1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/sched/mm.h>
10 #include <linux/spinlock.h>
11 #include <linux/blkdev.h>
12 #include <linux/swap.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/prefetch.h>
16 #include <linux/fsverity.h>
17 #include "misc.h"
18 #include "extent_io.h"
19 #include "extent-io-tree.h"
20 #include "extent_map.h"
21 #include "ctree.h"
22 #include "btrfs_inode.h"
23 #include "bio.h"
24 #include "check-integrity.h"
25 #include "locking.h"
26 #include "rcu-string.h"
27 #include "backref.h"
28 #include "disk-io.h"
29 #include "subpage.h"
30 #include "zoned.h"
31 #include "block-group.h"
32 #include "compression.h"
33 #include "fs.h"
34 #include "accessors.h"
35 #include "file-item.h"
36 #include "file.h"
37 #include "dev-replace.h"
38 #include "super.h"
39 #include "transaction.h"
40
41 static struct kmem_cache *extent_buffer_cache;
42
43 #ifdef CONFIG_BTRFS_DEBUG
btrfs_leak_debug_add_eb(struct extent_buffer * eb)44 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
45 {
46 struct btrfs_fs_info *fs_info = eb->fs_info;
47 unsigned long flags;
48
49 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
50 list_add(&eb->leak_list, &fs_info->allocated_ebs);
51 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
52 }
53
btrfs_leak_debug_del_eb(struct extent_buffer * eb)54 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
55 {
56 struct btrfs_fs_info *fs_info = eb->fs_info;
57 unsigned long flags;
58
59 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
60 list_del(&eb->leak_list);
61 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
62 }
63
btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info * fs_info)64 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
65 {
66 struct extent_buffer *eb;
67 unsigned long flags;
68
69 /*
70 * If we didn't get into open_ctree our allocated_ebs will not be
71 * initialized, so just skip this.
72 */
73 if (!fs_info->allocated_ebs.next)
74 return;
75
76 WARN_ON(!list_empty(&fs_info->allocated_ebs));
77 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
78 while (!list_empty(&fs_info->allocated_ebs)) {
79 eb = list_first_entry(&fs_info->allocated_ebs,
80 struct extent_buffer, leak_list);
81 pr_err(
82 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
83 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
84 btrfs_header_owner(eb));
85 list_del(&eb->leak_list);
86 kmem_cache_free(extent_buffer_cache, eb);
87 }
88 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
89 }
90 #else
91 #define btrfs_leak_debug_add_eb(eb) do {} while (0)
92 #define btrfs_leak_debug_del_eb(eb) do {} while (0)
93 #endif
94
95 /*
96 * Structure to record info about the bio being assembled, and other info like
97 * how many bytes are there before stripe/ordered extent boundary.
98 */
99 struct btrfs_bio_ctrl {
100 struct btrfs_bio *bbio;
101 enum btrfs_compression_type compress_type;
102 u32 len_to_oe_boundary;
103 blk_opf_t opf;
104 btrfs_bio_end_io_t end_io_func;
105 struct writeback_control *wbc;
106 };
107
submit_one_bio(struct btrfs_bio_ctrl * bio_ctrl)108 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
109 {
110 struct btrfs_bio *bbio = bio_ctrl->bbio;
111
112 if (!bbio)
113 return;
114
115 /* Caller should ensure the bio has at least some range added */
116 ASSERT(bbio->bio.bi_iter.bi_size);
117
118 if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ &&
119 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
120 btrfs_submit_compressed_read(bbio);
121 else
122 btrfs_submit_bio(bbio, 0);
123
124 /* The bbio is owned by the end_io handler now */
125 bio_ctrl->bbio = NULL;
126 }
127
128 /*
129 * Submit or fail the current bio in the bio_ctrl structure.
130 */
submit_write_bio(struct btrfs_bio_ctrl * bio_ctrl,int ret)131 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
132 {
133 struct btrfs_bio *bbio = bio_ctrl->bbio;
134
135 if (!bbio)
136 return;
137
138 if (ret) {
139 ASSERT(ret < 0);
140 btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
141 /* The bio is owned by the end_io handler now */
142 bio_ctrl->bbio = NULL;
143 } else {
144 submit_one_bio(bio_ctrl);
145 }
146 }
147
extent_buffer_init_cachep(void)148 int __init extent_buffer_init_cachep(void)
149 {
150 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
151 sizeof(struct extent_buffer), 0,
152 SLAB_MEM_SPREAD, NULL);
153 if (!extent_buffer_cache)
154 return -ENOMEM;
155
156 return 0;
157 }
158
extent_buffer_free_cachep(void)159 void __cold extent_buffer_free_cachep(void)
160 {
161 /*
162 * Make sure all delayed rcu free are flushed before we
163 * destroy caches.
164 */
165 rcu_barrier();
166 kmem_cache_destroy(extent_buffer_cache);
167 }
168
extent_range_clear_dirty_for_io(struct inode * inode,u64 start,u64 end)169 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
170 {
171 unsigned long index = start >> PAGE_SHIFT;
172 unsigned long end_index = end >> PAGE_SHIFT;
173 struct page *page;
174
175 while (index <= end_index) {
176 page = find_get_page(inode->i_mapping, index);
177 BUG_ON(!page); /* Pages should be in the extent_io_tree */
178 clear_page_dirty_for_io(page);
179 put_page(page);
180 index++;
181 }
182 }
183
process_one_page(struct btrfs_fs_info * fs_info,struct page * page,struct page * locked_page,unsigned long page_ops,u64 start,u64 end)184 static void process_one_page(struct btrfs_fs_info *fs_info,
185 struct page *page, struct page *locked_page,
186 unsigned long page_ops, u64 start, u64 end)
187 {
188 u32 len;
189
190 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
191 len = end + 1 - start;
192
193 if (page_ops & PAGE_SET_ORDERED)
194 btrfs_page_clamp_set_ordered(fs_info, page, start, len);
195 if (page_ops & PAGE_START_WRITEBACK) {
196 btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
197 btrfs_page_clamp_set_writeback(fs_info, page, start, len);
198 }
199 if (page_ops & PAGE_END_WRITEBACK)
200 btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
201
202 if (page != locked_page && (page_ops & PAGE_UNLOCK))
203 btrfs_page_end_writer_lock(fs_info, page, start, len);
204 }
205
__process_pages_contig(struct address_space * mapping,struct page * locked_page,u64 start,u64 end,unsigned long page_ops)206 static void __process_pages_contig(struct address_space *mapping,
207 struct page *locked_page, u64 start, u64 end,
208 unsigned long page_ops)
209 {
210 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
211 pgoff_t start_index = start >> PAGE_SHIFT;
212 pgoff_t end_index = end >> PAGE_SHIFT;
213 pgoff_t index = start_index;
214 struct folio_batch fbatch;
215 int i;
216
217 folio_batch_init(&fbatch);
218 while (index <= end_index) {
219 int found_folios;
220
221 found_folios = filemap_get_folios_contig(mapping, &index,
222 end_index, &fbatch);
223 for (i = 0; i < found_folios; i++) {
224 struct folio *folio = fbatch.folios[i];
225
226 process_one_page(fs_info, &folio->page, locked_page,
227 page_ops, start, end);
228 }
229 folio_batch_release(&fbatch);
230 cond_resched();
231 }
232 }
233
__unlock_for_delalloc(struct inode * inode,struct page * locked_page,u64 start,u64 end)234 static noinline void __unlock_for_delalloc(struct inode *inode,
235 struct page *locked_page,
236 u64 start, u64 end)
237 {
238 unsigned long index = start >> PAGE_SHIFT;
239 unsigned long end_index = end >> PAGE_SHIFT;
240
241 ASSERT(locked_page);
242 if (index == locked_page->index && end_index == index)
243 return;
244
245 __process_pages_contig(inode->i_mapping, locked_page, start, end,
246 PAGE_UNLOCK);
247 }
248
lock_delalloc_pages(struct inode * inode,struct page * locked_page,u64 start,u64 end)249 static noinline int lock_delalloc_pages(struct inode *inode,
250 struct page *locked_page,
251 u64 start,
252 u64 end)
253 {
254 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
255 struct address_space *mapping = inode->i_mapping;
256 pgoff_t start_index = start >> PAGE_SHIFT;
257 pgoff_t end_index = end >> PAGE_SHIFT;
258 pgoff_t index = start_index;
259 u64 processed_end = start;
260 struct folio_batch fbatch;
261
262 if (index == locked_page->index && index == end_index)
263 return 0;
264
265 folio_batch_init(&fbatch);
266 while (index <= end_index) {
267 unsigned int found_folios, i;
268
269 found_folios = filemap_get_folios_contig(mapping, &index,
270 end_index, &fbatch);
271 if (found_folios == 0)
272 goto out;
273
274 for (i = 0; i < found_folios; i++) {
275 struct page *page = &fbatch.folios[i]->page;
276 u32 len = end + 1 - start;
277
278 if (page == locked_page)
279 continue;
280
281 if (btrfs_page_start_writer_lock(fs_info, page, start,
282 len))
283 goto out;
284
285 if (!PageDirty(page) || page->mapping != mapping) {
286 btrfs_page_end_writer_lock(fs_info, page, start,
287 len);
288 goto out;
289 }
290
291 processed_end = page_offset(page) + PAGE_SIZE - 1;
292 }
293 folio_batch_release(&fbatch);
294 cond_resched();
295 }
296
297 return 0;
298 out:
299 folio_batch_release(&fbatch);
300 if (processed_end > start)
301 __unlock_for_delalloc(inode, locked_page, start, processed_end);
302 return -EAGAIN;
303 }
304
305 /*
306 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
307 * more than @max_bytes.
308 *
309 * @start: The original start bytenr to search.
310 * Will store the extent range start bytenr.
311 * @end: The original end bytenr of the search range
312 * Will store the extent range end bytenr.
313 *
314 * Return true if we find a delalloc range which starts inside the original
315 * range, and @start/@end will store the delalloc range start/end.
316 *
317 * Return false if we can't find any delalloc range which starts inside the
318 * original range, and @start/@end will be the non-delalloc range start/end.
319 */
320 EXPORT_FOR_TESTS
find_lock_delalloc_range(struct inode * inode,struct page * locked_page,u64 * start,u64 * end)321 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
322 struct page *locked_page, u64 *start,
323 u64 *end)
324 {
325 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
326 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
327 const u64 orig_start = *start;
328 const u64 orig_end = *end;
329 /* The sanity tests may not set a valid fs_info. */
330 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
331 u64 delalloc_start;
332 u64 delalloc_end;
333 bool found;
334 struct extent_state *cached_state = NULL;
335 int ret;
336 int loops = 0;
337
338 /* Caller should pass a valid @end to indicate the search range end */
339 ASSERT(orig_end > orig_start);
340
341 /* The range should at least cover part of the page */
342 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
343 orig_end <= page_offset(locked_page)));
344 again:
345 /* step one, find a bunch of delalloc bytes starting at start */
346 delalloc_start = *start;
347 delalloc_end = 0;
348 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
349 max_bytes, &cached_state);
350 if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
351 *start = delalloc_start;
352
353 /* @delalloc_end can be -1, never go beyond @orig_end */
354 *end = min(delalloc_end, orig_end);
355 free_extent_state(cached_state);
356 return false;
357 }
358
359 /*
360 * start comes from the offset of locked_page. We have to lock
361 * pages in order, so we can't process delalloc bytes before
362 * locked_page
363 */
364 if (delalloc_start < *start)
365 delalloc_start = *start;
366
367 /*
368 * make sure to limit the number of pages we try to lock down
369 */
370 if (delalloc_end + 1 - delalloc_start > max_bytes)
371 delalloc_end = delalloc_start + max_bytes - 1;
372
373 /* step two, lock all the pages after the page that has start */
374 ret = lock_delalloc_pages(inode, locked_page,
375 delalloc_start, delalloc_end);
376 ASSERT(!ret || ret == -EAGAIN);
377 if (ret == -EAGAIN) {
378 /* some of the pages are gone, lets avoid looping by
379 * shortening the size of the delalloc range we're searching
380 */
381 free_extent_state(cached_state);
382 cached_state = NULL;
383 if (!loops) {
384 max_bytes = PAGE_SIZE;
385 loops = 1;
386 goto again;
387 } else {
388 found = false;
389 goto out_failed;
390 }
391 }
392
393 /* step three, lock the state bits for the whole range */
394 lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
395
396 /* then test to make sure it is all still delalloc */
397 ret = test_range_bit(tree, delalloc_start, delalloc_end,
398 EXTENT_DELALLOC, 1, cached_state);
399 if (!ret) {
400 unlock_extent(tree, delalloc_start, delalloc_end,
401 &cached_state);
402 __unlock_for_delalloc(inode, locked_page,
403 delalloc_start, delalloc_end);
404 cond_resched();
405 goto again;
406 }
407 free_extent_state(cached_state);
408 *start = delalloc_start;
409 *end = delalloc_end;
410 out_failed:
411 return found;
412 }
413
extent_clear_unlock_delalloc(struct btrfs_inode * inode,u64 start,u64 end,struct page * locked_page,u32 clear_bits,unsigned long page_ops)414 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
415 struct page *locked_page,
416 u32 clear_bits, unsigned long page_ops)
417 {
418 clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL);
419
420 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
421 start, end, page_ops);
422 }
423
btrfs_verify_page(struct page * page,u64 start)424 static bool btrfs_verify_page(struct page *page, u64 start)
425 {
426 if (!fsverity_active(page->mapping->host) ||
427 PageUptodate(page) ||
428 start >= i_size_read(page->mapping->host))
429 return true;
430 return fsverity_verify_page(page);
431 }
432
end_page_read(struct page * page,bool uptodate,u64 start,u32 len)433 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
434 {
435 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
436
437 ASSERT(page_offset(page) <= start &&
438 start + len <= page_offset(page) + PAGE_SIZE);
439
440 if (uptodate && btrfs_verify_page(page, start))
441 btrfs_page_set_uptodate(fs_info, page, start, len);
442 else
443 btrfs_page_clear_uptodate(fs_info, page, start, len);
444
445 if (!btrfs_is_subpage(fs_info, page))
446 unlock_page(page);
447 else
448 btrfs_subpage_end_reader(fs_info, page, start, len);
449 }
450
451 /*
452 * after a writepage IO is done, we need to:
453 * clear the uptodate bits on error
454 * clear the writeback bits in the extent tree for this IO
455 * end_page_writeback if the page has no more pending IO
456 *
457 * Scheduling is not allowed, so the extent state tree is expected
458 * to have one and only one object corresponding to this IO.
459 */
end_bio_extent_writepage(struct btrfs_bio * bbio)460 static void end_bio_extent_writepage(struct btrfs_bio *bbio)
461 {
462 struct bio *bio = &bbio->bio;
463 int error = blk_status_to_errno(bio->bi_status);
464 struct bio_vec *bvec;
465 struct bvec_iter_all iter_all;
466
467 ASSERT(!bio_flagged(bio, BIO_CLONED));
468 bio_for_each_segment_all(bvec, bio, iter_all) {
469 struct page *page = bvec->bv_page;
470 struct inode *inode = page->mapping->host;
471 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
472 const u32 sectorsize = fs_info->sectorsize;
473 u64 start = page_offset(page) + bvec->bv_offset;
474 u32 len = bvec->bv_len;
475
476 /* Our read/write should always be sector aligned. */
477 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
478 btrfs_err(fs_info,
479 "partial page write in btrfs with offset %u and length %u",
480 bvec->bv_offset, bvec->bv_len);
481 else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
482 btrfs_info(fs_info,
483 "incomplete page write with offset %u and length %u",
484 bvec->bv_offset, bvec->bv_len);
485
486 btrfs_finish_ordered_extent(bbio->ordered, page, start, len, !error);
487 if (error)
488 mapping_set_error(page->mapping, error);
489 btrfs_page_clear_writeback(fs_info, page, start, len);
490 }
491
492 bio_put(bio);
493 }
494
495 /*
496 * Record previously processed extent range
497 *
498 * For endio_readpage_release_extent() to handle a full extent range, reducing
499 * the extent io operations.
500 */
501 struct processed_extent {
502 struct btrfs_inode *inode;
503 /* Start of the range in @inode */
504 u64 start;
505 /* End of the range in @inode */
506 u64 end;
507 bool uptodate;
508 };
509
510 /*
511 * Try to release processed extent range
512 *
513 * May not release the extent range right now if the current range is
514 * contiguous to processed extent.
515 *
516 * Will release processed extent when any of @inode, @uptodate, the range is
517 * no longer contiguous to the processed range.
518 *
519 * Passing @inode == NULL will force processed extent to be released.
520 */
endio_readpage_release_extent(struct processed_extent * processed,struct btrfs_inode * inode,u64 start,u64 end,bool uptodate)521 static void endio_readpage_release_extent(struct processed_extent *processed,
522 struct btrfs_inode *inode, u64 start, u64 end,
523 bool uptodate)
524 {
525 struct extent_state *cached = NULL;
526 struct extent_io_tree *tree;
527
528 /* The first extent, initialize @processed */
529 if (!processed->inode)
530 goto update;
531
532 /*
533 * Contiguous to processed extent, just uptodate the end.
534 *
535 * Several things to notice:
536 *
537 * - bio can be merged as long as on-disk bytenr is contiguous
538 * This means we can have page belonging to other inodes, thus need to
539 * check if the inode still matches.
540 * - bvec can contain range beyond current page for multi-page bvec
541 * Thus we need to do processed->end + 1 >= start check
542 */
543 if (processed->inode == inode && processed->uptodate == uptodate &&
544 processed->end + 1 >= start && end >= processed->end) {
545 processed->end = end;
546 return;
547 }
548
549 tree = &processed->inode->io_tree;
550 /*
551 * Now we don't have range contiguous to the processed range, release
552 * the processed range now.
553 */
554 unlock_extent(tree, processed->start, processed->end, &cached);
555
556 update:
557 /* Update processed to current range */
558 processed->inode = inode;
559 processed->start = start;
560 processed->end = end;
561 processed->uptodate = uptodate;
562 }
563
begin_page_read(struct btrfs_fs_info * fs_info,struct page * page)564 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
565 {
566 ASSERT(PageLocked(page));
567 if (!btrfs_is_subpage(fs_info, page))
568 return;
569
570 ASSERT(PagePrivate(page));
571 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
572 }
573
574 /*
575 * after a readpage IO is done, we need to:
576 * clear the uptodate bits on error
577 * set the uptodate bits if things worked
578 * set the page up to date if all extents in the tree are uptodate
579 * clear the lock bit in the extent tree
580 * unlock the page if there are no other extents locked for it
581 *
582 * Scheduling is not allowed, so the extent state tree is expected
583 * to have one and only one object corresponding to this IO.
584 */
end_bio_extent_readpage(struct btrfs_bio * bbio)585 static void end_bio_extent_readpage(struct btrfs_bio *bbio)
586 {
587 struct bio *bio = &bbio->bio;
588 struct bio_vec *bvec;
589 struct processed_extent processed = { 0 };
590 /*
591 * The offset to the beginning of a bio, since one bio can never be
592 * larger than UINT_MAX, u32 here is enough.
593 */
594 u32 bio_offset = 0;
595 struct bvec_iter_all iter_all;
596
597 ASSERT(!bio_flagged(bio, BIO_CLONED));
598 bio_for_each_segment_all(bvec, bio, iter_all) {
599 bool uptodate = !bio->bi_status;
600 struct page *page = bvec->bv_page;
601 struct inode *inode = page->mapping->host;
602 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
603 const u32 sectorsize = fs_info->sectorsize;
604 u64 start;
605 u64 end;
606 u32 len;
607
608 btrfs_debug(fs_info,
609 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
610 bio->bi_iter.bi_sector, bio->bi_status,
611 bbio->mirror_num);
612
613 /*
614 * We always issue full-sector reads, but if some block in a
615 * page fails to read, blk_update_request() will advance
616 * bv_offset and adjust bv_len to compensate. Print a warning
617 * for unaligned offsets, and an error if they don't add up to
618 * a full sector.
619 */
620 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
621 btrfs_err(fs_info,
622 "partial page read in btrfs with offset %u and length %u",
623 bvec->bv_offset, bvec->bv_len);
624 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
625 sectorsize))
626 btrfs_info(fs_info,
627 "incomplete page read with offset %u and length %u",
628 bvec->bv_offset, bvec->bv_len);
629
630 start = page_offset(page) + bvec->bv_offset;
631 end = start + bvec->bv_len - 1;
632 len = bvec->bv_len;
633
634 if (likely(uptodate)) {
635 loff_t i_size = i_size_read(inode);
636 pgoff_t end_index = i_size >> PAGE_SHIFT;
637
638 /*
639 * Zero out the remaining part if this range straddles
640 * i_size.
641 *
642 * Here we should only zero the range inside the bvec,
643 * not touch anything else.
644 *
645 * NOTE: i_size is exclusive while end is inclusive.
646 */
647 if (page->index == end_index && i_size <= end) {
648 u32 zero_start = max(offset_in_page(i_size),
649 offset_in_page(start));
650
651 zero_user_segment(page, zero_start,
652 offset_in_page(end) + 1);
653 }
654 }
655
656 /* Update page status and unlock. */
657 end_page_read(page, uptodate, start, len);
658 endio_readpage_release_extent(&processed, BTRFS_I(inode),
659 start, end, uptodate);
660
661 ASSERT(bio_offset + len > bio_offset);
662 bio_offset += len;
663
664 }
665 /* Release the last extent */
666 endio_readpage_release_extent(&processed, NULL, 0, 0, false);
667 bio_put(bio);
668 }
669
670 /*
671 * Populate every free slot in a provided array with pages.
672 *
673 * @nr_pages: number of pages to allocate
674 * @page_array: the array to fill with pages; any existing non-null entries in
675 * the array will be skipped
676 *
677 * Return: 0 if all pages were able to be allocated;
678 * -ENOMEM otherwise, and the caller is responsible for freeing all
679 * non-null page pointers in the array.
680 */
btrfs_alloc_page_array(unsigned int nr_pages,struct page ** page_array)681 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array)
682 {
683 unsigned int allocated;
684
685 for (allocated = 0; allocated < nr_pages;) {
686 unsigned int last = allocated;
687
688 allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array);
689
690 if (allocated == nr_pages)
691 return 0;
692
693 /*
694 * During this iteration, no page could be allocated, even
695 * though alloc_pages_bulk_array() falls back to alloc_page()
696 * if it could not bulk-allocate. So we must be out of memory.
697 */
698 if (allocated == last)
699 return -ENOMEM;
700
701 memalloc_retry_wait(GFP_NOFS);
702 }
703 return 0;
704 }
705
btrfs_bio_is_contig(struct btrfs_bio_ctrl * bio_ctrl,struct page * page,u64 disk_bytenr,unsigned int pg_offset)706 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl,
707 struct page *page, u64 disk_bytenr,
708 unsigned int pg_offset)
709 {
710 struct bio *bio = &bio_ctrl->bbio->bio;
711 struct bio_vec *bvec = bio_last_bvec_all(bio);
712 const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
713
714 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
715 /*
716 * For compression, all IO should have its logical bytenr set
717 * to the starting bytenr of the compressed extent.
718 */
719 return bio->bi_iter.bi_sector == sector;
720 }
721
722 /*
723 * The contig check requires the following conditions to be met:
724 *
725 * 1) The pages are belonging to the same inode
726 * This is implied by the call chain.
727 *
728 * 2) The range has adjacent logical bytenr
729 *
730 * 3) The range has adjacent file offset
731 * This is required for the usage of btrfs_bio->file_offset.
732 */
733 return bio_end_sector(bio) == sector &&
734 page_offset(bvec->bv_page) + bvec->bv_offset + bvec->bv_len ==
735 page_offset(page) + pg_offset;
736 }
737
alloc_new_bio(struct btrfs_inode * inode,struct btrfs_bio_ctrl * bio_ctrl,u64 disk_bytenr,u64 file_offset)738 static void alloc_new_bio(struct btrfs_inode *inode,
739 struct btrfs_bio_ctrl *bio_ctrl,
740 u64 disk_bytenr, u64 file_offset)
741 {
742 struct btrfs_fs_info *fs_info = inode->root->fs_info;
743 struct btrfs_bio *bbio;
744
745 bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info,
746 bio_ctrl->end_io_func, NULL);
747 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
748 bbio->inode = inode;
749 bbio->file_offset = file_offset;
750 bio_ctrl->bbio = bbio;
751 bio_ctrl->len_to_oe_boundary = U32_MAX;
752
753 /* Limit data write bios to the ordered boundary. */
754 if (bio_ctrl->wbc) {
755 struct btrfs_ordered_extent *ordered;
756
757 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
758 if (ordered) {
759 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
760 ordered->file_offset +
761 ordered->disk_num_bytes - file_offset);
762 bbio->ordered = ordered;
763 }
764
765 /*
766 * Pick the last added device to support cgroup writeback. For
767 * multi-device file systems this means blk-cgroup policies have
768 * to always be set on the last added/replaced device.
769 * This is a bit odd but has been like that for a long time.
770 */
771 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
772 wbc_init_bio(bio_ctrl->wbc, &bbio->bio);
773 }
774 }
775
776 /*
777 * @disk_bytenr: logical bytenr where the write will be
778 * @page: page to add to the bio
779 * @size: portion of page that we want to write to
780 * @pg_offset: offset of the new bio or to check whether we are adding
781 * a contiguous page to the previous one
782 *
783 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a
784 * new one in @bio_ctrl->bbio.
785 * The mirror number for this IO should already be initizlied in
786 * @bio_ctrl->mirror_num.
787 */
submit_extent_page(struct btrfs_bio_ctrl * bio_ctrl,u64 disk_bytenr,struct page * page,size_t size,unsigned long pg_offset)788 static void submit_extent_page(struct btrfs_bio_ctrl *bio_ctrl,
789 u64 disk_bytenr, struct page *page,
790 size_t size, unsigned long pg_offset)
791 {
792 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
793
794 ASSERT(pg_offset + size <= PAGE_SIZE);
795 ASSERT(bio_ctrl->end_io_func);
796
797 if (bio_ctrl->bbio &&
798 !btrfs_bio_is_contig(bio_ctrl, page, disk_bytenr, pg_offset))
799 submit_one_bio(bio_ctrl);
800
801 do {
802 u32 len = size;
803
804 /* Allocate new bio if needed */
805 if (!bio_ctrl->bbio) {
806 alloc_new_bio(inode, bio_ctrl, disk_bytenr,
807 page_offset(page) + pg_offset);
808 }
809
810 /* Cap to the current ordered extent boundary if there is one. */
811 if (len > bio_ctrl->len_to_oe_boundary) {
812 ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE);
813 ASSERT(is_data_inode(&inode->vfs_inode));
814 len = bio_ctrl->len_to_oe_boundary;
815 }
816
817 if (bio_add_page(&bio_ctrl->bbio->bio, page, len, pg_offset) != len) {
818 /* bio full: move on to a new one */
819 submit_one_bio(bio_ctrl);
820 continue;
821 }
822
823 if (bio_ctrl->wbc)
824 wbc_account_cgroup_owner(bio_ctrl->wbc, page, len);
825
826 size -= len;
827 pg_offset += len;
828 disk_bytenr += len;
829
830 /*
831 * len_to_oe_boundary defaults to U32_MAX, which isn't page or
832 * sector aligned. alloc_new_bio() then sets it to the end of
833 * our ordered extent for writes into zoned devices.
834 *
835 * When len_to_oe_boundary is tracking an ordered extent, we
836 * trust the ordered extent code to align things properly, and
837 * the check above to cap our write to the ordered extent
838 * boundary is correct.
839 *
840 * When len_to_oe_boundary is U32_MAX, the cap above would
841 * result in a 4095 byte IO for the last page right before
842 * we hit the bio limit of UINT_MAX. bio_add_page() has all
843 * the checks required to make sure we don't overflow the bio,
844 * and we should just ignore len_to_oe_boundary completely
845 * unless we're using it to track an ordered extent.
846 *
847 * It's pretty hard to make a bio sized U32_MAX, but it can
848 * happen when the page cache is able to feed us contiguous
849 * pages for large extents.
850 */
851 if (bio_ctrl->len_to_oe_boundary != U32_MAX)
852 bio_ctrl->len_to_oe_boundary -= len;
853
854 /* Ordered extent boundary: move on to a new bio. */
855 if (bio_ctrl->len_to_oe_boundary == 0)
856 submit_one_bio(bio_ctrl);
857 } while (size);
858 }
859
attach_extent_buffer_page(struct extent_buffer * eb,struct page * page,struct btrfs_subpage * prealloc)860 static int attach_extent_buffer_page(struct extent_buffer *eb,
861 struct page *page,
862 struct btrfs_subpage *prealloc)
863 {
864 struct btrfs_fs_info *fs_info = eb->fs_info;
865 int ret = 0;
866
867 /*
868 * If the page is mapped to btree inode, we should hold the private
869 * lock to prevent race.
870 * For cloned or dummy extent buffers, their pages are not mapped and
871 * will not race with any other ebs.
872 */
873 if (page->mapping)
874 lockdep_assert_held(&page->mapping->private_lock);
875
876 if (fs_info->nodesize >= PAGE_SIZE) {
877 if (!PagePrivate(page))
878 attach_page_private(page, eb);
879 else
880 WARN_ON(page->private != (unsigned long)eb);
881 return 0;
882 }
883
884 /* Already mapped, just free prealloc */
885 if (PagePrivate(page)) {
886 btrfs_free_subpage(prealloc);
887 return 0;
888 }
889
890 if (prealloc)
891 /* Has preallocated memory for subpage */
892 attach_page_private(page, prealloc);
893 else
894 /* Do new allocation to attach subpage */
895 ret = btrfs_attach_subpage(fs_info, page,
896 BTRFS_SUBPAGE_METADATA);
897 return ret;
898 }
899
set_page_extent_mapped(struct page * page)900 int set_page_extent_mapped(struct page *page)
901 {
902 struct btrfs_fs_info *fs_info;
903
904 ASSERT(page->mapping);
905
906 if (PagePrivate(page))
907 return 0;
908
909 fs_info = btrfs_sb(page->mapping->host->i_sb);
910
911 if (btrfs_is_subpage(fs_info, page))
912 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);
913
914 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
915 return 0;
916 }
917
clear_page_extent_mapped(struct page * page)918 void clear_page_extent_mapped(struct page *page)
919 {
920 struct btrfs_fs_info *fs_info;
921
922 ASSERT(page->mapping);
923
924 if (!PagePrivate(page))
925 return;
926
927 fs_info = btrfs_sb(page->mapping->host->i_sb);
928 if (btrfs_is_subpage(fs_info, page))
929 return btrfs_detach_subpage(fs_info, page);
930
931 detach_page_private(page);
932 }
933
934 static struct extent_map *
__get_extent_map(struct inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,struct extent_map ** em_cached)935 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
936 u64 start, u64 len, struct extent_map **em_cached)
937 {
938 struct extent_map *em;
939
940 if (em_cached && *em_cached) {
941 em = *em_cached;
942 if (extent_map_in_tree(em) && start >= em->start &&
943 start < extent_map_end(em)) {
944 refcount_inc(&em->refs);
945 return em;
946 }
947
948 free_extent_map(em);
949 *em_cached = NULL;
950 }
951
952 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
953 if (em_cached && !IS_ERR(em)) {
954 BUG_ON(*em_cached);
955 refcount_inc(&em->refs);
956 *em_cached = em;
957 }
958 return em;
959 }
960 /*
961 * basic readpage implementation. Locked extent state structs are inserted
962 * into the tree that are removed when the IO is done (by the end_io
963 * handlers)
964 * XXX JDM: This needs looking at to ensure proper page locking
965 * return 0 on success, otherwise return error
966 */
btrfs_do_readpage(struct page * page,struct extent_map ** em_cached,struct btrfs_bio_ctrl * bio_ctrl,u64 * prev_em_start)967 static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
968 struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start)
969 {
970 struct inode *inode = page->mapping->host;
971 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
972 u64 start = page_offset(page);
973 const u64 end = start + PAGE_SIZE - 1;
974 u64 cur = start;
975 u64 extent_offset;
976 u64 last_byte = i_size_read(inode);
977 u64 block_start;
978 struct extent_map *em;
979 int ret = 0;
980 size_t pg_offset = 0;
981 size_t iosize;
982 size_t blocksize = inode->i_sb->s_blocksize;
983 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
984
985 ret = set_page_extent_mapped(page);
986 if (ret < 0) {
987 unlock_extent(tree, start, end, NULL);
988 unlock_page(page);
989 return ret;
990 }
991
992 if (page->index == last_byte >> PAGE_SHIFT) {
993 size_t zero_offset = offset_in_page(last_byte);
994
995 if (zero_offset) {
996 iosize = PAGE_SIZE - zero_offset;
997 memzero_page(page, zero_offset, iosize);
998 }
999 }
1000 bio_ctrl->end_io_func = end_bio_extent_readpage;
1001 begin_page_read(fs_info, page);
1002 while (cur <= end) {
1003 enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE;
1004 bool force_bio_submit = false;
1005 u64 disk_bytenr;
1006
1007 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
1008 if (cur >= last_byte) {
1009 iosize = PAGE_SIZE - pg_offset;
1010 memzero_page(page, pg_offset, iosize);
1011 unlock_extent(tree, cur, cur + iosize - 1, NULL);
1012 end_page_read(page, true, cur, iosize);
1013 break;
1014 }
1015 em = __get_extent_map(inode, page, pg_offset, cur,
1016 end - cur + 1, em_cached);
1017 if (IS_ERR(em)) {
1018 unlock_extent(tree, cur, end, NULL);
1019 end_page_read(page, false, cur, end + 1 - cur);
1020 return PTR_ERR(em);
1021 }
1022 extent_offset = cur - em->start;
1023 BUG_ON(extent_map_end(em) <= cur);
1024 BUG_ON(end < cur);
1025
1026 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
1027 compress_type = em->compress_type;
1028
1029 iosize = min(extent_map_end(em) - cur, end - cur + 1);
1030 iosize = ALIGN(iosize, blocksize);
1031 if (compress_type != BTRFS_COMPRESS_NONE)
1032 disk_bytenr = em->block_start;
1033 else
1034 disk_bytenr = em->block_start + extent_offset;
1035 block_start = em->block_start;
1036 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
1037 block_start = EXTENT_MAP_HOLE;
1038
1039 /*
1040 * If we have a file range that points to a compressed extent
1041 * and it's followed by a consecutive file range that points
1042 * to the same compressed extent (possibly with a different
1043 * offset and/or length, so it either points to the whole extent
1044 * or only part of it), we must make sure we do not submit a
1045 * single bio to populate the pages for the 2 ranges because
1046 * this makes the compressed extent read zero out the pages
1047 * belonging to the 2nd range. Imagine the following scenario:
1048 *
1049 * File layout
1050 * [0 - 8K] [8K - 24K]
1051 * | |
1052 * | |
1053 * points to extent X, points to extent X,
1054 * offset 4K, length of 8K offset 0, length 16K
1055 *
1056 * [extent X, compressed length = 4K uncompressed length = 16K]
1057 *
1058 * If the bio to read the compressed extent covers both ranges,
1059 * it will decompress extent X into the pages belonging to the
1060 * first range and then it will stop, zeroing out the remaining
1061 * pages that belong to the other range that points to extent X.
1062 * So here we make sure we submit 2 bios, one for the first
1063 * range and another one for the third range. Both will target
1064 * the same physical extent from disk, but we can't currently
1065 * make the compressed bio endio callback populate the pages
1066 * for both ranges because each compressed bio is tightly
1067 * coupled with a single extent map, and each range can have
1068 * an extent map with a different offset value relative to the
1069 * uncompressed data of our extent and different lengths. This
1070 * is a corner case so we prioritize correctness over
1071 * non-optimal behavior (submitting 2 bios for the same extent).
1072 */
1073 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
1074 prev_em_start && *prev_em_start != (u64)-1 &&
1075 *prev_em_start != em->start)
1076 force_bio_submit = true;
1077
1078 if (prev_em_start)
1079 *prev_em_start = em->start;
1080
1081 free_extent_map(em);
1082 em = NULL;
1083
1084 /* we've found a hole, just zero and go on */
1085 if (block_start == EXTENT_MAP_HOLE) {
1086 memzero_page(page, pg_offset, iosize);
1087
1088 unlock_extent(tree, cur, cur + iosize - 1, NULL);
1089 end_page_read(page, true, cur, iosize);
1090 cur = cur + iosize;
1091 pg_offset += iosize;
1092 continue;
1093 }
1094 /* the get_extent function already copied into the page */
1095 if (block_start == EXTENT_MAP_INLINE) {
1096 unlock_extent(tree, cur, cur + iosize - 1, NULL);
1097 end_page_read(page, true, cur, iosize);
1098 cur = cur + iosize;
1099 pg_offset += iosize;
1100 continue;
1101 }
1102
1103 if (bio_ctrl->compress_type != compress_type) {
1104 submit_one_bio(bio_ctrl);
1105 bio_ctrl->compress_type = compress_type;
1106 }
1107
1108 if (force_bio_submit)
1109 submit_one_bio(bio_ctrl);
1110 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1111 pg_offset);
1112 cur = cur + iosize;
1113 pg_offset += iosize;
1114 }
1115
1116 return 0;
1117 }
1118
btrfs_read_folio(struct file * file,struct folio * folio)1119 int btrfs_read_folio(struct file *file, struct folio *folio)
1120 {
1121 struct page *page = &folio->page;
1122 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
1123 u64 start = page_offset(page);
1124 u64 end = start + PAGE_SIZE - 1;
1125 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ };
1126 int ret;
1127
1128 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1129
1130 ret = btrfs_do_readpage(page, NULL, &bio_ctrl, NULL);
1131 /*
1132 * If btrfs_do_readpage() failed we will want to submit the assembled
1133 * bio to do the cleanup.
1134 */
1135 submit_one_bio(&bio_ctrl);
1136 return ret;
1137 }
1138
contiguous_readpages(struct page * pages[],int nr_pages,u64 start,u64 end,struct extent_map ** em_cached,struct btrfs_bio_ctrl * bio_ctrl,u64 * prev_em_start)1139 static inline void contiguous_readpages(struct page *pages[], int nr_pages,
1140 u64 start, u64 end,
1141 struct extent_map **em_cached,
1142 struct btrfs_bio_ctrl *bio_ctrl,
1143 u64 *prev_em_start)
1144 {
1145 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
1146 int index;
1147
1148 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1149
1150 for (index = 0; index < nr_pages; index++) {
1151 btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
1152 prev_em_start);
1153 put_page(pages[index]);
1154 }
1155 }
1156
1157 /*
1158 * helper for __extent_writepage, doing all of the delayed allocation setup.
1159 *
1160 * This returns 1 if btrfs_run_delalloc_range function did all the work required
1161 * to write the page (copy into inline extent). In this case the IO has
1162 * been started and the page is already unlocked.
1163 *
1164 * This returns 0 if all went well (page still locked)
1165 * This returns < 0 if there were errors (page still locked)
1166 */
writepage_delalloc(struct btrfs_inode * inode,struct page * page,struct writeback_control * wbc)1167 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1168 struct page *page, struct writeback_control *wbc)
1169 {
1170 const u64 page_start = page_offset(page);
1171 const u64 page_end = page_start + PAGE_SIZE - 1;
1172 u64 delalloc_start = page_start;
1173 u64 delalloc_end = page_end;
1174 u64 delalloc_to_write = 0;
1175 int ret = 0;
1176
1177 while (delalloc_start < page_end) {
1178 delalloc_end = page_end;
1179 if (!find_lock_delalloc_range(&inode->vfs_inode, page,
1180 &delalloc_start, &delalloc_end)) {
1181 delalloc_start = delalloc_end + 1;
1182 continue;
1183 }
1184
1185 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
1186 delalloc_end, wbc);
1187 if (ret < 0)
1188 return ret;
1189
1190 delalloc_start = delalloc_end + 1;
1191 }
1192
1193 /*
1194 * delalloc_end is already one less than the total length, so
1195 * we don't subtract one from PAGE_SIZE
1196 */
1197 delalloc_to_write +=
1198 DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE);
1199
1200 /*
1201 * If btrfs_run_dealloc_range() already started I/O and unlocked
1202 * the pages, we just need to account for them here.
1203 */
1204 if (ret == 1) {
1205 wbc->nr_to_write -= delalloc_to_write;
1206 return 1;
1207 }
1208
1209 if (wbc->nr_to_write < delalloc_to_write) {
1210 int thresh = 8192;
1211
1212 if (delalloc_to_write < thresh * 2)
1213 thresh = delalloc_to_write;
1214 wbc->nr_to_write = min_t(u64, delalloc_to_write,
1215 thresh);
1216 }
1217
1218 return 0;
1219 }
1220
1221 /*
1222 * Find the first byte we need to write.
1223 *
1224 * For subpage, one page can contain several sectors, and
1225 * __extent_writepage_io() will just grab all extent maps in the page
1226 * range and try to submit all non-inline/non-compressed extents.
1227 *
1228 * This is a big problem for subpage, we shouldn't re-submit already written
1229 * data at all.
1230 * This function will lookup subpage dirty bit to find which range we really
1231 * need to submit.
1232 *
1233 * Return the next dirty range in [@start, @end).
1234 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
1235 */
find_next_dirty_byte(struct btrfs_fs_info * fs_info,struct page * page,u64 * start,u64 * end)1236 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
1237 struct page *page, u64 *start, u64 *end)
1238 {
1239 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
1240 struct btrfs_subpage_info *spi = fs_info->subpage_info;
1241 u64 orig_start = *start;
1242 /* Declare as unsigned long so we can use bitmap ops */
1243 unsigned long flags;
1244 int range_start_bit;
1245 int range_end_bit;
1246
1247 /*
1248 * For regular sector size == page size case, since one page only
1249 * contains one sector, we return the page offset directly.
1250 */
1251 if (!btrfs_is_subpage(fs_info, page)) {
1252 *start = page_offset(page);
1253 *end = page_offset(page) + PAGE_SIZE;
1254 return;
1255 }
1256
1257 range_start_bit = spi->dirty_offset +
1258 (offset_in_page(orig_start) >> fs_info->sectorsize_bits);
1259
1260 /* We should have the page locked, but just in case */
1261 spin_lock_irqsave(&subpage->lock, flags);
1262 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
1263 spi->dirty_offset + spi->bitmap_nr_bits);
1264 spin_unlock_irqrestore(&subpage->lock, flags);
1265
1266 range_start_bit -= spi->dirty_offset;
1267 range_end_bit -= spi->dirty_offset;
1268
1269 *start = page_offset(page) + range_start_bit * fs_info->sectorsize;
1270 *end = page_offset(page) + range_end_bit * fs_info->sectorsize;
1271 }
1272
1273 /*
1274 * helper for __extent_writepage. This calls the writepage start hooks,
1275 * and does the loop to map the page into extents and bios.
1276 *
1277 * We return 1 if the IO is started and the page is unlocked,
1278 * 0 if all went well (page still locked)
1279 * < 0 if there were errors (page still locked)
1280 */
__extent_writepage_io(struct btrfs_inode * inode,struct page * page,struct btrfs_bio_ctrl * bio_ctrl,loff_t i_size,int * nr_ret)1281 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
1282 struct page *page,
1283 struct btrfs_bio_ctrl *bio_ctrl,
1284 loff_t i_size,
1285 int *nr_ret)
1286 {
1287 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1288 u64 cur = page_offset(page);
1289 u64 end = cur + PAGE_SIZE - 1;
1290 u64 extent_offset;
1291 u64 block_start;
1292 struct extent_map *em;
1293 int ret = 0;
1294 int nr = 0;
1295
1296 ret = btrfs_writepage_cow_fixup(page);
1297 if (ret) {
1298 /* Fixup worker will requeue */
1299 redirty_page_for_writepage(bio_ctrl->wbc, page);
1300 unlock_page(page);
1301 return 1;
1302 }
1303
1304 bio_ctrl->end_io_func = end_bio_extent_writepage;
1305 while (cur <= end) {
1306 u32 len = end - cur + 1;
1307 u64 disk_bytenr;
1308 u64 em_end;
1309 u64 dirty_range_start = cur;
1310 u64 dirty_range_end;
1311 u32 iosize;
1312
1313 if (cur >= i_size) {
1314 btrfs_mark_ordered_io_finished(inode, page, cur, len,
1315 true);
1316 /*
1317 * This range is beyond i_size, thus we don't need to
1318 * bother writing back.
1319 * But we still need to clear the dirty subpage bit, or
1320 * the next time the page gets dirtied, we will try to
1321 * writeback the sectors with subpage dirty bits,
1322 * causing writeback without ordered extent.
1323 */
1324 btrfs_page_clear_dirty(fs_info, page, cur, len);
1325 break;
1326 }
1327
1328 find_next_dirty_byte(fs_info, page, &dirty_range_start,
1329 &dirty_range_end);
1330 if (cur < dirty_range_start) {
1331 cur = dirty_range_start;
1332 continue;
1333 }
1334
1335 em = btrfs_get_extent(inode, NULL, 0, cur, len);
1336 if (IS_ERR(em)) {
1337 ret = PTR_ERR_OR_ZERO(em);
1338 goto out_error;
1339 }
1340
1341 extent_offset = cur - em->start;
1342 em_end = extent_map_end(em);
1343 ASSERT(cur <= em_end);
1344 ASSERT(cur < end);
1345 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
1346 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
1347
1348 block_start = em->block_start;
1349 disk_bytenr = em->block_start + extent_offset;
1350
1351 ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags));
1352 ASSERT(block_start != EXTENT_MAP_HOLE);
1353 ASSERT(block_start != EXTENT_MAP_INLINE);
1354
1355 /*
1356 * Note that em_end from extent_map_end() and dirty_range_end from
1357 * find_next_dirty_byte() are all exclusive
1358 */
1359 iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
1360 free_extent_map(em);
1361 em = NULL;
1362
1363 btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
1364 if (!PageWriteback(page)) {
1365 btrfs_err(inode->root->fs_info,
1366 "page %lu not writeback, cur %llu end %llu",
1367 page->index, cur, end);
1368 }
1369
1370 /*
1371 * Although the PageDirty bit is cleared before entering this
1372 * function, subpage dirty bit is not cleared.
1373 * So clear subpage dirty bit here so next time we won't submit
1374 * page for range already written to disk.
1375 */
1376 btrfs_page_clear_dirty(fs_info, page, cur, iosize);
1377
1378 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1379 cur - page_offset(page));
1380 cur += iosize;
1381 nr++;
1382 }
1383
1384 btrfs_page_assert_not_dirty(fs_info, page);
1385 *nr_ret = nr;
1386 return 0;
1387
1388 out_error:
1389 /*
1390 * If we finish without problem, we should not only clear page dirty,
1391 * but also empty subpage dirty bits
1392 */
1393 *nr_ret = nr;
1394 return ret;
1395 }
1396
1397 /*
1398 * the writepage semantics are similar to regular writepage. extent
1399 * records are inserted to lock ranges in the tree, and as dirty areas
1400 * are found, they are marked writeback. Then the lock bits are removed
1401 * and the end_io handler clears the writeback ranges
1402 *
1403 * Return 0 if everything goes well.
1404 * Return <0 for error.
1405 */
__extent_writepage(struct page * page,struct btrfs_bio_ctrl * bio_ctrl)1406 static int __extent_writepage(struct page *page, struct btrfs_bio_ctrl *bio_ctrl)
1407 {
1408 struct folio *folio = page_folio(page);
1409 struct inode *inode = page->mapping->host;
1410 const u64 page_start = page_offset(page);
1411 int ret;
1412 int nr = 0;
1413 size_t pg_offset;
1414 loff_t i_size = i_size_read(inode);
1415 unsigned long end_index = i_size >> PAGE_SHIFT;
1416
1417 trace___extent_writepage(page, inode, bio_ctrl->wbc);
1418
1419 WARN_ON(!PageLocked(page));
1420
1421 pg_offset = offset_in_page(i_size);
1422 if (page->index > end_index ||
1423 (page->index == end_index && !pg_offset)) {
1424 folio_invalidate(folio, 0, folio_size(folio));
1425 folio_unlock(folio);
1426 return 0;
1427 }
1428
1429 if (page->index == end_index)
1430 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
1431
1432 ret = set_page_extent_mapped(page);
1433 if (ret < 0)
1434 goto done;
1435
1436 ret = writepage_delalloc(BTRFS_I(inode), page, bio_ctrl->wbc);
1437 if (ret == 1)
1438 return 0;
1439 if (ret)
1440 goto done;
1441
1442 ret = __extent_writepage_io(BTRFS_I(inode), page, bio_ctrl, i_size, &nr);
1443 if (ret == 1)
1444 return 0;
1445
1446 bio_ctrl->wbc->nr_to_write--;
1447
1448 done:
1449 if (nr == 0) {
1450 /* make sure the mapping tag for page dirty gets cleared */
1451 set_page_writeback(page);
1452 end_page_writeback(page);
1453 }
1454 if (ret) {
1455 btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, page_start,
1456 PAGE_SIZE, !ret);
1457 mapping_set_error(page->mapping, ret);
1458 }
1459 unlock_page(page);
1460 ASSERT(ret <= 0);
1461 return ret;
1462 }
1463
wait_on_extent_buffer_writeback(struct extent_buffer * eb)1464 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
1465 {
1466 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
1467 TASK_UNINTERRUPTIBLE);
1468 }
1469
1470 /*
1471 * Lock extent buffer status and pages for writeback.
1472 *
1473 * Return %false if the extent buffer doesn't need to be submitted (e.g. the
1474 * extent buffer is not dirty)
1475 * Return %true is the extent buffer is submitted to bio.
1476 */
lock_extent_buffer_for_io(struct extent_buffer * eb,struct writeback_control * wbc)1477 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb,
1478 struct writeback_control *wbc)
1479 {
1480 struct btrfs_fs_info *fs_info = eb->fs_info;
1481 bool ret = false;
1482
1483 btrfs_tree_lock(eb);
1484 while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
1485 btrfs_tree_unlock(eb);
1486 if (wbc->sync_mode != WB_SYNC_ALL)
1487 return false;
1488 wait_on_extent_buffer_writeback(eb);
1489 btrfs_tree_lock(eb);
1490 }
1491
1492 /*
1493 * We need to do this to prevent races in people who check if the eb is
1494 * under IO since we can end up having no IO bits set for a short period
1495 * of time.
1496 */
1497 spin_lock(&eb->refs_lock);
1498 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
1499 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1500 spin_unlock(&eb->refs_lock);
1501 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
1502 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1503 -eb->len,
1504 fs_info->dirty_metadata_batch);
1505 ret = true;
1506 } else {
1507 spin_unlock(&eb->refs_lock);
1508 }
1509 btrfs_tree_unlock(eb);
1510 return ret;
1511 }
1512
set_btree_ioerr(struct extent_buffer * eb)1513 static void set_btree_ioerr(struct extent_buffer *eb)
1514 {
1515 struct btrfs_fs_info *fs_info = eb->fs_info;
1516
1517 set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1518
1519 /*
1520 * A read may stumble upon this buffer later, make sure that it gets an
1521 * error and knows there was an error.
1522 */
1523 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
1524
1525 /*
1526 * We need to set the mapping with the io error as well because a write
1527 * error will flip the file system readonly, and then syncfs() will
1528 * return a 0 because we are readonly if we don't modify the err seq for
1529 * the superblock.
1530 */
1531 mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO);
1532
1533 /*
1534 * If writeback for a btree extent that doesn't belong to a log tree
1535 * failed, increment the counter transaction->eb_write_errors.
1536 * We do this because while the transaction is running and before it's
1537 * committing (when we call filemap_fdata[write|wait]_range against
1538 * the btree inode), we might have
1539 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
1540 * returns an error or an error happens during writeback, when we're
1541 * committing the transaction we wouldn't know about it, since the pages
1542 * can be no longer dirty nor marked anymore for writeback (if a
1543 * subsequent modification to the extent buffer didn't happen before the
1544 * transaction commit), which makes filemap_fdata[write|wait]_range not
1545 * able to find the pages tagged with SetPageError at transaction
1546 * commit time. So if this happens we must abort the transaction,
1547 * otherwise we commit a super block with btree roots that point to
1548 * btree nodes/leafs whose content on disk is invalid - either garbage
1549 * or the content of some node/leaf from a past generation that got
1550 * cowed or deleted and is no longer valid.
1551 *
1552 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
1553 * not be enough - we need to distinguish between log tree extents vs
1554 * non-log tree extents, and the next filemap_fdatawait_range() call
1555 * will catch and clear such errors in the mapping - and that call might
1556 * be from a log sync and not from a transaction commit. Also, checking
1557 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
1558 * not done and would not be reliable - the eb might have been released
1559 * from memory and reading it back again means that flag would not be
1560 * set (since it's a runtime flag, not persisted on disk).
1561 *
1562 * Using the flags below in the btree inode also makes us achieve the
1563 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
1564 * writeback for all dirty pages and before filemap_fdatawait_range()
1565 * is called, the writeback for all dirty pages had already finished
1566 * with errors - because we were not using AS_EIO/AS_ENOSPC,
1567 * filemap_fdatawait_range() would return success, as it could not know
1568 * that writeback errors happened (the pages were no longer tagged for
1569 * writeback).
1570 */
1571 switch (eb->log_index) {
1572 case -1:
1573 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
1574 break;
1575 case 0:
1576 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
1577 break;
1578 case 1:
1579 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
1580 break;
1581 default:
1582 BUG(); /* unexpected, logic error */
1583 }
1584 }
1585
1586 /*
1587 * The endio specific version which won't touch any unsafe spinlock in endio
1588 * context.
1589 */
find_extent_buffer_nolock(struct btrfs_fs_info * fs_info,u64 start)1590 static struct extent_buffer *find_extent_buffer_nolock(
1591 struct btrfs_fs_info *fs_info, u64 start)
1592 {
1593 struct extent_buffer *eb;
1594
1595 rcu_read_lock();
1596 eb = radix_tree_lookup(&fs_info->buffer_radix,
1597 start >> fs_info->sectorsize_bits);
1598 if (eb && atomic_inc_not_zero(&eb->refs)) {
1599 rcu_read_unlock();
1600 return eb;
1601 }
1602 rcu_read_unlock();
1603 return NULL;
1604 }
1605
extent_buffer_write_end_io(struct btrfs_bio * bbio)1606 static void extent_buffer_write_end_io(struct btrfs_bio *bbio)
1607 {
1608 struct extent_buffer *eb = bbio->private;
1609 struct btrfs_fs_info *fs_info = eb->fs_info;
1610 bool uptodate = !bbio->bio.bi_status;
1611 struct bvec_iter_all iter_all;
1612 struct bio_vec *bvec;
1613 u32 bio_offset = 0;
1614
1615 if (!uptodate)
1616 set_btree_ioerr(eb);
1617
1618 bio_for_each_segment_all(bvec, &bbio->bio, iter_all) {
1619 u64 start = eb->start + bio_offset;
1620 struct page *page = bvec->bv_page;
1621 u32 len = bvec->bv_len;
1622
1623 btrfs_page_clear_writeback(fs_info, page, start, len);
1624 bio_offset += len;
1625 }
1626
1627 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1628 smp_mb__after_atomic();
1629 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
1630
1631 bio_put(&bbio->bio);
1632 }
1633
prepare_eb_write(struct extent_buffer * eb)1634 static void prepare_eb_write(struct extent_buffer *eb)
1635 {
1636 u32 nritems;
1637 unsigned long start;
1638 unsigned long end;
1639
1640 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1641
1642 /* Set btree blocks beyond nritems with 0 to avoid stale content */
1643 nritems = btrfs_header_nritems(eb);
1644 if (btrfs_header_level(eb) > 0) {
1645 end = btrfs_node_key_ptr_offset(eb, nritems);
1646 memzero_extent_buffer(eb, end, eb->len - end);
1647 } else {
1648 /*
1649 * Leaf:
1650 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
1651 */
1652 start = btrfs_item_nr_offset(eb, nritems);
1653 end = btrfs_item_nr_offset(eb, 0);
1654 if (nritems == 0)
1655 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
1656 else
1657 end += btrfs_item_offset(eb, nritems - 1);
1658 memzero_extent_buffer(eb, start, end - start);
1659 }
1660 }
1661
write_one_eb(struct extent_buffer * eb,struct writeback_control * wbc)1662 static noinline_for_stack void write_one_eb(struct extent_buffer *eb,
1663 struct writeback_control *wbc)
1664 {
1665 struct btrfs_fs_info *fs_info = eb->fs_info;
1666 struct btrfs_bio *bbio;
1667
1668 prepare_eb_write(eb);
1669
1670 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
1671 REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc),
1672 eb->fs_info, extent_buffer_write_end_io, eb);
1673 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
1674 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
1675 wbc_init_bio(wbc, &bbio->bio);
1676 bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
1677 bbio->file_offset = eb->start;
1678 if (fs_info->nodesize < PAGE_SIZE) {
1679 struct page *p = eb->pages[0];
1680
1681 lock_page(p);
1682 btrfs_subpage_set_writeback(fs_info, p, eb->start, eb->len);
1683 if (btrfs_subpage_clear_and_test_dirty(fs_info, p, eb->start,
1684 eb->len)) {
1685 clear_page_dirty_for_io(p);
1686 wbc->nr_to_write--;
1687 }
1688 __bio_add_page(&bbio->bio, p, eb->len, eb->start - page_offset(p));
1689 wbc_account_cgroup_owner(wbc, p, eb->len);
1690 unlock_page(p);
1691 } else {
1692 for (int i = 0; i < num_extent_pages(eb); i++) {
1693 struct page *p = eb->pages[i];
1694
1695 lock_page(p);
1696 clear_page_dirty_for_io(p);
1697 set_page_writeback(p);
1698 __bio_add_page(&bbio->bio, p, PAGE_SIZE, 0);
1699 wbc_account_cgroup_owner(wbc, p, PAGE_SIZE);
1700 wbc->nr_to_write--;
1701 unlock_page(p);
1702 }
1703 }
1704 btrfs_submit_bio(bbio, 0);
1705 }
1706
1707 /*
1708 * Submit one subpage btree page.
1709 *
1710 * The main difference to submit_eb_page() is:
1711 * - Page locking
1712 * For subpage, we don't rely on page locking at all.
1713 *
1714 * - Flush write bio
1715 * We only flush bio if we may be unable to fit current extent buffers into
1716 * current bio.
1717 *
1718 * Return >=0 for the number of submitted extent buffers.
1719 * Return <0 for fatal error.
1720 */
submit_eb_subpage(struct page * page,struct writeback_control * wbc)1721 static int submit_eb_subpage(struct page *page, struct writeback_control *wbc)
1722 {
1723 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
1724 int submitted = 0;
1725 u64 page_start = page_offset(page);
1726 int bit_start = 0;
1727 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
1728
1729 /* Lock and write each dirty extent buffers in the range */
1730 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
1731 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
1732 struct extent_buffer *eb;
1733 unsigned long flags;
1734 u64 start;
1735
1736 /*
1737 * Take private lock to ensure the subpage won't be detached
1738 * in the meantime.
1739 */
1740 spin_lock(&page->mapping->private_lock);
1741 if (!PagePrivate(page)) {
1742 spin_unlock(&page->mapping->private_lock);
1743 break;
1744 }
1745 spin_lock_irqsave(&subpage->lock, flags);
1746 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
1747 subpage->bitmaps)) {
1748 spin_unlock_irqrestore(&subpage->lock, flags);
1749 spin_unlock(&page->mapping->private_lock);
1750 bit_start++;
1751 continue;
1752 }
1753
1754 start = page_start + bit_start * fs_info->sectorsize;
1755 bit_start += sectors_per_node;
1756
1757 /*
1758 * Here we just want to grab the eb without touching extra
1759 * spin locks, so call find_extent_buffer_nolock().
1760 */
1761 eb = find_extent_buffer_nolock(fs_info, start);
1762 spin_unlock_irqrestore(&subpage->lock, flags);
1763 spin_unlock(&page->mapping->private_lock);
1764
1765 /*
1766 * The eb has already reached 0 refs thus find_extent_buffer()
1767 * doesn't return it. We don't need to write back such eb
1768 * anyway.
1769 */
1770 if (!eb)
1771 continue;
1772
1773 if (lock_extent_buffer_for_io(eb, wbc)) {
1774 write_one_eb(eb, wbc);
1775 submitted++;
1776 }
1777 free_extent_buffer(eb);
1778 }
1779 return submitted;
1780 }
1781
1782 /*
1783 * Submit all page(s) of one extent buffer.
1784 *
1785 * @page: the page of one extent buffer
1786 * @eb_context: to determine if we need to submit this page, if current page
1787 * belongs to this eb, we don't need to submit
1788 *
1789 * The caller should pass each page in their bytenr order, and here we use
1790 * @eb_context to determine if we have submitted pages of one extent buffer.
1791 *
1792 * If we have, we just skip until we hit a new page that doesn't belong to
1793 * current @eb_context.
1794 *
1795 * If not, we submit all the page(s) of the extent buffer.
1796 *
1797 * Return >0 if we have submitted the extent buffer successfully.
1798 * Return 0 if we don't need to submit the page, as it's already submitted by
1799 * previous call.
1800 * Return <0 for fatal error.
1801 */
submit_eb_page(struct page * page,struct btrfs_eb_write_context * ctx)1802 static int submit_eb_page(struct page *page, struct btrfs_eb_write_context *ctx)
1803 {
1804 struct writeback_control *wbc = ctx->wbc;
1805 struct address_space *mapping = page->mapping;
1806 struct extent_buffer *eb;
1807 int ret;
1808
1809 if (!PagePrivate(page))
1810 return 0;
1811
1812 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
1813 return submit_eb_subpage(page, wbc);
1814
1815 spin_lock(&mapping->private_lock);
1816 if (!PagePrivate(page)) {
1817 spin_unlock(&mapping->private_lock);
1818 return 0;
1819 }
1820
1821 eb = (struct extent_buffer *)page->private;
1822
1823 /*
1824 * Shouldn't happen and normally this would be a BUG_ON but no point
1825 * crashing the machine for something we can survive anyway.
1826 */
1827 if (WARN_ON(!eb)) {
1828 spin_unlock(&mapping->private_lock);
1829 return 0;
1830 }
1831
1832 if (eb == ctx->eb) {
1833 spin_unlock(&mapping->private_lock);
1834 return 0;
1835 }
1836 ret = atomic_inc_not_zero(&eb->refs);
1837 spin_unlock(&mapping->private_lock);
1838 if (!ret)
1839 return 0;
1840
1841 ctx->eb = eb;
1842
1843 ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx);
1844 if (ret) {
1845 if (ret == -EBUSY)
1846 ret = 0;
1847 free_extent_buffer(eb);
1848 return ret;
1849 }
1850
1851 if (!lock_extent_buffer_for_io(eb, wbc)) {
1852 free_extent_buffer(eb);
1853 return 0;
1854 }
1855 /* Implies write in zoned mode. */
1856 if (ctx->zoned_bg) {
1857 /* Mark the last eb in the block group. */
1858 btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb);
1859 ctx->zoned_bg->meta_write_pointer += eb->len;
1860 }
1861 write_one_eb(eb, wbc);
1862 free_extent_buffer(eb);
1863 return 1;
1864 }
1865
btree_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc)1866 int btree_write_cache_pages(struct address_space *mapping,
1867 struct writeback_control *wbc)
1868 {
1869 struct btrfs_eb_write_context ctx = { .wbc = wbc };
1870 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
1871 int ret = 0;
1872 int done = 0;
1873 int nr_to_write_done = 0;
1874 struct folio_batch fbatch;
1875 unsigned int nr_folios;
1876 pgoff_t index;
1877 pgoff_t end; /* Inclusive */
1878 int scanned = 0;
1879 xa_mark_t tag;
1880
1881 folio_batch_init(&fbatch);
1882 if (wbc->range_cyclic) {
1883 index = mapping->writeback_index; /* Start from prev offset */
1884 end = -1;
1885 /*
1886 * Start from the beginning does not need to cycle over the
1887 * range, mark it as scanned.
1888 */
1889 scanned = (index == 0);
1890 } else {
1891 index = wbc->range_start >> PAGE_SHIFT;
1892 end = wbc->range_end >> PAGE_SHIFT;
1893 scanned = 1;
1894 }
1895 if (wbc->sync_mode == WB_SYNC_ALL)
1896 tag = PAGECACHE_TAG_TOWRITE;
1897 else
1898 tag = PAGECACHE_TAG_DIRTY;
1899 btrfs_zoned_meta_io_lock(fs_info);
1900 retry:
1901 if (wbc->sync_mode == WB_SYNC_ALL)
1902 tag_pages_for_writeback(mapping, index, end);
1903 while (!done && !nr_to_write_done && (index <= end) &&
1904 (nr_folios = filemap_get_folios_tag(mapping, &index, end,
1905 tag, &fbatch))) {
1906 unsigned i;
1907
1908 for (i = 0; i < nr_folios; i++) {
1909 struct folio *folio = fbatch.folios[i];
1910
1911 ret = submit_eb_page(&folio->page, &ctx);
1912 if (ret == 0)
1913 continue;
1914 if (ret < 0) {
1915 done = 1;
1916 break;
1917 }
1918
1919 /*
1920 * the filesystem may choose to bump up nr_to_write.
1921 * We have to make sure to honor the new nr_to_write
1922 * at any time
1923 */
1924 nr_to_write_done = wbc->nr_to_write <= 0;
1925 }
1926 folio_batch_release(&fbatch);
1927 cond_resched();
1928 }
1929 if (!scanned && !done) {
1930 /*
1931 * We hit the last page and there is more work to be done: wrap
1932 * back to the start of the file
1933 */
1934 scanned = 1;
1935 index = 0;
1936 goto retry;
1937 }
1938 /*
1939 * If something went wrong, don't allow any metadata write bio to be
1940 * submitted.
1941 *
1942 * This would prevent use-after-free if we had dirty pages not
1943 * cleaned up, which can still happen by fuzzed images.
1944 *
1945 * - Bad extent tree
1946 * Allowing existing tree block to be allocated for other trees.
1947 *
1948 * - Log tree operations
1949 * Exiting tree blocks get allocated to log tree, bumps its
1950 * generation, then get cleaned in tree re-balance.
1951 * Such tree block will not be written back, since it's clean,
1952 * thus no WRITTEN flag set.
1953 * And after log writes back, this tree block is not traced by
1954 * any dirty extent_io_tree.
1955 *
1956 * - Offending tree block gets re-dirtied from its original owner
1957 * Since it has bumped generation, no WRITTEN flag, it can be
1958 * reused without COWing. This tree block will not be traced
1959 * by btrfs_transaction::dirty_pages.
1960 *
1961 * Now such dirty tree block will not be cleaned by any dirty
1962 * extent io tree. Thus we don't want to submit such wild eb
1963 * if the fs already has error.
1964 *
1965 * We can get ret > 0 from submit_extent_page() indicating how many ebs
1966 * were submitted. Reset it to 0 to avoid false alerts for the caller.
1967 */
1968 if (ret > 0)
1969 ret = 0;
1970 if (!ret && BTRFS_FS_ERROR(fs_info))
1971 ret = -EROFS;
1972
1973 if (ctx.zoned_bg)
1974 btrfs_put_block_group(ctx.zoned_bg);
1975 btrfs_zoned_meta_io_unlock(fs_info);
1976 return ret;
1977 }
1978
1979 /*
1980 * Walk the list of dirty pages of the given address space and write all of them.
1981 *
1982 * @mapping: address space structure to write
1983 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1984 * @bio_ctrl: holds context for the write, namely the bio
1985 *
1986 * If a page is already under I/O, write_cache_pages() skips it, even
1987 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1988 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1989 * and msync() need to guarantee that all the data which was dirty at the time
1990 * the call was made get new I/O started against them. If wbc->sync_mode is
1991 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1992 * existing IO to complete.
1993 */
extent_write_cache_pages(struct address_space * mapping,struct btrfs_bio_ctrl * bio_ctrl)1994 static int extent_write_cache_pages(struct address_space *mapping,
1995 struct btrfs_bio_ctrl *bio_ctrl)
1996 {
1997 struct writeback_control *wbc = bio_ctrl->wbc;
1998 struct inode *inode = mapping->host;
1999 int ret = 0;
2000 int done = 0;
2001 int nr_to_write_done = 0;
2002 struct folio_batch fbatch;
2003 unsigned int nr_folios;
2004 pgoff_t index;
2005 pgoff_t end; /* Inclusive */
2006 pgoff_t done_index;
2007 int range_whole = 0;
2008 int scanned = 0;
2009 xa_mark_t tag;
2010
2011 /*
2012 * We have to hold onto the inode so that ordered extents can do their
2013 * work when the IO finishes. The alternative to this is failing to add
2014 * an ordered extent if the igrab() fails there and that is a huge pain
2015 * to deal with, so instead just hold onto the inode throughout the
2016 * writepages operation. If it fails here we are freeing up the inode
2017 * anyway and we'd rather not waste our time writing out stuff that is
2018 * going to be truncated anyway.
2019 */
2020 if (!igrab(inode))
2021 return 0;
2022
2023 folio_batch_init(&fbatch);
2024 if (wbc->range_cyclic) {
2025 index = mapping->writeback_index; /* Start from prev offset */
2026 end = -1;
2027 /*
2028 * Start from the beginning does not need to cycle over the
2029 * range, mark it as scanned.
2030 */
2031 scanned = (index == 0);
2032 } else {
2033 index = wbc->range_start >> PAGE_SHIFT;
2034 end = wbc->range_end >> PAGE_SHIFT;
2035 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2036 range_whole = 1;
2037 scanned = 1;
2038 }
2039
2040 /*
2041 * We do the tagged writepage as long as the snapshot flush bit is set
2042 * and we are the first one who do the filemap_flush() on this inode.
2043 *
2044 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
2045 * not race in and drop the bit.
2046 */
2047 if (range_whole && wbc->nr_to_write == LONG_MAX &&
2048 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
2049 &BTRFS_I(inode)->runtime_flags))
2050 wbc->tagged_writepages = 1;
2051
2052 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2053 tag = PAGECACHE_TAG_TOWRITE;
2054 else
2055 tag = PAGECACHE_TAG_DIRTY;
2056 retry:
2057 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2058 tag_pages_for_writeback(mapping, index, end);
2059 done_index = index;
2060 while (!done && !nr_to_write_done && (index <= end) &&
2061 (nr_folios = filemap_get_folios_tag(mapping, &index,
2062 end, tag, &fbatch))) {
2063 unsigned i;
2064
2065 for (i = 0; i < nr_folios; i++) {
2066 struct folio *folio = fbatch.folios[i];
2067
2068 done_index = folio_next_index(folio);
2069 /*
2070 * At this point we hold neither the i_pages lock nor
2071 * the page lock: the page may be truncated or
2072 * invalidated (changing page->mapping to NULL),
2073 * or even swizzled back from swapper_space to
2074 * tmpfs file mapping
2075 */
2076 if (!folio_trylock(folio)) {
2077 submit_write_bio(bio_ctrl, 0);
2078 folio_lock(folio);
2079 }
2080
2081 if (unlikely(folio->mapping != mapping)) {
2082 folio_unlock(folio);
2083 continue;
2084 }
2085
2086 if (!folio_test_dirty(folio)) {
2087 /* Someone wrote it for us. */
2088 folio_unlock(folio);
2089 continue;
2090 }
2091
2092 if (wbc->sync_mode != WB_SYNC_NONE) {
2093 if (folio_test_writeback(folio))
2094 submit_write_bio(bio_ctrl, 0);
2095 folio_wait_writeback(folio);
2096 }
2097
2098 if (folio_test_writeback(folio) ||
2099 !folio_clear_dirty_for_io(folio)) {
2100 folio_unlock(folio);
2101 continue;
2102 }
2103
2104 ret = __extent_writepage(&folio->page, bio_ctrl);
2105 if (ret < 0) {
2106 done = 1;
2107 break;
2108 }
2109
2110 /*
2111 * The filesystem may choose to bump up nr_to_write.
2112 * We have to make sure to honor the new nr_to_write
2113 * at any time.
2114 */
2115 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
2116 wbc->nr_to_write <= 0);
2117 }
2118 folio_batch_release(&fbatch);
2119 cond_resched();
2120 }
2121 if (!scanned && !done) {
2122 /*
2123 * We hit the last page and there is more work to be done: wrap
2124 * back to the start of the file
2125 */
2126 scanned = 1;
2127 index = 0;
2128
2129 /*
2130 * If we're looping we could run into a page that is locked by a
2131 * writer and that writer could be waiting on writeback for a
2132 * page in our current bio, and thus deadlock, so flush the
2133 * write bio here.
2134 */
2135 submit_write_bio(bio_ctrl, 0);
2136 goto retry;
2137 }
2138
2139 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
2140 mapping->writeback_index = done_index;
2141
2142 btrfs_add_delayed_iput(BTRFS_I(inode));
2143 return ret;
2144 }
2145
2146 /*
2147 * Submit the pages in the range to bio for call sites which delalloc range has
2148 * already been ran (aka, ordered extent inserted) and all pages are still
2149 * locked.
2150 */
extent_write_locked_range(struct inode * inode,struct page * locked_page,u64 start,u64 end,struct writeback_control * wbc,bool pages_dirty)2151 void extent_write_locked_range(struct inode *inode, struct page *locked_page,
2152 u64 start, u64 end, struct writeback_control *wbc,
2153 bool pages_dirty)
2154 {
2155 bool found_error = false;
2156 int ret = 0;
2157 struct address_space *mapping = inode->i_mapping;
2158 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2159 const u32 sectorsize = fs_info->sectorsize;
2160 loff_t i_size = i_size_read(inode);
2161 u64 cur = start;
2162 struct btrfs_bio_ctrl bio_ctrl = {
2163 .wbc = wbc,
2164 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2165 };
2166
2167 if (wbc->no_cgroup_owner)
2168 bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT;
2169
2170 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
2171
2172 while (cur <= end) {
2173 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
2174 u32 cur_len = cur_end + 1 - cur;
2175 struct page *page;
2176 int nr = 0;
2177
2178 page = find_get_page(mapping, cur >> PAGE_SHIFT);
2179 ASSERT(PageLocked(page));
2180 if (pages_dirty && page != locked_page) {
2181 ASSERT(PageDirty(page));
2182 clear_page_dirty_for_io(page);
2183 }
2184
2185 ret = __extent_writepage_io(BTRFS_I(inode), page, &bio_ctrl,
2186 i_size, &nr);
2187 if (ret == 1)
2188 goto next_page;
2189
2190 /* Make sure the mapping tag for page dirty gets cleared. */
2191 if (nr == 0) {
2192 set_page_writeback(page);
2193 end_page_writeback(page);
2194 }
2195 if (ret) {
2196 btrfs_mark_ordered_io_finished(BTRFS_I(inode), page,
2197 cur, cur_len, !ret);
2198 mapping_set_error(page->mapping, ret);
2199 }
2200 btrfs_page_unlock_writer(fs_info, page, cur, cur_len);
2201 if (ret < 0)
2202 found_error = true;
2203 next_page:
2204 put_page(page);
2205 cur = cur_end + 1;
2206 }
2207
2208 submit_write_bio(&bio_ctrl, found_error ? ret : 0);
2209 }
2210
extent_writepages(struct address_space * mapping,struct writeback_control * wbc)2211 int extent_writepages(struct address_space *mapping,
2212 struct writeback_control *wbc)
2213 {
2214 struct inode *inode = mapping->host;
2215 int ret = 0;
2216 struct btrfs_bio_ctrl bio_ctrl = {
2217 .wbc = wbc,
2218 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2219 };
2220
2221 /*
2222 * Allow only a single thread to do the reloc work in zoned mode to
2223 * protect the write pointer updates.
2224 */
2225 btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
2226 ret = extent_write_cache_pages(mapping, &bio_ctrl);
2227 submit_write_bio(&bio_ctrl, ret);
2228 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
2229 return ret;
2230 }
2231
extent_readahead(struct readahead_control * rac)2232 void extent_readahead(struct readahead_control *rac)
2233 {
2234 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD };
2235 struct page *pagepool[16];
2236 struct extent_map *em_cached = NULL;
2237 u64 prev_em_start = (u64)-1;
2238 int nr;
2239
2240 while ((nr = readahead_page_batch(rac, pagepool))) {
2241 u64 contig_start = readahead_pos(rac);
2242 u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
2243
2244 contiguous_readpages(pagepool, nr, contig_start, contig_end,
2245 &em_cached, &bio_ctrl, &prev_em_start);
2246 }
2247
2248 if (em_cached)
2249 free_extent_map(em_cached);
2250 submit_one_bio(&bio_ctrl);
2251 }
2252
2253 /*
2254 * basic invalidate_folio code, this waits on any locked or writeback
2255 * ranges corresponding to the folio, and then deletes any extent state
2256 * records from the tree
2257 */
extent_invalidate_folio(struct extent_io_tree * tree,struct folio * folio,size_t offset)2258 int extent_invalidate_folio(struct extent_io_tree *tree,
2259 struct folio *folio, size_t offset)
2260 {
2261 struct extent_state *cached_state = NULL;
2262 u64 start = folio_pos(folio);
2263 u64 end = start + folio_size(folio) - 1;
2264 size_t blocksize = folio->mapping->host->i_sb->s_blocksize;
2265
2266 /* This function is only called for the btree inode */
2267 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
2268
2269 start += ALIGN(offset, blocksize);
2270 if (start > end)
2271 return 0;
2272
2273 lock_extent(tree, start, end, &cached_state);
2274 folio_wait_writeback(folio);
2275
2276 /*
2277 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
2278 * so here we only need to unlock the extent range to free any
2279 * existing extent state.
2280 */
2281 unlock_extent(tree, start, end, &cached_state);
2282 return 0;
2283 }
2284
2285 /*
2286 * a helper for release_folio, this tests for areas of the page that
2287 * are locked or under IO and drops the related state bits if it is safe
2288 * to drop the page.
2289 */
try_release_extent_state(struct extent_io_tree * tree,struct page * page,gfp_t mask)2290 static int try_release_extent_state(struct extent_io_tree *tree,
2291 struct page *page, gfp_t mask)
2292 {
2293 u64 start = page_offset(page);
2294 u64 end = start + PAGE_SIZE - 1;
2295 int ret = 1;
2296
2297 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
2298 ret = 0;
2299 } else {
2300 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM |
2301 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS);
2302
2303 /*
2304 * At this point we can safely clear everything except the
2305 * locked bit, the nodatasum bit and the delalloc new bit.
2306 * The delalloc new bit will be cleared by ordered extent
2307 * completion.
2308 */
2309 ret = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL);
2310
2311 /* if clear_extent_bit failed for enomem reasons,
2312 * we can't allow the release to continue.
2313 */
2314 if (ret < 0)
2315 ret = 0;
2316 else
2317 ret = 1;
2318 }
2319 return ret;
2320 }
2321
2322 /*
2323 * a helper for release_folio. As long as there are no locked extents
2324 * in the range corresponding to the page, both state records and extent
2325 * map records are removed
2326 */
try_release_extent_mapping(struct page * page,gfp_t mask)2327 int try_release_extent_mapping(struct page *page, gfp_t mask)
2328 {
2329 struct extent_map *em;
2330 u64 start = page_offset(page);
2331 u64 end = start + PAGE_SIZE - 1;
2332 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
2333 struct extent_io_tree *tree = &btrfs_inode->io_tree;
2334 struct extent_map_tree *map = &btrfs_inode->extent_tree;
2335
2336 if (gfpflags_allow_blocking(mask) &&
2337 page->mapping->host->i_size > SZ_16M) {
2338 u64 len;
2339 while (start <= end) {
2340 struct btrfs_fs_info *fs_info;
2341 u64 cur_gen;
2342
2343 len = end - start + 1;
2344 write_lock(&map->lock);
2345 em = lookup_extent_mapping(map, start, len);
2346 if (!em) {
2347 write_unlock(&map->lock);
2348 break;
2349 }
2350 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
2351 em->start != start) {
2352 write_unlock(&map->lock);
2353 free_extent_map(em);
2354 break;
2355 }
2356 if (test_range_bit(tree, em->start,
2357 extent_map_end(em) - 1,
2358 EXTENT_LOCKED, 0, NULL))
2359 goto next;
2360 /*
2361 * If it's not in the list of modified extents, used
2362 * by a fast fsync, we can remove it. If it's being
2363 * logged we can safely remove it since fsync took an
2364 * extra reference on the em.
2365 */
2366 if (list_empty(&em->list) ||
2367 test_bit(EXTENT_FLAG_LOGGING, &em->flags))
2368 goto remove_em;
2369 /*
2370 * If it's in the list of modified extents, remove it
2371 * only if its generation is older then the current one,
2372 * in which case we don't need it for a fast fsync.
2373 * Otherwise don't remove it, we could be racing with an
2374 * ongoing fast fsync that could miss the new extent.
2375 */
2376 fs_info = btrfs_inode->root->fs_info;
2377 spin_lock(&fs_info->trans_lock);
2378 cur_gen = fs_info->generation;
2379 spin_unlock(&fs_info->trans_lock);
2380 if (em->generation >= cur_gen)
2381 goto next;
2382 remove_em:
2383 /*
2384 * We only remove extent maps that are not in the list of
2385 * modified extents or that are in the list but with a
2386 * generation lower then the current generation, so there
2387 * is no need to set the full fsync flag on the inode (it
2388 * hurts the fsync performance for workloads with a data
2389 * size that exceeds or is close to the system's memory).
2390 */
2391 remove_extent_mapping(map, em);
2392 /* once for the rb tree */
2393 free_extent_map(em);
2394 next:
2395 start = extent_map_end(em);
2396 write_unlock(&map->lock);
2397
2398 /* once for us */
2399 free_extent_map(em);
2400
2401 cond_resched(); /* Allow large-extent preemption. */
2402 }
2403 }
2404 return try_release_extent_state(tree, page, mask);
2405 }
2406
2407 /*
2408 * To cache previous fiemap extent
2409 *
2410 * Will be used for merging fiemap extent
2411 */
2412 struct fiemap_cache {
2413 u64 offset;
2414 u64 phys;
2415 u64 len;
2416 u32 flags;
2417 bool cached;
2418 };
2419
2420 /*
2421 * Helper to submit fiemap extent.
2422 *
2423 * Will try to merge current fiemap extent specified by @offset, @phys,
2424 * @len and @flags with cached one.
2425 * And only when we fails to merge, cached one will be submitted as
2426 * fiemap extent.
2427 *
2428 * Return value is the same as fiemap_fill_next_extent().
2429 */
emit_fiemap_extent(struct fiemap_extent_info * fieinfo,struct fiemap_cache * cache,u64 offset,u64 phys,u64 len,u32 flags)2430 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
2431 struct fiemap_cache *cache,
2432 u64 offset, u64 phys, u64 len, u32 flags)
2433 {
2434 int ret = 0;
2435
2436 /* Set at the end of extent_fiemap(). */
2437 ASSERT((flags & FIEMAP_EXTENT_LAST) == 0);
2438
2439 if (!cache->cached)
2440 goto assign;
2441
2442 /*
2443 * Sanity check, extent_fiemap() should have ensured that new
2444 * fiemap extent won't overlap with cached one.
2445 * Not recoverable.
2446 *
2447 * NOTE: Physical address can overlap, due to compression
2448 */
2449 if (cache->offset + cache->len > offset) {
2450 WARN_ON(1);
2451 return -EINVAL;
2452 }
2453
2454 /*
2455 * Only merges fiemap extents if
2456 * 1) Their logical addresses are continuous
2457 *
2458 * 2) Their physical addresses are continuous
2459 * So truly compressed (physical size smaller than logical size)
2460 * extents won't get merged with each other
2461 *
2462 * 3) Share same flags
2463 */
2464 if (cache->offset + cache->len == offset &&
2465 cache->phys + cache->len == phys &&
2466 cache->flags == flags) {
2467 cache->len += len;
2468 return 0;
2469 }
2470
2471 /* Not mergeable, need to submit cached one */
2472 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
2473 cache->len, cache->flags);
2474 cache->cached = false;
2475 if (ret)
2476 return ret;
2477 assign:
2478 cache->cached = true;
2479 cache->offset = offset;
2480 cache->phys = phys;
2481 cache->len = len;
2482 cache->flags = flags;
2483
2484 return 0;
2485 }
2486
2487 /*
2488 * Emit last fiemap cache
2489 *
2490 * The last fiemap cache may still be cached in the following case:
2491 * 0 4k 8k
2492 * |<- Fiemap range ->|
2493 * |<------------ First extent ----------->|
2494 *
2495 * In this case, the first extent range will be cached but not emitted.
2496 * So we must emit it before ending extent_fiemap().
2497 */
emit_last_fiemap_cache(struct fiemap_extent_info * fieinfo,struct fiemap_cache * cache)2498 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
2499 struct fiemap_cache *cache)
2500 {
2501 int ret;
2502
2503 if (!cache->cached)
2504 return 0;
2505
2506 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
2507 cache->len, cache->flags);
2508 cache->cached = false;
2509 if (ret > 0)
2510 ret = 0;
2511 return ret;
2512 }
2513
fiemap_next_leaf_item(struct btrfs_inode * inode,struct btrfs_path * path)2514 static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path)
2515 {
2516 struct extent_buffer *clone;
2517 struct btrfs_key key;
2518 int slot;
2519 int ret;
2520
2521 path->slots[0]++;
2522 if (path->slots[0] < btrfs_header_nritems(path->nodes[0]))
2523 return 0;
2524
2525 ret = btrfs_next_leaf(inode->root, path);
2526 if (ret != 0)
2527 return ret;
2528
2529 /*
2530 * Don't bother with cloning if there are no more file extent items for
2531 * our inode.
2532 */
2533 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2534 if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY)
2535 return 1;
2536
2537 /* See the comment at fiemap_search_slot() about why we clone. */
2538 clone = btrfs_clone_extent_buffer(path->nodes[0]);
2539 if (!clone)
2540 return -ENOMEM;
2541
2542 slot = path->slots[0];
2543 btrfs_release_path(path);
2544 path->nodes[0] = clone;
2545 path->slots[0] = slot;
2546
2547 return 0;
2548 }
2549
2550 /*
2551 * Search for the first file extent item that starts at a given file offset or
2552 * the one that starts immediately before that offset.
2553 * Returns: 0 on success, < 0 on error, 1 if not found.
2554 */
fiemap_search_slot(struct btrfs_inode * inode,struct btrfs_path * path,u64 file_offset)2555 static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path,
2556 u64 file_offset)
2557 {
2558 const u64 ino = btrfs_ino(inode);
2559 struct btrfs_root *root = inode->root;
2560 struct extent_buffer *clone;
2561 struct btrfs_key key;
2562 int slot;
2563 int ret;
2564
2565 key.objectid = ino;
2566 key.type = BTRFS_EXTENT_DATA_KEY;
2567 key.offset = file_offset;
2568
2569 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2570 if (ret < 0)
2571 return ret;
2572
2573 if (ret > 0 && path->slots[0] > 0) {
2574 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
2575 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
2576 path->slots[0]--;
2577 }
2578
2579 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2580 ret = btrfs_next_leaf(root, path);
2581 if (ret != 0)
2582 return ret;
2583
2584 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2585 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
2586 return 1;
2587 }
2588
2589 /*
2590 * We clone the leaf and use it during fiemap. This is because while
2591 * using the leaf we do expensive things like checking if an extent is
2592 * shared, which can take a long time. In order to prevent blocking
2593 * other tasks for too long, we use a clone of the leaf. We have locked
2594 * the file range in the inode's io tree, so we know none of our file
2595 * extent items can change. This way we avoid blocking other tasks that
2596 * want to insert items for other inodes in the same leaf or b+tree
2597 * rebalance operations (triggered for example when someone is trying
2598 * to push items into this leaf when trying to insert an item in a
2599 * neighbour leaf).
2600 * We also need the private clone because holding a read lock on an
2601 * extent buffer of the subvolume's b+tree will make lockdep unhappy
2602 * when we call fiemap_fill_next_extent(), because that may cause a page
2603 * fault when filling the user space buffer with fiemap data.
2604 */
2605 clone = btrfs_clone_extent_buffer(path->nodes[0]);
2606 if (!clone)
2607 return -ENOMEM;
2608
2609 slot = path->slots[0];
2610 btrfs_release_path(path);
2611 path->nodes[0] = clone;
2612 path->slots[0] = slot;
2613
2614 return 0;
2615 }
2616
2617 /*
2618 * Process a range which is a hole or a prealloc extent in the inode's subvolume
2619 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc
2620 * extent. The end offset (@end) is inclusive.
2621 */
fiemap_process_hole(struct btrfs_inode * inode,struct fiemap_extent_info * fieinfo,struct fiemap_cache * cache,struct extent_state ** delalloc_cached_state,struct btrfs_backref_share_check_ctx * backref_ctx,u64 disk_bytenr,u64 extent_offset,u64 extent_gen,u64 start,u64 end)2622 static int fiemap_process_hole(struct btrfs_inode *inode,
2623 struct fiemap_extent_info *fieinfo,
2624 struct fiemap_cache *cache,
2625 struct extent_state **delalloc_cached_state,
2626 struct btrfs_backref_share_check_ctx *backref_ctx,
2627 u64 disk_bytenr, u64 extent_offset,
2628 u64 extent_gen,
2629 u64 start, u64 end)
2630 {
2631 const u64 i_size = i_size_read(&inode->vfs_inode);
2632 u64 cur_offset = start;
2633 u64 last_delalloc_end = 0;
2634 u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN;
2635 bool checked_extent_shared = false;
2636 int ret;
2637
2638 /*
2639 * There can be no delalloc past i_size, so don't waste time looking for
2640 * it beyond i_size.
2641 */
2642 while (cur_offset < end && cur_offset < i_size) {
2643 u64 delalloc_start;
2644 u64 delalloc_end;
2645 u64 prealloc_start;
2646 u64 prealloc_len = 0;
2647 bool delalloc;
2648
2649 delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end,
2650 delalloc_cached_state,
2651 &delalloc_start,
2652 &delalloc_end);
2653 if (!delalloc)
2654 break;
2655
2656 /*
2657 * If this is a prealloc extent we have to report every section
2658 * of it that has no delalloc.
2659 */
2660 if (disk_bytenr != 0) {
2661 if (last_delalloc_end == 0) {
2662 prealloc_start = start;
2663 prealloc_len = delalloc_start - start;
2664 } else {
2665 prealloc_start = last_delalloc_end + 1;
2666 prealloc_len = delalloc_start - prealloc_start;
2667 }
2668 }
2669
2670 if (prealloc_len > 0) {
2671 if (!checked_extent_shared && fieinfo->fi_extents_max) {
2672 ret = btrfs_is_data_extent_shared(inode,
2673 disk_bytenr,
2674 extent_gen,
2675 backref_ctx);
2676 if (ret < 0)
2677 return ret;
2678 else if (ret > 0)
2679 prealloc_flags |= FIEMAP_EXTENT_SHARED;
2680
2681 checked_extent_shared = true;
2682 }
2683 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2684 disk_bytenr + extent_offset,
2685 prealloc_len, prealloc_flags);
2686 if (ret)
2687 return ret;
2688 extent_offset += prealloc_len;
2689 }
2690
2691 ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0,
2692 delalloc_end + 1 - delalloc_start,
2693 FIEMAP_EXTENT_DELALLOC |
2694 FIEMAP_EXTENT_UNKNOWN);
2695 if (ret)
2696 return ret;
2697
2698 last_delalloc_end = delalloc_end;
2699 cur_offset = delalloc_end + 1;
2700 extent_offset += cur_offset - delalloc_start;
2701 cond_resched();
2702 }
2703
2704 /*
2705 * Either we found no delalloc for the whole prealloc extent or we have
2706 * a prealloc extent that spans i_size or starts at or after i_size.
2707 */
2708 if (disk_bytenr != 0 && last_delalloc_end < end) {
2709 u64 prealloc_start;
2710 u64 prealloc_len;
2711
2712 if (last_delalloc_end == 0) {
2713 prealloc_start = start;
2714 prealloc_len = end + 1 - start;
2715 } else {
2716 prealloc_start = last_delalloc_end + 1;
2717 prealloc_len = end + 1 - prealloc_start;
2718 }
2719
2720 if (!checked_extent_shared && fieinfo->fi_extents_max) {
2721 ret = btrfs_is_data_extent_shared(inode,
2722 disk_bytenr,
2723 extent_gen,
2724 backref_ctx);
2725 if (ret < 0)
2726 return ret;
2727 else if (ret > 0)
2728 prealloc_flags |= FIEMAP_EXTENT_SHARED;
2729 }
2730 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2731 disk_bytenr + extent_offset,
2732 prealloc_len, prealloc_flags);
2733 if (ret)
2734 return ret;
2735 }
2736
2737 return 0;
2738 }
2739
fiemap_find_last_extent_offset(struct btrfs_inode * inode,struct btrfs_path * path,u64 * last_extent_end_ret)2740 static int fiemap_find_last_extent_offset(struct btrfs_inode *inode,
2741 struct btrfs_path *path,
2742 u64 *last_extent_end_ret)
2743 {
2744 const u64 ino = btrfs_ino(inode);
2745 struct btrfs_root *root = inode->root;
2746 struct extent_buffer *leaf;
2747 struct btrfs_file_extent_item *ei;
2748 struct btrfs_key key;
2749 u64 disk_bytenr;
2750 int ret;
2751
2752 /*
2753 * Lookup the last file extent. We're not using i_size here because
2754 * there might be preallocation past i_size.
2755 */
2756 ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0);
2757 /* There can't be a file extent item at offset (u64)-1 */
2758 ASSERT(ret != 0);
2759 if (ret < 0)
2760 return ret;
2761
2762 /*
2763 * For a non-existing key, btrfs_search_slot() always leaves us at a
2764 * slot > 0, except if the btree is empty, which is impossible because
2765 * at least it has the inode item for this inode and all the items for
2766 * the root inode 256.
2767 */
2768 ASSERT(path->slots[0] > 0);
2769 path->slots[0]--;
2770 leaf = path->nodes[0];
2771 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2772 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
2773 /* No file extent items in the subvolume tree. */
2774 *last_extent_end_ret = 0;
2775 return 0;
2776 }
2777
2778 /*
2779 * For an inline extent, the disk_bytenr is where inline data starts at,
2780 * so first check if we have an inline extent item before checking if we
2781 * have an implicit hole (disk_bytenr == 0).
2782 */
2783 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
2784 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
2785 *last_extent_end_ret = btrfs_file_extent_end(path);
2786 return 0;
2787 }
2788
2789 /*
2790 * Find the last file extent item that is not a hole (when NO_HOLES is
2791 * not enabled). This should take at most 2 iterations in the worst
2792 * case: we have one hole file extent item at slot 0 of a leaf and
2793 * another hole file extent item as the last item in the previous leaf.
2794 * This is because we merge file extent items that represent holes.
2795 */
2796 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
2797 while (disk_bytenr == 0) {
2798 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
2799 if (ret < 0) {
2800 return ret;
2801 } else if (ret > 0) {
2802 /* No file extent items that are not holes. */
2803 *last_extent_end_ret = 0;
2804 return 0;
2805 }
2806 leaf = path->nodes[0];
2807 ei = btrfs_item_ptr(leaf, path->slots[0],
2808 struct btrfs_file_extent_item);
2809 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
2810 }
2811
2812 *last_extent_end_ret = btrfs_file_extent_end(path);
2813 return 0;
2814 }
2815
extent_fiemap(struct btrfs_inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)2816 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
2817 u64 start, u64 len)
2818 {
2819 const u64 ino = btrfs_ino(inode);
2820 struct extent_state *cached_state = NULL;
2821 struct extent_state *delalloc_cached_state = NULL;
2822 struct btrfs_path *path;
2823 struct fiemap_cache cache = { 0 };
2824 struct btrfs_backref_share_check_ctx *backref_ctx;
2825 u64 last_extent_end;
2826 u64 prev_extent_end;
2827 u64 lockstart;
2828 u64 lockend;
2829 bool stopped = false;
2830 int ret;
2831
2832 backref_ctx = btrfs_alloc_backref_share_check_ctx();
2833 path = btrfs_alloc_path();
2834 if (!backref_ctx || !path) {
2835 ret = -ENOMEM;
2836 goto out;
2837 }
2838
2839 lockstart = round_down(start, inode->root->fs_info->sectorsize);
2840 lockend = round_up(start + len, inode->root->fs_info->sectorsize);
2841 prev_extent_end = lockstart;
2842
2843 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
2844 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
2845
2846 ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end);
2847 if (ret < 0)
2848 goto out_unlock;
2849 btrfs_release_path(path);
2850
2851 path->reada = READA_FORWARD;
2852 ret = fiemap_search_slot(inode, path, lockstart);
2853 if (ret < 0) {
2854 goto out_unlock;
2855 } else if (ret > 0) {
2856 /*
2857 * No file extent item found, but we may have delalloc between
2858 * the current offset and i_size. So check for that.
2859 */
2860 ret = 0;
2861 goto check_eof_delalloc;
2862 }
2863
2864 while (prev_extent_end < lockend) {
2865 struct extent_buffer *leaf = path->nodes[0];
2866 struct btrfs_file_extent_item *ei;
2867 struct btrfs_key key;
2868 u64 extent_end;
2869 u64 extent_len;
2870 u64 extent_offset = 0;
2871 u64 extent_gen;
2872 u64 disk_bytenr = 0;
2873 u64 flags = 0;
2874 int extent_type;
2875 u8 compression;
2876
2877 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2878 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
2879 break;
2880
2881 extent_end = btrfs_file_extent_end(path);
2882
2883 /*
2884 * The first iteration can leave us at an extent item that ends
2885 * before our range's start. Move to the next item.
2886 */
2887 if (extent_end <= lockstart)
2888 goto next_item;
2889
2890 backref_ctx->curr_leaf_bytenr = leaf->start;
2891
2892 /* We have in implicit hole (NO_HOLES feature enabled). */
2893 if (prev_extent_end < key.offset) {
2894 const u64 range_end = min(key.offset, lockend) - 1;
2895
2896 ret = fiemap_process_hole(inode, fieinfo, &cache,
2897 &delalloc_cached_state,
2898 backref_ctx, 0, 0, 0,
2899 prev_extent_end, range_end);
2900 if (ret < 0) {
2901 goto out_unlock;
2902 } else if (ret > 0) {
2903 /* fiemap_fill_next_extent() told us to stop. */
2904 stopped = true;
2905 break;
2906 }
2907
2908 /* We've reached the end of the fiemap range, stop. */
2909 if (key.offset >= lockend) {
2910 stopped = true;
2911 break;
2912 }
2913 }
2914
2915 extent_len = extent_end - key.offset;
2916 ei = btrfs_item_ptr(leaf, path->slots[0],
2917 struct btrfs_file_extent_item);
2918 compression = btrfs_file_extent_compression(leaf, ei);
2919 extent_type = btrfs_file_extent_type(leaf, ei);
2920 extent_gen = btrfs_file_extent_generation(leaf, ei);
2921
2922 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2923 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
2924 if (compression == BTRFS_COMPRESS_NONE)
2925 extent_offset = btrfs_file_extent_offset(leaf, ei);
2926 }
2927
2928 if (compression != BTRFS_COMPRESS_NONE)
2929 flags |= FIEMAP_EXTENT_ENCODED;
2930
2931 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2932 flags |= FIEMAP_EXTENT_DATA_INLINE;
2933 flags |= FIEMAP_EXTENT_NOT_ALIGNED;
2934 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0,
2935 extent_len, flags);
2936 } else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
2937 ret = fiemap_process_hole(inode, fieinfo, &cache,
2938 &delalloc_cached_state,
2939 backref_ctx,
2940 disk_bytenr, extent_offset,
2941 extent_gen, key.offset,
2942 extent_end - 1);
2943 } else if (disk_bytenr == 0) {
2944 /* We have an explicit hole. */
2945 ret = fiemap_process_hole(inode, fieinfo, &cache,
2946 &delalloc_cached_state,
2947 backref_ctx, 0, 0, 0,
2948 key.offset, extent_end - 1);
2949 } else {
2950 /* We have a regular extent. */
2951 if (fieinfo->fi_extents_max) {
2952 ret = btrfs_is_data_extent_shared(inode,
2953 disk_bytenr,
2954 extent_gen,
2955 backref_ctx);
2956 if (ret < 0)
2957 goto out_unlock;
2958 else if (ret > 0)
2959 flags |= FIEMAP_EXTENT_SHARED;
2960 }
2961
2962 ret = emit_fiemap_extent(fieinfo, &cache, key.offset,
2963 disk_bytenr + extent_offset,
2964 extent_len, flags);
2965 }
2966
2967 if (ret < 0) {
2968 goto out_unlock;
2969 } else if (ret > 0) {
2970 /* fiemap_fill_next_extent() told us to stop. */
2971 stopped = true;
2972 break;
2973 }
2974
2975 prev_extent_end = extent_end;
2976 next_item:
2977 if (fatal_signal_pending(current)) {
2978 ret = -EINTR;
2979 goto out_unlock;
2980 }
2981
2982 ret = fiemap_next_leaf_item(inode, path);
2983 if (ret < 0) {
2984 goto out_unlock;
2985 } else if (ret > 0) {
2986 /* No more file extent items for this inode. */
2987 break;
2988 }
2989 cond_resched();
2990 }
2991
2992 check_eof_delalloc:
2993 /*
2994 * Release (and free) the path before emitting any final entries to
2995 * fiemap_fill_next_extent() to keep lockdep happy. This is because
2996 * once we find no more file extent items exist, we may have a
2997 * non-cloned leaf, and fiemap_fill_next_extent() can trigger page
2998 * faults when copying data to the user space buffer.
2999 */
3000 btrfs_free_path(path);
3001 path = NULL;
3002
3003 if (!stopped && prev_extent_end < lockend) {
3004 ret = fiemap_process_hole(inode, fieinfo, &cache,
3005 &delalloc_cached_state, backref_ctx,
3006 0, 0, 0, prev_extent_end, lockend - 1);
3007 if (ret < 0)
3008 goto out_unlock;
3009 prev_extent_end = lockend;
3010 }
3011
3012 if (cache.cached && cache.offset + cache.len >= last_extent_end) {
3013 const u64 i_size = i_size_read(&inode->vfs_inode);
3014
3015 if (prev_extent_end < i_size) {
3016 u64 delalloc_start;
3017 u64 delalloc_end;
3018 bool delalloc;
3019
3020 delalloc = btrfs_find_delalloc_in_range(inode,
3021 prev_extent_end,
3022 i_size - 1,
3023 &delalloc_cached_state,
3024 &delalloc_start,
3025 &delalloc_end);
3026 if (!delalloc)
3027 cache.flags |= FIEMAP_EXTENT_LAST;
3028 } else {
3029 cache.flags |= FIEMAP_EXTENT_LAST;
3030 }
3031 }
3032
3033 ret = emit_last_fiemap_cache(fieinfo, &cache);
3034
3035 out_unlock:
3036 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3037 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3038 out:
3039 free_extent_state(delalloc_cached_state);
3040 btrfs_free_backref_share_ctx(backref_ctx);
3041 btrfs_free_path(path);
3042 return ret;
3043 }
3044
__free_extent_buffer(struct extent_buffer * eb)3045 static void __free_extent_buffer(struct extent_buffer *eb)
3046 {
3047 kmem_cache_free(extent_buffer_cache, eb);
3048 }
3049
extent_buffer_under_io(const struct extent_buffer * eb)3050 static int extent_buffer_under_io(const struct extent_buffer *eb)
3051 {
3052 return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
3053 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3054 }
3055
page_range_has_eb(struct btrfs_fs_info * fs_info,struct page * page)3056 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
3057 {
3058 struct btrfs_subpage *subpage;
3059
3060 lockdep_assert_held(&page->mapping->private_lock);
3061
3062 if (PagePrivate(page)) {
3063 subpage = (struct btrfs_subpage *)page->private;
3064 if (atomic_read(&subpage->eb_refs))
3065 return true;
3066 /*
3067 * Even there is no eb refs here, we may still have
3068 * end_page_read() call relying on page::private.
3069 */
3070 if (atomic_read(&subpage->readers))
3071 return true;
3072 }
3073 return false;
3074 }
3075
detach_extent_buffer_page(struct extent_buffer * eb,struct page * page)3076 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
3077 {
3078 struct btrfs_fs_info *fs_info = eb->fs_info;
3079 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3080
3081 /*
3082 * For mapped eb, we're going to change the page private, which should
3083 * be done under the private_lock.
3084 */
3085 if (mapped)
3086 spin_lock(&page->mapping->private_lock);
3087
3088 if (!PagePrivate(page)) {
3089 if (mapped)
3090 spin_unlock(&page->mapping->private_lock);
3091 return;
3092 }
3093
3094 if (fs_info->nodesize >= PAGE_SIZE) {
3095 /*
3096 * We do this since we'll remove the pages after we've
3097 * removed the eb from the radix tree, so we could race
3098 * and have this page now attached to the new eb. So
3099 * only clear page_private if it's still connected to
3100 * this eb.
3101 */
3102 if (PagePrivate(page) &&
3103 page->private == (unsigned long)eb) {
3104 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3105 BUG_ON(PageDirty(page));
3106 BUG_ON(PageWriteback(page));
3107 /*
3108 * We need to make sure we haven't be attached
3109 * to a new eb.
3110 */
3111 detach_page_private(page);
3112 }
3113 if (mapped)
3114 spin_unlock(&page->mapping->private_lock);
3115 return;
3116 }
3117
3118 /*
3119 * For subpage, we can have dummy eb with page private. In this case,
3120 * we can directly detach the private as such page is only attached to
3121 * one dummy eb, no sharing.
3122 */
3123 if (!mapped) {
3124 btrfs_detach_subpage(fs_info, page);
3125 return;
3126 }
3127
3128 btrfs_page_dec_eb_refs(fs_info, page);
3129
3130 /*
3131 * We can only detach the page private if there are no other ebs in the
3132 * page range and no unfinished IO.
3133 */
3134 if (!page_range_has_eb(fs_info, page))
3135 btrfs_detach_subpage(fs_info, page);
3136
3137 spin_unlock(&page->mapping->private_lock);
3138 }
3139
3140 /* Release all pages attached to the extent buffer */
btrfs_release_extent_buffer_pages(struct extent_buffer * eb)3141 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
3142 {
3143 int i;
3144 int num_pages;
3145
3146 ASSERT(!extent_buffer_under_io(eb));
3147
3148 num_pages = num_extent_pages(eb);
3149 for (i = 0; i < num_pages; i++) {
3150 struct page *page = eb->pages[i];
3151
3152 if (!page)
3153 continue;
3154
3155 detach_extent_buffer_page(eb, page);
3156
3157 /* One for when we allocated the page */
3158 put_page(page);
3159 }
3160 }
3161
3162 /*
3163 * Helper for releasing the extent buffer.
3164 */
btrfs_release_extent_buffer(struct extent_buffer * eb)3165 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3166 {
3167 btrfs_release_extent_buffer_pages(eb);
3168 btrfs_leak_debug_del_eb(eb);
3169 __free_extent_buffer(eb);
3170 }
3171
3172 static struct extent_buffer *
__alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,unsigned long len)3173 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
3174 unsigned long len)
3175 {
3176 struct extent_buffer *eb = NULL;
3177
3178 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
3179 eb->start = start;
3180 eb->len = len;
3181 eb->fs_info = fs_info;
3182 init_rwsem(&eb->lock);
3183
3184 btrfs_leak_debug_add_eb(eb);
3185
3186 spin_lock_init(&eb->refs_lock);
3187 atomic_set(&eb->refs, 1);
3188
3189 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
3190
3191 return eb;
3192 }
3193
btrfs_clone_extent_buffer(const struct extent_buffer * src)3194 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
3195 {
3196 int i;
3197 struct extent_buffer *new;
3198 int num_pages = num_extent_pages(src);
3199 int ret;
3200
3201 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
3202 if (new == NULL)
3203 return NULL;
3204
3205 /*
3206 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
3207 * btrfs_release_extent_buffer() have different behavior for
3208 * UNMAPPED subpage extent buffer.
3209 */
3210 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
3211
3212 ret = btrfs_alloc_page_array(num_pages, new->pages);
3213 if (ret) {
3214 btrfs_release_extent_buffer(new);
3215 return NULL;
3216 }
3217
3218 for (i = 0; i < num_pages; i++) {
3219 int ret;
3220 struct page *p = new->pages[i];
3221
3222 ret = attach_extent_buffer_page(new, p, NULL);
3223 if (ret < 0) {
3224 btrfs_release_extent_buffer(new);
3225 return NULL;
3226 }
3227 WARN_ON(PageDirty(p));
3228 }
3229 copy_extent_buffer_full(new, src);
3230 set_extent_buffer_uptodate(new);
3231
3232 return new;
3233 }
3234
__alloc_dummy_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,unsigned long len)3235 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3236 u64 start, unsigned long len)
3237 {
3238 struct extent_buffer *eb;
3239 int num_pages;
3240 int i;
3241 int ret;
3242
3243 eb = __alloc_extent_buffer(fs_info, start, len);
3244 if (!eb)
3245 return NULL;
3246
3247 num_pages = num_extent_pages(eb);
3248 ret = btrfs_alloc_page_array(num_pages, eb->pages);
3249 if (ret)
3250 goto err;
3251
3252 for (i = 0; i < num_pages; i++) {
3253 struct page *p = eb->pages[i];
3254
3255 ret = attach_extent_buffer_page(eb, p, NULL);
3256 if (ret < 0)
3257 goto err;
3258 }
3259
3260 set_extent_buffer_uptodate(eb);
3261 btrfs_set_header_nritems(eb, 0);
3262 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3263
3264 return eb;
3265 err:
3266 for (i = 0; i < num_pages; i++) {
3267 if (eb->pages[i]) {
3268 detach_extent_buffer_page(eb, eb->pages[i]);
3269 __free_page(eb->pages[i]);
3270 }
3271 }
3272 __free_extent_buffer(eb);
3273 return NULL;
3274 }
3275
alloc_dummy_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)3276 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3277 u64 start)
3278 {
3279 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
3280 }
3281
check_buffer_tree_ref(struct extent_buffer * eb)3282 static void check_buffer_tree_ref(struct extent_buffer *eb)
3283 {
3284 int refs;
3285 /*
3286 * The TREE_REF bit is first set when the extent_buffer is added
3287 * to the radix tree. It is also reset, if unset, when a new reference
3288 * is created by find_extent_buffer.
3289 *
3290 * It is only cleared in two cases: freeing the last non-tree
3291 * reference to the extent_buffer when its STALE bit is set or
3292 * calling release_folio when the tree reference is the only reference.
3293 *
3294 * In both cases, care is taken to ensure that the extent_buffer's
3295 * pages are not under io. However, release_folio can be concurrently
3296 * called with creating new references, which is prone to race
3297 * conditions between the calls to check_buffer_tree_ref in those
3298 * codepaths and clearing TREE_REF in try_release_extent_buffer.
3299 *
3300 * The actual lifetime of the extent_buffer in the radix tree is
3301 * adequately protected by the refcount, but the TREE_REF bit and
3302 * its corresponding reference are not. To protect against this
3303 * class of races, we call check_buffer_tree_ref from the codepaths
3304 * which trigger io. Note that once io is initiated, TREE_REF can no
3305 * longer be cleared, so that is the moment at which any such race is
3306 * best fixed.
3307 */
3308 refs = atomic_read(&eb->refs);
3309 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3310 return;
3311
3312 spin_lock(&eb->refs_lock);
3313 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3314 atomic_inc(&eb->refs);
3315 spin_unlock(&eb->refs_lock);
3316 }
3317
mark_extent_buffer_accessed(struct extent_buffer * eb,struct page * accessed)3318 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
3319 struct page *accessed)
3320 {
3321 int num_pages, i;
3322
3323 check_buffer_tree_ref(eb);
3324
3325 num_pages = num_extent_pages(eb);
3326 for (i = 0; i < num_pages; i++) {
3327 struct page *p = eb->pages[i];
3328
3329 if (p != accessed)
3330 mark_page_accessed(p);
3331 }
3332 }
3333
find_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)3334 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
3335 u64 start)
3336 {
3337 struct extent_buffer *eb;
3338
3339 eb = find_extent_buffer_nolock(fs_info, start);
3340 if (!eb)
3341 return NULL;
3342 /*
3343 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
3344 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
3345 * another task running free_extent_buffer() might have seen that flag
3346 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
3347 * writeback flags not set) and it's still in the tree (flag
3348 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
3349 * decrementing the extent buffer's reference count twice. So here we
3350 * could race and increment the eb's reference count, clear its stale
3351 * flag, mark it as dirty and drop our reference before the other task
3352 * finishes executing free_extent_buffer, which would later result in
3353 * an attempt to free an extent buffer that is dirty.
3354 */
3355 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
3356 spin_lock(&eb->refs_lock);
3357 spin_unlock(&eb->refs_lock);
3358 }
3359 mark_extent_buffer_accessed(eb, NULL);
3360 return eb;
3361 }
3362
3363 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
alloc_test_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)3364 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
3365 u64 start)
3366 {
3367 struct extent_buffer *eb, *exists = NULL;
3368 int ret;
3369
3370 eb = find_extent_buffer(fs_info, start);
3371 if (eb)
3372 return eb;
3373 eb = alloc_dummy_extent_buffer(fs_info, start);
3374 if (!eb)
3375 return ERR_PTR(-ENOMEM);
3376 eb->fs_info = fs_info;
3377 again:
3378 ret = radix_tree_preload(GFP_NOFS);
3379 if (ret) {
3380 exists = ERR_PTR(ret);
3381 goto free_eb;
3382 }
3383 spin_lock(&fs_info->buffer_lock);
3384 ret = radix_tree_insert(&fs_info->buffer_radix,
3385 start >> fs_info->sectorsize_bits, eb);
3386 spin_unlock(&fs_info->buffer_lock);
3387 radix_tree_preload_end();
3388 if (ret == -EEXIST) {
3389 exists = find_extent_buffer(fs_info, start);
3390 if (exists)
3391 goto free_eb;
3392 else
3393 goto again;
3394 }
3395 check_buffer_tree_ref(eb);
3396 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3397
3398 return eb;
3399 free_eb:
3400 btrfs_release_extent_buffer(eb);
3401 return exists;
3402 }
3403 #endif
3404
grab_extent_buffer(struct btrfs_fs_info * fs_info,struct page * page)3405 static struct extent_buffer *grab_extent_buffer(
3406 struct btrfs_fs_info *fs_info, struct page *page)
3407 {
3408 struct extent_buffer *exists;
3409
3410 /*
3411 * For subpage case, we completely rely on radix tree to ensure we
3412 * don't try to insert two ebs for the same bytenr. So here we always
3413 * return NULL and just continue.
3414 */
3415 if (fs_info->nodesize < PAGE_SIZE)
3416 return NULL;
3417
3418 /* Page not yet attached to an extent buffer */
3419 if (!PagePrivate(page))
3420 return NULL;
3421
3422 /*
3423 * We could have already allocated an eb for this page and attached one
3424 * so lets see if we can get a ref on the existing eb, and if we can we
3425 * know it's good and we can just return that one, else we know we can
3426 * just overwrite page->private.
3427 */
3428 exists = (struct extent_buffer *)page->private;
3429 if (atomic_inc_not_zero(&exists->refs))
3430 return exists;
3431
3432 WARN_ON(PageDirty(page));
3433 detach_page_private(page);
3434 return NULL;
3435 }
3436
check_eb_alignment(struct btrfs_fs_info * fs_info,u64 start)3437 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
3438 {
3439 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
3440 btrfs_err(fs_info, "bad tree block start %llu", start);
3441 return -EINVAL;
3442 }
3443
3444 if (fs_info->nodesize < PAGE_SIZE &&
3445 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
3446 btrfs_err(fs_info,
3447 "tree block crosses page boundary, start %llu nodesize %u",
3448 start, fs_info->nodesize);
3449 return -EINVAL;
3450 }
3451 if (fs_info->nodesize >= PAGE_SIZE &&
3452 !PAGE_ALIGNED(start)) {
3453 btrfs_err(fs_info,
3454 "tree block is not page aligned, start %llu nodesize %u",
3455 start, fs_info->nodesize);
3456 return -EINVAL;
3457 }
3458 return 0;
3459 }
3460
alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,u64 owner_root,int level)3461 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3462 u64 start, u64 owner_root, int level)
3463 {
3464 unsigned long len = fs_info->nodesize;
3465 int num_pages;
3466 int i;
3467 unsigned long index = start >> PAGE_SHIFT;
3468 struct extent_buffer *eb;
3469 struct extent_buffer *exists = NULL;
3470 struct page *p;
3471 struct address_space *mapping = fs_info->btree_inode->i_mapping;
3472 struct btrfs_subpage *prealloc = NULL;
3473 u64 lockdep_owner = owner_root;
3474 int uptodate = 1;
3475 int ret;
3476
3477 if (check_eb_alignment(fs_info, start))
3478 return ERR_PTR(-EINVAL);
3479
3480 #if BITS_PER_LONG == 32
3481 if (start >= MAX_LFS_FILESIZE) {
3482 btrfs_err_rl(fs_info,
3483 "extent buffer %llu is beyond 32bit page cache limit", start);
3484 btrfs_err_32bit_limit(fs_info);
3485 return ERR_PTR(-EOVERFLOW);
3486 }
3487 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
3488 btrfs_warn_32bit_limit(fs_info);
3489 #endif
3490
3491 eb = find_extent_buffer(fs_info, start);
3492 if (eb)
3493 return eb;
3494
3495 eb = __alloc_extent_buffer(fs_info, start, len);
3496 if (!eb)
3497 return ERR_PTR(-ENOMEM);
3498
3499 /*
3500 * The reloc trees are just snapshots, so we need them to appear to be
3501 * just like any other fs tree WRT lockdep.
3502 */
3503 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
3504 lockdep_owner = BTRFS_FS_TREE_OBJECTID;
3505
3506 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
3507
3508 num_pages = num_extent_pages(eb);
3509
3510 /*
3511 * Preallocate page->private for subpage case, so that we won't
3512 * allocate memory with private_lock nor page lock hold.
3513 *
3514 * The memory will be freed by attach_extent_buffer_page() or freed
3515 * manually if we exit earlier.
3516 */
3517 if (fs_info->nodesize < PAGE_SIZE) {
3518 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
3519 if (IS_ERR(prealloc)) {
3520 exists = ERR_CAST(prealloc);
3521 goto free_eb;
3522 }
3523 }
3524
3525 for (i = 0; i < num_pages; i++, index++) {
3526 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
3527 if (!p) {
3528 exists = ERR_PTR(-ENOMEM);
3529 btrfs_free_subpage(prealloc);
3530 goto free_eb;
3531 }
3532
3533 spin_lock(&mapping->private_lock);
3534 exists = grab_extent_buffer(fs_info, p);
3535 if (exists) {
3536 spin_unlock(&mapping->private_lock);
3537 unlock_page(p);
3538 put_page(p);
3539 mark_extent_buffer_accessed(exists, p);
3540 btrfs_free_subpage(prealloc);
3541 goto free_eb;
3542 }
3543 /* Should not fail, as we have preallocated the memory */
3544 ret = attach_extent_buffer_page(eb, p, prealloc);
3545 ASSERT(!ret);
3546 /*
3547 * To inform we have extra eb under allocation, so that
3548 * detach_extent_buffer_page() won't release the page private
3549 * when the eb hasn't yet been inserted into radix tree.
3550 *
3551 * The ref will be decreased when the eb released the page, in
3552 * detach_extent_buffer_page().
3553 * Thus needs no special handling in error path.
3554 */
3555 btrfs_page_inc_eb_refs(fs_info, p);
3556 spin_unlock(&mapping->private_lock);
3557
3558 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
3559 eb->pages[i] = p;
3560 if (!btrfs_page_test_uptodate(fs_info, p, eb->start, eb->len))
3561 uptodate = 0;
3562
3563 /*
3564 * We can't unlock the pages just yet since the extent buffer
3565 * hasn't been properly inserted in the radix tree, this
3566 * opens a race with btree_release_folio which can free a page
3567 * while we are still filling in all pages for the buffer and
3568 * we could crash.
3569 */
3570 }
3571 if (uptodate)
3572 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3573 again:
3574 ret = radix_tree_preload(GFP_NOFS);
3575 if (ret) {
3576 exists = ERR_PTR(ret);
3577 goto free_eb;
3578 }
3579
3580 spin_lock(&fs_info->buffer_lock);
3581 ret = radix_tree_insert(&fs_info->buffer_radix,
3582 start >> fs_info->sectorsize_bits, eb);
3583 spin_unlock(&fs_info->buffer_lock);
3584 radix_tree_preload_end();
3585 if (ret == -EEXIST) {
3586 exists = find_extent_buffer(fs_info, start);
3587 if (exists)
3588 goto free_eb;
3589 else
3590 goto again;
3591 }
3592 /* add one reference for the tree */
3593 check_buffer_tree_ref(eb);
3594 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3595
3596 /*
3597 * Now it's safe to unlock the pages because any calls to
3598 * btree_release_folio will correctly detect that a page belongs to a
3599 * live buffer and won't free them prematurely.
3600 */
3601 for (i = 0; i < num_pages; i++)
3602 unlock_page(eb->pages[i]);
3603 return eb;
3604
3605 free_eb:
3606 WARN_ON(!atomic_dec_and_test(&eb->refs));
3607 for (i = 0; i < num_pages; i++) {
3608 if (eb->pages[i])
3609 unlock_page(eb->pages[i]);
3610 }
3611
3612 btrfs_release_extent_buffer(eb);
3613 return exists;
3614 }
3615
btrfs_release_extent_buffer_rcu(struct rcu_head * head)3616 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
3617 {
3618 struct extent_buffer *eb =
3619 container_of(head, struct extent_buffer, rcu_head);
3620
3621 __free_extent_buffer(eb);
3622 }
3623
release_extent_buffer(struct extent_buffer * eb)3624 static int release_extent_buffer(struct extent_buffer *eb)
3625 __releases(&eb->refs_lock)
3626 {
3627 lockdep_assert_held(&eb->refs_lock);
3628
3629 WARN_ON(atomic_read(&eb->refs) == 0);
3630 if (atomic_dec_and_test(&eb->refs)) {
3631 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
3632 struct btrfs_fs_info *fs_info = eb->fs_info;
3633
3634 spin_unlock(&eb->refs_lock);
3635
3636 spin_lock(&fs_info->buffer_lock);
3637 radix_tree_delete(&fs_info->buffer_radix,
3638 eb->start >> fs_info->sectorsize_bits);
3639 spin_unlock(&fs_info->buffer_lock);
3640 } else {
3641 spin_unlock(&eb->refs_lock);
3642 }
3643
3644 btrfs_leak_debug_del_eb(eb);
3645 /* Should be safe to release our pages at this point */
3646 btrfs_release_extent_buffer_pages(eb);
3647 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3648 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
3649 __free_extent_buffer(eb);
3650 return 1;
3651 }
3652 #endif
3653 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
3654 return 1;
3655 }
3656 spin_unlock(&eb->refs_lock);
3657
3658 return 0;
3659 }
3660
free_extent_buffer(struct extent_buffer * eb)3661 void free_extent_buffer(struct extent_buffer *eb)
3662 {
3663 int refs;
3664 if (!eb)
3665 return;
3666
3667 refs = atomic_read(&eb->refs);
3668 while (1) {
3669 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
3670 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
3671 refs == 1))
3672 break;
3673 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
3674 return;
3675 }
3676
3677 spin_lock(&eb->refs_lock);
3678 if (atomic_read(&eb->refs) == 2 &&
3679 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
3680 !extent_buffer_under_io(eb) &&
3681 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3682 atomic_dec(&eb->refs);
3683
3684 /*
3685 * I know this is terrible, but it's temporary until we stop tracking
3686 * the uptodate bits and such for the extent buffers.
3687 */
3688 release_extent_buffer(eb);
3689 }
3690
free_extent_buffer_stale(struct extent_buffer * eb)3691 void free_extent_buffer_stale(struct extent_buffer *eb)
3692 {
3693 if (!eb)
3694 return;
3695
3696 spin_lock(&eb->refs_lock);
3697 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
3698
3699 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3700 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3701 atomic_dec(&eb->refs);
3702 release_extent_buffer(eb);
3703 }
3704
btree_clear_page_dirty(struct page * page)3705 static void btree_clear_page_dirty(struct page *page)
3706 {
3707 ASSERT(PageDirty(page));
3708 ASSERT(PageLocked(page));
3709 clear_page_dirty_for_io(page);
3710 xa_lock_irq(&page->mapping->i_pages);
3711 if (!PageDirty(page))
3712 __xa_clear_mark(&page->mapping->i_pages,
3713 page_index(page), PAGECACHE_TAG_DIRTY);
3714 xa_unlock_irq(&page->mapping->i_pages);
3715 }
3716
clear_subpage_extent_buffer_dirty(const struct extent_buffer * eb)3717 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
3718 {
3719 struct btrfs_fs_info *fs_info = eb->fs_info;
3720 struct page *page = eb->pages[0];
3721 bool last;
3722
3723 /* btree_clear_page_dirty() needs page locked */
3724 lock_page(page);
3725 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
3726 eb->len);
3727 if (last)
3728 btree_clear_page_dirty(page);
3729 unlock_page(page);
3730 WARN_ON(atomic_read(&eb->refs) == 0);
3731 }
3732
btrfs_clear_buffer_dirty(struct btrfs_trans_handle * trans,struct extent_buffer * eb)3733 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans,
3734 struct extent_buffer *eb)
3735 {
3736 struct btrfs_fs_info *fs_info = eb->fs_info;
3737 int i;
3738 int num_pages;
3739 struct page *page;
3740
3741 btrfs_assert_tree_write_locked(eb);
3742
3743 if (trans && btrfs_header_generation(eb) != trans->transid)
3744 return;
3745
3746 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags))
3747 return;
3748
3749 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len,
3750 fs_info->dirty_metadata_batch);
3751
3752 if (eb->fs_info->nodesize < PAGE_SIZE)
3753 return clear_subpage_extent_buffer_dirty(eb);
3754
3755 num_pages = num_extent_pages(eb);
3756
3757 for (i = 0; i < num_pages; i++) {
3758 page = eb->pages[i];
3759 if (!PageDirty(page))
3760 continue;
3761 lock_page(page);
3762 btree_clear_page_dirty(page);
3763 unlock_page(page);
3764 }
3765 WARN_ON(atomic_read(&eb->refs) == 0);
3766 }
3767
set_extent_buffer_dirty(struct extent_buffer * eb)3768 void set_extent_buffer_dirty(struct extent_buffer *eb)
3769 {
3770 int i;
3771 int num_pages;
3772 bool was_dirty;
3773
3774 check_buffer_tree_ref(eb);
3775
3776 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3777
3778 num_pages = num_extent_pages(eb);
3779 WARN_ON(atomic_read(&eb->refs) == 0);
3780 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
3781
3782 if (!was_dirty) {
3783 bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
3784
3785 /*
3786 * For subpage case, we can have other extent buffers in the
3787 * same page, and in clear_subpage_extent_buffer_dirty() we
3788 * have to clear page dirty without subpage lock held.
3789 * This can cause race where our page gets dirty cleared after
3790 * we just set it.
3791 *
3792 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
3793 * its page for other reasons, we can use page lock to prevent
3794 * the above race.
3795 */
3796 if (subpage)
3797 lock_page(eb->pages[0]);
3798 for (i = 0; i < num_pages; i++)
3799 btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
3800 eb->start, eb->len);
3801 if (subpage)
3802 unlock_page(eb->pages[0]);
3803 percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes,
3804 eb->len,
3805 eb->fs_info->dirty_metadata_batch);
3806 }
3807 #ifdef CONFIG_BTRFS_DEBUG
3808 for (i = 0; i < num_pages; i++)
3809 ASSERT(PageDirty(eb->pages[i]));
3810 #endif
3811 }
3812
clear_extent_buffer_uptodate(struct extent_buffer * eb)3813 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
3814 {
3815 struct btrfs_fs_info *fs_info = eb->fs_info;
3816 struct page *page;
3817 int num_pages;
3818 int i;
3819
3820 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3821 num_pages = num_extent_pages(eb);
3822 for (i = 0; i < num_pages; i++) {
3823 page = eb->pages[i];
3824 if (!page)
3825 continue;
3826
3827 /*
3828 * This is special handling for metadata subpage, as regular
3829 * btrfs_is_subpage() can not handle cloned/dummy metadata.
3830 */
3831 if (fs_info->nodesize >= PAGE_SIZE)
3832 ClearPageUptodate(page);
3833 else
3834 btrfs_subpage_clear_uptodate(fs_info, page, eb->start,
3835 eb->len);
3836 }
3837 }
3838
set_extent_buffer_uptodate(struct extent_buffer * eb)3839 void set_extent_buffer_uptodate(struct extent_buffer *eb)
3840 {
3841 struct btrfs_fs_info *fs_info = eb->fs_info;
3842 struct page *page;
3843 int num_pages;
3844 int i;
3845
3846 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3847 num_pages = num_extent_pages(eb);
3848 for (i = 0; i < num_pages; i++) {
3849 page = eb->pages[i];
3850
3851 /*
3852 * This is special handling for metadata subpage, as regular
3853 * btrfs_is_subpage() can not handle cloned/dummy metadata.
3854 */
3855 if (fs_info->nodesize >= PAGE_SIZE)
3856 SetPageUptodate(page);
3857 else
3858 btrfs_subpage_set_uptodate(fs_info, page, eb->start,
3859 eb->len);
3860 }
3861 }
3862
extent_buffer_read_end_io(struct btrfs_bio * bbio)3863 static void extent_buffer_read_end_io(struct btrfs_bio *bbio)
3864 {
3865 struct extent_buffer *eb = bbio->private;
3866 struct btrfs_fs_info *fs_info = eb->fs_info;
3867 bool uptodate = !bbio->bio.bi_status;
3868 struct bvec_iter_all iter_all;
3869 struct bio_vec *bvec;
3870 u32 bio_offset = 0;
3871
3872 eb->read_mirror = bbio->mirror_num;
3873
3874 if (uptodate &&
3875 btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0)
3876 uptodate = false;
3877
3878 if (uptodate) {
3879 set_extent_buffer_uptodate(eb);
3880 } else {
3881 clear_extent_buffer_uptodate(eb);
3882 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3883 }
3884
3885 bio_for_each_segment_all(bvec, &bbio->bio, iter_all) {
3886 u64 start = eb->start + bio_offset;
3887 struct page *page = bvec->bv_page;
3888 u32 len = bvec->bv_len;
3889
3890 if (uptodate)
3891 btrfs_page_set_uptodate(fs_info, page, start, len);
3892 else
3893 btrfs_page_clear_uptodate(fs_info, page, start, len);
3894
3895 bio_offset += len;
3896 }
3897
3898 clear_bit(EXTENT_BUFFER_READING, &eb->bflags);
3899 smp_mb__after_atomic();
3900 wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING);
3901 free_extent_buffer(eb);
3902
3903 bio_put(&bbio->bio);
3904 }
3905
read_extent_buffer_pages(struct extent_buffer * eb,int wait,int mirror_num,struct btrfs_tree_parent_check * check)3906 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num,
3907 struct btrfs_tree_parent_check *check)
3908 {
3909 int num_pages = num_extent_pages(eb), i;
3910 struct btrfs_bio *bbio;
3911
3912 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3913 return 0;
3914
3915 /*
3916 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
3917 * operation, which could potentially still be in flight. In this case
3918 * we simply want to return an error.
3919 */
3920 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
3921 return -EIO;
3922
3923 /* Someone else is already reading the buffer, just wait for it. */
3924 if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags))
3925 goto done;
3926
3927 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3928 eb->read_mirror = 0;
3929 check_buffer_tree_ref(eb);
3930 atomic_inc(&eb->refs);
3931
3932 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
3933 REQ_OP_READ | REQ_META, eb->fs_info,
3934 extent_buffer_read_end_io, eb);
3935 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
3936 bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
3937 bbio->file_offset = eb->start;
3938 memcpy(&bbio->parent_check, check, sizeof(*check));
3939 if (eb->fs_info->nodesize < PAGE_SIZE) {
3940 __bio_add_page(&bbio->bio, eb->pages[0], eb->len,
3941 eb->start - page_offset(eb->pages[0]));
3942 } else {
3943 for (i = 0; i < num_pages; i++)
3944 __bio_add_page(&bbio->bio, eb->pages[i], PAGE_SIZE, 0);
3945 }
3946 btrfs_submit_bio(bbio, mirror_num);
3947
3948 done:
3949 if (wait == WAIT_COMPLETE) {
3950 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE);
3951 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3952 return -EIO;
3953 }
3954
3955 return 0;
3956 }
3957
report_eb_range(const struct extent_buffer * eb,unsigned long start,unsigned long len)3958 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
3959 unsigned long len)
3960 {
3961 btrfs_warn(eb->fs_info,
3962 "access to eb bytenr %llu len %lu out of range start %lu len %lu",
3963 eb->start, eb->len, start, len);
3964 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
3965
3966 return true;
3967 }
3968
3969 /*
3970 * Check if the [start, start + len) range is valid before reading/writing
3971 * the eb.
3972 * NOTE: @start and @len are offset inside the eb, not logical address.
3973 *
3974 * Caller should not touch the dst/src memory if this function returns error.
3975 */
check_eb_range(const struct extent_buffer * eb,unsigned long start,unsigned long len)3976 static inline int check_eb_range(const struct extent_buffer *eb,
3977 unsigned long start, unsigned long len)
3978 {
3979 unsigned long offset;
3980
3981 /* start, start + len should not go beyond eb->len nor overflow */
3982 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
3983 return report_eb_range(eb, start, len);
3984
3985 return false;
3986 }
3987
read_extent_buffer(const struct extent_buffer * eb,void * dstv,unsigned long start,unsigned long len)3988 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
3989 unsigned long start, unsigned long len)
3990 {
3991 size_t cur;
3992 size_t offset;
3993 struct page *page;
3994 char *kaddr;
3995 char *dst = (char *)dstv;
3996 unsigned long i = get_eb_page_index(start);
3997
3998 if (check_eb_range(eb, start, len)) {
3999 /*
4000 * Invalid range hit, reset the memory, so callers won't get
4001 * some random garbage for their uninitialzed memory.
4002 */
4003 memset(dstv, 0, len);
4004 return;
4005 }
4006
4007 offset = get_eb_offset_in_page(eb, start);
4008
4009 while (len > 0) {
4010 page = eb->pages[i];
4011
4012 cur = min(len, (PAGE_SIZE - offset));
4013 kaddr = page_address(page);
4014 memcpy(dst, kaddr + offset, cur);
4015
4016 dst += cur;
4017 len -= cur;
4018 offset = 0;
4019 i++;
4020 }
4021 }
4022
read_extent_buffer_to_user_nofault(const struct extent_buffer * eb,void __user * dstv,unsigned long start,unsigned long len)4023 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
4024 void __user *dstv,
4025 unsigned long start, unsigned long len)
4026 {
4027 size_t cur;
4028 size_t offset;
4029 struct page *page;
4030 char *kaddr;
4031 char __user *dst = (char __user *)dstv;
4032 unsigned long i = get_eb_page_index(start);
4033 int ret = 0;
4034
4035 WARN_ON(start > eb->len);
4036 WARN_ON(start + len > eb->start + eb->len);
4037
4038 offset = get_eb_offset_in_page(eb, start);
4039
4040 while (len > 0) {
4041 page = eb->pages[i];
4042
4043 cur = min(len, (PAGE_SIZE - offset));
4044 kaddr = page_address(page);
4045 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
4046 ret = -EFAULT;
4047 break;
4048 }
4049
4050 dst += cur;
4051 len -= cur;
4052 offset = 0;
4053 i++;
4054 }
4055
4056 return ret;
4057 }
4058
memcmp_extent_buffer(const struct extent_buffer * eb,const void * ptrv,unsigned long start,unsigned long len)4059 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
4060 unsigned long start, unsigned long len)
4061 {
4062 size_t cur;
4063 size_t offset;
4064 struct page *page;
4065 char *kaddr;
4066 char *ptr = (char *)ptrv;
4067 unsigned long i = get_eb_page_index(start);
4068 int ret = 0;
4069
4070 if (check_eb_range(eb, start, len))
4071 return -EINVAL;
4072
4073 offset = get_eb_offset_in_page(eb, start);
4074
4075 while (len > 0) {
4076 page = eb->pages[i];
4077
4078 cur = min(len, (PAGE_SIZE - offset));
4079
4080 kaddr = page_address(page);
4081 ret = memcmp(ptr, kaddr + offset, cur);
4082 if (ret)
4083 break;
4084
4085 ptr += cur;
4086 len -= cur;
4087 offset = 0;
4088 i++;
4089 }
4090 return ret;
4091 }
4092
4093 /*
4094 * Check that the extent buffer is uptodate.
4095 *
4096 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
4097 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
4098 */
assert_eb_page_uptodate(const struct extent_buffer * eb,struct page * page)4099 static void assert_eb_page_uptodate(const struct extent_buffer *eb,
4100 struct page *page)
4101 {
4102 struct btrfs_fs_info *fs_info = eb->fs_info;
4103
4104 /*
4105 * If we are using the commit root we could potentially clear a page
4106 * Uptodate while we're using the extent buffer that we've previously
4107 * looked up. We don't want to complain in this case, as the page was
4108 * valid before, we just didn't write it out. Instead we want to catch
4109 * the case where we didn't actually read the block properly, which
4110 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR.
4111 */
4112 if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4113 return;
4114
4115 if (fs_info->nodesize < PAGE_SIZE) {
4116 if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, page,
4117 eb->start, eb->len)))
4118 btrfs_subpage_dump_bitmap(fs_info, page, eb->start, eb->len);
4119 } else {
4120 WARN_ON(!PageUptodate(page));
4121 }
4122 }
4123
__write_extent_buffer(const struct extent_buffer * eb,const void * srcv,unsigned long start,unsigned long len,bool use_memmove)4124 static void __write_extent_buffer(const struct extent_buffer *eb,
4125 const void *srcv, unsigned long start,
4126 unsigned long len, bool use_memmove)
4127 {
4128 size_t cur;
4129 size_t offset;
4130 struct page *page;
4131 char *kaddr;
4132 char *src = (char *)srcv;
4133 unsigned long i = get_eb_page_index(start);
4134 /* For unmapped (dummy) ebs, no need to check their uptodate status. */
4135 const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4136
4137 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));
4138
4139 if (check_eb_range(eb, start, len))
4140 return;
4141
4142 offset = get_eb_offset_in_page(eb, start);
4143
4144 while (len > 0) {
4145 page = eb->pages[i];
4146 if (check_uptodate)
4147 assert_eb_page_uptodate(eb, page);
4148
4149 cur = min(len, PAGE_SIZE - offset);
4150 kaddr = page_address(page);
4151 if (use_memmove)
4152 memmove(kaddr + offset, src, cur);
4153 else
4154 memcpy(kaddr + offset, src, cur);
4155
4156 src += cur;
4157 len -= cur;
4158 offset = 0;
4159 i++;
4160 }
4161 }
4162
write_extent_buffer(const struct extent_buffer * eb,const void * srcv,unsigned long start,unsigned long len)4163 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
4164 unsigned long start, unsigned long len)
4165 {
4166 return __write_extent_buffer(eb, srcv, start, len, false);
4167 }
4168
memset_extent_buffer(const struct extent_buffer * eb,int c,unsigned long start,unsigned long len)4169 static void memset_extent_buffer(const struct extent_buffer *eb, int c,
4170 unsigned long start, unsigned long len)
4171 {
4172 unsigned long cur = start;
4173
4174 while (cur < start + len) {
4175 unsigned long index = get_eb_page_index(cur);
4176 unsigned int offset = get_eb_offset_in_page(eb, cur);
4177 unsigned int cur_len = min(start + len - cur, PAGE_SIZE - offset);
4178 struct page *page = eb->pages[index];
4179
4180 assert_eb_page_uptodate(eb, page);
4181 memset(page_address(page) + offset, c, cur_len);
4182
4183 cur += cur_len;
4184 }
4185 }
4186
memzero_extent_buffer(const struct extent_buffer * eb,unsigned long start,unsigned long len)4187 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
4188 unsigned long len)
4189 {
4190 if (check_eb_range(eb, start, len))
4191 return;
4192 return memset_extent_buffer(eb, 0, start, len);
4193 }
4194
copy_extent_buffer_full(const struct extent_buffer * dst,const struct extent_buffer * src)4195 void copy_extent_buffer_full(const struct extent_buffer *dst,
4196 const struct extent_buffer *src)
4197 {
4198 unsigned long cur = 0;
4199
4200 ASSERT(dst->len == src->len);
4201
4202 while (cur < src->len) {
4203 unsigned long index = get_eb_page_index(cur);
4204 unsigned long offset = get_eb_offset_in_page(src, cur);
4205 unsigned long cur_len = min(src->len, PAGE_SIZE - offset);
4206 void *addr = page_address(src->pages[index]) + offset;
4207
4208 write_extent_buffer(dst, addr, cur, cur_len);
4209
4210 cur += cur_len;
4211 }
4212 }
4213
copy_extent_buffer(const struct extent_buffer * dst,const struct extent_buffer * src,unsigned long dst_offset,unsigned long src_offset,unsigned long len)4214 void copy_extent_buffer(const struct extent_buffer *dst,
4215 const struct extent_buffer *src,
4216 unsigned long dst_offset, unsigned long src_offset,
4217 unsigned long len)
4218 {
4219 u64 dst_len = dst->len;
4220 size_t cur;
4221 size_t offset;
4222 struct page *page;
4223 char *kaddr;
4224 unsigned long i = get_eb_page_index(dst_offset);
4225
4226 if (check_eb_range(dst, dst_offset, len) ||
4227 check_eb_range(src, src_offset, len))
4228 return;
4229
4230 WARN_ON(src->len != dst_len);
4231
4232 offset = get_eb_offset_in_page(dst, dst_offset);
4233
4234 while (len > 0) {
4235 page = dst->pages[i];
4236 assert_eb_page_uptodate(dst, page);
4237
4238 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
4239
4240 kaddr = page_address(page);
4241 read_extent_buffer(src, kaddr + offset, src_offset, cur);
4242
4243 src_offset += cur;
4244 len -= cur;
4245 offset = 0;
4246 i++;
4247 }
4248 }
4249
4250 /*
4251 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
4252 * given bit number
4253 * @eb: the extent buffer
4254 * @start: offset of the bitmap item in the extent buffer
4255 * @nr: bit number
4256 * @page_index: return index of the page in the extent buffer that contains the
4257 * given bit number
4258 * @page_offset: return offset into the page given by page_index
4259 *
4260 * This helper hides the ugliness of finding the byte in an extent buffer which
4261 * contains a given bit.
4262 */
eb_bitmap_offset(const struct extent_buffer * eb,unsigned long start,unsigned long nr,unsigned long * page_index,size_t * page_offset)4263 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
4264 unsigned long start, unsigned long nr,
4265 unsigned long *page_index,
4266 size_t *page_offset)
4267 {
4268 size_t byte_offset = BIT_BYTE(nr);
4269 size_t offset;
4270
4271 /*
4272 * The byte we want is the offset of the extent buffer + the offset of
4273 * the bitmap item in the extent buffer + the offset of the byte in the
4274 * bitmap item.
4275 */
4276 offset = start + offset_in_page(eb->start) + byte_offset;
4277
4278 *page_index = offset >> PAGE_SHIFT;
4279 *page_offset = offset_in_page(offset);
4280 }
4281
4282 /*
4283 * Determine whether a bit in a bitmap item is set.
4284 *
4285 * @eb: the extent buffer
4286 * @start: offset of the bitmap item in the extent buffer
4287 * @nr: bit number to test
4288 */
extent_buffer_test_bit(const struct extent_buffer * eb,unsigned long start,unsigned long nr)4289 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
4290 unsigned long nr)
4291 {
4292 u8 *kaddr;
4293 struct page *page;
4294 unsigned long i;
4295 size_t offset;
4296
4297 eb_bitmap_offset(eb, start, nr, &i, &offset);
4298 page = eb->pages[i];
4299 assert_eb_page_uptodate(eb, page);
4300 kaddr = page_address(page);
4301 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
4302 }
4303
extent_buffer_get_byte(const struct extent_buffer * eb,unsigned long bytenr)4304 static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr)
4305 {
4306 unsigned long index = get_eb_page_index(bytenr);
4307
4308 if (check_eb_range(eb, bytenr, 1))
4309 return NULL;
4310 return page_address(eb->pages[index]) + get_eb_offset_in_page(eb, bytenr);
4311 }
4312
4313 /*
4314 * Set an area of a bitmap to 1.
4315 *
4316 * @eb: the extent buffer
4317 * @start: offset of the bitmap item in the extent buffer
4318 * @pos: bit number of the first bit
4319 * @len: number of bits to set
4320 */
extent_buffer_bitmap_set(const struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)4321 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
4322 unsigned long pos, unsigned long len)
4323 {
4324 unsigned int first_byte = start + BIT_BYTE(pos);
4325 unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4326 const bool same_byte = (first_byte == last_byte);
4327 u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4328 u8 *kaddr;
4329
4330 if (same_byte)
4331 mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4332
4333 /* Handle the first byte. */
4334 kaddr = extent_buffer_get_byte(eb, first_byte);
4335 *kaddr |= mask;
4336 if (same_byte)
4337 return;
4338
4339 /* Handle the byte aligned part. */
4340 ASSERT(first_byte + 1 <= last_byte);
4341 memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1);
4342
4343 /* Handle the last byte. */
4344 kaddr = extent_buffer_get_byte(eb, last_byte);
4345 *kaddr |= BITMAP_LAST_BYTE_MASK(pos + len);
4346 }
4347
4348
4349 /*
4350 * Clear an area of a bitmap.
4351 *
4352 * @eb: the extent buffer
4353 * @start: offset of the bitmap item in the extent buffer
4354 * @pos: bit number of the first bit
4355 * @len: number of bits to clear
4356 */
extent_buffer_bitmap_clear(const struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)4357 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
4358 unsigned long start, unsigned long pos,
4359 unsigned long len)
4360 {
4361 unsigned int first_byte = start + BIT_BYTE(pos);
4362 unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4363 const bool same_byte = (first_byte == last_byte);
4364 u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4365 u8 *kaddr;
4366
4367 if (same_byte)
4368 mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4369
4370 /* Handle the first byte. */
4371 kaddr = extent_buffer_get_byte(eb, first_byte);
4372 *kaddr &= ~mask;
4373 if (same_byte)
4374 return;
4375
4376 /* Handle the byte aligned part. */
4377 ASSERT(first_byte + 1 <= last_byte);
4378 memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1);
4379
4380 /* Handle the last byte. */
4381 kaddr = extent_buffer_get_byte(eb, last_byte);
4382 *kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len);
4383 }
4384
areas_overlap(unsigned long src,unsigned long dst,unsigned long len)4385 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4386 {
4387 unsigned long distance = (src > dst) ? src - dst : dst - src;
4388 return distance < len;
4389 }
4390
memcpy_extent_buffer(const struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)4391 void memcpy_extent_buffer(const struct extent_buffer *dst,
4392 unsigned long dst_offset, unsigned long src_offset,
4393 unsigned long len)
4394 {
4395 unsigned long cur_off = 0;
4396
4397 if (check_eb_range(dst, dst_offset, len) ||
4398 check_eb_range(dst, src_offset, len))
4399 return;
4400
4401 while (cur_off < len) {
4402 unsigned long cur_src = cur_off + src_offset;
4403 unsigned long pg_index = get_eb_page_index(cur_src);
4404 unsigned long pg_off = get_eb_offset_in_page(dst, cur_src);
4405 unsigned long cur_len = min(src_offset + len - cur_src,
4406 PAGE_SIZE - pg_off);
4407 void *src_addr = page_address(dst->pages[pg_index]) + pg_off;
4408 const bool use_memmove = areas_overlap(src_offset + cur_off,
4409 dst_offset + cur_off, cur_len);
4410
4411 __write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len,
4412 use_memmove);
4413 cur_off += cur_len;
4414 }
4415 }
4416
memmove_extent_buffer(const struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)4417 void memmove_extent_buffer(const struct extent_buffer *dst,
4418 unsigned long dst_offset, unsigned long src_offset,
4419 unsigned long len)
4420 {
4421 unsigned long dst_end = dst_offset + len - 1;
4422 unsigned long src_end = src_offset + len - 1;
4423
4424 if (check_eb_range(dst, dst_offset, len) ||
4425 check_eb_range(dst, src_offset, len))
4426 return;
4427
4428 if (dst_offset < src_offset) {
4429 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4430 return;
4431 }
4432
4433 while (len > 0) {
4434 unsigned long src_i;
4435 size_t cur;
4436 size_t dst_off_in_page;
4437 size_t src_off_in_page;
4438 void *src_addr;
4439 bool use_memmove;
4440
4441 src_i = get_eb_page_index(src_end);
4442
4443 dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
4444 src_off_in_page = get_eb_offset_in_page(dst, src_end);
4445
4446 cur = min_t(unsigned long, len, src_off_in_page + 1);
4447 cur = min(cur, dst_off_in_page + 1);
4448
4449 src_addr = page_address(dst->pages[src_i]) + src_off_in_page -
4450 cur + 1;
4451 use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1,
4452 cur);
4453
4454 __write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur,
4455 use_memmove);
4456
4457 dst_end -= cur;
4458 src_end -= cur;
4459 len -= cur;
4460 }
4461 }
4462
4463 #define GANG_LOOKUP_SIZE 16
get_next_extent_buffer(struct btrfs_fs_info * fs_info,struct page * page,u64 bytenr)4464 static struct extent_buffer *get_next_extent_buffer(
4465 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
4466 {
4467 struct extent_buffer *gang[GANG_LOOKUP_SIZE];
4468 struct extent_buffer *found = NULL;
4469 u64 page_start = page_offset(page);
4470 u64 cur = page_start;
4471
4472 ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
4473 lockdep_assert_held(&fs_info->buffer_lock);
4474
4475 while (cur < page_start + PAGE_SIZE) {
4476 int ret;
4477 int i;
4478
4479 ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
4480 (void **)gang, cur >> fs_info->sectorsize_bits,
4481 min_t(unsigned int, GANG_LOOKUP_SIZE,
4482 PAGE_SIZE / fs_info->nodesize));
4483 if (ret == 0)
4484 goto out;
4485 for (i = 0; i < ret; i++) {
4486 /* Already beyond page end */
4487 if (gang[i]->start >= page_start + PAGE_SIZE)
4488 goto out;
4489 /* Found one */
4490 if (gang[i]->start >= bytenr) {
4491 found = gang[i];
4492 goto out;
4493 }
4494 }
4495 cur = gang[ret - 1]->start + gang[ret - 1]->len;
4496 }
4497 out:
4498 return found;
4499 }
4500
try_release_subpage_extent_buffer(struct page * page)4501 static int try_release_subpage_extent_buffer(struct page *page)
4502 {
4503 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
4504 u64 cur = page_offset(page);
4505 const u64 end = page_offset(page) + PAGE_SIZE;
4506 int ret;
4507
4508 while (cur < end) {
4509 struct extent_buffer *eb = NULL;
4510
4511 /*
4512 * Unlike try_release_extent_buffer() which uses page->private
4513 * to grab buffer, for subpage case we rely on radix tree, thus
4514 * we need to ensure radix tree consistency.
4515 *
4516 * We also want an atomic snapshot of the radix tree, thus go
4517 * with spinlock rather than RCU.
4518 */
4519 spin_lock(&fs_info->buffer_lock);
4520 eb = get_next_extent_buffer(fs_info, page, cur);
4521 if (!eb) {
4522 /* No more eb in the page range after or at cur */
4523 spin_unlock(&fs_info->buffer_lock);
4524 break;
4525 }
4526 cur = eb->start + eb->len;
4527
4528 /*
4529 * The same as try_release_extent_buffer(), to ensure the eb
4530 * won't disappear out from under us.
4531 */
4532 spin_lock(&eb->refs_lock);
4533 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4534 spin_unlock(&eb->refs_lock);
4535 spin_unlock(&fs_info->buffer_lock);
4536 break;
4537 }
4538 spin_unlock(&fs_info->buffer_lock);
4539
4540 /*
4541 * If tree ref isn't set then we know the ref on this eb is a
4542 * real ref, so just return, this eb will likely be freed soon
4543 * anyway.
4544 */
4545 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4546 spin_unlock(&eb->refs_lock);
4547 break;
4548 }
4549
4550 /*
4551 * Here we don't care about the return value, we will always
4552 * check the page private at the end. And
4553 * release_extent_buffer() will release the refs_lock.
4554 */
4555 release_extent_buffer(eb);
4556 }
4557 /*
4558 * Finally to check if we have cleared page private, as if we have
4559 * released all ebs in the page, the page private should be cleared now.
4560 */
4561 spin_lock(&page->mapping->private_lock);
4562 if (!PagePrivate(page))
4563 ret = 1;
4564 else
4565 ret = 0;
4566 spin_unlock(&page->mapping->private_lock);
4567 return ret;
4568
4569 }
4570
try_release_extent_buffer(struct page * page)4571 int try_release_extent_buffer(struct page *page)
4572 {
4573 struct extent_buffer *eb;
4574
4575 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
4576 return try_release_subpage_extent_buffer(page);
4577
4578 /*
4579 * We need to make sure nobody is changing page->private, as we rely on
4580 * page->private as the pointer to extent buffer.
4581 */
4582 spin_lock(&page->mapping->private_lock);
4583 if (!PagePrivate(page)) {
4584 spin_unlock(&page->mapping->private_lock);
4585 return 1;
4586 }
4587
4588 eb = (struct extent_buffer *)page->private;
4589 BUG_ON(!eb);
4590
4591 /*
4592 * This is a little awful but should be ok, we need to make sure that
4593 * the eb doesn't disappear out from under us while we're looking at
4594 * this page.
4595 */
4596 spin_lock(&eb->refs_lock);
4597 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4598 spin_unlock(&eb->refs_lock);
4599 spin_unlock(&page->mapping->private_lock);
4600 return 0;
4601 }
4602 spin_unlock(&page->mapping->private_lock);
4603
4604 /*
4605 * If tree ref isn't set then we know the ref on this eb is a real ref,
4606 * so just return, this page will likely be freed soon anyway.
4607 */
4608 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4609 spin_unlock(&eb->refs_lock);
4610 return 0;
4611 }
4612
4613 return release_extent_buffer(eb);
4614 }
4615
4616 /*
4617 * btrfs_readahead_tree_block - attempt to readahead a child block
4618 * @fs_info: the fs_info
4619 * @bytenr: bytenr to read
4620 * @owner_root: objectid of the root that owns this eb
4621 * @gen: generation for the uptodate check, can be 0
4622 * @level: level for the eb
4623 *
4624 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a
4625 * normal uptodate check of the eb, without checking the generation. If we have
4626 * to read the block we will not block on anything.
4627 */
btrfs_readahead_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 owner_root,u64 gen,int level)4628 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
4629 u64 bytenr, u64 owner_root, u64 gen, int level)
4630 {
4631 struct btrfs_tree_parent_check check = {
4632 .has_first_key = 0,
4633 .level = level,
4634 .transid = gen
4635 };
4636 struct extent_buffer *eb;
4637 int ret;
4638
4639 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
4640 if (IS_ERR(eb))
4641 return;
4642
4643 if (btrfs_buffer_uptodate(eb, gen, 1)) {
4644 free_extent_buffer(eb);
4645 return;
4646 }
4647
4648 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check);
4649 if (ret < 0)
4650 free_extent_buffer_stale(eb);
4651 else
4652 free_extent_buffer(eb);
4653 }
4654
4655 /*
4656 * btrfs_readahead_node_child - readahead a node's child block
4657 * @node: parent node we're reading from
4658 * @slot: slot in the parent node for the child we want to read
4659 *
4660 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
4661 * the slot in the node provided.
4662 */
btrfs_readahead_node_child(struct extent_buffer * node,int slot)4663 void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
4664 {
4665 btrfs_readahead_tree_block(node->fs_info,
4666 btrfs_node_blockptr(node, slot),
4667 btrfs_header_owner(node),
4668 btrfs_node_ptr_generation(node, slot),
4669 btrfs_header_level(node) - 1);
4670 }
4671