
4517
4518 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4519 SECONDARY_EXEC_XSAVES,
4520 xsaves_enabled, false);
4521 }
4522
4523 /*
4524 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4525 * feature is exposed to the guest. This creates a virtualization hole
4526 * if both are supported in hardware but only one is exposed to the
4527 * guest, but letting the guest execute RDTSCP or RDPID when either one
4528 * is advertised is preferable to emulating the advertised instruction
4529 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4530 */
4531 if (cpu_has_vmx_rdtscp()) {
4532 bool rdpid_or_rdtscp_enabled =
4533 guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4534 guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4535
4536 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4537 SECONDARY_EXEC_ENABLE_RDTSCP,
4538 rdpid_or_rdtscp_enabled, false);
4539 }
4540 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4541
4542 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4543 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4544
4545 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4546 ENABLE_USR_WAIT_PAUSE, false);
4547
4548 if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4549 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4550
4551 if (!kvm_notify_vmexit_enabled(vcpu->kvm))
4552 exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING;
4553
4554 return exec_control;
4555 }
4556
vmx_get_pid_table_order(struct kvm * kvm)4557 static inline int vmx_get_pid_table_order(struct kvm *kvm)
4558 {
4559 return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table));
4560 }
4561
vmx_alloc_ipiv_pid_table(struct kvm * kvm)4562 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm)
4563 {
4564 struct page *pages;
4565 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4566
4567 if (!irqchip_in_kernel(kvm) || !enable_ipiv)
4568 return 0;
4569
4570 if (kvm_vmx->pid_table)
4571 return 0;
4572
4573 pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, vmx_get_pid_table_order(kvm));
4574 if (!pages)
4575 return -ENOMEM;
4576
4577 kvm_vmx->pid_table = (void *)page_address(pages);
4578 return 0;
4579 }
4580
vmx_vcpu_precreate(struct kvm * kvm)4581 static int vmx_vcpu_precreate(struct kvm *kvm)
4582 {
4583 return vmx_alloc_ipiv_pid_table(kvm);
4584 }
4585
4586 #define VMX_XSS_EXIT_BITMAP 0
4587
init_vmcs(struct vcpu_vmx * vmx)4588 static void init_vmcs(struct vcpu_vmx *vmx)
4589 {
4590 struct kvm *kvm = vmx->vcpu.kvm;
4591 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4592
4593 if (nested)
4594 nested_vmx_set_vmcs_shadowing_bitmap();
4595
4596 if (cpu_has_vmx_msr_bitmap())
4597 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4598
4599 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4600
4601 /* Control */
4602 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4603
4604 exec_controls_set(vmx, vmx_exec_control(vmx));
4605
4606 if (cpu_has_secondary_exec_ctrls())
4607 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4608
4609 if (cpu_has_tertiary_exec_ctrls())
4610 tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx));
4611
4612 if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
4613 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4614 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4615 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4616 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4617
4618 vmcs_write16(GUEST_INTR_STATUS, 0);
4619
4620 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4621 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4622 }
4623
4624 if (vmx_can_use_ipiv(&vmx->vcpu)) {
4625 vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table));
4626 vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1);
4627 }
4628
4629 if (!kvm_pause_in_guest(kvm)) {
4630 vmcs_write32(PLE_GAP, ple_gap);
4631 vmx->ple_window = ple_window;
4632 vmx->ple_window_dirty = true;
4633 }
4634
4635 if (kvm_notify_vmexit_enabled(kvm))
4636 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
4637
4638 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4639 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4640 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4641
4642 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4643 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4644 vmx_set_constant_host_state(vmx);
4645 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4646 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4647
4648 if (cpu_has_vmx_vmfunc())
4649 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4650
4651 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4652 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4653 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4654 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4655 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4656
4657 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4658 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4659
4660 vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4661
4662 /* 22.2.1, 20.8.1 */
4663 vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4664
4665 vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4666 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4667
4668 set_cr4_guest_host_mask(vmx);
4669
4670 if (vmx->vpid != 0)
4671 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4672
4673 if (cpu_has_vmx_xsaves())
4674 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4675
4676 if (enable_pml) {
4677 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4678 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4679 }
4680
4681 vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4682
4683 if (vmx_pt_mode_is_host_guest()) {
4684 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4685 /* Bit[6~0] are forced to 1, writes are ignored. */
4686 vmx->pt_desc.guest.output_mask = 0x7F;
4687 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4688 }
4689
4690 vmcs_write32(GUEST_SYSENTER_CS, 0);
4691 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4692 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4693 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4694
4695 if (cpu_has_vmx_tpr_shadow()) {
4696 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4697 if (cpu_need_tpr_shadow(&vmx->vcpu))
4698 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4699 __pa(vmx->vcpu.arch.apic->regs));
4700 vmcs_write32(TPR_THRESHOLD, 0);
4701 }
4702
4703 vmx_setup_uret_msrs(vmx);
4704 }
4705
__vmx_vcpu_reset(struct kvm_vcpu * vcpu)4706 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4707 {
4708 struct vcpu_vmx *vmx = to_vmx(vcpu);
4709
4710 init_vmcs(vmx);
4711
4712 if (nested)
4713 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4714
4715 vcpu_setup_sgx_lepubkeyhash(vcpu);
4716
4717 vmx->nested.posted_intr_nv = -1;
4718 vmx->nested.vmxon_ptr = INVALID_GPA;
4719 vmx->nested.current_vmptr = INVALID_GPA;
4720 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4721
4722 vcpu->arch.microcode_version = 0x100000000ULL;
4723 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4724
4725 /*
4726 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4727 * or POSTED_INTR_WAKEUP_VECTOR.
4728 */
4729 vmx->pi_desc.nv = POSTED_INTR_VECTOR;
4730 vmx->pi_desc.sn = 1;
4731 }
4732
vmx_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)4733 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4734 {
4735 struct vcpu_vmx *vmx = to_vmx(vcpu);
4736
4737 if (!init_event)
4738 __vmx_vcpu_reset(vcpu);
4739
4740 vmx->rmode.vm86_active = 0;
4741 vmx->spec_ctrl = 0;
4742
4743 vmx->msr_ia32_umwait_control = 0;
4744
4745 vmx->hv_deadline_tsc = -1;
4746 kvm_set_cr8(vcpu, 0);
4747
4748 vmx_segment_cache_clear(vmx);
4749 kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4750
4751 seg_setup(VCPU_SREG_CS);
4752 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4753 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4754
4755 seg_setup(VCPU_SREG_DS);
4756 seg_setup(VCPU_SREG_ES);
4757 seg_setup(VCPU_SREG_FS);
4758 seg_setup(VCPU_SREG_GS);
4759 seg_setup(VCPU_SREG_SS);
4760
4761 vmcs_write16(GUEST_TR_SELECTOR, 0);
4762 vmcs_writel(GUEST_TR_BASE, 0);
4763 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4764 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4765
4766 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4767 vmcs_writel(GUEST_LDTR_BASE, 0);
4768 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4769 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4770
4771 vmcs_writel(GUEST_GDTR_BASE, 0);
4772 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4773
4774 vmcs_writel(GUEST_IDTR_BASE, 0);
4775 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4776
4777 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4778 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4779 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4780 if (kvm_mpx_supported())
4781 vmcs_write64(GUEST_BNDCFGS, 0);
4782
4783 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4784
4785 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4786
4787 vpid_sync_context(vmx->vpid);
4788
4789 vmx_update_fb_clear_dis(vcpu, vmx);
4790 }
4791
vmx_enable_irq_window(struct kvm_vcpu * vcpu)4792 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4793 {
4794 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4795 }
4796
vmx_enable_nmi_window(struct kvm_vcpu * vcpu)4797 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4798 {
4799 if (!enable_vnmi ||
4800 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4801 vmx_enable_irq_window(vcpu);
4802 return;
4803 }
4804
4805 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4806 }
4807
vmx_inject_irq(struct kvm_vcpu * vcpu,bool reinjected)4808 static void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
4809 {
4810 struct vcpu_vmx *vmx = to_vmx(vcpu);
4811 uint32_t intr;
4812 int irq = vcpu->arch.interrupt.nr;
4813
4814 trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected);
4815
4816 ++vcpu->stat.irq_injections;
4817 if (vmx->rmode.vm86_active) {
4818 int inc_eip = 0;
4819 if (vcpu->arch.interrupt.soft)
4820 inc_eip = vcpu->arch.event_exit_inst_len;
4821 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4822 return;
4823 }
4824 intr = irq | INTR_INFO_VALID_MASK;
4825 if (vcpu->arch.interrupt.soft) {
4826 intr |= INTR_TYPE_SOFT_INTR;
4827 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4828 vmx->vcpu.arch.event_exit_inst_len);
4829 } else
4830 intr |= INTR_TYPE_EXT_INTR;
4831 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4832
4833 vmx_clear_hlt(vcpu);
4834 }
4835
vmx_inject_nmi(struct kvm_vcpu * vcpu)4836 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4837 {
4838 struct vcpu_vmx *vmx = to_vmx(vcpu);
4839
4840 if (!enable_vnmi) {
4841 /*
4842 * Tracking the NMI-blocked state in software is built upon
4843 * finding the next open IRQ window. This, in turn, depends on
4844 * well-behaving guests: They have to keep IRQs disabled at
4845 * least as long as the NMI handler runs. Otherwise we may
4846 * cause NMI nesting, maybe breaking the guest. But as this is
4847 * highly unlikely, we can live with the residual risk.
4848 */
4849 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4850 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4851 }
4852
4853 ++vcpu->stat.nmi_injections;
4854 vmx->loaded_vmcs->nmi_known_unmasked = false;
4855
4856 if (vmx->rmode.vm86_active) {
4857 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4858 return;
4859 }
4860
4861 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4862 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4863
4864 vmx_clear_hlt(vcpu);
4865 }
4866
vmx_get_nmi_mask(struct kvm_vcpu * vcpu)4867 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4868 {
4869 struct vcpu_vmx *vmx = to_vmx(vcpu);
4870 bool masked;
4871
4872 if (!enable_vnmi)
4873 return vmx->loaded_vmcs->soft_vnmi_blocked;
4874 if (vmx->loaded_vmcs->nmi_known_unmasked)
4875 return false;
4876 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4877 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4878 return masked;
4879 }
4880
vmx_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)4881 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4882 {
4883 struct vcpu_vmx *vmx = to_vmx(vcpu);
4884
4885 if (!enable_vnmi) {
4886 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4887 vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4888 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4889 }
4890 } else {
4891 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4892 if (masked)
4893 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4894 GUEST_INTR_STATE_NMI);
4895 else
4896 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4897 GUEST_INTR_STATE_NMI);
4898 }
4899 }
4900
vmx_nmi_blocked(struct kvm_vcpu * vcpu)4901 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4902 {
4903 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4904 return false;
4905
4906 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4907 return true;
4908
4909 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4910 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4911 GUEST_INTR_STATE_NMI));
4912 }
4913
vmx_nmi_allowed(struct kvm_vcpu * vcpu,bool for_injection)4914 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4915 {
4916 if (to_vmx(vcpu)->nested.nested_run_pending)
4917 return -EBUSY;
4918
4919 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
4920 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4921 return -EBUSY;
4922
4923 return !vmx_nmi_blocked(vcpu);
4924 }
4925
vmx_interrupt_blocked(struct kvm_vcpu * vcpu)4926 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4927 {
4928 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4929 return false;
4930
4931 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4932 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4933 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4934 }
4935
vmx_interrupt_allowed(struct kvm_vcpu * vcpu,bool for_injection)4936 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4937 {
4938 if (to_vmx(vcpu)->nested.nested_run_pending)
4939 return -EBUSY;
4940
4941 /*
4942 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4943 * e.g. if the IRQ arrived asynchronously after checking nested events.
4944 */
4945 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4946 return -EBUSY;
4947
4948 return !vmx_interrupt_blocked(vcpu);
4949 }
4950
vmx_set_tss_addr(struct kvm * kvm,unsigned int addr)4951 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4952 {
4953 void __user *ret;
4954
4955 if (enable_unrestricted_guest)
4956 return 0;
4957
4958 mutex_lock(&kvm->slots_lock);
4959 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4960 PAGE_SIZE * 3);
4961 mutex_unlock(&kvm->slots_lock);
4962
4963 if (IS_ERR(ret))
4964 return PTR_ERR(ret);
4965
4966 to_kvm_vmx(kvm)->tss_addr = addr;
4967
4968 return init_rmode_tss(kvm, ret);
4969 }
4970
vmx_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)4971 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4972 {
4973 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4974 return 0;
4975 }
4976
rmode_exception(struct kvm_vcpu * vcpu,int vec)4977 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4978 {
4979 switch (vec) {
4980 case BP_VECTOR:
4981 /*
4982 * Update instruction length as we may reinject the exception
4983 * from user space while in guest debugging mode.
4984 */
4985 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4986 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4987 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4988 return false;
4989 fallthrough;
4990 case DB_VECTOR:
4991 return !(vcpu->guest_debug &
4992 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
4993 case DE_VECTOR:
4994 case OF_VECTOR:
4995 case BR_VECTOR:
4996 case UD_VECTOR:
4997 case DF_VECTOR:
4998 case SS_VECTOR:
4999 case GP_VECTOR:
5000 case MF_VECTOR:
5001 return true;
5002 }
5003 return false;
5004 }
5005
handle_rmode_exception(struct kvm_vcpu * vcpu,int vec,u32 err_code)5006 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5007 int vec, u32 err_code)
5008 {
5009 /*
5010 * Instruction with address size override prefix opcode 0x67
5011 * Cause the #SS fault with 0 error code in VM86 mode.
5012 */
5013 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5014 if (kvm_emulate_instruction(vcpu, 0)) {
5015 if (vcpu->arch.halt_request) {
5016 vcpu->arch.halt_request = 0;
5017 return kvm_emulate_halt_noskip(vcpu);
5018 }
5019 return 1;
5020 }
5021 return 0;
5022 }
5023
5024 /*
5025 * Forward all other exceptions that are valid in real mode.
5026 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5027 * the required debugging infrastructure rework.
5028 */
5029 kvm_queue_exception(vcpu, vec);
5030 return 1;
5031 }
5032
handle_machine_check(struct kvm_vcpu * vcpu)5033 static int handle_machine_check(struct kvm_vcpu *vcpu)
5034 {
5035 /* handled by vmx_vcpu_run() */
5036 return 1;
5037 }
5038
5039 /*
5040 * If the host has split lock detection disabled, then #AC is
5041 * unconditionally injected into the guest, which is the pre split lock
5042 * detection behaviour.
5043 *
5044 * If the host has split lock detection enabled then #AC is
5045 * only injected into the guest when:
5046 * - Guest CPL == 3 (user mode)
5047 * - Guest has #AC detection enabled in CR0
5048 * - Guest EFLAGS has AC bit set
5049 */
vmx_guest_inject_ac(struct kvm_vcpu * vcpu)5050 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
5051 {
5052 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5053 return true;
5054
5055 return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
5056 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
5057 }
5058
handle_exception_nmi(struct kvm_vcpu * vcpu)5059 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
5060 {
5061 struct vcpu_vmx *vmx = to_vmx(vcpu);
5062 struct kvm_run *kvm_run = vcpu->run;
5063 u32 intr_info, ex_no, error_code;
5064 unsigned long cr2, dr6;
5065 u32 vect_info;
5066
5067 vect_info = vmx->idt_vectoring_info;
5068 intr_info = vmx_get_intr_info(vcpu);
5069
5070 if (is_machine_check(intr_info) || is_nmi(intr_info))
5071 return 1; /* handled by handle_exception_nmi_irqoff() */
5072
5073 /*
5074 * Queue the exception here instead of in handle_nm_fault_irqoff().
5075 * This ensures the nested_vmx check is not skipped so vmexit can
5076 * be reflected to L1 (when it intercepts #NM) before reaching this
5077 * point.
5078 */
5079 if (is_nm_fault(intr_info)) {
5080 kvm_queue_exception(vcpu, NM_VECTOR);
5081 return 1;
5082 }
5083
5084 if (is_invalid_opcode(intr_info))
5085 return handle_ud(vcpu);
5086
5087 error_code = 0;
5088 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5089 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5090
5091 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
5092 WARN_ON_ONCE(!enable_vmware_backdoor);
5093
5094 /*
5095 * VMware backdoor emulation on #GP interception only handles
5096 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
5097 * error code on #GP.
5098 */
5099 if (error_code) {
5100 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
5101 return 1;
5102 }
5103 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
5104 }
5105
5106 /*
5107 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5108 * MMIO, it is better to report an internal error.
5109 * See the comments in vmx_handle_exit.
5110 */
5111 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5112 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5113 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5114 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5115 vcpu->run->internal.ndata = 4;
5116 vcpu->run->internal.data[0] = vect_info;
5117 vcpu->run->internal.data[1] = intr_info;
5118 vcpu->run->internal.data[2] = error_code;
5119 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
5120 return 0;
5121 }
5122
5123 if (is_page_fault(intr_info)) {
5124 cr2 = vmx_get_exit_qual(vcpu);
5125 if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
5126 /*
5127 * EPT will cause page fault only if we need to
5128 * detect illegal GPAs.
5129 */
5130 WARN_ON_ONCE(!allow_smaller_maxphyaddr);
5131 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
5132 return 1;
5133 } else
5134 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5135 }
5136
5137 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5138
5139 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5140 return handle_rmode_exception(vcpu, ex_no, error_code);
5141
5142 switch (ex_no) {
5143 case DB_VECTOR:
5144 dr6 = vmx_get_exit_qual(vcpu);
5145 if (!(vcpu->guest_debug &
5146 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5147 /*
5148 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
5149 * instruction. ICEBP generates a trap-like #DB, but
5150 * despite its interception control being tied to #DB,
5151 * is an instruction intercept, i.e. the VM-Exit occurs
5152 * on the ICEBP itself. Use the inner "skip" helper to
5153 * avoid single-step #DB and MTF updates, as ICEBP is
5154 * higher priority. Note, skipping ICEBP still clears
5155 * STI and MOVSS blocking.
5156 *
5157 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
5158 * if single-step is enabled in RFLAGS and STI or MOVSS
5159 * blocking is active, as the CPU doesn't set the bit
5160 * on VM-Exit due to #DB interception. VM-Entry has a
5161 * consistency check that a single-step #DB is pending
5162 * in this scenario as the previous instruction cannot
5163 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
5164 * don't modify RFLAGS), therefore the one instruction
5165 * delay when activating single-step breakpoints must
5166 * have already expired. Note, the CPU sets/clears BS
5167 * as appropriate for all other VM-Exits types.
5168 */
5169 if (is_icebp(intr_info))
5170 WARN_ON(!skip_emulated_instruction(vcpu));
5171 else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
5172 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5173 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
5174 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5175 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
5176
5177 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
5178 return 1;
5179 }
5180 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
5181 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5182 fallthrough;
5183 case BP_VECTOR:
5184 /*
5185 * Update instruction length as we may reinject #BP from
5186 * user space while in guest debugging mode. Reading it for
5187 * #DB as well causes no harm, it is not used in that case.
5188 */
5189 vmx->vcpu.arch.event_exit_inst_len =
5190 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5191 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5192 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5193 kvm_run->debug.arch.exception = ex_no;
5194 break;
5195 case AC_VECTOR:
5196 if (vmx_guest_inject_ac(vcpu)) {
5197 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5198 return 1;
5199 }
5200
5201 /*
5202 * Handle split lock. Depending on detection mode this will
5203 * either warn and disable split lock detection for this
5204 * task or force SIGBUS on it.
5205 */
5206 if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5207 return 1;
5208 fallthrough;
5209 default:
5210 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5211 kvm_run->ex.exception = ex_no;
5212 kvm_run->ex.error_code = error_code;
5213 break;
5214 }
5215 return 0;
5216 }
5217
handle_external_interrupt(struct kvm_vcpu * vcpu)5218 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5219 {
5220 ++vcpu->stat.irq_exits;
5221 return 1;
5222 }
5223
handle_triple_fault(struct kvm_vcpu * vcpu)5224 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5225 {
5226 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5227 vcpu->mmio_needed = 0;
5228 return 0;
5229 }
5230
handle_io(struct kvm_vcpu * vcpu)5231 static int handle_io(struct kvm_vcpu *vcpu)
5232 {
5233 unsigned long exit_qualification;
5234 int size, in, string;
5235 unsigned port;
5236
5237 exit_qualification = vmx_get_exit_qual(vcpu);
5238 string = (exit_qualification & 16) != 0;
5239
5240 ++vcpu->stat.io_exits;
5241
5242 if (string)
5243 return kvm_emulate_instruction(vcpu, 0);
5244
5245 port = exit_qualification >> 16;
5246 size = (exit_qualification & 7) + 1;
5247 in = (exit_qualification & 8) != 0;
5248
5249 return kvm_fast_pio(vcpu, size, port, in);
5250 }
5251
5252 static void
vmx_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)5253 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5254 {
5255 /*
5256 * Patch in the VMCALL instruction:
5257 */
5258 hypercall[0] = 0x0f;
5259 hypercall[1] = 0x01;
5260 hypercall[2] = 0xc1;
5261 }
5262
5263 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
handle_set_cr0(struct kvm_vcpu * vcpu,unsigned long val)5264 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5265 {
5266 if (is_guest_mode(vcpu)) {
5267 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5268 unsigned long orig_val = val;
5269
5270 /*
5271 * We get here when L2 changed cr0 in a way that did not change
5272 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5273 * but did change L0 shadowed bits. So we first calculate the
5274 * effective cr0 value that L1 would like to write into the
5275 * hardware. It consists of the L2-owned bits from the new
5276 * value combined with the L1-owned bits from L1's guest_cr0.
5277 */
5278 val = (val & ~vmcs12->cr0_guest_host_mask) |
5279 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5280
5281 if (!nested_guest_cr0_valid(vcpu, val))
5282 return 1;
5283
5284 if (kvm_set_cr0(vcpu, val))
5285 return 1;
5286 vmcs_writel(CR0_READ_SHADOW, orig_val);
5287 return 0;
5288 } else {
5289 if (to_vmx(vcpu)->nested.vmxon &&
5290 !nested_host_cr0_valid(vcpu, val))
5291 return 1;
5292
5293 return kvm_set_cr0(vcpu, val);
5294 }
5295 }
5296
handle_set_cr4(struct kvm_vcpu * vcpu,unsigned long val)5297 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5298 {
5299 if (is_guest_mode(vcpu)) {
5300 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5301 unsigned long orig_val = val;
5302
5303 /* analogously to handle_set_cr0 */
5304 val = (val & ~vmcs12->cr4_guest_host_mask) |
5305 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5306 if (kvm_set_cr4(vcpu, val))
5307 return 1;
5308 vmcs_writel(CR4_READ_SHADOW, orig_val);
5309 return 0;
5310 } else
5311 return kvm_set_cr4(vcpu, val);
5312 }
5313
handle_desc(struct kvm_vcpu * vcpu)5314 static int handle_desc(struct kvm_vcpu *vcpu)
5315 {
5316 WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
5317 return kvm_emulate_instruction(vcpu, 0);
5318 }
5319
handle_cr(struct kvm_vcpu * vcpu)5320 static int handle_cr(struct kvm_vcpu *vcpu)
5321 {
5322 unsigned long exit_qualification, val;
5323 int cr;
5324 int reg;
5325 int err;
5326 int ret;
5327
5328 exit_qualification = vmx_get_exit_qual(vcpu);
5329 cr = exit_qualification & 15;
5330 reg = (exit_qualification >> 8) & 15;
5331 switch ((exit_qualification >> 4) & 3) {
5332 case 0: /* mov to cr */
5333 val = kvm_register_read(vcpu, reg);
5334 trace_kvm_cr_write(cr, val);
5335 switch (cr) {
5336 case 0:
5337 err = handle_set_cr0(vcpu, val);
5338 return kvm_complete_insn_gp(vcpu, err);
5339 case 3:
5340 WARN_ON_ONCE(enable_unrestricted_guest);
5341
5342 err = kvm_set_cr3(vcpu, val);
5343 return kvm_complete_insn_gp(vcpu, err);
5344 case 4:
5345 err = handle_set_cr4(vcpu, val);
5346 return kvm_complete_insn_gp(vcpu, err);
5347 case 8: {
5348 u8 cr8_prev = kvm_get_cr8(vcpu);
5349 u8 cr8 = (u8)val;
5350 err = kvm_set_cr8(vcpu, cr8);
5351 ret = kvm_complete_insn_gp(vcpu, err);
5352 if (lapic_in_kernel(vcpu))
5353 return ret;
5354 if (cr8_prev <= cr8)
5355 return ret;
5356 /*
5357 * TODO: we might be squashing a
5358 * KVM_GUESTDBG_SINGLESTEP-triggered
5359 * KVM_EXIT_DEBUG here.
5360 */
5361 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5362 return 0;
5363 }
5364 }
5365 break;
5366 case 2: /* clts */
5367 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5368 return -EIO;
5369 case 1: /*mov from cr*/
5370 switch (cr) {
5371 case 3:
5372 WARN_ON_ONCE(enable_unrestricted_guest);
5373
5374 val = kvm_read_cr3(vcpu);
5375 kvm_register_write(vcpu, reg, val);
5376 trace_kvm_cr_read(cr, val);
5377 return kvm_skip_emulated_instruction(vcpu);
5378 case 8:
5379 val = kvm_get_cr8(vcpu);
5380 kvm_register_write(vcpu, reg, val);
5381 trace_kvm_cr_read(cr, val);
5382 return kvm_skip_emulated_instruction(vcpu);
5383 }
5384 break;
5385 case 3: /* lmsw */
5386 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5387 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5388 kvm_lmsw(vcpu, val);
5389
5390 return kvm_skip_emulated_instruction(vcpu);
5391 default:
5392 break;
5393 }
5394 vcpu->run->exit_reason = 0;
5395 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5396 (int)(exit_qualification >> 4) & 3, cr);
5397 return 0;
5398 }
5399
handle_dr(struct kvm_vcpu * vcpu)5400 static int handle_dr(struct kvm_vcpu *vcpu)
5401 {
5402 unsigned long exit_qualification;
5403 int dr, dr7, reg;
5404 int err = 1;
5405
5406 exit_qualification = vmx_get_exit_qual(vcpu);
5407 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5408
5409 /* First, if DR does not exist, trigger UD */
5410 if (!kvm_require_dr(vcpu, dr))
5411 return 1;
5412
5413 if (vmx_get_cpl(vcpu) > 0)
5414 goto out;
5415
5416 dr7 = vmcs_readl(GUEST_DR7);
5417 if (dr7 & DR7_GD) {
5418 /*
5419 * As the vm-exit takes precedence over the debug trap, we
5420 * need to emulate the latter, either for the host or the
5421 * guest debugging itself.
5422 */
5423 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5424 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5425 vcpu->run->debug.arch.dr7 = dr7;
5426 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5427 vcpu->run->debug.arch.exception = DB_VECTOR;
5428 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5429 return 0;
5430 } else {
5431 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5432 return 1;
5433 }
5434 }
5435
5436 if (vcpu->guest_debug == 0) {
5437 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5438
5439 /*
5440 * No more DR vmexits; force a reload of the debug registers
5441 * and reenter on this instruction. The next vmexit will
5442 * retrieve the full state of the debug registers.
5443 */
5444 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5445 return 1;
5446 }
5447
5448 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5449 if (exit_qualification & TYPE_MOV_FROM_DR) {
5450 unsigned long val;
5451
5452 kvm_get_dr(vcpu, dr, &val);
5453 kvm_register_write(vcpu, reg, val);
5454 err = 0;
5455 } else {
5456 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5457 }
5458
5459 out:
5460 return kvm_complete_insn_gp(vcpu, err);
5461 }
5462
vmx_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)5463 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5464 {
5465 get_debugreg(vcpu->arch.db[0], 0);
5466 get_debugreg(vcpu->arch.db[1], 1);
5467 get_debugreg(vcpu->arch.db[2], 2);
5468 get_debugreg(vcpu->arch.db[3], 3);
5469 get_debugreg(vcpu->arch.dr6, 6);
5470 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5471
5472 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5473 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5474
5475 /*
5476 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5477 * a stale dr6 from the guest.
5478 */
5479 set_debugreg(DR6_RESERVED, 6);
5480 }
5481
vmx_set_dr7(struct kvm_vcpu * vcpu,unsigned long val)5482 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5483 {
5484 vmcs_writel(GUEST_DR7, val);
5485 }
5486
handle_tpr_below_threshold(struct kvm_vcpu * vcpu)5487 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5488 {
5489 kvm_apic_update_ppr(vcpu);
5490 return 1;
5491 }
5492
handle_interrupt_window(struct kvm_vcpu * vcpu)5493 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5494 {
5495 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5496
5497 kvm_make_request(KVM_REQ_EVENT, vcpu);
5498
5499 ++vcpu->stat.irq_window_exits;
5500 return 1;
5501 }
5502
handle_invlpg(struct kvm_vcpu * vcpu)5503 static int handle_invlpg(struct kvm_vcpu *vcpu)
5504 {
5505 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5506
5507 kvm_mmu_invlpg(vcpu, exit_qualification);
5508 return kvm_skip_emulated_instruction(vcpu);
5509 }
5510
handle_apic_access(struct kvm_vcpu * vcpu)5511 static int handle_apic_access(struct kvm_vcpu *vcpu)
5512 {
5513 if (likely(fasteoi)) {
5514 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5515 int access_type, offset;
5516
5517 access_type = exit_qualification & APIC_ACCESS_TYPE;
5518 offset = exit_qualification & APIC_ACCESS_OFFSET;
5519 /*
5520 * Sane guest uses MOV to write EOI, with written value
5521 * not cared. So make a short-circuit here by avoiding
5522 * heavy instruction emulation.
5523 */
5524 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5525 (offset == APIC_EOI)) {
5526 kvm_lapic_set_eoi(vcpu);
5527 return kvm_skip_emulated_instruction(vcpu);
5528 }
5529 }
5530 return kvm_emulate_instruction(vcpu, 0);
5531 }
5532
handle_apic_eoi_induced(struct kvm_vcpu * vcpu)5533 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5534 {
5535 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5536 int vector = exit_qualification & 0xff;
5537
5538 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5539 kvm_apic_set_eoi_accelerated(vcpu, vector);
5540 return 1;
5541 }
5542
handle_apic_write(struct kvm_vcpu * vcpu)5543 static int handle_apic_write(struct kvm_vcpu *vcpu)
5544 {
5545 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5546
5547 /*
5548 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5549 * hardware has done any necessary aliasing, offset adjustments, etc...
5550 * for the access. I.e. the correct value has already been written to
5551 * the vAPIC page for the correct 16-byte chunk. KVM needs only to
5552 * retrieve the register value and emulate the access.
5553 */
5554 u32 offset = exit_qualification & 0xff0;
5555
5556 kvm_apic_write_nodecode(vcpu, offset);
5557 return 1;
5558 }
5559
handle_task_switch(struct kvm_vcpu * vcpu)5560 static int handle_task_switch(struct kvm_vcpu *vcpu)
5561 {
5562 struct vcpu_vmx *vmx = to_vmx(vcpu);
5563 unsigned long exit_qualification;
5564 bool has_error_code = false;
5565 u32 error_code = 0;
5566 u16 tss_selector;
5567 int reason, type, idt_v, idt_index;
5568
5569 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5570 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5571 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5572
5573 exit_qualification = vmx_get_exit_qual(vcpu);
5574
5575 reason = (u32)exit_qualification >> 30;
5576 if (reason == TASK_SWITCH_GATE && idt_v) {
5577 switch (type) {
5578 case INTR_TYPE_NMI_INTR:
5579 vcpu->arch.nmi_injected = false;
5580 vmx_set_nmi_mask(vcpu, true);
5581 break;
5582 case INTR_TYPE_EXT_INTR:
5583 case INTR_TYPE_SOFT_INTR:
5584 kvm_clear_interrupt_queue(vcpu);
5585 break;
5586 case INTR_TYPE_HARD_EXCEPTION:
5587 if (vmx->idt_vectoring_info &
5588 VECTORING_INFO_DELIVER_CODE_MASK) {
5589 has_error_code = true;
5590 error_code =
5591 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5592 }
5593 fallthrough;
5594 case INTR_TYPE_SOFT_EXCEPTION:
5595 kvm_clear_exception_queue(vcpu);
5596 break;
5597 default:
5598 break;
5599 }
5600 }
5601 tss_selector = exit_qualification;
5602
5603 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5604 type != INTR_TYPE_EXT_INTR &&
5605 type != INTR_TYPE_NMI_INTR))
5606 WARN_ON(!skip_emulated_instruction(vcpu));
5607
5608 /*
5609 * TODO: What about debug traps on tss switch?
5610 * Are we supposed to inject them and update dr6?
5611 */
5612 return kvm_task_switch(vcpu, tss_selector,
5613 type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5614 reason, has_error_code, error_code);
5615 }
5616
handle_ept_violation(struct kvm_vcpu * vcpu)5617 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5618 {
5619 unsigned long exit_qualification;
5620 gpa_t gpa;
5621 u64 error_code;
5622
5623 exit_qualification = vmx_get_exit_qual(vcpu);
5624
5625 /*
5626 * EPT violation happened while executing iret from NMI,
5627 * "blocked by NMI" bit has to be set before next VM entry.
5628 * There are errata that may cause this bit to not be set:
5629 * AAK134, BY25.
5630 */
5631 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5632 enable_vnmi &&
5633 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5634 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5635
5636 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5637 trace_kvm_page_fault(vcpu, gpa, exit_qualification);
5638
5639 /* Is it a read fault? */
5640 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5641 ? PFERR_USER_MASK : 0;
5642 /* Is it a write fault? */
5643 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5644 ? PFERR_WRITE_MASK : 0;
5645 /* Is it a fetch fault? */
5646 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5647 ? PFERR_FETCH_MASK : 0;
5648 /* ept page table entry is present? */
5649 error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK)
5650 ? PFERR_PRESENT_MASK : 0;
5651
5652 error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5653 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5654
5655 vcpu->arch.exit_qualification = exit_qualification;
5656
5657 /*
5658 * Check that the GPA doesn't exceed physical memory limits, as that is
5659 * a guest page fault. We have to emulate the instruction here, because
5660 * if the illegal address is that of a paging structure, then
5661 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we
5662 * would also use advanced VM-exit information for EPT violations to
5663 * reconstruct the page fault error code.
5664 */
5665 if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5666 return kvm_emulate_instruction(vcpu, 0);
5667
5668 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5669 }
5670
handle_ept_misconfig(struct kvm_vcpu * vcpu)5671 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5672 {
5673 gpa_t gpa;
5674
5675 if (!vmx_can_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5676 return 1;
5677
5678 /*
5679 * A nested guest cannot optimize MMIO vmexits, because we have an
5680 * nGPA here instead of the required GPA.
5681 */
5682 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5683 if (!is_guest_mode(vcpu) &&
5684 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5685 trace_kvm_fast_mmio(gpa);
5686 return kvm_skip_emulated_instruction(vcpu);
5687 }
5688
5689 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5690 }
5691
handle_nmi_window(struct kvm_vcpu * vcpu)5692 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5693 {
5694 if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5695 return -EIO;
5696
5697 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5698 ++vcpu->stat.nmi_window_exits;
5699 kvm_make_request(KVM_REQ_EVENT, vcpu);
5700
5701 return 1;
5702 }
5703
vmx_emulation_required_with_pending_exception(struct kvm_vcpu * vcpu)5704 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu)
5705 {
5706 struct vcpu_vmx *vmx = to_vmx(vcpu);
5707
5708 return vmx->emulation_required && !vmx->rmode.vm86_active &&
5709 (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected);
5710 }
5711
handle_invalid_guest_state(struct kvm_vcpu * vcpu)5712 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5713 {
5714 struct vcpu_vmx *vmx = to_vmx(vcpu);
5715 bool intr_window_requested;
5716 unsigned count = 130;
5717
5718 intr_window_requested = exec_controls_get(vmx) &
5719 CPU_BASED_INTR_WINDOW_EXITING;
5720
5721 while (vmx->emulation_required && count-- != 0) {
5722 if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5723 return handle_interrupt_window(&vmx->vcpu);
5724
5725 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5726 return 1;
5727
5728 if (!kvm_emulate_instruction(vcpu, 0))
5729 return 0;
5730
5731 if (vmx_emulation_required_with_pending_exception(vcpu)) {
5732 kvm_prepare_emulation_failure_exit(vcpu);
5733 return 0;
5734 }
5735
5736 if (vcpu->arch.halt_request) {
5737 vcpu->arch.halt_request = 0;
5738 return kvm_emulate_halt_noskip(vcpu);
5739 }
5740
5741 /*
5742 * Note, return 1 and not 0, vcpu_run() will invoke
5743 * xfer_to_guest_mode() which will create a proper return
5744 * code.
5745 */
5746 if (__xfer_to_guest_mode_work_pending())
5747 return 1;
5748 }
5749
5750 return 1;
5751 }
5752
vmx_vcpu_pre_run(struct kvm_vcpu * vcpu)5753 static int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5754 {
5755 if (vmx_emulation_required_with_pending_exception(vcpu)) {
5756 kvm_prepare_emulation_failure_exit(vcpu);
5757 return 0;
5758 }
5759
5760 return 1;
5761 }
5762
grow_ple_window(struct kvm_vcpu * vcpu)5763 static void grow_ple_window(struct kvm_vcpu *vcpu)
5764 {
5765 struct vcpu_vmx *vmx = to_vmx(vcpu);
5766 unsigned int old = vmx->ple_window;
5767
5768 vmx->ple_window = __grow_ple_window(old, ple_window,
5769 ple_window_grow,
5770 ple_window_max);
5771
5772 if (vmx->ple_window != old) {
5773 vmx->ple_window_dirty = true;
5774 trace_kvm_ple_window_update(vcpu->vcpu_id,
5775 vmx->ple_window, old);
5776 }
5777 }
5778
shrink_ple_window(struct kvm_vcpu * vcpu)5779 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5780 {
5781 struct vcpu_vmx *vmx = to_vmx(vcpu);
5782 unsigned int old = vmx->ple_window;
5783
5784 vmx->ple_window = __shrink_ple_window(old, ple_window,
5785 ple_window_shrink,
5786 ple_window);
5787
5788 if (vmx->ple_window != old) {
5789 vmx->ple_window_dirty = true;
5790 trace_kvm_ple_window_update(vcpu->vcpu_id,
5791 vmx->ple_window, old);
5792 }
5793 }
5794
5795 /*
5796 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5797 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5798 */
handle_pause(struct kvm_vcpu * vcpu)5799 static int handle_pause(struct kvm_vcpu *vcpu)
5800 {
5801 if (!kvm_pause_in_guest(vcpu->kvm))
5802 grow_ple_window(vcpu);
5803
5804 /*
5805 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5806 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5807 * never set PAUSE_EXITING and just set PLE if supported,
5808 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5809 */
5810 kvm_vcpu_on_spin(vcpu, true);
5811 return kvm_skip_emulated_instruction(vcpu);
5812 }
5813
handle_monitor_trap(struct kvm_vcpu * vcpu)5814 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5815 {
5816 return 1;
5817 }
5818
handle_invpcid(struct kvm_vcpu * vcpu)5819 static int handle_invpcid(struct kvm_vcpu *vcpu)
5820 {
5821 u32 vmx_instruction_info;
5822 unsigned long type;
5823 gva_t gva;
5824 struct {
5825 u64 pcid;
5826 u64 gla;
5827 } operand;
5828 int gpr_index;
5829
5830 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5831 kvm_queue_exception(vcpu, UD_VECTOR);
5832 return 1;
5833 }
5834
5835 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5836 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5837 type = kvm_register_read(vcpu, gpr_index);
5838
5839 /* According to the Intel instruction reference, the memory operand
5840 * is read even if it isn't needed (e.g., for type==all)
5841 */
5842 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5843 vmx_instruction_info, false,
5844 sizeof(operand), &gva))
5845 return 1;
5846
5847 return kvm_handle_invpcid(vcpu, type, gva);
5848 }
5849
handle_pml_full(struct kvm_vcpu * vcpu)5850 static int handle_pml_full(struct kvm_vcpu *vcpu)
5851 {
5852 unsigned long exit_qualification;
5853
5854 trace_kvm_pml_full(vcpu->vcpu_id);
5855
5856 exit_qualification = vmx_get_exit_qual(vcpu);
5857
5858 /*
5859 * PML buffer FULL happened while executing iret from NMI,
5860 * "blocked by NMI" bit has to be set before next VM entry.
5861 */
5862 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5863 enable_vnmi &&
5864 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5865 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5866 GUEST_INTR_STATE_NMI);
5867
5868 /*
5869 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5870 * here.., and there's no userspace involvement needed for PML.
5871 */
5872 return 1;
5873 }
5874
handle_fastpath_preemption_timer(struct kvm_vcpu * vcpu)5875 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5876 {
5877 struct vcpu_vmx *vmx = to_vmx(vcpu);
5878
5879 if (!vmx->req_immediate_exit &&
5880 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5881 kvm_lapic_expired_hv_timer(vcpu);
5882 return EXIT_FASTPATH_REENTER_GUEST;
5883 }
5884
5885 return EXIT_FASTPATH_NONE;
5886 }
5887
handle_preemption_timer(struct kvm_vcpu * vcpu)5888 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5889 {
5890 handle_fastpath_preemption_timer(vcpu);
5891 return 1;
5892 }
5893
5894 /*
5895 * When nested=0, all VMX instruction VM Exits filter here. The handlers
5896 * are overwritten by nested_vmx_setup() when nested=1.
5897 */
handle_vmx_instruction(struct kvm_vcpu * vcpu)5898 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5899 {
5900 kvm_queue_exception(vcpu, UD_VECTOR);
5901 return 1;
5902 }
5903
5904 #ifndef CONFIG_X86_SGX_KVM
handle_encls(struct kvm_vcpu * vcpu)5905 static int handle_encls(struct kvm_vcpu *vcpu)
5906 {
5907 /*
5908 * SGX virtualization is disabled. There is no software enable bit for
5909 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
5910 * the guest from executing ENCLS (when SGX is supported by hardware).
5911 */
5912 kvm_queue_exception(vcpu, UD_VECTOR);
5913 return 1;
5914 }
5915 #endif /* CONFIG_X86_SGX_KVM */
5916
handle_bus_lock_vmexit(struct kvm_vcpu * vcpu)5917 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
5918 {
5919 /*
5920 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
5921 * VM-Exits. Unconditionally set the flag here and leave the handling to
5922 * vmx_handle_exit().
5923 */
5924 to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
5925 return 1;
5926 }
5927
handle_notify(struct kvm_vcpu * vcpu)5928 static int handle_notify(struct kvm_vcpu *vcpu)
5929 {
5930 unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5931 bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID;
5932
5933 ++vcpu->stat.notify_window_exits;
5934
5935 /*
5936 * Notify VM exit happened while executing iret from NMI,
5937 * "blocked by NMI" bit has to be set before next VM entry.
5938 */
5939 if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI))
5940 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5941 GUEST_INTR_STATE_NMI);
5942
5943 if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER ||
5944 context_invalid) {
5945 vcpu->run->exit_reason = KVM_EXIT_NOTIFY;
5946 vcpu->run->notify.flags = context_invalid ?
5947 KVM_NOTIFY_CONTEXT_INVALID : 0;
5948 return 0;
5949 }
5950
5951 return 1;
5952 }
5953
5954 /*
5955 * The exit handlers return 1 if the exit was handled fully and guest execution
5956 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
5957 * to be done to userspace and return 0.
5958 */
5959 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5960 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi,
5961 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
5962 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
5963 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
5964 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
5965 [EXIT_REASON_CR_ACCESS] = handle_cr,
5966 [EXIT_REASON_DR_ACCESS] = handle_dr,
5967 [EXIT_REASON_CPUID] = kvm_emulate_cpuid,
5968 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr,
5969 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr,
5970 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window,
5971 [EXIT_REASON_HLT] = kvm_emulate_halt,
5972 [EXIT_REASON_INVD] = kvm_emulate_invd,
5973 [EXIT_REASON_INVLPG] = handle_invlpg,
5974 [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc,
5975 [EXIT_REASON_VMCALL] = kvm_emulate_hypercall,
5976 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction,
5977 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction,
5978 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction,
5979 [EXIT_REASON_VMPTRST] = handle_vmx_instruction,
5980 [EXIT_REASON_VMREAD] = handle_vmx_instruction,
5981 [EXIT_REASON_VMRESUME] = handle_vmx_instruction,
5982 [EXIT_REASON_VMWRITE] = handle_vmx_instruction,
5983 [EXIT_REASON_VMOFF] = handle_vmx_instruction,
5984 [EXIT_REASON_VMON] = handle_vmx_instruction,
5985 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
5986 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
5987 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
5988 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
5989 [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd,
5990 [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv,
5991 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
5992 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
5993 [EXIT_REASON_GDTR_IDTR] = handle_desc,
5994 [EXIT_REASON_LDTR_TR] = handle_desc,
5995 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
5996 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
5997 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
5998 [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait,
5999 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
6000 [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor,
6001 [EXIT_REASON_INVEPT] = handle_vmx_instruction,
6002 [EXIT_REASON_INVVPID] = handle_vmx_instruction,
6003 [EXIT_REASON_RDRAND] = kvm_handle_invalid_op,
6004 [EXIT_REASON_RDSEED] = kvm_handle_invalid_op,
6005 [EXIT_REASON_PML_FULL] = handle_pml_full,
6006 [EXIT_REASON_INVPCID] = handle_invpcid,
6007 [EXIT_REASON_VMFUNC] = handle_vmx_instruction,
6008 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
6009 [EXIT_REASON_ENCLS] = handle_encls,
6010 [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit,
6011 [EXIT_REASON_NOTIFY] = handle_notify,
6012 };
6013
6014 static const int kvm_vmx_max_exit_handlers =
6015 ARRAY_SIZE(kvm_vmx_exit_handlers);
6016
vmx_get_exit_info(struct kvm_vcpu * vcpu,u32 * reason,u64 * info1,u64 * info2,u32 * intr_info,u32 * error_code)6017 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
6018 u64 *info1, u64 *info2,
6019 u32 *intr_info, u32 *error_code)
6020 {
6021 struct vcpu_vmx *vmx = to_vmx(vcpu);
6022
6023 *reason = vmx->exit_reason.full;
6024 *info1 = vmx_get_exit_qual(vcpu);
6025 if (!(vmx->exit_reason.failed_vmentry)) {
6026 *info2 = vmx->idt_vectoring_info;
6027 *intr_info = vmx_get_intr_info(vcpu);
6028 if (is_exception_with_error_code(*intr_info))
6029 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6030 else
6031 *error_code = 0;
6032 } else {
6033 *info2 = 0;
6034 *intr_info = 0;
6035 *error_code = 0;
6036 }
6037 }
6038
vmx_destroy_pml_buffer(struct vcpu_vmx * vmx)6039 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
6040 {
6041 if (vmx->pml_pg) {
6042 __free_page(vmx->pml_pg);
6043 vmx->pml_pg = NULL;
6044 }
6045 }
6046
vmx_flush_pml_buffer(struct kvm_vcpu * vcpu)6047 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
6048 {
6049 struct vcpu_vmx *vmx = to_vmx(vcpu);
6050 u64 *pml_buf;
6051 u16 pml_idx;
6052
6053 pml_idx = vmcs_read16(GUEST_PML_INDEX);
6054
6055 /* Do nothing if PML buffer is empty */
6056 if (pml_idx == (PML_ENTITY_NUM - 1))
6057 return;
6058
6059 /* PML index always points to next available PML buffer entity */
6060 if (pml_idx >= PML_ENTITY_NUM)
6061 pml_idx = 0;
6062 else
6063 pml_idx++;
6064
6065 pml_buf = page_address(vmx->pml_pg);
6066 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
6067 u64 gpa;
6068
6069 gpa = pml_buf[pml_idx];
6070 WARN_ON(gpa & (PAGE_SIZE - 1));
6071 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
6072 }
6073
6074 /* reset PML index */
6075 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
6076 }
6077
vmx_dump_sel(char * name,uint32_t sel)6078 static void vmx_dump_sel(char *name, uint32_t sel)
6079 {
6080 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
6081 name, vmcs_read16(sel),
6082 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
6083 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
6084 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
6085 }
6086
vmx_dump_dtsel(char * name,uint32_t limit)6087 static void vmx_dump_dtsel(char *name, uint32_t limit)
6088 {
6089 pr_err("%s limit=0x%08x, base=0x%016lx\n",
6090 name, vmcs_read32(limit),
6091 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
6092 }
6093
vmx_dump_msrs(char * name,struct vmx_msrs * m)6094 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
6095 {
6096 unsigned int i;
6097 struct vmx_msr_entry *e;
6098
6099 pr_err("MSR %s:\n", name);
6100 for (i = 0, e = m->val; i < m->nr; ++i, ++e)
6101 pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
6102 }
6103
dump_vmcs(struct kvm_vcpu * vcpu)6104 void dump_vmcs(struct kvm_vcpu *vcpu)
6105 {
6106 struct vcpu_vmx *vmx = to_vmx(vcpu);
6107 u32 vmentry_ctl, vmexit_ctl;
6108 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
6109 u64 tertiary_exec_control;
6110 unsigned long cr4;
6111 int efer_slot;
6112
6113 if (!dump_invalid_vmcs) {
6114 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
6115 return;
6116 }
6117
6118 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
6119 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
6120 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6121 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
6122 cr4 = vmcs_readl(GUEST_CR4);
6123
6124 if (cpu_has_secondary_exec_ctrls())
6125 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6126 else
6127 secondary_exec_control = 0;
6128
6129 if (cpu_has_tertiary_exec_ctrls())
6130 tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL);
6131 else
6132 tertiary_exec_control = 0;
6133
6134 pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
6135 vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
6136 pr_err("*** Guest State ***\n");
6137 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6138 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
6139 vmcs_readl(CR0_GUEST_HOST_MASK));
6140 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6141 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
6142 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
6143 if (cpu_has_vmx_ept()) {
6144 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
6145 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
6146 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
6147 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
6148 }
6149 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
6150 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
6151 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
6152 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
6153 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6154 vmcs_readl(GUEST_SYSENTER_ESP),
6155 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
6156 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
6157 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
6158 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
6159 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
6160 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
6161 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
6162 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
6163 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
6164 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
6165 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
6166 efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
6167 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
6168 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
6169 else if (efer_slot >= 0)
6170 pr_err("EFER= 0x%016llx (autoload)\n",
6171 vmx->msr_autoload.guest.val[efer_slot].value);
6172 else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
6173 pr_err("EFER= 0x%016llx (effective)\n",
6174 vcpu->arch.efer | (EFER_LMA | EFER_LME));
6175 else
6176 pr_err("EFER= 0x%016llx (effective)\n",
6177 vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
6178 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
6179 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
6180 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
6181 vmcs_read64(GUEST_IA32_DEBUGCTL),
6182 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
6183 if (cpu_has_load_perf_global_ctrl() &&
6184 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
6185 pr_err("PerfGlobCtl = 0x%016llx\n",
6186 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
6187 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
6188 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
6189 pr_err("Interruptibility = %08x ActivityState = %08x\n",
6190 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
6191 vmcs_read32(GUEST_ACTIVITY_STATE));
6192 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
6193 pr_err("InterruptStatus = %04x\n",
6194 vmcs_read16(GUEST_INTR_STATUS));
6195 if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
6196 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
6197 if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
6198 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
6199
6200 pr_err("*** Host State ***\n");
6201 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
6202 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
6203 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
6204 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
6205 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
6206 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
6207 vmcs_read16(HOST_TR_SELECTOR));
6208 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6209 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6210 vmcs_readl(HOST_TR_BASE));
6211 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6212 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6213 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6214 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6215 vmcs_readl(HOST_CR4));
6216 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6217 vmcs_readl(HOST_IA32_SYSENTER_ESP),
6218 vmcs_read32(HOST_IA32_SYSENTER_CS),
6219 vmcs_readl(HOST_IA32_SYSENTER_EIP));
6220 if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
6221 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
6222 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
6223 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
6224 if (cpu_has_load_perf_global_ctrl() &&
6225 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6226 pr_err("PerfGlobCtl = 0x%016llx\n",
6227 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6228 if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
6229 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
6230
6231 pr_err("*** Control State ***\n");
6232 pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
6233 cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control);
6234 pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
6235 pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl);
6236 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6237 vmcs_read32(EXCEPTION_BITMAP),
6238 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6239 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6240 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6241 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6242 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6243 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6244 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6245 vmcs_read32(VM_EXIT_INTR_INFO),
6246 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6247 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6248 pr_err(" reason=%08x qualification=%016lx\n",
6249 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6250 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6251 vmcs_read32(IDT_VECTORING_INFO_FIELD),
6252 vmcs_read32(IDT_VECTORING_ERROR_CODE));
6253 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6254 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6255 pr_err("TSC Multiplier = 0x%016llx\n",
6256 vmcs_read64(TSC_MULTIPLIER));
6257 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6258 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6259 u16 status = vmcs_read16(GUEST_INTR_STATUS);
6260 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6261 }
6262 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6263 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6264 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6265 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6266 }
6267 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6268 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6269 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6270 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6271 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6272 pr_err("PLE Gap=%08x Window=%08x\n",
6273 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6274 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6275 pr_err("Virtual processor ID = 0x%04x\n",
6276 vmcs_read16(VIRTUAL_PROCESSOR_ID));
6277 }
6278
6279 /*
6280 * The guest has exited. See if we can fix it or if we need userspace
6281 * assistance.
6282 */
__vmx_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)6283 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6284 {
6285 struct vcpu_vmx *vmx = to_vmx(vcpu);
6286 union vmx_exit_reason exit_reason = vmx->exit_reason;
6287 u32 vectoring_info = vmx->idt_vectoring_info;
6288 u16 exit_handler_index;
6289
6290 /*
6291 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6292 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6293 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6294 * mode as if vcpus is in root mode, the PML buffer must has been
6295 * flushed already. Note, PML is never enabled in hardware while
6296 * running L2.
6297 */
6298 if (enable_pml && !is_guest_mode(vcpu))
6299 vmx_flush_pml_buffer(vcpu);
6300
6301 /*
6302 * KVM should never reach this point with a pending nested VM-Enter.
6303 * More specifically, short-circuiting VM-Entry to emulate L2 due to
6304 * invalid guest state should never happen as that means KVM knowingly
6305 * allowed a nested VM-Enter with an invalid vmcs12. More below.
6306 */
6307 if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6308 return -EIO;
6309
6310 if (is_guest_mode(vcpu)) {
6311 /*
6312 * PML is never enabled when running L2, bail immediately if a
6313 * PML full exit occurs as something is horribly wrong.
6314 */
6315 if (exit_reason.basic == EXIT_REASON_PML_FULL)
6316 goto unexpected_vmexit;
6317
6318 /*
6319 * The host physical addresses of some pages of guest memory
6320 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6321 * Page). The CPU may write to these pages via their host
6322 * physical address while L2 is running, bypassing any
6323 * address-translation-based dirty tracking (e.g. EPT write
6324 * protection).
6325 *
6326 * Mark them dirty on every exit from L2 to prevent them from
6327 * getting out of sync with dirty tracking.
6328 */
6329 nested_mark_vmcs12_pages_dirty(vcpu);
6330
6331 /*
6332 * Synthesize a triple fault if L2 state is invalid. In normal
6333 * operation, nested VM-Enter rejects any attempt to enter L2
6334 * with invalid state. However, those checks are skipped if
6335 * state is being stuffed via RSM or KVM_SET_NESTED_STATE. If
6336 * L2 state is invalid, it means either L1 modified SMRAM state
6337 * or userspace provided bad state. Synthesize TRIPLE_FAULT as
6338 * doing so is architecturally allowed in the RSM case, and is
6339 * the least awful solution for the userspace case without
6340 * risking false positives.
6341 */
6342 if (vmx->emulation_required) {
6343 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6344 return 1;
6345 }
6346
6347 if (nested_vmx_reflect_vmexit(vcpu))
6348 return 1;
6349 }
6350
6351 /* If guest state is invalid, start emulating. L2 is handled above. */
6352 if (vmx->emulation_required)
6353 return handle_invalid_guest_state(vcpu);
6354
6355 if (exit_reason.failed_vmentry) {
6356 dump_vmcs(vcpu);
6357 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6358 vcpu->run->fail_entry.hardware_entry_failure_reason
6359 = exit_reason.full;
6360 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6361 return 0;
6362 }
6363
6364 if (unlikely(vmx->fail)) {
6365 dump_vmcs(vcpu);
6366 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6367 vcpu->run->fail_entry.hardware_entry_failure_reason
6368 = vmcs_read32(VM_INSTRUCTION_ERROR);
6369 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6370 return 0;
6371 }
6372
6373 /*
6374 * Note:
6375 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6376 * delivery event since it indicates guest is accessing MMIO.
6377 * The vm-exit can be triggered again after return to guest that
6378 * will cause infinite loop.
6379 */
6380 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6381 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6382 exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6383 exit_reason.basic != EXIT_REASON_PML_FULL &&
6384 exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6385 exit_reason.basic != EXIT_REASON_TASK_SWITCH &&
6386 exit_reason.basic != EXIT_REASON_NOTIFY)) {
6387 int ndata = 3;
6388
6389 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6390 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6391 vcpu->run->internal.data[0] = vectoring_info;
6392 vcpu->run->internal.data[1] = exit_reason.full;
6393 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6394 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6395 vcpu->run->internal.data[ndata++] =
6396 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6397 }
6398 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6399 vcpu->run->internal.ndata = ndata;
6400 return 0;
6401 }
6402
6403 if (unlikely(!enable_vnmi &&
6404 vmx->loaded_vmcs->soft_vnmi_blocked)) {
6405 if (!vmx_interrupt_blocked(vcpu)) {
6406 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6407 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6408 vcpu->arch.nmi_pending) {
6409 /*
6410 * This CPU don't support us in finding the end of an
6411 * NMI-blocked window if the guest runs with IRQs
6412 * disabled. So we pull the trigger after 1 s of
6413 * futile waiting, but inform the user about this.
6414 */
6415 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6416 "state on VCPU %d after 1 s timeout\n",
6417 __func__, vcpu->vcpu_id);
6418 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6419 }
6420 }
6421
6422 if (exit_fastpath != EXIT_FASTPATH_NONE)
6423 return 1;
6424
6425 if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6426 goto unexpected_vmexit;
6427 #ifdef CONFIG_RETPOLINE
6428 if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6429 return kvm_emulate_wrmsr(vcpu);
6430 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6431 return handle_preemption_timer(vcpu);
6432 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6433 return handle_interrupt_window(vcpu);
6434 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6435 return handle_external_interrupt(vcpu);
6436 else if (exit_reason.basic == EXIT_REASON_HLT)
6437 return kvm_emulate_halt(vcpu);
6438 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6439 return handle_ept_misconfig(vcpu);
6440 #endif
6441
6442 exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6443 kvm_vmx_max_exit_handlers);
6444 if (!kvm_vmx_exit_handlers[exit_handler_index])
6445 goto unexpected_vmexit;
6446
6447 return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6448
6449 unexpected_vmexit:
6450 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6451 exit_reason.full);
6452 dump_vmcs(vcpu);
6453 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6454 vcpu->run->internal.suberror =
6455 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6456 vcpu->run->internal.ndata = 2;
6457 vcpu->run->internal.data[0] = exit_reason.full;
6458 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6459 return 0;
6460 }
6461
vmx_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)6462 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6463 {
6464 int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6465
6466 /*
6467 * Exit to user space when bus lock detected to inform that there is
6468 * a bus lock in guest.
6469 */
6470 if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6471 if (ret > 0)
6472 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6473
6474 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6475 return 0;
6476 }
6477 return ret;
6478 }
6479
6480 /*
6481 * Software based L1D cache flush which is used when microcode providing
6482 * the cache control MSR is not loaded.
6483 *
6484 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6485 * flush it is required to read in 64 KiB because the replacement algorithm
6486 * is not exactly LRU. This could be sized at runtime via topology
6487 * information but as all relevant affected CPUs have 32KiB L1D cache size
6488 * there is no point in doing so.
6489 */
vmx_l1d_flush(struct kvm_vcpu * vcpu)6490 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6491 {
6492 int size = PAGE_SIZE << L1D_CACHE_ORDER;
6493
6494 /*
6495 * This code is only executed when the flush mode is 'cond' or
6496 * 'always'
6497 */
6498 if (static_branch_likely(&vmx_l1d_flush_cond)) {
6499 bool flush_l1d;
6500
6501 /*
6502 * Clear the per-vcpu flush bit, it gets set again
6503 * either from vcpu_run() or from one of the unsafe
6504 * VMEXIT handlers.
6505 */
6506 flush_l1d = vcpu->arch.l1tf_flush_l1d;
6507 vcpu->arch.l1tf_flush_l1d = false;
6508
6509 /*
6510 * Clear the per-cpu flush bit, it gets set again from
6511 * the interrupt handlers.
6512 */
6513 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6514 kvm_clear_cpu_l1tf_flush_l1d();
6515
6516 if (!flush_l1d)
6517 return;
6518 }
6519
6520 vcpu->stat.l1d_flush++;
6521
6522 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6523 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6524 return;
6525 }
6526
6527 asm volatile(
6528 /* First ensure the pages are in the TLB */
6529 "xorl %%eax, %%eax\n"
6530 ".Lpopulate_tlb:\n\t"
6531 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6532 "addl $4096, %%eax\n\t"
6533 "cmpl %%eax, %[size]\n\t"
6534 "jne .Lpopulate_tlb\n\t"
6535 "xorl %%eax, %%eax\n\t"
6536 "cpuid\n\t"
6537 /* Now fill the cache */
6538 "xorl %%eax, %%eax\n"
6539 ".Lfill_cache:\n"
6540 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6541 "addl $64, %%eax\n\t"
6542 "cmpl %%eax, %[size]\n\t"
6543 "jne .Lfill_cache\n\t"
6544 "lfence\n"
6545 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6546 [size] "r" (size)
6547 : "eax", "ebx", "ecx", "edx");
6548 }
6549
vmx_update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)6550 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6551 {
6552 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6553 int tpr_threshold;
6554
6555 if (is_guest_mode(vcpu) &&
6556 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6557 return;
6558
6559 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6560 if (is_guest_mode(vcpu))
6561 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6562 else
6563 vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6564 }
6565
vmx_set_virtual_apic_mode(struct kvm_vcpu * vcpu)6566 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6567 {
6568 struct vcpu_vmx *vmx = to_vmx(vcpu);
6569 u32 sec_exec_control;
6570
6571 if (!lapic_in_kernel(vcpu))
6572 return;
6573
6574 if (!flexpriority_enabled &&
6575 !cpu_has_vmx_virtualize_x2apic_mode())
6576 return;
6577
6578 /* Postpone execution until vmcs01 is the current VMCS. */
6579 if (is_guest_mode(vcpu)) {
6580 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6581 return;
6582 }
6583
6584 sec_exec_control = secondary_exec_controls_get(vmx);
6585 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6586 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6587
6588 switch (kvm_get_apic_mode(vcpu)) {
6589 case LAPIC_MODE_INVALID:
6590 WARN_ONCE(true, "Invalid local APIC state");
6591 break;
6592 case LAPIC_MODE_DISABLED:
6593 break;
6594 case LAPIC_MODE_XAPIC:
6595 if (flexpriority_enabled) {
6596 sec_exec_control |=
6597 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6598 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6599
6600 /*
6601 * Flush the TLB, reloading the APIC access page will
6602 * only do so if its physical address has changed, but
6603 * the guest may have inserted a non-APIC mapping into
6604 * the TLB while the APIC access page was disabled.
6605 */
6606 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6607 }
6608 break;
6609 case LAPIC_MODE_X2APIC:
6610 if (cpu_has_vmx_virtualize_x2apic_mode())
6611 sec_exec_control |=
6612 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6613 break;
6614 }
6615 secondary_exec_controls_set(vmx, sec_exec_control);
6616
6617 vmx_update_msr_bitmap_x2apic(vcpu);
6618 }
6619
vmx_set_apic_access_page_addr(struct kvm_vcpu * vcpu)6620 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6621 {
6622 struct page *page;
6623
6624 /* Defer reload until vmcs01 is the current VMCS. */
6625 if (is_guest_mode(vcpu)) {
6626 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6627 return;
6628 }
6629
6630 if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6631 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6632 return;
6633
6634 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6635 if (is_error_page(page))
6636 return;
6637
6638 vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6639 vmx_flush_tlb_current(vcpu);
6640
6641 /*
6642 * Do not pin apic access page in memory, the MMU notifier
6643 * will call us again if it is migrated or swapped out.
6644 */
6645 put_page(page);
6646 }
6647
vmx_hwapic_isr_update(int max_isr)6648 static void vmx_hwapic_isr_update(int max_isr)
6649 {
6650 u16 status;
6651 u8 old;
6652
6653 if (max_isr == -1)
6654 max_isr = 0;
6655
6656 status = vmcs_read16(GUEST_INTR_STATUS);
6657 old = status >> 8;
6658 if (max_isr != old) {
6659 status &= 0xff;
6660 status |= max_isr << 8;
6661 vmcs_write16(GUEST_INTR_STATUS, status);
6662 }
6663 }
6664
vmx_set_rvi(int vector)6665 static void vmx_set_rvi(int vector)
6666 {
6667 u16 status;
6668 u8 old;
6669
6670 if (vector == -1)
6671 vector = 0;
6672
6673 status = vmcs_read16(GUEST_INTR_STATUS);
6674 old = (u8)status & 0xff;
6675 if ((u8)vector != old) {
6676 status &= ~0xff;
6677 status |= (u8)vector;
6678 vmcs_write16(GUEST_INTR_STATUS, status);
6679 }
6680 }
6681
vmx_hwapic_irr_update(struct kvm_vcpu * vcpu,int max_irr)6682 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6683 {
6684 /*
6685 * When running L2, updating RVI is only relevant when
6686 * vmcs12 virtual-interrupt-delivery enabled.
6687 * However, it can be enabled only when L1 also
6688 * intercepts external-interrupts and in that case
6689 * we should not update vmcs02 RVI but instead intercept
6690 * interrupt. Therefore, do nothing when running L2.
6691 */
6692 if (!is_guest_mode(vcpu))
6693 vmx_set_rvi(max_irr);
6694 }
6695
vmx_sync_pir_to_irr(struct kvm_vcpu * vcpu)6696 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6697 {
6698 struct vcpu_vmx *vmx = to_vmx(vcpu);
6699 int max_irr;
6700 bool got_posted_interrupt;
6701
6702 if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6703 return -EIO;
6704
6705 if (pi_test_on(&vmx->pi_desc)) {
6706 pi_clear_on(&vmx->pi_desc);
6707 /*
6708 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6709 * But on x86 this is just a compiler barrier anyway.
6710 */
6711 smp_mb__after_atomic();
6712 got_posted_interrupt =
6713 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6714 } else {
6715 max_irr = kvm_lapic_find_highest_irr(vcpu);
6716 got_posted_interrupt = false;
6717 }
6718
6719 /*
6720 * Newly recognized interrupts are injected via either virtual interrupt
6721 * delivery (RVI) or KVM_REQ_EVENT. Virtual interrupt delivery is
6722 * disabled in two cases:
6723 *
6724 * 1) If L2 is running and the vCPU has a new pending interrupt. If L1
6725 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6726 * VM-Exit to L1. If L1 doesn't want to exit, the interrupt is injected
6727 * into L2, but KVM doesn't use virtual interrupt delivery to inject
6728 * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6729 *
6730 * 2) If APICv is disabled for this vCPU, assigned devices may still
6731 * attempt to post interrupts. The posted interrupt vector will cause
6732 * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6733 */
6734 if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6735 vmx_set_rvi(max_irr);
6736 else if (got_posted_interrupt)
6737 kvm_make_request(KVM_REQ_EVENT, vcpu);
6738
6739 return max_irr;
6740 }
6741
vmx_load_eoi_exitmap(struct kvm_vcpu * vcpu,u64 * eoi_exit_bitmap)6742 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6743 {
6744 if (!kvm_vcpu_apicv_active(vcpu))
6745 return;
6746
6747 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6748 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6749 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6750 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6751 }
6752
vmx_apicv_post_state_restore(struct kvm_vcpu * vcpu)6753 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6754 {
6755 struct vcpu_vmx *vmx = to_vmx(vcpu);
6756
6757 pi_clear_on(&vmx->pi_desc);
6758 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6759 }
6760
6761 void vmx_do_interrupt_nmi_irqoff(unsigned long entry);
6762
handle_interrupt_nmi_irqoff(struct kvm_vcpu * vcpu,unsigned long entry)6763 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu,
6764 unsigned long entry)
6765 {
6766 bool is_nmi = entry == (unsigned long)asm_exc_nmi_noist;
6767
6768 kvm_before_interrupt(vcpu, is_nmi ? KVM_HANDLING_NMI : KVM_HANDLING_IRQ);
6769 vmx_do_interrupt_nmi_irqoff(entry);
6770 kvm_after_interrupt(vcpu);
6771 }
6772
handle_nm_fault_irqoff(struct kvm_vcpu * vcpu)6773 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
6774 {
6775 /*
6776 * Save xfd_err to guest_fpu before interrupt is enabled, so the
6777 * MSR value is not clobbered by the host activity before the guest
6778 * has chance to consume it.
6779 *
6780 * Do not blindly read xfd_err here, since this exception might
6781 * be caused by L1 interception on a platform which doesn't
6782 * support xfd at all.
6783 *
6784 * Do it conditionally upon guest_fpu::xfd. xfd_err matters
6785 * only when xfd contains a non-zero value.
6786 *
6787 * Queuing exception is done in vmx_handle_exit. See comment there.
6788 */
6789 if (vcpu->arch.guest_fpu.fpstate->xfd)
6790 rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
6791 }
6792
handle_exception_nmi_irqoff(struct vcpu_vmx * vmx)6793 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6794 {
6795 const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist;
6796 u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6797
6798 /* if exit due to PF check for async PF */
6799 if (is_page_fault(intr_info))
6800 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6801 /* if exit due to NM, handle before interrupts are enabled */
6802 else if (is_nm_fault(intr_info))
6803 handle_nm_fault_irqoff(&vmx->vcpu);
6804 /* Handle machine checks before interrupts are enabled */
6805 else if (is_machine_check(intr_info))
6806 kvm_machine_check();
6807 /* We need to handle NMIs before interrupts are enabled */
6808 else if (is_nmi(intr_info))
6809 handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry);
6810 }
6811
handle_external_interrupt_irqoff(struct kvm_vcpu * vcpu)6812 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6813 {
6814 u32 intr_info = vmx_get_intr_info(vcpu);
6815 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6816 gate_desc *desc = (gate_desc *)host_idt_base + vector;
6817
6818 if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
6819 "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6820 return;
6821
6822 handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc));
6823 vcpu->arch.at_instruction_boundary = true;
6824 }
6825
vmx_handle_exit_irqoff(struct kvm_vcpu * vcpu)6826 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6827 {
6828 struct vcpu_vmx *vmx = to_vmx(vcpu);
6829
6830 if (vmx->emulation_required)
6831 return;
6832
6833 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6834 handle_external_interrupt_irqoff(vcpu);
6835 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6836 handle_exception_nmi_irqoff(vmx);
6837 }
6838
6839 /*
6840 * The kvm parameter can be NULL (module initialization, or invocation before
6841 * VM creation). Be sure to check the kvm parameter before using it.
6842 */
vmx_has_emulated_msr(struct kvm * kvm,u32 index)6843 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
6844 {
6845 switch (index) {
6846 case MSR_IA32_SMBASE:
6847 /*
6848 * We cannot do SMM unless we can run the guest in big
6849 * real mode.
6850 */
6851 return enable_unrestricted_guest || emulate_invalid_guest_state;
6852 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6853 return nested;
6854 case MSR_AMD64_VIRT_SPEC_CTRL:
6855 case MSR_AMD64_TSC_RATIO:
6856 /* This is AMD only. */
6857 return false;
6858 default:
6859 return true;
6860 }
6861 }
6862
vmx_recover_nmi_blocking(struct vcpu_vmx * vmx)6863 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6864 {
6865 u32 exit_intr_info;
6866 bool unblock_nmi;
6867 u8 vector;
6868 bool idtv_info_valid;
6869
6870 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6871
6872 if (enable_vnmi) {
6873 if (vmx->loaded_vmcs->nmi_known_unmasked)
6874 return;
6875
6876 exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6877 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6878 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6879 /*
6880 * SDM 3: 27.7.1.2 (September 2008)
6881 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6882 * a guest IRET fault.
6883 * SDM 3: 23.2.2 (September 2008)
6884 * Bit 12 is undefined in any of the following cases:
6885 * If the VM exit sets the valid bit in the IDT-vectoring
6886 * information field.
6887 * If the VM exit is due to a double fault.
6888 */
6889 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6890 vector != DF_VECTOR && !idtv_info_valid)
6891 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6892 GUEST_INTR_STATE_NMI);
6893 else
6894 vmx->loaded_vmcs->nmi_known_unmasked =
6895 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6896 & GUEST_INTR_STATE_NMI);
6897 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6898 vmx->loaded_vmcs->vnmi_blocked_time +=
6899 ktime_to_ns(ktime_sub(ktime_get(),
6900 vmx->loaded_vmcs->entry_time));
6901 }
6902
__vmx_complete_interrupts(struct kvm_vcpu * vcpu,u32 idt_vectoring_info,int instr_len_field,int error_code_field)6903 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6904 u32 idt_vectoring_info,
6905 int instr_len_field,
6906 int error_code_field)
6907 {
6908 u8 vector;
6909 int type;
6910 bool idtv_info_valid;
6911
6912 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6913
6914 vcpu->arch.nmi_injected = false;
6915 kvm_clear_exception_queue(vcpu);
6916 kvm_clear_interrupt_queue(vcpu);
6917
6918 if (!idtv_info_valid)
6919 return;
6920
6921 kvm_make_request(KVM_REQ_EVENT, vcpu);
6922
6923 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6924 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6925
6926 switch (type) {
6927 case INTR_TYPE_NMI_INTR:
6928 vcpu->arch.nmi_injected = true;
6929 /*
6930 * SDM 3: 27.7.1.2 (September 2008)
6931 * Clear bit "block by NMI" before VM entry if a NMI
6932 * delivery faulted.
6933 */
6934 vmx_set_nmi_mask(vcpu, false);
6935 break;
6936 case INTR_TYPE_SOFT_EXCEPTION:
6937 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6938 fallthrough;
6939 case INTR_TYPE_HARD_EXCEPTION:
6940 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6941 u32 err = vmcs_read32(error_code_field);
6942 kvm_requeue_exception_e(vcpu, vector, err);
6943 } else
6944 kvm_requeue_exception(vcpu, vector);
6945 break;
6946 case INTR_TYPE_SOFT_INTR:
6947 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6948 fallthrough;
6949 case INTR_TYPE_EXT_INTR:
6950 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6951 break;
6952 default:
6953 break;
6954 }
6955 }
6956
vmx_complete_interrupts(struct vcpu_vmx * vmx)6957 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6958 {
6959 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6960 VM_EXIT_INSTRUCTION_LEN,
6961 IDT_VECTORING_ERROR_CODE);
6962 }
6963
vmx_cancel_injection(struct kvm_vcpu * vcpu)6964 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6965 {
6966 __vmx_complete_interrupts(vcpu,
6967 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6968 VM_ENTRY_INSTRUCTION_LEN,
6969 VM_ENTRY_EXCEPTION_ERROR_CODE);
6970
6971 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6972 }
6973
atomic_switch_perf_msrs(struct vcpu_vmx * vmx)6974 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6975 {
6976 int i, nr_msrs;
6977 struct perf_guest_switch_msr *msrs;
6978 struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu);
6979
6980 pmu->host_cross_mapped_mask = 0;
6981 if (pmu->pebs_enable & pmu->global_ctrl)
6982 intel_pmu_cross_mapped_check(pmu);
6983
6984 /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
6985 msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu);
6986 if (!msrs)
6987 return;
6988
6989 for (i = 0; i < nr_msrs; i++)
6990 if (msrs[i].host == msrs[i].guest)
6991 clear_atomic_switch_msr(vmx, msrs[i].msr);
6992 else
6993 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6994 msrs[i].host, false);
6995 }
6996
vmx_update_hv_timer(struct kvm_vcpu * vcpu)6997 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6998 {
6999 struct vcpu_vmx *vmx = to_vmx(vcpu);
7000 u64 tscl;
7001 u32 delta_tsc;
7002
7003 if (vmx->req_immediate_exit) {
7004 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
7005 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7006 } else if (vmx->hv_deadline_tsc != -1) {
7007 tscl = rdtsc();
7008 if (vmx->hv_deadline_tsc > tscl)
7009 /* set_hv_timer ensures the delta fits in 32-bits */
7010 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
7011 cpu_preemption_timer_multi);
7012 else
7013 delta_tsc = 0;
7014
7015 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
7016 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7017 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
7018 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
7019 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
7020 }
7021 }
7022
vmx_update_host_rsp(struct vcpu_vmx * vmx,unsigned long host_rsp)7023 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
7024 {
7025 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
7026 vmx->loaded_vmcs->host_state.rsp = host_rsp;
7027 vmcs_writel(HOST_RSP, host_rsp);
7028 }
7029 }
7030
vmx_spec_ctrl_restore_host(struct vcpu_vmx * vmx,unsigned int flags)7031 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
7032 unsigned int flags)
7033 {
7034 u64 hostval = this_cpu_read(x86_spec_ctrl_current);
7035
7036 if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
7037 return;
7038
7039 if (flags & VMX_RUN_SAVE_SPEC_CTRL)
7040 vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL);
7041
7042 /*
7043 * If the guest/host SPEC_CTRL values differ, restore the host value.
7044 *
7045 * For legacy IBRS, the IBRS bit always needs to be written after
7046 * transitioning from a less privileged predictor mode, regardless of
7047 * whether the guest/host values differ.
7048 */
7049 if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
7050 vmx->spec_ctrl != hostval)
7051 native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval);
7052
7053 barrier_nospec();
7054 }
7055
vmx_exit_handlers_fastpath(struct kvm_vcpu * vcpu)7056 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
7057 {
7058 switch (to_vmx(vcpu)->exit_reason.basic) {
7059 case EXIT_REASON_MSR_WRITE:
7060 return handle_fastpath_set_msr_irqoff(vcpu);
7061 case EXIT_REASON_PREEMPTION_TIMER:
7062 return handle_fastpath_preemption_timer(vcpu);
7063 default:
7064 return EXIT_FASTPATH_NONE;
7065 }
7066 }
7067
vmx_vcpu_enter_exit(struct kvm_vcpu * vcpu,struct vcpu_vmx * vmx,unsigned long flags)7068 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
7069 struct vcpu_vmx *vmx,
7070 unsigned long flags)
7071 {
7072 guest_state_enter_irqoff();
7073
7074 /* L1D Flush includes CPU buffer clear to mitigate MDS */
7075 if (static_branch_unlikely(&vmx_l1d_should_flush))
7076 vmx_l1d_flush(vcpu);
7077 else if (static_branch_unlikely(&mds_user_clear))
7078 mds_clear_cpu_buffers();
7079 else if (static_branch_unlikely(&mmio_stale_data_clear) &&
7080 kvm_arch_has_assigned_device(vcpu->kvm))
7081 mds_clear_cpu_buffers();
7082
7083 vmx_disable_fb_clear(vmx);
7084
7085 if (vcpu->arch.cr2 != native_read_cr2())
7086 native_write_cr2(vcpu->arch.cr2);
7087
7088 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
7089 flags);
7090
7091 vcpu->arch.cr2 = native_read_cr2();
7092
7093 vmx_enable_fb_clear(vmx);
7094
7095 guest_state_exit_irqoff();
7096 }
7097
vmx_vcpu_run(struct kvm_vcpu * vcpu)7098 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
7099 {
7100 struct vcpu_vmx *vmx = to_vmx(vcpu);
7101 unsigned long cr3, cr4;
7102
7103 /* Record the guest's net vcpu time for enforced NMI injections. */
7104 if (unlikely(!enable_vnmi &&
7105 vmx->loaded_vmcs->soft_vnmi_blocked))
7106 vmx->loaded_vmcs->entry_time = ktime_get();
7107
7108 /*
7109 * Don't enter VMX if guest state is invalid, let the exit handler
7110 * start emulation until we arrive back to a valid state. Synthesize a
7111 * consistency check VM-Exit due to invalid guest state and bail.
7112 */
7113 if (unlikely(vmx->emulation_required)) {
7114 vmx->fail = 0;
7115
7116 vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
7117 vmx->exit_reason.failed_vmentry = 1;
7118 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
7119 vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
7120 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
7121 vmx->exit_intr_info = 0;
7122 return EXIT_FASTPATH_NONE;
7123 }
7124
7125 trace_kvm_entry(vcpu);
7126
7127 if (vmx->ple_window_dirty) {
7128 vmx->ple_window_dirty = false;
7129 vmcs_write32(PLE_WINDOW, vmx->ple_window);
7130 }
7131
7132 /*
7133 * We did this in prepare_switch_to_guest, because it needs to
7134 * be within srcu_read_lock.
7135 */
7136 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
7137
7138 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
7139 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7140 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
7141 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7142 vcpu->arch.regs_dirty = 0;
7143
7144 /*
7145 * Refresh vmcs.HOST_CR3 if necessary. This must be done immediately
7146 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
7147 * it switches back to the current->mm, which can occur in KVM context
7148 * when switching to a temporary mm to patch kernel code, e.g. if KVM
7149 * toggles a static key while handling a VM-Exit.
7150 */
7151 cr3 = __get_current_cr3_fast();
7152 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
7153 vmcs_writel(HOST_CR3, cr3);
7154 vmx->loaded_vmcs->host_state.cr3 = cr3;
7155 }
7156
7157 cr4 = cr4_read_shadow();
7158 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
7159 vmcs_writel(HOST_CR4, cr4);
7160 vmx->loaded_vmcs->host_state.cr4 = cr4;
7161 }
7162
7163 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
7164 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
7165 set_debugreg(vcpu->arch.dr6, 6);
7166
7167 /* When single-stepping over STI and MOV SS, we must clear the
7168 * corresponding interruptibility bits in the guest state. Otherwise
7169 * vmentry fails as it then expects bit 14 (BS) in pending debug
7170 * exceptions being set, but that's not correct for the guest debugging
7171 * case. */
7172 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7173 vmx_set_interrupt_shadow(vcpu, 0);
7174
7175 kvm_load_guest_xsave_state(vcpu);
7176
7177 pt_guest_enter(vmx);
7178
7179 atomic_switch_perf_msrs(vmx);
7180 if (intel_pmu_lbr_is_enabled(vcpu))
7181 vmx_passthrough_lbr_msrs(vcpu);
7182
7183 if (enable_preemption_timer)
7184 vmx_update_hv_timer(vcpu);
7185
7186 kvm_wait_lapic_expire(vcpu);
7187
7188 /* The actual VMENTER/EXIT is in the .noinstr.text section. */
7189 vmx_vcpu_enter_exit(vcpu, vmx, __vmx_vcpu_run_flags(vmx));
7190
7191 /* All fields are clean at this point */
7192 if (static_branch_unlikely(&enable_evmcs)) {
7193 current_evmcs->hv_clean_fields |=
7194 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
7195
7196 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
7197 }
7198
7199 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7200 if (vmx->host_debugctlmsr)
7201 update_debugctlmsr(vmx->host_debugctlmsr);
7202
7203 #ifndef CONFIG_X86_64
7204 /*
7205 * The sysexit path does not restore ds/es, so we must set them to
7206 * a reasonable value ourselves.
7207 *
7208 * We can't defer this to vmx_prepare_switch_to_host() since that
7209 * function may be executed in interrupt context, which saves and
7210 * restore segments around it, nullifying its effect.
7211 */
7212 loadsegment(ds, __USER_DS);
7213 loadsegment(es, __USER_DS);
7214 #endif
7215
7216 vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
7217
7218 pt_guest_exit(vmx);
7219
7220 kvm_load_host_xsave_state(vcpu);
7221
7222 if (is_guest_mode(vcpu)) {
7223 /*
7224 * Track VMLAUNCH/VMRESUME that have made past guest state
7225 * checking.
7226 */
7227 if (vmx->nested.nested_run_pending &&
7228 !vmx->exit_reason.failed_vmentry)
7229 ++vcpu->stat.nested_run;
7230
7231 vmx->nested.nested_run_pending = 0;
7232 }
7233
7234 vmx->idt_vectoring_info = 0;
7235
7236 if (unlikely(vmx->fail)) {
7237 vmx->exit_reason.full = 0xdead;
7238 return EXIT_FASTPATH_NONE;
7239 }
7240
7241 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
7242 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
7243 kvm_machine_check();
7244
7245 if (likely(!vmx->exit_reason.failed_vmentry))
7246 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7247
7248 trace_kvm_exit(vcpu, KVM_ISA_VMX);
7249
7250 if (unlikely(vmx->exit_reason.failed_vmentry))
7251 return EXIT_FASTPATH_NONE;
7252
7253 vmx->loaded_vmcs->launched = 1;
7254
7255 vmx_recover_nmi_blocking(vmx);
7256 vmx_complete_interrupts(vmx);
7257
7258 if (is_guest_mode(vcpu))
7259 return EXIT_FASTPATH_NONE;
7260
7261 return vmx_exit_handlers_fastpath(vcpu);
7262 }
7263
vmx_vcpu_free(struct kvm_vcpu * vcpu)7264 static void vmx_vcpu_free(struct kvm_vcpu *vcpu)
7265 {
7266 struct vcpu_vmx *vmx = to_vmx(vcpu);
7267
7268 if (enable_pml)
7269 vmx_destroy_pml_buffer(vmx);
7270 free_vpid(vmx->vpid);
7271 nested_vmx_free_vcpu(vcpu);
7272 free_loaded_vmcs(vmx->loaded_vmcs);
7273 }
7274
vmx_vcpu_create(struct kvm_vcpu * vcpu)7275 static int vmx_vcpu_create(struct kvm_vcpu *vcpu)
7276 {
7277 struct vmx_uret_msr *tsx_ctrl;
7278 struct vcpu_vmx *vmx;
7279 int i, err;
7280
7281 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7282 vmx = to_vmx(vcpu);
7283
7284 INIT_LIST_HEAD(&vmx->pi_wakeup_list);
7285
7286 err = -ENOMEM;
7287
7288 vmx->vpid = allocate_vpid();
7289
7290 /*
7291 * If PML is turned on, failure on enabling PML just results in failure
7292 * of creating the vcpu, therefore we can simplify PML logic (by
7293 * avoiding dealing with cases, such as enabling PML partially on vcpus
7294 * for the guest), etc.
7295 */
7296 if (enable_pml) {
7297 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7298 if (!vmx->pml_pg)
7299 goto free_vpid;
7300 }
7301
7302 for (i = 0; i < kvm_nr_uret_msrs; ++i)
7303 vmx->guest_uret_msrs[i].mask = -1ull;
7304 if (boot_cpu_has(X86_FEATURE_RTM)) {
7305 /*
7306 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7307 * Keep the host value unchanged to avoid changing CPUID bits
7308 * under the host kernel's feet.
7309 */
7310 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7311 if (tsx_ctrl)
7312 tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7313 }
7314
7315 err = alloc_loaded_vmcs(&vmx->vmcs01);
7316 if (err < 0)
7317 goto free_pml;
7318
7319 /*
7320 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7321 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7322 * feature only for vmcs01, KVM currently isn't equipped to realize any
7323 * performance benefits from enabling it for vmcs02.
7324 */
7325 if (IS_ENABLED(CONFIG_HYPERV) && static_branch_unlikely(&enable_evmcs) &&
7326 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7327 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7328
7329 evmcs->hv_enlightenments_control.msr_bitmap = 1;
7330 }
7331
7332 /* The MSR bitmap starts with all ones */
7333 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7334 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7335
7336 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7337 #ifdef CONFIG_X86_64
7338 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7339 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7340 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7341 #endif
7342 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7343 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7344 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7345 if (kvm_cstate_in_guest(vcpu->kvm)) {
7346 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7347 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7348 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7349 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7350 }
7351
7352 vmx->loaded_vmcs = &vmx->vmcs01;
7353
7354 if (cpu_need_virtualize_apic_accesses(vcpu)) {
7355 err = alloc_apic_access_page(vcpu->kvm);
7356 if (err)
7357 goto free_vmcs;
7358 }
7359
7360 if (enable_ept && !enable_unrestricted_guest) {
7361 err = init_rmode_identity_map(vcpu->kvm);
7362 if (err)
7363 goto free_vmcs;
7364 }
7365
7366 if (vmx_can_use_ipiv(vcpu))
7367 WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id],
7368 __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID);
7369
7370 return 0;
7371
7372 free_vmcs:
7373 free_loaded_vmcs(vmx->loaded_vmcs);
7374 free_pml:
7375 vmx_destroy_pml_buffer(vmx);
7376 free_vpid:
7377 free_vpid(vmx->vpid);
7378 return err;
7379 }
7380
7381 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7382 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7383
vmx_vm_init(struct kvm * kvm)7384 static int vmx_vm_init(struct kvm *kvm)
7385 {
7386 if (!ple_gap)
7387 kvm->arch.pause_in_guest = true;
7388
7389 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7390 switch (l1tf_mitigation) {
7391 case L1TF_MITIGATION_OFF:
7392 case L1TF_MITIGATION_FLUSH_NOWARN:
7393 /* 'I explicitly don't care' is set */
7394 break;
7395 case L1TF_MITIGATION_FLUSH:
7396 case L1TF_MITIGATION_FLUSH_NOSMT:
7397 case L1TF_MITIGATION_FULL:
7398 /*
7399 * Warn upon starting the first VM in a potentially
7400 * insecure environment.
7401 */
7402 if (sched_smt_active())
7403 pr_warn_once(L1TF_MSG_SMT);
7404 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7405 pr_warn_once(L1TF_MSG_L1D);
7406 break;
7407 case L1TF_MITIGATION_FULL_FORCE:
7408 /* Flush is enforced */
7409 break;
7410 }
7411 }
7412 return 0;
7413 }
7414
vmx_check_processor_compat(void)7415 static int __init vmx_check_processor_compat(void)
7416 {
7417 struct vmcs_config vmcs_conf;
7418 struct vmx_capability vmx_cap;
7419
7420 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
7421 !this_cpu_has(X86_FEATURE_VMX)) {
7422 pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
7423 return -EIO;
7424 }
7425
7426 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
7427 return -EIO;
7428 if (nested)
7429 nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept);
7430 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7431 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7432 smp_processor_id());
7433 return -EIO;
7434 }
7435 return 0;
7436 }
7437
vmx_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)7438 static u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7439 {
7440 u8 cache;
7441
7442 /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7443 * memory aliases with conflicting memory types and sometimes MCEs.
7444 * We have to be careful as to what are honored and when.
7445 *
7446 * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to
7447 * UC. The effective memory type is UC or WC depending on guest PAT.
7448 * This was historically the source of MCEs and we want to be
7449 * conservative.
7450 *
7451 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7452 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The
7453 * EPT memory type is set to WB. The effective memory type is forced
7454 * WB.
7455 *
7456 * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The
7457 * EPT memory type is used to emulate guest CD/MTRR.
7458 */
7459
7460 if (is_mmio)
7461 return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7462
7463 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm))
7464 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7465
7466 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
7467 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7468 cache = MTRR_TYPE_WRBACK;
7469 else
7470 cache = MTRR_TYPE_UNCACHABLE;
7471
7472 return (cache << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7473 }
7474
7475 return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT;
7476 }
7477
vmcs_set_secondary_exec_control(struct vcpu_vmx * vmx,u32 new_ctl)7478 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7479 {
7480 /*
7481 * These bits in the secondary execution controls field
7482 * are dynamic, the others are mostly based on the hypervisor
7483 * architecture and the guest's CPUID. Do not touch the
7484 * dynamic bits.
7485 */
7486 u32 mask =
7487 SECONDARY_EXEC_SHADOW_VMCS |
7488 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7489 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7490 SECONDARY_EXEC_DESC;
7491
7492 u32 cur_ctl = secondary_exec_controls_get(vmx);
7493
7494 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7495 }
7496
7497 /*
7498 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7499 * (indicating "allowed-1") if they are supported in the guest's CPUID.
7500 */
nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu * vcpu)7501 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7502 {
7503 struct vcpu_vmx *vmx = to_vmx(vcpu);
7504 struct kvm_cpuid_entry2 *entry;
7505
7506 vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7507 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7508
7509 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
7510 if (entry && (entry->_reg & (_cpuid_mask))) \
7511 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \
7512 } while (0)
7513
7514 entry = kvm_find_cpuid_entry(vcpu, 0x1);
7515 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME));
7516 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME));
7517 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC));
7518 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE));
7519 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE));
7520 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE));
7521 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE));
7522 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE));
7523 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR));
7524 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7525 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX));
7526 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX));
7527 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID));
7528 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE));
7529
7530 entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0);
7531 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE));
7532 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP));
7533 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP));
7534 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU));
7535 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP));
7536 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57));
7537
7538 #undef cr4_fixed1_update
7539 }
7540
update_intel_pt_cfg(struct kvm_vcpu * vcpu)7541 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7542 {
7543 struct vcpu_vmx *vmx = to_vmx(vcpu);
7544 struct kvm_cpuid_entry2 *best = NULL;
7545 int i;
7546
7547 for (i = 0; i < PT_CPUID_LEAVES; i++) {
7548 best = kvm_find_cpuid_entry_index(vcpu, 0x14, i);
7549 if (!best)
7550 return;
7551 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7552 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7553 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7554 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7555 }
7556
7557 /* Get the number of configurable Address Ranges for filtering */
7558 vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7559 PT_CAP_num_address_ranges);
7560
7561 /* Initialize and clear the no dependency bits */
7562 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7563 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7564 RTIT_CTL_BRANCH_EN);
7565
7566 /*
7567 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7568 * will inject an #GP
7569 */
7570 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7571 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7572
7573 /*
7574 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7575 * PSBFreq can be set
7576 */
7577 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7578 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7579 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7580
7581 /*
7582 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7583 */
7584 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7585 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7586 RTIT_CTL_MTC_RANGE);
7587
7588 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7589 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7590 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7591 RTIT_CTL_PTW_EN);
7592
7593 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7594 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7595 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7596
7597 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7598 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7599 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7600
7601 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7602 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7603 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7604
7605 /* unmask address range configure area */
7606 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7607 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7608 }
7609
vmx_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)7610 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7611 {
7612 struct vcpu_vmx *vmx = to_vmx(vcpu);
7613
7614 /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7615 vcpu->arch.xsaves_enabled = false;
7616
7617 vmx_setup_uret_msrs(vmx);
7618
7619 if (cpu_has_secondary_exec_ctrls())
7620 vmcs_set_secondary_exec_control(vmx,
7621 vmx_secondary_exec_control(vmx));
7622
7623 if (nested_vmx_allowed(vcpu))
7624 vmx->msr_ia32_feature_control_valid_bits |=
7625 FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7626 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7627 else
7628 vmx->msr_ia32_feature_control_valid_bits &=
7629 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7630 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7631
7632 if (nested_vmx_allowed(vcpu))
7633 nested_vmx_cr_fixed1_bits_update(vcpu);
7634
7635 if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7636 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7637 update_intel_pt_cfg(vcpu);
7638
7639 if (boot_cpu_has(X86_FEATURE_RTM)) {
7640 struct vmx_uret_msr *msr;
7641 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7642 if (msr) {
7643 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7644 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7645 }
7646 }
7647
7648 if (kvm_cpu_cap_has(X86_FEATURE_XFD))
7649 vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
7650 !guest_cpuid_has(vcpu, X86_FEATURE_XFD));
7651
7652
7653 set_cr4_guest_host_mask(vmx);
7654
7655 vmx_write_encls_bitmap(vcpu, NULL);
7656 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7657 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7658 else
7659 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7660
7661 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7662 vmx->msr_ia32_feature_control_valid_bits |=
7663 FEAT_CTL_SGX_LC_ENABLED;
7664 else
7665 vmx->msr_ia32_feature_control_valid_bits &=
7666 ~FEAT_CTL_SGX_LC_ENABLED;
7667
7668 /* Refresh #PF interception to account for MAXPHYADDR changes. */
7669 vmx_update_exception_bitmap(vcpu);
7670 }
7671
vmx_set_cpu_caps(void)7672 static __init void vmx_set_cpu_caps(void)
7673 {
7674 kvm_set_cpu_caps();
7675
7676 /* CPUID 0x1 */
7677 if (nested)
7678 kvm_cpu_cap_set(X86_FEATURE_VMX);
7679
7680 /* CPUID 0x7 */
7681 if (kvm_mpx_supported())
7682 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7683 if (!cpu_has_vmx_invpcid())
7684 kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7685 if (vmx_pt_mode_is_host_guest())
7686 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7687 if (vmx_pebs_supported()) {
7688 kvm_cpu_cap_check_and_set(X86_FEATURE_DS);
7689 kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64);
7690 }
7691
7692 if (!enable_pmu)
7693 kvm_cpu_cap_clear(X86_FEATURE_PDCM);
7694
7695 if (!enable_sgx) {
7696 kvm_cpu_cap_clear(X86_FEATURE_SGX);
7697 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7698 kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7699 kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7700 }
7701
7702 if (vmx_umip_emulated())
7703 kvm_cpu_cap_set(X86_FEATURE_UMIP);
7704
7705 /* CPUID 0xD.1 */
7706 kvm_caps.supported_xss = 0;
7707 if (!cpu_has_vmx_xsaves())
7708 kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7709
7710 /* CPUID 0x80000001 and 0x7 (RDPID) */
7711 if (!cpu_has_vmx_rdtscp()) {
7712 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7713 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7714 }
7715
7716 if (cpu_has_vmx_waitpkg())
7717 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7718 }
7719
vmx_request_immediate_exit(struct kvm_vcpu * vcpu)7720 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7721 {
7722 to_vmx(vcpu)->req_immediate_exit = true;
7723 }
7724
vmx_check_intercept_io(struct kvm_vcpu * vcpu,struct x86_instruction_info * info)7725 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7726 struct x86_instruction_info *info)
7727 {
7728 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7729 unsigned short port;
7730 bool intercept;
7731 int size;
7732
7733 if (info->intercept == x86_intercept_in ||
7734 info->intercept == x86_intercept_ins) {
7735 port = info->src_val;
7736 size = info->dst_bytes;
7737 } else {
7738 port = info->dst_val;
7739 size = info->src_bytes;
7740 }
7741
7742 /*
7743 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7744 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7745 * control.
7746 *
7747 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7748 */
7749 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7750 intercept = nested_cpu_has(vmcs12,
7751 CPU_BASED_UNCOND_IO_EXITING);
7752 else
7753 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7754
7755 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
7756 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7757 }
7758
vmx_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage,struct x86_exception * exception)7759 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7760 struct x86_instruction_info *info,
7761 enum x86_intercept_stage stage,
7762 struct x86_exception *exception)
7763 {
7764 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7765
7766 switch (info->intercept) {
7767 /*
7768 * RDPID causes #UD if disabled through secondary execution controls.
7769 * Because it is marked as EmulateOnUD, we need to intercept it here.
7770 * Note, RDPID is hidden behind ENABLE_RDTSCP.
7771 */
7772 case x86_intercept_rdpid:
7773 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7774 exception->vector = UD_VECTOR;
7775 exception->error_code_valid = false;
7776 return X86EMUL_PROPAGATE_FAULT;
7777 }
7778 break;
7779
7780 case x86_intercept_in:
7781 case x86_intercept_ins:
7782 case x86_intercept_out:
7783 case x86_intercept_outs:
7784 return vmx_check_intercept_io(vcpu, info);
7785
7786 case x86_intercept_lgdt:
7787 case x86_intercept_lidt:
7788 case x86_intercept_lldt:
7789 case x86_intercept_ltr:
7790 case x86_intercept_sgdt:
7791 case x86_intercept_sidt:
7792 case x86_intercept_sldt:
7793 case x86_intercept_str:
7794 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7795 return X86EMUL_CONTINUE;
7796
7797 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
7798 break;
7799
7800 /* TODO: check more intercepts... */
7801 default:
7802 break;
7803 }
7804
7805 return X86EMUL_UNHANDLEABLE;
7806 }
7807
7808 #ifdef CONFIG_X86_64
7809 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
u64_shl_div_u64(u64 a,unsigned int shift,u64 divisor,u64 * result)7810 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7811 u64 divisor, u64 *result)
7812 {
7813 u64 low = a << shift, high = a >> (64 - shift);
7814
7815 /* To avoid the overflow on divq */
7816 if (high >= divisor)
7817 return 1;
7818
7819 /* Low hold the result, high hold rem which is discarded */
7820 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7821 "rm" (divisor), "0" (low), "1" (high));
7822 *result = low;
7823
7824 return 0;
7825 }
7826
vmx_set_hv_timer(struct kvm_vcpu * vcpu,u64 guest_deadline_tsc,bool * expired)7827 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7828 bool *expired)
7829 {
7830 struct vcpu_vmx *vmx;
7831 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7832 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7833
7834 vmx = to_vmx(vcpu);
7835 tscl = rdtsc();
7836 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7837 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7838 lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7839 ktimer->timer_advance_ns);
7840
7841 if (delta_tsc > lapic_timer_advance_cycles)
7842 delta_tsc -= lapic_timer_advance_cycles;
7843 else
7844 delta_tsc = 0;
7845
7846 /* Convert to host delta tsc if tsc scaling is enabled */
7847 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio &&
7848 delta_tsc && u64_shl_div_u64(delta_tsc,
7849 kvm_caps.tsc_scaling_ratio_frac_bits,
7850 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
7851 return -ERANGE;
7852
7853 /*
7854 * If the delta tsc can't fit in the 32 bit after the multi shift,
7855 * we can't use the preemption timer.
7856 * It's possible that it fits on later vmentries, but checking
7857 * on every vmentry is costly so we just use an hrtimer.
7858 */
7859 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7860 return -ERANGE;
7861
7862 vmx->hv_deadline_tsc = tscl + delta_tsc;
7863 *expired = !delta_tsc;
7864 return 0;
7865 }
7866
vmx_cancel_hv_timer(struct kvm_vcpu * vcpu)7867 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7868 {
7869 to_vmx(vcpu)->hv_deadline_tsc = -1;
7870 }
7871 #endif
7872
vmx_sched_in(struct kvm_vcpu * vcpu,int cpu)7873 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7874 {
7875 if (!kvm_pause_in_guest(vcpu->kvm))
7876 shrink_ple_window(vcpu);
7877 }
7878
vmx_update_cpu_dirty_logging(struct kvm_vcpu * vcpu)7879 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
7880 {
7881 struct vcpu_vmx *vmx = to_vmx(vcpu);
7882
7883 if (is_guest_mode(vcpu)) {
7884 vmx->nested.update_vmcs01_cpu_dirty_logging = true;
7885 return;
7886 }
7887
7888 /*
7889 * Note, cpu_dirty_logging_count can be changed concurrent with this
7890 * code, but in that case another update request will be made and so
7891 * the guest will never run with a stale PML value.
7892 */
7893 if (vcpu->kvm->arch.cpu_dirty_logging_count)
7894 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7895 else
7896 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7897 }
7898
vmx_setup_mce(struct kvm_vcpu * vcpu)7899 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7900 {
7901 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7902 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7903 FEAT_CTL_LMCE_ENABLED;
7904 else
7905 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7906 ~FEAT_CTL_LMCE_ENABLED;
7907 }
7908
vmx_smi_allowed(struct kvm_vcpu * vcpu,bool for_injection)7909 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
7910 {
7911 /* we need a nested vmexit to enter SMM, postpone if run is pending */
7912 if (to_vmx(vcpu)->nested.nested_run_pending)
7913 return -EBUSY;
7914 return !is_smm(vcpu);
7915 }
7916
vmx_enter_smm(struct kvm_vcpu * vcpu,char * smstate)7917 static int vmx_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7918 {
7919 struct vcpu_vmx *vmx = to_vmx(vcpu);
7920
7921 /*
7922 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on
7923 * SMI and RSM. Using the common VM-Exit + VM-Enter routines is wrong
7924 * SMI and RSM only modify state that is saved and restored via SMRAM.
7925 * E.g. most MSRs are left untouched, but many are modified by VM-Exit
7926 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
7927 */
7928 vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7929 if (vmx->nested.smm.guest_mode)
7930 nested_vmx_vmexit(vcpu, -1, 0, 0);
7931
7932 vmx->nested.smm.vmxon = vmx->nested.vmxon;
7933 vmx->nested.vmxon = false;
7934 vmx_clear_hlt(vcpu);
7935 return 0;
7936 }
7937
vmx_leave_smm(struct kvm_vcpu * vcpu,const char * smstate)7938 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7939 {
7940 struct vcpu_vmx *vmx = to_vmx(vcpu);
7941 int ret;
7942
7943 if (vmx->nested.smm.vmxon) {
7944 vmx->nested.vmxon = true;
7945 vmx->nested.smm.vmxon = false;
7946 }
7947
7948 if (vmx->nested.smm.guest_mode) {
7949 ret = nested_vmx_enter_non_root_mode(vcpu, false);
7950 if (ret)
7951 return ret;
7952
7953 vmx->nested.nested_run_pending = 1;
7954 vmx->nested.smm.guest_mode = false;
7955 }
7956 return 0;
7957 }
7958
vmx_enable_smi_window(struct kvm_vcpu * vcpu)7959 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
7960 {
7961 /* RSM will cause a vmexit anyway. */
7962 }
7963
vmx_apic_init_signal_blocked(struct kvm_vcpu * vcpu)7964 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7965 {
7966 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
7967 }
7968
vmx_migrate_timers(struct kvm_vcpu * vcpu)7969 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
7970 {
7971 if (is_guest_mode(vcpu)) {
7972 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
7973
7974 if (hrtimer_try_to_cancel(timer) == 1)
7975 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
7976 }
7977 }
7978
vmx_hardware_unsetup(void)7979 static void vmx_hardware_unsetup(void)
7980 {
7981 kvm_set_posted_intr_wakeup_handler(NULL);
7982
7983 if (nested)
7984 nested_vmx_hardware_unsetup();
7985
7986 free_kvm_area();
7987 }
7988
vmx_check_apicv_inhibit_reasons(enum kvm_apicv_inhibit reason)7989 static bool vmx_check_apicv_inhibit_reasons(enum kvm_apicv_inhibit reason)
7990 {
7991 ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7992 BIT(APICV_INHIBIT_REASON_ABSENT) |
7993 BIT(APICV_INHIBIT_REASON_HYPERV) |
7994 BIT(APICV_INHIBIT_REASON_BLOCKIRQ) |
7995 BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) |
7996 BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED);
7997
7998 return supported & BIT(reason);
7999 }
8000
vmx_vm_destroy(struct kvm * kvm)8001 static void vmx_vm_destroy(struct kvm *kvm)
8002 {
8003 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
8004
8005 free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm));
8006 }
8007
8008 static struct kvm_x86_ops vmx_x86_ops __initdata = {
8009 .name = "kvm_intel",
8010
8011 .hardware_unsetup = vmx_hardware_unsetup,
8012
8013 .hardware_enable = vmx_hardware_enable,
8014 .hardware_disable = vmx_hardware_disable,
8015 .has_emulated_msr = vmx_has_emulated_msr,
8016
8017 .vm_size = sizeof(struct kvm_vmx),
8018 .vm_init = vmx_vm_init,
8019 .vm_destroy = vmx_vm_destroy,
8020
8021 .vcpu_precreate = vmx_vcpu_precreate,
8022 .vcpu_create = vmx_vcpu_create,
8023 .vcpu_free = vmx_vcpu_free,
8024 .vcpu_reset = vmx_vcpu_reset,
8025
8026 .prepare_switch_to_guest = vmx_prepare_switch_to_guest,
8027 .vcpu_load = vmx_vcpu_load,
8028 .vcpu_put = vmx_vcpu_put,
8029
8030 .update_exception_bitmap = vmx_update_exception_bitmap,
8031 .get_msr_feature = vmx_get_msr_feature,
8032 .get_msr = vmx_get_msr,
8033 .set_msr = vmx_set_msr,
8034 .get_segment_base = vmx_get_segment_base,
8035 .get_segment = vmx_get_segment,
8036 .set_segment = vmx_set_segment,
8037 .get_cpl = vmx_get_cpl,
8038 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
8039 .set_cr0 = vmx_set_cr0,
8040 .is_valid_cr4 = vmx_is_valid_cr4,
8041 .set_cr4 = vmx_set_cr4,
8042 .set_efer = vmx_set_efer,
8043 .get_idt = vmx_get_idt,
8044 .set_idt = vmx_set_idt,
8045 .get_gdt = vmx_get_gdt,
8046 .set_gdt = vmx_set_gdt,
8047 .set_dr7 = vmx_set_dr7,
8048 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
8049 .cache_reg = vmx_cache_reg,
8050 .get_rflags = vmx_get_rflags,
8051 .set_rflags = vmx_set_rflags,
8052 .get_if_flag = vmx_get_if_flag,
8053
8054 .flush_tlb_all = vmx_flush_tlb_all,
8055 .flush_tlb_current = vmx_flush_tlb_current,
8056 .flush_tlb_gva = vmx_flush_tlb_gva,
8057 .flush_tlb_guest = vmx_flush_tlb_guest,
8058
8059 .vcpu_pre_run = vmx_vcpu_pre_run,
8060 .vcpu_run = vmx_vcpu_run,
8061 .handle_exit = vmx_handle_exit,
8062 .skip_emulated_instruction = vmx_skip_emulated_instruction,
8063 .update_emulated_instruction = vmx_update_emulated_instruction,
8064 .set_interrupt_shadow = vmx_set_interrupt_shadow,
8065 .get_interrupt_shadow = vmx_get_interrupt_shadow,
8066 .patch_hypercall = vmx_patch_hypercall,
8067 .inject_irq = vmx_inject_irq,
8068 .inject_nmi = vmx_inject_nmi,
8069 .inject_exception = vmx_inject_exception,
8070 .cancel_injection = vmx_cancel_injection,
8071 .interrupt_allowed = vmx_interrupt_allowed,
8072 .nmi_allowed = vmx_nmi_allowed,
8073 .get_nmi_mask = vmx_get_nmi_mask,
8074 .set_nmi_mask = vmx_set_nmi_mask,
8075 .enable_nmi_window = vmx_enable_nmi_window,
8076 .enable_irq_window = vmx_enable_irq_window,
8077 .update_cr8_intercept = vmx_update_cr8_intercept,
8078 .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
8079 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
8080 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
8081 .load_eoi_exitmap = vmx_load_eoi_exitmap,
8082 .apicv_post_state_restore = vmx_apicv_post_state_restore,
8083 .check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
8084 .hwapic_irr_update = vmx_hwapic_irr_update,
8085 .hwapic_isr_update = vmx_hwapic_isr_update,
8086 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
8087 .sync_pir_to_irr = vmx_sync_pir_to_irr,
8088 .deliver_interrupt = vmx_deliver_interrupt,
8089 .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
8090
8091 .set_tss_addr = vmx_set_tss_addr,
8092 .set_identity_map_addr = vmx_set_identity_map_addr,
8093 .get_mt_mask = vmx_get_mt_mask,
8094
8095 .get_exit_info = vmx_get_exit_info,
8096
8097 .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
8098
8099 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
8100
8101 .get_l2_tsc_offset = vmx_get_l2_tsc_offset,
8102 .get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier,
8103 .write_tsc_offset = vmx_write_tsc_offset,
8104 .write_tsc_multiplier = vmx_write_tsc_multiplier,
8105
8106 .load_mmu_pgd = vmx_load_mmu_pgd,
8107
8108 .check_intercept = vmx_check_intercept,
8109 .handle_exit_irqoff = vmx_handle_exit_irqoff,
8110
8111 .request_immediate_exit = vmx_request_immediate_exit,
8112
8113 .sched_in = vmx_sched_in,
8114
8115 .cpu_dirty_log_size = PML_ENTITY_NUM,
8116 .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
8117
8118 .nested_ops = &vmx_nested_ops,
8119
8120 .pi_update_irte = vmx_pi_update_irte,
8121 .pi_start_assignment = vmx_pi_start_assignment,
8122
8123 #ifdef CONFIG_X86_64
8124 .set_hv_timer = vmx_set_hv_timer,
8125 .cancel_hv_timer = vmx_cancel_hv_timer,
8126 #endif
8127
8128 .setup_mce = vmx_setup_mce,
8129
8130 .smi_allowed = vmx_smi_allowed,
8131 .enter_smm = vmx_enter_smm,
8132 .leave_smm = vmx_leave_smm,
8133 .enable_smi_window = vmx_enable_smi_window,
8134
8135 .can_emulate_instruction = vmx_can_emulate_instruction,
8136 .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
8137 .migrate_timers = vmx_migrate_timers,
8138
8139 .msr_filter_changed = vmx_msr_filter_changed,
8140 .complete_emulated_msr = kvm_complete_insn_gp,
8141
8142 .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
8143 };
8144
vmx_handle_intel_pt_intr(void)8145 static unsigned int vmx_handle_intel_pt_intr(void)
8146 {
8147 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
8148
8149 /* '0' on failure so that the !PT case can use a RET0 static call. */
8150 if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
8151 return 0;
8152
8153 kvm_make_request(KVM_REQ_PMI, vcpu);
8154 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8155 (unsigned long *)&vcpu->arch.pmu.global_status);
8156 return 1;
8157 }
8158
vmx_setup_user_return_msrs(void)8159 static __init void vmx_setup_user_return_msrs(void)
8160 {
8161
8162 /*
8163 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
8164 * will emulate SYSCALL in legacy mode if the vendor string in guest
8165 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
8166 * support this emulation, MSR_STAR is included in the list for i386,
8167 * but is never loaded into hardware. MSR_CSTAR is also never loaded
8168 * into hardware and is here purely for emulation purposes.
8169 */
8170 const u32 vmx_uret_msrs_list[] = {
8171 #ifdef CONFIG_X86_64
8172 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
8173 #endif
8174 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
8175 MSR_IA32_TSX_CTRL,
8176 };
8177 int i;
8178
8179 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
8180
8181 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
8182 kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
8183 }
8184
vmx_setup_me_spte_mask(void)8185 static void __init vmx_setup_me_spte_mask(void)
8186 {
8187 u64 me_mask = 0;
8188
8189 /*
8190 * kvm_get_shadow_phys_bits() returns shadow_phys_bits. Use
8191 * the former to avoid exposing shadow_phys_bits.
8192 *
8193 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
8194 * shadow_phys_bits. On MKTME and/or TDX capable systems,
8195 * boot_cpu_data.x86_phys_bits holds the actual physical address
8196 * w/o the KeyID bits, and shadow_phys_bits equals to MAXPHYADDR
8197 * reported by CPUID. Those bits between are KeyID bits.
8198 */
8199 if (boot_cpu_data.x86_phys_bits != kvm_get_shadow_phys_bits())
8200 me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
8201 kvm_get_shadow_phys_bits() - 1);
8202 /*
8203 * Unlike SME, host kernel doesn't support setting up any
8204 * MKTME KeyID on Intel platforms. No memory encryption
8205 * bits should be included into the SPTE.
8206 */
8207 kvm_mmu_set_me_spte_mask(0, me_mask);
8208 }
8209
8210 static struct kvm_x86_init_ops vmx_init_ops __initdata;
8211
hardware_setup(void)8212 static __init int hardware_setup(void)
8213 {
8214 unsigned long host_bndcfgs;
8215 struct desc_ptr dt;
8216 int r;
8217
8218 store_idt(&dt);
8219 host_idt_base = dt.address;
8220
8221 vmx_setup_user_return_msrs();
8222
8223 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
8224 return -EIO;
8225
8226 if (cpu_has_perf_global_ctrl_bug())
8227 pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
8228 "does not work properly. Using workaround\n");
8229
8230 if (boot_cpu_has(X86_FEATURE_NX))
8231 kvm_enable_efer_bits(EFER_NX);
8232
8233 if (boot_cpu_has(X86_FEATURE_MPX)) {
8234 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
8235 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
8236 }
8237
8238 if (!cpu_has_vmx_mpx())
8239 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8240 XFEATURE_MASK_BNDCSR);
8241
8242 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8243 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8244 enable_vpid = 0;
8245
8246 if (!cpu_has_vmx_ept() ||
8247 !cpu_has_vmx_ept_4levels() ||
8248 !cpu_has_vmx_ept_mt_wb() ||
8249 !cpu_has_vmx_invept_global())
8250 enable_ept = 0;
8251
8252 /* NX support is required for shadow paging. */
8253 if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
8254 pr_err_ratelimited("kvm: NX (Execute Disable) not supported\n");
8255 return -EOPNOTSUPP;
8256 }
8257
8258 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8259 enable_ept_ad_bits = 0;
8260
8261 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8262 enable_unrestricted_guest = 0;
8263
8264 if (!cpu_has_vmx_flexpriority())
8265 flexpriority_enabled = 0;
8266
8267 if (!cpu_has_virtual_nmis())
8268 enable_vnmi = 0;
8269
8270 #ifdef CONFIG_X86_SGX_KVM
8271 if (!cpu_has_vmx_encls_vmexit())
8272 enable_sgx = false;
8273 #endif
8274
8275 /*
8276 * set_apic_access_page_addr() is used to reload apic access
8277 * page upon invalidation. No need to do anything if not
8278 * using the APIC_ACCESS_ADDR VMCS field.
8279 */
8280 if (!flexpriority_enabled)
8281 vmx_x86_ops.set_apic_access_page_addr = NULL;
8282
8283 if (!cpu_has_vmx_tpr_shadow())
8284 vmx_x86_ops.update_cr8_intercept = NULL;
8285
8286 #if IS_ENABLED(CONFIG_HYPERV)
8287 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8288 && enable_ept) {
8289 vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
8290 vmx_x86_ops.tlb_remote_flush_with_range =
8291 hv_remote_flush_tlb_with_range;
8292 }
8293 #endif
8294
8295 if (!cpu_has_vmx_ple()) {
8296 ple_gap = 0;
8297 ple_window = 0;
8298 ple_window_grow = 0;
8299 ple_window_max = 0;
8300 ple_window_shrink = 0;
8301 }
8302
8303 if (!cpu_has_vmx_apicv())
8304 enable_apicv = 0;
8305 if (!enable_apicv)
8306 vmx_x86_ops.sync_pir_to_irr = NULL;
8307
8308 if (!enable_apicv || !cpu_has_vmx_ipiv())
8309 enable_ipiv = false;
8310
8311 if (cpu_has_vmx_tsc_scaling())
8312 kvm_caps.has_tsc_control = true;
8313
8314 kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8315 kvm_caps.tsc_scaling_ratio_frac_bits = 48;
8316 kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
8317 kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit();
8318
8319 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8320
8321 if (enable_ept)
8322 kvm_mmu_set_ept_masks(enable_ept_ad_bits,
8323 cpu_has_vmx_ept_execute_only());
8324
8325 /*
8326 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
8327 * bits to shadow_zero_check.
8328 */
8329 vmx_setup_me_spte_mask();
8330
8331 kvm_configure_mmu(enable_ept, 0, vmx_get_max_tdp_level(),
8332 ept_caps_to_lpage_level(vmx_capability.ept));
8333
8334 /*
8335 * Only enable PML when hardware supports PML feature, and both EPT
8336 * and EPT A/D bit features are enabled -- PML depends on them to work.
8337 */
8338 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8339 enable_pml = 0;
8340
8341 if (!enable_pml)
8342 vmx_x86_ops.cpu_dirty_log_size = 0;
8343
8344 if (!cpu_has_vmx_preemption_timer())
8345 enable_preemption_timer = false;
8346
8347 if (enable_preemption_timer) {
8348 u64 use_timer_freq = 5000ULL * 1000 * 1000;
8349
8350 cpu_preemption_timer_multi =
8351 vmcs_config.misc & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
8352
8353 if (tsc_khz)
8354 use_timer_freq = (u64)tsc_khz * 1000;
8355 use_timer_freq >>= cpu_preemption_timer_multi;
8356
8357 /*
8358 * KVM "disables" the preemption timer by setting it to its max
8359 * value. Don't use the timer if it might cause spurious exits
8360 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8361 */
8362 if (use_timer_freq > 0xffffffffu / 10)
8363 enable_preemption_timer = false;
8364 }
8365
8366 if (!enable_preemption_timer) {
8367 vmx_x86_ops.set_hv_timer = NULL;
8368 vmx_x86_ops.cancel_hv_timer = NULL;
8369 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
8370 }
8371
8372 kvm_caps.supported_mce_cap |= MCG_LMCE_P;
8373 kvm_caps.supported_mce_cap |= MCG_CMCI_P;
8374
8375 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8376 return -EINVAL;
8377 if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt())
8378 pt_mode = PT_MODE_SYSTEM;
8379 if (pt_mode == PT_MODE_HOST_GUEST)
8380 vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8381 else
8382 vmx_init_ops.handle_intel_pt_intr = NULL;
8383
8384 setup_default_sgx_lepubkeyhash();
8385
8386 if (nested) {
8387 nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept);
8388
8389 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8390 if (r)
8391 return r;
8392 }
8393
8394 vmx_set_cpu_caps();
8395
8396 r = alloc_kvm_area();
8397 if (r && nested)
8398 nested_vmx_hardware_unsetup();
8399
8400 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8401
8402 return r;
8403 }
8404
8405 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
8406 .cpu_has_kvm_support = cpu_has_kvm_support,
8407 .disabled_by_bios = vmx_disabled_by_bios,
8408 .check_processor_compatibility = vmx_check_processor_compat,
8409 .hardware_setup = hardware_setup,
8410 .handle_intel_pt_intr = NULL,
8411
8412 .runtime_ops = &vmx_x86_ops,
8413 .pmu_ops = &intel_pmu_ops,
8414 };
8415
vmx_cleanup_l1d_flush(void)8416 static void vmx_cleanup_l1d_flush(void)
8417 {
8418 if (vmx_l1d_flush_pages) {
8419 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8420 vmx_l1d_flush_pages = NULL;
8421 }
8422 /* Restore state so sysfs ignores VMX */
8423 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8424 }
8425
vmx_exit(void)8426 static void vmx_exit(void)
8427 {
8428 #ifdef CONFIG_KEXEC_CORE
8429 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8430 synchronize_rcu();
8431 #endif
8432
8433 kvm_exit();
8434
8435 #if IS_ENABLED(CONFIG_HYPERV)
8436 if (static_branch_unlikely(&enable_evmcs)) {
8437 int cpu;
8438 struct hv_vp_assist_page *vp_ap;
8439 /*
8440 * Reset everything to support using non-enlightened VMCS
8441 * access later (e.g. when we reload the module with
8442 * enlightened_vmcs=0)
8443 */
8444 for_each_online_cpu(cpu) {
8445 vp_ap = hv_get_vp_assist_page(cpu);
8446
8447 if (!vp_ap)
8448 continue;
8449
8450 vp_ap->nested_control.features.directhypercall = 0;
8451 vp_ap->current_nested_vmcs = 0;
8452 vp_ap->enlighten_vmentry = 0;
8453 }
8454
8455 static_branch_disable(&enable_evmcs);
8456 }
8457 #endif
8458 vmx_cleanup_l1d_flush();
8459
8460 allow_smaller_maxphyaddr = false;
8461 }
8462 module_exit(vmx_exit);
8463
vmx_init(void)8464 static int __init vmx_init(void)
8465 {
8466 int r, cpu;
8467
8468 #if IS_ENABLED(CONFIG_HYPERV)
8469 /*
8470 * Enlightened VMCS usage should be recommended and the host needs
8471 * to support eVMCS v1 or above. We can also disable eVMCS support
8472 * with module parameter.
8473 */
8474 if (enlightened_vmcs &&
8475 ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
8476 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
8477 KVM_EVMCS_VERSION) {
8478
8479 /* Check that we have assist pages on all online CPUs */
8480 for_each_online_cpu(cpu) {
8481 if (!hv_get_vp_assist_page(cpu)) {
8482 enlightened_vmcs = false;
8483 break;
8484 }
8485 }
8486
8487 if (enlightened_vmcs) {
8488 pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
8489 static_branch_enable(&enable_evmcs);
8490 }
8491
8492 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
8493 vmx_x86_ops.enable_direct_tlbflush
8494 = hv_enable_direct_tlbflush;
8495
8496 } else {
8497 enlightened_vmcs = false;
8498 }
8499 #endif
8500
8501 r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
8502 __alignof__(struct vcpu_vmx), THIS_MODULE);
8503 if (r)
8504 return r;
8505
8506 /*
8507 * Must be called after kvm_init() so enable_ept is properly set
8508 * up. Hand the parameter mitigation value in which was stored in
8509 * the pre module init parser. If no parameter was given, it will
8510 * contain 'auto' which will be turned into the default 'cond'
8511 * mitigation mode.
8512 */
8513 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8514 if (r) {
8515 vmx_exit();
8516 return r;
8517 }
8518
8519 vmx_setup_fb_clear_ctrl();
8520
8521 for_each_possible_cpu(cpu) {
8522 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8523
8524 pi_init_cpu(cpu);
8525 }
8526
8527 #ifdef CONFIG_KEXEC_CORE
8528 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8529 crash_vmclear_local_loaded_vmcss);
8530 #endif
8531 vmx_check_vmcs12_offsets();
8532
8533 /*
8534 * Shadow paging doesn't have a (further) performance penalty
8535 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8536 * by default
8537 */
8538 if (!enable_ept)
8539 allow_smaller_maxphyaddr = true;
8540
8541 return 0;
8542 }
8543 module_init(vmx_init);
8544