1 /*
2 * Core routines and tables shareable across OS platforms.
3 *
4 * Copyright (c) 1994-2002 Justin T. Gibbs.
5 * Copyright (c) 2000-2003 Adaptec Inc.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions, and the following disclaimer,
13 * without modification.
14 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
15 * substantially similar to the "NO WARRANTY" disclaimer below
16 * ("Disclaimer") and any redistribution must be conditioned upon
17 * including a substantially similar Disclaimer requirement for further
18 * binary redistribution.
19 * 3. Neither the names of the above-listed copyright holders nor the names
20 * of any contributors may be used to endorse or promote products derived
21 * from this software without specific prior written permission.
22 *
23 * Alternatively, this software may be distributed under the terms of the
24 * GNU General Public License ("GPL") version 2 as published by the Free
25 * Software Foundation.
26 *
27 * NO WARRANTY
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
36 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
37 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGES.
39 *
40 * $Id: //depot/aic7xxx/aic7xxx/aic79xx.c#250 $
41 */
42
43 #include "aic79xx_osm.h"
44 #include "aic79xx_inline.h"
45 #include "aicasm/aicasm_insformat.h"
46
47 /***************************** Lookup Tables **********************************/
48 static const char *const ahd_chip_names[] =
49 {
50 "NONE",
51 "aic7901",
52 "aic7902",
53 "aic7901A"
54 };
55
56 /*
57 * Hardware error codes.
58 */
59 struct ahd_hard_error_entry {
60 uint8_t errno;
61 const char *errmesg;
62 };
63
64 static const struct ahd_hard_error_entry ahd_hard_errors[] = {
65 { DSCTMOUT, "Discard Timer has timed out" },
66 { ILLOPCODE, "Illegal Opcode in sequencer program" },
67 { SQPARERR, "Sequencer Parity Error" },
68 { DPARERR, "Data-path Parity Error" },
69 { MPARERR, "Scratch or SCB Memory Parity Error" },
70 { CIOPARERR, "CIOBUS Parity Error" },
71 };
72 static const u_int num_errors = ARRAY_SIZE(ahd_hard_errors);
73
74 static const struct ahd_phase_table_entry ahd_phase_table[] =
75 {
76 { P_DATAOUT, MSG_NOOP, "in Data-out phase" },
77 { P_DATAIN, MSG_INITIATOR_DET_ERR, "in Data-in phase" },
78 { P_DATAOUT_DT, MSG_NOOP, "in DT Data-out phase" },
79 { P_DATAIN_DT, MSG_INITIATOR_DET_ERR, "in DT Data-in phase" },
80 { P_COMMAND, MSG_NOOP, "in Command phase" },
81 { P_MESGOUT, MSG_NOOP, "in Message-out phase" },
82 { P_STATUS, MSG_INITIATOR_DET_ERR, "in Status phase" },
83 { P_MESGIN, MSG_PARITY_ERROR, "in Message-in phase" },
84 { P_BUSFREE, MSG_NOOP, "while idle" },
85 { 0, MSG_NOOP, "in unknown phase" }
86 };
87
88 /*
89 * In most cases we only wish to itterate over real phases, so
90 * exclude the last element from the count.
91 */
92 static const u_int num_phases = ARRAY_SIZE(ahd_phase_table) - 1;
93
94 /* Our Sequencer Program */
95 #include "aic79xx_seq.h"
96
97 /**************************** Function Declarations ***************************/
98 static void ahd_handle_transmission_error(struct ahd_softc *ahd);
99 static void ahd_handle_lqiphase_error(struct ahd_softc *ahd,
100 u_int lqistat1);
101 static int ahd_handle_pkt_busfree(struct ahd_softc *ahd,
102 u_int busfreetime);
103 static int ahd_handle_nonpkt_busfree(struct ahd_softc *ahd);
104 static void ahd_handle_proto_violation(struct ahd_softc *ahd);
105 static void ahd_force_renegotiation(struct ahd_softc *ahd,
106 struct ahd_devinfo *devinfo);
107
108 static struct ahd_tmode_tstate*
109 ahd_alloc_tstate(struct ahd_softc *ahd,
110 u_int scsi_id, char channel);
111 #ifdef AHD_TARGET_MODE
112 static void ahd_free_tstate(struct ahd_softc *ahd,
113 u_int scsi_id, char channel, int force);
114 #endif
115 static void ahd_devlimited_syncrate(struct ahd_softc *ahd,
116 struct ahd_initiator_tinfo *,
117 u_int *period,
118 u_int *ppr_options,
119 role_t role);
120 static void ahd_update_neg_table(struct ahd_softc *ahd,
121 struct ahd_devinfo *devinfo,
122 struct ahd_transinfo *tinfo);
123 static void ahd_update_pending_scbs(struct ahd_softc *ahd);
124 static void ahd_fetch_devinfo(struct ahd_softc *ahd,
125 struct ahd_devinfo *devinfo);
126 static void ahd_scb_devinfo(struct ahd_softc *ahd,
127 struct ahd_devinfo *devinfo,
128 struct scb *scb);
129 static void ahd_setup_initiator_msgout(struct ahd_softc *ahd,
130 struct ahd_devinfo *devinfo,
131 struct scb *scb);
132 static void ahd_build_transfer_msg(struct ahd_softc *ahd,
133 struct ahd_devinfo *devinfo);
134 static void ahd_construct_sdtr(struct ahd_softc *ahd,
135 struct ahd_devinfo *devinfo,
136 u_int period, u_int offset);
137 static void ahd_construct_wdtr(struct ahd_softc *ahd,
138 struct ahd_devinfo *devinfo,
139 u_int bus_width);
140 static void ahd_construct_ppr(struct ahd_softc *ahd,
141 struct ahd_devinfo *devinfo,
142 u_int period, u_int offset,
143 u_int bus_width, u_int ppr_options);
144 static void ahd_clear_msg_state(struct ahd_softc *ahd);
145 static void ahd_handle_message_phase(struct ahd_softc *ahd);
146 typedef enum {
147 AHDMSG_1B,
148 AHDMSG_2B,
149 AHDMSG_EXT
150 } ahd_msgtype;
151 static int ahd_sent_msg(struct ahd_softc *ahd, ahd_msgtype type,
152 u_int msgval, int full);
153 static int ahd_parse_msg(struct ahd_softc *ahd,
154 struct ahd_devinfo *devinfo);
155 static int ahd_handle_msg_reject(struct ahd_softc *ahd,
156 struct ahd_devinfo *devinfo);
157 static void ahd_handle_ign_wide_residue(struct ahd_softc *ahd,
158 struct ahd_devinfo *devinfo);
159 static void ahd_reinitialize_dataptrs(struct ahd_softc *ahd);
160 static void ahd_handle_devreset(struct ahd_softc *ahd,
161 struct ahd_devinfo *devinfo,
162 u_int lun, cam_status status,
163 char *message, int verbose_level);
164 #ifdef AHD_TARGET_MODE
165 static void ahd_setup_target_msgin(struct ahd_softc *ahd,
166 struct ahd_devinfo *devinfo,
167 struct scb *scb);
168 #endif
169
170 static u_int ahd_sglist_size(struct ahd_softc *ahd);
171 static u_int ahd_sglist_allocsize(struct ahd_softc *ahd);
172 static bus_dmamap_callback_t
173 ahd_dmamap_cb;
174 static void ahd_initialize_hscbs(struct ahd_softc *ahd);
175 static int ahd_init_scbdata(struct ahd_softc *ahd);
176 static void ahd_fini_scbdata(struct ahd_softc *ahd);
177 static void ahd_setup_iocell_workaround(struct ahd_softc *ahd);
178 static void ahd_iocell_first_selection(struct ahd_softc *ahd);
179 static void ahd_add_col_list(struct ahd_softc *ahd,
180 struct scb *scb, u_int col_idx);
181 static void ahd_rem_col_list(struct ahd_softc *ahd,
182 struct scb *scb);
183 static void ahd_chip_init(struct ahd_softc *ahd);
184 static void ahd_qinfifo_requeue(struct ahd_softc *ahd,
185 struct scb *prev_scb,
186 struct scb *scb);
187 static int ahd_qinfifo_count(struct ahd_softc *ahd);
188 static int ahd_search_scb_list(struct ahd_softc *ahd, int target,
189 char channel, int lun, u_int tag,
190 role_t role, uint32_t status,
191 ahd_search_action action,
192 u_int *list_head, u_int *list_tail,
193 u_int tid);
194 static void ahd_stitch_tid_list(struct ahd_softc *ahd,
195 u_int tid_prev, u_int tid_cur,
196 u_int tid_next);
197 static void ahd_add_scb_to_free_list(struct ahd_softc *ahd,
198 u_int scbid);
199 static u_int ahd_rem_wscb(struct ahd_softc *ahd, u_int scbid,
200 u_int prev, u_int next, u_int tid);
201 static void ahd_reset_current_bus(struct ahd_softc *ahd);
202 static void ahd_stat_timer(struct timer_list *t);
203 #ifdef AHD_DUMP_SEQ
204 static void ahd_dumpseq(struct ahd_softc *ahd);
205 #endif
206 static void ahd_loadseq(struct ahd_softc *ahd);
207 static int ahd_check_patch(struct ahd_softc *ahd,
208 const struct patch **start_patch,
209 u_int start_instr, u_int *skip_addr);
210 static u_int ahd_resolve_seqaddr(struct ahd_softc *ahd,
211 u_int address);
212 static void ahd_download_instr(struct ahd_softc *ahd,
213 u_int instrptr, uint8_t *dconsts);
214 static int ahd_probe_stack_size(struct ahd_softc *ahd);
215 static int ahd_scb_active_in_fifo(struct ahd_softc *ahd,
216 struct scb *scb);
217 static void ahd_run_data_fifo(struct ahd_softc *ahd,
218 struct scb *scb);
219
220 #ifdef AHD_TARGET_MODE
221 static void ahd_queue_lstate_event(struct ahd_softc *ahd,
222 struct ahd_tmode_lstate *lstate,
223 u_int initiator_id,
224 u_int event_type,
225 u_int event_arg);
226 static void ahd_update_scsiid(struct ahd_softc *ahd,
227 u_int targid_mask);
228 static int ahd_handle_target_cmd(struct ahd_softc *ahd,
229 struct target_cmd *cmd);
230 #endif
231
232 static int ahd_abort_scbs(struct ahd_softc *ahd, int target,
233 char channel, int lun, u_int tag,
234 role_t role, uint32_t status);
235 static void ahd_alloc_scbs(struct ahd_softc *ahd);
236 static void ahd_busy_tcl(struct ahd_softc *ahd, u_int tcl,
237 u_int scbid);
238 static void ahd_calc_residual(struct ahd_softc *ahd,
239 struct scb *scb);
240 static void ahd_clear_critical_section(struct ahd_softc *ahd);
241 static void ahd_clear_intstat(struct ahd_softc *ahd);
242 static void ahd_enable_coalescing(struct ahd_softc *ahd,
243 int enable);
244 static u_int ahd_find_busy_tcl(struct ahd_softc *ahd, u_int tcl);
245 static void ahd_freeze_devq(struct ahd_softc *ahd,
246 struct scb *scb);
247 static void ahd_handle_scb_status(struct ahd_softc *ahd,
248 struct scb *scb);
249 static const struct ahd_phase_table_entry* ahd_lookup_phase_entry(int phase);
250 static void ahd_shutdown(void *arg);
251 static void ahd_update_coalescing_values(struct ahd_softc *ahd,
252 u_int timer,
253 u_int maxcmds,
254 u_int mincmds);
255 static int ahd_verify_vpd_cksum(struct vpd_config *vpd);
256 static int ahd_wait_seeprom(struct ahd_softc *ahd);
257 static int ahd_match_scb(struct ahd_softc *ahd, struct scb *scb,
258 int target, char channel, int lun,
259 u_int tag, role_t role);
260
261 static void ahd_reset_cmds_pending(struct ahd_softc *ahd);
262
263 /*************************** Interrupt Services *******************************/
264 static void ahd_run_qoutfifo(struct ahd_softc *ahd);
265 #ifdef AHD_TARGET_MODE
266 static void ahd_run_tqinfifo(struct ahd_softc *ahd, int paused);
267 #endif
268 static void ahd_handle_hwerrint(struct ahd_softc *ahd);
269 static void ahd_handle_seqint(struct ahd_softc *ahd, u_int intstat);
270 static void ahd_handle_scsiint(struct ahd_softc *ahd,
271 u_int intstat);
272
273 /************************ Sequencer Execution Control *************************/
274 void
ahd_set_modes(struct ahd_softc * ahd,ahd_mode src,ahd_mode dst)275 ahd_set_modes(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
276 {
277 if (ahd->src_mode == src && ahd->dst_mode == dst)
278 return;
279 #ifdef AHD_DEBUG
280 if (ahd->src_mode == AHD_MODE_UNKNOWN
281 || ahd->dst_mode == AHD_MODE_UNKNOWN)
282 panic("Setting mode prior to saving it.\n");
283 if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
284 printk("%s: Setting mode 0x%x\n", ahd_name(ahd),
285 ahd_build_mode_state(ahd, src, dst));
286 #endif
287 ahd_outb(ahd, MODE_PTR, ahd_build_mode_state(ahd, src, dst));
288 ahd->src_mode = src;
289 ahd->dst_mode = dst;
290 }
291
292 static void
ahd_update_modes(struct ahd_softc * ahd)293 ahd_update_modes(struct ahd_softc *ahd)
294 {
295 ahd_mode_state mode_ptr;
296 ahd_mode src;
297 ahd_mode dst;
298
299 mode_ptr = ahd_inb(ahd, MODE_PTR);
300 #ifdef AHD_DEBUG
301 if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
302 printk("Reading mode 0x%x\n", mode_ptr);
303 #endif
304 ahd_extract_mode_state(ahd, mode_ptr, &src, &dst);
305 ahd_known_modes(ahd, src, dst);
306 }
307
308 static void
ahd_assert_modes(struct ahd_softc * ahd,ahd_mode srcmode,ahd_mode dstmode,const char * file,int line)309 ahd_assert_modes(struct ahd_softc *ahd, ahd_mode srcmode,
310 ahd_mode dstmode, const char *file, int line)
311 {
312 #ifdef AHD_DEBUG
313 if ((srcmode & AHD_MK_MSK(ahd->src_mode)) == 0
314 || (dstmode & AHD_MK_MSK(ahd->dst_mode)) == 0) {
315 panic("%s:%s:%d: Mode assertion failed.\n",
316 ahd_name(ahd), file, line);
317 }
318 #endif
319 }
320
321 #define AHD_ASSERT_MODES(ahd, source, dest) \
322 ahd_assert_modes(ahd, source, dest, __FILE__, __LINE__);
323
324 ahd_mode_state
ahd_save_modes(struct ahd_softc * ahd)325 ahd_save_modes(struct ahd_softc *ahd)
326 {
327 if (ahd->src_mode == AHD_MODE_UNKNOWN
328 || ahd->dst_mode == AHD_MODE_UNKNOWN)
329 ahd_update_modes(ahd);
330
331 return (ahd_build_mode_state(ahd, ahd->src_mode, ahd->dst_mode));
332 }
333
334 void
ahd_restore_modes(struct ahd_softc * ahd,ahd_mode_state state)335 ahd_restore_modes(struct ahd_softc *ahd, ahd_mode_state state)
336 {
337 ahd_mode src;
338 ahd_mode dst;
339
340 ahd_extract_mode_state(ahd, state, &src, &dst);
341 ahd_set_modes(ahd, src, dst);
342 }
343
344 /*
345 * Determine whether the sequencer has halted code execution.
346 * Returns non-zero status if the sequencer is stopped.
347 */
348 int
ahd_is_paused(struct ahd_softc * ahd)349 ahd_is_paused(struct ahd_softc *ahd)
350 {
351 return ((ahd_inb(ahd, HCNTRL) & PAUSE) != 0);
352 }
353
354 /*
355 * Request that the sequencer stop and wait, indefinitely, for it
356 * to stop. The sequencer will only acknowledge that it is paused
357 * once it has reached an instruction boundary and PAUSEDIS is
358 * cleared in the SEQCTL register. The sequencer may use PAUSEDIS
359 * for critical sections.
360 */
361 void
ahd_pause(struct ahd_softc * ahd)362 ahd_pause(struct ahd_softc *ahd)
363 {
364 ahd_outb(ahd, HCNTRL, ahd->pause);
365
366 /*
367 * Since the sequencer can disable pausing in a critical section, we
368 * must loop until it actually stops.
369 */
370 while (ahd_is_paused(ahd) == 0)
371 ;
372 }
373
374 /*
375 * Allow the sequencer to continue program execution.
376 * We check here to ensure that no additional interrupt
377 * sources that would cause the sequencer to halt have been
378 * asserted. If, for example, a SCSI bus reset is detected
379 * while we are fielding a different, pausing, interrupt type,
380 * we don't want to release the sequencer before going back
381 * into our interrupt handler and dealing with this new
382 * condition.
383 */
384 void
ahd_unpause(struct ahd_softc * ahd)385 ahd_unpause(struct ahd_softc *ahd)
386 {
387 /*
388 * Automatically restore our modes to those saved
389 * prior to the first change of the mode.
390 */
391 if (ahd->saved_src_mode != AHD_MODE_UNKNOWN
392 && ahd->saved_dst_mode != AHD_MODE_UNKNOWN) {
393 if ((ahd->flags & AHD_UPDATE_PEND_CMDS) != 0)
394 ahd_reset_cmds_pending(ahd);
395 ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
396 }
397
398 if ((ahd_inb(ahd, INTSTAT) & ~CMDCMPLT) == 0)
399 ahd_outb(ahd, HCNTRL, ahd->unpause);
400
401 ahd_known_modes(ahd, AHD_MODE_UNKNOWN, AHD_MODE_UNKNOWN);
402 }
403
404 /*********************** Scatter Gather List Handling *************************/
405 void *
ahd_sg_setup(struct ahd_softc * ahd,struct scb * scb,void * sgptr,dma_addr_t addr,bus_size_t len,int last)406 ahd_sg_setup(struct ahd_softc *ahd, struct scb *scb,
407 void *sgptr, dma_addr_t addr, bus_size_t len, int last)
408 {
409 scb->sg_count++;
410 if (sizeof(dma_addr_t) > 4
411 && (ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
412 struct ahd_dma64_seg *sg;
413
414 sg = (struct ahd_dma64_seg *)sgptr;
415 sg->addr = ahd_htole64(addr);
416 sg->len = ahd_htole32(len | (last ? AHD_DMA_LAST_SEG : 0));
417 return (sg + 1);
418 } else {
419 struct ahd_dma_seg *sg;
420
421 sg = (struct ahd_dma_seg *)sgptr;
422 sg->addr = ahd_htole32(addr & 0xFFFFFFFF);
423 sg->len = ahd_htole32(len | ((addr >> 8) & 0x7F000000)
424 | (last ? AHD_DMA_LAST_SEG : 0));
425 return (sg + 1);
426 }
427 }
428
429 static void
ahd_setup_scb_common(struct ahd_softc * ahd,struct scb * scb)430 ahd_setup_scb_common(struct ahd_softc *ahd, struct scb *scb)
431 {
432 /* XXX Handle target mode SCBs. */
433 scb->crc_retry_count = 0;
434 if ((scb->flags & SCB_PACKETIZED) != 0) {
435 /* XXX what about ACA?? It is type 4, but TAG_TYPE == 0x3. */
436 scb->hscb->task_attribute = scb->hscb->control & SCB_TAG_TYPE;
437 } else {
438 if (ahd_get_transfer_length(scb) & 0x01)
439 scb->hscb->task_attribute = SCB_XFERLEN_ODD;
440 else
441 scb->hscb->task_attribute = 0;
442 }
443
444 if (scb->hscb->cdb_len <= MAX_CDB_LEN_WITH_SENSE_ADDR
445 || (scb->hscb->cdb_len & SCB_CDB_LEN_PTR) != 0)
446 scb->hscb->shared_data.idata.cdb_plus_saddr.sense_addr =
447 ahd_htole32(scb->sense_busaddr);
448 }
449
450 static void
ahd_setup_data_scb(struct ahd_softc * ahd,struct scb * scb)451 ahd_setup_data_scb(struct ahd_softc *ahd, struct scb *scb)
452 {
453 /*
454 * Copy the first SG into the "current" data ponter area.
455 */
456 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
457 struct ahd_dma64_seg *sg;
458
459 sg = (struct ahd_dma64_seg *)scb->sg_list;
460 scb->hscb->dataptr = sg->addr;
461 scb->hscb->datacnt = sg->len;
462 } else {
463 struct ahd_dma_seg *sg;
464 uint32_t *dataptr_words;
465
466 sg = (struct ahd_dma_seg *)scb->sg_list;
467 dataptr_words = (uint32_t*)&scb->hscb->dataptr;
468 dataptr_words[0] = sg->addr;
469 dataptr_words[1] = 0;
470 if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) {
471 uint64_t high_addr;
472
473 high_addr = ahd_le32toh(sg->len) & 0x7F000000;
474 scb->hscb->dataptr |= ahd_htole64(high_addr << 8);
475 }
476 scb->hscb->datacnt = sg->len;
477 }
478 /*
479 * Note where to find the SG entries in bus space.
480 * We also set the full residual flag which the
481 * sequencer will clear as soon as a data transfer
482 * occurs.
483 */
484 scb->hscb->sgptr = ahd_htole32(scb->sg_list_busaddr|SG_FULL_RESID);
485 }
486
487 static void
ahd_setup_noxfer_scb(struct ahd_softc * ahd,struct scb * scb)488 ahd_setup_noxfer_scb(struct ahd_softc *ahd, struct scb *scb)
489 {
490 scb->hscb->sgptr = ahd_htole32(SG_LIST_NULL);
491 scb->hscb->dataptr = 0;
492 scb->hscb->datacnt = 0;
493 }
494
495 /************************** Memory mapping routines ***************************/
496 static void *
ahd_sg_bus_to_virt(struct ahd_softc * ahd,struct scb * scb,uint32_t sg_busaddr)497 ahd_sg_bus_to_virt(struct ahd_softc *ahd, struct scb *scb, uint32_t sg_busaddr)
498 {
499 dma_addr_t sg_offset;
500
501 /* sg_list_phys points to entry 1, not 0 */
502 sg_offset = sg_busaddr - (scb->sg_list_busaddr - ahd_sg_size(ahd));
503 return ((uint8_t *)scb->sg_list + sg_offset);
504 }
505
506 static uint32_t
ahd_sg_virt_to_bus(struct ahd_softc * ahd,struct scb * scb,void * sg)507 ahd_sg_virt_to_bus(struct ahd_softc *ahd, struct scb *scb, void *sg)
508 {
509 dma_addr_t sg_offset;
510
511 /* sg_list_phys points to entry 1, not 0 */
512 sg_offset = ((uint8_t *)sg - (uint8_t *)scb->sg_list)
513 - ahd_sg_size(ahd);
514
515 return (scb->sg_list_busaddr + sg_offset);
516 }
517
518 static void
ahd_sync_scb(struct ahd_softc * ahd,struct scb * scb,int op)519 ahd_sync_scb(struct ahd_softc *ahd, struct scb *scb, int op)
520 {
521 ahd_dmamap_sync(ahd, ahd->scb_data.hscb_dmat,
522 scb->hscb_map->dmamap,
523 /*offset*/(uint8_t*)scb->hscb - scb->hscb_map->vaddr,
524 /*len*/sizeof(*scb->hscb), op);
525 }
526
527 void
ahd_sync_sglist(struct ahd_softc * ahd,struct scb * scb,int op)528 ahd_sync_sglist(struct ahd_softc *ahd, struct scb *scb, int op)
529 {
530 if (scb->sg_count == 0)
531 return;
532
533 ahd_dmamap_sync(ahd, ahd->scb_data.sg_dmat,
534 scb->sg_map->dmamap,
535 /*offset*/scb->sg_list_busaddr - ahd_sg_size(ahd),
536 /*len*/ahd_sg_size(ahd) * scb->sg_count, op);
537 }
538
539 static void
ahd_sync_sense(struct ahd_softc * ahd,struct scb * scb,int op)540 ahd_sync_sense(struct ahd_softc *ahd, struct scb *scb, int op)
541 {
542 ahd_dmamap_sync(ahd, ahd->scb_data.sense_dmat,
543 scb->sense_map->dmamap,
544 /*offset*/scb->sense_busaddr,
545 /*len*/AHD_SENSE_BUFSIZE, op);
546 }
547
548 #ifdef AHD_TARGET_MODE
549 static uint32_t
ahd_targetcmd_offset(struct ahd_softc * ahd,u_int index)550 ahd_targetcmd_offset(struct ahd_softc *ahd, u_int index)
551 {
552 return (((uint8_t *)&ahd->targetcmds[index])
553 - (uint8_t *)ahd->qoutfifo);
554 }
555 #endif
556
557 /*********************** Miscellaneous Support Functions ***********************/
558 /*
559 * Return pointers to the transfer negotiation information
560 * for the specified our_id/remote_id pair.
561 */
562 struct ahd_initiator_tinfo *
ahd_fetch_transinfo(struct ahd_softc * ahd,char channel,u_int our_id,u_int remote_id,struct ahd_tmode_tstate ** tstate)563 ahd_fetch_transinfo(struct ahd_softc *ahd, char channel, u_int our_id,
564 u_int remote_id, struct ahd_tmode_tstate **tstate)
565 {
566 /*
567 * Transfer data structures are stored from the perspective
568 * of the target role. Since the parameters for a connection
569 * in the initiator role to a given target are the same as
570 * when the roles are reversed, we pretend we are the target.
571 */
572 if (channel == 'B')
573 our_id += 8;
574 *tstate = ahd->enabled_targets[our_id];
575 return (&(*tstate)->transinfo[remote_id]);
576 }
577
578 uint16_t
ahd_inw(struct ahd_softc * ahd,u_int port)579 ahd_inw(struct ahd_softc *ahd, u_int port)
580 {
581 /*
582 * Read high byte first as some registers increment
583 * or have other side effects when the low byte is
584 * read.
585 */
586 uint16_t r = ahd_inb(ahd, port+1) << 8;
587 return r | ahd_inb(ahd, port);
588 }
589
590 void
ahd_outw(struct ahd_softc * ahd,u_int port,u_int value)591 ahd_outw(struct ahd_softc *ahd, u_int port, u_int value)
592 {
593 /*
594 * Write low byte first to accommodate registers
595 * such as PRGMCNT where the order maters.
596 */
597 ahd_outb(ahd, port, value & 0xFF);
598 ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
599 }
600
601 uint32_t
ahd_inl(struct ahd_softc * ahd,u_int port)602 ahd_inl(struct ahd_softc *ahd, u_int port)
603 {
604 return ((ahd_inb(ahd, port))
605 | (ahd_inb(ahd, port+1) << 8)
606 | (ahd_inb(ahd, port+2) << 16)
607 | (ahd_inb(ahd, port+3) << 24));
608 }
609
610 void
ahd_outl(struct ahd_softc * ahd,u_int port,uint32_t value)611 ahd_outl(struct ahd_softc *ahd, u_int port, uint32_t value)
612 {
613 ahd_outb(ahd, port, (value) & 0xFF);
614 ahd_outb(ahd, port+1, ((value) >> 8) & 0xFF);
615 ahd_outb(ahd, port+2, ((value) >> 16) & 0xFF);
616 ahd_outb(ahd, port+3, ((value) >> 24) & 0xFF);
617 }
618
619 uint64_t
ahd_inq(struct ahd_softc * ahd,u_int port)620 ahd_inq(struct ahd_softc *ahd, u_int port)
621 {
622 return ((ahd_inb(ahd, port))
623 | (ahd_inb(ahd, port+1) << 8)
624 | (ahd_inb(ahd, port+2) << 16)
625 | (ahd_inb(ahd, port+3) << 24)
626 | (((uint64_t)ahd_inb(ahd, port+4)) << 32)
627 | (((uint64_t)ahd_inb(ahd, port+5)) << 40)
628 | (((uint64_t)ahd_inb(ahd, port+6)) << 48)
629 | (((uint64_t)ahd_inb(ahd, port+7)) << 56));
630 }
631
632 void
ahd_outq(struct ahd_softc * ahd,u_int port,uint64_t value)633 ahd_outq(struct ahd_softc *ahd, u_int port, uint64_t value)
634 {
635 ahd_outb(ahd, port, value & 0xFF);
636 ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
637 ahd_outb(ahd, port+2, (value >> 16) & 0xFF);
638 ahd_outb(ahd, port+3, (value >> 24) & 0xFF);
639 ahd_outb(ahd, port+4, (value >> 32) & 0xFF);
640 ahd_outb(ahd, port+5, (value >> 40) & 0xFF);
641 ahd_outb(ahd, port+6, (value >> 48) & 0xFF);
642 ahd_outb(ahd, port+7, (value >> 56) & 0xFF);
643 }
644
645 u_int
ahd_get_scbptr(struct ahd_softc * ahd)646 ahd_get_scbptr(struct ahd_softc *ahd)
647 {
648 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
649 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
650 return (ahd_inb(ahd, SCBPTR) | (ahd_inb(ahd, SCBPTR + 1) << 8));
651 }
652
653 void
ahd_set_scbptr(struct ahd_softc * ahd,u_int scbptr)654 ahd_set_scbptr(struct ahd_softc *ahd, u_int scbptr)
655 {
656 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
657 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
658 ahd_outb(ahd, SCBPTR, scbptr & 0xFF);
659 ahd_outb(ahd, SCBPTR+1, (scbptr >> 8) & 0xFF);
660 }
661
662 #if 0 /* unused */
663 static u_int
664 ahd_get_hnscb_qoff(struct ahd_softc *ahd)
665 {
666 return (ahd_inw_atomic(ahd, HNSCB_QOFF));
667 }
668 #endif
669
670 static void
ahd_set_hnscb_qoff(struct ahd_softc * ahd,u_int value)671 ahd_set_hnscb_qoff(struct ahd_softc *ahd, u_int value)
672 {
673 ahd_outw_atomic(ahd, HNSCB_QOFF, value);
674 }
675
676 #if 0 /* unused */
677 static u_int
678 ahd_get_hescb_qoff(struct ahd_softc *ahd)
679 {
680 return (ahd_inb(ahd, HESCB_QOFF));
681 }
682 #endif
683
684 static void
ahd_set_hescb_qoff(struct ahd_softc * ahd,u_int value)685 ahd_set_hescb_qoff(struct ahd_softc *ahd, u_int value)
686 {
687 ahd_outb(ahd, HESCB_QOFF, value);
688 }
689
690 static u_int
ahd_get_snscb_qoff(struct ahd_softc * ahd)691 ahd_get_snscb_qoff(struct ahd_softc *ahd)
692 {
693 u_int oldvalue;
694
695 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
696 oldvalue = ahd_inw(ahd, SNSCB_QOFF);
697 ahd_outw(ahd, SNSCB_QOFF, oldvalue);
698 return (oldvalue);
699 }
700
701 static void
ahd_set_snscb_qoff(struct ahd_softc * ahd,u_int value)702 ahd_set_snscb_qoff(struct ahd_softc *ahd, u_int value)
703 {
704 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
705 ahd_outw(ahd, SNSCB_QOFF, value);
706 }
707
708 #if 0 /* unused */
709 static u_int
710 ahd_get_sescb_qoff(struct ahd_softc *ahd)
711 {
712 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
713 return (ahd_inb(ahd, SESCB_QOFF));
714 }
715 #endif
716
717 static void
ahd_set_sescb_qoff(struct ahd_softc * ahd,u_int value)718 ahd_set_sescb_qoff(struct ahd_softc *ahd, u_int value)
719 {
720 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
721 ahd_outb(ahd, SESCB_QOFF, value);
722 }
723
724 #if 0 /* unused */
725 static u_int
726 ahd_get_sdscb_qoff(struct ahd_softc *ahd)
727 {
728 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
729 return (ahd_inb(ahd, SDSCB_QOFF) | (ahd_inb(ahd, SDSCB_QOFF + 1) << 8));
730 }
731 #endif
732
733 static void
ahd_set_sdscb_qoff(struct ahd_softc * ahd,u_int value)734 ahd_set_sdscb_qoff(struct ahd_softc *ahd, u_int value)
735 {
736 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
737 ahd_outb(ahd, SDSCB_QOFF, value & 0xFF);
738 ahd_outb(ahd, SDSCB_QOFF+1, (value >> 8) & 0xFF);
739 }
740
741 u_int
ahd_inb_scbram(struct ahd_softc * ahd,u_int offset)742 ahd_inb_scbram(struct ahd_softc *ahd, u_int offset)
743 {
744 u_int value;
745
746 /*
747 * Workaround PCI-X Rev A. hardware bug.
748 * After a host read of SCB memory, the chip
749 * may become confused into thinking prefetch
750 * was required. This starts the discard timer
751 * running and can cause an unexpected discard
752 * timer interrupt. The work around is to read
753 * a normal register prior to the exhaustion of
754 * the discard timer. The mode pointer register
755 * has no side effects and so serves well for
756 * this purpose.
757 *
758 * Razor #528
759 */
760 value = ahd_inb(ahd, offset);
761 if ((ahd->bugs & AHD_PCIX_SCBRAM_RD_BUG) != 0)
762 ahd_inb(ahd, MODE_PTR);
763 return (value);
764 }
765
766 u_int
ahd_inw_scbram(struct ahd_softc * ahd,u_int offset)767 ahd_inw_scbram(struct ahd_softc *ahd, u_int offset)
768 {
769 return (ahd_inb_scbram(ahd, offset)
770 | (ahd_inb_scbram(ahd, offset+1) << 8));
771 }
772
773 static uint32_t
ahd_inl_scbram(struct ahd_softc * ahd,u_int offset)774 ahd_inl_scbram(struct ahd_softc *ahd, u_int offset)
775 {
776 return (ahd_inw_scbram(ahd, offset)
777 | (ahd_inw_scbram(ahd, offset+2) << 16));
778 }
779
780 static uint64_t
ahd_inq_scbram(struct ahd_softc * ahd,u_int offset)781 ahd_inq_scbram(struct ahd_softc *ahd, u_int offset)
782 {
783 return (ahd_inl_scbram(ahd, offset)
784 | ((uint64_t)ahd_inl_scbram(ahd, offset+4)) << 32);
785 }
786
787 struct scb *
ahd_lookup_scb(struct ahd_softc * ahd,u_int tag)788 ahd_lookup_scb(struct ahd_softc *ahd, u_int tag)
789 {
790 struct scb* scb;
791
792 if (tag >= AHD_SCB_MAX)
793 return (NULL);
794 scb = ahd->scb_data.scbindex[tag];
795 if (scb != NULL)
796 ahd_sync_scb(ahd, scb,
797 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
798 return (scb);
799 }
800
801 static void
ahd_swap_with_next_hscb(struct ahd_softc * ahd,struct scb * scb)802 ahd_swap_with_next_hscb(struct ahd_softc *ahd, struct scb *scb)
803 {
804 struct hardware_scb *q_hscb;
805 struct map_node *q_hscb_map;
806 uint32_t saved_hscb_busaddr;
807
808 /*
809 * Our queuing method is a bit tricky. The card
810 * knows in advance which HSCB (by address) to download,
811 * and we can't disappoint it. To achieve this, the next
812 * HSCB to download is saved off in ahd->next_queued_hscb.
813 * When we are called to queue "an arbitrary scb",
814 * we copy the contents of the incoming HSCB to the one
815 * the sequencer knows about, swap HSCB pointers and
816 * finally assign the SCB to the tag indexed location
817 * in the scb_array. This makes sure that we can still
818 * locate the correct SCB by SCB_TAG.
819 */
820 q_hscb = ahd->next_queued_hscb;
821 q_hscb_map = ahd->next_queued_hscb_map;
822 saved_hscb_busaddr = q_hscb->hscb_busaddr;
823 memcpy(q_hscb, scb->hscb, sizeof(*scb->hscb));
824 q_hscb->hscb_busaddr = saved_hscb_busaddr;
825 q_hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr;
826
827 /* Now swap HSCB pointers. */
828 ahd->next_queued_hscb = scb->hscb;
829 ahd->next_queued_hscb_map = scb->hscb_map;
830 scb->hscb = q_hscb;
831 scb->hscb_map = q_hscb_map;
832
833 /* Now define the mapping from tag to SCB in the scbindex */
834 ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = scb;
835 }
836
837 /*
838 * Tell the sequencer about a new transaction to execute.
839 */
840 void
ahd_queue_scb(struct ahd_softc * ahd,struct scb * scb)841 ahd_queue_scb(struct ahd_softc *ahd, struct scb *scb)
842 {
843 ahd_swap_with_next_hscb(ahd, scb);
844
845 if (SCBID_IS_NULL(SCB_GET_TAG(scb)))
846 panic("Attempt to queue invalid SCB tag %x\n",
847 SCB_GET_TAG(scb));
848
849 /*
850 * Keep a history of SCBs we've downloaded in the qinfifo.
851 */
852 ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb);
853 ahd->qinfifonext++;
854
855 if (scb->sg_count != 0)
856 ahd_setup_data_scb(ahd, scb);
857 else
858 ahd_setup_noxfer_scb(ahd, scb);
859 ahd_setup_scb_common(ahd, scb);
860
861 /*
862 * Make sure our data is consistent from the
863 * perspective of the adapter.
864 */
865 ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
866
867 #ifdef AHD_DEBUG
868 if ((ahd_debug & AHD_SHOW_QUEUE) != 0) {
869 uint64_t host_dataptr;
870
871 host_dataptr = ahd_le64toh(scb->hscb->dataptr);
872 printk("%s: Queueing SCB %d:0x%x bus addr 0x%x - 0x%x%x/0x%x\n",
873 ahd_name(ahd),
874 SCB_GET_TAG(scb), scb->hscb->scsiid,
875 ahd_le32toh(scb->hscb->hscb_busaddr),
876 (u_int)((host_dataptr >> 32) & 0xFFFFFFFF),
877 (u_int)(host_dataptr & 0xFFFFFFFF),
878 ahd_le32toh(scb->hscb->datacnt));
879 }
880 #endif
881 /* Tell the adapter about the newly queued SCB */
882 ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
883 }
884
885 /************************** Interrupt Processing ******************************/
886 static void
ahd_sync_qoutfifo(struct ahd_softc * ahd,int op)887 ahd_sync_qoutfifo(struct ahd_softc *ahd, int op)
888 {
889 ahd_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
890 /*offset*/0,
891 /*len*/AHD_SCB_MAX * sizeof(struct ahd_completion), op);
892 }
893
894 static void
ahd_sync_tqinfifo(struct ahd_softc * ahd,int op)895 ahd_sync_tqinfifo(struct ahd_softc *ahd, int op)
896 {
897 #ifdef AHD_TARGET_MODE
898 if ((ahd->flags & AHD_TARGETROLE) != 0) {
899 ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
900 ahd->shared_data_map.dmamap,
901 ahd_targetcmd_offset(ahd, 0),
902 sizeof(struct target_cmd) * AHD_TMODE_CMDS,
903 op);
904 }
905 #endif
906 }
907
908 /*
909 * See if the firmware has posted any completed commands
910 * into our in-core command complete fifos.
911 */
912 #define AHD_RUN_QOUTFIFO 0x1
913 #define AHD_RUN_TQINFIFO 0x2
914 static u_int
ahd_check_cmdcmpltqueues(struct ahd_softc * ahd)915 ahd_check_cmdcmpltqueues(struct ahd_softc *ahd)
916 {
917 u_int retval;
918
919 retval = 0;
920 ahd_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
921 /*offset*/ahd->qoutfifonext * sizeof(*ahd->qoutfifo),
922 /*len*/sizeof(*ahd->qoutfifo), BUS_DMASYNC_POSTREAD);
923 if (ahd->qoutfifo[ahd->qoutfifonext].valid_tag
924 == ahd->qoutfifonext_valid_tag)
925 retval |= AHD_RUN_QOUTFIFO;
926 #ifdef AHD_TARGET_MODE
927 if ((ahd->flags & AHD_TARGETROLE) != 0
928 && (ahd->flags & AHD_TQINFIFO_BLOCKED) == 0) {
929 ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
930 ahd->shared_data_map.dmamap,
931 ahd_targetcmd_offset(ahd, ahd->tqinfifofnext),
932 /*len*/sizeof(struct target_cmd),
933 BUS_DMASYNC_POSTREAD);
934 if (ahd->targetcmds[ahd->tqinfifonext].cmd_valid != 0)
935 retval |= AHD_RUN_TQINFIFO;
936 }
937 #endif
938 return (retval);
939 }
940
941 /*
942 * Catch an interrupt from the adapter
943 */
944 int
ahd_intr(struct ahd_softc * ahd)945 ahd_intr(struct ahd_softc *ahd)
946 {
947 u_int intstat;
948
949 if ((ahd->pause & INTEN) == 0) {
950 /*
951 * Our interrupt is not enabled on the chip
952 * and may be disabled for re-entrancy reasons,
953 * so just return. This is likely just a shared
954 * interrupt.
955 */
956 return (0);
957 }
958
959 /*
960 * Instead of directly reading the interrupt status register,
961 * infer the cause of the interrupt by checking our in-core
962 * completion queues. This avoids a costly PCI bus read in
963 * most cases.
964 */
965 if ((ahd->flags & AHD_ALL_INTERRUPTS) == 0
966 && (ahd_check_cmdcmpltqueues(ahd) != 0))
967 intstat = CMDCMPLT;
968 else
969 intstat = ahd_inb(ahd, INTSTAT);
970
971 if ((intstat & INT_PEND) == 0)
972 return (0);
973
974 if (intstat & CMDCMPLT) {
975 ahd_outb(ahd, CLRINT, CLRCMDINT);
976
977 /*
978 * Ensure that the chip sees that we've cleared
979 * this interrupt before we walk the output fifo.
980 * Otherwise, we may, due to posted bus writes,
981 * clear the interrupt after we finish the scan,
982 * and after the sequencer has added new entries
983 * and asserted the interrupt again.
984 */
985 if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
986 if (ahd_is_paused(ahd)) {
987 /*
988 * Potentially lost SEQINT.
989 * If SEQINTCODE is non-zero,
990 * simulate the SEQINT.
991 */
992 if (ahd_inb(ahd, SEQINTCODE) != NO_SEQINT)
993 intstat |= SEQINT;
994 }
995 } else {
996 ahd_flush_device_writes(ahd);
997 }
998 ahd_run_qoutfifo(ahd);
999 ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket]++;
1000 ahd->cmdcmplt_total++;
1001 #ifdef AHD_TARGET_MODE
1002 if ((ahd->flags & AHD_TARGETROLE) != 0)
1003 ahd_run_tqinfifo(ahd, /*paused*/FALSE);
1004 #endif
1005 }
1006
1007 /*
1008 * Handle statuses that may invalidate our cached
1009 * copy of INTSTAT separately.
1010 */
1011 if (intstat == 0xFF && (ahd->features & AHD_REMOVABLE) != 0) {
1012 /* Hot eject. Do nothing */
1013 } else if (intstat & HWERRINT) {
1014 ahd_handle_hwerrint(ahd);
1015 } else if ((intstat & (PCIINT|SPLTINT)) != 0) {
1016 ahd->bus_intr(ahd);
1017 } else {
1018
1019 if ((intstat & SEQINT) != 0)
1020 ahd_handle_seqint(ahd, intstat);
1021
1022 if ((intstat & SCSIINT) != 0)
1023 ahd_handle_scsiint(ahd, intstat);
1024 }
1025 return (1);
1026 }
1027
1028 /******************************** Private Inlines *****************************/
1029 static inline void
ahd_assert_atn(struct ahd_softc * ahd)1030 ahd_assert_atn(struct ahd_softc *ahd)
1031 {
1032 ahd_outb(ahd, SCSISIGO, ATNO);
1033 }
1034
1035 /*
1036 * Determine if the current connection has a packetized
1037 * agreement. This does not necessarily mean that we
1038 * are currently in a packetized transfer. We could
1039 * just as easily be sending or receiving a message.
1040 */
1041 static int
ahd_currently_packetized(struct ahd_softc * ahd)1042 ahd_currently_packetized(struct ahd_softc *ahd)
1043 {
1044 ahd_mode_state saved_modes;
1045 int packetized;
1046
1047 saved_modes = ahd_save_modes(ahd);
1048 if ((ahd->bugs & AHD_PKTIZED_STATUS_BUG) != 0) {
1049 /*
1050 * The packetized bit refers to the last
1051 * connection, not the current one. Check
1052 * for non-zero LQISTATE instead.
1053 */
1054 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
1055 packetized = ahd_inb(ahd, LQISTATE) != 0;
1056 } else {
1057 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1058 packetized = ahd_inb(ahd, LQISTAT2) & PACKETIZED;
1059 }
1060 ahd_restore_modes(ahd, saved_modes);
1061 return (packetized);
1062 }
1063
1064 static inline int
ahd_set_active_fifo(struct ahd_softc * ahd)1065 ahd_set_active_fifo(struct ahd_softc *ahd)
1066 {
1067 u_int active_fifo;
1068
1069 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
1070 active_fifo = ahd_inb(ahd, DFFSTAT) & CURRFIFO;
1071 switch (active_fifo) {
1072 case 0:
1073 case 1:
1074 ahd_set_modes(ahd, active_fifo, active_fifo);
1075 return (1);
1076 default:
1077 return (0);
1078 }
1079 }
1080
1081 static inline void
ahd_unbusy_tcl(struct ahd_softc * ahd,u_int tcl)1082 ahd_unbusy_tcl(struct ahd_softc *ahd, u_int tcl)
1083 {
1084 ahd_busy_tcl(ahd, tcl, SCB_LIST_NULL);
1085 }
1086
1087 /*
1088 * Determine whether the sequencer reported a residual
1089 * for this SCB/transaction.
1090 */
1091 static inline void
ahd_update_residual(struct ahd_softc * ahd,struct scb * scb)1092 ahd_update_residual(struct ahd_softc *ahd, struct scb *scb)
1093 {
1094 uint32_t sgptr;
1095
1096 sgptr = ahd_le32toh(scb->hscb->sgptr);
1097 if ((sgptr & SG_STATUS_VALID) != 0)
1098 ahd_calc_residual(ahd, scb);
1099 }
1100
1101 static inline void
ahd_complete_scb(struct ahd_softc * ahd,struct scb * scb)1102 ahd_complete_scb(struct ahd_softc *ahd, struct scb *scb)
1103 {
1104 uint32_t sgptr;
1105
1106 sgptr = ahd_le32toh(scb->hscb->sgptr);
1107 if ((sgptr & SG_STATUS_VALID) != 0)
1108 ahd_handle_scb_status(ahd, scb);
1109 else
1110 ahd_done(ahd, scb);
1111 }
1112
1113
1114 /************************* Sequencer Execution Control ************************/
1115 /*
1116 * Restart the sequencer program from address zero
1117 */
1118 static void
ahd_restart(struct ahd_softc * ahd)1119 ahd_restart(struct ahd_softc *ahd)
1120 {
1121
1122 ahd_pause(ahd);
1123
1124 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1125
1126 /* No more pending messages */
1127 ahd_clear_msg_state(ahd);
1128 ahd_outb(ahd, SCSISIGO, 0); /* De-assert BSY */
1129 ahd_outb(ahd, MSG_OUT, MSG_NOOP); /* No message to send */
1130 ahd_outb(ahd, SXFRCTL1, ahd_inb(ahd, SXFRCTL1) & ~BITBUCKET);
1131 ahd_outb(ahd, SEQINTCTL, 0);
1132 ahd_outb(ahd, LASTPHASE, P_BUSFREE);
1133 ahd_outb(ahd, SEQ_FLAGS, 0);
1134 ahd_outb(ahd, SAVED_SCSIID, 0xFF);
1135 ahd_outb(ahd, SAVED_LUN, 0xFF);
1136
1137 /*
1138 * Ensure that the sequencer's idea of TQINPOS
1139 * matches our own. The sequencer increments TQINPOS
1140 * only after it sees a DMA complete and a reset could
1141 * occur before the increment leaving the kernel to believe
1142 * the command arrived but the sequencer to not.
1143 */
1144 ahd_outb(ahd, TQINPOS, ahd->tqinfifonext);
1145
1146 /* Always allow reselection */
1147 ahd_outb(ahd, SCSISEQ1,
1148 ahd_inb(ahd, SCSISEQ_TEMPLATE) & (ENSELI|ENRSELI|ENAUTOATNP));
1149 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
1150
1151 /*
1152 * Clear any pending sequencer interrupt. It is no
1153 * longer relevant since we're resetting the Program
1154 * Counter.
1155 */
1156 ahd_outb(ahd, CLRINT, CLRSEQINT);
1157
1158 ahd_outb(ahd, SEQCTL0, FASTMODE|SEQRESET);
1159 ahd_unpause(ahd);
1160 }
1161
1162 static void
ahd_clear_fifo(struct ahd_softc * ahd,u_int fifo)1163 ahd_clear_fifo(struct ahd_softc *ahd, u_int fifo)
1164 {
1165 ahd_mode_state saved_modes;
1166
1167 #ifdef AHD_DEBUG
1168 if ((ahd_debug & AHD_SHOW_FIFOS) != 0)
1169 printk("%s: Clearing FIFO %d\n", ahd_name(ahd), fifo);
1170 #endif
1171 saved_modes = ahd_save_modes(ahd);
1172 ahd_set_modes(ahd, fifo, fifo);
1173 ahd_outb(ahd, DFFSXFRCTL, RSTCHN|CLRSHCNT);
1174 if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0)
1175 ahd_outb(ahd, CCSGCTL, CCSGRESET);
1176 ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
1177 ahd_outb(ahd, SG_STATE, 0);
1178 ahd_restore_modes(ahd, saved_modes);
1179 }
1180
1181 /************************* Input/Output Queues ********************************/
1182 /*
1183 * Flush and completed commands that are sitting in the command
1184 * complete queues down on the chip but have yet to be dma'ed back up.
1185 */
1186 static void
ahd_flush_qoutfifo(struct ahd_softc * ahd)1187 ahd_flush_qoutfifo(struct ahd_softc *ahd)
1188 {
1189 struct scb *scb;
1190 ahd_mode_state saved_modes;
1191 u_int saved_scbptr;
1192 u_int ccscbctl;
1193 u_int scbid;
1194 u_int next_scbid;
1195
1196 saved_modes = ahd_save_modes(ahd);
1197
1198 /*
1199 * Flush the good status FIFO for completed packetized commands.
1200 */
1201 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1202 saved_scbptr = ahd_get_scbptr(ahd);
1203 while ((ahd_inb(ahd, LQISTAT2) & LQIGSAVAIL) != 0) {
1204 u_int fifo_mode;
1205 u_int i;
1206
1207 scbid = ahd_inw(ahd, GSFIFO);
1208 scb = ahd_lookup_scb(ahd, scbid);
1209 if (scb == NULL) {
1210 printk("%s: Warning - GSFIFO SCB %d invalid\n",
1211 ahd_name(ahd), scbid);
1212 continue;
1213 }
1214 /*
1215 * Determine if this transaction is still active in
1216 * any FIFO. If it is, we must flush that FIFO to
1217 * the host before completing the command.
1218 */
1219 fifo_mode = 0;
1220 rescan_fifos:
1221 for (i = 0; i < 2; i++) {
1222 /* Toggle to the other mode. */
1223 fifo_mode ^= 1;
1224 ahd_set_modes(ahd, fifo_mode, fifo_mode);
1225
1226 if (ahd_scb_active_in_fifo(ahd, scb) == 0)
1227 continue;
1228
1229 ahd_run_data_fifo(ahd, scb);
1230
1231 /*
1232 * Running this FIFO may cause a CFG4DATA for
1233 * this same transaction to assert in the other
1234 * FIFO or a new snapshot SAVEPTRS interrupt
1235 * in this FIFO. Even running a FIFO may not
1236 * clear the transaction if we are still waiting
1237 * for data to drain to the host. We must loop
1238 * until the transaction is not active in either
1239 * FIFO just to be sure. Reset our loop counter
1240 * so we will visit both FIFOs again before
1241 * declaring this transaction finished. We
1242 * also delay a bit so that status has a chance
1243 * to change before we look at this FIFO again.
1244 */
1245 ahd_delay(200);
1246 goto rescan_fifos;
1247 }
1248 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1249 ahd_set_scbptr(ahd, scbid);
1250 if ((ahd_inb_scbram(ahd, SCB_SGPTR) & SG_LIST_NULL) == 0
1251 && ((ahd_inb_scbram(ahd, SCB_SGPTR) & SG_FULL_RESID) != 0
1252 || (ahd_inb_scbram(ahd, SCB_RESIDUAL_SGPTR)
1253 & SG_LIST_NULL) != 0)) {
1254 u_int comp_head;
1255
1256 /*
1257 * The transfer completed with a residual.
1258 * Place this SCB on the complete DMA list
1259 * so that we update our in-core copy of the
1260 * SCB before completing the command.
1261 */
1262 ahd_outb(ahd, SCB_SCSI_STATUS, 0);
1263 ahd_outb(ahd, SCB_SGPTR,
1264 ahd_inb_scbram(ahd, SCB_SGPTR)
1265 | SG_STATUS_VALID);
1266 ahd_outw(ahd, SCB_TAG, scbid);
1267 ahd_outw(ahd, SCB_NEXT_COMPLETE, SCB_LIST_NULL);
1268 comp_head = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
1269 if (SCBID_IS_NULL(comp_head)) {
1270 ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, scbid);
1271 ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, scbid);
1272 } else {
1273 u_int tail;
1274
1275 tail = ahd_inw(ahd, COMPLETE_DMA_SCB_TAIL);
1276 ahd_set_scbptr(ahd, tail);
1277 ahd_outw(ahd, SCB_NEXT_COMPLETE, scbid);
1278 ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, scbid);
1279 ahd_set_scbptr(ahd, scbid);
1280 }
1281 } else
1282 ahd_complete_scb(ahd, scb);
1283 }
1284 ahd_set_scbptr(ahd, saved_scbptr);
1285
1286 /*
1287 * Setup for command channel portion of flush.
1288 */
1289 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
1290
1291 /*
1292 * Wait for any inprogress DMA to complete and clear DMA state
1293 * if this is for an SCB in the qinfifo.
1294 */
1295 while (((ccscbctl = ahd_inb(ahd, CCSCBCTL)) & (CCARREN|CCSCBEN)) != 0) {
1296
1297 if ((ccscbctl & (CCSCBDIR|CCARREN)) == (CCSCBDIR|CCARREN)) {
1298 if ((ccscbctl & ARRDONE) != 0)
1299 break;
1300 } else if ((ccscbctl & CCSCBDONE) != 0)
1301 break;
1302 ahd_delay(200);
1303 }
1304 /*
1305 * We leave the sequencer to cleanup in the case of DMA's to
1306 * update the qoutfifo. In all other cases (DMA's to the
1307 * chip or a push of an SCB from the COMPLETE_DMA_SCB list),
1308 * we disable the DMA engine so that the sequencer will not
1309 * attempt to handle the DMA completion.
1310 */
1311 if ((ccscbctl & CCSCBDIR) != 0 || (ccscbctl & ARRDONE) != 0)
1312 ahd_outb(ahd, CCSCBCTL, ccscbctl & ~(CCARREN|CCSCBEN));
1313
1314 /*
1315 * Complete any SCBs that just finished
1316 * being DMA'ed into the qoutfifo.
1317 */
1318 ahd_run_qoutfifo(ahd);
1319
1320 saved_scbptr = ahd_get_scbptr(ahd);
1321 /*
1322 * Manually update/complete any completed SCBs that are waiting to be
1323 * DMA'ed back up to the host.
1324 */
1325 scbid = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
1326 while (!SCBID_IS_NULL(scbid)) {
1327 uint8_t *hscb_ptr;
1328 u_int i;
1329
1330 ahd_set_scbptr(ahd, scbid);
1331 next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
1332 scb = ahd_lookup_scb(ahd, scbid);
1333 if (scb == NULL) {
1334 printk("%s: Warning - DMA-up and complete "
1335 "SCB %d invalid\n", ahd_name(ahd), scbid);
1336 continue;
1337 }
1338 hscb_ptr = (uint8_t *)scb->hscb;
1339 for (i = 0; i < sizeof(struct hardware_scb); i++)
1340 *hscb_ptr++ = ahd_inb_scbram(ahd, SCB_BASE + i);
1341
1342 ahd_complete_scb(ahd, scb);
1343 scbid = next_scbid;
1344 }
1345 ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, SCB_LIST_NULL);
1346 ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, SCB_LIST_NULL);
1347
1348 scbid = ahd_inw(ahd, COMPLETE_ON_QFREEZE_HEAD);
1349 while (!SCBID_IS_NULL(scbid)) {
1350
1351 ahd_set_scbptr(ahd, scbid);
1352 next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
1353 scb = ahd_lookup_scb(ahd, scbid);
1354 if (scb == NULL) {
1355 printk("%s: Warning - Complete Qfrz SCB %d invalid\n",
1356 ahd_name(ahd), scbid);
1357 continue;
1358 }
1359
1360 ahd_complete_scb(ahd, scb);
1361 scbid = next_scbid;
1362 }
1363 ahd_outw(ahd, COMPLETE_ON_QFREEZE_HEAD, SCB_LIST_NULL);
1364
1365 scbid = ahd_inw(ahd, COMPLETE_SCB_HEAD);
1366 while (!SCBID_IS_NULL(scbid)) {
1367
1368 ahd_set_scbptr(ahd, scbid);
1369 next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
1370 scb = ahd_lookup_scb(ahd, scbid);
1371 if (scb == NULL) {
1372 printk("%s: Warning - Complete SCB %d invalid\n",
1373 ahd_name(ahd), scbid);
1374 continue;
1375 }
1376
1377 ahd_complete_scb(ahd, scb);
1378 scbid = next_scbid;
1379 }
1380 ahd_outw(ahd, COMPLETE_SCB_HEAD, SCB_LIST_NULL);
1381
1382 /*
1383 * Restore state.
1384 */
1385 ahd_set_scbptr(ahd, saved_scbptr);
1386 ahd_restore_modes(ahd, saved_modes);
1387 ahd->flags |= AHD_UPDATE_PEND_CMDS;
1388 }
1389
1390 /*
1391 * Determine if an SCB for a packetized transaction
1392 * is active in a FIFO.
1393 */
1394 static int
ahd_scb_active_in_fifo(struct ahd_softc * ahd,struct scb * scb)1395 ahd_scb_active_in_fifo(struct ahd_softc *ahd, struct scb *scb)
1396 {
1397
1398 /*
1399 * The FIFO is only active for our transaction if
1400 * the SCBPTR matches the SCB's ID and the firmware
1401 * has installed a handler for the FIFO or we have
1402 * a pending SAVEPTRS or CFG4DATA interrupt.
1403 */
1404 if (ahd_get_scbptr(ahd) != SCB_GET_TAG(scb)
1405 || ((ahd_inb(ahd, LONGJMP_ADDR+1) & INVALID_ADDR) != 0
1406 && (ahd_inb(ahd, SEQINTSRC) & (CFG4DATA|SAVEPTRS)) == 0))
1407 return (0);
1408
1409 return (1);
1410 }
1411
1412 /*
1413 * Run a data fifo to completion for a transaction we know
1414 * has completed across the SCSI bus (good status has been
1415 * received). We are already set to the correct FIFO mode
1416 * on entry to this routine.
1417 *
1418 * This function attempts to operate exactly as the firmware
1419 * would when running this FIFO. Care must be taken to update
1420 * this routine any time the firmware's FIFO algorithm is
1421 * changed.
1422 */
1423 static void
ahd_run_data_fifo(struct ahd_softc * ahd,struct scb * scb)1424 ahd_run_data_fifo(struct ahd_softc *ahd, struct scb *scb)
1425 {
1426 u_int seqintsrc;
1427
1428 seqintsrc = ahd_inb(ahd, SEQINTSRC);
1429 if ((seqintsrc & CFG4DATA) != 0) {
1430 uint32_t datacnt;
1431 uint32_t sgptr;
1432
1433 /*
1434 * Clear full residual flag.
1435 */
1436 sgptr = ahd_inl_scbram(ahd, SCB_SGPTR) & ~SG_FULL_RESID;
1437 ahd_outb(ahd, SCB_SGPTR, sgptr);
1438
1439 /*
1440 * Load datacnt and address.
1441 */
1442 datacnt = ahd_inl_scbram(ahd, SCB_DATACNT);
1443 if ((datacnt & AHD_DMA_LAST_SEG) != 0) {
1444 sgptr |= LAST_SEG;
1445 ahd_outb(ahd, SG_STATE, 0);
1446 } else
1447 ahd_outb(ahd, SG_STATE, LOADING_NEEDED);
1448 ahd_outq(ahd, HADDR, ahd_inq_scbram(ahd, SCB_DATAPTR));
1449 ahd_outl(ahd, HCNT, datacnt & AHD_SG_LEN_MASK);
1450 ahd_outb(ahd, SG_CACHE_PRE, sgptr);
1451 ahd_outb(ahd, DFCNTRL, PRELOADEN|SCSIEN|HDMAEN);
1452
1453 /*
1454 * Initialize Residual Fields.
1455 */
1456 ahd_outb(ahd, SCB_RESIDUAL_DATACNT+3, datacnt >> 24);
1457 ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr & SG_PTR_MASK);
1458
1459 /*
1460 * Mark the SCB as having a FIFO in use.
1461 */
1462 ahd_outb(ahd, SCB_FIFO_USE_COUNT,
1463 ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT) + 1);
1464
1465 /*
1466 * Install a "fake" handler for this FIFO.
1467 */
1468 ahd_outw(ahd, LONGJMP_ADDR, 0);
1469
1470 /*
1471 * Notify the hardware that we have satisfied
1472 * this sequencer interrupt.
1473 */
1474 ahd_outb(ahd, CLRSEQINTSRC, CLRCFG4DATA);
1475 } else if ((seqintsrc & SAVEPTRS) != 0) {
1476 uint32_t sgptr;
1477 uint32_t resid;
1478
1479 if ((ahd_inb(ahd, LONGJMP_ADDR+1)&INVALID_ADDR) != 0) {
1480 /*
1481 * Snapshot Save Pointers. All that
1482 * is necessary to clear the snapshot
1483 * is a CLRCHN.
1484 */
1485 goto clrchn;
1486 }
1487
1488 /*
1489 * Disable S/G fetch so the DMA engine
1490 * is available to future users.
1491 */
1492 if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0)
1493 ahd_outb(ahd, CCSGCTL, 0);
1494 ahd_outb(ahd, SG_STATE, 0);
1495
1496 /*
1497 * Flush the data FIFO. Strickly only
1498 * necessary for Rev A parts.
1499 */
1500 ahd_outb(ahd, DFCNTRL, ahd_inb(ahd, DFCNTRL) | FIFOFLUSH);
1501
1502 /*
1503 * Calculate residual.
1504 */
1505 sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
1506 resid = ahd_inl(ahd, SHCNT);
1507 resid |= ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT+3) << 24;
1508 ahd_outl(ahd, SCB_RESIDUAL_DATACNT, resid);
1509 if ((ahd_inb(ahd, SG_CACHE_SHADOW) & LAST_SEG) == 0) {
1510 /*
1511 * Must back up to the correct S/G element.
1512 * Typically this just means resetting our
1513 * low byte to the offset in the SG_CACHE,
1514 * but if we wrapped, we have to correct
1515 * the other bytes of the sgptr too.
1516 */
1517 if ((ahd_inb(ahd, SG_CACHE_SHADOW) & 0x80) != 0
1518 && (sgptr & 0x80) == 0)
1519 sgptr -= 0x100;
1520 sgptr &= ~0xFF;
1521 sgptr |= ahd_inb(ahd, SG_CACHE_SHADOW)
1522 & SG_ADDR_MASK;
1523 ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
1524 ahd_outb(ahd, SCB_RESIDUAL_DATACNT + 3, 0);
1525 } else if ((resid & AHD_SG_LEN_MASK) == 0) {
1526 ahd_outb(ahd, SCB_RESIDUAL_SGPTR,
1527 sgptr | SG_LIST_NULL);
1528 }
1529 /*
1530 * Save Pointers.
1531 */
1532 ahd_outq(ahd, SCB_DATAPTR, ahd_inq(ahd, SHADDR));
1533 ahd_outl(ahd, SCB_DATACNT, resid);
1534 ahd_outl(ahd, SCB_SGPTR, sgptr);
1535 ahd_outb(ahd, CLRSEQINTSRC, CLRSAVEPTRS);
1536 ahd_outb(ahd, SEQIMODE,
1537 ahd_inb(ahd, SEQIMODE) | ENSAVEPTRS);
1538 /*
1539 * If the data is to the SCSI bus, we are
1540 * done, otherwise wait for FIFOEMP.
1541 */
1542 if ((ahd_inb(ahd, DFCNTRL) & DIRECTION) != 0)
1543 goto clrchn;
1544 } else if ((ahd_inb(ahd, SG_STATE) & LOADING_NEEDED) != 0) {
1545 uint32_t sgptr;
1546 uint64_t data_addr;
1547 uint32_t data_len;
1548 u_int dfcntrl;
1549
1550 /*
1551 * Disable S/G fetch so the DMA engine
1552 * is available to future users. We won't
1553 * be using the DMA engine to load segments.
1554 */
1555 if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0) {
1556 ahd_outb(ahd, CCSGCTL, 0);
1557 ahd_outb(ahd, SG_STATE, LOADING_NEEDED);
1558 }
1559
1560 /*
1561 * Wait for the DMA engine to notice that the
1562 * host transfer is enabled and that there is
1563 * space in the S/G FIFO for new segments before
1564 * loading more segments.
1565 */
1566 if ((ahd_inb(ahd, DFSTATUS) & PRELOAD_AVAIL) != 0
1567 && (ahd_inb(ahd, DFCNTRL) & HDMAENACK) != 0) {
1568
1569 /*
1570 * Determine the offset of the next S/G
1571 * element to load.
1572 */
1573 sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
1574 sgptr &= SG_PTR_MASK;
1575 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
1576 struct ahd_dma64_seg *sg;
1577
1578 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
1579 data_addr = sg->addr;
1580 data_len = sg->len;
1581 sgptr += sizeof(*sg);
1582 } else {
1583 struct ahd_dma_seg *sg;
1584
1585 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
1586 data_addr = sg->len & AHD_SG_HIGH_ADDR_MASK;
1587 data_addr <<= 8;
1588 data_addr |= sg->addr;
1589 data_len = sg->len;
1590 sgptr += sizeof(*sg);
1591 }
1592
1593 /*
1594 * Update residual information.
1595 */
1596 ahd_outb(ahd, SCB_RESIDUAL_DATACNT+3, data_len >> 24);
1597 ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
1598
1599 /*
1600 * Load the S/G.
1601 */
1602 if (data_len & AHD_DMA_LAST_SEG) {
1603 sgptr |= LAST_SEG;
1604 ahd_outb(ahd, SG_STATE, 0);
1605 }
1606 ahd_outq(ahd, HADDR, data_addr);
1607 ahd_outl(ahd, HCNT, data_len & AHD_SG_LEN_MASK);
1608 ahd_outb(ahd, SG_CACHE_PRE, sgptr & 0xFF);
1609
1610 /*
1611 * Advertise the segment to the hardware.
1612 */
1613 dfcntrl = ahd_inb(ahd, DFCNTRL)|PRELOADEN|HDMAEN;
1614 if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) != 0) {
1615 /*
1616 * Use SCSIENWRDIS so that SCSIEN
1617 * is never modified by this
1618 * operation.
1619 */
1620 dfcntrl |= SCSIENWRDIS;
1621 }
1622 ahd_outb(ahd, DFCNTRL, dfcntrl);
1623 }
1624 } else if ((ahd_inb(ahd, SG_CACHE_SHADOW) & LAST_SEG_DONE) != 0) {
1625
1626 /*
1627 * Transfer completed to the end of SG list
1628 * and has flushed to the host.
1629 */
1630 ahd_outb(ahd, SCB_SGPTR,
1631 ahd_inb_scbram(ahd, SCB_SGPTR) | SG_LIST_NULL);
1632 goto clrchn;
1633 } else if ((ahd_inb(ahd, DFSTATUS) & FIFOEMP) != 0) {
1634 clrchn:
1635 /*
1636 * Clear any handler for this FIFO, decrement
1637 * the FIFO use count for the SCB, and release
1638 * the FIFO.
1639 */
1640 ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
1641 ahd_outb(ahd, SCB_FIFO_USE_COUNT,
1642 ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT) - 1);
1643 ahd_outb(ahd, DFFSXFRCTL, CLRCHN);
1644 }
1645 }
1646
1647 /*
1648 * Look for entries in the QoutFIFO that have completed.
1649 * The valid_tag completion field indicates the validity
1650 * of the entry - the valid value toggles each time through
1651 * the queue. We use the sg_status field in the completion
1652 * entry to avoid referencing the hscb if the completion
1653 * occurred with no errors and no residual. sg_status is
1654 * a copy of the first byte (little endian) of the sgptr
1655 * hscb field.
1656 */
1657 static void
ahd_run_qoutfifo(struct ahd_softc * ahd)1658 ahd_run_qoutfifo(struct ahd_softc *ahd)
1659 {
1660 struct ahd_completion *completion;
1661 struct scb *scb;
1662 u_int scb_index;
1663
1664 if ((ahd->flags & AHD_RUNNING_QOUTFIFO) != 0)
1665 panic("ahd_run_qoutfifo recursion");
1666 ahd->flags |= AHD_RUNNING_QOUTFIFO;
1667 ahd_sync_qoutfifo(ahd, BUS_DMASYNC_POSTREAD);
1668 for (;;) {
1669 completion = &ahd->qoutfifo[ahd->qoutfifonext];
1670
1671 if (completion->valid_tag != ahd->qoutfifonext_valid_tag)
1672 break;
1673
1674 scb_index = ahd_le16toh(completion->tag);
1675 scb = ahd_lookup_scb(ahd, scb_index);
1676 if (scb == NULL) {
1677 printk("%s: WARNING no command for scb %d "
1678 "(cmdcmplt)\nQOUTPOS = %d\n",
1679 ahd_name(ahd), scb_index,
1680 ahd->qoutfifonext);
1681 ahd_dump_card_state(ahd);
1682 } else if ((completion->sg_status & SG_STATUS_VALID) != 0) {
1683 ahd_handle_scb_status(ahd, scb);
1684 } else {
1685 ahd_done(ahd, scb);
1686 }
1687
1688 ahd->qoutfifonext = (ahd->qoutfifonext+1) & (AHD_QOUT_SIZE-1);
1689 if (ahd->qoutfifonext == 0)
1690 ahd->qoutfifonext_valid_tag ^= QOUTFIFO_ENTRY_VALID;
1691 }
1692 ahd->flags &= ~AHD_RUNNING_QOUTFIFO;
1693 }
1694
1695 /************************* Interrupt Handling *********************************/
1696 static void
ahd_handle_hwerrint(struct ahd_softc * ahd)1697 ahd_handle_hwerrint(struct ahd_softc *ahd)
1698 {
1699 /*
1700 * Some catastrophic hardware error has occurred.
1701 * Print it for the user and disable the controller.
1702 */
1703 int i;
1704 int error;
1705
1706 error = ahd_inb(ahd, ERROR);
1707 for (i = 0; i < num_errors; i++) {
1708 if ((error & ahd_hard_errors[i].errno) != 0)
1709 printk("%s: hwerrint, %s\n",
1710 ahd_name(ahd), ahd_hard_errors[i].errmesg);
1711 }
1712
1713 ahd_dump_card_state(ahd);
1714 panic("BRKADRINT");
1715
1716 /* Tell everyone that this HBA is no longer available */
1717 ahd_abort_scbs(ahd, CAM_TARGET_WILDCARD, ALL_CHANNELS,
1718 CAM_LUN_WILDCARD, SCB_LIST_NULL, ROLE_UNKNOWN,
1719 CAM_NO_HBA);
1720
1721 /* Tell the system that this controller has gone away. */
1722 ahd_free(ahd);
1723 }
1724
1725 #ifdef AHD_DEBUG
1726 static void
ahd_dump_sglist(struct scb * scb)1727 ahd_dump_sglist(struct scb *scb)
1728 {
1729 int i;
1730
1731 if (scb->sg_count > 0) {
1732 if ((scb->ahd_softc->flags & AHD_64BIT_ADDRESSING) != 0) {
1733 struct ahd_dma64_seg *sg_list;
1734
1735 sg_list = (struct ahd_dma64_seg*)scb->sg_list;
1736 for (i = 0; i < scb->sg_count; i++) {
1737 uint64_t addr;
1738 uint32_t len;
1739
1740 addr = ahd_le64toh(sg_list[i].addr);
1741 len = ahd_le32toh(sg_list[i].len);
1742 printk("sg[%d] - Addr 0x%x%x : Length %d%s\n",
1743 i,
1744 (uint32_t)((addr >> 32) & 0xFFFFFFFF),
1745 (uint32_t)(addr & 0xFFFFFFFF),
1746 sg_list[i].len & AHD_SG_LEN_MASK,
1747 (sg_list[i].len & AHD_DMA_LAST_SEG)
1748 ? " Last" : "");
1749 }
1750 } else {
1751 struct ahd_dma_seg *sg_list;
1752
1753 sg_list = (struct ahd_dma_seg*)scb->sg_list;
1754 for (i = 0; i < scb->sg_count; i++) {
1755 uint32_t len;
1756
1757 len = ahd_le32toh(sg_list[i].len);
1758 printk("sg[%d] - Addr 0x%x%x : Length %d%s\n",
1759 i,
1760 (len & AHD_SG_HIGH_ADDR_MASK) >> 24,
1761 ahd_le32toh(sg_list[i].addr),
1762 len & AHD_SG_LEN_MASK,
1763 len & AHD_DMA_LAST_SEG ? " Last" : "");
1764 }
1765 }
1766 }
1767 }
1768 #endif /* AHD_DEBUG */
1769
1770 static void
ahd_handle_seqint(struct ahd_softc * ahd,u_int intstat)1771 ahd_handle_seqint(struct ahd_softc *ahd, u_int intstat)
1772 {
1773 u_int seqintcode;
1774
1775 /*
1776 * Save the sequencer interrupt code and clear the SEQINT
1777 * bit. We will unpause the sequencer, if appropriate,
1778 * after servicing the request.
1779 */
1780 seqintcode = ahd_inb(ahd, SEQINTCODE);
1781 ahd_outb(ahd, CLRINT, CLRSEQINT);
1782 if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
1783 /*
1784 * Unpause the sequencer and let it clear
1785 * SEQINT by writing NO_SEQINT to it. This
1786 * will cause the sequencer to be paused again,
1787 * which is the expected state of this routine.
1788 */
1789 ahd_unpause(ahd);
1790 while (!ahd_is_paused(ahd))
1791 ;
1792 ahd_outb(ahd, CLRINT, CLRSEQINT);
1793 }
1794 ahd_update_modes(ahd);
1795 #ifdef AHD_DEBUG
1796 if ((ahd_debug & AHD_SHOW_MISC) != 0)
1797 printk("%s: Handle Seqint Called for code %d\n",
1798 ahd_name(ahd), seqintcode);
1799 #endif
1800 switch (seqintcode) {
1801 case ENTERING_NONPACK:
1802 {
1803 struct scb *scb;
1804 u_int scbid;
1805
1806 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
1807 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
1808 scbid = ahd_get_scbptr(ahd);
1809 scb = ahd_lookup_scb(ahd, scbid);
1810 if (scb == NULL) {
1811 /*
1812 * Somehow need to know if this
1813 * is from a selection or reselection.
1814 * From that, we can determine target
1815 * ID so we at least have an I_T nexus.
1816 */
1817 } else {
1818 ahd_outb(ahd, SAVED_SCSIID, scb->hscb->scsiid);
1819 ahd_outb(ahd, SAVED_LUN, scb->hscb->lun);
1820 ahd_outb(ahd, SEQ_FLAGS, 0x0);
1821 }
1822 if ((ahd_inb(ahd, LQISTAT2) & LQIPHASE_OUTPKT) != 0
1823 && (ahd_inb(ahd, SCSISIGO) & ATNO) != 0) {
1824 /*
1825 * Phase change after read stream with
1826 * CRC error with P0 asserted on last
1827 * packet.
1828 */
1829 #ifdef AHD_DEBUG
1830 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
1831 printk("%s: Assuming LQIPHASE_NLQ with "
1832 "P0 assertion\n", ahd_name(ahd));
1833 #endif
1834 }
1835 #ifdef AHD_DEBUG
1836 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
1837 printk("%s: Entering NONPACK\n", ahd_name(ahd));
1838 #endif
1839 break;
1840 }
1841 case INVALID_SEQINT:
1842 printk("%s: Invalid Sequencer interrupt occurred, "
1843 "resetting channel.\n",
1844 ahd_name(ahd));
1845 #ifdef AHD_DEBUG
1846 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
1847 ahd_dump_card_state(ahd);
1848 #endif
1849 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1850 break;
1851 case STATUS_OVERRUN:
1852 {
1853 struct scb *scb;
1854 u_int scbid;
1855
1856 scbid = ahd_get_scbptr(ahd);
1857 scb = ahd_lookup_scb(ahd, scbid);
1858 if (scb != NULL)
1859 ahd_print_path(ahd, scb);
1860 else
1861 printk("%s: ", ahd_name(ahd));
1862 printk("SCB %d Packetized Status Overrun", scbid);
1863 ahd_dump_card_state(ahd);
1864 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1865 break;
1866 }
1867 case CFG4ISTAT_INTR:
1868 {
1869 struct scb *scb;
1870 u_int scbid;
1871
1872 scbid = ahd_get_scbptr(ahd);
1873 scb = ahd_lookup_scb(ahd, scbid);
1874 if (scb == NULL) {
1875 ahd_dump_card_state(ahd);
1876 printk("CFG4ISTAT: Free SCB %d referenced", scbid);
1877 panic("For safety");
1878 }
1879 ahd_outq(ahd, HADDR, scb->sense_busaddr);
1880 ahd_outw(ahd, HCNT, AHD_SENSE_BUFSIZE);
1881 ahd_outb(ahd, HCNT + 2, 0);
1882 ahd_outb(ahd, SG_CACHE_PRE, SG_LAST_SEG);
1883 ahd_outb(ahd, DFCNTRL, PRELOADEN|SCSIEN|HDMAEN);
1884 break;
1885 }
1886 case ILLEGAL_PHASE:
1887 {
1888 u_int bus_phase;
1889
1890 bus_phase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
1891 printk("%s: ILLEGAL_PHASE 0x%x\n",
1892 ahd_name(ahd), bus_phase);
1893
1894 switch (bus_phase) {
1895 case P_DATAOUT:
1896 case P_DATAIN:
1897 case P_DATAOUT_DT:
1898 case P_DATAIN_DT:
1899 case P_MESGOUT:
1900 case P_STATUS:
1901 case P_MESGIN:
1902 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1903 printk("%s: Issued Bus Reset.\n", ahd_name(ahd));
1904 break;
1905 case P_COMMAND:
1906 {
1907 struct ahd_devinfo devinfo;
1908 struct scb *scb;
1909 struct ahd_initiator_tinfo *targ_info;
1910 struct ahd_tmode_tstate *tstate;
1911 struct ahd_transinfo *tinfo;
1912 u_int scbid;
1913
1914 /*
1915 * If a target takes us into the command phase
1916 * assume that it has been externally reset and
1917 * has thus lost our previous packetized negotiation
1918 * agreement. Since we have not sent an identify
1919 * message and may not have fully qualified the
1920 * connection, we change our command to TUR, assert
1921 * ATN and ABORT the task when we go to message in
1922 * phase. The OSM will see the REQUEUE_REQUEST
1923 * status and retry the command.
1924 */
1925 scbid = ahd_get_scbptr(ahd);
1926 scb = ahd_lookup_scb(ahd, scbid);
1927 if (scb == NULL) {
1928 printk("Invalid phase with no valid SCB. "
1929 "Resetting bus.\n");
1930 ahd_reset_channel(ahd, 'A',
1931 /*Initiate Reset*/TRUE);
1932 break;
1933 }
1934 ahd_compile_devinfo(&devinfo, SCB_GET_OUR_ID(scb),
1935 SCB_GET_TARGET(ahd, scb),
1936 SCB_GET_LUN(scb),
1937 SCB_GET_CHANNEL(ahd, scb),
1938 ROLE_INITIATOR);
1939 targ_info = ahd_fetch_transinfo(ahd,
1940 devinfo.channel,
1941 devinfo.our_scsiid,
1942 devinfo.target,
1943 &tstate);
1944 tinfo = &targ_info->curr;
1945 ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
1946 AHD_TRANS_ACTIVE, /*paused*/TRUE);
1947 ahd_set_syncrate(ahd, &devinfo, /*period*/0,
1948 /*offset*/0, /*ppr_options*/0,
1949 AHD_TRANS_ACTIVE, /*paused*/TRUE);
1950 /* Hand-craft TUR command */
1951 ahd_outb(ahd, SCB_CDB_STORE, 0);
1952 ahd_outb(ahd, SCB_CDB_STORE+1, 0);
1953 ahd_outb(ahd, SCB_CDB_STORE+2, 0);
1954 ahd_outb(ahd, SCB_CDB_STORE+3, 0);
1955 ahd_outb(ahd, SCB_CDB_STORE+4, 0);
1956 ahd_outb(ahd, SCB_CDB_STORE+5, 0);
1957 ahd_outb(ahd, SCB_CDB_LEN, 6);
1958 scb->hscb->control &= ~(TAG_ENB|SCB_TAG_TYPE);
1959 scb->hscb->control |= MK_MESSAGE;
1960 ahd_outb(ahd, SCB_CONTROL, scb->hscb->control);
1961 ahd_outb(ahd, MSG_OUT, HOST_MSG);
1962 ahd_outb(ahd, SAVED_SCSIID, scb->hscb->scsiid);
1963 /*
1964 * The lun is 0, regardless of the SCB's lun
1965 * as we have not sent an identify message.
1966 */
1967 ahd_outb(ahd, SAVED_LUN, 0);
1968 ahd_outb(ahd, SEQ_FLAGS, 0);
1969 ahd_assert_atn(ahd);
1970 scb->flags &= ~SCB_PACKETIZED;
1971 scb->flags |= SCB_ABORT|SCB_EXTERNAL_RESET;
1972 ahd_freeze_devq(ahd, scb);
1973 ahd_set_transaction_status(scb, CAM_REQUEUE_REQ);
1974 ahd_freeze_scb(scb);
1975
1976 /* Notify XPT */
1977 ahd_send_async(ahd, devinfo.channel, devinfo.target,
1978 CAM_LUN_WILDCARD, AC_SENT_BDR);
1979
1980 /*
1981 * Allow the sequencer to continue with
1982 * non-pack processing.
1983 */
1984 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1985 ahd_outb(ahd, CLRLQOINT1, CLRLQOPHACHGINPKT);
1986 if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) {
1987 ahd_outb(ahd, CLRLQOINT1, 0);
1988 }
1989 #ifdef AHD_DEBUG
1990 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
1991 ahd_print_path(ahd, scb);
1992 printk("Unexpected command phase from "
1993 "packetized target\n");
1994 }
1995 #endif
1996 break;
1997 }
1998 }
1999 break;
2000 }
2001 case CFG4OVERRUN:
2002 {
2003 struct scb *scb;
2004 u_int scb_index;
2005
2006 #ifdef AHD_DEBUG
2007 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
2008 printk("%s: CFG4OVERRUN mode = %x\n", ahd_name(ahd),
2009 ahd_inb(ahd, MODE_PTR));
2010 }
2011 #endif
2012 scb_index = ahd_get_scbptr(ahd);
2013 scb = ahd_lookup_scb(ahd, scb_index);
2014 if (scb == NULL) {
2015 /*
2016 * Attempt to transfer to an SCB that is
2017 * not outstanding.
2018 */
2019 ahd_assert_atn(ahd);
2020 ahd_outb(ahd, MSG_OUT, HOST_MSG);
2021 ahd->msgout_buf[0] = MSG_ABORT_TASK;
2022 ahd->msgout_len = 1;
2023 ahd->msgout_index = 0;
2024 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
2025 /*
2026 * Clear status received flag to prevent any
2027 * attempt to complete this bogus SCB.
2028 */
2029 ahd_outb(ahd, SCB_CONTROL,
2030 ahd_inb_scbram(ahd, SCB_CONTROL)
2031 & ~STATUS_RCVD);
2032 }
2033 break;
2034 }
2035 case DUMP_CARD_STATE:
2036 {
2037 ahd_dump_card_state(ahd);
2038 break;
2039 }
2040 case PDATA_REINIT:
2041 {
2042 #ifdef AHD_DEBUG
2043 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
2044 printk("%s: PDATA_REINIT - DFCNTRL = 0x%x "
2045 "SG_CACHE_SHADOW = 0x%x\n",
2046 ahd_name(ahd), ahd_inb(ahd, DFCNTRL),
2047 ahd_inb(ahd, SG_CACHE_SHADOW));
2048 }
2049 #endif
2050 ahd_reinitialize_dataptrs(ahd);
2051 break;
2052 }
2053 case HOST_MSG_LOOP:
2054 {
2055 struct ahd_devinfo devinfo;
2056
2057 /*
2058 * The sequencer has encountered a message phase
2059 * that requires host assistance for completion.
2060 * While handling the message phase(s), we will be
2061 * notified by the sequencer after each byte is
2062 * transferred so we can track bus phase changes.
2063 *
2064 * If this is the first time we've seen a HOST_MSG_LOOP
2065 * interrupt, initialize the state of the host message
2066 * loop.
2067 */
2068 ahd_fetch_devinfo(ahd, &devinfo);
2069 if (ahd->msg_type == MSG_TYPE_NONE) {
2070 struct scb *scb;
2071 u_int scb_index;
2072 u_int bus_phase;
2073
2074 bus_phase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
2075 if (bus_phase != P_MESGIN
2076 && bus_phase != P_MESGOUT) {
2077 printk("ahd_intr: HOST_MSG_LOOP bad "
2078 "phase 0x%x\n", bus_phase);
2079 /*
2080 * Probably transitioned to bus free before
2081 * we got here. Just punt the message.
2082 */
2083 ahd_dump_card_state(ahd);
2084 ahd_clear_intstat(ahd);
2085 ahd_restart(ahd);
2086 return;
2087 }
2088
2089 scb_index = ahd_get_scbptr(ahd);
2090 scb = ahd_lookup_scb(ahd, scb_index);
2091 if (devinfo.role == ROLE_INITIATOR) {
2092 if (bus_phase == P_MESGOUT)
2093 ahd_setup_initiator_msgout(ahd,
2094 &devinfo,
2095 scb);
2096 else {
2097 ahd->msg_type =
2098 MSG_TYPE_INITIATOR_MSGIN;
2099 ahd->msgin_index = 0;
2100 }
2101 }
2102 #ifdef AHD_TARGET_MODE
2103 else {
2104 if (bus_phase == P_MESGOUT) {
2105 ahd->msg_type =
2106 MSG_TYPE_TARGET_MSGOUT;
2107 ahd->msgin_index = 0;
2108 }
2109 else
2110 ahd_setup_target_msgin(ahd,
2111 &devinfo,
2112 scb);
2113 }
2114 #endif
2115 }
2116
2117 ahd_handle_message_phase(ahd);
2118 break;
2119 }
2120 case NO_MATCH:
2121 {
2122 /* Ensure we don't leave the selection hardware on */
2123 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
2124 ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
2125
2126 printk("%s:%c:%d: no active SCB for reconnecting "
2127 "target - issuing BUS DEVICE RESET\n",
2128 ahd_name(ahd), 'A', ahd_inb(ahd, SELID) >> 4);
2129 printk("SAVED_SCSIID == 0x%x, SAVED_LUN == 0x%x, "
2130 "REG0 == 0x%x ACCUM = 0x%x\n",
2131 ahd_inb(ahd, SAVED_SCSIID), ahd_inb(ahd, SAVED_LUN),
2132 ahd_inw(ahd, REG0), ahd_inb(ahd, ACCUM));
2133 printk("SEQ_FLAGS == 0x%x, SCBPTR == 0x%x, BTT == 0x%x, "
2134 "SINDEX == 0x%x\n",
2135 ahd_inb(ahd, SEQ_FLAGS), ahd_get_scbptr(ahd),
2136 ahd_find_busy_tcl(ahd,
2137 BUILD_TCL(ahd_inb(ahd, SAVED_SCSIID),
2138 ahd_inb(ahd, SAVED_LUN))),
2139 ahd_inw(ahd, SINDEX));
2140 printk("SELID == 0x%x, SCB_SCSIID == 0x%x, SCB_LUN == 0x%x, "
2141 "SCB_CONTROL == 0x%x\n",
2142 ahd_inb(ahd, SELID), ahd_inb_scbram(ahd, SCB_SCSIID),
2143 ahd_inb_scbram(ahd, SCB_LUN),
2144 ahd_inb_scbram(ahd, SCB_CONTROL));
2145 printk("SCSIBUS[0] == 0x%x, SCSISIGI == 0x%x\n",
2146 ahd_inb(ahd, SCSIBUS), ahd_inb(ahd, SCSISIGI));
2147 printk("SXFRCTL0 == 0x%x\n", ahd_inb(ahd, SXFRCTL0));
2148 printk("SEQCTL0 == 0x%x\n", ahd_inb(ahd, SEQCTL0));
2149 ahd_dump_card_state(ahd);
2150 ahd->msgout_buf[0] = MSG_BUS_DEV_RESET;
2151 ahd->msgout_len = 1;
2152 ahd->msgout_index = 0;
2153 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
2154 ahd_outb(ahd, MSG_OUT, HOST_MSG);
2155 ahd_assert_atn(ahd);
2156 break;
2157 }
2158 case PROTO_VIOLATION:
2159 {
2160 ahd_handle_proto_violation(ahd);
2161 break;
2162 }
2163 case IGN_WIDE_RES:
2164 {
2165 struct ahd_devinfo devinfo;
2166
2167 ahd_fetch_devinfo(ahd, &devinfo);
2168 ahd_handle_ign_wide_residue(ahd, &devinfo);
2169 break;
2170 }
2171 case BAD_PHASE:
2172 {
2173 u_int lastphase;
2174
2175 lastphase = ahd_inb(ahd, LASTPHASE);
2176 printk("%s:%c:%d: unknown scsi bus phase %x, "
2177 "lastphase = 0x%x. Attempting to continue\n",
2178 ahd_name(ahd), 'A',
2179 SCSIID_TARGET(ahd, ahd_inb(ahd, SAVED_SCSIID)),
2180 lastphase, ahd_inb(ahd, SCSISIGI));
2181 break;
2182 }
2183 case MISSED_BUSFREE:
2184 {
2185 u_int lastphase;
2186
2187 lastphase = ahd_inb(ahd, LASTPHASE);
2188 printk("%s:%c:%d: Missed busfree. "
2189 "Lastphase = 0x%x, Curphase = 0x%x\n",
2190 ahd_name(ahd), 'A',
2191 SCSIID_TARGET(ahd, ahd_inb(ahd, SAVED_SCSIID)),
2192 lastphase, ahd_inb(ahd, SCSISIGI));
2193 ahd_restart(ahd);
2194 return;
2195 }
2196 case DATA_OVERRUN:
2197 {
2198 /*
2199 * When the sequencer detects an overrun, it
2200 * places the controller in "BITBUCKET" mode
2201 * and allows the target to complete its transfer.
2202 * Unfortunately, none of the counters get updated
2203 * when the controller is in this mode, so we have
2204 * no way of knowing how large the overrun was.
2205 */
2206 struct scb *scb;
2207 u_int scbindex;
2208 #ifdef AHD_DEBUG
2209 u_int lastphase;
2210 #endif
2211
2212 scbindex = ahd_get_scbptr(ahd);
2213 scb = ahd_lookup_scb(ahd, scbindex);
2214 #ifdef AHD_DEBUG
2215 lastphase = ahd_inb(ahd, LASTPHASE);
2216 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
2217 ahd_print_path(ahd, scb);
2218 printk("data overrun detected %s. Tag == 0x%x.\n",
2219 ahd_lookup_phase_entry(lastphase)->phasemsg,
2220 SCB_GET_TAG(scb));
2221 ahd_print_path(ahd, scb);
2222 printk("%s seen Data Phase. Length = %ld. "
2223 "NumSGs = %d.\n",
2224 ahd_inb(ahd, SEQ_FLAGS) & DPHASE
2225 ? "Have" : "Haven't",
2226 ahd_get_transfer_length(scb), scb->sg_count);
2227 ahd_dump_sglist(scb);
2228 }
2229 #endif
2230
2231 /*
2232 * Set this and it will take effect when the
2233 * target does a command complete.
2234 */
2235 ahd_freeze_devq(ahd, scb);
2236 ahd_set_transaction_status(scb, CAM_DATA_RUN_ERR);
2237 ahd_freeze_scb(scb);
2238 break;
2239 }
2240 case MKMSG_FAILED:
2241 {
2242 struct ahd_devinfo devinfo;
2243 struct scb *scb;
2244 u_int scbid;
2245
2246 ahd_fetch_devinfo(ahd, &devinfo);
2247 printk("%s:%c:%d:%d: Attempt to issue message failed\n",
2248 ahd_name(ahd), devinfo.channel, devinfo.target,
2249 devinfo.lun);
2250 scbid = ahd_get_scbptr(ahd);
2251 scb = ahd_lookup_scb(ahd, scbid);
2252 if (scb != NULL
2253 && (scb->flags & SCB_RECOVERY_SCB) != 0)
2254 /*
2255 * Ensure that we didn't put a second instance of this
2256 * SCB into the QINFIFO.
2257 */
2258 ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
2259 SCB_GET_CHANNEL(ahd, scb),
2260 SCB_GET_LUN(scb), SCB_GET_TAG(scb),
2261 ROLE_INITIATOR, /*status*/0,
2262 SEARCH_REMOVE);
2263 ahd_outb(ahd, SCB_CONTROL,
2264 ahd_inb_scbram(ahd, SCB_CONTROL) & ~MK_MESSAGE);
2265 break;
2266 }
2267 case TASKMGMT_FUNC_COMPLETE:
2268 {
2269 u_int scbid;
2270 struct scb *scb;
2271
2272 scbid = ahd_get_scbptr(ahd);
2273 scb = ahd_lookup_scb(ahd, scbid);
2274 if (scb != NULL) {
2275 u_int lun;
2276 u_int tag;
2277 cam_status error;
2278
2279 ahd_print_path(ahd, scb);
2280 printk("Task Management Func 0x%x Complete\n",
2281 scb->hscb->task_management);
2282 lun = CAM_LUN_WILDCARD;
2283 tag = SCB_LIST_NULL;
2284
2285 switch (scb->hscb->task_management) {
2286 case SIU_TASKMGMT_ABORT_TASK:
2287 tag = SCB_GET_TAG(scb);
2288 /* fall through */
2289 case SIU_TASKMGMT_ABORT_TASK_SET:
2290 case SIU_TASKMGMT_CLEAR_TASK_SET:
2291 lun = scb->hscb->lun;
2292 error = CAM_REQ_ABORTED;
2293 ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb),
2294 'A', lun, tag, ROLE_INITIATOR,
2295 error);
2296 break;
2297 case SIU_TASKMGMT_LUN_RESET:
2298 lun = scb->hscb->lun;
2299 /* fall through */
2300 case SIU_TASKMGMT_TARGET_RESET:
2301 {
2302 struct ahd_devinfo devinfo;
2303
2304 ahd_scb_devinfo(ahd, &devinfo, scb);
2305 error = CAM_BDR_SENT;
2306 ahd_handle_devreset(ahd, &devinfo, lun,
2307 CAM_BDR_SENT,
2308 lun != CAM_LUN_WILDCARD
2309 ? "Lun Reset"
2310 : "Target Reset",
2311 /*verbose_level*/0);
2312 break;
2313 }
2314 default:
2315 panic("Unexpected TaskMgmt Func\n");
2316 break;
2317 }
2318 }
2319 break;
2320 }
2321 case TASKMGMT_CMD_CMPLT_OKAY:
2322 {
2323 u_int scbid;
2324 struct scb *scb;
2325
2326 /*
2327 * An ABORT TASK TMF failed to be delivered before
2328 * the targeted command completed normally.
2329 */
2330 scbid = ahd_get_scbptr(ahd);
2331 scb = ahd_lookup_scb(ahd, scbid);
2332 if (scb != NULL) {
2333 /*
2334 * Remove the second instance of this SCB from
2335 * the QINFIFO if it is still there.
2336 */
2337 ahd_print_path(ahd, scb);
2338 printk("SCB completes before TMF\n");
2339 /*
2340 * Handle losing the race. Wait until any
2341 * current selection completes. We will then
2342 * set the TMF back to zero in this SCB so that
2343 * the sequencer doesn't bother to issue another
2344 * sequencer interrupt for its completion.
2345 */
2346 while ((ahd_inb(ahd, SCSISEQ0) & ENSELO) != 0
2347 && (ahd_inb(ahd, SSTAT0) & SELDO) == 0
2348 && (ahd_inb(ahd, SSTAT1) & SELTO) == 0)
2349 ;
2350 ahd_outb(ahd, SCB_TASK_MANAGEMENT, 0);
2351 ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
2352 SCB_GET_CHANNEL(ahd, scb),
2353 SCB_GET_LUN(scb), SCB_GET_TAG(scb),
2354 ROLE_INITIATOR, /*status*/0,
2355 SEARCH_REMOVE);
2356 }
2357 break;
2358 }
2359 case TRACEPOINT0:
2360 case TRACEPOINT1:
2361 case TRACEPOINT2:
2362 case TRACEPOINT3:
2363 printk("%s: Tracepoint %d\n", ahd_name(ahd),
2364 seqintcode - TRACEPOINT0);
2365 break;
2366 case NO_SEQINT:
2367 break;
2368 case SAW_HWERR:
2369 ahd_handle_hwerrint(ahd);
2370 break;
2371 default:
2372 printk("%s: Unexpected SEQINTCODE %d\n", ahd_name(ahd),
2373 seqintcode);
2374 break;
2375 }
2376 /*
2377 * The sequencer is paused immediately on
2378 * a SEQINT, so we should restart it when
2379 * we're done.
2380 */
2381 ahd_unpause(ahd);
2382 }
2383
2384 static void
ahd_handle_scsiint(struct ahd_softc * ahd,u_int intstat)2385 ahd_handle_scsiint(struct ahd_softc *ahd, u_int intstat)
2386 {
2387 struct scb *scb;
2388 u_int status0;
2389 u_int status3;
2390 u_int status;
2391 u_int lqistat1;
2392 u_int lqostat0;
2393 u_int scbid;
2394 u_int busfreetime;
2395
2396 ahd_update_modes(ahd);
2397 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2398
2399 status3 = ahd_inb(ahd, SSTAT3) & (NTRAMPERR|OSRAMPERR);
2400 status0 = ahd_inb(ahd, SSTAT0) & (IOERR|OVERRUN|SELDI|SELDO);
2401 status = ahd_inb(ahd, SSTAT1) & (SELTO|SCSIRSTI|BUSFREE|SCSIPERR);
2402 lqistat1 = ahd_inb(ahd, LQISTAT1);
2403 lqostat0 = ahd_inb(ahd, LQOSTAT0);
2404 busfreetime = ahd_inb(ahd, SSTAT2) & BUSFREETIME;
2405
2406 /*
2407 * Ignore external resets after a bus reset.
2408 */
2409 if (((status & SCSIRSTI) != 0) && (ahd->flags & AHD_BUS_RESET_ACTIVE)) {
2410 ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
2411 return;
2412 }
2413
2414 /*
2415 * Clear bus reset flag
2416 */
2417 ahd->flags &= ~AHD_BUS_RESET_ACTIVE;
2418
2419 if ((status0 & (SELDI|SELDO)) != 0) {
2420 u_int simode0;
2421
2422 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
2423 simode0 = ahd_inb(ahd, SIMODE0);
2424 status0 &= simode0 & (IOERR|OVERRUN|SELDI|SELDO);
2425 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2426 }
2427 scbid = ahd_get_scbptr(ahd);
2428 scb = ahd_lookup_scb(ahd, scbid);
2429 if (scb != NULL
2430 && (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) != 0)
2431 scb = NULL;
2432
2433 if ((status0 & IOERR) != 0) {
2434 u_int now_lvd;
2435
2436 now_lvd = ahd_inb(ahd, SBLKCTL) & ENAB40;
2437 printk("%s: Transceiver State Has Changed to %s mode\n",
2438 ahd_name(ahd), now_lvd ? "LVD" : "SE");
2439 ahd_outb(ahd, CLRSINT0, CLRIOERR);
2440 /*
2441 * A change in I/O mode is equivalent to a bus reset.
2442 */
2443 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2444 ahd_pause(ahd);
2445 ahd_setup_iocell_workaround(ahd);
2446 ahd_unpause(ahd);
2447 } else if ((status0 & OVERRUN) != 0) {
2448
2449 printk("%s: SCSI offset overrun detected. Resetting bus.\n",
2450 ahd_name(ahd));
2451 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2452 } else if ((status & SCSIRSTI) != 0) {
2453
2454 printk("%s: Someone reset channel A\n", ahd_name(ahd));
2455 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/FALSE);
2456 } else if ((status & SCSIPERR) != 0) {
2457
2458 /* Make sure the sequencer is in a safe location. */
2459 ahd_clear_critical_section(ahd);
2460
2461 ahd_handle_transmission_error(ahd);
2462 } else if (lqostat0 != 0) {
2463
2464 printk("%s: lqostat0 == 0x%x!\n", ahd_name(ahd), lqostat0);
2465 ahd_outb(ahd, CLRLQOINT0, lqostat0);
2466 if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0)
2467 ahd_outb(ahd, CLRLQOINT1, 0);
2468 } else if ((status & SELTO) != 0) {
2469 /* Stop the selection */
2470 ahd_outb(ahd, SCSISEQ0, 0);
2471
2472 /* Make sure the sequencer is in a safe location. */
2473 ahd_clear_critical_section(ahd);
2474
2475 /* No more pending messages */
2476 ahd_clear_msg_state(ahd);
2477
2478 /* Clear interrupt state */
2479 ahd_outb(ahd, CLRSINT1, CLRSELTIMEO|CLRBUSFREE|CLRSCSIPERR);
2480
2481 /*
2482 * Although the driver does not care about the
2483 * 'Selection in Progress' status bit, the busy
2484 * LED does. SELINGO is only cleared by a successful
2485 * selection, so we must manually clear it to insure
2486 * the LED turns off just incase no future successful
2487 * selections occur (e.g. no devices on the bus).
2488 */
2489 ahd_outb(ahd, CLRSINT0, CLRSELINGO);
2490
2491 scbid = ahd_inw(ahd, WAITING_TID_HEAD);
2492 scb = ahd_lookup_scb(ahd, scbid);
2493 if (scb == NULL) {
2494 printk("%s: ahd_intr - referenced scb not "
2495 "valid during SELTO scb(0x%x)\n",
2496 ahd_name(ahd), scbid);
2497 ahd_dump_card_state(ahd);
2498 } else {
2499 struct ahd_devinfo devinfo;
2500 #ifdef AHD_DEBUG
2501 if ((ahd_debug & AHD_SHOW_SELTO) != 0) {
2502 ahd_print_path(ahd, scb);
2503 printk("Saw Selection Timeout for SCB 0x%x\n",
2504 scbid);
2505 }
2506 #endif
2507 ahd_scb_devinfo(ahd, &devinfo, scb);
2508 ahd_set_transaction_status(scb, CAM_SEL_TIMEOUT);
2509 ahd_freeze_devq(ahd, scb);
2510
2511 /*
2512 * Cancel any pending transactions on the device
2513 * now that it seems to be missing. This will
2514 * also revert us to async/narrow transfers until
2515 * we can renegotiate with the device.
2516 */
2517 ahd_handle_devreset(ahd, &devinfo,
2518 CAM_LUN_WILDCARD,
2519 CAM_SEL_TIMEOUT,
2520 "Selection Timeout",
2521 /*verbose_level*/1);
2522 }
2523 ahd_outb(ahd, CLRINT, CLRSCSIINT);
2524 ahd_iocell_first_selection(ahd);
2525 ahd_unpause(ahd);
2526 } else if ((status0 & (SELDI|SELDO)) != 0) {
2527
2528 ahd_iocell_first_selection(ahd);
2529 ahd_unpause(ahd);
2530 } else if (status3 != 0) {
2531 printk("%s: SCSI Cell parity error SSTAT3 == 0x%x\n",
2532 ahd_name(ahd), status3);
2533 ahd_outb(ahd, CLRSINT3, status3);
2534 } else if ((lqistat1 & (LQIPHASE_LQ|LQIPHASE_NLQ)) != 0) {
2535
2536 /* Make sure the sequencer is in a safe location. */
2537 ahd_clear_critical_section(ahd);
2538
2539 ahd_handle_lqiphase_error(ahd, lqistat1);
2540 } else if ((lqistat1 & LQICRCI_NLQ) != 0) {
2541 /*
2542 * This status can be delayed during some
2543 * streaming operations. The SCSIPHASE
2544 * handler has already dealt with this case
2545 * so just clear the error.
2546 */
2547 ahd_outb(ahd, CLRLQIINT1, CLRLQICRCI_NLQ);
2548 } else if ((status & BUSFREE) != 0
2549 || (lqistat1 & LQOBUSFREE) != 0) {
2550 u_int lqostat1;
2551 int restart;
2552 int clear_fifo;
2553 int packetized;
2554 u_int mode;
2555
2556 /*
2557 * Clear our selection hardware as soon as possible.
2558 * We may have an entry in the waiting Q for this target,
2559 * that is affected by this busfree and we don't want to
2560 * go about selecting the target while we handle the event.
2561 */
2562 ahd_outb(ahd, SCSISEQ0, 0);
2563
2564 /* Make sure the sequencer is in a safe location. */
2565 ahd_clear_critical_section(ahd);
2566
2567 /*
2568 * Determine what we were up to at the time of
2569 * the busfree.
2570 */
2571 mode = AHD_MODE_SCSI;
2572 busfreetime = ahd_inb(ahd, SSTAT2) & BUSFREETIME;
2573 lqostat1 = ahd_inb(ahd, LQOSTAT1);
2574 switch (busfreetime) {
2575 case BUSFREE_DFF0:
2576 case BUSFREE_DFF1:
2577 {
2578 mode = busfreetime == BUSFREE_DFF0
2579 ? AHD_MODE_DFF0 : AHD_MODE_DFF1;
2580 ahd_set_modes(ahd, mode, mode);
2581 scbid = ahd_get_scbptr(ahd);
2582 scb = ahd_lookup_scb(ahd, scbid);
2583 if (scb == NULL) {
2584 printk("%s: Invalid SCB %d in DFF%d "
2585 "during unexpected busfree\n",
2586 ahd_name(ahd), scbid, mode);
2587 packetized = 0;
2588 } else
2589 packetized = (scb->flags & SCB_PACKETIZED) != 0;
2590 clear_fifo = 1;
2591 break;
2592 }
2593 case BUSFREE_LQO:
2594 clear_fifo = 0;
2595 packetized = 1;
2596 break;
2597 default:
2598 clear_fifo = 0;
2599 packetized = (lqostat1 & LQOBUSFREE) != 0;
2600 if (!packetized
2601 && ahd_inb(ahd, LASTPHASE) == P_BUSFREE
2602 && (ahd_inb(ahd, SSTAT0) & SELDI) == 0
2603 && ((ahd_inb(ahd, SSTAT0) & SELDO) == 0
2604 || (ahd_inb(ahd, SCSISEQ0) & ENSELO) == 0))
2605 /*
2606 * Assume packetized if we are not
2607 * on the bus in a non-packetized
2608 * capacity and any pending selection
2609 * was a packetized selection.
2610 */
2611 packetized = 1;
2612 break;
2613 }
2614
2615 #ifdef AHD_DEBUG
2616 if ((ahd_debug & AHD_SHOW_MISC) != 0)
2617 printk("Saw Busfree. Busfreetime = 0x%x.\n",
2618 busfreetime);
2619 #endif
2620 /*
2621 * Busfrees that occur in non-packetized phases are
2622 * handled by the nonpkt_busfree handler.
2623 */
2624 if (packetized && ahd_inb(ahd, LASTPHASE) == P_BUSFREE) {
2625 restart = ahd_handle_pkt_busfree(ahd, busfreetime);
2626 } else {
2627 packetized = 0;
2628 restart = ahd_handle_nonpkt_busfree(ahd);
2629 }
2630 /*
2631 * Clear the busfree interrupt status. The setting of
2632 * the interrupt is a pulse, so in a perfect world, we
2633 * would not need to muck with the ENBUSFREE logic. This
2634 * would ensure that if the bus moves on to another
2635 * connection, busfree protection is still in force. If
2636 * BUSFREEREV is broken, however, we must manually clear
2637 * the ENBUSFREE if the busfree occurred during a non-pack
2638 * connection so that we don't get false positives during
2639 * future, packetized, connections.
2640 */
2641 ahd_outb(ahd, CLRSINT1, CLRBUSFREE);
2642 if (packetized == 0
2643 && (ahd->bugs & AHD_BUSFREEREV_BUG) != 0)
2644 ahd_outb(ahd, SIMODE1,
2645 ahd_inb(ahd, SIMODE1) & ~ENBUSFREE);
2646
2647 if (clear_fifo)
2648 ahd_clear_fifo(ahd, mode);
2649
2650 ahd_clear_msg_state(ahd);
2651 ahd_outb(ahd, CLRINT, CLRSCSIINT);
2652 if (restart) {
2653 ahd_restart(ahd);
2654 } else {
2655 ahd_unpause(ahd);
2656 }
2657 } else {
2658 printk("%s: Missing case in ahd_handle_scsiint. status = %x\n",
2659 ahd_name(ahd), status);
2660 ahd_dump_card_state(ahd);
2661 ahd_clear_intstat(ahd);
2662 ahd_unpause(ahd);
2663 }
2664 }
2665
2666 static void
ahd_handle_transmission_error(struct ahd_softc * ahd)2667 ahd_handle_transmission_error(struct ahd_softc *ahd)
2668 {
2669 struct scb *scb;
2670 u_int scbid;
2671 u_int lqistat1;
2672 u_int lqistat2;
2673 u_int msg_out;
2674 u_int curphase;
2675 u_int lastphase;
2676 u_int perrdiag;
2677 u_int cur_col;
2678 int silent;
2679
2680 scb = NULL;
2681 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2682 lqistat1 = ahd_inb(ahd, LQISTAT1) & ~(LQIPHASE_LQ|LQIPHASE_NLQ);
2683 lqistat2 = ahd_inb(ahd, LQISTAT2);
2684 if ((lqistat1 & (LQICRCI_NLQ|LQICRCI_LQ)) == 0
2685 && (ahd->bugs & AHD_NLQICRC_DELAYED_BUG) != 0) {
2686 u_int lqistate;
2687
2688 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
2689 lqistate = ahd_inb(ahd, LQISTATE);
2690 if ((lqistate >= 0x1E && lqistate <= 0x24)
2691 || (lqistate == 0x29)) {
2692 #ifdef AHD_DEBUG
2693 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
2694 printk("%s: NLQCRC found via LQISTATE\n",
2695 ahd_name(ahd));
2696 }
2697 #endif
2698 lqistat1 |= LQICRCI_NLQ;
2699 }
2700 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2701 }
2702
2703 ahd_outb(ahd, CLRLQIINT1, lqistat1);
2704 lastphase = ahd_inb(ahd, LASTPHASE);
2705 curphase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
2706 perrdiag = ahd_inb(ahd, PERRDIAG);
2707 msg_out = MSG_INITIATOR_DET_ERR;
2708 ahd_outb(ahd, CLRSINT1, CLRSCSIPERR);
2709
2710 /*
2711 * Try to find the SCB associated with this error.
2712 */
2713 silent = FALSE;
2714 if (lqistat1 == 0
2715 || (lqistat1 & LQICRCI_NLQ) != 0) {
2716 if ((lqistat1 & (LQICRCI_NLQ|LQIOVERI_NLQ)) != 0)
2717 ahd_set_active_fifo(ahd);
2718 scbid = ahd_get_scbptr(ahd);
2719 scb = ahd_lookup_scb(ahd, scbid);
2720 if (scb != NULL && SCB_IS_SILENT(scb))
2721 silent = TRUE;
2722 }
2723
2724 cur_col = 0;
2725 if (silent == FALSE) {
2726 printk("%s: Transmission error detected\n", ahd_name(ahd));
2727 ahd_lqistat1_print(lqistat1, &cur_col, 50);
2728 ahd_lastphase_print(lastphase, &cur_col, 50);
2729 ahd_scsisigi_print(curphase, &cur_col, 50);
2730 ahd_perrdiag_print(perrdiag, &cur_col, 50);
2731 printk("\n");
2732 ahd_dump_card_state(ahd);
2733 }
2734
2735 if ((lqistat1 & (LQIOVERI_LQ|LQIOVERI_NLQ)) != 0) {
2736 if (silent == FALSE) {
2737 printk("%s: Gross protocol error during incoming "
2738 "packet. lqistat1 == 0x%x. Resetting bus.\n",
2739 ahd_name(ahd), lqistat1);
2740 }
2741 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2742 return;
2743 } else if ((lqistat1 & LQICRCI_LQ) != 0) {
2744 /*
2745 * A CRC error has been detected on an incoming LQ.
2746 * The bus is currently hung on the last ACK.
2747 * Hit LQIRETRY to release the last ack, and
2748 * wait for the sequencer to determine that ATNO
2749 * is asserted while in message out to take us
2750 * to our host message loop. No NONPACKREQ or
2751 * LQIPHASE type errors will occur in this
2752 * scenario. After this first LQIRETRY, the LQI
2753 * manager will be in ISELO where it will
2754 * happily sit until another packet phase begins.
2755 * Unexpected bus free detection is enabled
2756 * through any phases that occur after we release
2757 * this last ack until the LQI manager sees a
2758 * packet phase. This implies we may have to
2759 * ignore a perfectly valid "unexected busfree"
2760 * after our "initiator detected error" message is
2761 * sent. A busfree is the expected response after
2762 * we tell the target that it's L_Q was corrupted.
2763 * (SPI4R09 10.7.3.3.3)
2764 */
2765 ahd_outb(ahd, LQCTL2, LQIRETRY);
2766 printk("LQIRetry for LQICRCI_LQ to release ACK\n");
2767 } else if ((lqistat1 & LQICRCI_NLQ) != 0) {
2768 /*
2769 * We detected a CRC error in a NON-LQ packet.
2770 * The hardware has varying behavior in this situation
2771 * depending on whether this packet was part of a
2772 * stream or not.
2773 *
2774 * PKT by PKT mode:
2775 * The hardware has already acked the complete packet.
2776 * If the target honors our outstanding ATN condition,
2777 * we should be (or soon will be) in MSGOUT phase.
2778 * This will trigger the LQIPHASE_LQ status bit as the
2779 * hardware was expecting another LQ. Unexpected
2780 * busfree detection is enabled. Once LQIPHASE_LQ is
2781 * true (first entry into host message loop is much
2782 * the same), we must clear LQIPHASE_LQ and hit
2783 * LQIRETRY so the hardware is ready to handle
2784 * a future LQ. NONPACKREQ will not be asserted again
2785 * once we hit LQIRETRY until another packet is
2786 * processed. The target may either go busfree
2787 * or start another packet in response to our message.
2788 *
2789 * Read Streaming P0 asserted:
2790 * If we raise ATN and the target completes the entire
2791 * stream (P0 asserted during the last packet), the
2792 * hardware will ack all data and return to the ISTART
2793 * state. When the target reponds to our ATN condition,
2794 * LQIPHASE_LQ will be asserted. We should respond to
2795 * this with an LQIRETRY to prepare for any future
2796 * packets. NONPACKREQ will not be asserted again
2797 * once we hit LQIRETRY until another packet is
2798 * processed. The target may either go busfree or
2799 * start another packet in response to our message.
2800 * Busfree detection is enabled.
2801 *
2802 * Read Streaming P0 not asserted:
2803 * If we raise ATN and the target transitions to
2804 * MSGOUT in or after a packet where P0 is not
2805 * asserted, the hardware will assert LQIPHASE_NLQ.
2806 * We should respond to the LQIPHASE_NLQ with an
2807 * LQIRETRY. Should the target stay in a non-pkt
2808 * phase after we send our message, the hardware
2809 * will assert LQIPHASE_LQ. Recovery is then just as
2810 * listed above for the read streaming with P0 asserted.
2811 * Busfree detection is enabled.
2812 */
2813 if (silent == FALSE)
2814 printk("LQICRC_NLQ\n");
2815 if (scb == NULL) {
2816 printk("%s: No SCB valid for LQICRC_NLQ. "
2817 "Resetting bus\n", ahd_name(ahd));
2818 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2819 return;
2820 }
2821 } else if ((lqistat1 & LQIBADLQI) != 0) {
2822 printk("Need to handle BADLQI!\n");
2823 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2824 return;
2825 } else if ((perrdiag & (PARITYERR|PREVPHASE)) == PARITYERR) {
2826 if ((curphase & ~P_DATAIN_DT) != 0) {
2827 /* Ack the byte. So we can continue. */
2828 if (silent == FALSE)
2829 printk("Acking %s to clear perror\n",
2830 ahd_lookup_phase_entry(curphase)->phasemsg);
2831 ahd_inb(ahd, SCSIDAT);
2832 }
2833
2834 if (curphase == P_MESGIN)
2835 msg_out = MSG_PARITY_ERROR;
2836 }
2837
2838 /*
2839 * We've set the hardware to assert ATN if we
2840 * get a parity error on "in" phases, so all we
2841 * need to do is stuff the message buffer with
2842 * the appropriate message. "In" phases have set
2843 * mesg_out to something other than MSG_NOP.
2844 */
2845 ahd->send_msg_perror = msg_out;
2846 if (scb != NULL && msg_out == MSG_INITIATOR_DET_ERR)
2847 scb->flags |= SCB_TRANSMISSION_ERROR;
2848 ahd_outb(ahd, MSG_OUT, HOST_MSG);
2849 ahd_outb(ahd, CLRINT, CLRSCSIINT);
2850 ahd_unpause(ahd);
2851 }
2852
2853 static void
ahd_handle_lqiphase_error(struct ahd_softc * ahd,u_int lqistat1)2854 ahd_handle_lqiphase_error(struct ahd_softc *ahd, u_int lqistat1)
2855 {
2856 /*
2857 * Clear the sources of the interrupts.
2858 */
2859 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2860 ahd_outb(ahd, CLRLQIINT1, lqistat1);
2861
2862 /*
2863 * If the "illegal" phase changes were in response
2864 * to our ATN to flag a CRC error, AND we ended up
2865 * on packet boundaries, clear the error, restart the
2866 * LQI manager as appropriate, and go on our merry
2867 * way toward sending the message. Otherwise, reset
2868 * the bus to clear the error.
2869 */
2870 ahd_set_active_fifo(ahd);
2871 if ((ahd_inb(ahd, SCSISIGO) & ATNO) != 0
2872 && (ahd_inb(ahd, MDFFSTAT) & DLZERO) != 0) {
2873 if ((lqistat1 & LQIPHASE_LQ) != 0) {
2874 printk("LQIRETRY for LQIPHASE_LQ\n");
2875 ahd_outb(ahd, LQCTL2, LQIRETRY);
2876 } else if ((lqistat1 & LQIPHASE_NLQ) != 0) {
2877 printk("LQIRETRY for LQIPHASE_NLQ\n");
2878 ahd_outb(ahd, LQCTL2, LQIRETRY);
2879 } else
2880 panic("ahd_handle_lqiphase_error: No phase errors\n");
2881 ahd_dump_card_state(ahd);
2882 ahd_outb(ahd, CLRINT, CLRSCSIINT);
2883 ahd_unpause(ahd);
2884 } else {
2885 printk("Resetting Channel for LQI Phase error\n");
2886 ahd_dump_card_state(ahd);
2887 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2888 }
2889 }
2890
2891 /*
2892 * Packetized unexpected or expected busfree.
2893 * Entered in mode based on busfreetime.
2894 */
2895 static int
ahd_handle_pkt_busfree(struct ahd_softc * ahd,u_int busfreetime)2896 ahd_handle_pkt_busfree(struct ahd_softc *ahd, u_int busfreetime)
2897 {
2898 u_int lqostat1;
2899
2900 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
2901 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
2902 lqostat1 = ahd_inb(ahd, LQOSTAT1);
2903 if ((lqostat1 & LQOBUSFREE) != 0) {
2904 struct scb *scb;
2905 u_int scbid;
2906 u_int saved_scbptr;
2907 u_int waiting_h;
2908 u_int waiting_t;
2909 u_int next;
2910
2911 /*
2912 * The LQO manager detected an unexpected busfree
2913 * either:
2914 *
2915 * 1) During an outgoing LQ.
2916 * 2) After an outgoing LQ but before the first
2917 * REQ of the command packet.
2918 * 3) During an outgoing command packet.
2919 *
2920 * In all cases, CURRSCB is pointing to the
2921 * SCB that encountered the failure. Clean
2922 * up the queue, clear SELDO and LQOBUSFREE,
2923 * and allow the sequencer to restart the select
2924 * out at its lesure.
2925 */
2926 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2927 scbid = ahd_inw(ahd, CURRSCB);
2928 scb = ahd_lookup_scb(ahd, scbid);
2929 if (scb == NULL)
2930 panic("SCB not valid during LQOBUSFREE");
2931 /*
2932 * Clear the status.
2933 */
2934 ahd_outb(ahd, CLRLQOINT1, CLRLQOBUSFREE);
2935 if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0)
2936 ahd_outb(ahd, CLRLQOINT1, 0);
2937 ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
2938 ahd_flush_device_writes(ahd);
2939 ahd_outb(ahd, CLRSINT0, CLRSELDO);
2940
2941 /*
2942 * Return the LQO manager to its idle loop. It will
2943 * not do this automatically if the busfree occurs
2944 * after the first REQ of either the LQ or command
2945 * packet or between the LQ and command packet.
2946 */
2947 ahd_outb(ahd, LQCTL2, ahd_inb(ahd, LQCTL2) | LQOTOIDLE);
2948
2949 /*
2950 * Update the waiting for selection queue so
2951 * we restart on the correct SCB.
2952 */
2953 waiting_h = ahd_inw(ahd, WAITING_TID_HEAD);
2954 saved_scbptr = ahd_get_scbptr(ahd);
2955 if (waiting_h != scbid) {
2956
2957 ahd_outw(ahd, WAITING_TID_HEAD, scbid);
2958 waiting_t = ahd_inw(ahd, WAITING_TID_TAIL);
2959 if (waiting_t == waiting_h) {
2960 ahd_outw(ahd, WAITING_TID_TAIL, scbid);
2961 next = SCB_LIST_NULL;
2962 } else {
2963 ahd_set_scbptr(ahd, waiting_h);
2964 next = ahd_inw_scbram(ahd, SCB_NEXT2);
2965 }
2966 ahd_set_scbptr(ahd, scbid);
2967 ahd_outw(ahd, SCB_NEXT2, next);
2968 }
2969 ahd_set_scbptr(ahd, saved_scbptr);
2970 if (scb->crc_retry_count < AHD_MAX_LQ_CRC_ERRORS) {
2971 if (SCB_IS_SILENT(scb) == FALSE) {
2972 ahd_print_path(ahd, scb);
2973 printk("Probable outgoing LQ CRC error. "
2974 "Retrying command\n");
2975 }
2976 scb->crc_retry_count++;
2977 } else {
2978 ahd_set_transaction_status(scb, CAM_UNCOR_PARITY);
2979 ahd_freeze_scb(scb);
2980 ahd_freeze_devq(ahd, scb);
2981 }
2982 /* Return unpausing the sequencer. */
2983 return (0);
2984 } else if ((ahd_inb(ahd, PERRDIAG) & PARITYERR) != 0) {
2985 /*
2986 * Ignore what are really parity errors that
2987 * occur on the last REQ of a free running
2988 * clock prior to going busfree. Some drives
2989 * do not properly active negate just before
2990 * going busfree resulting in a parity glitch.
2991 */
2992 ahd_outb(ahd, CLRSINT1, CLRSCSIPERR|CLRBUSFREE);
2993 #ifdef AHD_DEBUG
2994 if ((ahd_debug & AHD_SHOW_MASKED_ERRORS) != 0)
2995 printk("%s: Parity on last REQ detected "
2996 "during busfree phase.\n",
2997 ahd_name(ahd));
2998 #endif
2999 /* Return unpausing the sequencer. */
3000 return (0);
3001 }
3002 if (ahd->src_mode != AHD_MODE_SCSI) {
3003 u_int scbid;
3004 struct scb *scb;
3005
3006 scbid = ahd_get_scbptr(ahd);
3007 scb = ahd_lookup_scb(ahd, scbid);
3008 ahd_print_path(ahd, scb);
3009 printk("Unexpected PKT busfree condition\n");
3010 ahd_dump_card_state(ahd);
3011 ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb), 'A',
3012 SCB_GET_LUN(scb), SCB_GET_TAG(scb),
3013 ROLE_INITIATOR, CAM_UNEXP_BUSFREE);
3014
3015 /* Return restarting the sequencer. */
3016 return (1);
3017 }
3018 printk("%s: Unexpected PKT busfree condition\n", ahd_name(ahd));
3019 ahd_dump_card_state(ahd);
3020 /* Restart the sequencer. */
3021 return (1);
3022 }
3023
3024 /*
3025 * Non-packetized unexpected or expected busfree.
3026 */
3027 static int
ahd_handle_nonpkt_busfree(struct ahd_softc * ahd)3028 ahd_handle_nonpkt_busfree(struct ahd_softc *ahd)
3029 {
3030 struct ahd_devinfo devinfo;
3031 struct scb *scb;
3032 u_int lastphase;
3033 u_int saved_scsiid;
3034 u_int saved_lun;
3035 u_int target;
3036 u_int initiator_role_id;
3037 u_int scbid;
3038 u_int ppr_busfree;
3039 int printerror;
3040
3041 /*
3042 * Look at what phase we were last in. If its message out,
3043 * chances are pretty good that the busfree was in response
3044 * to one of our abort requests.
3045 */
3046 lastphase = ahd_inb(ahd, LASTPHASE);
3047 saved_scsiid = ahd_inb(ahd, SAVED_SCSIID);
3048 saved_lun = ahd_inb(ahd, SAVED_LUN);
3049 target = SCSIID_TARGET(ahd, saved_scsiid);
3050 initiator_role_id = SCSIID_OUR_ID(saved_scsiid);
3051 ahd_compile_devinfo(&devinfo, initiator_role_id,
3052 target, saved_lun, 'A', ROLE_INITIATOR);
3053 printerror = 1;
3054
3055 scbid = ahd_get_scbptr(ahd);
3056 scb = ahd_lookup_scb(ahd, scbid);
3057 if (scb != NULL
3058 && (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) != 0)
3059 scb = NULL;
3060
3061 ppr_busfree = (ahd->msg_flags & MSG_FLAG_EXPECT_PPR_BUSFREE) != 0;
3062 if (lastphase == P_MESGOUT) {
3063 u_int tag;
3064
3065 tag = SCB_LIST_NULL;
3066 if (ahd_sent_msg(ahd, AHDMSG_1B, MSG_ABORT_TAG, TRUE)
3067 || ahd_sent_msg(ahd, AHDMSG_1B, MSG_ABORT, TRUE)) {
3068 int found;
3069 int sent_msg;
3070
3071 if (scb == NULL) {
3072 ahd_print_devinfo(ahd, &devinfo);
3073 printk("Abort for unidentified "
3074 "connection completed.\n");
3075 /* restart the sequencer. */
3076 return (1);
3077 }
3078 sent_msg = ahd->msgout_buf[ahd->msgout_index - 1];
3079 ahd_print_path(ahd, scb);
3080 printk("SCB %d - Abort%s Completed.\n",
3081 SCB_GET_TAG(scb),
3082 sent_msg == MSG_ABORT_TAG ? "" : " Tag");
3083
3084 if (sent_msg == MSG_ABORT_TAG)
3085 tag = SCB_GET_TAG(scb);
3086
3087 if ((scb->flags & SCB_EXTERNAL_RESET) != 0) {
3088 /*
3089 * This abort is in response to an
3090 * unexpected switch to command phase
3091 * for a packetized connection. Since
3092 * the identify message was never sent,
3093 * "saved lun" is 0. We really want to
3094 * abort only the SCB that encountered
3095 * this error, which could have a different
3096 * lun. The SCB will be retried so the OS
3097 * will see the UA after renegotiating to
3098 * packetized.
3099 */
3100 tag = SCB_GET_TAG(scb);
3101 saved_lun = scb->hscb->lun;
3102 }
3103 found = ahd_abort_scbs(ahd, target, 'A', saved_lun,
3104 tag, ROLE_INITIATOR,
3105 CAM_REQ_ABORTED);
3106 printk("found == 0x%x\n", found);
3107 printerror = 0;
3108 } else if (ahd_sent_msg(ahd, AHDMSG_1B,
3109 MSG_BUS_DEV_RESET, TRUE)) {
3110 #ifdef __FreeBSD__
3111 /*
3112 * Don't mark the user's request for this BDR
3113 * as completing with CAM_BDR_SENT. CAM3
3114 * specifies CAM_REQ_CMP.
3115 */
3116 if (scb != NULL
3117 && scb->io_ctx->ccb_h.func_code== XPT_RESET_DEV
3118 && ahd_match_scb(ahd, scb, target, 'A',
3119 CAM_LUN_WILDCARD, SCB_LIST_NULL,
3120 ROLE_INITIATOR))
3121 ahd_set_transaction_status(scb, CAM_REQ_CMP);
3122 #endif
3123 ahd_handle_devreset(ahd, &devinfo, CAM_LUN_WILDCARD,
3124 CAM_BDR_SENT, "Bus Device Reset",
3125 /*verbose_level*/0);
3126 printerror = 0;
3127 } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, FALSE)
3128 && ppr_busfree == 0) {
3129 struct ahd_initiator_tinfo *tinfo;
3130 struct ahd_tmode_tstate *tstate;
3131
3132 /*
3133 * PPR Rejected.
3134 *
3135 * If the previous negotiation was packetized,
3136 * this could be because the device has been
3137 * reset without our knowledge. Force our
3138 * current negotiation to async and retry the
3139 * negotiation. Otherwise retry the command
3140 * with non-ppr negotiation.
3141 */
3142 #ifdef AHD_DEBUG
3143 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3144 printk("PPR negotiation rejected busfree.\n");
3145 #endif
3146 tinfo = ahd_fetch_transinfo(ahd, devinfo.channel,
3147 devinfo.our_scsiid,
3148 devinfo.target, &tstate);
3149 if ((tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ)!=0) {
3150 ahd_set_width(ahd, &devinfo,
3151 MSG_EXT_WDTR_BUS_8_BIT,
3152 AHD_TRANS_CUR,
3153 /*paused*/TRUE);
3154 ahd_set_syncrate(ahd, &devinfo,
3155 /*period*/0, /*offset*/0,
3156 /*ppr_options*/0,
3157 AHD_TRANS_CUR,
3158 /*paused*/TRUE);
3159 /*
3160 * The expect PPR busfree handler below
3161 * will effect the retry and necessary
3162 * abort.
3163 */
3164 } else {
3165 tinfo->curr.transport_version = 2;
3166 tinfo->goal.transport_version = 2;
3167 tinfo->goal.ppr_options = 0;
3168 if (scb != NULL) {
3169 /*
3170 * Remove any SCBs in the waiting
3171 * for selection queue that may
3172 * also be for this target so that
3173 * command ordering is preserved.
3174 */
3175 ahd_freeze_devq(ahd, scb);
3176 ahd_qinfifo_requeue_tail(ahd, scb);
3177 }
3178 printerror = 0;
3179 }
3180 } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, FALSE)
3181 && ppr_busfree == 0) {
3182 /*
3183 * Negotiation Rejected. Go-narrow and
3184 * retry command.
3185 */
3186 #ifdef AHD_DEBUG
3187 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3188 printk("WDTR negotiation rejected busfree.\n");
3189 #endif
3190 ahd_set_width(ahd, &devinfo,
3191 MSG_EXT_WDTR_BUS_8_BIT,
3192 AHD_TRANS_CUR|AHD_TRANS_GOAL,
3193 /*paused*/TRUE);
3194 if (scb != NULL) {
3195 /*
3196 * Remove any SCBs in the waiting for
3197 * selection queue that may also be for
3198 * this target so that command ordering
3199 * is preserved.
3200 */
3201 ahd_freeze_devq(ahd, scb);
3202 ahd_qinfifo_requeue_tail(ahd, scb);
3203 }
3204 printerror = 0;
3205 } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, FALSE)
3206 && ppr_busfree == 0) {
3207 /*
3208 * Negotiation Rejected. Go-async and
3209 * retry command.
3210 */
3211 #ifdef AHD_DEBUG
3212 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3213 printk("SDTR negotiation rejected busfree.\n");
3214 #endif
3215 ahd_set_syncrate(ahd, &devinfo,
3216 /*period*/0, /*offset*/0,
3217 /*ppr_options*/0,
3218 AHD_TRANS_CUR|AHD_TRANS_GOAL,
3219 /*paused*/TRUE);
3220 if (scb != NULL) {
3221 /*
3222 * Remove any SCBs in the waiting for
3223 * selection queue that may also be for
3224 * this target so that command ordering
3225 * is preserved.
3226 */
3227 ahd_freeze_devq(ahd, scb);
3228 ahd_qinfifo_requeue_tail(ahd, scb);
3229 }
3230 printerror = 0;
3231 } else if ((ahd->msg_flags & MSG_FLAG_EXPECT_IDE_BUSFREE) != 0
3232 && ahd_sent_msg(ahd, AHDMSG_1B,
3233 MSG_INITIATOR_DET_ERR, TRUE)) {
3234
3235 #ifdef AHD_DEBUG
3236 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3237 printk("Expected IDE Busfree\n");
3238 #endif
3239 printerror = 0;
3240 } else if ((ahd->msg_flags & MSG_FLAG_EXPECT_QASREJ_BUSFREE)
3241 && ahd_sent_msg(ahd, AHDMSG_1B,
3242 MSG_MESSAGE_REJECT, TRUE)) {
3243
3244 #ifdef AHD_DEBUG
3245 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3246 printk("Expected QAS Reject Busfree\n");
3247 #endif
3248 printerror = 0;
3249 }
3250 }
3251
3252 /*
3253 * The busfree required flag is honored at the end of
3254 * the message phases. We check it last in case we
3255 * had to send some other message that caused a busfree.
3256 */
3257 if (scb != NULL && printerror != 0
3258 && (lastphase == P_MESGIN || lastphase == P_MESGOUT)
3259 && ((ahd->msg_flags & MSG_FLAG_EXPECT_PPR_BUSFREE) != 0)) {
3260
3261 ahd_freeze_devq(ahd, scb);
3262 ahd_set_transaction_status(scb, CAM_REQUEUE_REQ);
3263 ahd_freeze_scb(scb);
3264 if ((ahd->msg_flags & MSG_FLAG_IU_REQ_CHANGED) != 0) {
3265 ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb),
3266 SCB_GET_CHANNEL(ahd, scb),
3267 SCB_GET_LUN(scb), SCB_LIST_NULL,
3268 ROLE_INITIATOR, CAM_REQ_ABORTED);
3269 } else {
3270 #ifdef AHD_DEBUG
3271 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3272 printk("PPR Negotiation Busfree.\n");
3273 #endif
3274 ahd_done(ahd, scb);
3275 }
3276 printerror = 0;
3277 }
3278 if (printerror != 0) {
3279 int aborted;
3280
3281 aborted = 0;
3282 if (scb != NULL) {
3283 u_int tag;
3284
3285 if ((scb->hscb->control & TAG_ENB) != 0)
3286 tag = SCB_GET_TAG(scb);
3287 else
3288 tag = SCB_LIST_NULL;
3289 ahd_print_path(ahd, scb);
3290 aborted = ahd_abort_scbs(ahd, target, 'A',
3291 SCB_GET_LUN(scb), tag,
3292 ROLE_INITIATOR,
3293 CAM_UNEXP_BUSFREE);
3294 } else {
3295 /*
3296 * We had not fully identified this connection,
3297 * so we cannot abort anything.
3298 */
3299 printk("%s: ", ahd_name(ahd));
3300 }
3301 printk("Unexpected busfree %s, %d SCBs aborted, "
3302 "PRGMCNT == 0x%x\n",
3303 ahd_lookup_phase_entry(lastphase)->phasemsg,
3304 aborted,
3305 ahd_inw(ahd, PRGMCNT));
3306 ahd_dump_card_state(ahd);
3307 if (lastphase != P_BUSFREE)
3308 ahd_force_renegotiation(ahd, &devinfo);
3309 }
3310 /* Always restart the sequencer. */
3311 return (1);
3312 }
3313
3314 static void
ahd_handle_proto_violation(struct ahd_softc * ahd)3315 ahd_handle_proto_violation(struct ahd_softc *ahd)
3316 {
3317 struct ahd_devinfo devinfo;
3318 struct scb *scb;
3319 u_int scbid;
3320 u_int seq_flags;
3321 u_int curphase;
3322 u_int lastphase;
3323 int found;
3324
3325 ahd_fetch_devinfo(ahd, &devinfo);
3326 scbid = ahd_get_scbptr(ahd);
3327 scb = ahd_lookup_scb(ahd, scbid);
3328 seq_flags = ahd_inb(ahd, SEQ_FLAGS);
3329 curphase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
3330 lastphase = ahd_inb(ahd, LASTPHASE);
3331 if ((seq_flags & NOT_IDENTIFIED) != 0) {
3332
3333 /*
3334 * The reconnecting target either did not send an
3335 * identify message, or did, but we didn't find an SCB
3336 * to match.
3337 */
3338 ahd_print_devinfo(ahd, &devinfo);
3339 printk("Target did not send an IDENTIFY message. "
3340 "LASTPHASE = 0x%x.\n", lastphase);
3341 scb = NULL;
3342 } else if (scb == NULL) {
3343 /*
3344 * We don't seem to have an SCB active for this
3345 * transaction. Print an error and reset the bus.
3346 */
3347 ahd_print_devinfo(ahd, &devinfo);
3348 printk("No SCB found during protocol violation\n");
3349 goto proto_violation_reset;
3350 } else {
3351 ahd_set_transaction_status(scb, CAM_SEQUENCE_FAIL);
3352 if ((seq_flags & NO_CDB_SENT) != 0) {
3353 ahd_print_path(ahd, scb);
3354 printk("No or incomplete CDB sent to device.\n");
3355 } else if ((ahd_inb_scbram(ahd, SCB_CONTROL)
3356 & STATUS_RCVD) == 0) {
3357 /*
3358 * The target never bothered to provide status to
3359 * us prior to completing the command. Since we don't
3360 * know the disposition of this command, we must attempt
3361 * to abort it. Assert ATN and prepare to send an abort
3362 * message.
3363 */
3364 ahd_print_path(ahd, scb);
3365 printk("Completed command without status.\n");
3366 } else {
3367 ahd_print_path(ahd, scb);
3368 printk("Unknown protocol violation.\n");
3369 ahd_dump_card_state(ahd);
3370 }
3371 }
3372 if ((lastphase & ~P_DATAIN_DT) == 0
3373 || lastphase == P_COMMAND) {
3374 proto_violation_reset:
3375 /*
3376 * Target either went directly to data
3377 * phase or didn't respond to our ATN.
3378 * The only safe thing to do is to blow
3379 * it away with a bus reset.
3380 */
3381 found = ahd_reset_channel(ahd, 'A', TRUE);
3382 printk("%s: Issued Channel %c Bus Reset. "
3383 "%d SCBs aborted\n", ahd_name(ahd), 'A', found);
3384 } else {
3385 /*
3386 * Leave the selection hardware off in case
3387 * this abort attempt will affect yet to
3388 * be sent commands.
3389 */
3390 ahd_outb(ahd, SCSISEQ0,
3391 ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
3392 ahd_assert_atn(ahd);
3393 ahd_outb(ahd, MSG_OUT, HOST_MSG);
3394 if (scb == NULL) {
3395 ahd_print_devinfo(ahd, &devinfo);
3396 ahd->msgout_buf[0] = MSG_ABORT_TASK;
3397 ahd->msgout_len = 1;
3398 ahd->msgout_index = 0;
3399 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
3400 } else {
3401 ahd_print_path(ahd, scb);
3402 scb->flags |= SCB_ABORT;
3403 }
3404 printk("Protocol violation %s. Attempting to abort.\n",
3405 ahd_lookup_phase_entry(curphase)->phasemsg);
3406 }
3407 }
3408
3409 /*
3410 * Force renegotiation to occur the next time we initiate
3411 * a command to the current device.
3412 */
3413 static void
ahd_force_renegotiation(struct ahd_softc * ahd,struct ahd_devinfo * devinfo)3414 ahd_force_renegotiation(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
3415 {
3416 struct ahd_initiator_tinfo *targ_info;
3417 struct ahd_tmode_tstate *tstate;
3418
3419 #ifdef AHD_DEBUG
3420 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
3421 ahd_print_devinfo(ahd, devinfo);
3422 printk("Forcing renegotiation\n");
3423 }
3424 #endif
3425 targ_info = ahd_fetch_transinfo(ahd,
3426 devinfo->channel,
3427 devinfo->our_scsiid,
3428 devinfo->target,
3429 &tstate);
3430 ahd_update_neg_request(ahd, devinfo, tstate,
3431 targ_info, AHD_NEG_IF_NON_ASYNC);
3432 }
3433
3434 #define AHD_MAX_STEPS 2000
3435 static void
ahd_clear_critical_section(struct ahd_softc * ahd)3436 ahd_clear_critical_section(struct ahd_softc *ahd)
3437 {
3438 ahd_mode_state saved_modes;
3439 int stepping;
3440 int steps;
3441 int first_instr;
3442 u_int simode0;
3443 u_int simode1;
3444 u_int simode3;
3445 u_int lqimode0;
3446 u_int lqimode1;
3447 u_int lqomode0;
3448 u_int lqomode1;
3449
3450 if (ahd->num_critical_sections == 0)
3451 return;
3452
3453 stepping = FALSE;
3454 steps = 0;
3455 first_instr = 0;
3456 simode0 = 0;
3457 simode1 = 0;
3458 simode3 = 0;
3459 lqimode0 = 0;
3460 lqimode1 = 0;
3461 lqomode0 = 0;
3462 lqomode1 = 0;
3463 saved_modes = ahd_save_modes(ahd);
3464 for (;;) {
3465 struct cs *cs;
3466 u_int seqaddr;
3467 u_int i;
3468
3469 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
3470 seqaddr = ahd_inw(ahd, CURADDR);
3471
3472 cs = ahd->critical_sections;
3473 for (i = 0; i < ahd->num_critical_sections; i++, cs++) {
3474
3475 if (cs->begin < seqaddr && cs->end >= seqaddr)
3476 break;
3477 }
3478
3479 if (i == ahd->num_critical_sections)
3480 break;
3481
3482 if (steps > AHD_MAX_STEPS) {
3483 printk("%s: Infinite loop in critical section\n"
3484 "%s: First Instruction 0x%x now 0x%x\n",
3485 ahd_name(ahd), ahd_name(ahd), first_instr,
3486 seqaddr);
3487 ahd_dump_card_state(ahd);
3488 panic("critical section loop");
3489 }
3490
3491 steps++;
3492 #ifdef AHD_DEBUG
3493 if ((ahd_debug & AHD_SHOW_MISC) != 0)
3494 printk("%s: Single stepping at 0x%x\n", ahd_name(ahd),
3495 seqaddr);
3496 #endif
3497 if (stepping == FALSE) {
3498
3499 first_instr = seqaddr;
3500 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
3501 simode0 = ahd_inb(ahd, SIMODE0);
3502 simode3 = ahd_inb(ahd, SIMODE3);
3503 lqimode0 = ahd_inb(ahd, LQIMODE0);
3504 lqimode1 = ahd_inb(ahd, LQIMODE1);
3505 lqomode0 = ahd_inb(ahd, LQOMODE0);
3506 lqomode1 = ahd_inb(ahd, LQOMODE1);
3507 ahd_outb(ahd, SIMODE0, 0);
3508 ahd_outb(ahd, SIMODE3, 0);
3509 ahd_outb(ahd, LQIMODE0, 0);
3510 ahd_outb(ahd, LQIMODE1, 0);
3511 ahd_outb(ahd, LQOMODE0, 0);
3512 ahd_outb(ahd, LQOMODE1, 0);
3513 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
3514 simode1 = ahd_inb(ahd, SIMODE1);
3515 /*
3516 * We don't clear ENBUSFREE. Unfortunately
3517 * we cannot re-enable busfree detection within
3518 * the current connection, so we must leave it
3519 * on while single stepping.
3520 */
3521 ahd_outb(ahd, SIMODE1, simode1 & ENBUSFREE);
3522 ahd_outb(ahd, SEQCTL0, ahd_inb(ahd, SEQCTL0) | STEP);
3523 stepping = TRUE;
3524 }
3525 ahd_outb(ahd, CLRSINT1, CLRBUSFREE);
3526 ahd_outb(ahd, CLRINT, CLRSCSIINT);
3527 ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
3528 ahd_outb(ahd, HCNTRL, ahd->unpause);
3529 while (!ahd_is_paused(ahd))
3530 ahd_delay(200);
3531 ahd_update_modes(ahd);
3532 }
3533 if (stepping) {
3534 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
3535 ahd_outb(ahd, SIMODE0, simode0);
3536 ahd_outb(ahd, SIMODE3, simode3);
3537 ahd_outb(ahd, LQIMODE0, lqimode0);
3538 ahd_outb(ahd, LQIMODE1, lqimode1);
3539 ahd_outb(ahd, LQOMODE0, lqomode0);
3540 ahd_outb(ahd, LQOMODE1, lqomode1);
3541 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
3542 ahd_outb(ahd, SEQCTL0, ahd_inb(ahd, SEQCTL0) & ~STEP);
3543 ahd_outb(ahd, SIMODE1, simode1);
3544 /*
3545 * SCSIINT seems to glitch occasionally when
3546 * the interrupt masks are restored. Clear SCSIINT
3547 * one more time so that only persistent errors
3548 * are seen as a real interrupt.
3549 */
3550 ahd_outb(ahd, CLRINT, CLRSCSIINT);
3551 }
3552 ahd_restore_modes(ahd, saved_modes);
3553 }
3554
3555 /*
3556 * Clear any pending interrupt status.
3557 */
3558 static void
ahd_clear_intstat(struct ahd_softc * ahd)3559 ahd_clear_intstat(struct ahd_softc *ahd)
3560 {
3561 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
3562 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
3563 /* Clear any interrupt conditions this may have caused */
3564 ahd_outb(ahd, CLRLQIINT0, CLRLQIATNQAS|CLRLQICRCT1|CLRLQICRCT2
3565 |CLRLQIBADLQT|CLRLQIATNLQ|CLRLQIATNCMD);
3566 ahd_outb(ahd, CLRLQIINT1, CLRLQIPHASE_LQ|CLRLQIPHASE_NLQ|CLRLIQABORT
3567 |CLRLQICRCI_LQ|CLRLQICRCI_NLQ|CLRLQIBADLQI
3568 |CLRLQIOVERI_LQ|CLRLQIOVERI_NLQ|CLRNONPACKREQ);
3569 ahd_outb(ahd, CLRLQOINT0, CLRLQOTARGSCBPERR|CLRLQOSTOPT2|CLRLQOATNLQ
3570 |CLRLQOATNPKT|CLRLQOTCRC);
3571 ahd_outb(ahd, CLRLQOINT1, CLRLQOINITSCBPERR|CLRLQOSTOPI2|CLRLQOBADQAS
3572 |CLRLQOBUSFREE|CLRLQOPHACHGINPKT);
3573 if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) {
3574 ahd_outb(ahd, CLRLQOINT0, 0);
3575 ahd_outb(ahd, CLRLQOINT1, 0);
3576 }
3577 ahd_outb(ahd, CLRSINT3, CLRNTRAMPERR|CLROSRAMPERR);
3578 ahd_outb(ahd, CLRSINT1, CLRSELTIMEO|CLRATNO|CLRSCSIRSTI
3579 |CLRBUSFREE|CLRSCSIPERR|CLRREQINIT);
3580 ahd_outb(ahd, CLRSINT0, CLRSELDO|CLRSELDI|CLRSELINGO
3581 |CLRIOERR|CLROVERRUN);
3582 ahd_outb(ahd, CLRINT, CLRSCSIINT);
3583 }
3584
3585 /**************************** Debugging Routines ******************************/
3586 #ifdef AHD_DEBUG
3587 uint32_t ahd_debug = AHD_DEBUG_OPTS;
3588 #endif
3589
3590 #if 0
3591 void
3592 ahd_print_scb(struct scb *scb)
3593 {
3594 struct hardware_scb *hscb;
3595 int i;
3596
3597 hscb = scb->hscb;
3598 printk("scb:%p control:0x%x scsiid:0x%x lun:%d cdb_len:%d\n",
3599 (void *)scb,
3600 hscb->control,
3601 hscb->scsiid,
3602 hscb->lun,
3603 hscb->cdb_len);
3604 printk("Shared Data: ");
3605 for (i = 0; i < sizeof(hscb->shared_data.idata.cdb); i++)
3606 printk("%#02x", hscb->shared_data.idata.cdb[i]);
3607 printk(" dataptr:%#x%x datacnt:%#x sgptr:%#x tag:%#x\n",
3608 (uint32_t)((ahd_le64toh(hscb->dataptr) >> 32) & 0xFFFFFFFF),
3609 (uint32_t)(ahd_le64toh(hscb->dataptr) & 0xFFFFFFFF),
3610 ahd_le32toh(hscb->datacnt),
3611 ahd_le32toh(hscb->sgptr),
3612 SCB_GET_TAG(scb));
3613 ahd_dump_sglist(scb);
3614 }
3615 #endif /* 0 */
3616
3617 /************************* Transfer Negotiation *******************************/
3618 /*
3619 * Allocate per target mode instance (ID we respond to as a target)
3620 * transfer negotiation data structures.
3621 */
3622 static struct ahd_tmode_tstate *
ahd_alloc_tstate(struct ahd_softc * ahd,u_int scsi_id,char channel)3623 ahd_alloc_tstate(struct ahd_softc *ahd, u_int scsi_id, char channel)
3624 {
3625 struct ahd_tmode_tstate *master_tstate;
3626 struct ahd_tmode_tstate *tstate;
3627 int i;
3628
3629 master_tstate = ahd->enabled_targets[ahd->our_id];
3630 if (ahd->enabled_targets[scsi_id] != NULL
3631 && ahd->enabled_targets[scsi_id] != master_tstate)
3632 panic("%s: ahd_alloc_tstate - Target already allocated",
3633 ahd_name(ahd));
3634 tstate = kmalloc(sizeof(*tstate), GFP_ATOMIC);
3635 if (tstate == NULL)
3636 return (NULL);
3637
3638 /*
3639 * If we have allocated a master tstate, copy user settings from
3640 * the master tstate (taken from SRAM or the EEPROM) for this
3641 * channel, but reset our current and goal settings to async/narrow
3642 * until an initiator talks to us.
3643 */
3644 if (master_tstate != NULL) {
3645 memcpy(tstate, master_tstate, sizeof(*tstate));
3646 memset(tstate->enabled_luns, 0, sizeof(tstate->enabled_luns));
3647 for (i = 0; i < 16; i++) {
3648 memset(&tstate->transinfo[i].curr, 0,
3649 sizeof(tstate->transinfo[i].curr));
3650 memset(&tstate->transinfo[i].goal, 0,
3651 sizeof(tstate->transinfo[i].goal));
3652 }
3653 } else
3654 memset(tstate, 0, sizeof(*tstate));
3655 ahd->enabled_targets[scsi_id] = tstate;
3656 return (tstate);
3657 }
3658
3659 #ifdef AHD_TARGET_MODE
3660 /*
3661 * Free per target mode instance (ID we respond to as a target)
3662 * transfer negotiation data structures.
3663 */
3664 static void
ahd_free_tstate(struct ahd_softc * ahd,u_int scsi_id,char channel,int force)3665 ahd_free_tstate(struct ahd_softc *ahd, u_int scsi_id, char channel, int force)
3666 {
3667 struct ahd_tmode_tstate *tstate;
3668
3669 /*
3670 * Don't clean up our "master" tstate.
3671 * It has our default user settings.
3672 */
3673 if (scsi_id == ahd->our_id
3674 && force == FALSE)
3675 return;
3676
3677 tstate = ahd->enabled_targets[scsi_id];
3678 if (tstate != NULL)
3679 kfree(tstate);
3680 ahd->enabled_targets[scsi_id] = NULL;
3681 }
3682 #endif
3683
3684 /*
3685 * Called when we have an active connection to a target on the bus,
3686 * this function finds the nearest period to the input period limited
3687 * by the capabilities of the bus connectivity of and sync settings for
3688 * the target.
3689 */
3690 static void
ahd_devlimited_syncrate(struct ahd_softc * ahd,struct ahd_initiator_tinfo * tinfo,u_int * period,u_int * ppr_options,role_t role)3691 ahd_devlimited_syncrate(struct ahd_softc *ahd,
3692 struct ahd_initiator_tinfo *tinfo,
3693 u_int *period, u_int *ppr_options, role_t role)
3694 {
3695 struct ahd_transinfo *transinfo;
3696 u_int maxsync;
3697
3698 if ((ahd_inb(ahd, SBLKCTL) & ENAB40) != 0
3699 && (ahd_inb(ahd, SSTAT2) & EXP_ACTIVE) == 0) {
3700 maxsync = AHD_SYNCRATE_PACED;
3701 } else {
3702 maxsync = AHD_SYNCRATE_ULTRA;
3703 /* Can't do DT related options on an SE bus */
3704 *ppr_options &= MSG_EXT_PPR_QAS_REQ;
3705 }
3706 /*
3707 * Never allow a value higher than our current goal
3708 * period otherwise we may allow a target initiated
3709 * negotiation to go above the limit as set by the
3710 * user. In the case of an initiator initiated
3711 * sync negotiation, we limit based on the user
3712 * setting. This allows the system to still accept
3713 * incoming negotiations even if target initiated
3714 * negotiation is not performed.
3715 */
3716 if (role == ROLE_TARGET)
3717 transinfo = &tinfo->user;
3718 else
3719 transinfo = &tinfo->goal;
3720 *ppr_options &= (transinfo->ppr_options|MSG_EXT_PPR_PCOMP_EN);
3721 if (transinfo->width == MSG_EXT_WDTR_BUS_8_BIT) {
3722 maxsync = max(maxsync, (u_int)AHD_SYNCRATE_ULTRA2);
3723 *ppr_options &= ~MSG_EXT_PPR_DT_REQ;
3724 }
3725 if (transinfo->period == 0) {
3726 *period = 0;
3727 *ppr_options = 0;
3728 } else {
3729 *period = max(*period, (u_int)transinfo->period);
3730 ahd_find_syncrate(ahd, period, ppr_options, maxsync);
3731 }
3732 }
3733
3734 /*
3735 * Look up the valid period to SCSIRATE conversion in our table.
3736 * Return the period and offset that should be sent to the target
3737 * if this was the beginning of an SDTR.
3738 */
3739 void
ahd_find_syncrate(struct ahd_softc * ahd,u_int * period,u_int * ppr_options,u_int maxsync)3740 ahd_find_syncrate(struct ahd_softc *ahd, u_int *period,
3741 u_int *ppr_options, u_int maxsync)
3742 {
3743 if (*period < maxsync)
3744 *period = maxsync;
3745
3746 if ((*ppr_options & MSG_EXT_PPR_DT_REQ) != 0
3747 && *period > AHD_SYNCRATE_MIN_DT)
3748 *ppr_options &= ~MSG_EXT_PPR_DT_REQ;
3749
3750 if (*period > AHD_SYNCRATE_MIN)
3751 *period = 0;
3752
3753 /* Honor PPR option conformance rules. */
3754 if (*period > AHD_SYNCRATE_PACED)
3755 *ppr_options &= ~MSG_EXT_PPR_RTI;
3756
3757 if ((*ppr_options & MSG_EXT_PPR_IU_REQ) == 0)
3758 *ppr_options &= (MSG_EXT_PPR_DT_REQ|MSG_EXT_PPR_QAS_REQ);
3759
3760 if ((*ppr_options & MSG_EXT_PPR_DT_REQ) == 0)
3761 *ppr_options &= MSG_EXT_PPR_QAS_REQ;
3762
3763 /* Skip all PACED only entries if IU is not available */
3764 if ((*ppr_options & MSG_EXT_PPR_IU_REQ) == 0
3765 && *period < AHD_SYNCRATE_DT)
3766 *period = AHD_SYNCRATE_DT;
3767
3768 /* Skip all DT only entries if DT is not available */
3769 if ((*ppr_options & MSG_EXT_PPR_DT_REQ) == 0
3770 && *period < AHD_SYNCRATE_ULTRA2)
3771 *period = AHD_SYNCRATE_ULTRA2;
3772 }
3773
3774 /*
3775 * Truncate the given synchronous offset to a value the
3776 * current adapter type and syncrate are capable of.
3777 */
3778 static void
ahd_validate_offset(struct ahd_softc * ahd,struct ahd_initiator_tinfo * tinfo,u_int period,u_int * offset,int wide,role_t role)3779 ahd_validate_offset(struct ahd_softc *ahd,
3780 struct ahd_initiator_tinfo *tinfo,
3781 u_int period, u_int *offset, int wide,
3782 role_t role)
3783 {
3784 u_int maxoffset;
3785
3786 /* Limit offset to what we can do */
3787 if (period == 0)
3788 maxoffset = 0;
3789 else if (period <= AHD_SYNCRATE_PACED) {
3790 if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0)
3791 maxoffset = MAX_OFFSET_PACED_BUG;
3792 else
3793 maxoffset = MAX_OFFSET_PACED;
3794 } else
3795 maxoffset = MAX_OFFSET_NON_PACED;
3796 *offset = min(*offset, maxoffset);
3797 if (tinfo != NULL) {
3798 if (role == ROLE_TARGET)
3799 *offset = min(*offset, (u_int)tinfo->user.offset);
3800 else
3801 *offset = min(*offset, (u_int)tinfo->goal.offset);
3802 }
3803 }
3804
3805 /*
3806 * Truncate the given transfer width parameter to a value the
3807 * current adapter type is capable of.
3808 */
3809 static void
ahd_validate_width(struct ahd_softc * ahd,struct ahd_initiator_tinfo * tinfo,u_int * bus_width,role_t role)3810 ahd_validate_width(struct ahd_softc *ahd, struct ahd_initiator_tinfo *tinfo,
3811 u_int *bus_width, role_t role)
3812 {
3813 switch (*bus_width) {
3814 default:
3815 if (ahd->features & AHD_WIDE) {
3816 /* Respond Wide */
3817 *bus_width = MSG_EXT_WDTR_BUS_16_BIT;
3818 break;
3819 }
3820 /* FALLTHROUGH */
3821 case MSG_EXT_WDTR_BUS_8_BIT:
3822 *bus_width = MSG_EXT_WDTR_BUS_8_BIT;
3823 break;
3824 }
3825 if (tinfo != NULL) {
3826 if (role == ROLE_TARGET)
3827 *bus_width = min((u_int)tinfo->user.width, *bus_width);
3828 else
3829 *bus_width = min((u_int)tinfo->goal.width, *bus_width);
3830 }
3831 }
3832
3833 /*
3834 * Update the bitmask of targets for which the controller should
3835 * negotiate with at the next convenient opportunity. This currently
3836 * means the next time we send the initial identify messages for
3837 * a new transaction.
3838 */
3839 int
ahd_update_neg_request(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,struct ahd_tmode_tstate * tstate,struct ahd_initiator_tinfo * tinfo,ahd_neg_type neg_type)3840 ahd_update_neg_request(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
3841 struct ahd_tmode_tstate *tstate,
3842 struct ahd_initiator_tinfo *tinfo, ahd_neg_type neg_type)
3843 {
3844 u_int auto_negotiate_orig;
3845
3846 auto_negotiate_orig = tstate->auto_negotiate;
3847 if (neg_type == AHD_NEG_ALWAYS) {
3848 /*
3849 * Force our "current" settings to be
3850 * unknown so that unless a bus reset
3851 * occurs the need to renegotiate is
3852 * recorded persistently.
3853 */
3854 if ((ahd->features & AHD_WIDE) != 0)
3855 tinfo->curr.width = AHD_WIDTH_UNKNOWN;
3856 tinfo->curr.period = AHD_PERIOD_UNKNOWN;
3857 tinfo->curr.offset = AHD_OFFSET_UNKNOWN;
3858 }
3859 if (tinfo->curr.period != tinfo->goal.period
3860 || tinfo->curr.width != tinfo->goal.width
3861 || tinfo->curr.offset != tinfo->goal.offset
3862 || tinfo->curr.ppr_options != tinfo->goal.ppr_options
3863 || (neg_type == AHD_NEG_IF_NON_ASYNC
3864 && (tinfo->goal.offset != 0
3865 || tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT
3866 || tinfo->goal.ppr_options != 0)))
3867 tstate->auto_negotiate |= devinfo->target_mask;
3868 else
3869 tstate->auto_negotiate &= ~devinfo->target_mask;
3870
3871 return (auto_negotiate_orig != tstate->auto_negotiate);
3872 }
3873
3874 /*
3875 * Update the user/goal/curr tables of synchronous negotiation
3876 * parameters as well as, in the case of a current or active update,
3877 * any data structures on the host controller. In the case of an
3878 * active update, the specified target is currently talking to us on
3879 * the bus, so the transfer parameter update must take effect
3880 * immediately.
3881 */
3882 void
ahd_set_syncrate(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,u_int period,u_int offset,u_int ppr_options,u_int type,int paused)3883 ahd_set_syncrate(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
3884 u_int period, u_int offset, u_int ppr_options,
3885 u_int type, int paused)
3886 {
3887 struct ahd_initiator_tinfo *tinfo;
3888 struct ahd_tmode_tstate *tstate;
3889 u_int old_period;
3890 u_int old_offset;
3891 u_int old_ppr;
3892 int active;
3893 int update_needed;
3894
3895 active = (type & AHD_TRANS_ACTIVE) == AHD_TRANS_ACTIVE;
3896 update_needed = 0;
3897
3898 if (period == 0 || offset == 0) {
3899 period = 0;
3900 offset = 0;
3901 }
3902
3903 tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
3904 devinfo->target, &tstate);
3905
3906 if ((type & AHD_TRANS_USER) != 0) {
3907 tinfo->user.period = period;
3908 tinfo->user.offset = offset;
3909 tinfo->user.ppr_options = ppr_options;
3910 }
3911
3912 if ((type & AHD_TRANS_GOAL) != 0) {
3913 tinfo->goal.period = period;
3914 tinfo->goal.offset = offset;
3915 tinfo->goal.ppr_options = ppr_options;
3916 }
3917
3918 old_period = tinfo->curr.period;
3919 old_offset = tinfo->curr.offset;
3920 old_ppr = tinfo->curr.ppr_options;
3921
3922 if ((type & AHD_TRANS_CUR) != 0
3923 && (old_period != period
3924 || old_offset != offset
3925 || old_ppr != ppr_options)) {
3926
3927 update_needed++;
3928
3929 tinfo->curr.period = period;
3930 tinfo->curr.offset = offset;
3931 tinfo->curr.ppr_options = ppr_options;
3932
3933 ahd_send_async(ahd, devinfo->channel, devinfo->target,
3934 CAM_LUN_WILDCARD, AC_TRANSFER_NEG);
3935 if (bootverbose) {
3936 if (offset != 0) {
3937 int options;
3938
3939 printk("%s: target %d synchronous with "
3940 "period = 0x%x, offset = 0x%x",
3941 ahd_name(ahd), devinfo->target,
3942 period, offset);
3943 options = 0;
3944 if ((ppr_options & MSG_EXT_PPR_RD_STRM) != 0) {
3945 printk("(RDSTRM");
3946 options++;
3947 }
3948 if ((ppr_options & MSG_EXT_PPR_DT_REQ) != 0) {
3949 printk("%s", options ? "|DT" : "(DT");
3950 options++;
3951 }
3952 if ((ppr_options & MSG_EXT_PPR_IU_REQ) != 0) {
3953 printk("%s", options ? "|IU" : "(IU");
3954 options++;
3955 }
3956 if ((ppr_options & MSG_EXT_PPR_RTI) != 0) {
3957 printk("%s", options ? "|RTI" : "(RTI");
3958 options++;
3959 }
3960 if ((ppr_options & MSG_EXT_PPR_QAS_REQ) != 0) {
3961 printk("%s", options ? "|QAS" : "(QAS");
3962 options++;
3963 }
3964 if (options != 0)
3965 printk(")\n");
3966 else
3967 printk("\n");
3968 } else {
3969 printk("%s: target %d using "
3970 "asynchronous transfers%s\n",
3971 ahd_name(ahd), devinfo->target,
3972 (ppr_options & MSG_EXT_PPR_QAS_REQ) != 0
3973 ? "(QAS)" : "");
3974 }
3975 }
3976 }
3977 /*
3978 * Always refresh the neg-table to handle the case of the
3979 * sequencer setting the ENATNO bit for a MK_MESSAGE request.
3980 * We will always renegotiate in that case if this is a
3981 * packetized request. Also manage the busfree expected flag
3982 * from this common routine so that we catch changes due to
3983 * WDTR or SDTR messages.
3984 */
3985 if ((type & AHD_TRANS_CUR) != 0) {
3986 if (!paused)
3987 ahd_pause(ahd);
3988 ahd_update_neg_table(ahd, devinfo, &tinfo->curr);
3989 if (!paused)
3990 ahd_unpause(ahd);
3991 if (ahd->msg_type != MSG_TYPE_NONE) {
3992 if ((old_ppr & MSG_EXT_PPR_IU_REQ)
3993 != (ppr_options & MSG_EXT_PPR_IU_REQ)) {
3994 #ifdef AHD_DEBUG
3995 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
3996 ahd_print_devinfo(ahd, devinfo);
3997 printk("Expecting IU Change busfree\n");
3998 }
3999 #endif
4000 ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE
4001 | MSG_FLAG_IU_REQ_CHANGED;
4002 }
4003 if ((old_ppr & MSG_EXT_PPR_IU_REQ) != 0) {
4004 #ifdef AHD_DEBUG
4005 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4006 printk("PPR with IU_REQ outstanding\n");
4007 #endif
4008 ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE;
4009 }
4010 }
4011 }
4012
4013 update_needed += ahd_update_neg_request(ahd, devinfo, tstate,
4014 tinfo, AHD_NEG_TO_GOAL);
4015
4016 if (update_needed && active)
4017 ahd_update_pending_scbs(ahd);
4018 }
4019
4020 /*
4021 * Update the user/goal/curr tables of wide negotiation
4022 * parameters as well as, in the case of a current or active update,
4023 * any data structures on the host controller. In the case of an
4024 * active update, the specified target is currently talking to us on
4025 * the bus, so the transfer parameter update must take effect
4026 * immediately.
4027 */
4028 void
ahd_set_width(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,u_int width,u_int type,int paused)4029 ahd_set_width(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4030 u_int width, u_int type, int paused)
4031 {
4032 struct ahd_initiator_tinfo *tinfo;
4033 struct ahd_tmode_tstate *tstate;
4034 u_int oldwidth;
4035 int active;
4036 int update_needed;
4037
4038 active = (type & AHD_TRANS_ACTIVE) == AHD_TRANS_ACTIVE;
4039 update_needed = 0;
4040 tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
4041 devinfo->target, &tstate);
4042
4043 if ((type & AHD_TRANS_USER) != 0)
4044 tinfo->user.width = width;
4045
4046 if ((type & AHD_TRANS_GOAL) != 0)
4047 tinfo->goal.width = width;
4048
4049 oldwidth = tinfo->curr.width;
4050 if ((type & AHD_TRANS_CUR) != 0 && oldwidth != width) {
4051
4052 update_needed++;
4053
4054 tinfo->curr.width = width;
4055 ahd_send_async(ahd, devinfo->channel, devinfo->target,
4056 CAM_LUN_WILDCARD, AC_TRANSFER_NEG);
4057 if (bootverbose) {
4058 printk("%s: target %d using %dbit transfers\n",
4059 ahd_name(ahd), devinfo->target,
4060 8 * (0x01 << width));
4061 }
4062 }
4063
4064 if ((type & AHD_TRANS_CUR) != 0) {
4065 if (!paused)
4066 ahd_pause(ahd);
4067 ahd_update_neg_table(ahd, devinfo, &tinfo->curr);
4068 if (!paused)
4069 ahd_unpause(ahd);
4070 }
4071
4072 update_needed += ahd_update_neg_request(ahd, devinfo, tstate,
4073 tinfo, AHD_NEG_TO_GOAL);
4074 if (update_needed && active)
4075 ahd_update_pending_scbs(ahd);
4076
4077 }
4078
4079 /*
4080 * Update the current state of tagged queuing for a given target.
4081 */
4082 static void
ahd_set_tags(struct ahd_softc * ahd,struct scsi_cmnd * cmd,struct ahd_devinfo * devinfo,ahd_queue_alg alg)4083 ahd_set_tags(struct ahd_softc *ahd, struct scsi_cmnd *cmd,
4084 struct ahd_devinfo *devinfo, ahd_queue_alg alg)
4085 {
4086 struct scsi_device *sdev = cmd->device;
4087
4088 ahd_platform_set_tags(ahd, sdev, devinfo, alg);
4089 ahd_send_async(ahd, devinfo->channel, devinfo->target,
4090 devinfo->lun, AC_TRANSFER_NEG);
4091 }
4092
4093 static void
ahd_update_neg_table(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,struct ahd_transinfo * tinfo)4094 ahd_update_neg_table(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4095 struct ahd_transinfo *tinfo)
4096 {
4097 ahd_mode_state saved_modes;
4098 u_int period;
4099 u_int ppr_opts;
4100 u_int con_opts;
4101 u_int offset;
4102 u_int saved_negoaddr;
4103 uint8_t iocell_opts[sizeof(ahd->iocell_opts)];
4104
4105 saved_modes = ahd_save_modes(ahd);
4106 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
4107
4108 saved_negoaddr = ahd_inb(ahd, NEGOADDR);
4109 ahd_outb(ahd, NEGOADDR, devinfo->target);
4110 period = tinfo->period;
4111 offset = tinfo->offset;
4112 memcpy(iocell_opts, ahd->iocell_opts, sizeof(ahd->iocell_opts));
4113 ppr_opts = tinfo->ppr_options & (MSG_EXT_PPR_QAS_REQ|MSG_EXT_PPR_DT_REQ
4114 |MSG_EXT_PPR_IU_REQ|MSG_EXT_PPR_RTI);
4115 con_opts = 0;
4116 if (period == 0)
4117 period = AHD_SYNCRATE_ASYNC;
4118 if (period == AHD_SYNCRATE_160) {
4119
4120 if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0) {
4121 /*
4122 * When the SPI4 spec was finalized, PACE transfers
4123 * was not made a configurable option in the PPR
4124 * message. Instead it is assumed to be enabled for
4125 * any syncrate faster than 80MHz. Nevertheless,
4126 * Harpoon2A4 allows this to be configurable.
4127 *
4128 * Harpoon2A4 also assumes at most 2 data bytes per
4129 * negotiated REQ/ACK offset. Paced transfers take
4130 * 4, so we must adjust our offset.
4131 */
4132 ppr_opts |= PPROPT_PACE;
4133 offset *= 2;
4134
4135 /*
4136 * Harpoon2A assumed that there would be a
4137 * fallback rate between 160MHz and 80MHz,
4138 * so 7 is used as the period factor rather
4139 * than 8 for 160MHz.
4140 */
4141 period = AHD_SYNCRATE_REVA_160;
4142 }
4143 if ((tinfo->ppr_options & MSG_EXT_PPR_PCOMP_EN) == 0)
4144 iocell_opts[AHD_PRECOMP_SLEW_INDEX] &=
4145 ~AHD_PRECOMP_MASK;
4146 } else {
4147 /*
4148 * Precomp should be disabled for non-paced transfers.
4149 */
4150 iocell_opts[AHD_PRECOMP_SLEW_INDEX] &= ~AHD_PRECOMP_MASK;
4151
4152 if ((ahd->features & AHD_NEW_IOCELL_OPTS) != 0
4153 && (ppr_opts & MSG_EXT_PPR_DT_REQ) != 0
4154 && (ppr_opts & MSG_EXT_PPR_IU_REQ) == 0) {
4155 /*
4156 * Slow down our CRC interval to be
4157 * compatible with non-packetized
4158 * U160 devices that can't handle a
4159 * CRC at full speed.
4160 */
4161 con_opts |= ENSLOWCRC;
4162 }
4163
4164 if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0) {
4165 /*
4166 * On H2A4, revert to a slower slewrate
4167 * on non-paced transfers.
4168 */
4169 iocell_opts[AHD_PRECOMP_SLEW_INDEX] &=
4170 ~AHD_SLEWRATE_MASK;
4171 }
4172 }
4173
4174 ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_PRECOMP_SLEW);
4175 ahd_outb(ahd, ANNEXDAT, iocell_opts[AHD_PRECOMP_SLEW_INDEX]);
4176 ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_AMPLITUDE);
4177 ahd_outb(ahd, ANNEXDAT, iocell_opts[AHD_AMPLITUDE_INDEX]);
4178
4179 ahd_outb(ahd, NEGPERIOD, period);
4180 ahd_outb(ahd, NEGPPROPTS, ppr_opts);
4181 ahd_outb(ahd, NEGOFFSET, offset);
4182
4183 if (tinfo->width == MSG_EXT_WDTR_BUS_16_BIT)
4184 con_opts |= WIDEXFER;
4185
4186 /*
4187 * Slow down our CRC interval to be
4188 * compatible with packetized U320 devices
4189 * that can't handle a CRC at full speed
4190 */
4191 if (ahd->features & AHD_AIC79XXB_SLOWCRC) {
4192 con_opts |= ENSLOWCRC;
4193 }
4194
4195 /*
4196 * During packetized transfers, the target will
4197 * give us the opportunity to send command packets
4198 * without us asserting attention.
4199 */
4200 if ((tinfo->ppr_options & MSG_EXT_PPR_IU_REQ) == 0)
4201 con_opts |= ENAUTOATNO;
4202 ahd_outb(ahd, NEGCONOPTS, con_opts);
4203 ahd_outb(ahd, NEGOADDR, saved_negoaddr);
4204 ahd_restore_modes(ahd, saved_modes);
4205 }
4206
4207 /*
4208 * When the transfer settings for a connection change, setup for
4209 * negotiation in pending SCBs to effect the change as quickly as
4210 * possible. We also cancel any negotiations that are scheduled
4211 * for inflight SCBs that have not been started yet.
4212 */
4213 static void
ahd_update_pending_scbs(struct ahd_softc * ahd)4214 ahd_update_pending_scbs(struct ahd_softc *ahd)
4215 {
4216 struct scb *pending_scb;
4217 int pending_scb_count;
4218 int paused;
4219 u_int saved_scbptr;
4220 ahd_mode_state saved_modes;
4221
4222 /*
4223 * Traverse the pending SCB list and ensure that all of the
4224 * SCBs there have the proper settings. We can only safely
4225 * clear the negotiation required flag (setting requires the
4226 * execution queue to be modified) and this is only possible
4227 * if we are not already attempting to select out for this
4228 * SCB. For this reason, all callers only call this routine
4229 * if we are changing the negotiation settings for the currently
4230 * active transaction on the bus.
4231 */
4232 pending_scb_count = 0;
4233 LIST_FOREACH(pending_scb, &ahd->pending_scbs, pending_links) {
4234 struct ahd_devinfo devinfo;
4235 struct ahd_initiator_tinfo *tinfo;
4236 struct ahd_tmode_tstate *tstate;
4237
4238 ahd_scb_devinfo(ahd, &devinfo, pending_scb);
4239 tinfo = ahd_fetch_transinfo(ahd, devinfo.channel,
4240 devinfo.our_scsiid,
4241 devinfo.target, &tstate);
4242 if ((tstate->auto_negotiate & devinfo.target_mask) == 0
4243 && (pending_scb->flags & SCB_AUTO_NEGOTIATE) != 0) {
4244 pending_scb->flags &= ~SCB_AUTO_NEGOTIATE;
4245 pending_scb->hscb->control &= ~MK_MESSAGE;
4246 }
4247 ahd_sync_scb(ahd, pending_scb,
4248 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
4249 pending_scb_count++;
4250 }
4251
4252 if (pending_scb_count == 0)
4253 return;
4254
4255 if (ahd_is_paused(ahd)) {
4256 paused = 1;
4257 } else {
4258 paused = 0;
4259 ahd_pause(ahd);
4260 }
4261
4262 /*
4263 * Force the sequencer to reinitialize the selection for
4264 * the command at the head of the execution queue if it
4265 * has already been setup. The negotiation changes may
4266 * effect whether we select-out with ATN. It is only
4267 * safe to clear ENSELO when the bus is not free and no
4268 * selection is in progres or completed.
4269 */
4270 saved_modes = ahd_save_modes(ahd);
4271 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
4272 if ((ahd_inb(ahd, SCSISIGI) & BSYI) != 0
4273 && (ahd_inb(ahd, SSTAT0) & (SELDO|SELINGO)) == 0)
4274 ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
4275 saved_scbptr = ahd_get_scbptr(ahd);
4276 /* Ensure that the hscbs down on the card match the new information */
4277 LIST_FOREACH(pending_scb, &ahd->pending_scbs, pending_links) {
4278 u_int scb_tag;
4279 u_int control;
4280
4281 scb_tag = SCB_GET_TAG(pending_scb);
4282 ahd_set_scbptr(ahd, scb_tag);
4283 control = ahd_inb_scbram(ahd, SCB_CONTROL);
4284 control &= ~MK_MESSAGE;
4285 control |= pending_scb->hscb->control & MK_MESSAGE;
4286 ahd_outb(ahd, SCB_CONTROL, control);
4287 }
4288 ahd_set_scbptr(ahd, saved_scbptr);
4289 ahd_restore_modes(ahd, saved_modes);
4290
4291 if (paused == 0)
4292 ahd_unpause(ahd);
4293 }
4294
4295 /**************************** Pathing Information *****************************/
4296 static void
ahd_fetch_devinfo(struct ahd_softc * ahd,struct ahd_devinfo * devinfo)4297 ahd_fetch_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
4298 {
4299 ahd_mode_state saved_modes;
4300 u_int saved_scsiid;
4301 role_t role;
4302 int our_id;
4303
4304 saved_modes = ahd_save_modes(ahd);
4305 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
4306
4307 if (ahd_inb(ahd, SSTAT0) & TARGET)
4308 role = ROLE_TARGET;
4309 else
4310 role = ROLE_INITIATOR;
4311
4312 if (role == ROLE_TARGET
4313 && (ahd_inb(ahd, SEQ_FLAGS) & CMDPHASE_PENDING) != 0) {
4314 /* We were selected, so pull our id from TARGIDIN */
4315 our_id = ahd_inb(ahd, TARGIDIN) & OID;
4316 } else if (role == ROLE_TARGET)
4317 our_id = ahd_inb(ahd, TOWNID);
4318 else
4319 our_id = ahd_inb(ahd, IOWNID);
4320
4321 saved_scsiid = ahd_inb(ahd, SAVED_SCSIID);
4322 ahd_compile_devinfo(devinfo,
4323 our_id,
4324 SCSIID_TARGET(ahd, saved_scsiid),
4325 ahd_inb(ahd, SAVED_LUN),
4326 SCSIID_CHANNEL(ahd, saved_scsiid),
4327 role);
4328 ahd_restore_modes(ahd, saved_modes);
4329 }
4330
4331 void
ahd_print_devinfo(struct ahd_softc * ahd,struct ahd_devinfo * devinfo)4332 ahd_print_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
4333 {
4334 printk("%s:%c:%d:%d: ", ahd_name(ahd), 'A',
4335 devinfo->target, devinfo->lun);
4336 }
4337
4338 static const struct ahd_phase_table_entry*
ahd_lookup_phase_entry(int phase)4339 ahd_lookup_phase_entry(int phase)
4340 {
4341 const struct ahd_phase_table_entry *entry;
4342 const struct ahd_phase_table_entry *last_entry;
4343
4344 /*
4345 * num_phases doesn't include the default entry which
4346 * will be returned if the phase doesn't match.
4347 */
4348 last_entry = &ahd_phase_table[num_phases];
4349 for (entry = ahd_phase_table; entry < last_entry; entry++) {
4350 if (phase == entry->phase)
4351 break;
4352 }
4353 return (entry);
4354 }
4355
4356 void
ahd_compile_devinfo(struct ahd_devinfo * devinfo,u_int our_id,u_int target,u_int lun,char channel,role_t role)4357 ahd_compile_devinfo(struct ahd_devinfo *devinfo, u_int our_id, u_int target,
4358 u_int lun, char channel, role_t role)
4359 {
4360 devinfo->our_scsiid = our_id;
4361 devinfo->target = target;
4362 devinfo->lun = lun;
4363 devinfo->target_offset = target;
4364 devinfo->channel = channel;
4365 devinfo->role = role;
4366 if (channel == 'B')
4367 devinfo->target_offset += 8;
4368 devinfo->target_mask = (0x01 << devinfo->target_offset);
4369 }
4370
4371 static void
ahd_scb_devinfo(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,struct scb * scb)4372 ahd_scb_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4373 struct scb *scb)
4374 {
4375 role_t role;
4376 int our_id;
4377
4378 our_id = SCSIID_OUR_ID(scb->hscb->scsiid);
4379 role = ROLE_INITIATOR;
4380 if ((scb->hscb->control & TARGET_SCB) != 0)
4381 role = ROLE_TARGET;
4382 ahd_compile_devinfo(devinfo, our_id, SCB_GET_TARGET(ahd, scb),
4383 SCB_GET_LUN(scb), SCB_GET_CHANNEL(ahd, scb), role);
4384 }
4385
4386
4387 /************************ Message Phase Processing ****************************/
4388 /*
4389 * When an initiator transaction with the MK_MESSAGE flag either reconnects
4390 * or enters the initial message out phase, we are interrupted. Fill our
4391 * outgoing message buffer with the appropriate message and beging handing
4392 * the message phase(s) manually.
4393 */
4394 static void
ahd_setup_initiator_msgout(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,struct scb * scb)4395 ahd_setup_initiator_msgout(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4396 struct scb *scb)
4397 {
4398 /*
4399 * To facilitate adding multiple messages together,
4400 * each routine should increment the index and len
4401 * variables instead of setting them explicitly.
4402 */
4403 ahd->msgout_index = 0;
4404 ahd->msgout_len = 0;
4405
4406 if (ahd_currently_packetized(ahd))
4407 ahd->msg_flags |= MSG_FLAG_PACKETIZED;
4408
4409 if (ahd->send_msg_perror
4410 && ahd_inb(ahd, MSG_OUT) == HOST_MSG) {
4411 ahd->msgout_buf[ahd->msgout_index++] = ahd->send_msg_perror;
4412 ahd->msgout_len++;
4413 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4414 #ifdef AHD_DEBUG
4415 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4416 printk("Setting up for Parity Error delivery\n");
4417 #endif
4418 return;
4419 } else if (scb == NULL) {
4420 printk("%s: WARNING. No pending message for "
4421 "I_T msgin. Issuing NO-OP\n", ahd_name(ahd));
4422 ahd->msgout_buf[ahd->msgout_index++] = MSG_NOOP;
4423 ahd->msgout_len++;
4424 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4425 return;
4426 }
4427
4428 if ((scb->flags & SCB_DEVICE_RESET) == 0
4429 && (scb->flags & SCB_PACKETIZED) == 0
4430 && ahd_inb(ahd, MSG_OUT) == MSG_IDENTIFYFLAG) {
4431 u_int identify_msg;
4432
4433 identify_msg = MSG_IDENTIFYFLAG | SCB_GET_LUN(scb);
4434 if ((scb->hscb->control & DISCENB) != 0)
4435 identify_msg |= MSG_IDENTIFY_DISCFLAG;
4436 ahd->msgout_buf[ahd->msgout_index++] = identify_msg;
4437 ahd->msgout_len++;
4438
4439 if ((scb->hscb->control & TAG_ENB) != 0) {
4440 ahd->msgout_buf[ahd->msgout_index++] =
4441 scb->hscb->control & (TAG_ENB|SCB_TAG_TYPE);
4442 ahd->msgout_buf[ahd->msgout_index++] = SCB_GET_TAG(scb);
4443 ahd->msgout_len += 2;
4444 }
4445 }
4446
4447 if (scb->flags & SCB_DEVICE_RESET) {
4448 ahd->msgout_buf[ahd->msgout_index++] = MSG_BUS_DEV_RESET;
4449 ahd->msgout_len++;
4450 ahd_print_path(ahd, scb);
4451 printk("Bus Device Reset Message Sent\n");
4452 /*
4453 * Clear our selection hardware in advance of
4454 * the busfree. We may have an entry in the waiting
4455 * Q for this target, and we don't want to go about
4456 * selecting while we handle the busfree and blow it
4457 * away.
4458 */
4459 ahd_outb(ahd, SCSISEQ0, 0);
4460 } else if ((scb->flags & SCB_ABORT) != 0) {
4461
4462 if ((scb->hscb->control & TAG_ENB) != 0) {
4463 ahd->msgout_buf[ahd->msgout_index++] = MSG_ABORT_TAG;
4464 } else {
4465 ahd->msgout_buf[ahd->msgout_index++] = MSG_ABORT;
4466 }
4467 ahd->msgout_len++;
4468 ahd_print_path(ahd, scb);
4469 printk("Abort%s Message Sent\n",
4470 (scb->hscb->control & TAG_ENB) != 0 ? " Tag" : "");
4471 /*
4472 * Clear our selection hardware in advance of
4473 * the busfree. We may have an entry in the waiting
4474 * Q for this target, and we don't want to go about
4475 * selecting while we handle the busfree and blow it
4476 * away.
4477 */
4478 ahd_outb(ahd, SCSISEQ0, 0);
4479 } else if ((scb->flags & (SCB_AUTO_NEGOTIATE|SCB_NEGOTIATE)) != 0) {
4480 ahd_build_transfer_msg(ahd, devinfo);
4481 /*
4482 * Clear our selection hardware in advance of potential
4483 * PPR IU status change busfree. We may have an entry in
4484 * the waiting Q for this target, and we don't want to go
4485 * about selecting while we handle the busfree and blow
4486 * it away.
4487 */
4488 ahd_outb(ahd, SCSISEQ0, 0);
4489 } else {
4490 printk("ahd_intr: AWAITING_MSG for an SCB that "
4491 "does not have a waiting message\n");
4492 printk("SCSIID = %x, target_mask = %x\n", scb->hscb->scsiid,
4493 devinfo->target_mask);
4494 panic("SCB = %d, SCB Control = %x:%x, MSG_OUT = %x "
4495 "SCB flags = %x", SCB_GET_TAG(scb), scb->hscb->control,
4496 ahd_inb_scbram(ahd, SCB_CONTROL), ahd_inb(ahd, MSG_OUT),
4497 scb->flags);
4498 }
4499
4500 /*
4501 * Clear the MK_MESSAGE flag from the SCB so we aren't
4502 * asked to send this message again.
4503 */
4504 ahd_outb(ahd, SCB_CONTROL,
4505 ahd_inb_scbram(ahd, SCB_CONTROL) & ~MK_MESSAGE);
4506 scb->hscb->control &= ~MK_MESSAGE;
4507 ahd->msgout_index = 0;
4508 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4509 }
4510
4511 /*
4512 * Build an appropriate transfer negotiation message for the
4513 * currently active target.
4514 */
4515 static void
ahd_build_transfer_msg(struct ahd_softc * ahd,struct ahd_devinfo * devinfo)4516 ahd_build_transfer_msg(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
4517 {
4518 /*
4519 * We need to initiate transfer negotiations.
4520 * If our current and goal settings are identical,
4521 * we want to renegotiate due to a check condition.
4522 */
4523 struct ahd_initiator_tinfo *tinfo;
4524 struct ahd_tmode_tstate *tstate;
4525 int dowide;
4526 int dosync;
4527 int doppr;
4528 u_int period;
4529 u_int ppr_options;
4530 u_int offset;
4531
4532 tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
4533 devinfo->target, &tstate);
4534 /*
4535 * Filter our period based on the current connection.
4536 * If we can't perform DT transfers on this segment (not in LVD
4537 * mode for instance), then our decision to issue a PPR message
4538 * may change.
4539 */
4540 period = tinfo->goal.period;
4541 offset = tinfo->goal.offset;
4542 ppr_options = tinfo->goal.ppr_options;
4543 /* Target initiated PPR is not allowed in the SCSI spec */
4544 if (devinfo->role == ROLE_TARGET)
4545 ppr_options = 0;
4546 ahd_devlimited_syncrate(ahd, tinfo, &period,
4547 &ppr_options, devinfo->role);
4548 dowide = tinfo->curr.width != tinfo->goal.width;
4549 dosync = tinfo->curr.offset != offset || tinfo->curr.period != period;
4550 /*
4551 * Only use PPR if we have options that need it, even if the device
4552 * claims to support it. There might be an expander in the way
4553 * that doesn't.
4554 */
4555 doppr = ppr_options != 0;
4556
4557 if (!dowide && !dosync && !doppr) {
4558 dowide = tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT;
4559 dosync = tinfo->goal.offset != 0;
4560 }
4561
4562 if (!dowide && !dosync && !doppr) {
4563 /*
4564 * Force async with a WDTR message if we have a wide bus,
4565 * or just issue an SDTR with a 0 offset.
4566 */
4567 if ((ahd->features & AHD_WIDE) != 0)
4568 dowide = 1;
4569 else
4570 dosync = 1;
4571
4572 if (bootverbose) {
4573 ahd_print_devinfo(ahd, devinfo);
4574 printk("Ensuring async\n");
4575 }
4576 }
4577 /* Target initiated PPR is not allowed in the SCSI spec */
4578 if (devinfo->role == ROLE_TARGET)
4579 doppr = 0;
4580
4581 /*
4582 * Both the PPR message and SDTR message require the
4583 * goal syncrate to be limited to what the target device
4584 * is capable of handling (based on whether an LVD->SE
4585 * expander is on the bus), so combine these two cases.
4586 * Regardless, guarantee that if we are using WDTR and SDTR
4587 * messages that WDTR comes first.
4588 */
4589 if (doppr || (dosync && !dowide)) {
4590
4591 offset = tinfo->goal.offset;
4592 ahd_validate_offset(ahd, tinfo, period, &offset,
4593 doppr ? tinfo->goal.width
4594 : tinfo->curr.width,
4595 devinfo->role);
4596 if (doppr) {
4597 ahd_construct_ppr(ahd, devinfo, period, offset,
4598 tinfo->goal.width, ppr_options);
4599 } else {
4600 ahd_construct_sdtr(ahd, devinfo, period, offset);
4601 }
4602 } else {
4603 ahd_construct_wdtr(ahd, devinfo, tinfo->goal.width);
4604 }
4605 }
4606
4607 /*
4608 * Build a synchronous negotiation message in our message
4609 * buffer based on the input parameters.
4610 */
4611 static void
ahd_construct_sdtr(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,u_int period,u_int offset)4612 ahd_construct_sdtr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4613 u_int period, u_int offset)
4614 {
4615 if (offset == 0)
4616 period = AHD_ASYNC_XFER_PERIOD;
4617 ahd->msgout_index += spi_populate_sync_msg(
4618 ahd->msgout_buf + ahd->msgout_index, period, offset);
4619 ahd->msgout_len += 5;
4620 if (bootverbose) {
4621 printk("(%s:%c:%d:%d): Sending SDTR period %x, offset %x\n",
4622 ahd_name(ahd), devinfo->channel, devinfo->target,
4623 devinfo->lun, period, offset);
4624 }
4625 }
4626
4627 /*
4628 * Build a wide negotiateion message in our message
4629 * buffer based on the input parameters.
4630 */
4631 static void
ahd_construct_wdtr(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,u_int bus_width)4632 ahd_construct_wdtr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4633 u_int bus_width)
4634 {
4635 ahd->msgout_index += spi_populate_width_msg(
4636 ahd->msgout_buf + ahd->msgout_index, bus_width);
4637 ahd->msgout_len += 4;
4638 if (bootverbose) {
4639 printk("(%s:%c:%d:%d): Sending WDTR %x\n",
4640 ahd_name(ahd), devinfo->channel, devinfo->target,
4641 devinfo->lun, bus_width);
4642 }
4643 }
4644
4645 /*
4646 * Build a parallel protocol request message in our message
4647 * buffer based on the input parameters.
4648 */
4649 static void
ahd_construct_ppr(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,u_int period,u_int offset,u_int bus_width,u_int ppr_options)4650 ahd_construct_ppr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4651 u_int period, u_int offset, u_int bus_width,
4652 u_int ppr_options)
4653 {
4654 /*
4655 * Always request precompensation from
4656 * the other target if we are running
4657 * at paced syncrates.
4658 */
4659 if (period <= AHD_SYNCRATE_PACED)
4660 ppr_options |= MSG_EXT_PPR_PCOMP_EN;
4661 if (offset == 0)
4662 period = AHD_ASYNC_XFER_PERIOD;
4663 ahd->msgout_index += spi_populate_ppr_msg(
4664 ahd->msgout_buf + ahd->msgout_index, period, offset,
4665 bus_width, ppr_options);
4666 ahd->msgout_len += 8;
4667 if (bootverbose) {
4668 printk("(%s:%c:%d:%d): Sending PPR bus_width %x, period %x, "
4669 "offset %x, ppr_options %x\n", ahd_name(ahd),
4670 devinfo->channel, devinfo->target, devinfo->lun,
4671 bus_width, period, offset, ppr_options);
4672 }
4673 }
4674
4675 /*
4676 * Clear any active message state.
4677 */
4678 static void
ahd_clear_msg_state(struct ahd_softc * ahd)4679 ahd_clear_msg_state(struct ahd_softc *ahd)
4680 {
4681 ahd_mode_state saved_modes;
4682
4683 saved_modes = ahd_save_modes(ahd);
4684 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
4685 ahd->send_msg_perror = 0;
4686 ahd->msg_flags = MSG_FLAG_NONE;
4687 ahd->msgout_len = 0;
4688 ahd->msgin_index = 0;
4689 ahd->msg_type = MSG_TYPE_NONE;
4690 if ((ahd_inb(ahd, SCSISIGO) & ATNO) != 0) {
4691 /*
4692 * The target didn't care to respond to our
4693 * message request, so clear ATN.
4694 */
4695 ahd_outb(ahd, CLRSINT1, CLRATNO);
4696 }
4697 ahd_outb(ahd, MSG_OUT, MSG_NOOP);
4698 ahd_outb(ahd, SEQ_FLAGS2,
4699 ahd_inb(ahd, SEQ_FLAGS2) & ~TARGET_MSG_PENDING);
4700 ahd_restore_modes(ahd, saved_modes);
4701 }
4702
4703 /*
4704 * Manual message loop handler.
4705 */
4706 static void
ahd_handle_message_phase(struct ahd_softc * ahd)4707 ahd_handle_message_phase(struct ahd_softc *ahd)
4708 {
4709 struct ahd_devinfo devinfo;
4710 u_int bus_phase;
4711 int end_session;
4712
4713 ahd_fetch_devinfo(ahd, &devinfo);
4714 end_session = FALSE;
4715 bus_phase = ahd_inb(ahd, LASTPHASE);
4716
4717 if ((ahd_inb(ahd, LQISTAT2) & LQIPHASE_OUTPKT) != 0) {
4718 printk("LQIRETRY for LQIPHASE_OUTPKT\n");
4719 ahd_outb(ahd, LQCTL2, LQIRETRY);
4720 }
4721 reswitch:
4722 switch (ahd->msg_type) {
4723 case MSG_TYPE_INITIATOR_MSGOUT:
4724 {
4725 int lastbyte;
4726 int phasemis;
4727 int msgdone;
4728
4729 if (ahd->msgout_len == 0 && ahd->send_msg_perror == 0)
4730 panic("HOST_MSG_LOOP interrupt with no active message");
4731
4732 #ifdef AHD_DEBUG
4733 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4734 ahd_print_devinfo(ahd, &devinfo);
4735 printk("INITIATOR_MSG_OUT");
4736 }
4737 #endif
4738 phasemis = bus_phase != P_MESGOUT;
4739 if (phasemis) {
4740 #ifdef AHD_DEBUG
4741 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4742 printk(" PHASEMIS %s\n",
4743 ahd_lookup_phase_entry(bus_phase)
4744 ->phasemsg);
4745 }
4746 #endif
4747 if (bus_phase == P_MESGIN) {
4748 /*
4749 * Change gears and see if
4750 * this messages is of interest to
4751 * us or should be passed back to
4752 * the sequencer.
4753 */
4754 ahd_outb(ahd, CLRSINT1, CLRATNO);
4755 ahd->send_msg_perror = 0;
4756 ahd->msg_type = MSG_TYPE_INITIATOR_MSGIN;
4757 ahd->msgin_index = 0;
4758 goto reswitch;
4759 }
4760 end_session = TRUE;
4761 break;
4762 }
4763
4764 if (ahd->send_msg_perror) {
4765 ahd_outb(ahd, CLRSINT1, CLRATNO);
4766 ahd_outb(ahd, CLRSINT1, CLRREQINIT);
4767 #ifdef AHD_DEBUG
4768 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4769 printk(" byte 0x%x\n", ahd->send_msg_perror);
4770 #endif
4771 /*
4772 * If we are notifying the target of a CRC error
4773 * during packetized operations, the target is
4774 * within its rights to acknowledge our message
4775 * with a busfree.
4776 */
4777 if ((ahd->msg_flags & MSG_FLAG_PACKETIZED) != 0
4778 && ahd->send_msg_perror == MSG_INITIATOR_DET_ERR)
4779 ahd->msg_flags |= MSG_FLAG_EXPECT_IDE_BUSFREE;
4780
4781 ahd_outb(ahd, RETURN_2, ahd->send_msg_perror);
4782 ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_WRITE);
4783 break;
4784 }
4785
4786 msgdone = ahd->msgout_index == ahd->msgout_len;
4787 if (msgdone) {
4788 /*
4789 * The target has requested a retry.
4790 * Re-assert ATN, reset our message index to
4791 * 0, and try again.
4792 */
4793 ahd->msgout_index = 0;
4794 ahd_assert_atn(ahd);
4795 }
4796
4797 lastbyte = ahd->msgout_index == (ahd->msgout_len - 1);
4798 if (lastbyte) {
4799 /* Last byte is signified by dropping ATN */
4800 ahd_outb(ahd, CLRSINT1, CLRATNO);
4801 }
4802
4803 /*
4804 * Clear our interrupt status and present
4805 * the next byte on the bus.
4806 */
4807 ahd_outb(ahd, CLRSINT1, CLRREQINIT);
4808 #ifdef AHD_DEBUG
4809 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4810 printk(" byte 0x%x\n",
4811 ahd->msgout_buf[ahd->msgout_index]);
4812 #endif
4813 ahd_outb(ahd, RETURN_2, ahd->msgout_buf[ahd->msgout_index++]);
4814 ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_WRITE);
4815 break;
4816 }
4817 case MSG_TYPE_INITIATOR_MSGIN:
4818 {
4819 int phasemis;
4820 int message_done;
4821
4822 #ifdef AHD_DEBUG
4823 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4824 ahd_print_devinfo(ahd, &devinfo);
4825 printk("INITIATOR_MSG_IN");
4826 }
4827 #endif
4828 phasemis = bus_phase != P_MESGIN;
4829 if (phasemis) {
4830 #ifdef AHD_DEBUG
4831 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4832 printk(" PHASEMIS %s\n",
4833 ahd_lookup_phase_entry(bus_phase)
4834 ->phasemsg);
4835 }
4836 #endif
4837 ahd->msgin_index = 0;
4838 if (bus_phase == P_MESGOUT
4839 && (ahd->send_msg_perror != 0
4840 || (ahd->msgout_len != 0
4841 && ahd->msgout_index == 0))) {
4842 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4843 goto reswitch;
4844 }
4845 end_session = TRUE;
4846 break;
4847 }
4848
4849 /* Pull the byte in without acking it */
4850 ahd->msgin_buf[ahd->msgin_index] = ahd_inb(ahd, SCSIBUS);
4851 #ifdef AHD_DEBUG
4852 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4853 printk(" byte 0x%x\n",
4854 ahd->msgin_buf[ahd->msgin_index]);
4855 #endif
4856
4857 message_done = ahd_parse_msg(ahd, &devinfo);
4858
4859 if (message_done) {
4860 /*
4861 * Clear our incoming message buffer in case there
4862 * is another message following this one.
4863 */
4864 ahd->msgin_index = 0;
4865
4866 /*
4867 * If this message illicited a response,
4868 * assert ATN so the target takes us to the
4869 * message out phase.
4870 */
4871 if (ahd->msgout_len != 0) {
4872 #ifdef AHD_DEBUG
4873 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4874 ahd_print_devinfo(ahd, &devinfo);
4875 printk("Asserting ATN for response\n");
4876 }
4877 #endif
4878 ahd_assert_atn(ahd);
4879 }
4880 } else
4881 ahd->msgin_index++;
4882
4883 if (message_done == MSGLOOP_TERMINATED) {
4884 end_session = TRUE;
4885 } else {
4886 /* Ack the byte */
4887 ahd_outb(ahd, CLRSINT1, CLRREQINIT);
4888 ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_READ);
4889 }
4890 break;
4891 }
4892 case MSG_TYPE_TARGET_MSGIN:
4893 {
4894 int msgdone;
4895 int msgout_request;
4896
4897 /*
4898 * By default, the message loop will continue.
4899 */
4900 ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_TARG);
4901
4902 if (ahd->msgout_len == 0)
4903 panic("Target MSGIN with no active message");
4904
4905 /*
4906 * If we interrupted a mesgout session, the initiator
4907 * will not know this until our first REQ. So, we
4908 * only honor mesgout requests after we've sent our
4909 * first byte.
4910 */
4911 if ((ahd_inb(ahd, SCSISIGI) & ATNI) != 0
4912 && ahd->msgout_index > 0)
4913 msgout_request = TRUE;
4914 else
4915 msgout_request = FALSE;
4916
4917 if (msgout_request) {
4918
4919 /*
4920 * Change gears and see if
4921 * this messages is of interest to
4922 * us or should be passed back to
4923 * the sequencer.
4924 */
4925 ahd->msg_type = MSG_TYPE_TARGET_MSGOUT;
4926 ahd_outb(ahd, SCSISIGO, P_MESGOUT | BSYO);
4927 ahd->msgin_index = 0;
4928 /* Dummy read to REQ for first byte */
4929 ahd_inb(ahd, SCSIDAT);
4930 ahd_outb(ahd, SXFRCTL0,
4931 ahd_inb(ahd, SXFRCTL0) | SPIOEN);
4932 break;
4933 }
4934
4935 msgdone = ahd->msgout_index == ahd->msgout_len;
4936 if (msgdone) {
4937 ahd_outb(ahd, SXFRCTL0,
4938 ahd_inb(ahd, SXFRCTL0) & ~SPIOEN);
4939 end_session = TRUE;
4940 break;
4941 }
4942
4943 /*
4944 * Present the next byte on the bus.
4945 */
4946 ahd_outb(ahd, SXFRCTL0, ahd_inb(ahd, SXFRCTL0) | SPIOEN);
4947 ahd_outb(ahd, SCSIDAT, ahd->msgout_buf[ahd->msgout_index++]);
4948 break;
4949 }
4950 case MSG_TYPE_TARGET_MSGOUT:
4951 {
4952 int lastbyte;
4953 int msgdone;
4954
4955 /*
4956 * By default, the message loop will continue.
4957 */
4958 ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_TARG);
4959
4960 /*
4961 * The initiator signals that this is
4962 * the last byte by dropping ATN.
4963 */
4964 lastbyte = (ahd_inb(ahd, SCSISIGI) & ATNI) == 0;
4965
4966 /*
4967 * Read the latched byte, but turn off SPIOEN first
4968 * so that we don't inadvertently cause a REQ for the
4969 * next byte.
4970 */
4971 ahd_outb(ahd, SXFRCTL0, ahd_inb(ahd, SXFRCTL0) & ~SPIOEN);
4972 ahd->msgin_buf[ahd->msgin_index] = ahd_inb(ahd, SCSIDAT);
4973 msgdone = ahd_parse_msg(ahd, &devinfo);
4974 if (msgdone == MSGLOOP_TERMINATED) {
4975 /*
4976 * The message is *really* done in that it caused
4977 * us to go to bus free. The sequencer has already
4978 * been reset at this point, so pull the ejection
4979 * handle.
4980 */
4981 return;
4982 }
4983
4984 ahd->msgin_index++;
4985
4986 /*
4987 * XXX Read spec about initiator dropping ATN too soon
4988 * and use msgdone to detect it.
4989 */
4990 if (msgdone == MSGLOOP_MSGCOMPLETE) {
4991 ahd->msgin_index = 0;
4992
4993 /*
4994 * If this message illicited a response, transition
4995 * to the Message in phase and send it.
4996 */
4997 if (ahd->msgout_len != 0) {
4998 ahd_outb(ahd, SCSISIGO, P_MESGIN | BSYO);
4999 ahd_outb(ahd, SXFRCTL0,
5000 ahd_inb(ahd, SXFRCTL0) | SPIOEN);
5001 ahd->msg_type = MSG_TYPE_TARGET_MSGIN;
5002 ahd->msgin_index = 0;
5003 break;
5004 }
5005 }
5006
5007 if (lastbyte)
5008 end_session = TRUE;
5009 else {
5010 /* Ask for the next byte. */
5011 ahd_outb(ahd, SXFRCTL0,
5012 ahd_inb(ahd, SXFRCTL0) | SPIOEN);
5013 }
5014
5015 break;
5016 }
5017 default:
5018 panic("Unknown REQINIT message type");
5019 }
5020
5021 if (end_session) {
5022 if ((ahd->msg_flags & MSG_FLAG_PACKETIZED) != 0) {
5023 printk("%s: Returning to Idle Loop\n",
5024 ahd_name(ahd));
5025 ahd_clear_msg_state(ahd);
5026
5027 /*
5028 * Perform the equivalent of a clear_target_state.
5029 */
5030 ahd_outb(ahd, LASTPHASE, P_BUSFREE);
5031 ahd_outb(ahd, SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT);
5032 ahd_outb(ahd, SEQCTL0, FASTMODE|SEQRESET);
5033 } else {
5034 ahd_clear_msg_state(ahd);
5035 ahd_outb(ahd, RETURN_1, EXIT_MSG_LOOP);
5036 }
5037 }
5038 }
5039
5040 /*
5041 * See if we sent a particular extended message to the target.
5042 * If "full" is true, return true only if the target saw the full
5043 * message. If "full" is false, return true if the target saw at
5044 * least the first byte of the message.
5045 */
5046 static int
ahd_sent_msg(struct ahd_softc * ahd,ahd_msgtype type,u_int msgval,int full)5047 ahd_sent_msg(struct ahd_softc *ahd, ahd_msgtype type, u_int msgval, int full)
5048 {
5049 int found;
5050 u_int index;
5051
5052 found = FALSE;
5053 index = 0;
5054
5055 while (index < ahd->msgout_len) {
5056 if (ahd->msgout_buf[index] == MSG_EXTENDED) {
5057 u_int end_index;
5058
5059 end_index = index + 1 + ahd->msgout_buf[index + 1];
5060 if (ahd->msgout_buf[index+2] == msgval
5061 && type == AHDMSG_EXT) {
5062
5063 if (full) {
5064 if (ahd->msgout_index > end_index)
5065 found = TRUE;
5066 } else if (ahd->msgout_index > index)
5067 found = TRUE;
5068 }
5069 index = end_index;
5070 } else if (ahd->msgout_buf[index] >= MSG_SIMPLE_TASK
5071 && ahd->msgout_buf[index] <= MSG_IGN_WIDE_RESIDUE) {
5072
5073 /* Skip tag type and tag id or residue param*/
5074 index += 2;
5075 } else {
5076 /* Single byte message */
5077 if (type == AHDMSG_1B
5078 && ahd->msgout_index > index
5079 && (ahd->msgout_buf[index] == msgval
5080 || ((ahd->msgout_buf[index] & MSG_IDENTIFYFLAG) != 0
5081 && msgval == MSG_IDENTIFYFLAG)))
5082 found = TRUE;
5083 index++;
5084 }
5085
5086 if (found)
5087 break;
5088 }
5089 return (found);
5090 }
5091
5092 /*
5093 * Wait for a complete incoming message, parse it, and respond accordingly.
5094 */
5095 static int
ahd_parse_msg(struct ahd_softc * ahd,struct ahd_devinfo * devinfo)5096 ahd_parse_msg(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
5097 {
5098 struct ahd_initiator_tinfo *tinfo;
5099 struct ahd_tmode_tstate *tstate;
5100 int reject;
5101 int done;
5102 int response;
5103
5104 done = MSGLOOP_IN_PROG;
5105 response = FALSE;
5106 reject = FALSE;
5107 tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
5108 devinfo->target, &tstate);
5109
5110 /*
5111 * Parse as much of the message as is available,
5112 * rejecting it if we don't support it. When
5113 * the entire message is available and has been
5114 * handled, return MSGLOOP_MSGCOMPLETE, indicating
5115 * that we have parsed an entire message.
5116 *
5117 * In the case of extended messages, we accept the length
5118 * byte outright and perform more checking once we know the
5119 * extended message type.
5120 */
5121 switch (ahd->msgin_buf[0]) {
5122 case MSG_DISCONNECT:
5123 case MSG_SAVEDATAPOINTER:
5124 case MSG_CMDCOMPLETE:
5125 case MSG_RESTOREPOINTERS:
5126 case MSG_IGN_WIDE_RESIDUE:
5127 /*
5128 * End our message loop as these are messages
5129 * the sequencer handles on its own.
5130 */
5131 done = MSGLOOP_TERMINATED;
5132 break;
5133 case MSG_MESSAGE_REJECT:
5134 response = ahd_handle_msg_reject(ahd, devinfo);
5135 /* FALLTHROUGH */
5136 case MSG_NOOP:
5137 done = MSGLOOP_MSGCOMPLETE;
5138 break;
5139 case MSG_EXTENDED:
5140 {
5141 /* Wait for enough of the message to begin validation */
5142 if (ahd->msgin_index < 2)
5143 break;
5144 switch (ahd->msgin_buf[2]) {
5145 case MSG_EXT_SDTR:
5146 {
5147 u_int period;
5148 u_int ppr_options;
5149 u_int offset;
5150 u_int saved_offset;
5151
5152 if (ahd->msgin_buf[1] != MSG_EXT_SDTR_LEN) {
5153 reject = TRUE;
5154 break;
5155 }
5156
5157 /*
5158 * Wait until we have both args before validating
5159 * and acting on this message.
5160 *
5161 * Add one to MSG_EXT_SDTR_LEN to account for
5162 * the extended message preamble.
5163 */
5164 if (ahd->msgin_index < (MSG_EXT_SDTR_LEN + 1))
5165 break;
5166
5167 period = ahd->msgin_buf[3];
5168 ppr_options = 0;
5169 saved_offset = offset = ahd->msgin_buf[4];
5170 ahd_devlimited_syncrate(ahd, tinfo, &period,
5171 &ppr_options, devinfo->role);
5172 ahd_validate_offset(ahd, tinfo, period, &offset,
5173 tinfo->curr.width, devinfo->role);
5174 if (bootverbose) {
5175 printk("(%s:%c:%d:%d): Received "
5176 "SDTR period %x, offset %x\n\t"
5177 "Filtered to period %x, offset %x\n",
5178 ahd_name(ahd), devinfo->channel,
5179 devinfo->target, devinfo->lun,
5180 ahd->msgin_buf[3], saved_offset,
5181 period, offset);
5182 }
5183 ahd_set_syncrate(ahd, devinfo, period,
5184 offset, ppr_options,
5185 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5186 /*paused*/TRUE);
5187
5188 /*
5189 * See if we initiated Sync Negotiation
5190 * and didn't have to fall down to async
5191 * transfers.
5192 */
5193 if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, TRUE)) {
5194 /* We started it */
5195 if (saved_offset != offset) {
5196 /* Went too low - force async */
5197 reject = TRUE;
5198 }
5199 } else {
5200 /*
5201 * Send our own SDTR in reply
5202 */
5203 if (bootverbose
5204 && devinfo->role == ROLE_INITIATOR) {
5205 printk("(%s:%c:%d:%d): Target "
5206 "Initiated SDTR\n",
5207 ahd_name(ahd), devinfo->channel,
5208 devinfo->target, devinfo->lun);
5209 }
5210 ahd->msgout_index = 0;
5211 ahd->msgout_len = 0;
5212 ahd_construct_sdtr(ahd, devinfo,
5213 period, offset);
5214 ahd->msgout_index = 0;
5215 response = TRUE;
5216 }
5217 done = MSGLOOP_MSGCOMPLETE;
5218 break;
5219 }
5220 case MSG_EXT_WDTR:
5221 {
5222 u_int bus_width;
5223 u_int saved_width;
5224 u_int sending_reply;
5225
5226 sending_reply = FALSE;
5227 if (ahd->msgin_buf[1] != MSG_EXT_WDTR_LEN) {
5228 reject = TRUE;
5229 break;
5230 }
5231
5232 /*
5233 * Wait until we have our arg before validating
5234 * and acting on this message.
5235 *
5236 * Add one to MSG_EXT_WDTR_LEN to account for
5237 * the extended message preamble.
5238 */
5239 if (ahd->msgin_index < (MSG_EXT_WDTR_LEN + 1))
5240 break;
5241
5242 bus_width = ahd->msgin_buf[3];
5243 saved_width = bus_width;
5244 ahd_validate_width(ahd, tinfo, &bus_width,
5245 devinfo->role);
5246 if (bootverbose) {
5247 printk("(%s:%c:%d:%d): Received WDTR "
5248 "%x filtered to %x\n",
5249 ahd_name(ahd), devinfo->channel,
5250 devinfo->target, devinfo->lun,
5251 saved_width, bus_width);
5252 }
5253
5254 if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, TRUE)) {
5255 /*
5256 * Don't send a WDTR back to the
5257 * target, since we asked first.
5258 * If the width went higher than our
5259 * request, reject it.
5260 */
5261 if (saved_width > bus_width) {
5262 reject = TRUE;
5263 printk("(%s:%c:%d:%d): requested %dBit "
5264 "transfers. Rejecting...\n",
5265 ahd_name(ahd), devinfo->channel,
5266 devinfo->target, devinfo->lun,
5267 8 * (0x01 << bus_width));
5268 bus_width = 0;
5269 }
5270 } else {
5271 /*
5272 * Send our own WDTR in reply
5273 */
5274 if (bootverbose
5275 && devinfo->role == ROLE_INITIATOR) {
5276 printk("(%s:%c:%d:%d): Target "
5277 "Initiated WDTR\n",
5278 ahd_name(ahd), devinfo->channel,
5279 devinfo->target, devinfo->lun);
5280 }
5281 ahd->msgout_index = 0;
5282 ahd->msgout_len = 0;
5283 ahd_construct_wdtr(ahd, devinfo, bus_width);
5284 ahd->msgout_index = 0;
5285 response = TRUE;
5286 sending_reply = TRUE;
5287 }
5288 /*
5289 * After a wide message, we are async, but
5290 * some devices don't seem to honor this portion
5291 * of the spec. Force a renegotiation of the
5292 * sync component of our transfer agreement even
5293 * if our goal is async. By updating our width
5294 * after forcing the negotiation, we avoid
5295 * renegotiating for width.
5296 */
5297 ahd_update_neg_request(ahd, devinfo, tstate,
5298 tinfo, AHD_NEG_ALWAYS);
5299 ahd_set_width(ahd, devinfo, bus_width,
5300 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5301 /*paused*/TRUE);
5302 if (sending_reply == FALSE && reject == FALSE) {
5303
5304 /*
5305 * We will always have an SDTR to send.
5306 */
5307 ahd->msgout_index = 0;
5308 ahd->msgout_len = 0;
5309 ahd_build_transfer_msg(ahd, devinfo);
5310 ahd->msgout_index = 0;
5311 response = TRUE;
5312 }
5313 done = MSGLOOP_MSGCOMPLETE;
5314 break;
5315 }
5316 case MSG_EXT_PPR:
5317 {
5318 u_int period;
5319 u_int offset;
5320 u_int bus_width;
5321 u_int ppr_options;
5322 u_int saved_width;
5323 u_int saved_offset;
5324 u_int saved_ppr_options;
5325
5326 if (ahd->msgin_buf[1] != MSG_EXT_PPR_LEN) {
5327 reject = TRUE;
5328 break;
5329 }
5330
5331 /*
5332 * Wait until we have all args before validating
5333 * and acting on this message.
5334 *
5335 * Add one to MSG_EXT_PPR_LEN to account for
5336 * the extended message preamble.
5337 */
5338 if (ahd->msgin_index < (MSG_EXT_PPR_LEN + 1))
5339 break;
5340
5341 period = ahd->msgin_buf[3];
5342 offset = ahd->msgin_buf[5];
5343 bus_width = ahd->msgin_buf[6];
5344 saved_width = bus_width;
5345 ppr_options = ahd->msgin_buf[7];
5346 /*
5347 * According to the spec, a DT only
5348 * period factor with no DT option
5349 * set implies async.
5350 */
5351 if ((ppr_options & MSG_EXT_PPR_DT_REQ) == 0
5352 && period <= 9)
5353 offset = 0;
5354 saved_ppr_options = ppr_options;
5355 saved_offset = offset;
5356
5357 /*
5358 * Transfer options are only available if we
5359 * are negotiating wide.
5360 */
5361 if (bus_width == 0)
5362 ppr_options &= MSG_EXT_PPR_QAS_REQ;
5363
5364 ahd_validate_width(ahd, tinfo, &bus_width,
5365 devinfo->role);
5366 ahd_devlimited_syncrate(ahd, tinfo, &period,
5367 &ppr_options, devinfo->role);
5368 ahd_validate_offset(ahd, tinfo, period, &offset,
5369 bus_width, devinfo->role);
5370
5371 if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, TRUE)) {
5372 /*
5373 * If we are unable to do any of the
5374 * requested options (we went too low),
5375 * then we'll have to reject the message.
5376 */
5377 if (saved_width > bus_width
5378 || saved_offset != offset
5379 || saved_ppr_options != ppr_options) {
5380 reject = TRUE;
5381 period = 0;
5382 offset = 0;
5383 bus_width = 0;
5384 ppr_options = 0;
5385 }
5386 } else {
5387 if (devinfo->role != ROLE_TARGET)
5388 printk("(%s:%c:%d:%d): Target "
5389 "Initiated PPR\n",
5390 ahd_name(ahd), devinfo->channel,
5391 devinfo->target, devinfo->lun);
5392 else
5393 printk("(%s:%c:%d:%d): Initiator "
5394 "Initiated PPR\n",
5395 ahd_name(ahd), devinfo->channel,
5396 devinfo->target, devinfo->lun);
5397 ahd->msgout_index = 0;
5398 ahd->msgout_len = 0;
5399 ahd_construct_ppr(ahd, devinfo, period, offset,
5400 bus_width, ppr_options);
5401 ahd->msgout_index = 0;
5402 response = TRUE;
5403 }
5404 if (bootverbose) {
5405 printk("(%s:%c:%d:%d): Received PPR width %x, "
5406 "period %x, offset %x,options %x\n"
5407 "\tFiltered to width %x, period %x, "
5408 "offset %x, options %x\n",
5409 ahd_name(ahd), devinfo->channel,
5410 devinfo->target, devinfo->lun,
5411 saved_width, ahd->msgin_buf[3],
5412 saved_offset, saved_ppr_options,
5413 bus_width, period, offset, ppr_options);
5414 }
5415 ahd_set_width(ahd, devinfo, bus_width,
5416 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5417 /*paused*/TRUE);
5418 ahd_set_syncrate(ahd, devinfo, period,
5419 offset, ppr_options,
5420 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5421 /*paused*/TRUE);
5422
5423 done = MSGLOOP_MSGCOMPLETE;
5424 break;
5425 }
5426 default:
5427 /* Unknown extended message. Reject it. */
5428 reject = TRUE;
5429 break;
5430 }
5431 break;
5432 }
5433 #ifdef AHD_TARGET_MODE
5434 case MSG_BUS_DEV_RESET:
5435 ahd_handle_devreset(ahd, devinfo, CAM_LUN_WILDCARD,
5436 CAM_BDR_SENT,
5437 "Bus Device Reset Received",
5438 /*verbose_level*/0);
5439 ahd_restart(ahd);
5440 done = MSGLOOP_TERMINATED;
5441 break;
5442 case MSG_ABORT_TAG:
5443 case MSG_ABORT:
5444 case MSG_CLEAR_QUEUE:
5445 {
5446 int tag;
5447
5448 /* Target mode messages */
5449 if (devinfo->role != ROLE_TARGET) {
5450 reject = TRUE;
5451 break;
5452 }
5453 tag = SCB_LIST_NULL;
5454 if (ahd->msgin_buf[0] == MSG_ABORT_TAG)
5455 tag = ahd_inb(ahd, INITIATOR_TAG);
5456 ahd_abort_scbs(ahd, devinfo->target, devinfo->channel,
5457 devinfo->lun, tag, ROLE_TARGET,
5458 CAM_REQ_ABORTED);
5459
5460 tstate = ahd->enabled_targets[devinfo->our_scsiid];
5461 if (tstate != NULL) {
5462 struct ahd_tmode_lstate* lstate;
5463
5464 lstate = tstate->enabled_luns[devinfo->lun];
5465 if (lstate != NULL) {
5466 ahd_queue_lstate_event(ahd, lstate,
5467 devinfo->our_scsiid,
5468 ahd->msgin_buf[0],
5469 /*arg*/tag);
5470 ahd_send_lstate_events(ahd, lstate);
5471 }
5472 }
5473 ahd_restart(ahd);
5474 done = MSGLOOP_TERMINATED;
5475 break;
5476 }
5477 #endif
5478 case MSG_QAS_REQUEST:
5479 #ifdef AHD_DEBUG
5480 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
5481 printk("%s: QAS request. SCSISIGI == 0x%x\n",
5482 ahd_name(ahd), ahd_inb(ahd, SCSISIGI));
5483 #endif
5484 ahd->msg_flags |= MSG_FLAG_EXPECT_QASREJ_BUSFREE;
5485 /* FALLTHROUGH */
5486 case MSG_TERM_IO_PROC:
5487 default:
5488 reject = TRUE;
5489 break;
5490 }
5491
5492 if (reject) {
5493 /*
5494 * Setup to reject the message.
5495 */
5496 ahd->msgout_index = 0;
5497 ahd->msgout_len = 1;
5498 ahd->msgout_buf[0] = MSG_MESSAGE_REJECT;
5499 done = MSGLOOP_MSGCOMPLETE;
5500 response = TRUE;
5501 }
5502
5503 if (done != MSGLOOP_IN_PROG && !response)
5504 /* Clear the outgoing message buffer */
5505 ahd->msgout_len = 0;
5506
5507 return (done);
5508 }
5509
5510 /*
5511 * Process a message reject message.
5512 */
5513 static int
ahd_handle_msg_reject(struct ahd_softc * ahd,struct ahd_devinfo * devinfo)5514 ahd_handle_msg_reject(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
5515 {
5516 /*
5517 * What we care about here is if we had an
5518 * outstanding SDTR or WDTR message for this
5519 * target. If we did, this is a signal that
5520 * the target is refusing negotiation.
5521 */
5522 struct scb *scb;
5523 struct ahd_initiator_tinfo *tinfo;
5524 struct ahd_tmode_tstate *tstate;
5525 u_int scb_index;
5526 u_int last_msg;
5527 int response = 0;
5528
5529 scb_index = ahd_get_scbptr(ahd);
5530 scb = ahd_lookup_scb(ahd, scb_index);
5531 tinfo = ahd_fetch_transinfo(ahd, devinfo->channel,
5532 devinfo->our_scsiid,
5533 devinfo->target, &tstate);
5534 /* Might be necessary */
5535 last_msg = ahd_inb(ahd, LAST_MSG);
5536
5537 if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, /*full*/FALSE)) {
5538 if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, /*full*/TRUE)
5539 && tinfo->goal.period <= AHD_SYNCRATE_PACED) {
5540 /*
5541 * Target may not like our SPI-4 PPR Options.
5542 * Attempt to negotiate 80MHz which will turn
5543 * off these options.
5544 */
5545 if (bootverbose) {
5546 printk("(%s:%c:%d:%d): PPR Rejected. "
5547 "Trying simple U160 PPR\n",
5548 ahd_name(ahd), devinfo->channel,
5549 devinfo->target, devinfo->lun);
5550 }
5551 tinfo->goal.period = AHD_SYNCRATE_DT;
5552 tinfo->goal.ppr_options &= MSG_EXT_PPR_IU_REQ
5553 | MSG_EXT_PPR_QAS_REQ
5554 | MSG_EXT_PPR_DT_REQ;
5555 } else {
5556 /*
5557 * Target does not support the PPR message.
5558 * Attempt to negotiate SPI-2 style.
5559 */
5560 if (bootverbose) {
5561 printk("(%s:%c:%d:%d): PPR Rejected. "
5562 "Trying WDTR/SDTR\n",
5563 ahd_name(ahd), devinfo->channel,
5564 devinfo->target, devinfo->lun);
5565 }
5566 tinfo->goal.ppr_options = 0;
5567 tinfo->curr.transport_version = 2;
5568 tinfo->goal.transport_version = 2;
5569 }
5570 ahd->msgout_index = 0;
5571 ahd->msgout_len = 0;
5572 ahd_build_transfer_msg(ahd, devinfo);
5573 ahd->msgout_index = 0;
5574 response = 1;
5575 } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, /*full*/FALSE)) {
5576
5577 /* note 8bit xfers */
5578 printk("(%s:%c:%d:%d): refuses WIDE negotiation. Using "
5579 "8bit transfers\n", ahd_name(ahd),
5580 devinfo->channel, devinfo->target, devinfo->lun);
5581 ahd_set_width(ahd, devinfo, MSG_EXT_WDTR_BUS_8_BIT,
5582 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5583 /*paused*/TRUE);
5584 /*
5585 * No need to clear the sync rate. If the target
5586 * did not accept the command, our syncrate is
5587 * unaffected. If the target started the negotiation,
5588 * but rejected our response, we already cleared the
5589 * sync rate before sending our WDTR.
5590 */
5591 if (tinfo->goal.offset != tinfo->curr.offset) {
5592
5593 /* Start the sync negotiation */
5594 ahd->msgout_index = 0;
5595 ahd->msgout_len = 0;
5596 ahd_build_transfer_msg(ahd, devinfo);
5597 ahd->msgout_index = 0;
5598 response = 1;
5599 }
5600 } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, /*full*/FALSE)) {
5601 /* note asynch xfers and clear flag */
5602 ahd_set_syncrate(ahd, devinfo, /*period*/0,
5603 /*offset*/0, /*ppr_options*/0,
5604 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5605 /*paused*/TRUE);
5606 printk("(%s:%c:%d:%d): refuses synchronous negotiation. "
5607 "Using asynchronous transfers\n",
5608 ahd_name(ahd), devinfo->channel,
5609 devinfo->target, devinfo->lun);
5610 } else if ((scb->hscb->control & MSG_SIMPLE_TASK) != 0) {
5611 int tag_type;
5612 int mask;
5613
5614 tag_type = (scb->hscb->control & MSG_SIMPLE_TASK);
5615
5616 if (tag_type == MSG_SIMPLE_TASK) {
5617 printk("(%s:%c:%d:%d): refuses tagged commands. "
5618 "Performing non-tagged I/O\n", ahd_name(ahd),
5619 devinfo->channel, devinfo->target, devinfo->lun);
5620 ahd_set_tags(ahd, scb->io_ctx, devinfo, AHD_QUEUE_NONE);
5621 mask = ~0x23;
5622 } else {
5623 printk("(%s:%c:%d:%d): refuses %s tagged commands. "
5624 "Performing simple queue tagged I/O only\n",
5625 ahd_name(ahd), devinfo->channel, devinfo->target,
5626 devinfo->lun, tag_type == MSG_ORDERED_TASK
5627 ? "ordered" : "head of queue");
5628 ahd_set_tags(ahd, scb->io_ctx, devinfo, AHD_QUEUE_BASIC);
5629 mask = ~0x03;
5630 }
5631
5632 /*
5633 * Resend the identify for this CCB as the target
5634 * may believe that the selection is invalid otherwise.
5635 */
5636 ahd_outb(ahd, SCB_CONTROL,
5637 ahd_inb_scbram(ahd, SCB_CONTROL) & mask);
5638 scb->hscb->control &= mask;
5639 ahd_set_transaction_tag(scb, /*enabled*/FALSE,
5640 /*type*/MSG_SIMPLE_TASK);
5641 ahd_outb(ahd, MSG_OUT, MSG_IDENTIFYFLAG);
5642 ahd_assert_atn(ahd);
5643 ahd_busy_tcl(ahd, BUILD_TCL(scb->hscb->scsiid, devinfo->lun),
5644 SCB_GET_TAG(scb));
5645
5646 /*
5647 * Requeue all tagged commands for this target
5648 * currently in our possession so they can be
5649 * converted to untagged commands.
5650 */
5651 ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
5652 SCB_GET_CHANNEL(ahd, scb),
5653 SCB_GET_LUN(scb), /*tag*/SCB_LIST_NULL,
5654 ROLE_INITIATOR, CAM_REQUEUE_REQ,
5655 SEARCH_COMPLETE);
5656 } else if (ahd_sent_msg(ahd, AHDMSG_1B, MSG_IDENTIFYFLAG, TRUE)) {
5657 /*
5658 * Most likely the device believes that we had
5659 * previously negotiated packetized.
5660 */
5661 ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE
5662 | MSG_FLAG_IU_REQ_CHANGED;
5663
5664 ahd_force_renegotiation(ahd, devinfo);
5665 ahd->msgout_index = 0;
5666 ahd->msgout_len = 0;
5667 ahd_build_transfer_msg(ahd, devinfo);
5668 ahd->msgout_index = 0;
5669 response = 1;
5670 } else {
5671 /*
5672 * Otherwise, we ignore it.
5673 */
5674 printk("%s:%c:%d: Message reject for %x -- ignored\n",
5675 ahd_name(ahd), devinfo->channel, devinfo->target,
5676 last_msg);
5677 }
5678 return (response);
5679 }
5680
5681 /*
5682 * Process an ingnore wide residue message.
5683 */
5684 static void
ahd_handle_ign_wide_residue(struct ahd_softc * ahd,struct ahd_devinfo * devinfo)5685 ahd_handle_ign_wide_residue(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
5686 {
5687 u_int scb_index;
5688 struct scb *scb;
5689
5690 scb_index = ahd_get_scbptr(ahd);
5691 scb = ahd_lookup_scb(ahd, scb_index);
5692 /*
5693 * XXX Actually check data direction in the sequencer?
5694 * Perhaps add datadir to some spare bits in the hscb?
5695 */
5696 if ((ahd_inb(ahd, SEQ_FLAGS) & DPHASE) == 0
5697 || ahd_get_transfer_dir(scb) != CAM_DIR_IN) {
5698 /*
5699 * Ignore the message if we haven't
5700 * seen an appropriate data phase yet.
5701 */
5702 } else {
5703 /*
5704 * If the residual occurred on the last
5705 * transfer and the transfer request was
5706 * expected to end on an odd count, do
5707 * nothing. Otherwise, subtract a byte
5708 * and update the residual count accordingly.
5709 */
5710 uint32_t sgptr;
5711
5712 sgptr = ahd_inb_scbram(ahd, SCB_RESIDUAL_SGPTR);
5713 if ((sgptr & SG_LIST_NULL) != 0
5714 && (ahd_inb_scbram(ahd, SCB_TASK_ATTRIBUTE)
5715 & SCB_XFERLEN_ODD) != 0) {
5716 /*
5717 * If the residual occurred on the last
5718 * transfer and the transfer request was
5719 * expected to end on an odd count, do
5720 * nothing.
5721 */
5722 } else {
5723 uint32_t data_cnt;
5724 uint64_t data_addr;
5725 uint32_t sglen;
5726
5727 /* Pull in the rest of the sgptr */
5728 sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
5729 data_cnt = ahd_inl_scbram(ahd, SCB_RESIDUAL_DATACNT);
5730 if ((sgptr & SG_LIST_NULL) != 0) {
5731 /*
5732 * The residual data count is not updated
5733 * for the command run to completion case.
5734 * Explicitly zero the count.
5735 */
5736 data_cnt &= ~AHD_SG_LEN_MASK;
5737 }
5738 data_addr = ahd_inq(ahd, SHADDR);
5739 data_cnt += 1;
5740 data_addr -= 1;
5741 sgptr &= SG_PTR_MASK;
5742 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
5743 struct ahd_dma64_seg *sg;
5744
5745 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5746
5747 /*
5748 * The residual sg ptr points to the next S/G
5749 * to load so we must go back one.
5750 */
5751 sg--;
5752 sglen = ahd_le32toh(sg->len) & AHD_SG_LEN_MASK;
5753 if (sg != scb->sg_list
5754 && sglen < (data_cnt & AHD_SG_LEN_MASK)) {
5755
5756 sg--;
5757 sglen = ahd_le32toh(sg->len);
5758 /*
5759 * Preserve High Address and SG_LIST
5760 * bits while setting the count to 1.
5761 */
5762 data_cnt = 1|(sglen&(~AHD_SG_LEN_MASK));
5763 data_addr = ahd_le64toh(sg->addr)
5764 + (sglen & AHD_SG_LEN_MASK)
5765 - 1;
5766
5767 /*
5768 * Increment sg so it points to the
5769 * "next" sg.
5770 */
5771 sg++;
5772 sgptr = ahd_sg_virt_to_bus(ahd, scb,
5773 sg);
5774 }
5775 } else {
5776 struct ahd_dma_seg *sg;
5777
5778 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5779
5780 /*
5781 * The residual sg ptr points to the next S/G
5782 * to load so we must go back one.
5783 */
5784 sg--;
5785 sglen = ahd_le32toh(sg->len) & AHD_SG_LEN_MASK;
5786 if (sg != scb->sg_list
5787 && sglen < (data_cnt & AHD_SG_LEN_MASK)) {
5788
5789 sg--;
5790 sglen = ahd_le32toh(sg->len);
5791 /*
5792 * Preserve High Address and SG_LIST
5793 * bits while setting the count to 1.
5794 */
5795 data_cnt = 1|(sglen&(~AHD_SG_LEN_MASK));
5796 data_addr = ahd_le32toh(sg->addr)
5797 + (sglen & AHD_SG_LEN_MASK)
5798 - 1;
5799
5800 /*
5801 * Increment sg so it points to the
5802 * "next" sg.
5803 */
5804 sg++;
5805 sgptr = ahd_sg_virt_to_bus(ahd, scb,
5806 sg);
5807 }
5808 }
5809 /*
5810 * Toggle the "oddness" of the transfer length
5811 * to handle this mid-transfer ignore wide
5812 * residue. This ensures that the oddness is
5813 * correct for subsequent data transfers.
5814 */
5815 ahd_outb(ahd, SCB_TASK_ATTRIBUTE,
5816 ahd_inb_scbram(ahd, SCB_TASK_ATTRIBUTE)
5817 ^ SCB_XFERLEN_ODD);
5818
5819 ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
5820 ahd_outl(ahd, SCB_RESIDUAL_DATACNT, data_cnt);
5821 /*
5822 * The FIFO's pointers will be updated if/when the
5823 * sequencer re-enters a data phase.
5824 */
5825 }
5826 }
5827 }
5828
5829
5830 /*
5831 * Reinitialize the data pointers for the active transfer
5832 * based on its current residual.
5833 */
5834 static void
ahd_reinitialize_dataptrs(struct ahd_softc * ahd)5835 ahd_reinitialize_dataptrs(struct ahd_softc *ahd)
5836 {
5837 struct scb *scb;
5838 ahd_mode_state saved_modes;
5839 u_int scb_index;
5840 u_int wait;
5841 uint32_t sgptr;
5842 uint32_t resid;
5843 uint64_t dataptr;
5844
5845 AHD_ASSERT_MODES(ahd, AHD_MODE_DFF0_MSK|AHD_MODE_DFF1_MSK,
5846 AHD_MODE_DFF0_MSK|AHD_MODE_DFF1_MSK);
5847
5848 scb_index = ahd_get_scbptr(ahd);
5849 scb = ahd_lookup_scb(ahd, scb_index);
5850
5851 /*
5852 * Release and reacquire the FIFO so we
5853 * have a clean slate.
5854 */
5855 ahd_outb(ahd, DFFSXFRCTL, CLRCHN);
5856 wait = 1000;
5857 while (--wait && !(ahd_inb(ahd, MDFFSTAT) & FIFOFREE))
5858 ahd_delay(100);
5859 if (wait == 0) {
5860 ahd_print_path(ahd, scb);
5861 printk("ahd_reinitialize_dataptrs: Forcing FIFO free.\n");
5862 ahd_outb(ahd, DFFSXFRCTL, RSTCHN|CLRSHCNT);
5863 }
5864 saved_modes = ahd_save_modes(ahd);
5865 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
5866 ahd_outb(ahd, DFFSTAT,
5867 ahd_inb(ahd, DFFSTAT)
5868 | (saved_modes == 0x11 ? CURRFIFO_1 : CURRFIFO_0));
5869
5870 /*
5871 * Determine initial values for data_addr and data_cnt
5872 * for resuming the data phase.
5873 */
5874 sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
5875 sgptr &= SG_PTR_MASK;
5876
5877 resid = (ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT + 2) << 16)
5878 | (ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT + 1) << 8)
5879 | ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT);
5880
5881 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
5882 struct ahd_dma64_seg *sg;
5883
5884 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5885
5886 /* The residual sg_ptr always points to the next sg */
5887 sg--;
5888
5889 dataptr = ahd_le64toh(sg->addr)
5890 + (ahd_le32toh(sg->len) & AHD_SG_LEN_MASK)
5891 - resid;
5892 ahd_outl(ahd, HADDR + 4, dataptr >> 32);
5893 } else {
5894 struct ahd_dma_seg *sg;
5895
5896 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5897
5898 /* The residual sg_ptr always points to the next sg */
5899 sg--;
5900
5901 dataptr = ahd_le32toh(sg->addr)
5902 + (ahd_le32toh(sg->len) & AHD_SG_LEN_MASK)
5903 - resid;
5904 ahd_outb(ahd, HADDR + 4,
5905 (ahd_le32toh(sg->len) & ~AHD_SG_LEN_MASK) >> 24);
5906 }
5907 ahd_outl(ahd, HADDR, dataptr);
5908 ahd_outb(ahd, HCNT + 2, resid >> 16);
5909 ahd_outb(ahd, HCNT + 1, resid >> 8);
5910 ahd_outb(ahd, HCNT, resid);
5911 }
5912
5913 /*
5914 * Handle the effects of issuing a bus device reset message.
5915 */
5916 static void
ahd_handle_devreset(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,u_int lun,cam_status status,char * message,int verbose_level)5917 ahd_handle_devreset(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
5918 u_int lun, cam_status status, char *message,
5919 int verbose_level)
5920 {
5921 #ifdef AHD_TARGET_MODE
5922 struct ahd_tmode_tstate* tstate;
5923 #endif
5924 int found;
5925
5926 found = ahd_abort_scbs(ahd, devinfo->target, devinfo->channel,
5927 lun, SCB_LIST_NULL, devinfo->role,
5928 status);
5929
5930 #ifdef AHD_TARGET_MODE
5931 /*
5932 * Send an immediate notify ccb to all target mord peripheral
5933 * drivers affected by this action.
5934 */
5935 tstate = ahd->enabled_targets[devinfo->our_scsiid];
5936 if (tstate != NULL) {
5937 u_int cur_lun;
5938 u_int max_lun;
5939
5940 if (lun != CAM_LUN_WILDCARD) {
5941 cur_lun = 0;
5942 max_lun = AHD_NUM_LUNS - 1;
5943 } else {
5944 cur_lun = lun;
5945 max_lun = lun;
5946 }
5947 for (;cur_lun <= max_lun; cur_lun++) {
5948 struct ahd_tmode_lstate* lstate;
5949
5950 lstate = tstate->enabled_luns[cur_lun];
5951 if (lstate == NULL)
5952 continue;
5953
5954 ahd_queue_lstate_event(ahd, lstate, devinfo->our_scsiid,
5955 MSG_BUS_DEV_RESET, /*arg*/0);
5956 ahd_send_lstate_events(ahd, lstate);
5957 }
5958 }
5959 #endif
5960
5961 /*
5962 * Go back to async/narrow transfers and renegotiate.
5963 */
5964 ahd_set_width(ahd, devinfo, MSG_EXT_WDTR_BUS_8_BIT,
5965 AHD_TRANS_CUR, /*paused*/TRUE);
5966 ahd_set_syncrate(ahd, devinfo, /*period*/0, /*offset*/0,
5967 /*ppr_options*/0, AHD_TRANS_CUR,
5968 /*paused*/TRUE);
5969
5970 if (status != CAM_SEL_TIMEOUT)
5971 ahd_send_async(ahd, devinfo->channel, devinfo->target,
5972 CAM_LUN_WILDCARD, AC_SENT_BDR);
5973
5974 if (message != NULL && bootverbose)
5975 printk("%s: %s on %c:%d. %d SCBs aborted\n", ahd_name(ahd),
5976 message, devinfo->channel, devinfo->target, found);
5977 }
5978
5979 #ifdef AHD_TARGET_MODE
5980 static void
ahd_setup_target_msgin(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,struct scb * scb)5981 ahd_setup_target_msgin(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
5982 struct scb *scb)
5983 {
5984
5985 /*
5986 * To facilitate adding multiple messages together,
5987 * each routine should increment the index and len
5988 * variables instead of setting them explicitly.
5989 */
5990 ahd->msgout_index = 0;
5991 ahd->msgout_len = 0;
5992
5993 if (scb != NULL && (scb->flags & SCB_AUTO_NEGOTIATE) != 0)
5994 ahd_build_transfer_msg(ahd, devinfo);
5995 else
5996 panic("ahd_intr: AWAITING target message with no message");
5997
5998 ahd->msgout_index = 0;
5999 ahd->msg_type = MSG_TYPE_TARGET_MSGIN;
6000 }
6001 #endif
6002 /**************************** Initialization **********************************/
6003 static u_int
ahd_sglist_size(struct ahd_softc * ahd)6004 ahd_sglist_size(struct ahd_softc *ahd)
6005 {
6006 bus_size_t list_size;
6007
6008 list_size = sizeof(struct ahd_dma_seg) * AHD_NSEG;
6009 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
6010 list_size = sizeof(struct ahd_dma64_seg) * AHD_NSEG;
6011 return (list_size);
6012 }
6013
6014 /*
6015 * Calculate the optimum S/G List allocation size. S/G elements used
6016 * for a given transaction must be physically contiguous. Assume the
6017 * OS will allocate full pages to us, so it doesn't make sense to request
6018 * less than a page.
6019 */
6020 static u_int
ahd_sglist_allocsize(struct ahd_softc * ahd)6021 ahd_sglist_allocsize(struct ahd_softc *ahd)
6022 {
6023 bus_size_t sg_list_increment;
6024 bus_size_t sg_list_size;
6025 bus_size_t max_list_size;
6026 bus_size_t best_list_size;
6027
6028 /* Start out with the minimum required for AHD_NSEG. */
6029 sg_list_increment = ahd_sglist_size(ahd);
6030 sg_list_size = sg_list_increment;
6031
6032 /* Get us as close as possible to a page in size. */
6033 while ((sg_list_size + sg_list_increment) <= PAGE_SIZE)
6034 sg_list_size += sg_list_increment;
6035
6036 /*
6037 * Try to reduce the amount of wastage by allocating
6038 * multiple pages.
6039 */
6040 best_list_size = sg_list_size;
6041 max_list_size = roundup(sg_list_increment, PAGE_SIZE);
6042 if (max_list_size < 4 * PAGE_SIZE)
6043 max_list_size = 4 * PAGE_SIZE;
6044 if (max_list_size > (AHD_SCB_MAX_ALLOC * sg_list_increment))
6045 max_list_size = (AHD_SCB_MAX_ALLOC * sg_list_increment);
6046 while ((sg_list_size + sg_list_increment) <= max_list_size
6047 && (sg_list_size % PAGE_SIZE) != 0) {
6048 bus_size_t new_mod;
6049 bus_size_t best_mod;
6050
6051 sg_list_size += sg_list_increment;
6052 new_mod = sg_list_size % PAGE_SIZE;
6053 best_mod = best_list_size % PAGE_SIZE;
6054 if (new_mod > best_mod || new_mod == 0) {
6055 best_list_size = sg_list_size;
6056 }
6057 }
6058 return (best_list_size);
6059 }
6060
6061 /*
6062 * Allocate a controller structure for a new device
6063 * and perform initial initializion.
6064 */
6065 struct ahd_softc *
ahd_alloc(void * platform_arg,char * name)6066 ahd_alloc(void *platform_arg, char *name)
6067 {
6068 struct ahd_softc *ahd;
6069
6070 #ifndef __FreeBSD__
6071 ahd = kmalloc(sizeof(*ahd), GFP_ATOMIC);
6072 if (!ahd) {
6073 printk("aic7xxx: cannot malloc softc!\n");
6074 kfree(name);
6075 return NULL;
6076 }
6077 #else
6078 ahd = device_get_softc((device_t)platform_arg);
6079 #endif
6080 memset(ahd, 0, sizeof(*ahd));
6081 ahd->seep_config = kmalloc(sizeof(*ahd->seep_config), GFP_ATOMIC);
6082 if (ahd->seep_config == NULL) {
6083 #ifndef __FreeBSD__
6084 kfree(ahd);
6085 #endif
6086 kfree(name);
6087 return (NULL);
6088 }
6089 LIST_INIT(&ahd->pending_scbs);
6090 /* We don't know our unit number until the OSM sets it */
6091 ahd->name = name;
6092 ahd->unit = -1;
6093 ahd->description = NULL;
6094 ahd->bus_description = NULL;
6095 ahd->channel = 'A';
6096 ahd->chip = AHD_NONE;
6097 ahd->features = AHD_FENONE;
6098 ahd->bugs = AHD_BUGNONE;
6099 ahd->flags = AHD_SPCHK_ENB_A|AHD_RESET_BUS_A|AHD_TERM_ENB_A
6100 | AHD_EXTENDED_TRANS_A|AHD_STPWLEVEL_A;
6101 timer_setup(&ahd->stat_timer, ahd_stat_timer, 0);
6102 ahd->int_coalescing_timer = AHD_INT_COALESCING_TIMER_DEFAULT;
6103 ahd->int_coalescing_maxcmds = AHD_INT_COALESCING_MAXCMDS_DEFAULT;
6104 ahd->int_coalescing_mincmds = AHD_INT_COALESCING_MINCMDS_DEFAULT;
6105 ahd->int_coalescing_threshold = AHD_INT_COALESCING_THRESHOLD_DEFAULT;
6106 ahd->int_coalescing_stop_threshold =
6107 AHD_INT_COALESCING_STOP_THRESHOLD_DEFAULT;
6108
6109 #ifdef AHD_DEBUG
6110 if ((ahd_debug & AHD_SHOW_MEMORY) != 0) {
6111 printk("%s: scb size = 0x%x, hscb size = 0x%x\n",
6112 ahd_name(ahd), (u_int)sizeof(struct scb),
6113 (u_int)sizeof(struct hardware_scb));
6114 }
6115 #endif
6116 if (ahd_platform_alloc(ahd, platform_arg) != 0) {
6117 ahd_free(ahd);
6118 ahd = NULL;
6119 }
6120 return (ahd);
6121 }
6122
6123 int
ahd_softc_init(struct ahd_softc * ahd)6124 ahd_softc_init(struct ahd_softc *ahd)
6125 {
6126
6127 ahd->unpause = 0;
6128 ahd->pause = PAUSE;
6129 return (0);
6130 }
6131
6132 void
ahd_set_unit(struct ahd_softc * ahd,int unit)6133 ahd_set_unit(struct ahd_softc *ahd, int unit)
6134 {
6135 ahd->unit = unit;
6136 }
6137
6138 void
ahd_set_name(struct ahd_softc * ahd,char * name)6139 ahd_set_name(struct ahd_softc *ahd, char *name)
6140 {
6141 if (ahd->name != NULL)
6142 kfree(ahd->name);
6143 ahd->name = name;
6144 }
6145
6146 void
ahd_free(struct ahd_softc * ahd)6147 ahd_free(struct ahd_softc *ahd)
6148 {
6149 int i;
6150
6151 switch (ahd->init_level) {
6152 default:
6153 case 5:
6154 ahd_shutdown(ahd);
6155 /* FALLTHROUGH */
6156 case 4:
6157 ahd_dmamap_unload(ahd, ahd->shared_data_dmat,
6158 ahd->shared_data_map.dmamap);
6159 /* FALLTHROUGH */
6160 case 3:
6161 ahd_dmamem_free(ahd, ahd->shared_data_dmat, ahd->qoutfifo,
6162 ahd->shared_data_map.dmamap);
6163 ahd_dmamap_destroy(ahd, ahd->shared_data_dmat,
6164 ahd->shared_data_map.dmamap);
6165 /* FALLTHROUGH */
6166 case 2:
6167 ahd_dma_tag_destroy(ahd, ahd->shared_data_dmat);
6168 case 1:
6169 break;
6170 case 0:
6171 break;
6172 }
6173
6174 ahd_platform_free(ahd);
6175 ahd_fini_scbdata(ahd);
6176 for (i = 0; i < AHD_NUM_TARGETS; i++) {
6177 struct ahd_tmode_tstate *tstate;
6178
6179 tstate = ahd->enabled_targets[i];
6180 if (tstate != NULL) {
6181 #ifdef AHD_TARGET_MODE
6182 int j;
6183
6184 for (j = 0; j < AHD_NUM_LUNS; j++) {
6185 struct ahd_tmode_lstate *lstate;
6186
6187 lstate = tstate->enabled_luns[j];
6188 if (lstate != NULL) {
6189 xpt_free_path(lstate->path);
6190 kfree(lstate);
6191 }
6192 }
6193 #endif
6194 kfree(tstate);
6195 }
6196 }
6197 #ifdef AHD_TARGET_MODE
6198 if (ahd->black_hole != NULL) {
6199 xpt_free_path(ahd->black_hole->path);
6200 kfree(ahd->black_hole);
6201 }
6202 #endif
6203 if (ahd->name != NULL)
6204 kfree(ahd->name);
6205 if (ahd->seep_config != NULL)
6206 kfree(ahd->seep_config);
6207 if (ahd->saved_stack != NULL)
6208 kfree(ahd->saved_stack);
6209 #ifndef __FreeBSD__
6210 kfree(ahd);
6211 #endif
6212 return;
6213 }
6214
6215 static void
ahd_shutdown(void * arg)6216 ahd_shutdown(void *arg)
6217 {
6218 struct ahd_softc *ahd;
6219
6220 ahd = (struct ahd_softc *)arg;
6221
6222 /*
6223 * Stop periodic timer callbacks.
6224 */
6225 del_timer_sync(&ahd->stat_timer);
6226
6227 /* This will reset most registers to 0, but not all */
6228 ahd_reset(ahd, /*reinit*/FALSE);
6229 }
6230
6231 /*
6232 * Reset the controller and record some information about it
6233 * that is only available just after a reset. If "reinit" is
6234 * non-zero, this reset occurred after initial configuration
6235 * and the caller requests that the chip be fully reinitialized
6236 * to a runable state. Chip interrupts are *not* enabled after
6237 * a reinitialization. The caller must enable interrupts via
6238 * ahd_intr_enable().
6239 */
6240 int
ahd_reset(struct ahd_softc * ahd,int reinit)6241 ahd_reset(struct ahd_softc *ahd, int reinit)
6242 {
6243 u_int sxfrctl1;
6244 int wait;
6245 uint32_t cmd;
6246
6247 /*
6248 * Preserve the value of the SXFRCTL1 register for all channels.
6249 * It contains settings that affect termination and we don't want
6250 * to disturb the integrity of the bus.
6251 */
6252 ahd_pause(ahd);
6253 ahd_update_modes(ahd);
6254 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
6255 sxfrctl1 = ahd_inb(ahd, SXFRCTL1);
6256
6257 cmd = ahd_pci_read_config(ahd->dev_softc, PCIR_COMMAND, /*bytes*/2);
6258 if ((ahd->bugs & AHD_PCIX_CHIPRST_BUG) != 0) {
6259 uint32_t mod_cmd;
6260
6261 /*
6262 * A4 Razor #632
6263 * During the assertion of CHIPRST, the chip
6264 * does not disable its parity logic prior to
6265 * the start of the reset. This may cause a
6266 * parity error to be detected and thus a
6267 * spurious SERR or PERR assertion. Disable
6268 * PERR and SERR responses during the CHIPRST.
6269 */
6270 mod_cmd = cmd & ~(PCIM_CMD_PERRESPEN|PCIM_CMD_SERRESPEN);
6271 ahd_pci_write_config(ahd->dev_softc, PCIR_COMMAND,
6272 mod_cmd, /*bytes*/2);
6273 }
6274 ahd_outb(ahd, HCNTRL, CHIPRST | ahd->pause);
6275
6276 /*
6277 * Ensure that the reset has finished. We delay 1000us
6278 * prior to reading the register to make sure the chip
6279 * has sufficiently completed its reset to handle register
6280 * accesses.
6281 */
6282 wait = 1000;
6283 do {
6284 ahd_delay(1000);
6285 } while (--wait && !(ahd_inb(ahd, HCNTRL) & CHIPRSTACK));
6286
6287 if (wait == 0) {
6288 printk("%s: WARNING - Failed chip reset! "
6289 "Trying to initialize anyway.\n", ahd_name(ahd));
6290 }
6291 ahd_outb(ahd, HCNTRL, ahd->pause);
6292
6293 if ((ahd->bugs & AHD_PCIX_CHIPRST_BUG) != 0) {
6294 /*
6295 * Clear any latched PCI error status and restore
6296 * previous SERR and PERR response enables.
6297 */
6298 ahd_pci_write_config(ahd->dev_softc, PCIR_STATUS + 1,
6299 0xFF, /*bytes*/1);
6300 ahd_pci_write_config(ahd->dev_softc, PCIR_COMMAND,
6301 cmd, /*bytes*/2);
6302 }
6303
6304 /*
6305 * Mode should be SCSI after a chip reset, but lets
6306 * set it just to be safe. We touch the MODE_PTR
6307 * register directly so as to bypass the lazy update
6308 * code in ahd_set_modes().
6309 */
6310 ahd_known_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
6311 ahd_outb(ahd, MODE_PTR,
6312 ahd_build_mode_state(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI));
6313
6314 /*
6315 * Restore SXFRCTL1.
6316 *
6317 * We must always initialize STPWEN to 1 before we
6318 * restore the saved values. STPWEN is initialized
6319 * to a tri-state condition which can only be cleared
6320 * by turning it on.
6321 */
6322 ahd_outb(ahd, SXFRCTL1, sxfrctl1|STPWEN);
6323 ahd_outb(ahd, SXFRCTL1, sxfrctl1);
6324
6325 /* Determine chip configuration */
6326 ahd->features &= ~AHD_WIDE;
6327 if ((ahd_inb(ahd, SBLKCTL) & SELWIDE) != 0)
6328 ahd->features |= AHD_WIDE;
6329
6330 /*
6331 * If a recovery action has forced a chip reset,
6332 * re-initialize the chip to our liking.
6333 */
6334 if (reinit != 0)
6335 ahd_chip_init(ahd);
6336
6337 return (0);
6338 }
6339
6340 /*
6341 * Determine the number of SCBs available on the controller
6342 */
6343 static int
ahd_probe_scbs(struct ahd_softc * ahd)6344 ahd_probe_scbs(struct ahd_softc *ahd) {
6345 int i;
6346
6347 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
6348 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
6349 for (i = 0; i < AHD_SCB_MAX; i++) {
6350 int j;
6351
6352 ahd_set_scbptr(ahd, i);
6353 ahd_outw(ahd, SCB_BASE, i);
6354 for (j = 2; j < 64; j++)
6355 ahd_outb(ahd, SCB_BASE+j, 0);
6356 /* Start out life as unallocated (needing an abort) */
6357 ahd_outb(ahd, SCB_CONTROL, MK_MESSAGE);
6358 if (ahd_inw_scbram(ahd, SCB_BASE) != i)
6359 break;
6360 ahd_set_scbptr(ahd, 0);
6361 if (ahd_inw_scbram(ahd, SCB_BASE) != 0)
6362 break;
6363 }
6364 return (i);
6365 }
6366
6367 static void
ahd_dmamap_cb(void * arg,bus_dma_segment_t * segs,int nseg,int error)6368 ahd_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
6369 {
6370 dma_addr_t *baddr;
6371
6372 baddr = (dma_addr_t *)arg;
6373 *baddr = segs->ds_addr;
6374 }
6375
6376 static void
ahd_initialize_hscbs(struct ahd_softc * ahd)6377 ahd_initialize_hscbs(struct ahd_softc *ahd)
6378 {
6379 int i;
6380
6381 for (i = 0; i < ahd->scb_data.maxhscbs; i++) {
6382 ahd_set_scbptr(ahd, i);
6383
6384 /* Clear the control byte. */
6385 ahd_outb(ahd, SCB_CONTROL, 0);
6386
6387 /* Set the next pointer */
6388 ahd_outw(ahd, SCB_NEXT, SCB_LIST_NULL);
6389 }
6390 }
6391
6392 static int
ahd_init_scbdata(struct ahd_softc * ahd)6393 ahd_init_scbdata(struct ahd_softc *ahd)
6394 {
6395 struct scb_data *scb_data;
6396 int i;
6397
6398 scb_data = &ahd->scb_data;
6399 TAILQ_INIT(&scb_data->free_scbs);
6400 for (i = 0; i < AHD_NUM_TARGETS * AHD_NUM_LUNS_NONPKT; i++)
6401 LIST_INIT(&scb_data->free_scb_lists[i]);
6402 LIST_INIT(&scb_data->any_dev_free_scb_list);
6403 SLIST_INIT(&scb_data->hscb_maps);
6404 SLIST_INIT(&scb_data->sg_maps);
6405 SLIST_INIT(&scb_data->sense_maps);
6406
6407 /* Determine the number of hardware SCBs and initialize them */
6408 scb_data->maxhscbs = ahd_probe_scbs(ahd);
6409 if (scb_data->maxhscbs == 0) {
6410 printk("%s: No SCB space found\n", ahd_name(ahd));
6411 return (ENXIO);
6412 }
6413
6414 ahd_initialize_hscbs(ahd);
6415
6416 /*
6417 * Create our DMA tags. These tags define the kinds of device
6418 * accessible memory allocations and memory mappings we will
6419 * need to perform during normal operation.
6420 *
6421 * Unless we need to further restrict the allocation, we rely
6422 * on the restrictions of the parent dmat, hence the common
6423 * use of MAXADDR and MAXSIZE.
6424 */
6425
6426 /* DMA tag for our hardware scb structures */
6427 if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
6428 /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
6429 /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
6430 /*highaddr*/BUS_SPACE_MAXADDR,
6431 /*filter*/NULL, /*filterarg*/NULL,
6432 PAGE_SIZE, /*nsegments*/1,
6433 /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
6434 /*flags*/0, &scb_data->hscb_dmat) != 0) {
6435 goto error_exit;
6436 }
6437
6438 scb_data->init_level++;
6439
6440 /* DMA tag for our S/G structures. */
6441 if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/8,
6442 /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
6443 /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
6444 /*highaddr*/BUS_SPACE_MAXADDR,
6445 /*filter*/NULL, /*filterarg*/NULL,
6446 ahd_sglist_allocsize(ahd), /*nsegments*/1,
6447 /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
6448 /*flags*/0, &scb_data->sg_dmat) != 0) {
6449 goto error_exit;
6450 }
6451 #ifdef AHD_DEBUG
6452 if ((ahd_debug & AHD_SHOW_MEMORY) != 0)
6453 printk("%s: ahd_sglist_allocsize = 0x%x\n", ahd_name(ahd),
6454 ahd_sglist_allocsize(ahd));
6455 #endif
6456
6457 scb_data->init_level++;
6458
6459 /* DMA tag for our sense buffers. We allocate in page sized chunks */
6460 if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
6461 /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
6462 /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
6463 /*highaddr*/BUS_SPACE_MAXADDR,
6464 /*filter*/NULL, /*filterarg*/NULL,
6465 PAGE_SIZE, /*nsegments*/1,
6466 /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
6467 /*flags*/0, &scb_data->sense_dmat) != 0) {
6468 goto error_exit;
6469 }
6470
6471 scb_data->init_level++;
6472
6473 /* Perform initial CCB allocation */
6474 ahd_alloc_scbs(ahd);
6475
6476 if (scb_data->numscbs == 0) {
6477 printk("%s: ahd_init_scbdata - "
6478 "Unable to allocate initial scbs\n",
6479 ahd_name(ahd));
6480 goto error_exit;
6481 }
6482
6483 /*
6484 * Note that we were successful
6485 */
6486 return (0);
6487
6488 error_exit:
6489
6490 return (ENOMEM);
6491 }
6492
6493 static struct scb *
ahd_find_scb_by_tag(struct ahd_softc * ahd,u_int tag)6494 ahd_find_scb_by_tag(struct ahd_softc *ahd, u_int tag)
6495 {
6496 struct scb *scb;
6497
6498 /*
6499 * Look on the pending list.
6500 */
6501 LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
6502 if (SCB_GET_TAG(scb) == tag)
6503 return (scb);
6504 }
6505
6506 /*
6507 * Then on all of the collision free lists.
6508 */
6509 TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
6510 struct scb *list_scb;
6511
6512 list_scb = scb;
6513 do {
6514 if (SCB_GET_TAG(list_scb) == tag)
6515 return (list_scb);
6516 list_scb = LIST_NEXT(list_scb, collision_links);
6517 } while (list_scb);
6518 }
6519
6520 /*
6521 * And finally on the generic free list.
6522 */
6523 LIST_FOREACH(scb, &ahd->scb_data.any_dev_free_scb_list, links.le) {
6524 if (SCB_GET_TAG(scb) == tag)
6525 return (scb);
6526 }
6527
6528 return (NULL);
6529 }
6530
6531 static void
ahd_fini_scbdata(struct ahd_softc * ahd)6532 ahd_fini_scbdata(struct ahd_softc *ahd)
6533 {
6534 struct scb_data *scb_data;
6535
6536 scb_data = &ahd->scb_data;
6537 if (scb_data == NULL)
6538 return;
6539
6540 switch (scb_data->init_level) {
6541 default:
6542 case 7:
6543 {
6544 struct map_node *sns_map;
6545
6546 while ((sns_map = SLIST_FIRST(&scb_data->sense_maps)) != NULL) {
6547 SLIST_REMOVE_HEAD(&scb_data->sense_maps, links);
6548 ahd_dmamap_unload(ahd, scb_data->sense_dmat,
6549 sns_map->dmamap);
6550 ahd_dmamem_free(ahd, scb_data->sense_dmat,
6551 sns_map->vaddr, sns_map->dmamap);
6552 kfree(sns_map);
6553 }
6554 ahd_dma_tag_destroy(ahd, scb_data->sense_dmat);
6555 }
6556 /* fall through */
6557 case 6:
6558 {
6559 struct map_node *sg_map;
6560
6561 while ((sg_map = SLIST_FIRST(&scb_data->sg_maps)) != NULL) {
6562 SLIST_REMOVE_HEAD(&scb_data->sg_maps, links);
6563 ahd_dmamap_unload(ahd, scb_data->sg_dmat,
6564 sg_map->dmamap);
6565 ahd_dmamem_free(ahd, scb_data->sg_dmat,
6566 sg_map->vaddr, sg_map->dmamap);
6567 kfree(sg_map);
6568 }
6569 ahd_dma_tag_destroy(ahd, scb_data->sg_dmat);
6570 }
6571 /* fall through */
6572 case 5:
6573 {
6574 struct map_node *hscb_map;
6575
6576 while ((hscb_map = SLIST_FIRST(&scb_data->hscb_maps)) != NULL) {
6577 SLIST_REMOVE_HEAD(&scb_data->hscb_maps, links);
6578 ahd_dmamap_unload(ahd, scb_data->hscb_dmat,
6579 hscb_map->dmamap);
6580 ahd_dmamem_free(ahd, scb_data->hscb_dmat,
6581 hscb_map->vaddr, hscb_map->dmamap);
6582 kfree(hscb_map);
6583 }
6584 ahd_dma_tag_destroy(ahd, scb_data->hscb_dmat);
6585 /* FALLTHROUGH */
6586 }
6587 case 4:
6588 case 3:
6589 case 2:
6590 case 1:
6591 case 0:
6592 break;
6593 }
6594 }
6595
6596 /*
6597 * DSP filter Bypass must be enabled until the first selection
6598 * after a change in bus mode (Razor #491 and #493).
6599 */
6600 static void
ahd_setup_iocell_workaround(struct ahd_softc * ahd)6601 ahd_setup_iocell_workaround(struct ahd_softc *ahd)
6602 {
6603 ahd_mode_state saved_modes;
6604
6605 saved_modes = ahd_save_modes(ahd);
6606 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
6607 ahd_outb(ahd, DSPDATACTL, ahd_inb(ahd, DSPDATACTL)
6608 | BYPASSENAB | RCVROFFSTDIS | XMITOFFSTDIS);
6609 ahd_outb(ahd, SIMODE0, ahd_inb(ahd, SIMODE0) | (ENSELDO|ENSELDI));
6610 #ifdef AHD_DEBUG
6611 if ((ahd_debug & AHD_SHOW_MISC) != 0)
6612 printk("%s: Setting up iocell workaround\n", ahd_name(ahd));
6613 #endif
6614 ahd_restore_modes(ahd, saved_modes);
6615 ahd->flags &= ~AHD_HAD_FIRST_SEL;
6616 }
6617
6618 static void
ahd_iocell_first_selection(struct ahd_softc * ahd)6619 ahd_iocell_first_selection(struct ahd_softc *ahd)
6620 {
6621 ahd_mode_state saved_modes;
6622 u_int sblkctl;
6623
6624 if ((ahd->flags & AHD_HAD_FIRST_SEL) != 0)
6625 return;
6626 saved_modes = ahd_save_modes(ahd);
6627 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
6628 sblkctl = ahd_inb(ahd, SBLKCTL);
6629 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
6630 #ifdef AHD_DEBUG
6631 if ((ahd_debug & AHD_SHOW_MISC) != 0)
6632 printk("%s: iocell first selection\n", ahd_name(ahd));
6633 #endif
6634 if ((sblkctl & ENAB40) != 0) {
6635 ahd_outb(ahd, DSPDATACTL,
6636 ahd_inb(ahd, DSPDATACTL) & ~BYPASSENAB);
6637 #ifdef AHD_DEBUG
6638 if ((ahd_debug & AHD_SHOW_MISC) != 0)
6639 printk("%s: BYPASS now disabled\n", ahd_name(ahd));
6640 #endif
6641 }
6642 ahd_outb(ahd, SIMODE0, ahd_inb(ahd, SIMODE0) & ~(ENSELDO|ENSELDI));
6643 ahd_outb(ahd, CLRINT, CLRSCSIINT);
6644 ahd_restore_modes(ahd, saved_modes);
6645 ahd->flags |= AHD_HAD_FIRST_SEL;
6646 }
6647
6648 /*************************** SCB Management ***********************************/
6649 static void
ahd_add_col_list(struct ahd_softc * ahd,struct scb * scb,u_int col_idx)6650 ahd_add_col_list(struct ahd_softc *ahd, struct scb *scb, u_int col_idx)
6651 {
6652 struct scb_list *free_list;
6653 struct scb_tailq *free_tailq;
6654 struct scb *first_scb;
6655
6656 scb->flags |= SCB_ON_COL_LIST;
6657 AHD_SET_SCB_COL_IDX(scb, col_idx);
6658 free_list = &ahd->scb_data.free_scb_lists[col_idx];
6659 free_tailq = &ahd->scb_data.free_scbs;
6660 first_scb = LIST_FIRST(free_list);
6661 if (first_scb != NULL) {
6662 LIST_INSERT_AFTER(first_scb, scb, collision_links);
6663 } else {
6664 LIST_INSERT_HEAD(free_list, scb, collision_links);
6665 TAILQ_INSERT_TAIL(free_tailq, scb, links.tqe);
6666 }
6667 }
6668
6669 static void
ahd_rem_col_list(struct ahd_softc * ahd,struct scb * scb)6670 ahd_rem_col_list(struct ahd_softc *ahd, struct scb *scb)
6671 {
6672 struct scb_list *free_list;
6673 struct scb_tailq *free_tailq;
6674 struct scb *first_scb;
6675 u_int col_idx;
6676
6677 scb->flags &= ~SCB_ON_COL_LIST;
6678 col_idx = AHD_GET_SCB_COL_IDX(ahd, scb);
6679 free_list = &ahd->scb_data.free_scb_lists[col_idx];
6680 free_tailq = &ahd->scb_data.free_scbs;
6681 first_scb = LIST_FIRST(free_list);
6682 if (first_scb == scb) {
6683 struct scb *next_scb;
6684
6685 /*
6686 * Maintain order in the collision free
6687 * lists for fairness if this device has
6688 * other colliding tags active.
6689 */
6690 next_scb = LIST_NEXT(scb, collision_links);
6691 if (next_scb != NULL) {
6692 TAILQ_INSERT_AFTER(free_tailq, scb,
6693 next_scb, links.tqe);
6694 }
6695 TAILQ_REMOVE(free_tailq, scb, links.tqe);
6696 }
6697 LIST_REMOVE(scb, collision_links);
6698 }
6699
6700 /*
6701 * Get a free scb. If there are none, see if we can allocate a new SCB.
6702 */
6703 struct scb *
ahd_get_scb(struct ahd_softc * ahd,u_int col_idx)6704 ahd_get_scb(struct ahd_softc *ahd, u_int col_idx)
6705 {
6706 struct scb *scb;
6707 int tries;
6708
6709 tries = 0;
6710 look_again:
6711 TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
6712 if (AHD_GET_SCB_COL_IDX(ahd, scb) != col_idx) {
6713 ahd_rem_col_list(ahd, scb);
6714 goto found;
6715 }
6716 }
6717 if ((scb = LIST_FIRST(&ahd->scb_data.any_dev_free_scb_list)) == NULL) {
6718
6719 if (tries++ != 0)
6720 return (NULL);
6721 ahd_alloc_scbs(ahd);
6722 goto look_again;
6723 }
6724 LIST_REMOVE(scb, links.le);
6725 if (col_idx != AHD_NEVER_COL_IDX
6726 && (scb->col_scb != NULL)
6727 && (scb->col_scb->flags & SCB_ACTIVE) == 0) {
6728 LIST_REMOVE(scb->col_scb, links.le);
6729 ahd_add_col_list(ahd, scb->col_scb, col_idx);
6730 }
6731 found:
6732 scb->flags |= SCB_ACTIVE;
6733 return (scb);
6734 }
6735
6736 /*
6737 * Return an SCB resource to the free list.
6738 */
6739 void
ahd_free_scb(struct ahd_softc * ahd,struct scb * scb)6740 ahd_free_scb(struct ahd_softc *ahd, struct scb *scb)
6741 {
6742 /* Clean up for the next user */
6743 scb->flags = SCB_FLAG_NONE;
6744 scb->hscb->control = 0;
6745 ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = NULL;
6746
6747 if (scb->col_scb == NULL) {
6748
6749 /*
6750 * No collision possible. Just free normally.
6751 */
6752 LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6753 scb, links.le);
6754 } else if ((scb->col_scb->flags & SCB_ON_COL_LIST) != 0) {
6755
6756 /*
6757 * The SCB we might have collided with is on
6758 * a free collision list. Put both SCBs on
6759 * the generic list.
6760 */
6761 ahd_rem_col_list(ahd, scb->col_scb);
6762 LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6763 scb, links.le);
6764 LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6765 scb->col_scb, links.le);
6766 } else if ((scb->col_scb->flags
6767 & (SCB_PACKETIZED|SCB_ACTIVE)) == SCB_ACTIVE
6768 && (scb->col_scb->hscb->control & TAG_ENB) != 0) {
6769
6770 /*
6771 * The SCB we might collide with on the next allocation
6772 * is still active in a non-packetized, tagged, context.
6773 * Put us on the SCB collision list.
6774 */
6775 ahd_add_col_list(ahd, scb,
6776 AHD_GET_SCB_COL_IDX(ahd, scb->col_scb));
6777 } else {
6778 /*
6779 * The SCB we might collide with on the next allocation
6780 * is either active in a packetized context, or free.
6781 * Since we can't collide, put this SCB on the generic
6782 * free list.
6783 */
6784 LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6785 scb, links.le);
6786 }
6787
6788 ahd_platform_scb_free(ahd, scb);
6789 }
6790
6791 static void
ahd_alloc_scbs(struct ahd_softc * ahd)6792 ahd_alloc_scbs(struct ahd_softc *ahd)
6793 {
6794 struct scb_data *scb_data;
6795 struct scb *next_scb;
6796 struct hardware_scb *hscb;
6797 struct map_node *hscb_map;
6798 struct map_node *sg_map;
6799 struct map_node *sense_map;
6800 uint8_t *segs;
6801 uint8_t *sense_data;
6802 dma_addr_t hscb_busaddr;
6803 dma_addr_t sg_busaddr;
6804 dma_addr_t sense_busaddr;
6805 int newcount;
6806 int i;
6807
6808 scb_data = &ahd->scb_data;
6809 if (scb_data->numscbs >= AHD_SCB_MAX_ALLOC)
6810 /* Can't allocate any more */
6811 return;
6812
6813 if (scb_data->scbs_left != 0) {
6814 int offset;
6815
6816 offset = (PAGE_SIZE / sizeof(*hscb)) - scb_data->scbs_left;
6817 hscb_map = SLIST_FIRST(&scb_data->hscb_maps);
6818 hscb = &((struct hardware_scb *)hscb_map->vaddr)[offset];
6819 hscb_busaddr = hscb_map->physaddr + (offset * sizeof(*hscb));
6820 } else {
6821 hscb_map = kmalloc(sizeof(*hscb_map), GFP_ATOMIC);
6822
6823 if (hscb_map == NULL)
6824 return;
6825
6826 /* Allocate the next batch of hardware SCBs */
6827 if (ahd_dmamem_alloc(ahd, scb_data->hscb_dmat,
6828 (void **)&hscb_map->vaddr,
6829 BUS_DMA_NOWAIT, &hscb_map->dmamap) != 0) {
6830 kfree(hscb_map);
6831 return;
6832 }
6833
6834 SLIST_INSERT_HEAD(&scb_data->hscb_maps, hscb_map, links);
6835
6836 ahd_dmamap_load(ahd, scb_data->hscb_dmat, hscb_map->dmamap,
6837 hscb_map->vaddr, PAGE_SIZE, ahd_dmamap_cb,
6838 &hscb_map->physaddr, /*flags*/0);
6839
6840 hscb = (struct hardware_scb *)hscb_map->vaddr;
6841 hscb_busaddr = hscb_map->physaddr;
6842 scb_data->scbs_left = PAGE_SIZE / sizeof(*hscb);
6843 }
6844
6845 if (scb_data->sgs_left != 0) {
6846 int offset;
6847
6848 offset = ((ahd_sglist_allocsize(ahd) / ahd_sglist_size(ahd))
6849 - scb_data->sgs_left) * ahd_sglist_size(ahd);
6850 sg_map = SLIST_FIRST(&scb_data->sg_maps);
6851 segs = sg_map->vaddr + offset;
6852 sg_busaddr = sg_map->physaddr + offset;
6853 } else {
6854 sg_map = kmalloc(sizeof(*sg_map), GFP_ATOMIC);
6855
6856 if (sg_map == NULL)
6857 return;
6858
6859 /* Allocate the next batch of S/G lists */
6860 if (ahd_dmamem_alloc(ahd, scb_data->sg_dmat,
6861 (void **)&sg_map->vaddr,
6862 BUS_DMA_NOWAIT, &sg_map->dmamap) != 0) {
6863 kfree(sg_map);
6864 return;
6865 }
6866
6867 SLIST_INSERT_HEAD(&scb_data->sg_maps, sg_map, links);
6868
6869 ahd_dmamap_load(ahd, scb_data->sg_dmat, sg_map->dmamap,
6870 sg_map->vaddr, ahd_sglist_allocsize(ahd),
6871 ahd_dmamap_cb, &sg_map->physaddr, /*flags*/0);
6872
6873 segs = sg_map->vaddr;
6874 sg_busaddr = sg_map->physaddr;
6875 scb_data->sgs_left =
6876 ahd_sglist_allocsize(ahd) / ahd_sglist_size(ahd);
6877 #ifdef AHD_DEBUG
6878 if (ahd_debug & AHD_SHOW_MEMORY)
6879 printk("Mapped SG data\n");
6880 #endif
6881 }
6882
6883 if (scb_data->sense_left != 0) {
6884 int offset;
6885
6886 offset = PAGE_SIZE - (AHD_SENSE_BUFSIZE * scb_data->sense_left);
6887 sense_map = SLIST_FIRST(&scb_data->sense_maps);
6888 sense_data = sense_map->vaddr + offset;
6889 sense_busaddr = sense_map->physaddr + offset;
6890 } else {
6891 sense_map = kmalloc(sizeof(*sense_map), GFP_ATOMIC);
6892
6893 if (sense_map == NULL)
6894 return;
6895
6896 /* Allocate the next batch of sense buffers */
6897 if (ahd_dmamem_alloc(ahd, scb_data->sense_dmat,
6898 (void **)&sense_map->vaddr,
6899 BUS_DMA_NOWAIT, &sense_map->dmamap) != 0) {
6900 kfree(sense_map);
6901 return;
6902 }
6903
6904 SLIST_INSERT_HEAD(&scb_data->sense_maps, sense_map, links);
6905
6906 ahd_dmamap_load(ahd, scb_data->sense_dmat, sense_map->dmamap,
6907 sense_map->vaddr, PAGE_SIZE, ahd_dmamap_cb,
6908 &sense_map->physaddr, /*flags*/0);
6909
6910 sense_data = sense_map->vaddr;
6911 sense_busaddr = sense_map->physaddr;
6912 scb_data->sense_left = PAGE_SIZE / AHD_SENSE_BUFSIZE;
6913 #ifdef AHD_DEBUG
6914 if (ahd_debug & AHD_SHOW_MEMORY)
6915 printk("Mapped sense data\n");
6916 #endif
6917 }
6918
6919 newcount = min(scb_data->sense_left, scb_data->scbs_left);
6920 newcount = min(newcount, scb_data->sgs_left);
6921 newcount = min(newcount, (AHD_SCB_MAX_ALLOC - scb_data->numscbs));
6922 for (i = 0; i < newcount; i++) {
6923 struct scb_platform_data *pdata;
6924 u_int col_tag;
6925
6926 next_scb = kmalloc(sizeof(*next_scb), GFP_ATOMIC);
6927 if (next_scb == NULL)
6928 break;
6929
6930 pdata = kmalloc(sizeof(*pdata), GFP_ATOMIC);
6931 if (pdata == NULL) {
6932 kfree(next_scb);
6933 break;
6934 }
6935 next_scb->platform_data = pdata;
6936 next_scb->hscb_map = hscb_map;
6937 next_scb->sg_map = sg_map;
6938 next_scb->sense_map = sense_map;
6939 next_scb->sg_list = segs;
6940 next_scb->sense_data = sense_data;
6941 next_scb->sense_busaddr = sense_busaddr;
6942 memset(hscb, 0, sizeof(*hscb));
6943 next_scb->hscb = hscb;
6944 hscb->hscb_busaddr = ahd_htole32(hscb_busaddr);
6945
6946 /*
6947 * The sequencer always starts with the second entry.
6948 * The first entry is embedded in the scb.
6949 */
6950 next_scb->sg_list_busaddr = sg_busaddr;
6951 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
6952 next_scb->sg_list_busaddr
6953 += sizeof(struct ahd_dma64_seg);
6954 else
6955 next_scb->sg_list_busaddr += sizeof(struct ahd_dma_seg);
6956 next_scb->ahd_softc = ahd;
6957 next_scb->flags = SCB_FLAG_NONE;
6958 next_scb->hscb->tag = ahd_htole16(scb_data->numscbs);
6959 col_tag = scb_data->numscbs ^ 0x100;
6960 next_scb->col_scb = ahd_find_scb_by_tag(ahd, col_tag);
6961 if (next_scb->col_scb != NULL)
6962 next_scb->col_scb->col_scb = next_scb;
6963 ahd_free_scb(ahd, next_scb);
6964 hscb++;
6965 hscb_busaddr += sizeof(*hscb);
6966 segs += ahd_sglist_size(ahd);
6967 sg_busaddr += ahd_sglist_size(ahd);
6968 sense_data += AHD_SENSE_BUFSIZE;
6969 sense_busaddr += AHD_SENSE_BUFSIZE;
6970 scb_data->numscbs++;
6971 scb_data->sense_left--;
6972 scb_data->scbs_left--;
6973 scb_data->sgs_left--;
6974 }
6975 }
6976
6977 void
ahd_controller_info(struct ahd_softc * ahd,char * buf)6978 ahd_controller_info(struct ahd_softc *ahd, char *buf)
6979 {
6980 const char *speed;
6981 const char *type;
6982 int len;
6983
6984 len = sprintf(buf, "%s: ", ahd_chip_names[ahd->chip & AHD_CHIPID_MASK]);
6985 buf += len;
6986
6987 speed = "Ultra320 ";
6988 if ((ahd->features & AHD_WIDE) != 0) {
6989 type = "Wide ";
6990 } else {
6991 type = "Single ";
6992 }
6993 len = sprintf(buf, "%s%sChannel %c, SCSI Id=%d, ",
6994 speed, type, ahd->channel, ahd->our_id);
6995 buf += len;
6996
6997 sprintf(buf, "%s, %d SCBs", ahd->bus_description,
6998 ahd->scb_data.maxhscbs);
6999 }
7000
7001 static const char *channel_strings[] = {
7002 "Primary Low",
7003 "Primary High",
7004 "Secondary Low",
7005 "Secondary High"
7006 };
7007
7008 static const char *termstat_strings[] = {
7009 "Terminated Correctly",
7010 "Over Terminated",
7011 "Under Terminated",
7012 "Not Configured"
7013 };
7014
7015 /***************************** Timer Facilities *******************************/
7016 static void
ahd_timer_reset(struct timer_list * timer,int usec)7017 ahd_timer_reset(struct timer_list *timer, int usec)
7018 {
7019 del_timer(timer);
7020 timer->expires = jiffies + (usec * HZ)/1000000;
7021 add_timer(timer);
7022 }
7023
7024 /*
7025 * Start the board, ready for normal operation
7026 */
7027 int
ahd_init(struct ahd_softc * ahd)7028 ahd_init(struct ahd_softc *ahd)
7029 {
7030 uint8_t *next_vaddr;
7031 dma_addr_t next_baddr;
7032 size_t driver_data_size;
7033 int i;
7034 int error;
7035 u_int warn_user;
7036 uint8_t current_sensing;
7037 uint8_t fstat;
7038
7039 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
7040
7041 ahd->stack_size = ahd_probe_stack_size(ahd);
7042 ahd->saved_stack = kmalloc_array(ahd->stack_size, sizeof(uint16_t),
7043 GFP_ATOMIC);
7044 if (ahd->saved_stack == NULL)
7045 return (ENOMEM);
7046
7047 /*
7048 * Verify that the compiler hasn't over-aggressively
7049 * padded important structures.
7050 */
7051 if (sizeof(struct hardware_scb) != 64)
7052 panic("Hardware SCB size is incorrect");
7053
7054 #ifdef AHD_DEBUG
7055 if ((ahd_debug & AHD_DEBUG_SEQUENCER) != 0)
7056 ahd->flags |= AHD_SEQUENCER_DEBUG;
7057 #endif
7058
7059 /*
7060 * Default to allowing initiator operations.
7061 */
7062 ahd->flags |= AHD_INITIATORROLE;
7063
7064 /*
7065 * Only allow target mode features if this unit has them enabled.
7066 */
7067 if ((AHD_TMODE_ENABLE & (0x1 << ahd->unit)) == 0)
7068 ahd->features &= ~AHD_TARGETMODE;
7069
7070 ahd->init_level++;
7071
7072 /*
7073 * DMA tag for our command fifos and other data in system memory
7074 * the card's sequencer must be able to access. For initiator
7075 * roles, we need to allocate space for the qoutfifo. When providing
7076 * for the target mode role, we must additionally provide space for
7077 * the incoming target command fifo.
7078 */
7079 driver_data_size = AHD_SCB_MAX * sizeof(*ahd->qoutfifo)
7080 + sizeof(struct hardware_scb);
7081 if ((ahd->features & AHD_TARGETMODE) != 0)
7082 driver_data_size += AHD_TMODE_CMDS * sizeof(struct target_cmd);
7083 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0)
7084 driver_data_size += PKT_OVERRUN_BUFSIZE;
7085 if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
7086 /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
7087 /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
7088 /*highaddr*/BUS_SPACE_MAXADDR,
7089 /*filter*/NULL, /*filterarg*/NULL,
7090 driver_data_size,
7091 /*nsegments*/1,
7092 /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
7093 /*flags*/0, &ahd->shared_data_dmat) != 0) {
7094 return (ENOMEM);
7095 }
7096
7097 ahd->init_level++;
7098
7099 /* Allocation of driver data */
7100 if (ahd_dmamem_alloc(ahd, ahd->shared_data_dmat,
7101 (void **)&ahd->shared_data_map.vaddr,
7102 BUS_DMA_NOWAIT,
7103 &ahd->shared_data_map.dmamap) != 0) {
7104 return (ENOMEM);
7105 }
7106
7107 ahd->init_level++;
7108
7109 /* And permanently map it in */
7110 ahd_dmamap_load(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
7111 ahd->shared_data_map.vaddr, driver_data_size,
7112 ahd_dmamap_cb, &ahd->shared_data_map.physaddr,
7113 /*flags*/0);
7114 ahd->qoutfifo = (struct ahd_completion *)ahd->shared_data_map.vaddr;
7115 next_vaddr = (uint8_t *)&ahd->qoutfifo[AHD_QOUT_SIZE];
7116 next_baddr = ahd->shared_data_map.physaddr
7117 + AHD_QOUT_SIZE*sizeof(struct ahd_completion);
7118 if ((ahd->features & AHD_TARGETMODE) != 0) {
7119 ahd->targetcmds = (struct target_cmd *)next_vaddr;
7120 next_vaddr += AHD_TMODE_CMDS * sizeof(struct target_cmd);
7121 next_baddr += AHD_TMODE_CMDS * sizeof(struct target_cmd);
7122 }
7123
7124 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) {
7125 ahd->overrun_buf = next_vaddr;
7126 next_vaddr += PKT_OVERRUN_BUFSIZE;
7127 next_baddr += PKT_OVERRUN_BUFSIZE;
7128 }
7129
7130 /*
7131 * We need one SCB to serve as the "next SCB". Since the
7132 * tag identifier in this SCB will never be used, there is
7133 * no point in using a valid HSCB tag from an SCB pulled from
7134 * the standard free pool. So, we allocate this "sentinel"
7135 * specially from the DMA safe memory chunk used for the QOUTFIFO.
7136 */
7137 ahd->next_queued_hscb = (struct hardware_scb *)next_vaddr;
7138 ahd->next_queued_hscb_map = &ahd->shared_data_map;
7139 ahd->next_queued_hscb->hscb_busaddr = ahd_htole32(next_baddr);
7140
7141 ahd->init_level++;
7142
7143 /* Allocate SCB data now that buffer_dmat is initialized */
7144 if (ahd_init_scbdata(ahd) != 0)
7145 return (ENOMEM);
7146
7147 if ((ahd->flags & AHD_INITIATORROLE) == 0)
7148 ahd->flags &= ~AHD_RESET_BUS_A;
7149
7150 /*
7151 * Before committing these settings to the chip, give
7152 * the OSM one last chance to modify our configuration.
7153 */
7154 ahd_platform_init(ahd);
7155
7156 /* Bring up the chip. */
7157 ahd_chip_init(ahd);
7158
7159 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
7160
7161 if ((ahd->flags & AHD_CURRENT_SENSING) == 0)
7162 goto init_done;
7163
7164 /*
7165 * Verify termination based on current draw and
7166 * warn user if the bus is over/under terminated.
7167 */
7168 error = ahd_write_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL,
7169 CURSENSE_ENB);
7170 if (error != 0) {
7171 printk("%s: current sensing timeout 1\n", ahd_name(ahd));
7172 goto init_done;
7173 }
7174 for (i = 20, fstat = FLX_FSTAT_BUSY;
7175 (fstat & FLX_FSTAT_BUSY) != 0 && i; i--) {
7176 error = ahd_read_flexport(ahd, FLXADDR_FLEXSTAT, &fstat);
7177 if (error != 0) {
7178 printk("%s: current sensing timeout 2\n",
7179 ahd_name(ahd));
7180 goto init_done;
7181 }
7182 }
7183 if (i == 0) {
7184 printk("%s: Timedout during current-sensing test\n",
7185 ahd_name(ahd));
7186 goto init_done;
7187 }
7188
7189 /* Latch Current Sensing status. */
7190 error = ahd_read_flexport(ahd, FLXADDR_CURRENT_STAT, ¤t_sensing);
7191 if (error != 0) {
7192 printk("%s: current sensing timeout 3\n", ahd_name(ahd));
7193 goto init_done;
7194 }
7195
7196 /* Diable current sensing. */
7197 ahd_write_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, 0);
7198
7199 #ifdef AHD_DEBUG
7200 if ((ahd_debug & AHD_SHOW_TERMCTL) != 0) {
7201 printk("%s: current_sensing == 0x%x\n",
7202 ahd_name(ahd), current_sensing);
7203 }
7204 #endif
7205 warn_user = 0;
7206 for (i = 0; i < 4; i++, current_sensing >>= FLX_CSTAT_SHIFT) {
7207 u_int term_stat;
7208
7209 term_stat = (current_sensing & FLX_CSTAT_MASK);
7210 switch (term_stat) {
7211 case FLX_CSTAT_OVER:
7212 case FLX_CSTAT_UNDER:
7213 warn_user++;
7214 /* fall through */
7215 case FLX_CSTAT_INVALID:
7216 case FLX_CSTAT_OKAY:
7217 if (warn_user == 0 && bootverbose == 0)
7218 break;
7219 printk("%s: %s Channel %s\n", ahd_name(ahd),
7220 channel_strings[i], termstat_strings[term_stat]);
7221 break;
7222 }
7223 }
7224 if (warn_user) {
7225 printk("%s: WARNING. Termination is not configured correctly.\n"
7226 "%s: WARNING. SCSI bus operations may FAIL.\n",
7227 ahd_name(ahd), ahd_name(ahd));
7228 }
7229 init_done:
7230 ahd_restart(ahd);
7231 ahd_timer_reset(&ahd->stat_timer, AHD_STAT_UPDATE_US);
7232 return (0);
7233 }
7234
7235 /*
7236 * (Re)initialize chip state after a chip reset.
7237 */
7238 static void
ahd_chip_init(struct ahd_softc * ahd)7239 ahd_chip_init(struct ahd_softc *ahd)
7240 {
7241 uint32_t busaddr;
7242 u_int sxfrctl1;
7243 u_int scsiseq_template;
7244 u_int wait;
7245 u_int i;
7246 u_int target;
7247
7248 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
7249 /*
7250 * Take the LED out of diagnostic mode
7251 */
7252 ahd_outb(ahd, SBLKCTL, ahd_inb(ahd, SBLKCTL) & ~(DIAGLEDEN|DIAGLEDON));
7253
7254 /*
7255 * Return HS_MAILBOX to its default value.
7256 */
7257 ahd->hs_mailbox = 0;
7258 ahd_outb(ahd, HS_MAILBOX, 0);
7259
7260 /* Set the SCSI Id, SXFRCTL0, SXFRCTL1, and SIMODE1. */
7261 ahd_outb(ahd, IOWNID, ahd->our_id);
7262 ahd_outb(ahd, TOWNID, ahd->our_id);
7263 sxfrctl1 = (ahd->flags & AHD_TERM_ENB_A) != 0 ? STPWEN : 0;
7264 sxfrctl1 |= (ahd->flags & AHD_SPCHK_ENB_A) != 0 ? ENSPCHK : 0;
7265 if ((ahd->bugs & AHD_LONG_SETIMO_BUG)
7266 && (ahd->seltime != STIMESEL_MIN)) {
7267 /*
7268 * The selection timer duration is twice as long
7269 * as it should be. Halve it by adding "1" to
7270 * the user specified setting.
7271 */
7272 sxfrctl1 |= ahd->seltime + STIMESEL_BUG_ADJ;
7273 } else {
7274 sxfrctl1 |= ahd->seltime;
7275 }
7276
7277 ahd_outb(ahd, SXFRCTL0, DFON);
7278 ahd_outb(ahd, SXFRCTL1, sxfrctl1|ahd->seltime|ENSTIMER|ACTNEGEN);
7279 ahd_outb(ahd, SIMODE1, ENSELTIMO|ENSCSIRST|ENSCSIPERR);
7280
7281 /*
7282 * Now that termination is set, wait for up
7283 * to 500ms for our transceivers to settle. If
7284 * the adapter does not have a cable attached,
7285 * the transceivers may never settle, so don't
7286 * complain if we fail here.
7287 */
7288 for (wait = 10000;
7289 (ahd_inb(ahd, SBLKCTL) & (ENAB40|ENAB20)) == 0 && wait;
7290 wait--)
7291 ahd_delay(100);
7292
7293 /* Clear any false bus resets due to the transceivers settling */
7294 ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
7295 ahd_outb(ahd, CLRINT, CLRSCSIINT);
7296
7297 /* Initialize mode specific S/G state. */
7298 for (i = 0; i < 2; i++) {
7299 ahd_set_modes(ahd, AHD_MODE_DFF0 + i, AHD_MODE_DFF0 + i);
7300 ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
7301 ahd_outb(ahd, SG_STATE, 0);
7302 ahd_outb(ahd, CLRSEQINTSRC, 0xFF);
7303 ahd_outb(ahd, SEQIMODE,
7304 ENSAVEPTRS|ENCFG4DATA|ENCFG4ISTAT
7305 |ENCFG4TSTAT|ENCFG4ICMD|ENCFG4TCMD);
7306 }
7307
7308 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
7309 ahd_outb(ahd, DSCOMMAND0, ahd_inb(ahd, DSCOMMAND0)|MPARCKEN|CACHETHEN);
7310 ahd_outb(ahd, DFF_THRSH, RD_DFTHRSH_75|WR_DFTHRSH_75);
7311 ahd_outb(ahd, SIMODE0, ENIOERR|ENOVERRUN);
7312 ahd_outb(ahd, SIMODE3, ENNTRAMPERR|ENOSRAMPERR);
7313 if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) {
7314 ahd_outb(ahd, OPTIONMODE, AUTOACKEN|AUTO_MSGOUT_DE);
7315 } else {
7316 ahd_outb(ahd, OPTIONMODE, AUTOACKEN|BUSFREEREV|AUTO_MSGOUT_DE);
7317 }
7318 ahd_outb(ahd, SCSCHKN, CURRFIFODEF|WIDERESEN|SHVALIDSTDIS);
7319 if ((ahd->chip & AHD_BUS_MASK) == AHD_PCIX)
7320 /*
7321 * Do not issue a target abort when a split completion
7322 * error occurs. Let our PCIX interrupt handler deal
7323 * with it instead. H2A4 Razor #625
7324 */
7325 ahd_outb(ahd, PCIXCTL, ahd_inb(ahd, PCIXCTL) | SPLTSTADIS);
7326
7327 if ((ahd->bugs & AHD_LQOOVERRUN_BUG) != 0)
7328 ahd_outb(ahd, LQOSCSCTL, LQONOCHKOVER);
7329
7330 /*
7331 * Tweak IOCELL settings.
7332 */
7333 if ((ahd->flags & AHD_HP_BOARD) != 0) {
7334 for (i = 0; i < NUMDSPS; i++) {
7335 ahd_outb(ahd, DSPSELECT, i);
7336 ahd_outb(ahd, WRTBIASCTL, WRTBIASCTL_HP_DEFAULT);
7337 }
7338 #ifdef AHD_DEBUG
7339 if ((ahd_debug & AHD_SHOW_MISC) != 0)
7340 printk("%s: WRTBIASCTL now 0x%x\n", ahd_name(ahd),
7341 WRTBIASCTL_HP_DEFAULT);
7342 #endif
7343 }
7344 ahd_setup_iocell_workaround(ahd);
7345
7346 /*
7347 * Enable LQI Manager interrupts.
7348 */
7349 ahd_outb(ahd, LQIMODE1, ENLQIPHASE_LQ|ENLQIPHASE_NLQ|ENLIQABORT
7350 | ENLQICRCI_LQ|ENLQICRCI_NLQ|ENLQIBADLQI
7351 | ENLQIOVERI_LQ|ENLQIOVERI_NLQ);
7352 ahd_outb(ahd, LQOMODE0, ENLQOATNLQ|ENLQOATNPKT|ENLQOTCRC);
7353 /*
7354 * We choose to have the sequencer catch LQOPHCHGINPKT errors
7355 * manually for the command phase at the start of a packetized
7356 * selection case. ENLQOBUSFREE should be made redundant by
7357 * the BUSFREE interrupt, but it seems that some LQOBUSFREE
7358 * events fail to assert the BUSFREE interrupt so we must
7359 * also enable LQOBUSFREE interrupts.
7360 */
7361 ahd_outb(ahd, LQOMODE1, ENLQOBUSFREE);
7362
7363 /*
7364 * Setup sequencer interrupt handlers.
7365 */
7366 ahd_outw(ahd, INTVEC1_ADDR, ahd_resolve_seqaddr(ahd, LABEL_seq_isr));
7367 ahd_outw(ahd, INTVEC2_ADDR, ahd_resolve_seqaddr(ahd, LABEL_timer_isr));
7368
7369 /*
7370 * Setup SCB Offset registers.
7371 */
7372 if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) {
7373 ahd_outb(ahd, LUNPTR, offsetof(struct hardware_scb,
7374 pkt_long_lun));
7375 } else {
7376 ahd_outb(ahd, LUNPTR, offsetof(struct hardware_scb, lun));
7377 }
7378 ahd_outb(ahd, CMDLENPTR, offsetof(struct hardware_scb, cdb_len));
7379 ahd_outb(ahd, ATTRPTR, offsetof(struct hardware_scb, task_attribute));
7380 ahd_outb(ahd, FLAGPTR, offsetof(struct hardware_scb, task_management));
7381 ahd_outb(ahd, CMDPTR, offsetof(struct hardware_scb,
7382 shared_data.idata.cdb));
7383 ahd_outb(ahd, QNEXTPTR,
7384 offsetof(struct hardware_scb, next_hscb_busaddr));
7385 ahd_outb(ahd, ABRTBITPTR, MK_MESSAGE_BIT_OFFSET);
7386 ahd_outb(ahd, ABRTBYTEPTR, offsetof(struct hardware_scb, control));
7387 if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) {
7388 ahd_outb(ahd, LUNLEN,
7389 sizeof(ahd->next_queued_hscb->pkt_long_lun) - 1);
7390 } else {
7391 ahd_outb(ahd, LUNLEN, LUNLEN_SINGLE_LEVEL_LUN);
7392 }
7393 ahd_outb(ahd, CDBLIMIT, SCB_CDB_LEN_PTR - 1);
7394 ahd_outb(ahd, MAXCMD, 0xFF);
7395 ahd_outb(ahd, SCBAUTOPTR,
7396 AUSCBPTR_EN | offsetof(struct hardware_scb, tag));
7397
7398 /* We haven't been enabled for target mode yet. */
7399 ahd_outb(ahd, MULTARGID, 0);
7400 ahd_outb(ahd, MULTARGID + 1, 0);
7401
7402 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
7403 /* Initialize the negotiation table. */
7404 if ((ahd->features & AHD_NEW_IOCELL_OPTS) == 0) {
7405 /*
7406 * Clear the spare bytes in the neg table to avoid
7407 * spurious parity errors.
7408 */
7409 for (target = 0; target < AHD_NUM_TARGETS; target++) {
7410 ahd_outb(ahd, NEGOADDR, target);
7411 ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_PER_DEV0);
7412 for (i = 0; i < AHD_NUM_PER_DEV_ANNEXCOLS; i++)
7413 ahd_outb(ahd, ANNEXDAT, 0);
7414 }
7415 }
7416 for (target = 0; target < AHD_NUM_TARGETS; target++) {
7417 struct ahd_devinfo devinfo;
7418 struct ahd_initiator_tinfo *tinfo;
7419 struct ahd_tmode_tstate *tstate;
7420
7421 tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
7422 target, &tstate);
7423 ahd_compile_devinfo(&devinfo, ahd->our_id,
7424 target, CAM_LUN_WILDCARD,
7425 'A', ROLE_INITIATOR);
7426 ahd_update_neg_table(ahd, &devinfo, &tinfo->curr);
7427 }
7428
7429 ahd_outb(ahd, CLRSINT3, NTRAMPERR|OSRAMPERR);
7430 ahd_outb(ahd, CLRINT, CLRSCSIINT);
7431
7432 #ifdef NEEDS_MORE_TESTING
7433 /*
7434 * Always enable abort on incoming L_Qs if this feature is
7435 * supported. We use this to catch invalid SCB references.
7436 */
7437 if ((ahd->bugs & AHD_ABORT_LQI_BUG) == 0)
7438 ahd_outb(ahd, LQCTL1, ABORTPENDING);
7439 else
7440 #endif
7441 ahd_outb(ahd, LQCTL1, 0);
7442
7443 /* All of our queues are empty */
7444 ahd->qoutfifonext = 0;
7445 ahd->qoutfifonext_valid_tag = QOUTFIFO_ENTRY_VALID;
7446 ahd_outb(ahd, QOUTFIFO_ENTRY_VALID_TAG, QOUTFIFO_ENTRY_VALID);
7447 for (i = 0; i < AHD_QOUT_SIZE; i++)
7448 ahd->qoutfifo[i].valid_tag = 0;
7449 ahd_sync_qoutfifo(ahd, BUS_DMASYNC_PREREAD);
7450
7451 ahd->qinfifonext = 0;
7452 for (i = 0; i < AHD_QIN_SIZE; i++)
7453 ahd->qinfifo[i] = SCB_LIST_NULL;
7454
7455 if ((ahd->features & AHD_TARGETMODE) != 0) {
7456 /* All target command blocks start out invalid. */
7457 for (i = 0; i < AHD_TMODE_CMDS; i++)
7458 ahd->targetcmds[i].cmd_valid = 0;
7459 ahd_sync_tqinfifo(ahd, BUS_DMASYNC_PREREAD);
7460 ahd->tqinfifonext = 1;
7461 ahd_outb(ahd, KERNEL_TQINPOS, ahd->tqinfifonext - 1);
7462 ahd_outb(ahd, TQINPOS, ahd->tqinfifonext);
7463 }
7464
7465 /* Initialize Scratch Ram. */
7466 ahd_outb(ahd, SEQ_FLAGS, 0);
7467 ahd_outb(ahd, SEQ_FLAGS2, 0);
7468
7469 /* We don't have any waiting selections */
7470 ahd_outw(ahd, WAITING_TID_HEAD, SCB_LIST_NULL);
7471 ahd_outw(ahd, WAITING_TID_TAIL, SCB_LIST_NULL);
7472 ahd_outw(ahd, MK_MESSAGE_SCB, SCB_LIST_NULL);
7473 ahd_outw(ahd, MK_MESSAGE_SCSIID, 0xFF);
7474 for (i = 0; i < AHD_NUM_TARGETS; i++)
7475 ahd_outw(ahd, WAITING_SCB_TAILS + (2 * i), SCB_LIST_NULL);
7476
7477 /*
7478 * Nobody is waiting to be DMAed into the QOUTFIFO.
7479 */
7480 ahd_outw(ahd, COMPLETE_SCB_HEAD, SCB_LIST_NULL);
7481 ahd_outw(ahd, COMPLETE_SCB_DMAINPROG_HEAD, SCB_LIST_NULL);
7482 ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, SCB_LIST_NULL);
7483 ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, SCB_LIST_NULL);
7484 ahd_outw(ahd, COMPLETE_ON_QFREEZE_HEAD, SCB_LIST_NULL);
7485
7486 /*
7487 * The Freeze Count is 0.
7488 */
7489 ahd->qfreeze_cnt = 0;
7490 ahd_outw(ahd, QFREEZE_COUNT, 0);
7491 ahd_outw(ahd, KERNEL_QFREEZE_COUNT, 0);
7492
7493 /*
7494 * Tell the sequencer where it can find our arrays in memory.
7495 */
7496 busaddr = ahd->shared_data_map.physaddr;
7497 ahd_outl(ahd, SHARED_DATA_ADDR, busaddr);
7498 ahd_outl(ahd, QOUTFIFO_NEXT_ADDR, busaddr);
7499
7500 /*
7501 * Setup the allowed SCSI Sequences based on operational mode.
7502 * If we are a target, we'll enable select in operations once
7503 * we've had a lun enabled.
7504 */
7505 scsiseq_template = ENAUTOATNP;
7506 if ((ahd->flags & AHD_INITIATORROLE) != 0)
7507 scsiseq_template |= ENRSELI;
7508 ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq_template);
7509
7510 /* There are no busy SCBs yet. */
7511 for (target = 0; target < AHD_NUM_TARGETS; target++) {
7512 int lun;
7513
7514 for (lun = 0; lun < AHD_NUM_LUNS_NONPKT; lun++)
7515 ahd_unbusy_tcl(ahd, BUILD_TCL_RAW(target, 'A', lun));
7516 }
7517
7518 /*
7519 * Initialize the group code to command length table.
7520 * Vendor Unique codes are set to 0 so we only capture
7521 * the first byte of the cdb. These can be overridden
7522 * when target mode is enabled.
7523 */
7524 ahd_outb(ahd, CMDSIZE_TABLE, 5);
7525 ahd_outb(ahd, CMDSIZE_TABLE + 1, 9);
7526 ahd_outb(ahd, CMDSIZE_TABLE + 2, 9);
7527 ahd_outb(ahd, CMDSIZE_TABLE + 3, 0);
7528 ahd_outb(ahd, CMDSIZE_TABLE + 4, 15);
7529 ahd_outb(ahd, CMDSIZE_TABLE + 5, 11);
7530 ahd_outb(ahd, CMDSIZE_TABLE + 6, 0);
7531 ahd_outb(ahd, CMDSIZE_TABLE + 7, 0);
7532
7533 /* Tell the sequencer of our initial queue positions */
7534 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
7535 ahd_outb(ahd, QOFF_CTLSTA, SCB_QSIZE_512);
7536 ahd->qinfifonext = 0;
7537 ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
7538 ahd_set_hescb_qoff(ahd, 0);
7539 ahd_set_snscb_qoff(ahd, 0);
7540 ahd_set_sescb_qoff(ahd, 0);
7541 ahd_set_sdscb_qoff(ahd, 0);
7542
7543 /*
7544 * Tell the sequencer which SCB will be the next one it receives.
7545 */
7546 busaddr = ahd_le32toh(ahd->next_queued_hscb->hscb_busaddr);
7547 ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
7548
7549 /*
7550 * Default to coalescing disabled.
7551 */
7552 ahd_outw(ahd, INT_COALESCING_CMDCOUNT, 0);
7553 ahd_outw(ahd, CMDS_PENDING, 0);
7554 ahd_update_coalescing_values(ahd, ahd->int_coalescing_timer,
7555 ahd->int_coalescing_maxcmds,
7556 ahd->int_coalescing_mincmds);
7557 ahd_enable_coalescing(ahd, FALSE);
7558
7559 ahd_loadseq(ahd);
7560 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
7561
7562 if (ahd->features & AHD_AIC79XXB_SLOWCRC) {
7563 u_int negodat3 = ahd_inb(ahd, NEGCONOPTS);
7564
7565 negodat3 |= ENSLOWCRC;
7566 ahd_outb(ahd, NEGCONOPTS, negodat3);
7567 negodat3 = ahd_inb(ahd, NEGCONOPTS);
7568 if (!(negodat3 & ENSLOWCRC))
7569 printk("aic79xx: failed to set the SLOWCRC bit\n");
7570 else
7571 printk("aic79xx: SLOWCRC bit set\n");
7572 }
7573 }
7574
7575 /*
7576 * Setup default device and controller settings.
7577 * This should only be called if our probe has
7578 * determined that no configuration data is available.
7579 */
7580 int
ahd_default_config(struct ahd_softc * ahd)7581 ahd_default_config(struct ahd_softc *ahd)
7582 {
7583 int targ;
7584
7585 ahd->our_id = 7;
7586
7587 /*
7588 * Allocate a tstate to house information for our
7589 * initiator presence on the bus as well as the user
7590 * data for any target mode initiator.
7591 */
7592 if (ahd_alloc_tstate(ahd, ahd->our_id, 'A') == NULL) {
7593 printk("%s: unable to allocate ahd_tmode_tstate. "
7594 "Failing attach\n", ahd_name(ahd));
7595 return (ENOMEM);
7596 }
7597
7598 for (targ = 0; targ < AHD_NUM_TARGETS; targ++) {
7599 struct ahd_devinfo devinfo;
7600 struct ahd_initiator_tinfo *tinfo;
7601 struct ahd_tmode_tstate *tstate;
7602 uint16_t target_mask;
7603
7604 tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
7605 targ, &tstate);
7606 /*
7607 * We support SPC2 and SPI4.
7608 */
7609 tinfo->user.protocol_version = 4;
7610 tinfo->user.transport_version = 4;
7611
7612 target_mask = 0x01 << targ;
7613 ahd->user_discenable |= target_mask;
7614 tstate->discenable |= target_mask;
7615 ahd->user_tagenable |= target_mask;
7616 #ifdef AHD_FORCE_160
7617 tinfo->user.period = AHD_SYNCRATE_DT;
7618 #else
7619 tinfo->user.period = AHD_SYNCRATE_160;
7620 #endif
7621 tinfo->user.offset = MAX_OFFSET;
7622 tinfo->user.ppr_options = MSG_EXT_PPR_RD_STRM
7623 | MSG_EXT_PPR_WR_FLOW
7624 | MSG_EXT_PPR_HOLD_MCS
7625 | MSG_EXT_PPR_IU_REQ
7626 | MSG_EXT_PPR_QAS_REQ
7627 | MSG_EXT_PPR_DT_REQ;
7628 if ((ahd->features & AHD_RTI) != 0)
7629 tinfo->user.ppr_options |= MSG_EXT_PPR_RTI;
7630
7631 tinfo->user.width = MSG_EXT_WDTR_BUS_16_BIT;
7632
7633 /*
7634 * Start out Async/Narrow/Untagged and with
7635 * conservative protocol support.
7636 */
7637 tinfo->goal.protocol_version = 2;
7638 tinfo->goal.transport_version = 2;
7639 tinfo->curr.protocol_version = 2;
7640 tinfo->curr.transport_version = 2;
7641 ahd_compile_devinfo(&devinfo, ahd->our_id,
7642 targ, CAM_LUN_WILDCARD,
7643 'A', ROLE_INITIATOR);
7644 tstate->tagenable &= ~target_mask;
7645 ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
7646 AHD_TRANS_CUR|AHD_TRANS_GOAL, /*paused*/TRUE);
7647 ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0,
7648 /*ppr_options*/0, AHD_TRANS_CUR|AHD_TRANS_GOAL,
7649 /*paused*/TRUE);
7650 }
7651 return (0);
7652 }
7653
7654 /*
7655 * Parse device configuration information.
7656 */
7657 int
ahd_parse_cfgdata(struct ahd_softc * ahd,struct seeprom_config * sc)7658 ahd_parse_cfgdata(struct ahd_softc *ahd, struct seeprom_config *sc)
7659 {
7660 int targ;
7661 int max_targ;
7662
7663 max_targ = sc->max_targets & CFMAXTARG;
7664 ahd->our_id = sc->brtime_id & CFSCSIID;
7665
7666 /*
7667 * Allocate a tstate to house information for our
7668 * initiator presence on the bus as well as the user
7669 * data for any target mode initiator.
7670 */
7671 if (ahd_alloc_tstate(ahd, ahd->our_id, 'A') == NULL) {
7672 printk("%s: unable to allocate ahd_tmode_tstate. "
7673 "Failing attach\n", ahd_name(ahd));
7674 return (ENOMEM);
7675 }
7676
7677 for (targ = 0; targ < max_targ; targ++) {
7678 struct ahd_devinfo devinfo;
7679 struct ahd_initiator_tinfo *tinfo;
7680 struct ahd_transinfo *user_tinfo;
7681 struct ahd_tmode_tstate *tstate;
7682 uint16_t target_mask;
7683
7684 tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
7685 targ, &tstate);
7686 user_tinfo = &tinfo->user;
7687
7688 /*
7689 * We support SPC2 and SPI4.
7690 */
7691 tinfo->user.protocol_version = 4;
7692 tinfo->user.transport_version = 4;
7693
7694 target_mask = 0x01 << targ;
7695 ahd->user_discenable &= ~target_mask;
7696 tstate->discenable &= ~target_mask;
7697 ahd->user_tagenable &= ~target_mask;
7698 if (sc->device_flags[targ] & CFDISC) {
7699 tstate->discenable |= target_mask;
7700 ahd->user_discenable |= target_mask;
7701 ahd->user_tagenable |= target_mask;
7702 } else {
7703 /*
7704 * Cannot be packetized without disconnection.
7705 */
7706 sc->device_flags[targ] &= ~CFPACKETIZED;
7707 }
7708
7709 user_tinfo->ppr_options = 0;
7710 user_tinfo->period = (sc->device_flags[targ] & CFXFER);
7711 if (user_tinfo->period < CFXFER_ASYNC) {
7712 if (user_tinfo->period <= AHD_PERIOD_10MHz)
7713 user_tinfo->ppr_options |= MSG_EXT_PPR_DT_REQ;
7714 user_tinfo->offset = MAX_OFFSET;
7715 } else {
7716 user_tinfo->offset = 0;
7717 user_tinfo->period = AHD_ASYNC_XFER_PERIOD;
7718 }
7719 #ifdef AHD_FORCE_160
7720 if (user_tinfo->period <= AHD_SYNCRATE_160)
7721 user_tinfo->period = AHD_SYNCRATE_DT;
7722 #endif
7723
7724 if ((sc->device_flags[targ] & CFPACKETIZED) != 0) {
7725 user_tinfo->ppr_options |= MSG_EXT_PPR_RD_STRM
7726 | MSG_EXT_PPR_WR_FLOW
7727 | MSG_EXT_PPR_HOLD_MCS
7728 | MSG_EXT_PPR_IU_REQ;
7729 if ((ahd->features & AHD_RTI) != 0)
7730 user_tinfo->ppr_options |= MSG_EXT_PPR_RTI;
7731 }
7732
7733 if ((sc->device_flags[targ] & CFQAS) != 0)
7734 user_tinfo->ppr_options |= MSG_EXT_PPR_QAS_REQ;
7735
7736 if ((sc->device_flags[targ] & CFWIDEB) != 0)
7737 user_tinfo->width = MSG_EXT_WDTR_BUS_16_BIT;
7738 else
7739 user_tinfo->width = MSG_EXT_WDTR_BUS_8_BIT;
7740 #ifdef AHD_DEBUG
7741 if ((ahd_debug & AHD_SHOW_MISC) != 0)
7742 printk("(%d): %x:%x:%x:%x\n", targ, user_tinfo->width,
7743 user_tinfo->period, user_tinfo->offset,
7744 user_tinfo->ppr_options);
7745 #endif
7746 /*
7747 * Start out Async/Narrow/Untagged and with
7748 * conservative protocol support.
7749 */
7750 tstate->tagenable &= ~target_mask;
7751 tinfo->goal.protocol_version = 2;
7752 tinfo->goal.transport_version = 2;
7753 tinfo->curr.protocol_version = 2;
7754 tinfo->curr.transport_version = 2;
7755 ahd_compile_devinfo(&devinfo, ahd->our_id,
7756 targ, CAM_LUN_WILDCARD,
7757 'A', ROLE_INITIATOR);
7758 ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
7759 AHD_TRANS_CUR|AHD_TRANS_GOAL, /*paused*/TRUE);
7760 ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0,
7761 /*ppr_options*/0, AHD_TRANS_CUR|AHD_TRANS_GOAL,
7762 /*paused*/TRUE);
7763 }
7764
7765 ahd->flags &= ~AHD_SPCHK_ENB_A;
7766 if (sc->bios_control & CFSPARITY)
7767 ahd->flags |= AHD_SPCHK_ENB_A;
7768
7769 ahd->flags &= ~AHD_RESET_BUS_A;
7770 if (sc->bios_control & CFRESETB)
7771 ahd->flags |= AHD_RESET_BUS_A;
7772
7773 ahd->flags &= ~AHD_EXTENDED_TRANS_A;
7774 if (sc->bios_control & CFEXTEND)
7775 ahd->flags |= AHD_EXTENDED_TRANS_A;
7776
7777 ahd->flags &= ~AHD_BIOS_ENABLED;
7778 if ((sc->bios_control & CFBIOSSTATE) == CFBS_ENABLED)
7779 ahd->flags |= AHD_BIOS_ENABLED;
7780
7781 ahd->flags &= ~AHD_STPWLEVEL_A;
7782 if ((sc->adapter_control & CFSTPWLEVEL) != 0)
7783 ahd->flags |= AHD_STPWLEVEL_A;
7784
7785 return (0);
7786 }
7787
7788 /*
7789 * Parse device configuration information.
7790 */
7791 int
ahd_parse_vpddata(struct ahd_softc * ahd,struct vpd_config * vpd)7792 ahd_parse_vpddata(struct ahd_softc *ahd, struct vpd_config *vpd)
7793 {
7794 int error;
7795
7796 error = ahd_verify_vpd_cksum(vpd);
7797 if (error == 0)
7798 return (EINVAL);
7799 if ((vpd->bios_flags & VPDBOOTHOST) != 0)
7800 ahd->flags |= AHD_BOOT_CHANNEL;
7801 return (0);
7802 }
7803
7804 void
ahd_intr_enable(struct ahd_softc * ahd,int enable)7805 ahd_intr_enable(struct ahd_softc *ahd, int enable)
7806 {
7807 u_int hcntrl;
7808
7809 hcntrl = ahd_inb(ahd, HCNTRL);
7810 hcntrl &= ~INTEN;
7811 ahd->pause &= ~INTEN;
7812 ahd->unpause &= ~INTEN;
7813 if (enable) {
7814 hcntrl |= INTEN;
7815 ahd->pause |= INTEN;
7816 ahd->unpause |= INTEN;
7817 }
7818 ahd_outb(ahd, HCNTRL, hcntrl);
7819 }
7820
7821 static void
ahd_update_coalescing_values(struct ahd_softc * ahd,u_int timer,u_int maxcmds,u_int mincmds)7822 ahd_update_coalescing_values(struct ahd_softc *ahd, u_int timer, u_int maxcmds,
7823 u_int mincmds)
7824 {
7825 if (timer > AHD_TIMER_MAX_US)
7826 timer = AHD_TIMER_MAX_US;
7827 ahd->int_coalescing_timer = timer;
7828
7829 if (maxcmds > AHD_INT_COALESCING_MAXCMDS_MAX)
7830 maxcmds = AHD_INT_COALESCING_MAXCMDS_MAX;
7831 if (mincmds > AHD_INT_COALESCING_MINCMDS_MAX)
7832 mincmds = AHD_INT_COALESCING_MINCMDS_MAX;
7833 ahd->int_coalescing_maxcmds = maxcmds;
7834 ahd_outw(ahd, INT_COALESCING_TIMER, timer / AHD_TIMER_US_PER_TICK);
7835 ahd_outb(ahd, INT_COALESCING_MAXCMDS, -maxcmds);
7836 ahd_outb(ahd, INT_COALESCING_MINCMDS, -mincmds);
7837 }
7838
7839 static void
ahd_enable_coalescing(struct ahd_softc * ahd,int enable)7840 ahd_enable_coalescing(struct ahd_softc *ahd, int enable)
7841 {
7842
7843 ahd->hs_mailbox &= ~ENINT_COALESCE;
7844 if (enable)
7845 ahd->hs_mailbox |= ENINT_COALESCE;
7846 ahd_outb(ahd, HS_MAILBOX, ahd->hs_mailbox);
7847 ahd_flush_device_writes(ahd);
7848 ahd_run_qoutfifo(ahd);
7849 }
7850
7851 /*
7852 * Ensure that the card is paused in a location
7853 * outside of all critical sections and that all
7854 * pending work is completed prior to returning.
7855 * This routine should only be called from outside
7856 * an interrupt context.
7857 */
7858 void
ahd_pause_and_flushwork(struct ahd_softc * ahd)7859 ahd_pause_and_flushwork(struct ahd_softc *ahd)
7860 {
7861 u_int intstat;
7862 u_int maxloops;
7863
7864 maxloops = 1000;
7865 ahd->flags |= AHD_ALL_INTERRUPTS;
7866 ahd_pause(ahd);
7867 /*
7868 * Freeze the outgoing selections. We do this only
7869 * until we are safely paused without further selections
7870 * pending.
7871 */
7872 ahd->qfreeze_cnt--;
7873 ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
7874 ahd_outb(ahd, SEQ_FLAGS2, ahd_inb(ahd, SEQ_FLAGS2) | SELECTOUT_QFROZEN);
7875 do {
7876
7877 ahd_unpause(ahd);
7878 /*
7879 * Give the sequencer some time to service
7880 * any active selections.
7881 */
7882 ahd_delay(500);
7883
7884 ahd_intr(ahd);
7885 ahd_pause(ahd);
7886 intstat = ahd_inb(ahd, INTSTAT);
7887 if ((intstat & INT_PEND) == 0) {
7888 ahd_clear_critical_section(ahd);
7889 intstat = ahd_inb(ahd, INTSTAT);
7890 }
7891 } while (--maxloops
7892 && (intstat != 0xFF || (ahd->features & AHD_REMOVABLE) == 0)
7893 && ((intstat & INT_PEND) != 0
7894 || (ahd_inb(ahd, SCSISEQ0) & ENSELO) != 0
7895 || (ahd_inb(ahd, SSTAT0) & (SELDO|SELINGO)) != 0));
7896
7897 if (maxloops == 0) {
7898 printk("Infinite interrupt loop, INTSTAT = %x",
7899 ahd_inb(ahd, INTSTAT));
7900 }
7901 ahd->qfreeze_cnt++;
7902 ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
7903
7904 ahd_flush_qoutfifo(ahd);
7905
7906 ahd->flags &= ~AHD_ALL_INTERRUPTS;
7907 }
7908
7909 #ifdef CONFIG_PM
7910 int
ahd_suspend(struct ahd_softc * ahd)7911 ahd_suspend(struct ahd_softc *ahd)
7912 {
7913
7914 ahd_pause_and_flushwork(ahd);
7915
7916 if (LIST_FIRST(&ahd->pending_scbs) != NULL) {
7917 ahd_unpause(ahd);
7918 return (EBUSY);
7919 }
7920 ahd_shutdown(ahd);
7921 return (0);
7922 }
7923
7924 void
ahd_resume(struct ahd_softc * ahd)7925 ahd_resume(struct ahd_softc *ahd)
7926 {
7927
7928 ahd_reset(ahd, /*reinit*/TRUE);
7929 ahd_intr_enable(ahd, TRUE);
7930 ahd_restart(ahd);
7931 }
7932 #endif
7933
7934 /************************** Busy Target Table *********************************/
7935 /*
7936 * Set SCBPTR to the SCB that contains the busy
7937 * table entry for TCL. Return the offset into
7938 * the SCB that contains the entry for TCL.
7939 * saved_scbid is dereferenced and set to the
7940 * scbid that should be restored once manipualtion
7941 * of the TCL entry is complete.
7942 */
7943 static inline u_int
ahd_index_busy_tcl(struct ahd_softc * ahd,u_int * saved_scbid,u_int tcl)7944 ahd_index_busy_tcl(struct ahd_softc *ahd, u_int *saved_scbid, u_int tcl)
7945 {
7946 /*
7947 * Index to the SCB that contains the busy entry.
7948 */
7949 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
7950 *saved_scbid = ahd_get_scbptr(ahd);
7951 ahd_set_scbptr(ahd, TCL_LUN(tcl)
7952 | ((TCL_TARGET_OFFSET(tcl) & 0xC) << 4));
7953
7954 /*
7955 * And now calculate the SCB offset to the entry.
7956 * Each entry is 2 bytes wide, hence the
7957 * multiplication by 2.
7958 */
7959 return (((TCL_TARGET_OFFSET(tcl) & 0x3) << 1) + SCB_DISCONNECTED_LISTS);
7960 }
7961
7962 /*
7963 * Return the untagged transaction id for a given target/channel lun.
7964 */
7965 static u_int
ahd_find_busy_tcl(struct ahd_softc * ahd,u_int tcl)7966 ahd_find_busy_tcl(struct ahd_softc *ahd, u_int tcl)
7967 {
7968 u_int scbid;
7969 u_int scb_offset;
7970 u_int saved_scbptr;
7971
7972 scb_offset = ahd_index_busy_tcl(ahd, &saved_scbptr, tcl);
7973 scbid = ahd_inw_scbram(ahd, scb_offset);
7974 ahd_set_scbptr(ahd, saved_scbptr);
7975 return (scbid);
7976 }
7977
7978 static void
ahd_busy_tcl(struct ahd_softc * ahd,u_int tcl,u_int scbid)7979 ahd_busy_tcl(struct ahd_softc *ahd, u_int tcl, u_int scbid)
7980 {
7981 u_int scb_offset;
7982 u_int saved_scbptr;
7983
7984 scb_offset = ahd_index_busy_tcl(ahd, &saved_scbptr, tcl);
7985 ahd_outw(ahd, scb_offset, scbid);
7986 ahd_set_scbptr(ahd, saved_scbptr);
7987 }
7988
7989 /************************** SCB and SCB queue management **********************/
7990 static int
ahd_match_scb(struct ahd_softc * ahd,struct scb * scb,int target,char channel,int lun,u_int tag,role_t role)7991 ahd_match_scb(struct ahd_softc *ahd, struct scb *scb, int target,
7992 char channel, int lun, u_int tag, role_t role)
7993 {
7994 int targ = SCB_GET_TARGET(ahd, scb);
7995 char chan = SCB_GET_CHANNEL(ahd, scb);
7996 int slun = SCB_GET_LUN(scb);
7997 int match;
7998
7999 match = ((chan == channel) || (channel == ALL_CHANNELS));
8000 if (match != 0)
8001 match = ((targ == target) || (target == CAM_TARGET_WILDCARD));
8002 if (match != 0)
8003 match = ((lun == slun) || (lun == CAM_LUN_WILDCARD));
8004 if (match != 0) {
8005 #ifdef AHD_TARGET_MODE
8006 int group;
8007
8008 group = XPT_FC_GROUP(scb->io_ctx->ccb_h.func_code);
8009 if (role == ROLE_INITIATOR) {
8010 match = (group != XPT_FC_GROUP_TMODE)
8011 && ((tag == SCB_GET_TAG(scb))
8012 || (tag == SCB_LIST_NULL));
8013 } else if (role == ROLE_TARGET) {
8014 match = (group == XPT_FC_GROUP_TMODE)
8015 && ((tag == scb->io_ctx->csio.tag_id)
8016 || (tag == SCB_LIST_NULL));
8017 }
8018 #else /* !AHD_TARGET_MODE */
8019 match = ((tag == SCB_GET_TAG(scb)) || (tag == SCB_LIST_NULL));
8020 #endif /* AHD_TARGET_MODE */
8021 }
8022
8023 return match;
8024 }
8025
8026 static void
ahd_freeze_devq(struct ahd_softc * ahd,struct scb * scb)8027 ahd_freeze_devq(struct ahd_softc *ahd, struct scb *scb)
8028 {
8029 int target;
8030 char channel;
8031 int lun;
8032
8033 target = SCB_GET_TARGET(ahd, scb);
8034 lun = SCB_GET_LUN(scb);
8035 channel = SCB_GET_CHANNEL(ahd, scb);
8036
8037 ahd_search_qinfifo(ahd, target, channel, lun,
8038 /*tag*/SCB_LIST_NULL, ROLE_UNKNOWN,
8039 CAM_REQUEUE_REQ, SEARCH_COMPLETE);
8040
8041 ahd_platform_freeze_devq(ahd, scb);
8042 }
8043
8044 void
ahd_qinfifo_requeue_tail(struct ahd_softc * ahd,struct scb * scb)8045 ahd_qinfifo_requeue_tail(struct ahd_softc *ahd, struct scb *scb)
8046 {
8047 struct scb *prev_scb;
8048 ahd_mode_state saved_modes;
8049
8050 saved_modes = ahd_save_modes(ahd);
8051 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
8052 prev_scb = NULL;
8053 if (ahd_qinfifo_count(ahd) != 0) {
8054 u_int prev_tag;
8055 u_int prev_pos;
8056
8057 prev_pos = AHD_QIN_WRAP(ahd->qinfifonext - 1);
8058 prev_tag = ahd->qinfifo[prev_pos];
8059 prev_scb = ahd_lookup_scb(ahd, prev_tag);
8060 }
8061 ahd_qinfifo_requeue(ahd, prev_scb, scb);
8062 ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
8063 ahd_restore_modes(ahd, saved_modes);
8064 }
8065
8066 static void
ahd_qinfifo_requeue(struct ahd_softc * ahd,struct scb * prev_scb,struct scb * scb)8067 ahd_qinfifo_requeue(struct ahd_softc *ahd, struct scb *prev_scb,
8068 struct scb *scb)
8069 {
8070 if (prev_scb == NULL) {
8071 uint32_t busaddr;
8072
8073 busaddr = ahd_le32toh(scb->hscb->hscb_busaddr);
8074 ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
8075 } else {
8076 prev_scb->hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr;
8077 ahd_sync_scb(ahd, prev_scb,
8078 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
8079 }
8080 ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb);
8081 ahd->qinfifonext++;
8082 scb->hscb->next_hscb_busaddr = ahd->next_queued_hscb->hscb_busaddr;
8083 ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
8084 }
8085
8086 static int
ahd_qinfifo_count(struct ahd_softc * ahd)8087 ahd_qinfifo_count(struct ahd_softc *ahd)
8088 {
8089 u_int qinpos;
8090 u_int wrap_qinpos;
8091 u_int wrap_qinfifonext;
8092
8093 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
8094 qinpos = ahd_get_snscb_qoff(ahd);
8095 wrap_qinpos = AHD_QIN_WRAP(qinpos);
8096 wrap_qinfifonext = AHD_QIN_WRAP(ahd->qinfifonext);
8097 if (wrap_qinfifonext >= wrap_qinpos)
8098 return (wrap_qinfifonext - wrap_qinpos);
8099 else
8100 return (wrap_qinfifonext
8101 + ARRAY_SIZE(ahd->qinfifo) - wrap_qinpos);
8102 }
8103
8104 static void
ahd_reset_cmds_pending(struct ahd_softc * ahd)8105 ahd_reset_cmds_pending(struct ahd_softc *ahd)
8106 {
8107 struct scb *scb;
8108 ahd_mode_state saved_modes;
8109 u_int pending_cmds;
8110
8111 saved_modes = ahd_save_modes(ahd);
8112 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
8113
8114 /*
8115 * Don't count any commands as outstanding that the
8116 * sequencer has already marked for completion.
8117 */
8118 ahd_flush_qoutfifo(ahd);
8119
8120 pending_cmds = 0;
8121 LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
8122 pending_cmds++;
8123 }
8124 ahd_outw(ahd, CMDS_PENDING, pending_cmds - ahd_qinfifo_count(ahd));
8125 ahd_restore_modes(ahd, saved_modes);
8126 ahd->flags &= ~AHD_UPDATE_PEND_CMDS;
8127 }
8128
8129 static void
ahd_done_with_status(struct ahd_softc * ahd,struct scb * scb,uint32_t status)8130 ahd_done_with_status(struct ahd_softc *ahd, struct scb *scb, uint32_t status)
8131 {
8132 cam_status ostat;
8133 cam_status cstat;
8134
8135 ostat = ahd_get_transaction_status(scb);
8136 if (ostat == CAM_REQ_INPROG)
8137 ahd_set_transaction_status(scb, status);
8138 cstat = ahd_get_transaction_status(scb);
8139 if (cstat != CAM_REQ_CMP)
8140 ahd_freeze_scb(scb);
8141 ahd_done(ahd, scb);
8142 }
8143
8144 int
ahd_search_qinfifo(struct ahd_softc * ahd,int target,char channel,int lun,u_int tag,role_t role,uint32_t status,ahd_search_action action)8145 ahd_search_qinfifo(struct ahd_softc *ahd, int target, char channel,
8146 int lun, u_int tag, role_t role, uint32_t status,
8147 ahd_search_action action)
8148 {
8149 struct scb *scb;
8150 struct scb *mk_msg_scb;
8151 struct scb *prev_scb;
8152 ahd_mode_state saved_modes;
8153 u_int qinstart;
8154 u_int qinpos;
8155 u_int qintail;
8156 u_int tid_next;
8157 u_int tid_prev;
8158 u_int scbid;
8159 u_int seq_flags2;
8160 u_int savedscbptr;
8161 uint32_t busaddr;
8162 int found;
8163 int targets;
8164
8165 /* Must be in CCHAN mode */
8166 saved_modes = ahd_save_modes(ahd);
8167 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
8168
8169 /*
8170 * Halt any pending SCB DMA. The sequencer will reinitiate
8171 * this dma if the qinfifo is not empty once we unpause.
8172 */
8173 if ((ahd_inb(ahd, CCSCBCTL) & (CCARREN|CCSCBEN|CCSCBDIR))
8174 == (CCARREN|CCSCBEN|CCSCBDIR)) {
8175 ahd_outb(ahd, CCSCBCTL,
8176 ahd_inb(ahd, CCSCBCTL) & ~(CCARREN|CCSCBEN));
8177 while ((ahd_inb(ahd, CCSCBCTL) & (CCARREN|CCSCBEN)) != 0)
8178 ;
8179 }
8180 /* Determine sequencer's position in the qinfifo. */
8181 qintail = AHD_QIN_WRAP(ahd->qinfifonext);
8182 qinstart = ahd_get_snscb_qoff(ahd);
8183 qinpos = AHD_QIN_WRAP(qinstart);
8184 found = 0;
8185 prev_scb = NULL;
8186
8187 if (action == SEARCH_PRINT) {
8188 printk("qinstart = %d qinfifonext = %d\nQINFIFO:",
8189 qinstart, ahd->qinfifonext);
8190 }
8191
8192 /*
8193 * Start with an empty queue. Entries that are not chosen
8194 * for removal will be re-added to the queue as we go.
8195 */
8196 ahd->qinfifonext = qinstart;
8197 busaddr = ahd_le32toh(ahd->next_queued_hscb->hscb_busaddr);
8198 ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
8199
8200 while (qinpos != qintail) {
8201 scb = ahd_lookup_scb(ahd, ahd->qinfifo[qinpos]);
8202 if (scb == NULL) {
8203 printk("qinpos = %d, SCB index = %d\n",
8204 qinpos, ahd->qinfifo[qinpos]);
8205 panic("Loop 1\n");
8206 }
8207
8208 if (ahd_match_scb(ahd, scb, target, channel, lun, tag, role)) {
8209 /*
8210 * We found an scb that needs to be acted on.
8211 */
8212 found++;
8213 switch (action) {
8214 case SEARCH_COMPLETE:
8215 if ((scb->flags & SCB_ACTIVE) == 0)
8216 printk("Inactive SCB in qinfifo\n");
8217 ahd_done_with_status(ahd, scb, status);
8218 /* FALLTHROUGH */
8219 case SEARCH_REMOVE:
8220 break;
8221 case SEARCH_PRINT:
8222 printk(" 0x%x", ahd->qinfifo[qinpos]);
8223 /* FALLTHROUGH */
8224 case SEARCH_COUNT:
8225 ahd_qinfifo_requeue(ahd, prev_scb, scb);
8226 prev_scb = scb;
8227 break;
8228 }
8229 } else {
8230 ahd_qinfifo_requeue(ahd, prev_scb, scb);
8231 prev_scb = scb;
8232 }
8233 qinpos = AHD_QIN_WRAP(qinpos+1);
8234 }
8235
8236 ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
8237
8238 if (action == SEARCH_PRINT)
8239 printk("\nWAITING_TID_QUEUES:\n");
8240
8241 /*
8242 * Search waiting for selection lists. We traverse the
8243 * list of "their ids" waiting for selection and, if
8244 * appropriate, traverse the SCBs of each "their id"
8245 * looking for matches.
8246 */
8247 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8248 seq_flags2 = ahd_inb(ahd, SEQ_FLAGS2);
8249 if ((seq_flags2 & PENDING_MK_MESSAGE) != 0) {
8250 scbid = ahd_inw(ahd, MK_MESSAGE_SCB);
8251 mk_msg_scb = ahd_lookup_scb(ahd, scbid);
8252 } else
8253 mk_msg_scb = NULL;
8254 savedscbptr = ahd_get_scbptr(ahd);
8255 tid_next = ahd_inw(ahd, WAITING_TID_HEAD);
8256 tid_prev = SCB_LIST_NULL;
8257 targets = 0;
8258 for (scbid = tid_next; !SCBID_IS_NULL(scbid); scbid = tid_next) {
8259 u_int tid_head;
8260 u_int tid_tail;
8261
8262 targets++;
8263 if (targets > AHD_NUM_TARGETS)
8264 panic("TID LIST LOOP");
8265
8266 if (scbid >= ahd->scb_data.numscbs) {
8267 printk("%s: Waiting TID List inconsistency. "
8268 "SCB index == 0x%x, yet numscbs == 0x%x.",
8269 ahd_name(ahd), scbid, ahd->scb_data.numscbs);
8270 ahd_dump_card_state(ahd);
8271 panic("for safety");
8272 }
8273 scb = ahd_lookup_scb(ahd, scbid);
8274 if (scb == NULL) {
8275 printk("%s: SCB = 0x%x Not Active!\n",
8276 ahd_name(ahd), scbid);
8277 panic("Waiting TID List traversal\n");
8278 }
8279 ahd_set_scbptr(ahd, scbid);
8280 tid_next = ahd_inw_scbram(ahd, SCB_NEXT2);
8281 if (ahd_match_scb(ahd, scb, target, channel, CAM_LUN_WILDCARD,
8282 SCB_LIST_NULL, ROLE_UNKNOWN) == 0) {
8283 tid_prev = scbid;
8284 continue;
8285 }
8286
8287 /*
8288 * We found a list of scbs that needs to be searched.
8289 */
8290 if (action == SEARCH_PRINT)
8291 printk(" %d ( ", SCB_GET_TARGET(ahd, scb));
8292 tid_head = scbid;
8293 found += ahd_search_scb_list(ahd, target, channel,
8294 lun, tag, role, status,
8295 action, &tid_head, &tid_tail,
8296 SCB_GET_TARGET(ahd, scb));
8297 /*
8298 * Check any MK_MESSAGE SCB that is still waiting to
8299 * enter this target's waiting for selection queue.
8300 */
8301 if (mk_msg_scb != NULL
8302 && ahd_match_scb(ahd, mk_msg_scb, target, channel,
8303 lun, tag, role)) {
8304
8305 /*
8306 * We found an scb that needs to be acted on.
8307 */
8308 found++;
8309 switch (action) {
8310 case SEARCH_COMPLETE:
8311 if ((mk_msg_scb->flags & SCB_ACTIVE) == 0)
8312 printk("Inactive SCB pending MK_MSG\n");
8313 ahd_done_with_status(ahd, mk_msg_scb, status);
8314 /* FALLTHROUGH */
8315 case SEARCH_REMOVE:
8316 {
8317 u_int tail_offset;
8318
8319 printk("Removing MK_MSG scb\n");
8320
8321 /*
8322 * Reset our tail to the tail of the
8323 * main per-target list.
8324 */
8325 tail_offset = WAITING_SCB_TAILS
8326 + (2 * SCB_GET_TARGET(ahd, mk_msg_scb));
8327 ahd_outw(ahd, tail_offset, tid_tail);
8328
8329 seq_flags2 &= ~PENDING_MK_MESSAGE;
8330 ahd_outb(ahd, SEQ_FLAGS2, seq_flags2);
8331 ahd_outw(ahd, CMDS_PENDING,
8332 ahd_inw(ahd, CMDS_PENDING)-1);
8333 mk_msg_scb = NULL;
8334 break;
8335 }
8336 case SEARCH_PRINT:
8337 printk(" 0x%x", SCB_GET_TAG(scb));
8338 /* FALLTHROUGH */
8339 case SEARCH_COUNT:
8340 break;
8341 }
8342 }
8343
8344 if (mk_msg_scb != NULL
8345 && SCBID_IS_NULL(tid_head)
8346 && ahd_match_scb(ahd, scb, target, channel, CAM_LUN_WILDCARD,
8347 SCB_LIST_NULL, ROLE_UNKNOWN)) {
8348
8349 /*
8350 * When removing the last SCB for a target
8351 * queue with a pending MK_MESSAGE scb, we
8352 * must queue the MK_MESSAGE scb.
8353 */
8354 printk("Queueing mk_msg_scb\n");
8355 tid_head = ahd_inw(ahd, MK_MESSAGE_SCB);
8356 seq_flags2 &= ~PENDING_MK_MESSAGE;
8357 ahd_outb(ahd, SEQ_FLAGS2, seq_flags2);
8358 mk_msg_scb = NULL;
8359 }
8360 if (tid_head != scbid)
8361 ahd_stitch_tid_list(ahd, tid_prev, tid_head, tid_next);
8362 if (!SCBID_IS_NULL(tid_head))
8363 tid_prev = tid_head;
8364 if (action == SEARCH_PRINT)
8365 printk(")\n");
8366 }
8367
8368 /* Restore saved state. */
8369 ahd_set_scbptr(ahd, savedscbptr);
8370 ahd_restore_modes(ahd, saved_modes);
8371 return (found);
8372 }
8373
8374 static int
ahd_search_scb_list(struct ahd_softc * ahd,int target,char channel,int lun,u_int tag,role_t role,uint32_t status,ahd_search_action action,u_int * list_head,u_int * list_tail,u_int tid)8375 ahd_search_scb_list(struct ahd_softc *ahd, int target, char channel,
8376 int lun, u_int tag, role_t role, uint32_t status,
8377 ahd_search_action action, u_int *list_head,
8378 u_int *list_tail, u_int tid)
8379 {
8380 struct scb *scb;
8381 u_int scbid;
8382 u_int next;
8383 u_int prev;
8384 int found;
8385
8386 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8387 found = 0;
8388 prev = SCB_LIST_NULL;
8389 next = *list_head;
8390 *list_tail = SCB_LIST_NULL;
8391 for (scbid = next; !SCBID_IS_NULL(scbid); scbid = next) {
8392 if (scbid >= ahd->scb_data.numscbs) {
8393 printk("%s:SCB List inconsistency. "
8394 "SCB == 0x%x, yet numscbs == 0x%x.",
8395 ahd_name(ahd), scbid, ahd->scb_data.numscbs);
8396 ahd_dump_card_state(ahd);
8397 panic("for safety");
8398 }
8399 scb = ahd_lookup_scb(ahd, scbid);
8400 if (scb == NULL) {
8401 printk("%s: SCB = %d Not Active!\n",
8402 ahd_name(ahd), scbid);
8403 panic("Waiting List traversal\n");
8404 }
8405 ahd_set_scbptr(ahd, scbid);
8406 *list_tail = scbid;
8407 next = ahd_inw_scbram(ahd, SCB_NEXT);
8408 if (ahd_match_scb(ahd, scb, target, channel,
8409 lun, SCB_LIST_NULL, role) == 0) {
8410 prev = scbid;
8411 continue;
8412 }
8413 found++;
8414 switch (action) {
8415 case SEARCH_COMPLETE:
8416 if ((scb->flags & SCB_ACTIVE) == 0)
8417 printk("Inactive SCB in Waiting List\n");
8418 ahd_done_with_status(ahd, scb, status);
8419 /* fall through */
8420 case SEARCH_REMOVE:
8421 ahd_rem_wscb(ahd, scbid, prev, next, tid);
8422 *list_tail = prev;
8423 if (SCBID_IS_NULL(prev))
8424 *list_head = next;
8425 break;
8426 case SEARCH_PRINT:
8427 printk("0x%x ", scbid);
8428 /* fall through */
8429 case SEARCH_COUNT:
8430 prev = scbid;
8431 break;
8432 }
8433 if (found > AHD_SCB_MAX)
8434 panic("SCB LIST LOOP");
8435 }
8436 if (action == SEARCH_COMPLETE
8437 || action == SEARCH_REMOVE)
8438 ahd_outw(ahd, CMDS_PENDING, ahd_inw(ahd, CMDS_PENDING) - found);
8439 return (found);
8440 }
8441
8442 static void
ahd_stitch_tid_list(struct ahd_softc * ahd,u_int tid_prev,u_int tid_cur,u_int tid_next)8443 ahd_stitch_tid_list(struct ahd_softc *ahd, u_int tid_prev,
8444 u_int tid_cur, u_int tid_next)
8445 {
8446 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8447
8448 if (SCBID_IS_NULL(tid_cur)) {
8449
8450 /* Bypass current TID list */
8451 if (SCBID_IS_NULL(tid_prev)) {
8452 ahd_outw(ahd, WAITING_TID_HEAD, tid_next);
8453 } else {
8454 ahd_set_scbptr(ahd, tid_prev);
8455 ahd_outw(ahd, SCB_NEXT2, tid_next);
8456 }
8457 if (SCBID_IS_NULL(tid_next))
8458 ahd_outw(ahd, WAITING_TID_TAIL, tid_prev);
8459 } else {
8460
8461 /* Stitch through tid_cur */
8462 if (SCBID_IS_NULL(tid_prev)) {
8463 ahd_outw(ahd, WAITING_TID_HEAD, tid_cur);
8464 } else {
8465 ahd_set_scbptr(ahd, tid_prev);
8466 ahd_outw(ahd, SCB_NEXT2, tid_cur);
8467 }
8468 ahd_set_scbptr(ahd, tid_cur);
8469 ahd_outw(ahd, SCB_NEXT2, tid_next);
8470
8471 if (SCBID_IS_NULL(tid_next))
8472 ahd_outw(ahd, WAITING_TID_TAIL, tid_cur);
8473 }
8474 }
8475
8476 /*
8477 * Manipulate the waiting for selection list and return the
8478 * scb that follows the one that we remove.
8479 */
8480 static u_int
ahd_rem_wscb(struct ahd_softc * ahd,u_int scbid,u_int prev,u_int next,u_int tid)8481 ahd_rem_wscb(struct ahd_softc *ahd, u_int scbid,
8482 u_int prev, u_int next, u_int tid)
8483 {
8484 u_int tail_offset;
8485
8486 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8487 if (!SCBID_IS_NULL(prev)) {
8488 ahd_set_scbptr(ahd, prev);
8489 ahd_outw(ahd, SCB_NEXT, next);
8490 }
8491
8492 /*
8493 * SCBs that have MK_MESSAGE set in them may
8494 * cause the tail pointer to be updated without
8495 * setting the next pointer of the previous tail.
8496 * Only clear the tail if the removed SCB was
8497 * the tail.
8498 */
8499 tail_offset = WAITING_SCB_TAILS + (2 * tid);
8500 if (SCBID_IS_NULL(next)
8501 && ahd_inw(ahd, tail_offset) == scbid)
8502 ahd_outw(ahd, tail_offset, prev);
8503
8504 ahd_add_scb_to_free_list(ahd, scbid);
8505 return (next);
8506 }
8507
8508 /*
8509 * Add the SCB as selected by SCBPTR onto the on chip list of
8510 * free hardware SCBs. This list is empty/unused if we are not
8511 * performing SCB paging.
8512 */
8513 static void
ahd_add_scb_to_free_list(struct ahd_softc * ahd,u_int scbid)8514 ahd_add_scb_to_free_list(struct ahd_softc *ahd, u_int scbid)
8515 {
8516 /* XXX Need some other mechanism to designate "free". */
8517 /*
8518 * Invalidate the tag so that our abort
8519 * routines don't think it's active.
8520 ahd_outb(ahd, SCB_TAG, SCB_LIST_NULL);
8521 */
8522 }
8523
8524 /******************************** Error Handling ******************************/
8525 /*
8526 * Abort all SCBs that match the given description (target/channel/lun/tag),
8527 * setting their status to the passed in status if the status has not already
8528 * been modified from CAM_REQ_INPROG. This routine assumes that the sequencer
8529 * is paused before it is called.
8530 */
8531 static int
ahd_abort_scbs(struct ahd_softc * ahd,int target,char channel,int lun,u_int tag,role_t role,uint32_t status)8532 ahd_abort_scbs(struct ahd_softc *ahd, int target, char channel,
8533 int lun, u_int tag, role_t role, uint32_t status)
8534 {
8535 struct scb *scbp;
8536 struct scb *scbp_next;
8537 u_int i, j;
8538 u_int maxtarget;
8539 u_int minlun;
8540 u_int maxlun;
8541 int found;
8542 ahd_mode_state saved_modes;
8543
8544 /* restore this when we're done */
8545 saved_modes = ahd_save_modes(ahd);
8546 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8547
8548 found = ahd_search_qinfifo(ahd, target, channel, lun, SCB_LIST_NULL,
8549 role, CAM_REQUEUE_REQ, SEARCH_COMPLETE);
8550
8551 /*
8552 * Clean out the busy target table for any untagged commands.
8553 */
8554 i = 0;
8555 maxtarget = 16;
8556 if (target != CAM_TARGET_WILDCARD) {
8557 i = target;
8558 if (channel == 'B')
8559 i += 8;
8560 maxtarget = i + 1;
8561 }
8562
8563 if (lun == CAM_LUN_WILDCARD) {
8564 minlun = 0;
8565 maxlun = AHD_NUM_LUNS_NONPKT;
8566 } else if (lun >= AHD_NUM_LUNS_NONPKT) {
8567 minlun = maxlun = 0;
8568 } else {
8569 minlun = lun;
8570 maxlun = lun + 1;
8571 }
8572
8573 if (role != ROLE_TARGET) {
8574 for (;i < maxtarget; i++) {
8575 for (j = minlun;j < maxlun; j++) {
8576 u_int scbid;
8577 u_int tcl;
8578
8579 tcl = BUILD_TCL_RAW(i, 'A', j);
8580 scbid = ahd_find_busy_tcl(ahd, tcl);
8581 scbp = ahd_lookup_scb(ahd, scbid);
8582 if (scbp == NULL
8583 || ahd_match_scb(ahd, scbp, target, channel,
8584 lun, tag, role) == 0)
8585 continue;
8586 ahd_unbusy_tcl(ahd, BUILD_TCL_RAW(i, 'A', j));
8587 }
8588 }
8589 }
8590
8591 /*
8592 * Don't abort commands that have already completed,
8593 * but haven't quite made it up to the host yet.
8594 */
8595 ahd_flush_qoutfifo(ahd);
8596
8597 /*
8598 * Go through the pending CCB list and look for
8599 * commands for this target that are still active.
8600 * These are other tagged commands that were
8601 * disconnected when the reset occurred.
8602 */
8603 scbp_next = LIST_FIRST(&ahd->pending_scbs);
8604 while (scbp_next != NULL) {
8605 scbp = scbp_next;
8606 scbp_next = LIST_NEXT(scbp, pending_links);
8607 if (ahd_match_scb(ahd, scbp, target, channel, lun, tag, role)) {
8608 cam_status ostat;
8609
8610 ostat = ahd_get_transaction_status(scbp);
8611 if (ostat == CAM_REQ_INPROG)
8612 ahd_set_transaction_status(scbp, status);
8613 if (ahd_get_transaction_status(scbp) != CAM_REQ_CMP)
8614 ahd_freeze_scb(scbp);
8615 if ((scbp->flags & SCB_ACTIVE) == 0)
8616 printk("Inactive SCB on pending list\n");
8617 ahd_done(ahd, scbp);
8618 found++;
8619 }
8620 }
8621 ahd_restore_modes(ahd, saved_modes);
8622 ahd_platform_abort_scbs(ahd, target, channel, lun, tag, role, status);
8623 ahd->flags |= AHD_UPDATE_PEND_CMDS;
8624 return found;
8625 }
8626
8627 static void
ahd_reset_current_bus(struct ahd_softc * ahd)8628 ahd_reset_current_bus(struct ahd_softc *ahd)
8629 {
8630 uint8_t scsiseq;
8631
8632 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8633 ahd_outb(ahd, SIMODE1, ahd_inb(ahd, SIMODE1) & ~ENSCSIRST);
8634 scsiseq = ahd_inb(ahd, SCSISEQ0) & ~(ENSELO|ENARBO|SCSIRSTO);
8635 ahd_outb(ahd, SCSISEQ0, scsiseq | SCSIRSTO);
8636 ahd_flush_device_writes(ahd);
8637 ahd_delay(AHD_BUSRESET_DELAY);
8638 /* Turn off the bus reset */
8639 ahd_outb(ahd, SCSISEQ0, scsiseq);
8640 ahd_flush_device_writes(ahd);
8641 ahd_delay(AHD_BUSRESET_DELAY);
8642 if ((ahd->bugs & AHD_SCSIRST_BUG) != 0) {
8643 /*
8644 * 2A Razor #474
8645 * Certain chip state is not cleared for
8646 * SCSI bus resets that we initiate, so
8647 * we must reset the chip.
8648 */
8649 ahd_reset(ahd, /*reinit*/TRUE);
8650 ahd_intr_enable(ahd, /*enable*/TRUE);
8651 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8652 }
8653
8654 ahd_clear_intstat(ahd);
8655 }
8656
8657 int
ahd_reset_channel(struct ahd_softc * ahd,char channel,int initiate_reset)8658 ahd_reset_channel(struct ahd_softc *ahd, char channel, int initiate_reset)
8659 {
8660 struct ahd_devinfo caminfo;
8661 u_int initiator;
8662 u_int target;
8663 u_int max_scsiid;
8664 int found;
8665 u_int fifo;
8666 u_int next_fifo;
8667 uint8_t scsiseq;
8668
8669 /*
8670 * Check if the last bus reset is cleared
8671 */
8672 if (ahd->flags & AHD_BUS_RESET_ACTIVE) {
8673 printk("%s: bus reset still active\n",
8674 ahd_name(ahd));
8675 return 0;
8676 }
8677 ahd->flags |= AHD_BUS_RESET_ACTIVE;
8678
8679 ahd->pending_device = NULL;
8680
8681 ahd_compile_devinfo(&caminfo,
8682 CAM_TARGET_WILDCARD,
8683 CAM_TARGET_WILDCARD,
8684 CAM_LUN_WILDCARD,
8685 channel, ROLE_UNKNOWN);
8686 ahd_pause(ahd);
8687
8688 /* Make sure the sequencer is in a safe location. */
8689 ahd_clear_critical_section(ahd);
8690
8691 /*
8692 * Run our command complete fifos to ensure that we perform
8693 * completion processing on any commands that 'completed'
8694 * before the reset occurred.
8695 */
8696 ahd_run_qoutfifo(ahd);
8697 #ifdef AHD_TARGET_MODE
8698 if ((ahd->flags & AHD_TARGETROLE) != 0) {
8699 ahd_run_tqinfifo(ahd, /*paused*/TRUE);
8700 }
8701 #endif
8702 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8703
8704 /*
8705 * Disable selections so no automatic hardware
8706 * functions will modify chip state.
8707 */
8708 ahd_outb(ahd, SCSISEQ0, 0);
8709 ahd_outb(ahd, SCSISEQ1, 0);
8710
8711 /*
8712 * Safely shut down our DMA engines. Always start with
8713 * the FIFO that is not currently active (if any are
8714 * actively connected).
8715 */
8716 next_fifo = fifo = ahd_inb(ahd, DFFSTAT) & CURRFIFO;
8717 if (next_fifo > CURRFIFO_1)
8718 /* If disconneced, arbitrarily start with FIFO1. */
8719 next_fifo = fifo = 0;
8720 do {
8721 next_fifo ^= CURRFIFO_1;
8722 ahd_set_modes(ahd, next_fifo, next_fifo);
8723 ahd_outb(ahd, DFCNTRL,
8724 ahd_inb(ahd, DFCNTRL) & ~(SCSIEN|HDMAEN));
8725 while ((ahd_inb(ahd, DFCNTRL) & HDMAENACK) != 0)
8726 ahd_delay(10);
8727 /*
8728 * Set CURRFIFO to the now inactive channel.
8729 */
8730 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8731 ahd_outb(ahd, DFFSTAT, next_fifo);
8732 } while (next_fifo != fifo);
8733
8734 /*
8735 * Reset the bus if we are initiating this reset
8736 */
8737 ahd_clear_msg_state(ahd);
8738 ahd_outb(ahd, SIMODE1,
8739 ahd_inb(ahd, SIMODE1) & ~(ENBUSFREE|ENSCSIRST));
8740
8741 if (initiate_reset)
8742 ahd_reset_current_bus(ahd);
8743
8744 ahd_clear_intstat(ahd);
8745
8746 /*
8747 * Clean up all the state information for the
8748 * pending transactions on this bus.
8749 */
8750 found = ahd_abort_scbs(ahd, CAM_TARGET_WILDCARD, channel,
8751 CAM_LUN_WILDCARD, SCB_LIST_NULL,
8752 ROLE_UNKNOWN, CAM_SCSI_BUS_RESET);
8753
8754 /*
8755 * Cleanup anything left in the FIFOs.
8756 */
8757 ahd_clear_fifo(ahd, 0);
8758 ahd_clear_fifo(ahd, 1);
8759
8760 /*
8761 * Clear SCSI interrupt status
8762 */
8763 ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
8764
8765 /*
8766 * Reenable selections
8767 */
8768 ahd_outb(ahd, SIMODE1, ahd_inb(ahd, SIMODE1) | ENSCSIRST);
8769 scsiseq = ahd_inb(ahd, SCSISEQ_TEMPLATE);
8770 ahd_outb(ahd, SCSISEQ1, scsiseq & (ENSELI|ENRSELI|ENAUTOATNP));
8771
8772 max_scsiid = (ahd->features & AHD_WIDE) ? 15 : 7;
8773 #ifdef AHD_TARGET_MODE
8774 /*
8775 * Send an immediate notify ccb to all target more peripheral
8776 * drivers affected by this action.
8777 */
8778 for (target = 0; target <= max_scsiid; target++) {
8779 struct ahd_tmode_tstate* tstate;
8780 u_int lun;
8781
8782 tstate = ahd->enabled_targets[target];
8783 if (tstate == NULL)
8784 continue;
8785 for (lun = 0; lun < AHD_NUM_LUNS; lun++) {
8786 struct ahd_tmode_lstate* lstate;
8787
8788 lstate = tstate->enabled_luns[lun];
8789 if (lstate == NULL)
8790 continue;
8791
8792 ahd_queue_lstate_event(ahd, lstate, CAM_TARGET_WILDCARD,
8793 EVENT_TYPE_BUS_RESET, /*arg*/0);
8794 ahd_send_lstate_events(ahd, lstate);
8795 }
8796 }
8797 #endif
8798 /*
8799 * Revert to async/narrow transfers until we renegotiate.
8800 */
8801 for (target = 0; target <= max_scsiid; target++) {
8802
8803 if (ahd->enabled_targets[target] == NULL)
8804 continue;
8805 for (initiator = 0; initiator <= max_scsiid; initiator++) {
8806 struct ahd_devinfo devinfo;
8807
8808 ahd_compile_devinfo(&devinfo, target, initiator,
8809 CAM_LUN_WILDCARD,
8810 'A', ROLE_UNKNOWN);
8811 ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
8812 AHD_TRANS_CUR, /*paused*/TRUE);
8813 ahd_set_syncrate(ahd, &devinfo, /*period*/0,
8814 /*offset*/0, /*ppr_options*/0,
8815 AHD_TRANS_CUR, /*paused*/TRUE);
8816 }
8817 }
8818
8819 /* Notify the XPT that a bus reset occurred */
8820 ahd_send_async(ahd, caminfo.channel, CAM_TARGET_WILDCARD,
8821 CAM_LUN_WILDCARD, AC_BUS_RESET);
8822
8823 ahd_restart(ahd);
8824
8825 return (found);
8826 }
8827
8828 /**************************** Statistics Processing ***************************/
8829 static void
ahd_stat_timer(struct timer_list * t)8830 ahd_stat_timer(struct timer_list *t)
8831 {
8832 struct ahd_softc *ahd = from_timer(ahd, t, stat_timer);
8833 u_long s;
8834 int enint_coal;
8835
8836 ahd_lock(ahd, &s);
8837
8838 enint_coal = ahd->hs_mailbox & ENINT_COALESCE;
8839 if (ahd->cmdcmplt_total > ahd->int_coalescing_threshold)
8840 enint_coal |= ENINT_COALESCE;
8841 else if (ahd->cmdcmplt_total < ahd->int_coalescing_stop_threshold)
8842 enint_coal &= ~ENINT_COALESCE;
8843
8844 if (enint_coal != (ahd->hs_mailbox & ENINT_COALESCE)) {
8845 ahd_enable_coalescing(ahd, enint_coal);
8846 #ifdef AHD_DEBUG
8847 if ((ahd_debug & AHD_SHOW_INT_COALESCING) != 0)
8848 printk("%s: Interrupt coalescing "
8849 "now %sabled. Cmds %d\n",
8850 ahd_name(ahd),
8851 (enint_coal & ENINT_COALESCE) ? "en" : "dis",
8852 ahd->cmdcmplt_total);
8853 #endif
8854 }
8855
8856 ahd->cmdcmplt_bucket = (ahd->cmdcmplt_bucket+1) & (AHD_STAT_BUCKETS-1);
8857 ahd->cmdcmplt_total -= ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket];
8858 ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket] = 0;
8859 ahd_timer_reset(&ahd->stat_timer, AHD_STAT_UPDATE_US);
8860 ahd_unlock(ahd, &s);
8861 }
8862
8863 /****************************** Status Processing *****************************/
8864
8865 static void
ahd_handle_scsi_status(struct ahd_softc * ahd,struct scb * scb)8866 ahd_handle_scsi_status(struct ahd_softc *ahd, struct scb *scb)
8867 {
8868 struct hardware_scb *hscb;
8869 int paused;
8870
8871 /*
8872 * The sequencer freezes its select-out queue
8873 * anytime a SCSI status error occurs. We must
8874 * handle the error and increment our qfreeze count
8875 * to allow the sequencer to continue. We don't
8876 * bother clearing critical sections here since all
8877 * operations are on data structures that the sequencer
8878 * is not touching once the queue is frozen.
8879 */
8880 hscb = scb->hscb;
8881
8882 if (ahd_is_paused(ahd)) {
8883 paused = 1;
8884 } else {
8885 paused = 0;
8886 ahd_pause(ahd);
8887 }
8888
8889 /* Freeze the queue until the client sees the error. */
8890 ahd_freeze_devq(ahd, scb);
8891 ahd_freeze_scb(scb);
8892 ahd->qfreeze_cnt++;
8893 ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
8894
8895 if (paused == 0)
8896 ahd_unpause(ahd);
8897
8898 /* Don't want to clobber the original sense code */
8899 if ((scb->flags & SCB_SENSE) != 0) {
8900 /*
8901 * Clear the SCB_SENSE Flag and perform
8902 * a normal command completion.
8903 */
8904 scb->flags &= ~SCB_SENSE;
8905 ahd_set_transaction_status(scb, CAM_AUTOSENSE_FAIL);
8906 ahd_done(ahd, scb);
8907 return;
8908 }
8909 ahd_set_transaction_status(scb, CAM_SCSI_STATUS_ERROR);
8910 ahd_set_scsi_status(scb, hscb->shared_data.istatus.scsi_status);
8911 switch (hscb->shared_data.istatus.scsi_status) {
8912 case STATUS_PKT_SENSE:
8913 {
8914 struct scsi_status_iu_header *siu;
8915
8916 ahd_sync_sense(ahd, scb, BUS_DMASYNC_POSTREAD);
8917 siu = (struct scsi_status_iu_header *)scb->sense_data;
8918 ahd_set_scsi_status(scb, siu->status);
8919 #ifdef AHD_DEBUG
8920 if ((ahd_debug & AHD_SHOW_SENSE) != 0) {
8921 ahd_print_path(ahd, scb);
8922 printk("SCB 0x%x Received PKT Status of 0x%x\n",
8923 SCB_GET_TAG(scb), siu->status);
8924 printk("\tflags = 0x%x, sense len = 0x%x, "
8925 "pktfail = 0x%x\n",
8926 siu->flags, scsi_4btoul(siu->sense_length),
8927 scsi_4btoul(siu->pkt_failures_length));
8928 }
8929 #endif
8930 if ((siu->flags & SIU_RSPVALID) != 0) {
8931 ahd_print_path(ahd, scb);
8932 if (scsi_4btoul(siu->pkt_failures_length) < 4) {
8933 printk("Unable to parse pkt_failures\n");
8934 } else {
8935
8936 switch (SIU_PKTFAIL_CODE(siu)) {
8937 case SIU_PFC_NONE:
8938 printk("No packet failure found\n");
8939 break;
8940 case SIU_PFC_CIU_FIELDS_INVALID:
8941 printk("Invalid Command IU Field\n");
8942 break;
8943 case SIU_PFC_TMF_NOT_SUPPORTED:
8944 printk("TMF not supported\n");
8945 break;
8946 case SIU_PFC_TMF_FAILED:
8947 printk("TMF failed\n");
8948 break;
8949 case SIU_PFC_INVALID_TYPE_CODE:
8950 printk("Invalid L_Q Type code\n");
8951 break;
8952 case SIU_PFC_ILLEGAL_REQUEST:
8953 printk("Illegal request\n");
8954 default:
8955 break;
8956 }
8957 }
8958 if (siu->status == SCSI_STATUS_OK)
8959 ahd_set_transaction_status(scb,
8960 CAM_REQ_CMP_ERR);
8961 }
8962 if ((siu->flags & SIU_SNSVALID) != 0) {
8963 scb->flags |= SCB_PKT_SENSE;
8964 #ifdef AHD_DEBUG
8965 if ((ahd_debug & AHD_SHOW_SENSE) != 0)
8966 printk("Sense data available\n");
8967 #endif
8968 }
8969 ahd_done(ahd, scb);
8970 break;
8971 }
8972 case SCSI_STATUS_CMD_TERMINATED:
8973 case SCSI_STATUS_CHECK_COND:
8974 {
8975 struct ahd_devinfo devinfo;
8976 struct ahd_dma_seg *sg;
8977 struct scsi_sense *sc;
8978 struct ahd_initiator_tinfo *targ_info;
8979 struct ahd_tmode_tstate *tstate;
8980 struct ahd_transinfo *tinfo;
8981 #ifdef AHD_DEBUG
8982 if (ahd_debug & AHD_SHOW_SENSE) {
8983 ahd_print_path(ahd, scb);
8984 printk("SCB %d: requests Check Status\n",
8985 SCB_GET_TAG(scb));
8986 }
8987 #endif
8988
8989 if (ahd_perform_autosense(scb) == 0)
8990 break;
8991
8992 ahd_compile_devinfo(&devinfo, SCB_GET_OUR_ID(scb),
8993 SCB_GET_TARGET(ahd, scb),
8994 SCB_GET_LUN(scb),
8995 SCB_GET_CHANNEL(ahd, scb),
8996 ROLE_INITIATOR);
8997 targ_info = ahd_fetch_transinfo(ahd,
8998 devinfo.channel,
8999 devinfo.our_scsiid,
9000 devinfo.target,
9001 &tstate);
9002 tinfo = &targ_info->curr;
9003 sg = scb->sg_list;
9004 sc = (struct scsi_sense *)hscb->shared_data.idata.cdb;
9005 /*
9006 * Save off the residual if there is one.
9007 */
9008 ahd_update_residual(ahd, scb);
9009 #ifdef AHD_DEBUG
9010 if (ahd_debug & AHD_SHOW_SENSE) {
9011 ahd_print_path(ahd, scb);
9012 printk("Sending Sense\n");
9013 }
9014 #endif
9015 scb->sg_count = 0;
9016 sg = ahd_sg_setup(ahd, scb, sg, ahd_get_sense_bufaddr(ahd, scb),
9017 ahd_get_sense_bufsize(ahd, scb),
9018 /*last*/TRUE);
9019 sc->opcode = REQUEST_SENSE;
9020 sc->byte2 = 0;
9021 if (tinfo->protocol_version <= SCSI_REV_2
9022 && SCB_GET_LUN(scb) < 8)
9023 sc->byte2 = SCB_GET_LUN(scb) << 5;
9024 sc->unused[0] = 0;
9025 sc->unused[1] = 0;
9026 sc->length = ahd_get_sense_bufsize(ahd, scb);
9027 sc->control = 0;
9028
9029 /*
9030 * We can't allow the target to disconnect.
9031 * This will be an untagged transaction and
9032 * having the target disconnect will make this
9033 * transaction indestinguishable from outstanding
9034 * tagged transactions.
9035 */
9036 hscb->control = 0;
9037
9038 /*
9039 * This request sense could be because the
9040 * the device lost power or in some other
9041 * way has lost our transfer negotiations.
9042 * Renegotiate if appropriate. Unit attention
9043 * errors will be reported before any data
9044 * phases occur.
9045 */
9046 if (ahd_get_residual(scb) == ahd_get_transfer_length(scb)) {
9047 ahd_update_neg_request(ahd, &devinfo,
9048 tstate, targ_info,
9049 AHD_NEG_IF_NON_ASYNC);
9050 }
9051 if (tstate->auto_negotiate & devinfo.target_mask) {
9052 hscb->control |= MK_MESSAGE;
9053 scb->flags &=
9054 ~(SCB_NEGOTIATE|SCB_ABORT|SCB_DEVICE_RESET);
9055 scb->flags |= SCB_AUTO_NEGOTIATE;
9056 }
9057 hscb->cdb_len = sizeof(*sc);
9058 ahd_setup_data_scb(ahd, scb);
9059 scb->flags |= SCB_SENSE;
9060 ahd_queue_scb(ahd, scb);
9061 break;
9062 }
9063 case SCSI_STATUS_OK:
9064 printk("%s: Interrupted for status of 0???\n",
9065 ahd_name(ahd));
9066 /* FALLTHROUGH */
9067 default:
9068 ahd_done(ahd, scb);
9069 break;
9070 }
9071 }
9072
9073 static void
ahd_handle_scb_status(struct ahd_softc * ahd,struct scb * scb)9074 ahd_handle_scb_status(struct ahd_softc *ahd, struct scb *scb)
9075 {
9076 if (scb->hscb->shared_data.istatus.scsi_status != 0) {
9077 ahd_handle_scsi_status(ahd, scb);
9078 } else {
9079 ahd_calc_residual(ahd, scb);
9080 ahd_done(ahd, scb);
9081 }
9082 }
9083
9084 /*
9085 * Calculate the residual for a just completed SCB.
9086 */
9087 static void
ahd_calc_residual(struct ahd_softc * ahd,struct scb * scb)9088 ahd_calc_residual(struct ahd_softc *ahd, struct scb *scb)
9089 {
9090 struct hardware_scb *hscb;
9091 struct initiator_status *spkt;
9092 uint32_t sgptr;
9093 uint32_t resid_sgptr;
9094 uint32_t resid;
9095
9096 /*
9097 * 5 cases.
9098 * 1) No residual.
9099 * SG_STATUS_VALID clear in sgptr.
9100 * 2) Transferless command
9101 * 3) Never performed any transfers.
9102 * sgptr has SG_FULL_RESID set.
9103 * 4) No residual but target did not
9104 * save data pointers after the
9105 * last transfer, so sgptr was
9106 * never updated.
9107 * 5) We have a partial residual.
9108 * Use residual_sgptr to determine
9109 * where we are.
9110 */
9111
9112 hscb = scb->hscb;
9113 sgptr = ahd_le32toh(hscb->sgptr);
9114 if ((sgptr & SG_STATUS_VALID) == 0)
9115 /* Case 1 */
9116 return;
9117 sgptr &= ~SG_STATUS_VALID;
9118
9119 if ((sgptr & SG_LIST_NULL) != 0)
9120 /* Case 2 */
9121 return;
9122
9123 /*
9124 * Residual fields are the same in both
9125 * target and initiator status packets,
9126 * so we can always use the initiator fields
9127 * regardless of the role for this SCB.
9128 */
9129 spkt = &hscb->shared_data.istatus;
9130 resid_sgptr = ahd_le32toh(spkt->residual_sgptr);
9131 if ((sgptr & SG_FULL_RESID) != 0) {
9132 /* Case 3 */
9133 resid = ahd_get_transfer_length(scb);
9134 } else if ((resid_sgptr & SG_LIST_NULL) != 0) {
9135 /* Case 4 */
9136 return;
9137 } else if ((resid_sgptr & SG_OVERRUN_RESID) != 0) {
9138 ahd_print_path(ahd, scb);
9139 printk("data overrun detected Tag == 0x%x.\n",
9140 SCB_GET_TAG(scb));
9141 ahd_freeze_devq(ahd, scb);
9142 ahd_set_transaction_status(scb, CAM_DATA_RUN_ERR);
9143 ahd_freeze_scb(scb);
9144 return;
9145 } else if ((resid_sgptr & ~SG_PTR_MASK) != 0) {
9146 panic("Bogus resid sgptr value 0x%x\n", resid_sgptr);
9147 /* NOTREACHED */
9148 } else {
9149 struct ahd_dma_seg *sg;
9150
9151 /*
9152 * Remainder of the SG where the transfer
9153 * stopped.
9154 */
9155 resid = ahd_le32toh(spkt->residual_datacnt) & AHD_SG_LEN_MASK;
9156 sg = ahd_sg_bus_to_virt(ahd, scb, resid_sgptr & SG_PTR_MASK);
9157
9158 /* The residual sg_ptr always points to the next sg */
9159 sg--;
9160
9161 /*
9162 * Add up the contents of all residual
9163 * SG segments that are after the SG where
9164 * the transfer stopped.
9165 */
9166 while ((ahd_le32toh(sg->len) & AHD_DMA_LAST_SEG) == 0) {
9167 sg++;
9168 resid += ahd_le32toh(sg->len) & AHD_SG_LEN_MASK;
9169 }
9170 }
9171 if ((scb->flags & SCB_SENSE) == 0)
9172 ahd_set_residual(scb, resid);
9173 else
9174 ahd_set_sense_residual(scb, resid);
9175
9176 #ifdef AHD_DEBUG
9177 if ((ahd_debug & AHD_SHOW_MISC) != 0) {
9178 ahd_print_path(ahd, scb);
9179 printk("Handled %sResidual of %d bytes\n",
9180 (scb->flags & SCB_SENSE) ? "Sense " : "", resid);
9181 }
9182 #endif
9183 }
9184
9185 /******************************* Target Mode **********************************/
9186 #ifdef AHD_TARGET_MODE
9187 /*
9188 * Add a target mode event to this lun's queue
9189 */
9190 static void
ahd_queue_lstate_event(struct ahd_softc * ahd,struct ahd_tmode_lstate * lstate,u_int initiator_id,u_int event_type,u_int event_arg)9191 ahd_queue_lstate_event(struct ahd_softc *ahd, struct ahd_tmode_lstate *lstate,
9192 u_int initiator_id, u_int event_type, u_int event_arg)
9193 {
9194 struct ahd_tmode_event *event;
9195 int pending;
9196
9197 xpt_freeze_devq(lstate->path, /*count*/1);
9198 if (lstate->event_w_idx >= lstate->event_r_idx)
9199 pending = lstate->event_w_idx - lstate->event_r_idx;
9200 else
9201 pending = AHD_TMODE_EVENT_BUFFER_SIZE + 1
9202 - (lstate->event_r_idx - lstate->event_w_idx);
9203
9204 if (event_type == EVENT_TYPE_BUS_RESET
9205 || event_type == MSG_BUS_DEV_RESET) {
9206 /*
9207 * Any earlier events are irrelevant, so reset our buffer.
9208 * This has the effect of allowing us to deal with reset
9209 * floods (an external device holding down the reset line)
9210 * without losing the event that is really interesting.
9211 */
9212 lstate->event_r_idx = 0;
9213 lstate->event_w_idx = 0;
9214 xpt_release_devq(lstate->path, pending, /*runqueue*/FALSE);
9215 }
9216
9217 if (pending == AHD_TMODE_EVENT_BUFFER_SIZE) {
9218 xpt_print_path(lstate->path);
9219 printk("immediate event %x:%x lost\n",
9220 lstate->event_buffer[lstate->event_r_idx].event_type,
9221 lstate->event_buffer[lstate->event_r_idx].event_arg);
9222 lstate->event_r_idx++;
9223 if (lstate->event_r_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
9224 lstate->event_r_idx = 0;
9225 xpt_release_devq(lstate->path, /*count*/1, /*runqueue*/FALSE);
9226 }
9227
9228 event = &lstate->event_buffer[lstate->event_w_idx];
9229 event->initiator_id = initiator_id;
9230 event->event_type = event_type;
9231 event->event_arg = event_arg;
9232 lstate->event_w_idx++;
9233 if (lstate->event_w_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
9234 lstate->event_w_idx = 0;
9235 }
9236
9237 /*
9238 * Send any target mode events queued up waiting
9239 * for immediate notify resources.
9240 */
9241 void
ahd_send_lstate_events(struct ahd_softc * ahd,struct ahd_tmode_lstate * lstate)9242 ahd_send_lstate_events(struct ahd_softc *ahd, struct ahd_tmode_lstate *lstate)
9243 {
9244 struct ccb_hdr *ccbh;
9245 struct ccb_immed_notify *inot;
9246
9247 while (lstate->event_r_idx != lstate->event_w_idx
9248 && (ccbh = SLIST_FIRST(&lstate->immed_notifies)) != NULL) {
9249 struct ahd_tmode_event *event;
9250
9251 event = &lstate->event_buffer[lstate->event_r_idx];
9252 SLIST_REMOVE_HEAD(&lstate->immed_notifies, sim_links.sle);
9253 inot = (struct ccb_immed_notify *)ccbh;
9254 switch (event->event_type) {
9255 case EVENT_TYPE_BUS_RESET:
9256 ccbh->status = CAM_SCSI_BUS_RESET|CAM_DEV_QFRZN;
9257 break;
9258 default:
9259 ccbh->status = CAM_MESSAGE_RECV|CAM_DEV_QFRZN;
9260 inot->message_args[0] = event->event_type;
9261 inot->message_args[1] = event->event_arg;
9262 break;
9263 }
9264 inot->initiator_id = event->initiator_id;
9265 inot->sense_len = 0;
9266 xpt_done((union ccb *)inot);
9267 lstate->event_r_idx++;
9268 if (lstate->event_r_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
9269 lstate->event_r_idx = 0;
9270 }
9271 }
9272 #endif
9273
9274 /******************** Sequencer Program Patching/Download *********************/
9275
9276 #ifdef AHD_DUMP_SEQ
9277 void
ahd_dumpseq(struct ahd_softc * ahd)9278 ahd_dumpseq(struct ahd_softc* ahd)
9279 {
9280 int i;
9281 int max_prog;
9282
9283 max_prog = 2048;
9284
9285 ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE|LOADRAM);
9286 ahd_outw(ahd, PRGMCNT, 0);
9287 for (i = 0; i < max_prog; i++) {
9288 uint8_t ins_bytes[4];
9289
9290 ahd_insb(ahd, SEQRAM, ins_bytes, 4);
9291 printk("0x%08x\n", ins_bytes[0] << 24
9292 | ins_bytes[1] << 16
9293 | ins_bytes[2] << 8
9294 | ins_bytes[3]);
9295 }
9296 }
9297 #endif
9298
9299 static void
ahd_loadseq(struct ahd_softc * ahd)9300 ahd_loadseq(struct ahd_softc *ahd)
9301 {
9302 struct cs cs_table[NUM_CRITICAL_SECTIONS];
9303 u_int begin_set[NUM_CRITICAL_SECTIONS];
9304 u_int end_set[NUM_CRITICAL_SECTIONS];
9305 const struct patch *cur_patch;
9306 u_int cs_count;
9307 u_int cur_cs;
9308 u_int i;
9309 int downloaded;
9310 u_int skip_addr;
9311 u_int sg_prefetch_cnt;
9312 u_int sg_prefetch_cnt_limit;
9313 u_int sg_prefetch_align;
9314 u_int sg_size;
9315 u_int cacheline_mask;
9316 uint8_t download_consts[DOWNLOAD_CONST_COUNT];
9317
9318 if (bootverbose)
9319 printk("%s: Downloading Sequencer Program...",
9320 ahd_name(ahd));
9321
9322 #if DOWNLOAD_CONST_COUNT != 8
9323 #error "Download Const Mismatch"
9324 #endif
9325 /*
9326 * Start out with 0 critical sections
9327 * that apply to this firmware load.
9328 */
9329 cs_count = 0;
9330 cur_cs = 0;
9331 memset(begin_set, 0, sizeof(begin_set));
9332 memset(end_set, 0, sizeof(end_set));
9333
9334 /*
9335 * Setup downloadable constant table.
9336 *
9337 * The computation for the S/G prefetch variables is
9338 * a bit complicated. We would like to always fetch
9339 * in terms of cachelined sized increments. However,
9340 * if the cacheline is not an even multiple of the
9341 * SG element size or is larger than our SG RAM, using
9342 * just the cache size might leave us with only a portion
9343 * of an SG element at the tail of a prefetch. If the
9344 * cacheline is larger than our S/G prefetch buffer less
9345 * the size of an SG element, we may round down to a cacheline
9346 * that doesn't contain any or all of the S/G of interest
9347 * within the bounds of our S/G ram. Provide variables to
9348 * the sequencer that will allow it to handle these edge
9349 * cases.
9350 */
9351 /* Start by aligning to the nearest cacheline. */
9352 sg_prefetch_align = ahd->pci_cachesize;
9353 if (sg_prefetch_align == 0)
9354 sg_prefetch_align = 8;
9355 /* Round down to the nearest power of 2. */
9356 while (powerof2(sg_prefetch_align) == 0)
9357 sg_prefetch_align--;
9358
9359 cacheline_mask = sg_prefetch_align - 1;
9360
9361 /*
9362 * If the cacheline boundary is greater than half our prefetch RAM
9363 * we risk not being able to fetch even a single complete S/G
9364 * segment if we align to that boundary.
9365 */
9366 if (sg_prefetch_align > CCSGADDR_MAX/2)
9367 sg_prefetch_align = CCSGADDR_MAX/2;
9368 /* Start by fetching a single cacheline. */
9369 sg_prefetch_cnt = sg_prefetch_align;
9370 /*
9371 * Increment the prefetch count by cachelines until
9372 * at least one S/G element will fit.
9373 */
9374 sg_size = sizeof(struct ahd_dma_seg);
9375 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
9376 sg_size = sizeof(struct ahd_dma64_seg);
9377 while (sg_prefetch_cnt < sg_size)
9378 sg_prefetch_cnt += sg_prefetch_align;
9379 /*
9380 * If the cacheline is not an even multiple of
9381 * the S/G size, we may only get a partial S/G when
9382 * we align. Add a cacheline if this is the case.
9383 */
9384 if ((sg_prefetch_align % sg_size) != 0
9385 && (sg_prefetch_cnt < CCSGADDR_MAX))
9386 sg_prefetch_cnt += sg_prefetch_align;
9387 /*
9388 * Lastly, compute a value that the sequencer can use
9389 * to determine if the remainder of the CCSGRAM buffer
9390 * has a full S/G element in it.
9391 */
9392 sg_prefetch_cnt_limit = -(sg_prefetch_cnt - sg_size + 1);
9393 download_consts[SG_PREFETCH_CNT] = sg_prefetch_cnt;
9394 download_consts[SG_PREFETCH_CNT_LIMIT] = sg_prefetch_cnt_limit;
9395 download_consts[SG_PREFETCH_ALIGN_MASK] = ~(sg_prefetch_align - 1);
9396 download_consts[SG_PREFETCH_ADDR_MASK] = (sg_prefetch_align - 1);
9397 download_consts[SG_SIZEOF] = sg_size;
9398 download_consts[PKT_OVERRUN_BUFOFFSET] =
9399 (ahd->overrun_buf - (uint8_t *)ahd->qoutfifo) / 256;
9400 download_consts[SCB_TRANSFER_SIZE] = SCB_TRANSFER_SIZE_1BYTE_LUN;
9401 download_consts[CACHELINE_MASK] = cacheline_mask;
9402 cur_patch = patches;
9403 downloaded = 0;
9404 skip_addr = 0;
9405 ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE|LOADRAM);
9406 ahd_outw(ahd, PRGMCNT, 0);
9407
9408 for (i = 0; i < sizeof(seqprog)/4; i++) {
9409 if (ahd_check_patch(ahd, &cur_patch, i, &skip_addr) == 0) {
9410 /*
9411 * Don't download this instruction as it
9412 * is in a patch that was removed.
9413 */
9414 continue;
9415 }
9416 /*
9417 * Move through the CS table until we find a CS
9418 * that might apply to this instruction.
9419 */
9420 for (; cur_cs < NUM_CRITICAL_SECTIONS; cur_cs++) {
9421 if (critical_sections[cur_cs].end <= i) {
9422 if (begin_set[cs_count] == TRUE
9423 && end_set[cs_count] == FALSE) {
9424 cs_table[cs_count].end = downloaded;
9425 end_set[cs_count] = TRUE;
9426 cs_count++;
9427 }
9428 continue;
9429 }
9430 if (critical_sections[cur_cs].begin <= i
9431 && begin_set[cs_count] == FALSE) {
9432 cs_table[cs_count].begin = downloaded;
9433 begin_set[cs_count] = TRUE;
9434 }
9435 break;
9436 }
9437 ahd_download_instr(ahd, i, download_consts);
9438 downloaded++;
9439 }
9440
9441 ahd->num_critical_sections = cs_count;
9442 if (cs_count != 0) {
9443
9444 cs_count *= sizeof(struct cs);
9445 ahd->critical_sections = kmalloc(cs_count, GFP_ATOMIC);
9446 if (ahd->critical_sections == NULL)
9447 panic("ahd_loadseq: Could not malloc");
9448 memcpy(ahd->critical_sections, cs_table, cs_count);
9449 }
9450 ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE);
9451
9452 if (bootverbose) {
9453 printk(" %d instructions downloaded\n", downloaded);
9454 printk("%s: Features 0x%x, Bugs 0x%x, Flags 0x%x\n",
9455 ahd_name(ahd), ahd->features, ahd->bugs, ahd->flags);
9456 }
9457 }
9458
9459 static int
ahd_check_patch(struct ahd_softc * ahd,const struct patch ** start_patch,u_int start_instr,u_int * skip_addr)9460 ahd_check_patch(struct ahd_softc *ahd, const struct patch **start_patch,
9461 u_int start_instr, u_int *skip_addr)
9462 {
9463 const struct patch *cur_patch;
9464 const struct patch *last_patch;
9465 u_int num_patches;
9466
9467 num_patches = ARRAY_SIZE(patches);
9468 last_patch = &patches[num_patches];
9469 cur_patch = *start_patch;
9470
9471 while (cur_patch < last_patch && start_instr == cur_patch->begin) {
9472
9473 if (cur_patch->patch_func(ahd) == 0) {
9474
9475 /* Start rejecting code */
9476 *skip_addr = start_instr + cur_patch->skip_instr;
9477 cur_patch += cur_patch->skip_patch;
9478 } else {
9479 /* Accepted this patch. Advance to the next
9480 * one and wait for our intruction pointer to
9481 * hit this point.
9482 */
9483 cur_patch++;
9484 }
9485 }
9486
9487 *start_patch = cur_patch;
9488 if (start_instr < *skip_addr)
9489 /* Still skipping */
9490 return (0);
9491
9492 return (1);
9493 }
9494
9495 static u_int
ahd_resolve_seqaddr(struct ahd_softc * ahd,u_int address)9496 ahd_resolve_seqaddr(struct ahd_softc *ahd, u_int address)
9497 {
9498 const struct patch *cur_patch;
9499 int address_offset;
9500 u_int skip_addr;
9501 u_int i;
9502
9503 address_offset = 0;
9504 cur_patch = patches;
9505 skip_addr = 0;
9506
9507 for (i = 0; i < address;) {
9508
9509 ahd_check_patch(ahd, &cur_patch, i, &skip_addr);
9510
9511 if (skip_addr > i) {
9512 int end_addr;
9513
9514 end_addr = min(address, skip_addr);
9515 address_offset += end_addr - i;
9516 i = skip_addr;
9517 } else {
9518 i++;
9519 }
9520 }
9521 return (address - address_offset);
9522 }
9523
9524 static void
ahd_download_instr(struct ahd_softc * ahd,u_int instrptr,uint8_t * dconsts)9525 ahd_download_instr(struct ahd_softc *ahd, u_int instrptr, uint8_t *dconsts)
9526 {
9527 union ins_formats instr;
9528 struct ins_format1 *fmt1_ins;
9529 struct ins_format3 *fmt3_ins;
9530 u_int opcode;
9531
9532 /*
9533 * The firmware is always compiled into a little endian format.
9534 */
9535 instr.integer = ahd_le32toh(*(uint32_t*)&seqprog[instrptr * 4]);
9536
9537 fmt1_ins = &instr.format1;
9538 fmt3_ins = NULL;
9539
9540 /* Pull the opcode */
9541 opcode = instr.format1.opcode;
9542 switch (opcode) {
9543 case AIC_OP_JMP:
9544 case AIC_OP_JC:
9545 case AIC_OP_JNC:
9546 case AIC_OP_CALL:
9547 case AIC_OP_JNE:
9548 case AIC_OP_JNZ:
9549 case AIC_OP_JE:
9550 case AIC_OP_JZ:
9551 {
9552 fmt3_ins = &instr.format3;
9553 fmt3_ins->address = ahd_resolve_seqaddr(ahd, fmt3_ins->address);
9554 }
9555 /* fall through */
9556 case AIC_OP_OR:
9557 case AIC_OP_AND:
9558 case AIC_OP_XOR:
9559 case AIC_OP_ADD:
9560 case AIC_OP_ADC:
9561 case AIC_OP_BMOV:
9562 if (fmt1_ins->parity != 0) {
9563 fmt1_ins->immediate = dconsts[fmt1_ins->immediate];
9564 }
9565 fmt1_ins->parity = 0;
9566 /* fall through */
9567 case AIC_OP_ROL:
9568 {
9569 int i, count;
9570
9571 /* Calculate odd parity for the instruction */
9572 for (i = 0, count = 0; i < 31; i++) {
9573 uint32_t mask;
9574
9575 mask = 0x01 << i;
9576 if ((instr.integer & mask) != 0)
9577 count++;
9578 }
9579 if ((count & 0x01) == 0)
9580 instr.format1.parity = 1;
9581
9582 /* The sequencer is a little endian cpu */
9583 instr.integer = ahd_htole32(instr.integer);
9584 ahd_outsb(ahd, SEQRAM, instr.bytes, 4);
9585 break;
9586 }
9587 default:
9588 panic("Unknown opcode encountered in seq program");
9589 break;
9590 }
9591 }
9592
9593 static int
ahd_probe_stack_size(struct ahd_softc * ahd)9594 ahd_probe_stack_size(struct ahd_softc *ahd)
9595 {
9596 int last_probe;
9597
9598 last_probe = 0;
9599 while (1) {
9600 int i;
9601
9602 /*
9603 * We avoid using 0 as a pattern to avoid
9604 * confusion if the stack implementation
9605 * "back-fills" with zeros when "poping'
9606 * entries.
9607 */
9608 for (i = 1; i <= last_probe+1; i++) {
9609 ahd_outb(ahd, STACK, i & 0xFF);
9610 ahd_outb(ahd, STACK, (i >> 8) & 0xFF);
9611 }
9612
9613 /* Verify */
9614 for (i = last_probe+1; i > 0; i--) {
9615 u_int stack_entry;
9616
9617 stack_entry = ahd_inb(ahd, STACK)
9618 |(ahd_inb(ahd, STACK) << 8);
9619 if (stack_entry != i)
9620 goto sized;
9621 }
9622 last_probe++;
9623 }
9624 sized:
9625 return (last_probe);
9626 }
9627
9628 int
ahd_print_register(const ahd_reg_parse_entry_t * table,u_int num_entries,const char * name,u_int address,u_int value,u_int * cur_column,u_int wrap_point)9629 ahd_print_register(const ahd_reg_parse_entry_t *table, u_int num_entries,
9630 const char *name, u_int address, u_int value,
9631 u_int *cur_column, u_int wrap_point)
9632 {
9633 int printed;
9634 u_int printed_mask;
9635
9636 if (cur_column != NULL && *cur_column >= wrap_point) {
9637 printk("\n");
9638 *cur_column = 0;
9639 }
9640 printed = printk("%s[0x%x]", name, value);
9641 if (table == NULL) {
9642 printed += printk(" ");
9643 *cur_column += printed;
9644 return (printed);
9645 }
9646 printed_mask = 0;
9647 while (printed_mask != 0xFF) {
9648 int entry;
9649
9650 for (entry = 0; entry < num_entries; entry++) {
9651 if (((value & table[entry].mask)
9652 != table[entry].value)
9653 || ((printed_mask & table[entry].mask)
9654 == table[entry].mask))
9655 continue;
9656
9657 printed += printk("%s%s",
9658 printed_mask == 0 ? ":(" : "|",
9659 table[entry].name);
9660 printed_mask |= table[entry].mask;
9661
9662 break;
9663 }
9664 if (entry >= num_entries)
9665 break;
9666 }
9667 if (printed_mask != 0)
9668 printed += printk(") ");
9669 else
9670 printed += printk(" ");
9671 if (cur_column != NULL)
9672 *cur_column += printed;
9673 return (printed);
9674 }
9675
9676 void
ahd_dump_card_state(struct ahd_softc * ahd)9677 ahd_dump_card_state(struct ahd_softc *ahd)
9678 {
9679 struct scb *scb;
9680 ahd_mode_state saved_modes;
9681 u_int dffstat;
9682 int paused;
9683 u_int scb_index;
9684 u_int saved_scb_index;
9685 u_int cur_col;
9686 int i;
9687
9688 if (ahd_is_paused(ahd)) {
9689 paused = 1;
9690 } else {
9691 paused = 0;
9692 ahd_pause(ahd);
9693 }
9694 saved_modes = ahd_save_modes(ahd);
9695 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
9696 printk(">>>>>>>>>>>>>>>>>> Dump Card State Begins <<<<<<<<<<<<<<<<<\n"
9697 "%s: Dumping Card State at program address 0x%x Mode 0x%x\n",
9698 ahd_name(ahd),
9699 ahd_inw(ahd, CURADDR),
9700 ahd_build_mode_state(ahd, ahd->saved_src_mode,
9701 ahd->saved_dst_mode));
9702 if (paused)
9703 printk("Card was paused\n");
9704
9705 if (ahd_check_cmdcmpltqueues(ahd))
9706 printk("Completions are pending\n");
9707
9708 /*
9709 * Mode independent registers.
9710 */
9711 cur_col = 0;
9712 ahd_intstat_print(ahd_inb(ahd, INTSTAT), &cur_col, 50);
9713 ahd_seloid_print(ahd_inb(ahd, SELOID), &cur_col, 50);
9714 ahd_selid_print(ahd_inb(ahd, SELID), &cur_col, 50);
9715 ahd_hs_mailbox_print(ahd_inb(ahd, LOCAL_HS_MAILBOX), &cur_col, 50);
9716 ahd_intctl_print(ahd_inb(ahd, INTCTL), &cur_col, 50);
9717 ahd_seqintstat_print(ahd_inb(ahd, SEQINTSTAT), &cur_col, 50);
9718 ahd_saved_mode_print(ahd_inb(ahd, SAVED_MODE), &cur_col, 50);
9719 ahd_dffstat_print(ahd_inb(ahd, DFFSTAT), &cur_col, 50);
9720 ahd_scsisigi_print(ahd_inb(ahd, SCSISIGI), &cur_col, 50);
9721 ahd_scsiphase_print(ahd_inb(ahd, SCSIPHASE), &cur_col, 50);
9722 ahd_scsibus_print(ahd_inb(ahd, SCSIBUS), &cur_col, 50);
9723 ahd_lastphase_print(ahd_inb(ahd, LASTPHASE), &cur_col, 50);
9724 ahd_scsiseq0_print(ahd_inb(ahd, SCSISEQ0), &cur_col, 50);
9725 ahd_scsiseq1_print(ahd_inb(ahd, SCSISEQ1), &cur_col, 50);
9726 ahd_seqctl0_print(ahd_inb(ahd, SEQCTL0), &cur_col, 50);
9727 ahd_seqintctl_print(ahd_inb(ahd, SEQINTCTL), &cur_col, 50);
9728 ahd_seq_flags_print(ahd_inb(ahd, SEQ_FLAGS), &cur_col, 50);
9729 ahd_seq_flags2_print(ahd_inb(ahd, SEQ_FLAGS2), &cur_col, 50);
9730 ahd_qfreeze_count_print(ahd_inw(ahd, QFREEZE_COUNT), &cur_col, 50);
9731 ahd_kernel_qfreeze_count_print(ahd_inw(ahd, KERNEL_QFREEZE_COUNT),
9732 &cur_col, 50);
9733 ahd_mk_message_scb_print(ahd_inw(ahd, MK_MESSAGE_SCB), &cur_col, 50);
9734 ahd_mk_message_scsiid_print(ahd_inb(ahd, MK_MESSAGE_SCSIID),
9735 &cur_col, 50);
9736 ahd_sstat0_print(ahd_inb(ahd, SSTAT0), &cur_col, 50);
9737 ahd_sstat1_print(ahd_inb(ahd, SSTAT1), &cur_col, 50);
9738 ahd_sstat2_print(ahd_inb(ahd, SSTAT2), &cur_col, 50);
9739 ahd_sstat3_print(ahd_inb(ahd, SSTAT3), &cur_col, 50);
9740 ahd_perrdiag_print(ahd_inb(ahd, PERRDIAG), &cur_col, 50);
9741 ahd_simode1_print(ahd_inb(ahd, SIMODE1), &cur_col, 50);
9742 ahd_lqistat0_print(ahd_inb(ahd, LQISTAT0), &cur_col, 50);
9743 ahd_lqistat1_print(ahd_inb(ahd, LQISTAT1), &cur_col, 50);
9744 ahd_lqistat2_print(ahd_inb(ahd, LQISTAT2), &cur_col, 50);
9745 ahd_lqostat0_print(ahd_inb(ahd, LQOSTAT0), &cur_col, 50);
9746 ahd_lqostat1_print(ahd_inb(ahd, LQOSTAT1), &cur_col, 50);
9747 ahd_lqostat2_print(ahd_inb(ahd, LQOSTAT2), &cur_col, 50);
9748 printk("\n");
9749 printk("\nSCB Count = %d CMDS_PENDING = %d LASTSCB 0x%x "
9750 "CURRSCB 0x%x NEXTSCB 0x%x\n",
9751 ahd->scb_data.numscbs, ahd_inw(ahd, CMDS_PENDING),
9752 ahd_inw(ahd, LASTSCB), ahd_inw(ahd, CURRSCB),
9753 ahd_inw(ahd, NEXTSCB));
9754 cur_col = 0;
9755 /* QINFIFO */
9756 ahd_search_qinfifo(ahd, CAM_TARGET_WILDCARD, ALL_CHANNELS,
9757 CAM_LUN_WILDCARD, SCB_LIST_NULL,
9758 ROLE_UNKNOWN, /*status*/0, SEARCH_PRINT);
9759 saved_scb_index = ahd_get_scbptr(ahd);
9760 printk("Pending list:");
9761 i = 0;
9762 LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
9763 if (i++ > AHD_SCB_MAX)
9764 break;
9765 cur_col = printk("\n%3d FIFO_USE[0x%x] ", SCB_GET_TAG(scb),
9766 ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT));
9767 ahd_set_scbptr(ahd, SCB_GET_TAG(scb));
9768 ahd_scb_control_print(ahd_inb_scbram(ahd, SCB_CONTROL),
9769 &cur_col, 60);
9770 ahd_scb_scsiid_print(ahd_inb_scbram(ahd, SCB_SCSIID),
9771 &cur_col, 60);
9772 }
9773 printk("\nTotal %d\n", i);
9774
9775 printk("Kernel Free SCB list: ");
9776 i = 0;
9777 TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
9778 struct scb *list_scb;
9779
9780 list_scb = scb;
9781 do {
9782 printk("%d ", SCB_GET_TAG(list_scb));
9783 list_scb = LIST_NEXT(list_scb, collision_links);
9784 } while (list_scb && i++ < AHD_SCB_MAX);
9785 }
9786
9787 LIST_FOREACH(scb, &ahd->scb_data.any_dev_free_scb_list, links.le) {
9788 if (i++ > AHD_SCB_MAX)
9789 break;
9790 printk("%d ", SCB_GET_TAG(scb));
9791 }
9792 printk("\n");
9793
9794 printk("Sequencer Complete DMA-inprog list: ");
9795 scb_index = ahd_inw(ahd, COMPLETE_SCB_DMAINPROG_HEAD);
9796 i = 0;
9797 while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9798 ahd_set_scbptr(ahd, scb_index);
9799 printk("%d ", scb_index);
9800 scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9801 }
9802 printk("\n");
9803
9804 printk("Sequencer Complete list: ");
9805 scb_index = ahd_inw(ahd, COMPLETE_SCB_HEAD);
9806 i = 0;
9807 while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9808 ahd_set_scbptr(ahd, scb_index);
9809 printk("%d ", scb_index);
9810 scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9811 }
9812 printk("\n");
9813
9814
9815 printk("Sequencer DMA-Up and Complete list: ");
9816 scb_index = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
9817 i = 0;
9818 while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9819 ahd_set_scbptr(ahd, scb_index);
9820 printk("%d ", scb_index);
9821 scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9822 }
9823 printk("\n");
9824 printk("Sequencer On QFreeze and Complete list: ");
9825 scb_index = ahd_inw(ahd, COMPLETE_ON_QFREEZE_HEAD);
9826 i = 0;
9827 while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9828 ahd_set_scbptr(ahd, scb_index);
9829 printk("%d ", scb_index);
9830 scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9831 }
9832 printk("\n");
9833 ahd_set_scbptr(ahd, saved_scb_index);
9834 dffstat = ahd_inb(ahd, DFFSTAT);
9835 for (i = 0; i < 2; i++) {
9836 #ifdef AHD_DEBUG
9837 struct scb *fifo_scb;
9838 #endif
9839 u_int fifo_scbptr;
9840
9841 ahd_set_modes(ahd, AHD_MODE_DFF0 + i, AHD_MODE_DFF0 + i);
9842 fifo_scbptr = ahd_get_scbptr(ahd);
9843 printk("\n\n%s: FIFO%d %s, LONGJMP == 0x%x, SCB 0x%x\n",
9844 ahd_name(ahd), i,
9845 (dffstat & (FIFO0FREE << i)) ? "Free" : "Active",
9846 ahd_inw(ahd, LONGJMP_ADDR), fifo_scbptr);
9847 cur_col = 0;
9848 ahd_seqimode_print(ahd_inb(ahd, SEQIMODE), &cur_col, 50);
9849 ahd_seqintsrc_print(ahd_inb(ahd, SEQINTSRC), &cur_col, 50);
9850 ahd_dfcntrl_print(ahd_inb(ahd, DFCNTRL), &cur_col, 50);
9851 ahd_dfstatus_print(ahd_inb(ahd, DFSTATUS), &cur_col, 50);
9852 ahd_sg_cache_shadow_print(ahd_inb(ahd, SG_CACHE_SHADOW),
9853 &cur_col, 50);
9854 ahd_sg_state_print(ahd_inb(ahd, SG_STATE), &cur_col, 50);
9855 ahd_dffsxfrctl_print(ahd_inb(ahd, DFFSXFRCTL), &cur_col, 50);
9856 ahd_soffcnt_print(ahd_inb(ahd, SOFFCNT), &cur_col, 50);
9857 ahd_mdffstat_print(ahd_inb(ahd, MDFFSTAT), &cur_col, 50);
9858 if (cur_col > 50) {
9859 printk("\n");
9860 cur_col = 0;
9861 }
9862 cur_col += printk("SHADDR = 0x%x%x, SHCNT = 0x%x ",
9863 ahd_inl(ahd, SHADDR+4),
9864 ahd_inl(ahd, SHADDR),
9865 (ahd_inb(ahd, SHCNT)
9866 | (ahd_inb(ahd, SHCNT + 1) << 8)
9867 | (ahd_inb(ahd, SHCNT + 2) << 16)));
9868 if (cur_col > 50) {
9869 printk("\n");
9870 cur_col = 0;
9871 }
9872 cur_col += printk("HADDR = 0x%x%x, HCNT = 0x%x ",
9873 ahd_inl(ahd, HADDR+4),
9874 ahd_inl(ahd, HADDR),
9875 (ahd_inb(ahd, HCNT)
9876 | (ahd_inb(ahd, HCNT + 1) << 8)
9877 | (ahd_inb(ahd, HCNT + 2) << 16)));
9878 ahd_ccsgctl_print(ahd_inb(ahd, CCSGCTL), &cur_col, 50);
9879 #ifdef AHD_DEBUG
9880 if ((ahd_debug & AHD_SHOW_SG) != 0) {
9881 fifo_scb = ahd_lookup_scb(ahd, fifo_scbptr);
9882 if (fifo_scb != NULL)
9883 ahd_dump_sglist(fifo_scb);
9884 }
9885 #endif
9886 }
9887 printk("\nLQIN: ");
9888 for (i = 0; i < 20; i++)
9889 printk("0x%x ", ahd_inb(ahd, LQIN + i));
9890 printk("\n");
9891 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
9892 printk("%s: LQISTATE = 0x%x, LQOSTATE = 0x%x, OPTIONMODE = 0x%x\n",
9893 ahd_name(ahd), ahd_inb(ahd, LQISTATE), ahd_inb(ahd, LQOSTATE),
9894 ahd_inb(ahd, OPTIONMODE));
9895 printk("%s: OS_SPACE_CNT = 0x%x MAXCMDCNT = 0x%x\n",
9896 ahd_name(ahd), ahd_inb(ahd, OS_SPACE_CNT),
9897 ahd_inb(ahd, MAXCMDCNT));
9898 printk("%s: SAVED_SCSIID = 0x%x SAVED_LUN = 0x%x\n",
9899 ahd_name(ahd), ahd_inb(ahd, SAVED_SCSIID),
9900 ahd_inb(ahd, SAVED_LUN));
9901 ahd_simode0_print(ahd_inb(ahd, SIMODE0), &cur_col, 50);
9902 printk("\n");
9903 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
9904 cur_col = 0;
9905 ahd_ccscbctl_print(ahd_inb(ahd, CCSCBCTL), &cur_col, 50);
9906 printk("\n");
9907 ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
9908 printk("%s: REG0 == 0x%x, SINDEX = 0x%x, DINDEX = 0x%x\n",
9909 ahd_name(ahd), ahd_inw(ahd, REG0), ahd_inw(ahd, SINDEX),
9910 ahd_inw(ahd, DINDEX));
9911 printk("%s: SCBPTR == 0x%x, SCB_NEXT == 0x%x, SCB_NEXT2 == 0x%x\n",
9912 ahd_name(ahd), ahd_get_scbptr(ahd),
9913 ahd_inw_scbram(ahd, SCB_NEXT),
9914 ahd_inw_scbram(ahd, SCB_NEXT2));
9915 printk("CDB %x %x %x %x %x %x\n",
9916 ahd_inb_scbram(ahd, SCB_CDB_STORE),
9917 ahd_inb_scbram(ahd, SCB_CDB_STORE+1),
9918 ahd_inb_scbram(ahd, SCB_CDB_STORE+2),
9919 ahd_inb_scbram(ahd, SCB_CDB_STORE+3),
9920 ahd_inb_scbram(ahd, SCB_CDB_STORE+4),
9921 ahd_inb_scbram(ahd, SCB_CDB_STORE+5));
9922 printk("STACK:");
9923 for (i = 0; i < ahd->stack_size; i++) {
9924 ahd->saved_stack[i] =
9925 ahd_inb(ahd, STACK)|(ahd_inb(ahd, STACK) << 8);
9926 printk(" 0x%x", ahd->saved_stack[i]);
9927 }
9928 for (i = ahd->stack_size-1; i >= 0; i--) {
9929 ahd_outb(ahd, STACK, ahd->saved_stack[i] & 0xFF);
9930 ahd_outb(ahd, STACK, (ahd->saved_stack[i] >> 8) & 0xFF);
9931 }
9932 printk("\n<<<<<<<<<<<<<<<<< Dump Card State Ends >>>>>>>>>>>>>>>>>>\n");
9933 ahd_restore_modes(ahd, saved_modes);
9934 if (paused == 0)
9935 ahd_unpause(ahd);
9936 }
9937
9938 #if 0
9939 void
9940 ahd_dump_scbs(struct ahd_softc *ahd)
9941 {
9942 ahd_mode_state saved_modes;
9943 u_int saved_scb_index;
9944 int i;
9945
9946 saved_modes = ahd_save_modes(ahd);
9947 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
9948 saved_scb_index = ahd_get_scbptr(ahd);
9949 for (i = 0; i < AHD_SCB_MAX; i++) {
9950 ahd_set_scbptr(ahd, i);
9951 printk("%3d", i);
9952 printk("(CTRL 0x%x ID 0x%x N 0x%x N2 0x%x SG 0x%x, RSG 0x%x)\n",
9953 ahd_inb_scbram(ahd, SCB_CONTROL),
9954 ahd_inb_scbram(ahd, SCB_SCSIID),
9955 ahd_inw_scbram(ahd, SCB_NEXT),
9956 ahd_inw_scbram(ahd, SCB_NEXT2),
9957 ahd_inl_scbram(ahd, SCB_SGPTR),
9958 ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR));
9959 }
9960 printk("\n");
9961 ahd_set_scbptr(ahd, saved_scb_index);
9962 ahd_restore_modes(ahd, saved_modes);
9963 }
9964 #endif /* 0 */
9965
9966 /**************************** Flexport Logic **********************************/
9967 /*
9968 * Read count 16bit words from 16bit word address start_addr from the
9969 * SEEPROM attached to the controller, into buf, using the controller's
9970 * SEEPROM reading state machine. Optionally treat the data as a byte
9971 * stream in terms of byte order.
9972 */
9973 int
ahd_read_seeprom(struct ahd_softc * ahd,uint16_t * buf,u_int start_addr,u_int count,int bytestream)9974 ahd_read_seeprom(struct ahd_softc *ahd, uint16_t *buf,
9975 u_int start_addr, u_int count, int bytestream)
9976 {
9977 u_int cur_addr;
9978 u_int end_addr;
9979 int error;
9980
9981 /*
9982 * If we never make it through the loop even once,
9983 * we were passed invalid arguments.
9984 */
9985 error = EINVAL;
9986 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
9987 end_addr = start_addr + count;
9988 for (cur_addr = start_addr; cur_addr < end_addr; cur_addr++) {
9989
9990 ahd_outb(ahd, SEEADR, cur_addr);
9991 ahd_outb(ahd, SEECTL, SEEOP_READ | SEESTART);
9992
9993 error = ahd_wait_seeprom(ahd);
9994 if (error)
9995 break;
9996 if (bytestream != 0) {
9997 uint8_t *bytestream_ptr;
9998
9999 bytestream_ptr = (uint8_t *)buf;
10000 *bytestream_ptr++ = ahd_inb(ahd, SEEDAT);
10001 *bytestream_ptr = ahd_inb(ahd, SEEDAT+1);
10002 } else {
10003 /*
10004 * ahd_inw() already handles machine byte order.
10005 */
10006 *buf = ahd_inw(ahd, SEEDAT);
10007 }
10008 buf++;
10009 }
10010 return (error);
10011 }
10012
10013 /*
10014 * Write count 16bit words from buf, into SEEPROM attache to the
10015 * controller starting at 16bit word address start_addr, using the
10016 * controller's SEEPROM writing state machine.
10017 */
10018 int
ahd_write_seeprom(struct ahd_softc * ahd,uint16_t * buf,u_int start_addr,u_int count)10019 ahd_write_seeprom(struct ahd_softc *ahd, uint16_t *buf,
10020 u_int start_addr, u_int count)
10021 {
10022 u_int cur_addr;
10023 u_int end_addr;
10024 int error;
10025 int retval;
10026
10027 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
10028 error = ENOENT;
10029
10030 /* Place the chip into write-enable mode */
10031 ahd_outb(ahd, SEEADR, SEEOP_EWEN_ADDR);
10032 ahd_outb(ahd, SEECTL, SEEOP_EWEN | SEESTART);
10033 error = ahd_wait_seeprom(ahd);
10034 if (error)
10035 return (error);
10036
10037 /*
10038 * Write the data. If we don't get through the loop at
10039 * least once, the arguments were invalid.
10040 */
10041 retval = EINVAL;
10042 end_addr = start_addr + count;
10043 for (cur_addr = start_addr; cur_addr < end_addr; cur_addr++) {
10044 ahd_outw(ahd, SEEDAT, *buf++);
10045 ahd_outb(ahd, SEEADR, cur_addr);
10046 ahd_outb(ahd, SEECTL, SEEOP_WRITE | SEESTART);
10047
10048 retval = ahd_wait_seeprom(ahd);
10049 if (retval)
10050 break;
10051 }
10052
10053 /*
10054 * Disable writes.
10055 */
10056 ahd_outb(ahd, SEEADR, SEEOP_EWDS_ADDR);
10057 ahd_outb(ahd, SEECTL, SEEOP_EWDS | SEESTART);
10058 error = ahd_wait_seeprom(ahd);
10059 if (error)
10060 return (error);
10061 return (retval);
10062 }
10063
10064 /*
10065 * Wait ~100us for the serial eeprom to satisfy our request.
10066 */
10067 static int
ahd_wait_seeprom(struct ahd_softc * ahd)10068 ahd_wait_seeprom(struct ahd_softc *ahd)
10069 {
10070 int cnt;
10071
10072 cnt = 5000;
10073 while ((ahd_inb(ahd, SEESTAT) & (SEEARBACK|SEEBUSY)) != 0 && --cnt)
10074 ahd_delay(5);
10075
10076 if (cnt == 0)
10077 return (ETIMEDOUT);
10078 return (0);
10079 }
10080
10081 /*
10082 * Validate the two checksums in the per_channel
10083 * vital product data struct.
10084 */
10085 static int
ahd_verify_vpd_cksum(struct vpd_config * vpd)10086 ahd_verify_vpd_cksum(struct vpd_config *vpd)
10087 {
10088 int i;
10089 int maxaddr;
10090 uint32_t checksum;
10091 uint8_t *vpdarray;
10092
10093 vpdarray = (uint8_t *)vpd;
10094 maxaddr = offsetof(struct vpd_config, vpd_checksum);
10095 checksum = 0;
10096 for (i = offsetof(struct vpd_config, resource_type); i < maxaddr; i++)
10097 checksum = checksum + vpdarray[i];
10098 if (checksum == 0
10099 || (-checksum & 0xFF) != vpd->vpd_checksum)
10100 return (0);
10101
10102 checksum = 0;
10103 maxaddr = offsetof(struct vpd_config, checksum);
10104 for (i = offsetof(struct vpd_config, default_target_flags);
10105 i < maxaddr; i++)
10106 checksum = checksum + vpdarray[i];
10107 if (checksum == 0
10108 || (-checksum & 0xFF) != vpd->checksum)
10109 return (0);
10110 return (1);
10111 }
10112
10113 int
ahd_verify_cksum(struct seeprom_config * sc)10114 ahd_verify_cksum(struct seeprom_config *sc)
10115 {
10116 int i;
10117 int maxaddr;
10118 uint32_t checksum;
10119 uint16_t *scarray;
10120
10121 maxaddr = (sizeof(*sc)/2) - 1;
10122 checksum = 0;
10123 scarray = (uint16_t *)sc;
10124
10125 for (i = 0; i < maxaddr; i++)
10126 checksum = checksum + scarray[i];
10127 if (checksum == 0
10128 || (checksum & 0xFFFF) != sc->checksum) {
10129 return (0);
10130 } else {
10131 return (1);
10132 }
10133 }
10134
10135 int
ahd_acquire_seeprom(struct ahd_softc * ahd)10136 ahd_acquire_seeprom(struct ahd_softc *ahd)
10137 {
10138 /*
10139 * We should be able to determine the SEEPROM type
10140 * from the flexport logic, but unfortunately not
10141 * all implementations have this logic and there is
10142 * no programatic method for determining if the logic
10143 * is present.
10144 */
10145 return (1);
10146 #if 0
10147 uint8_t seetype;
10148 int error;
10149
10150 error = ahd_read_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, &seetype);
10151 if (error != 0
10152 || ((seetype & FLX_ROMSTAT_SEECFG) == FLX_ROMSTAT_SEE_NONE))
10153 return (0);
10154 return (1);
10155 #endif
10156 }
10157
10158 void
ahd_release_seeprom(struct ahd_softc * ahd)10159 ahd_release_seeprom(struct ahd_softc *ahd)
10160 {
10161 /* Currently a no-op */
10162 }
10163
10164 /*
10165 * Wait at most 2 seconds for flexport arbitration to succeed.
10166 */
10167 static int
ahd_wait_flexport(struct ahd_softc * ahd)10168 ahd_wait_flexport(struct ahd_softc *ahd)
10169 {
10170 int cnt;
10171
10172 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
10173 cnt = 1000000 * 2 / 5;
10174 while ((ahd_inb(ahd, BRDCTL) & FLXARBACK) == 0 && --cnt)
10175 ahd_delay(5);
10176
10177 if (cnt == 0)
10178 return (ETIMEDOUT);
10179 return (0);
10180 }
10181
10182 int
ahd_write_flexport(struct ahd_softc * ahd,u_int addr,u_int value)10183 ahd_write_flexport(struct ahd_softc *ahd, u_int addr, u_int value)
10184 {
10185 int error;
10186
10187 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
10188 if (addr > 7)
10189 panic("ahd_write_flexport: address out of range");
10190 ahd_outb(ahd, BRDCTL, BRDEN|(addr << 3));
10191 error = ahd_wait_flexport(ahd);
10192 if (error != 0)
10193 return (error);
10194 ahd_outb(ahd, BRDDAT, value);
10195 ahd_flush_device_writes(ahd);
10196 ahd_outb(ahd, BRDCTL, BRDSTB|BRDEN|(addr << 3));
10197 ahd_flush_device_writes(ahd);
10198 ahd_outb(ahd, BRDCTL, BRDEN|(addr << 3));
10199 ahd_flush_device_writes(ahd);
10200 ahd_outb(ahd, BRDCTL, 0);
10201 ahd_flush_device_writes(ahd);
10202 return (0);
10203 }
10204
10205 int
ahd_read_flexport(struct ahd_softc * ahd,u_int addr,uint8_t * value)10206 ahd_read_flexport(struct ahd_softc *ahd, u_int addr, uint8_t *value)
10207 {
10208 int error;
10209
10210 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
10211 if (addr > 7)
10212 panic("ahd_read_flexport: address out of range");
10213 ahd_outb(ahd, BRDCTL, BRDRW|BRDEN|(addr << 3));
10214 error = ahd_wait_flexport(ahd);
10215 if (error != 0)
10216 return (error);
10217 *value = ahd_inb(ahd, BRDDAT);
10218 ahd_outb(ahd, BRDCTL, 0);
10219 ahd_flush_device_writes(ahd);
10220 return (0);
10221 }
10222
10223 /************************* Target Mode ****************************************/
10224 #ifdef AHD_TARGET_MODE
10225 cam_status
ahd_find_tmode_devs(struct ahd_softc * ahd,struct cam_sim * sim,union ccb * ccb,struct ahd_tmode_tstate ** tstate,struct ahd_tmode_lstate ** lstate,int notfound_failure)10226 ahd_find_tmode_devs(struct ahd_softc *ahd, struct cam_sim *sim, union ccb *ccb,
10227 struct ahd_tmode_tstate **tstate,
10228 struct ahd_tmode_lstate **lstate,
10229 int notfound_failure)
10230 {
10231
10232 if ((ahd->features & AHD_TARGETMODE) == 0)
10233 return (CAM_REQ_INVALID);
10234
10235 /*
10236 * Handle the 'black hole' device that sucks up
10237 * requests to unattached luns on enabled targets.
10238 */
10239 if (ccb->ccb_h.target_id == CAM_TARGET_WILDCARD
10240 && ccb->ccb_h.target_lun == CAM_LUN_WILDCARD) {
10241 *tstate = NULL;
10242 *lstate = ahd->black_hole;
10243 } else {
10244 u_int max_id;
10245
10246 max_id = (ahd->features & AHD_WIDE) ? 16 : 8;
10247 if (ccb->ccb_h.target_id >= max_id)
10248 return (CAM_TID_INVALID);
10249
10250 if (ccb->ccb_h.target_lun >= AHD_NUM_LUNS)
10251 return (CAM_LUN_INVALID);
10252
10253 *tstate = ahd->enabled_targets[ccb->ccb_h.target_id];
10254 *lstate = NULL;
10255 if (*tstate != NULL)
10256 *lstate =
10257 (*tstate)->enabled_luns[ccb->ccb_h.target_lun];
10258 }
10259
10260 if (notfound_failure != 0 && *lstate == NULL)
10261 return (CAM_PATH_INVALID);
10262
10263 return (CAM_REQ_CMP);
10264 }
10265
10266 void
ahd_handle_en_lun(struct ahd_softc * ahd,struct cam_sim * sim,union ccb * ccb)10267 ahd_handle_en_lun(struct ahd_softc *ahd, struct cam_sim *sim, union ccb *ccb)
10268 {
10269 #if NOT_YET
10270 struct ahd_tmode_tstate *tstate;
10271 struct ahd_tmode_lstate *lstate;
10272 struct ccb_en_lun *cel;
10273 cam_status status;
10274 u_int target;
10275 u_int lun;
10276 u_int target_mask;
10277 u_long s;
10278 char channel;
10279
10280 status = ahd_find_tmode_devs(ahd, sim, ccb, &tstate, &lstate,
10281 /*notfound_failure*/FALSE);
10282
10283 if (status != CAM_REQ_CMP) {
10284 ccb->ccb_h.status = status;
10285 return;
10286 }
10287
10288 if ((ahd->features & AHD_MULTIROLE) != 0) {
10289 u_int our_id;
10290
10291 our_id = ahd->our_id;
10292 if (ccb->ccb_h.target_id != our_id) {
10293 if ((ahd->features & AHD_MULTI_TID) != 0
10294 && (ahd->flags & AHD_INITIATORROLE) != 0) {
10295 /*
10296 * Only allow additional targets if
10297 * the initiator role is disabled.
10298 * The hardware cannot handle a re-select-in
10299 * on the initiator id during a re-select-out
10300 * on a different target id.
10301 */
10302 status = CAM_TID_INVALID;
10303 } else if ((ahd->flags & AHD_INITIATORROLE) != 0
10304 || ahd->enabled_luns > 0) {
10305 /*
10306 * Only allow our target id to change
10307 * if the initiator role is not configured
10308 * and there are no enabled luns which
10309 * are attached to the currently registered
10310 * scsi id.
10311 */
10312 status = CAM_TID_INVALID;
10313 }
10314 }
10315 }
10316
10317 if (status != CAM_REQ_CMP) {
10318 ccb->ccb_h.status = status;
10319 return;
10320 }
10321
10322 /*
10323 * We now have an id that is valid.
10324 * If we aren't in target mode, switch modes.
10325 */
10326 if ((ahd->flags & AHD_TARGETROLE) == 0
10327 && ccb->ccb_h.target_id != CAM_TARGET_WILDCARD) {
10328 u_long s;
10329
10330 printk("Configuring Target Mode\n");
10331 ahd_lock(ahd, &s);
10332 if (LIST_FIRST(&ahd->pending_scbs) != NULL) {
10333 ccb->ccb_h.status = CAM_BUSY;
10334 ahd_unlock(ahd, &s);
10335 return;
10336 }
10337 ahd->flags |= AHD_TARGETROLE;
10338 if ((ahd->features & AHD_MULTIROLE) == 0)
10339 ahd->flags &= ~AHD_INITIATORROLE;
10340 ahd_pause(ahd);
10341 ahd_loadseq(ahd);
10342 ahd_restart(ahd);
10343 ahd_unlock(ahd, &s);
10344 }
10345 cel = &ccb->cel;
10346 target = ccb->ccb_h.target_id;
10347 lun = ccb->ccb_h.target_lun;
10348 channel = SIM_CHANNEL(ahd, sim);
10349 target_mask = 0x01 << target;
10350 if (channel == 'B')
10351 target_mask <<= 8;
10352
10353 if (cel->enable != 0) {
10354 u_int scsiseq1;
10355
10356 /* Are we already enabled?? */
10357 if (lstate != NULL) {
10358 xpt_print_path(ccb->ccb_h.path);
10359 printk("Lun already enabled\n");
10360 ccb->ccb_h.status = CAM_LUN_ALRDY_ENA;
10361 return;
10362 }
10363
10364 if (cel->grp6_len != 0
10365 || cel->grp7_len != 0) {
10366 /*
10367 * Don't (yet?) support vendor
10368 * specific commands.
10369 */
10370 ccb->ccb_h.status = CAM_REQ_INVALID;
10371 printk("Non-zero Group Codes\n");
10372 return;
10373 }
10374
10375 /*
10376 * Seems to be okay.
10377 * Setup our data structures.
10378 */
10379 if (target != CAM_TARGET_WILDCARD && tstate == NULL) {
10380 tstate = ahd_alloc_tstate(ahd, target, channel);
10381 if (tstate == NULL) {
10382 xpt_print_path(ccb->ccb_h.path);
10383 printk("Couldn't allocate tstate\n");
10384 ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
10385 return;
10386 }
10387 }
10388 lstate = kzalloc(sizeof(*lstate), GFP_ATOMIC);
10389 if (lstate == NULL) {
10390 xpt_print_path(ccb->ccb_h.path);
10391 printk("Couldn't allocate lstate\n");
10392 ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
10393 return;
10394 }
10395 status = xpt_create_path(&lstate->path, /*periph*/NULL,
10396 xpt_path_path_id(ccb->ccb_h.path),
10397 xpt_path_target_id(ccb->ccb_h.path),
10398 xpt_path_lun_id(ccb->ccb_h.path));
10399 if (status != CAM_REQ_CMP) {
10400 kfree(lstate);
10401 xpt_print_path(ccb->ccb_h.path);
10402 printk("Couldn't allocate path\n");
10403 ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
10404 return;
10405 }
10406 SLIST_INIT(&lstate->accept_tios);
10407 SLIST_INIT(&lstate->immed_notifies);
10408 ahd_lock(ahd, &s);
10409 ahd_pause(ahd);
10410 if (target != CAM_TARGET_WILDCARD) {
10411 tstate->enabled_luns[lun] = lstate;
10412 ahd->enabled_luns++;
10413
10414 if ((ahd->features & AHD_MULTI_TID) != 0) {
10415 u_int targid_mask;
10416
10417 targid_mask = ahd_inw(ahd, TARGID);
10418 targid_mask |= target_mask;
10419 ahd_outw(ahd, TARGID, targid_mask);
10420 ahd_update_scsiid(ahd, targid_mask);
10421 } else {
10422 u_int our_id;
10423 char channel;
10424
10425 channel = SIM_CHANNEL(ahd, sim);
10426 our_id = SIM_SCSI_ID(ahd, sim);
10427
10428 /*
10429 * This can only happen if selections
10430 * are not enabled
10431 */
10432 if (target != our_id) {
10433 u_int sblkctl;
10434 char cur_channel;
10435 int swap;
10436
10437 sblkctl = ahd_inb(ahd, SBLKCTL);
10438 cur_channel = (sblkctl & SELBUSB)
10439 ? 'B' : 'A';
10440 if ((ahd->features & AHD_TWIN) == 0)
10441 cur_channel = 'A';
10442 swap = cur_channel != channel;
10443 ahd->our_id = target;
10444
10445 if (swap)
10446 ahd_outb(ahd, SBLKCTL,
10447 sblkctl ^ SELBUSB);
10448
10449 ahd_outb(ahd, SCSIID, target);
10450
10451 if (swap)
10452 ahd_outb(ahd, SBLKCTL, sblkctl);
10453 }
10454 }
10455 } else
10456 ahd->black_hole = lstate;
10457 /* Allow select-in operations */
10458 if (ahd->black_hole != NULL && ahd->enabled_luns > 0) {
10459 scsiseq1 = ahd_inb(ahd, SCSISEQ_TEMPLATE);
10460 scsiseq1 |= ENSELI;
10461 ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq1);
10462 scsiseq1 = ahd_inb(ahd, SCSISEQ1);
10463 scsiseq1 |= ENSELI;
10464 ahd_outb(ahd, SCSISEQ1, scsiseq1);
10465 }
10466 ahd_unpause(ahd);
10467 ahd_unlock(ahd, &s);
10468 ccb->ccb_h.status = CAM_REQ_CMP;
10469 xpt_print_path(ccb->ccb_h.path);
10470 printk("Lun now enabled for target mode\n");
10471 } else {
10472 struct scb *scb;
10473 int i, empty;
10474
10475 if (lstate == NULL) {
10476 ccb->ccb_h.status = CAM_LUN_INVALID;
10477 return;
10478 }
10479
10480 ahd_lock(ahd, &s);
10481
10482 ccb->ccb_h.status = CAM_REQ_CMP;
10483 LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
10484 struct ccb_hdr *ccbh;
10485
10486 ccbh = &scb->io_ctx->ccb_h;
10487 if (ccbh->func_code == XPT_CONT_TARGET_IO
10488 && !xpt_path_comp(ccbh->path, ccb->ccb_h.path)){
10489 printk("CTIO pending\n");
10490 ccb->ccb_h.status = CAM_REQ_INVALID;
10491 ahd_unlock(ahd, &s);
10492 return;
10493 }
10494 }
10495
10496 if (SLIST_FIRST(&lstate->accept_tios) != NULL) {
10497 printk("ATIOs pending\n");
10498 ccb->ccb_h.status = CAM_REQ_INVALID;
10499 }
10500
10501 if (SLIST_FIRST(&lstate->immed_notifies) != NULL) {
10502 printk("INOTs pending\n");
10503 ccb->ccb_h.status = CAM_REQ_INVALID;
10504 }
10505
10506 if (ccb->ccb_h.status != CAM_REQ_CMP) {
10507 ahd_unlock(ahd, &s);
10508 return;
10509 }
10510
10511 xpt_print_path(ccb->ccb_h.path);
10512 printk("Target mode disabled\n");
10513 xpt_free_path(lstate->path);
10514 kfree(lstate);
10515
10516 ahd_pause(ahd);
10517 /* Can we clean up the target too? */
10518 if (target != CAM_TARGET_WILDCARD) {
10519 tstate->enabled_luns[lun] = NULL;
10520 ahd->enabled_luns--;
10521 for (empty = 1, i = 0; i < 8; i++)
10522 if (tstate->enabled_luns[i] != NULL) {
10523 empty = 0;
10524 break;
10525 }
10526
10527 if (empty) {
10528 ahd_free_tstate(ahd, target, channel,
10529 /*force*/FALSE);
10530 if (ahd->features & AHD_MULTI_TID) {
10531 u_int targid_mask;
10532
10533 targid_mask = ahd_inw(ahd, TARGID);
10534 targid_mask &= ~target_mask;
10535 ahd_outw(ahd, TARGID, targid_mask);
10536 ahd_update_scsiid(ahd, targid_mask);
10537 }
10538 }
10539 } else {
10540
10541 ahd->black_hole = NULL;
10542
10543 /*
10544 * We can't allow selections without
10545 * our black hole device.
10546 */
10547 empty = TRUE;
10548 }
10549 if (ahd->enabled_luns == 0) {
10550 /* Disallow select-in */
10551 u_int scsiseq1;
10552
10553 scsiseq1 = ahd_inb(ahd, SCSISEQ_TEMPLATE);
10554 scsiseq1 &= ~ENSELI;
10555 ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq1);
10556 scsiseq1 = ahd_inb(ahd, SCSISEQ1);
10557 scsiseq1 &= ~ENSELI;
10558 ahd_outb(ahd, SCSISEQ1, scsiseq1);
10559
10560 if ((ahd->features & AHD_MULTIROLE) == 0) {
10561 printk("Configuring Initiator Mode\n");
10562 ahd->flags &= ~AHD_TARGETROLE;
10563 ahd->flags |= AHD_INITIATORROLE;
10564 ahd_pause(ahd);
10565 ahd_loadseq(ahd);
10566 ahd_restart(ahd);
10567 /*
10568 * Unpaused. The extra unpause
10569 * that follows is harmless.
10570 */
10571 }
10572 }
10573 ahd_unpause(ahd);
10574 ahd_unlock(ahd, &s);
10575 }
10576 #endif
10577 }
10578
10579 static void
ahd_update_scsiid(struct ahd_softc * ahd,u_int targid_mask)10580 ahd_update_scsiid(struct ahd_softc *ahd, u_int targid_mask)
10581 {
10582 #if NOT_YET
10583 u_int scsiid_mask;
10584 u_int scsiid;
10585
10586 if ((ahd->features & AHD_MULTI_TID) == 0)
10587 panic("ahd_update_scsiid called on non-multitid unit\n");
10588
10589 /*
10590 * Since we will rely on the TARGID mask
10591 * for selection enables, ensure that OID
10592 * in SCSIID is not set to some other ID
10593 * that we don't want to allow selections on.
10594 */
10595 if ((ahd->features & AHD_ULTRA2) != 0)
10596 scsiid = ahd_inb(ahd, SCSIID_ULTRA2);
10597 else
10598 scsiid = ahd_inb(ahd, SCSIID);
10599 scsiid_mask = 0x1 << (scsiid & OID);
10600 if ((targid_mask & scsiid_mask) == 0) {
10601 u_int our_id;
10602
10603 /* ffs counts from 1 */
10604 our_id = ffs(targid_mask);
10605 if (our_id == 0)
10606 our_id = ahd->our_id;
10607 else
10608 our_id--;
10609 scsiid &= TID;
10610 scsiid |= our_id;
10611 }
10612 if ((ahd->features & AHD_ULTRA2) != 0)
10613 ahd_outb(ahd, SCSIID_ULTRA2, scsiid);
10614 else
10615 ahd_outb(ahd, SCSIID, scsiid);
10616 #endif
10617 }
10618
10619 static void
ahd_run_tqinfifo(struct ahd_softc * ahd,int paused)10620 ahd_run_tqinfifo(struct ahd_softc *ahd, int paused)
10621 {
10622 struct target_cmd *cmd;
10623
10624 ahd_sync_tqinfifo(ahd, BUS_DMASYNC_POSTREAD);
10625 while ((cmd = &ahd->targetcmds[ahd->tqinfifonext])->cmd_valid != 0) {
10626
10627 /*
10628 * Only advance through the queue if we
10629 * have the resources to process the command.
10630 */
10631 if (ahd_handle_target_cmd(ahd, cmd) != 0)
10632 break;
10633
10634 cmd->cmd_valid = 0;
10635 ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
10636 ahd->shared_data_map.dmamap,
10637 ahd_targetcmd_offset(ahd, ahd->tqinfifonext),
10638 sizeof(struct target_cmd),
10639 BUS_DMASYNC_PREREAD);
10640 ahd->tqinfifonext++;
10641
10642 /*
10643 * Lazily update our position in the target mode incoming
10644 * command queue as seen by the sequencer.
10645 */
10646 if ((ahd->tqinfifonext & (HOST_TQINPOS - 1)) == 1) {
10647 u_int hs_mailbox;
10648
10649 hs_mailbox = ahd_inb(ahd, HS_MAILBOX);
10650 hs_mailbox &= ~HOST_TQINPOS;
10651 hs_mailbox |= ahd->tqinfifonext & HOST_TQINPOS;
10652 ahd_outb(ahd, HS_MAILBOX, hs_mailbox);
10653 }
10654 }
10655 }
10656
10657 static int
ahd_handle_target_cmd(struct ahd_softc * ahd,struct target_cmd * cmd)10658 ahd_handle_target_cmd(struct ahd_softc *ahd, struct target_cmd *cmd)
10659 {
10660 struct ahd_tmode_tstate *tstate;
10661 struct ahd_tmode_lstate *lstate;
10662 struct ccb_accept_tio *atio;
10663 uint8_t *byte;
10664 int initiator;
10665 int target;
10666 int lun;
10667
10668 initiator = SCSIID_TARGET(ahd, cmd->scsiid);
10669 target = SCSIID_OUR_ID(cmd->scsiid);
10670 lun = (cmd->identify & MSG_IDENTIFY_LUNMASK);
10671
10672 byte = cmd->bytes;
10673 tstate = ahd->enabled_targets[target];
10674 lstate = NULL;
10675 if (tstate != NULL)
10676 lstate = tstate->enabled_luns[lun];
10677
10678 /*
10679 * Commands for disabled luns go to the black hole driver.
10680 */
10681 if (lstate == NULL)
10682 lstate = ahd->black_hole;
10683
10684 atio = (struct ccb_accept_tio*)SLIST_FIRST(&lstate->accept_tios);
10685 if (atio == NULL) {
10686 ahd->flags |= AHD_TQINFIFO_BLOCKED;
10687 /*
10688 * Wait for more ATIOs from the peripheral driver for this lun.
10689 */
10690 return (1);
10691 } else
10692 ahd->flags &= ~AHD_TQINFIFO_BLOCKED;
10693 #ifdef AHD_DEBUG
10694 if ((ahd_debug & AHD_SHOW_TQIN) != 0)
10695 printk("Incoming command from %d for %d:%d%s\n",
10696 initiator, target, lun,
10697 lstate == ahd->black_hole ? "(Black Holed)" : "");
10698 #endif
10699 SLIST_REMOVE_HEAD(&lstate->accept_tios, sim_links.sle);
10700
10701 if (lstate == ahd->black_hole) {
10702 /* Fill in the wildcards */
10703 atio->ccb_h.target_id = target;
10704 atio->ccb_h.target_lun = lun;
10705 }
10706
10707 /*
10708 * Package it up and send it off to
10709 * whomever has this lun enabled.
10710 */
10711 atio->sense_len = 0;
10712 atio->init_id = initiator;
10713 if (byte[0] != 0xFF) {
10714 /* Tag was included */
10715 atio->tag_action = *byte++;
10716 atio->tag_id = *byte++;
10717 atio->ccb_h.flags = CAM_TAG_ACTION_VALID;
10718 } else {
10719 atio->ccb_h.flags = 0;
10720 }
10721 byte++;
10722
10723 /* Okay. Now determine the cdb size based on the command code */
10724 switch (*byte >> CMD_GROUP_CODE_SHIFT) {
10725 case 0:
10726 atio->cdb_len = 6;
10727 break;
10728 case 1:
10729 case 2:
10730 atio->cdb_len = 10;
10731 break;
10732 case 4:
10733 atio->cdb_len = 16;
10734 break;
10735 case 5:
10736 atio->cdb_len = 12;
10737 break;
10738 case 3:
10739 default:
10740 /* Only copy the opcode. */
10741 atio->cdb_len = 1;
10742 printk("Reserved or VU command code type encountered\n");
10743 break;
10744 }
10745
10746 memcpy(atio->cdb_io.cdb_bytes, byte, atio->cdb_len);
10747
10748 atio->ccb_h.status |= CAM_CDB_RECVD;
10749
10750 if ((cmd->identify & MSG_IDENTIFY_DISCFLAG) == 0) {
10751 /*
10752 * We weren't allowed to disconnect.
10753 * We're hanging on the bus until a
10754 * continue target I/O comes in response
10755 * to this accept tio.
10756 */
10757 #ifdef AHD_DEBUG
10758 if ((ahd_debug & AHD_SHOW_TQIN) != 0)
10759 printk("Received Immediate Command %d:%d:%d - %p\n",
10760 initiator, target, lun, ahd->pending_device);
10761 #endif
10762 ahd->pending_device = lstate;
10763 ahd_freeze_ccb((union ccb *)atio);
10764 atio->ccb_h.flags |= CAM_DIS_DISCONNECT;
10765 }
10766 xpt_done((union ccb*)atio);
10767 return (0);
10768 }
10769
10770 #endif
10771