1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* handling of writes to regular files and writing back to the server
3 *
4 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7
8 #include <linux/backing-dev.h>
9 #include <linux/slab.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/netfs.h>
15 #include "internal.h"
16
17 static void afs_write_to_cache(struct afs_vnode *vnode, loff_t start, size_t len,
18 loff_t i_size, bool caching);
19
20 #ifdef CONFIG_AFS_FSCACHE
21 /*
22 * Mark a page as having been made dirty and thus needing writeback. We also
23 * need to pin the cache object to write back to.
24 */
afs_dirty_folio(struct address_space * mapping,struct folio * folio)25 bool afs_dirty_folio(struct address_space *mapping, struct folio *folio)
26 {
27 return fscache_dirty_folio(mapping, folio,
28 afs_vnode_cache(AFS_FS_I(mapping->host)));
29 }
afs_folio_start_fscache(bool caching,struct folio * folio)30 static void afs_folio_start_fscache(bool caching, struct folio *folio)
31 {
32 if (caching)
33 folio_start_fscache(folio);
34 }
35 #else
afs_folio_start_fscache(bool caching,struct folio * folio)36 static void afs_folio_start_fscache(bool caching, struct folio *folio)
37 {
38 }
39 #endif
40
41 /*
42 * prepare to perform part of a write to a page
43 */
afs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** _page,void ** fsdata)44 int afs_write_begin(struct file *file, struct address_space *mapping,
45 loff_t pos, unsigned len,
46 struct page **_page, void **fsdata)
47 {
48 struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
49 struct folio *folio;
50 unsigned long priv;
51 unsigned f, from;
52 unsigned t, to;
53 pgoff_t index;
54 int ret;
55
56 _enter("{%llx:%llu},%llx,%x",
57 vnode->fid.vid, vnode->fid.vnode, pos, len);
58
59 /* Prefetch area to be written into the cache if we're caching this
60 * file. We need to do this before we get a lock on the page in case
61 * there's more than one writer competing for the same cache block.
62 */
63 ret = netfs_write_begin(&vnode->netfs, file, mapping, pos, len, &folio, fsdata);
64 if (ret < 0)
65 return ret;
66
67 index = folio_index(folio);
68 from = pos - index * PAGE_SIZE;
69 to = from + len;
70
71 try_again:
72 /* See if this page is already partially written in a way that we can
73 * merge the new write with.
74 */
75 if (folio_test_private(folio)) {
76 priv = (unsigned long)folio_get_private(folio);
77 f = afs_folio_dirty_from(folio, priv);
78 t = afs_folio_dirty_to(folio, priv);
79 ASSERTCMP(f, <=, t);
80
81 if (folio_test_writeback(folio)) {
82 trace_afs_folio_dirty(vnode, tracepoint_string("alrdy"), folio);
83 goto flush_conflicting_write;
84 }
85 /* If the file is being filled locally, allow inter-write
86 * spaces to be merged into writes. If it's not, only write
87 * back what the user gives us.
88 */
89 if (!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags) &&
90 (to < f || from > t))
91 goto flush_conflicting_write;
92 }
93
94 *_page = folio_file_page(folio, pos / PAGE_SIZE);
95 _leave(" = 0");
96 return 0;
97
98 /* The previous write and this write aren't adjacent or overlapping, so
99 * flush the page out.
100 */
101 flush_conflicting_write:
102 _debug("flush conflict");
103 ret = folio_write_one(folio);
104 if (ret < 0)
105 goto error;
106
107 ret = folio_lock_killable(folio);
108 if (ret < 0)
109 goto error;
110 goto try_again;
111
112 error:
113 folio_put(folio);
114 _leave(" = %d", ret);
115 return ret;
116 }
117
118 /*
119 * finalise part of a write to a page
120 */
afs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * subpage,void * fsdata)121 int afs_write_end(struct file *file, struct address_space *mapping,
122 loff_t pos, unsigned len, unsigned copied,
123 struct page *subpage, void *fsdata)
124 {
125 struct folio *folio = page_folio(subpage);
126 struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
127 unsigned long priv;
128 unsigned int f, from = offset_in_folio(folio, pos);
129 unsigned int t, to = from + copied;
130 loff_t i_size, write_end_pos;
131
132 _enter("{%llx:%llu},{%lx}",
133 vnode->fid.vid, vnode->fid.vnode, folio_index(folio));
134
135 if (!folio_test_uptodate(folio)) {
136 if (copied < len) {
137 copied = 0;
138 goto out;
139 }
140
141 folio_mark_uptodate(folio);
142 }
143
144 if (copied == 0)
145 goto out;
146
147 write_end_pos = pos + copied;
148
149 i_size = i_size_read(&vnode->netfs.inode);
150 if (write_end_pos > i_size) {
151 write_seqlock(&vnode->cb_lock);
152 i_size = i_size_read(&vnode->netfs.inode);
153 if (write_end_pos > i_size)
154 afs_set_i_size(vnode, write_end_pos);
155 write_sequnlock(&vnode->cb_lock);
156 fscache_update_cookie(afs_vnode_cache(vnode), NULL, &write_end_pos);
157 }
158
159 if (folio_test_private(folio)) {
160 priv = (unsigned long)folio_get_private(folio);
161 f = afs_folio_dirty_from(folio, priv);
162 t = afs_folio_dirty_to(folio, priv);
163 if (from < f)
164 f = from;
165 if (to > t)
166 t = to;
167 priv = afs_folio_dirty(folio, f, t);
168 folio_change_private(folio, (void *)priv);
169 trace_afs_folio_dirty(vnode, tracepoint_string("dirty+"), folio);
170 } else {
171 priv = afs_folio_dirty(folio, from, to);
172 folio_attach_private(folio, (void *)priv);
173 trace_afs_folio_dirty(vnode, tracepoint_string("dirty"), folio);
174 }
175
176 if (folio_mark_dirty(folio))
177 _debug("dirtied %lx", folio_index(folio));
178
179 out:
180 folio_unlock(folio);
181 folio_put(folio);
182 return copied;
183 }
184
185 /*
186 * kill all the pages in the given range
187 */
afs_kill_pages(struct address_space * mapping,loff_t start,loff_t len)188 static void afs_kill_pages(struct address_space *mapping,
189 loff_t start, loff_t len)
190 {
191 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
192 struct folio *folio;
193 pgoff_t index = start / PAGE_SIZE;
194 pgoff_t last = (start + len - 1) / PAGE_SIZE, next;
195
196 _enter("{%llx:%llu},%llx @%llx",
197 vnode->fid.vid, vnode->fid.vnode, len, start);
198
199 do {
200 _debug("kill %lx (to %lx)", index, last);
201
202 folio = filemap_get_folio(mapping, index);
203 if (!folio) {
204 next = index + 1;
205 continue;
206 }
207
208 next = folio_next_index(folio);
209
210 folio_clear_uptodate(folio);
211 folio_end_writeback(folio);
212 folio_lock(folio);
213 generic_error_remove_page(mapping, &folio->page);
214 folio_unlock(folio);
215 folio_put(folio);
216
217 } while (index = next, index <= last);
218
219 _leave("");
220 }
221
222 /*
223 * Redirty all the pages in a given range.
224 */
afs_redirty_pages(struct writeback_control * wbc,struct address_space * mapping,loff_t start,loff_t len)225 static void afs_redirty_pages(struct writeback_control *wbc,
226 struct address_space *mapping,
227 loff_t start, loff_t len)
228 {
229 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
230 struct folio *folio;
231 pgoff_t index = start / PAGE_SIZE;
232 pgoff_t last = (start + len - 1) / PAGE_SIZE, next;
233
234 _enter("{%llx:%llu},%llx @%llx",
235 vnode->fid.vid, vnode->fid.vnode, len, start);
236
237 do {
238 _debug("redirty %llx @%llx", len, start);
239
240 folio = filemap_get_folio(mapping, index);
241 if (!folio) {
242 next = index + 1;
243 continue;
244 }
245
246 next = index + folio_nr_pages(folio);
247 folio_redirty_for_writepage(wbc, folio);
248 folio_end_writeback(folio);
249 folio_put(folio);
250 } while (index = next, index <= last);
251
252 _leave("");
253 }
254
255 /*
256 * completion of write to server
257 */
afs_pages_written_back(struct afs_vnode * vnode,loff_t start,unsigned int len)258 static void afs_pages_written_back(struct afs_vnode *vnode, loff_t start, unsigned int len)
259 {
260 struct address_space *mapping = vnode->netfs.inode.i_mapping;
261 struct folio *folio;
262 pgoff_t end;
263
264 XA_STATE(xas, &mapping->i_pages, start / PAGE_SIZE);
265
266 _enter("{%llx:%llu},{%x @%llx}",
267 vnode->fid.vid, vnode->fid.vnode, len, start);
268
269 rcu_read_lock();
270
271 end = (start + len - 1) / PAGE_SIZE;
272 xas_for_each(&xas, folio, end) {
273 if (!folio_test_writeback(folio)) {
274 kdebug("bad %x @%llx page %lx %lx",
275 len, start, folio_index(folio), end);
276 ASSERT(folio_test_writeback(folio));
277 }
278
279 trace_afs_folio_dirty(vnode, tracepoint_string("clear"), folio);
280 folio_detach_private(folio);
281 folio_end_writeback(folio);
282 }
283
284 rcu_read_unlock();
285
286 afs_prune_wb_keys(vnode);
287 _leave("");
288 }
289
290 /*
291 * Find a key to use for the writeback. We cached the keys used to author the
292 * writes on the vnode. *_wbk will contain the last writeback key used or NULL
293 * and we need to start from there if it's set.
294 */
afs_get_writeback_key(struct afs_vnode * vnode,struct afs_wb_key ** _wbk)295 static int afs_get_writeback_key(struct afs_vnode *vnode,
296 struct afs_wb_key **_wbk)
297 {
298 struct afs_wb_key *wbk = NULL;
299 struct list_head *p;
300 int ret = -ENOKEY, ret2;
301
302 spin_lock(&vnode->wb_lock);
303 if (*_wbk)
304 p = (*_wbk)->vnode_link.next;
305 else
306 p = vnode->wb_keys.next;
307
308 while (p != &vnode->wb_keys) {
309 wbk = list_entry(p, struct afs_wb_key, vnode_link);
310 _debug("wbk %u", key_serial(wbk->key));
311 ret2 = key_validate(wbk->key);
312 if (ret2 == 0) {
313 refcount_inc(&wbk->usage);
314 _debug("USE WB KEY %u", key_serial(wbk->key));
315 break;
316 }
317
318 wbk = NULL;
319 if (ret == -ENOKEY)
320 ret = ret2;
321 p = p->next;
322 }
323
324 spin_unlock(&vnode->wb_lock);
325 if (*_wbk)
326 afs_put_wb_key(*_wbk);
327 *_wbk = wbk;
328 return 0;
329 }
330
afs_store_data_success(struct afs_operation * op)331 static void afs_store_data_success(struct afs_operation *op)
332 {
333 struct afs_vnode *vnode = op->file[0].vnode;
334
335 op->ctime = op->file[0].scb.status.mtime_client;
336 afs_vnode_commit_status(op, &op->file[0]);
337 if (op->error == 0) {
338 if (!op->store.laundering)
339 afs_pages_written_back(vnode, op->store.pos, op->store.size);
340 afs_stat_v(vnode, n_stores);
341 atomic_long_add(op->store.size, &afs_v2net(vnode)->n_store_bytes);
342 }
343 }
344
345 static const struct afs_operation_ops afs_store_data_operation = {
346 .issue_afs_rpc = afs_fs_store_data,
347 .issue_yfs_rpc = yfs_fs_store_data,
348 .success = afs_store_data_success,
349 };
350
351 /*
352 * write to a file
353 */
afs_store_data(struct afs_vnode * vnode,struct iov_iter * iter,loff_t pos,bool laundering)354 static int afs_store_data(struct afs_vnode *vnode, struct iov_iter *iter, loff_t pos,
355 bool laundering)
356 {
357 struct afs_operation *op;
358 struct afs_wb_key *wbk = NULL;
359 loff_t size = iov_iter_count(iter);
360 int ret = -ENOKEY;
361
362 _enter("%s{%llx:%llu.%u},%llx,%llx",
363 vnode->volume->name,
364 vnode->fid.vid,
365 vnode->fid.vnode,
366 vnode->fid.unique,
367 size, pos);
368
369 ret = afs_get_writeback_key(vnode, &wbk);
370 if (ret) {
371 _leave(" = %d [no keys]", ret);
372 return ret;
373 }
374
375 op = afs_alloc_operation(wbk->key, vnode->volume);
376 if (IS_ERR(op)) {
377 afs_put_wb_key(wbk);
378 return -ENOMEM;
379 }
380
381 afs_op_set_vnode(op, 0, vnode);
382 op->file[0].dv_delta = 1;
383 op->file[0].modification = true;
384 op->store.write_iter = iter;
385 op->store.pos = pos;
386 op->store.size = size;
387 op->store.i_size = max(pos + size, vnode->netfs.remote_i_size);
388 op->store.laundering = laundering;
389 op->mtime = vnode->netfs.inode.i_mtime;
390 op->flags |= AFS_OPERATION_UNINTR;
391 op->ops = &afs_store_data_operation;
392
393 try_next_key:
394 afs_begin_vnode_operation(op);
395 afs_wait_for_operation(op);
396
397 switch (op->error) {
398 case -EACCES:
399 case -EPERM:
400 case -ENOKEY:
401 case -EKEYEXPIRED:
402 case -EKEYREJECTED:
403 case -EKEYREVOKED:
404 _debug("next");
405
406 ret = afs_get_writeback_key(vnode, &wbk);
407 if (ret == 0) {
408 key_put(op->key);
409 op->key = key_get(wbk->key);
410 goto try_next_key;
411 }
412 break;
413 }
414
415 afs_put_wb_key(wbk);
416 _leave(" = %d", op->error);
417 return afs_put_operation(op);
418 }
419
420 /*
421 * Extend the region to be written back to include subsequent contiguously
422 * dirty pages if possible, but don't sleep while doing so.
423 *
424 * If this page holds new content, then we can include filler zeros in the
425 * writeback.
426 */
afs_extend_writeback(struct address_space * mapping,struct afs_vnode * vnode,long * _count,loff_t start,loff_t max_len,bool new_content,bool caching,unsigned int * _len)427 static void afs_extend_writeback(struct address_space *mapping,
428 struct afs_vnode *vnode,
429 long *_count,
430 loff_t start,
431 loff_t max_len,
432 bool new_content,
433 bool caching,
434 unsigned int *_len)
435 {
436 struct pagevec pvec;
437 struct folio *folio;
438 unsigned long priv;
439 unsigned int psize, filler = 0;
440 unsigned int f, t;
441 loff_t len = *_len;
442 pgoff_t index = (start + len) / PAGE_SIZE;
443 bool stop = true;
444 unsigned int i;
445
446 XA_STATE(xas, &mapping->i_pages, index);
447 pagevec_init(&pvec);
448
449 do {
450 /* Firstly, we gather up a batch of contiguous dirty pages
451 * under the RCU read lock - but we can't clear the dirty flags
452 * there if any of those pages are mapped.
453 */
454 rcu_read_lock();
455
456 xas_for_each(&xas, folio, ULONG_MAX) {
457 stop = true;
458 if (xas_retry(&xas, folio))
459 continue;
460 if (xa_is_value(folio))
461 break;
462 if (folio_index(folio) != index)
463 break;
464
465 if (!folio_try_get_rcu(folio)) {
466 xas_reset(&xas);
467 continue;
468 }
469
470 /* Has the page moved or been split? */
471 if (unlikely(folio != xas_reload(&xas))) {
472 folio_put(folio);
473 break;
474 }
475
476 if (!folio_trylock(folio)) {
477 folio_put(folio);
478 break;
479 }
480 if (!folio_test_dirty(folio) ||
481 folio_test_writeback(folio) ||
482 folio_test_fscache(folio)) {
483 folio_unlock(folio);
484 folio_put(folio);
485 break;
486 }
487
488 psize = folio_size(folio);
489 priv = (unsigned long)folio_get_private(folio);
490 f = afs_folio_dirty_from(folio, priv);
491 t = afs_folio_dirty_to(folio, priv);
492 if (f != 0 && !new_content) {
493 folio_unlock(folio);
494 folio_put(folio);
495 break;
496 }
497
498 len += filler + t;
499 filler = psize - t;
500 if (len >= max_len || *_count <= 0)
501 stop = true;
502 else if (t == psize || new_content)
503 stop = false;
504
505 index += folio_nr_pages(folio);
506 if (!pagevec_add(&pvec, &folio->page))
507 break;
508 if (stop)
509 break;
510 }
511
512 if (!stop)
513 xas_pause(&xas);
514 rcu_read_unlock();
515
516 /* Now, if we obtained any pages, we can shift them to being
517 * writable and mark them for caching.
518 */
519 if (!pagevec_count(&pvec))
520 break;
521
522 for (i = 0; i < pagevec_count(&pvec); i++) {
523 folio = page_folio(pvec.pages[i]);
524 trace_afs_folio_dirty(vnode, tracepoint_string("store+"), folio);
525
526 if (!folio_clear_dirty_for_io(folio))
527 BUG();
528 if (folio_start_writeback(folio))
529 BUG();
530 afs_folio_start_fscache(caching, folio);
531
532 *_count -= folio_nr_pages(folio);
533 folio_unlock(folio);
534 }
535
536 pagevec_release(&pvec);
537 cond_resched();
538 } while (!stop);
539
540 *_len = len;
541 }
542
543 /*
544 * Synchronously write back the locked page and any subsequent non-locked dirty
545 * pages.
546 */
afs_write_back_from_locked_folio(struct address_space * mapping,struct writeback_control * wbc,struct folio * folio,loff_t start,loff_t end)547 static ssize_t afs_write_back_from_locked_folio(struct address_space *mapping,
548 struct writeback_control *wbc,
549 struct folio *folio,
550 loff_t start, loff_t end)
551 {
552 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
553 struct iov_iter iter;
554 unsigned long priv;
555 unsigned int offset, to, len, max_len;
556 loff_t i_size = i_size_read(&vnode->netfs.inode);
557 bool new_content = test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags);
558 bool caching = fscache_cookie_enabled(afs_vnode_cache(vnode));
559 long count = wbc->nr_to_write;
560 int ret;
561
562 _enter(",%lx,%llx-%llx", folio_index(folio), start, end);
563
564 if (folio_start_writeback(folio))
565 BUG();
566 afs_folio_start_fscache(caching, folio);
567
568 count -= folio_nr_pages(folio);
569
570 /* Find all consecutive lockable dirty pages that have contiguous
571 * written regions, stopping when we find a page that is not
572 * immediately lockable, is not dirty or is missing, or we reach the
573 * end of the range.
574 */
575 priv = (unsigned long)folio_get_private(folio);
576 offset = afs_folio_dirty_from(folio, priv);
577 to = afs_folio_dirty_to(folio, priv);
578 trace_afs_folio_dirty(vnode, tracepoint_string("store"), folio);
579
580 len = to - offset;
581 start += offset;
582 if (start < i_size) {
583 /* Trim the write to the EOF; the extra data is ignored. Also
584 * put an upper limit on the size of a single storedata op.
585 */
586 max_len = 65536 * 4096;
587 max_len = min_t(unsigned long long, max_len, end - start + 1);
588 max_len = min_t(unsigned long long, max_len, i_size - start);
589
590 if (len < max_len &&
591 (to == folio_size(folio) || new_content))
592 afs_extend_writeback(mapping, vnode, &count,
593 start, max_len, new_content,
594 caching, &len);
595 len = min_t(loff_t, len, max_len);
596 }
597
598 /* We now have a contiguous set of dirty pages, each with writeback
599 * set; the first page is still locked at this point, but all the rest
600 * have been unlocked.
601 */
602 folio_unlock(folio);
603
604 if (start < i_size) {
605 _debug("write back %x @%llx [%llx]", len, start, i_size);
606
607 /* Speculatively write to the cache. We have to fix this up
608 * later if the store fails.
609 */
610 afs_write_to_cache(vnode, start, len, i_size, caching);
611
612 iov_iter_xarray(&iter, WRITE, &mapping->i_pages, start, len);
613 ret = afs_store_data(vnode, &iter, start, false);
614 } else {
615 _debug("write discard %x @%llx [%llx]", len, start, i_size);
616
617 /* The dirty region was entirely beyond the EOF. */
618 fscache_clear_page_bits(mapping, start, len, caching);
619 afs_pages_written_back(vnode, start, len);
620 ret = 0;
621 }
622
623 switch (ret) {
624 case 0:
625 wbc->nr_to_write = count;
626 ret = len;
627 break;
628
629 default:
630 pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret);
631 fallthrough;
632 case -EACCES:
633 case -EPERM:
634 case -ENOKEY:
635 case -EKEYEXPIRED:
636 case -EKEYREJECTED:
637 case -EKEYREVOKED:
638 case -ENETRESET:
639 afs_redirty_pages(wbc, mapping, start, len);
640 mapping_set_error(mapping, ret);
641 break;
642
643 case -EDQUOT:
644 case -ENOSPC:
645 afs_redirty_pages(wbc, mapping, start, len);
646 mapping_set_error(mapping, -ENOSPC);
647 break;
648
649 case -EROFS:
650 case -EIO:
651 case -EREMOTEIO:
652 case -EFBIG:
653 case -ENOENT:
654 case -ENOMEDIUM:
655 case -ENXIO:
656 trace_afs_file_error(vnode, ret, afs_file_error_writeback_fail);
657 afs_kill_pages(mapping, start, len);
658 mapping_set_error(mapping, ret);
659 break;
660 }
661
662 _leave(" = %d", ret);
663 return ret;
664 }
665
666 /*
667 * write a page back to the server
668 * - the caller locked the page for us
669 */
afs_writepage(struct page * subpage,struct writeback_control * wbc)670 int afs_writepage(struct page *subpage, struct writeback_control *wbc)
671 {
672 struct folio *folio = page_folio(subpage);
673 ssize_t ret;
674 loff_t start;
675
676 _enter("{%lx},", folio_index(folio));
677
678 #ifdef CONFIG_AFS_FSCACHE
679 folio_wait_fscache(folio);
680 #endif
681
682 start = folio_index(folio) * PAGE_SIZE;
683 ret = afs_write_back_from_locked_folio(folio_mapping(folio), wbc,
684 folio, start, LLONG_MAX - start);
685 if (ret < 0) {
686 _leave(" = %zd", ret);
687 return ret;
688 }
689
690 _leave(" = 0");
691 return 0;
692 }
693
694 /*
695 * write a region of pages back to the server
696 */
afs_writepages_region(struct address_space * mapping,struct writeback_control * wbc,loff_t start,loff_t end,loff_t * _next)697 static int afs_writepages_region(struct address_space *mapping,
698 struct writeback_control *wbc,
699 loff_t start, loff_t end, loff_t *_next)
700 {
701 struct folio *folio;
702 struct page *head_page;
703 ssize_t ret;
704 int n, skips = 0;
705
706 _enter("%llx,%llx,", start, end);
707
708 do {
709 pgoff_t index = start / PAGE_SIZE;
710
711 n = find_get_pages_range_tag(mapping, &index, end / PAGE_SIZE,
712 PAGECACHE_TAG_DIRTY, 1, &head_page);
713 if (!n)
714 break;
715
716 folio = page_folio(head_page);
717 start = folio_pos(folio); /* May regress with THPs */
718
719 _debug("wback %lx", folio_index(folio));
720
721 /* At this point we hold neither the i_pages lock nor the
722 * page lock: the page may be truncated or invalidated
723 * (changing page->mapping to NULL), or even swizzled
724 * back from swapper_space to tmpfs file mapping
725 */
726 if (wbc->sync_mode != WB_SYNC_NONE) {
727 ret = folio_lock_killable(folio);
728 if (ret < 0) {
729 folio_put(folio);
730 return ret;
731 }
732 } else {
733 if (!folio_trylock(folio)) {
734 folio_put(folio);
735 return 0;
736 }
737 }
738
739 if (folio_mapping(folio) != mapping ||
740 !folio_test_dirty(folio)) {
741 start += folio_size(folio);
742 folio_unlock(folio);
743 folio_put(folio);
744 continue;
745 }
746
747 if (folio_test_writeback(folio) ||
748 folio_test_fscache(folio)) {
749 folio_unlock(folio);
750 if (wbc->sync_mode != WB_SYNC_NONE) {
751 folio_wait_writeback(folio);
752 #ifdef CONFIG_AFS_FSCACHE
753 folio_wait_fscache(folio);
754 #endif
755 } else {
756 start += folio_size(folio);
757 }
758 folio_put(folio);
759 if (wbc->sync_mode == WB_SYNC_NONE) {
760 if (skips >= 5 || need_resched())
761 break;
762 skips++;
763 }
764 continue;
765 }
766
767 if (!folio_clear_dirty_for_io(folio))
768 BUG();
769 ret = afs_write_back_from_locked_folio(mapping, wbc, folio, start, end);
770 folio_put(folio);
771 if (ret < 0) {
772 _leave(" = %zd", ret);
773 return ret;
774 }
775
776 start += ret;
777
778 cond_resched();
779 } while (wbc->nr_to_write > 0);
780
781 *_next = start;
782 _leave(" = 0 [%llx]", *_next);
783 return 0;
784 }
785
786 /*
787 * write some of the pending data back to the server
788 */
afs_writepages(struct address_space * mapping,struct writeback_control * wbc)789 int afs_writepages(struct address_space *mapping,
790 struct writeback_control *wbc)
791 {
792 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
793 loff_t start, next;
794 int ret;
795
796 _enter("");
797
798 /* We have to be careful as we can end up racing with setattr()
799 * truncating the pagecache since the caller doesn't take a lock here
800 * to prevent it.
801 */
802 if (wbc->sync_mode == WB_SYNC_ALL)
803 down_read(&vnode->validate_lock);
804 else if (!down_read_trylock(&vnode->validate_lock))
805 return 0;
806
807 if (wbc->range_cyclic) {
808 start = mapping->writeback_index * PAGE_SIZE;
809 ret = afs_writepages_region(mapping, wbc, start, LLONG_MAX, &next);
810 if (ret == 0) {
811 mapping->writeback_index = next / PAGE_SIZE;
812 if (start > 0 && wbc->nr_to_write > 0) {
813 ret = afs_writepages_region(mapping, wbc, 0,
814 start, &next);
815 if (ret == 0)
816 mapping->writeback_index =
817 next / PAGE_SIZE;
818 }
819 }
820 } else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
821 ret = afs_writepages_region(mapping, wbc, 0, LLONG_MAX, &next);
822 if (wbc->nr_to_write > 0 && ret == 0)
823 mapping->writeback_index = next / PAGE_SIZE;
824 } else {
825 ret = afs_writepages_region(mapping, wbc,
826 wbc->range_start, wbc->range_end, &next);
827 }
828
829 up_read(&vnode->validate_lock);
830 _leave(" = %d", ret);
831 return ret;
832 }
833
834 /*
835 * write to an AFS file
836 */
afs_file_write(struct kiocb * iocb,struct iov_iter * from)837 ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from)
838 {
839 struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp));
840 struct afs_file *af = iocb->ki_filp->private_data;
841 ssize_t result;
842 size_t count = iov_iter_count(from);
843
844 _enter("{%llx:%llu},{%zu},",
845 vnode->fid.vid, vnode->fid.vnode, count);
846
847 if (IS_SWAPFILE(&vnode->netfs.inode)) {
848 printk(KERN_INFO
849 "AFS: Attempt to write to active swap file!\n");
850 return -EBUSY;
851 }
852
853 if (!count)
854 return 0;
855
856 result = afs_validate(vnode, af->key);
857 if (result < 0)
858 return result;
859
860 result = generic_file_write_iter(iocb, from);
861
862 _leave(" = %zd", result);
863 return result;
864 }
865
866 /*
867 * flush any dirty pages for this process, and check for write errors.
868 * - the return status from this call provides a reliable indication of
869 * whether any write errors occurred for this process.
870 */
afs_fsync(struct file * file,loff_t start,loff_t end,int datasync)871 int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
872 {
873 struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
874 struct afs_file *af = file->private_data;
875 int ret;
876
877 _enter("{%llx:%llu},{n=%pD},%d",
878 vnode->fid.vid, vnode->fid.vnode, file,
879 datasync);
880
881 ret = afs_validate(vnode, af->key);
882 if (ret < 0)
883 return ret;
884
885 return file_write_and_wait_range(file, start, end);
886 }
887
888 /*
889 * notification that a previously read-only page is about to become writable
890 * - if it returns an error, the caller will deliver a bus error signal
891 */
afs_page_mkwrite(struct vm_fault * vmf)892 vm_fault_t afs_page_mkwrite(struct vm_fault *vmf)
893 {
894 struct folio *folio = page_folio(vmf->page);
895 struct file *file = vmf->vma->vm_file;
896 struct inode *inode = file_inode(file);
897 struct afs_vnode *vnode = AFS_FS_I(inode);
898 struct afs_file *af = file->private_data;
899 unsigned long priv;
900 vm_fault_t ret = VM_FAULT_RETRY;
901
902 _enter("{{%llx:%llu}},{%lx}", vnode->fid.vid, vnode->fid.vnode, folio_index(folio));
903
904 afs_validate(vnode, af->key);
905
906 sb_start_pagefault(inode->i_sb);
907
908 /* Wait for the page to be written to the cache before we allow it to
909 * be modified. We then assume the entire page will need writing back.
910 */
911 #ifdef CONFIG_AFS_FSCACHE
912 if (folio_test_fscache(folio) &&
913 folio_wait_fscache_killable(folio) < 0)
914 goto out;
915 #endif
916
917 if (folio_wait_writeback_killable(folio))
918 goto out;
919
920 if (folio_lock_killable(folio) < 0)
921 goto out;
922
923 /* We mustn't change folio->private until writeback is complete as that
924 * details the portion of the page we need to write back and we might
925 * need to redirty the page if there's a problem.
926 */
927 if (folio_wait_writeback_killable(folio) < 0) {
928 folio_unlock(folio);
929 goto out;
930 }
931
932 priv = afs_folio_dirty(folio, 0, folio_size(folio));
933 priv = afs_folio_dirty_mmapped(priv);
934 if (folio_test_private(folio)) {
935 folio_change_private(folio, (void *)priv);
936 trace_afs_folio_dirty(vnode, tracepoint_string("mkwrite+"), folio);
937 } else {
938 folio_attach_private(folio, (void *)priv);
939 trace_afs_folio_dirty(vnode, tracepoint_string("mkwrite"), folio);
940 }
941 file_update_time(file);
942
943 ret = VM_FAULT_LOCKED;
944 out:
945 sb_end_pagefault(inode->i_sb);
946 return ret;
947 }
948
949 /*
950 * Prune the keys cached for writeback. The caller must hold vnode->wb_lock.
951 */
afs_prune_wb_keys(struct afs_vnode * vnode)952 void afs_prune_wb_keys(struct afs_vnode *vnode)
953 {
954 LIST_HEAD(graveyard);
955 struct afs_wb_key *wbk, *tmp;
956
957 /* Discard unused keys */
958 spin_lock(&vnode->wb_lock);
959
960 if (!mapping_tagged(&vnode->netfs.inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
961 !mapping_tagged(&vnode->netfs.inode.i_data, PAGECACHE_TAG_DIRTY)) {
962 list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
963 if (refcount_read(&wbk->usage) == 1)
964 list_move(&wbk->vnode_link, &graveyard);
965 }
966 }
967
968 spin_unlock(&vnode->wb_lock);
969
970 while (!list_empty(&graveyard)) {
971 wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
972 list_del(&wbk->vnode_link);
973 afs_put_wb_key(wbk);
974 }
975 }
976
977 /*
978 * Clean up a page during invalidation.
979 */
afs_launder_folio(struct folio * folio)980 int afs_launder_folio(struct folio *folio)
981 {
982 struct afs_vnode *vnode = AFS_FS_I(folio_inode(folio));
983 struct iov_iter iter;
984 struct bio_vec bv[1];
985 unsigned long priv;
986 unsigned int f, t;
987 int ret = 0;
988
989 _enter("{%lx}", folio->index);
990
991 priv = (unsigned long)folio_get_private(folio);
992 if (folio_clear_dirty_for_io(folio)) {
993 f = 0;
994 t = folio_size(folio);
995 if (folio_test_private(folio)) {
996 f = afs_folio_dirty_from(folio, priv);
997 t = afs_folio_dirty_to(folio, priv);
998 }
999
1000 bv[0].bv_page = &folio->page;
1001 bv[0].bv_offset = f;
1002 bv[0].bv_len = t - f;
1003 iov_iter_bvec(&iter, WRITE, bv, 1, bv[0].bv_len);
1004
1005 trace_afs_folio_dirty(vnode, tracepoint_string("launder"), folio);
1006 ret = afs_store_data(vnode, &iter, folio_pos(folio) + f, true);
1007 }
1008
1009 trace_afs_folio_dirty(vnode, tracepoint_string("laundered"), folio);
1010 folio_detach_private(folio);
1011 folio_wait_fscache(folio);
1012 return ret;
1013 }
1014
1015 /*
1016 * Deal with the completion of writing the data to the cache.
1017 */
afs_write_to_cache_done(void * priv,ssize_t transferred_or_error,bool was_async)1018 static void afs_write_to_cache_done(void *priv, ssize_t transferred_or_error,
1019 bool was_async)
1020 {
1021 struct afs_vnode *vnode = priv;
1022
1023 if (IS_ERR_VALUE(transferred_or_error) &&
1024 transferred_or_error != -ENOBUFS)
1025 afs_invalidate_cache(vnode, 0);
1026 }
1027
1028 /*
1029 * Save the write to the cache also.
1030 */
afs_write_to_cache(struct afs_vnode * vnode,loff_t start,size_t len,loff_t i_size,bool caching)1031 static void afs_write_to_cache(struct afs_vnode *vnode,
1032 loff_t start, size_t len, loff_t i_size,
1033 bool caching)
1034 {
1035 fscache_write_to_cache(afs_vnode_cache(vnode),
1036 vnode->netfs.inode.i_mapping, start, len, i_size,
1037 afs_write_to_cache_done, vnode, caching);
1038 }
1039