1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* dir.c: AFS filesystem directory handling
3 *
4 * Copyright (C) 2002, 2018 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7
8 #include <linux/kernel.h>
9 #include <linux/fs.h>
10 #include <linux/namei.h>
11 #include <linux/pagemap.h>
12 #include <linux/swap.h>
13 #include <linux/ctype.h>
14 #include <linux/sched.h>
15 #include <linux/task_io_accounting_ops.h>
16 #include "internal.h"
17 #include "afs_fs.h"
18 #include "xdr_fs.h"
19
20 static struct dentry *afs_lookup(struct inode *dir, struct dentry *dentry,
21 unsigned int flags);
22 static int afs_dir_open(struct inode *inode, struct file *file);
23 static int afs_readdir(struct file *file, struct dir_context *ctx);
24 static int afs_d_revalidate(struct dentry *dentry, unsigned int flags);
25 static int afs_d_delete(const struct dentry *dentry);
26 static void afs_d_iput(struct dentry *dentry, struct inode *inode);
27 static int afs_lookup_one_filldir(struct dir_context *ctx, const char *name, int nlen,
28 loff_t fpos, u64 ino, unsigned dtype);
29 static int afs_lookup_filldir(struct dir_context *ctx, const char *name, int nlen,
30 loff_t fpos, u64 ino, unsigned dtype);
31 static int afs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
32 bool excl);
33 static int afs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
34 static int afs_rmdir(struct inode *dir, struct dentry *dentry);
35 static int afs_unlink(struct inode *dir, struct dentry *dentry);
36 static int afs_link(struct dentry *from, struct inode *dir,
37 struct dentry *dentry);
38 static int afs_symlink(struct inode *dir, struct dentry *dentry,
39 const char *content);
40 static int afs_rename(struct inode *old_dir, struct dentry *old_dentry,
41 struct inode *new_dir, struct dentry *new_dentry,
42 unsigned int flags);
43 static int afs_dir_releasepage(struct page *page, gfp_t gfp_flags);
44 static void afs_dir_invalidatepage(struct page *page, unsigned int offset,
45 unsigned int length);
46
afs_dir_set_page_dirty(struct page * page)47 static int afs_dir_set_page_dirty(struct page *page)
48 {
49 BUG(); /* This should never happen. */
50 }
51
52 const struct file_operations afs_dir_file_operations = {
53 .open = afs_dir_open,
54 .release = afs_release,
55 .iterate_shared = afs_readdir,
56 .lock = afs_lock,
57 .llseek = generic_file_llseek,
58 };
59
60 const struct inode_operations afs_dir_inode_operations = {
61 .create = afs_create,
62 .lookup = afs_lookup,
63 .link = afs_link,
64 .unlink = afs_unlink,
65 .symlink = afs_symlink,
66 .mkdir = afs_mkdir,
67 .rmdir = afs_rmdir,
68 .rename = afs_rename,
69 .permission = afs_permission,
70 .getattr = afs_getattr,
71 .setattr = afs_setattr,
72 .listxattr = afs_listxattr,
73 };
74
75 const struct address_space_operations afs_dir_aops = {
76 .set_page_dirty = afs_dir_set_page_dirty,
77 .releasepage = afs_dir_releasepage,
78 .invalidatepage = afs_dir_invalidatepage,
79 };
80
81 const struct dentry_operations afs_fs_dentry_operations = {
82 .d_revalidate = afs_d_revalidate,
83 .d_delete = afs_d_delete,
84 .d_release = afs_d_release,
85 .d_automount = afs_d_automount,
86 .d_iput = afs_d_iput,
87 };
88
89 struct afs_lookup_one_cookie {
90 struct dir_context ctx;
91 struct qstr name;
92 bool found;
93 struct afs_fid fid;
94 };
95
96 struct afs_lookup_cookie {
97 struct dir_context ctx;
98 struct qstr name;
99 bool found;
100 bool one_only;
101 unsigned short nr_fids;
102 struct inode **inodes;
103 struct afs_status_cb *statuses;
104 struct afs_fid fids[50];
105 };
106
107 /*
108 * check that a directory page is valid
109 */
afs_dir_check_page(struct afs_vnode * dvnode,struct page * page,loff_t i_size)110 static bool afs_dir_check_page(struct afs_vnode *dvnode, struct page *page,
111 loff_t i_size)
112 {
113 struct afs_xdr_dir_page *dbuf;
114 loff_t latter, off;
115 int tmp, qty;
116
117 /* Determine how many magic numbers there should be in this page, but
118 * we must take care because the directory may change size under us.
119 */
120 off = page_offset(page);
121 if (i_size <= off)
122 goto checked;
123
124 latter = i_size - off;
125 if (latter >= PAGE_SIZE)
126 qty = PAGE_SIZE;
127 else
128 qty = latter;
129 qty /= sizeof(union afs_xdr_dir_block);
130
131 /* check them */
132 dbuf = kmap(page);
133 for (tmp = 0; tmp < qty; tmp++) {
134 if (dbuf->blocks[tmp].hdr.magic != AFS_DIR_MAGIC) {
135 printk("kAFS: %s(%lx): bad magic %d/%d is %04hx\n",
136 __func__, dvnode->vfs_inode.i_ino, tmp, qty,
137 ntohs(dbuf->blocks[tmp].hdr.magic));
138 trace_afs_dir_check_failed(dvnode, off, i_size);
139 kunmap(page);
140 trace_afs_file_error(dvnode, -EIO, afs_file_error_dir_bad_magic);
141 goto error;
142 }
143
144 /* Make sure each block is NUL terminated so we can reasonably
145 * use string functions on it. The filenames in the page
146 * *should* be NUL-terminated anyway.
147 */
148 ((u8 *)&dbuf->blocks[tmp])[AFS_DIR_BLOCK_SIZE - 1] = 0;
149 }
150
151 kunmap(page);
152
153 checked:
154 afs_stat_v(dvnode, n_read_dir);
155 return true;
156
157 error:
158 return false;
159 }
160
161 /*
162 * Check the contents of a directory that we've just read.
163 */
afs_dir_check_pages(struct afs_vnode * dvnode,struct afs_read * req)164 static bool afs_dir_check_pages(struct afs_vnode *dvnode, struct afs_read *req)
165 {
166 struct afs_xdr_dir_page *dbuf;
167 unsigned int i, j, qty = PAGE_SIZE / sizeof(union afs_xdr_dir_block);
168
169 for (i = 0; i < req->nr_pages; i++)
170 if (!afs_dir_check_page(dvnode, req->pages[i], req->actual_len))
171 goto bad;
172 return true;
173
174 bad:
175 pr_warn("DIR %llx:%llx f=%llx l=%llx al=%llx r=%llx\n",
176 dvnode->fid.vid, dvnode->fid.vnode,
177 req->file_size, req->len, req->actual_len, req->remain);
178 pr_warn("DIR %llx %x %x %x\n",
179 req->pos, req->index, req->nr_pages, req->offset);
180
181 for (i = 0; i < req->nr_pages; i++) {
182 dbuf = kmap(req->pages[i]);
183 for (j = 0; j < qty; j++) {
184 union afs_xdr_dir_block *block = &dbuf->blocks[j];
185
186 pr_warn("[%02x] %32phN\n", i * qty + j, block);
187 }
188 kunmap(req->pages[i]);
189 }
190 return false;
191 }
192
193 /*
194 * open an AFS directory file
195 */
afs_dir_open(struct inode * inode,struct file * file)196 static int afs_dir_open(struct inode *inode, struct file *file)
197 {
198 _enter("{%lu}", inode->i_ino);
199
200 BUILD_BUG_ON(sizeof(union afs_xdr_dir_block) != 2048);
201 BUILD_BUG_ON(sizeof(union afs_xdr_dirent) != 32);
202
203 if (test_bit(AFS_VNODE_DELETED, &AFS_FS_I(inode)->flags))
204 return -ENOENT;
205
206 return afs_open(inode, file);
207 }
208
209 /*
210 * Read the directory into the pagecache in one go, scrubbing the previous
211 * contents. The list of pages is returned, pinning them so that they don't
212 * get reclaimed during the iteration.
213 */
afs_read_dir(struct afs_vnode * dvnode,struct key * key)214 static struct afs_read *afs_read_dir(struct afs_vnode *dvnode, struct key *key)
215 __acquires(&dvnode->validate_lock)
216 {
217 struct afs_read *req;
218 loff_t i_size;
219 int nr_pages, nr_inline, i, n;
220 int ret = -ENOMEM;
221
222 retry:
223 i_size = i_size_read(&dvnode->vfs_inode);
224 if (i_size < 2048)
225 return ERR_PTR(afs_bad(dvnode, afs_file_error_dir_small));
226 if (i_size > 2048 * 1024) {
227 trace_afs_file_error(dvnode, -EFBIG, afs_file_error_dir_big);
228 return ERR_PTR(-EFBIG);
229 }
230
231 _enter("%llu", i_size);
232
233 /* Get a request record to hold the page list. We want to hold it
234 * inline if we can, but we don't want to make an order 1 allocation.
235 */
236 nr_pages = (i_size + PAGE_SIZE - 1) / PAGE_SIZE;
237 nr_inline = nr_pages;
238 if (nr_inline > (PAGE_SIZE - sizeof(*req)) / sizeof(struct page *))
239 nr_inline = 0;
240
241 req = kzalloc(struct_size(req, array, nr_inline), GFP_KERNEL);
242 if (!req)
243 return ERR_PTR(-ENOMEM);
244
245 refcount_set(&req->usage, 1);
246 req->nr_pages = nr_pages;
247 req->actual_len = i_size; /* May change */
248 req->len = nr_pages * PAGE_SIZE; /* We can ask for more than there is */
249 req->data_version = dvnode->status.data_version; /* May change */
250 if (nr_inline > 0) {
251 req->pages = req->array;
252 } else {
253 req->pages = kcalloc(nr_pages, sizeof(struct page *),
254 GFP_KERNEL);
255 if (!req->pages)
256 goto error;
257 }
258
259 /* Get a list of all the pages that hold or will hold the directory
260 * content. We need to fill in any gaps that we might find where the
261 * memory reclaimer has been at work. If there are any gaps, we will
262 * need to reread the entire directory contents.
263 */
264 i = 0;
265 do {
266 n = find_get_pages_contig(dvnode->vfs_inode.i_mapping, i,
267 req->nr_pages - i,
268 req->pages + i);
269 _debug("find %u at %u/%u", n, i, req->nr_pages);
270 if (n == 0) {
271 gfp_t gfp = dvnode->vfs_inode.i_mapping->gfp_mask;
272
273 if (test_and_clear_bit(AFS_VNODE_DIR_VALID, &dvnode->flags))
274 afs_stat_v(dvnode, n_inval);
275
276 ret = -ENOMEM;
277 req->pages[i] = __page_cache_alloc(gfp);
278 if (!req->pages[i])
279 goto error;
280 ret = add_to_page_cache_lru(req->pages[i],
281 dvnode->vfs_inode.i_mapping,
282 i, gfp);
283 if (ret < 0)
284 goto error;
285
286 set_page_private(req->pages[i], 1);
287 SetPagePrivate(req->pages[i]);
288 unlock_page(req->pages[i]);
289 i++;
290 } else {
291 i += n;
292 }
293 } while (i < req->nr_pages);
294
295 /* If we're going to reload, we need to lock all the pages to prevent
296 * races.
297 */
298 ret = -ERESTARTSYS;
299 if (down_read_killable(&dvnode->validate_lock) < 0)
300 goto error;
301
302 if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags))
303 goto success;
304
305 up_read(&dvnode->validate_lock);
306 if (down_write_killable(&dvnode->validate_lock) < 0)
307 goto error;
308
309 if (!test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) {
310 trace_afs_reload_dir(dvnode);
311 ret = afs_fetch_data(dvnode, key, req);
312 if (ret < 0)
313 goto error_unlock;
314
315 task_io_account_read(PAGE_SIZE * req->nr_pages);
316
317 if (req->len < req->file_size)
318 goto content_has_grown;
319
320 /* Validate the data we just read. */
321 ret = -EIO;
322 if (!afs_dir_check_pages(dvnode, req))
323 goto error_unlock;
324
325 // TODO: Trim excess pages
326
327 set_bit(AFS_VNODE_DIR_VALID, &dvnode->flags);
328 }
329
330 downgrade_write(&dvnode->validate_lock);
331 success:
332 return req;
333
334 error_unlock:
335 up_write(&dvnode->validate_lock);
336 error:
337 afs_put_read(req);
338 _leave(" = %d", ret);
339 return ERR_PTR(ret);
340
341 content_has_grown:
342 up_write(&dvnode->validate_lock);
343 afs_put_read(req);
344 goto retry;
345 }
346
347 /*
348 * deal with one block in an AFS directory
349 */
afs_dir_iterate_block(struct afs_vnode * dvnode,struct dir_context * ctx,union afs_xdr_dir_block * block,unsigned blkoff)350 static int afs_dir_iterate_block(struct afs_vnode *dvnode,
351 struct dir_context *ctx,
352 union afs_xdr_dir_block *block,
353 unsigned blkoff)
354 {
355 union afs_xdr_dirent *dire;
356 unsigned offset, next, curr;
357 size_t nlen;
358 int tmp;
359
360 _enter("%u,%x,%p,,",(unsigned)ctx->pos,blkoff,block);
361
362 curr = (ctx->pos - blkoff) / sizeof(union afs_xdr_dirent);
363
364 /* walk through the block, an entry at a time */
365 for (offset = (blkoff == 0 ? AFS_DIR_RESV_BLOCKS0 : AFS_DIR_RESV_BLOCKS);
366 offset < AFS_DIR_SLOTS_PER_BLOCK;
367 offset = next
368 ) {
369 next = offset + 1;
370
371 /* skip entries marked unused in the bitmap */
372 if (!(block->hdr.bitmap[offset / 8] &
373 (1 << (offset % 8)))) {
374 _debug("ENT[%zu.%u]: unused",
375 blkoff / sizeof(union afs_xdr_dir_block), offset);
376 if (offset >= curr)
377 ctx->pos = blkoff +
378 next * sizeof(union afs_xdr_dirent);
379 continue;
380 }
381
382 /* got a valid entry */
383 dire = &block->dirents[offset];
384 nlen = strnlen(dire->u.name,
385 sizeof(*block) -
386 offset * sizeof(union afs_xdr_dirent));
387
388 _debug("ENT[%zu.%u]: %s %zu \"%s\"",
389 blkoff / sizeof(union afs_xdr_dir_block), offset,
390 (offset < curr ? "skip" : "fill"),
391 nlen, dire->u.name);
392
393 /* work out where the next possible entry is */
394 for (tmp = nlen; tmp > 15; tmp -= sizeof(union afs_xdr_dirent)) {
395 if (next >= AFS_DIR_SLOTS_PER_BLOCK) {
396 _debug("ENT[%zu.%u]:"
397 " %u travelled beyond end dir block"
398 " (len %u/%zu)",
399 blkoff / sizeof(union afs_xdr_dir_block),
400 offset, next, tmp, nlen);
401 return afs_bad(dvnode, afs_file_error_dir_over_end);
402 }
403 if (!(block->hdr.bitmap[next / 8] &
404 (1 << (next % 8)))) {
405 _debug("ENT[%zu.%u]:"
406 " %u unmarked extension (len %u/%zu)",
407 blkoff / sizeof(union afs_xdr_dir_block),
408 offset, next, tmp, nlen);
409 return afs_bad(dvnode, afs_file_error_dir_unmarked_ext);
410 }
411
412 _debug("ENT[%zu.%u]: ext %u/%zu",
413 blkoff / sizeof(union afs_xdr_dir_block),
414 next, tmp, nlen);
415 next++;
416 }
417
418 /* skip if starts before the current position */
419 if (offset < curr)
420 continue;
421
422 /* found the next entry */
423 if (!dir_emit(ctx, dire->u.name, nlen,
424 ntohl(dire->u.vnode),
425 (ctx->actor == afs_lookup_filldir ||
426 ctx->actor == afs_lookup_one_filldir)?
427 ntohl(dire->u.unique) : DT_UNKNOWN)) {
428 _leave(" = 0 [full]");
429 return 0;
430 }
431
432 ctx->pos = blkoff + next * sizeof(union afs_xdr_dirent);
433 }
434
435 _leave(" = 1 [more]");
436 return 1;
437 }
438
439 /*
440 * iterate through the data blob that lists the contents of an AFS directory
441 */
afs_dir_iterate(struct inode * dir,struct dir_context * ctx,struct key * key,afs_dataversion_t * _dir_version)442 static int afs_dir_iterate(struct inode *dir, struct dir_context *ctx,
443 struct key *key, afs_dataversion_t *_dir_version)
444 {
445 struct afs_vnode *dvnode = AFS_FS_I(dir);
446 struct afs_xdr_dir_page *dbuf;
447 union afs_xdr_dir_block *dblock;
448 struct afs_read *req;
449 struct page *page;
450 unsigned blkoff, limit;
451 int ret;
452
453 _enter("{%lu},%u,,", dir->i_ino, (unsigned)ctx->pos);
454
455 if (test_bit(AFS_VNODE_DELETED, &AFS_FS_I(dir)->flags)) {
456 _leave(" = -ESTALE");
457 return -ESTALE;
458 }
459
460 req = afs_read_dir(dvnode, key);
461 if (IS_ERR(req))
462 return PTR_ERR(req);
463 *_dir_version = req->data_version;
464
465 /* round the file position up to the next entry boundary */
466 ctx->pos += sizeof(union afs_xdr_dirent) - 1;
467 ctx->pos &= ~(sizeof(union afs_xdr_dirent) - 1);
468
469 /* walk through the blocks in sequence */
470 ret = 0;
471 while (ctx->pos < req->actual_len) {
472 blkoff = ctx->pos & ~(sizeof(union afs_xdr_dir_block) - 1);
473
474 /* Fetch the appropriate page from the directory and re-add it
475 * to the LRU.
476 */
477 page = req->pages[blkoff / PAGE_SIZE];
478 if (!page) {
479 ret = afs_bad(dvnode, afs_file_error_dir_missing_page);
480 break;
481 }
482 mark_page_accessed(page);
483
484 limit = blkoff & ~(PAGE_SIZE - 1);
485
486 dbuf = kmap(page);
487
488 /* deal with the individual blocks stashed on this page */
489 do {
490 dblock = &dbuf->blocks[(blkoff % PAGE_SIZE) /
491 sizeof(union afs_xdr_dir_block)];
492 ret = afs_dir_iterate_block(dvnode, ctx, dblock, blkoff);
493 if (ret != 1) {
494 kunmap(page);
495 goto out;
496 }
497
498 blkoff += sizeof(union afs_xdr_dir_block);
499
500 } while (ctx->pos < dir->i_size && blkoff < limit);
501
502 kunmap(page);
503 ret = 0;
504 }
505
506 out:
507 up_read(&dvnode->validate_lock);
508 afs_put_read(req);
509 _leave(" = %d", ret);
510 return ret;
511 }
512
513 /*
514 * read an AFS directory
515 */
afs_readdir(struct file * file,struct dir_context * ctx)516 static int afs_readdir(struct file *file, struct dir_context *ctx)
517 {
518 afs_dataversion_t dir_version;
519
520 return afs_dir_iterate(file_inode(file), ctx, afs_file_key(file),
521 &dir_version);
522 }
523
524 /*
525 * Search the directory for a single name
526 * - if afs_dir_iterate_block() spots this function, it'll pass the FID
527 * uniquifier through dtype
528 */
afs_lookup_one_filldir(struct dir_context * ctx,const char * name,int nlen,loff_t fpos,u64 ino,unsigned dtype)529 static int afs_lookup_one_filldir(struct dir_context *ctx, const char *name,
530 int nlen, loff_t fpos, u64 ino, unsigned dtype)
531 {
532 struct afs_lookup_one_cookie *cookie =
533 container_of(ctx, struct afs_lookup_one_cookie, ctx);
534
535 _enter("{%s,%u},%s,%u,,%llu,%u",
536 cookie->name.name, cookie->name.len, name, nlen,
537 (unsigned long long) ino, dtype);
538
539 /* insanity checks first */
540 BUILD_BUG_ON(sizeof(union afs_xdr_dir_block) != 2048);
541 BUILD_BUG_ON(sizeof(union afs_xdr_dirent) != 32);
542
543 if (cookie->name.len != nlen ||
544 memcmp(cookie->name.name, name, nlen) != 0) {
545 _leave(" = 0 [no]");
546 return 0;
547 }
548
549 cookie->fid.vnode = ino;
550 cookie->fid.unique = dtype;
551 cookie->found = 1;
552
553 _leave(" = -1 [found]");
554 return -1;
555 }
556
557 /*
558 * Do a lookup of a single name in a directory
559 * - just returns the FID the dentry name maps to if found
560 */
afs_do_lookup_one(struct inode * dir,struct dentry * dentry,struct afs_fid * fid,struct key * key,afs_dataversion_t * _dir_version)561 static int afs_do_lookup_one(struct inode *dir, struct dentry *dentry,
562 struct afs_fid *fid, struct key *key,
563 afs_dataversion_t *_dir_version)
564 {
565 struct afs_super_info *as = dir->i_sb->s_fs_info;
566 struct afs_lookup_one_cookie cookie = {
567 .ctx.actor = afs_lookup_one_filldir,
568 .name = dentry->d_name,
569 .fid.vid = as->volume->vid
570 };
571 int ret;
572
573 _enter("{%lu},%p{%pd},", dir->i_ino, dentry, dentry);
574
575 /* search the directory */
576 ret = afs_dir_iterate(dir, &cookie.ctx, key, _dir_version);
577 if (ret < 0) {
578 _leave(" = %d [iter]", ret);
579 return ret;
580 }
581
582 ret = -ENOENT;
583 if (!cookie.found) {
584 _leave(" = -ENOENT [not found]");
585 return -ENOENT;
586 }
587
588 *fid = cookie.fid;
589 _leave(" = 0 { vn=%llu u=%u }", fid->vnode, fid->unique);
590 return 0;
591 }
592
593 /*
594 * search the directory for a name
595 * - if afs_dir_iterate_block() spots this function, it'll pass the FID
596 * uniquifier through dtype
597 */
afs_lookup_filldir(struct dir_context * ctx,const char * name,int nlen,loff_t fpos,u64 ino,unsigned dtype)598 static int afs_lookup_filldir(struct dir_context *ctx, const char *name,
599 int nlen, loff_t fpos, u64 ino, unsigned dtype)
600 {
601 struct afs_lookup_cookie *cookie =
602 container_of(ctx, struct afs_lookup_cookie, ctx);
603 int ret;
604
605 _enter("{%s,%u},%s,%u,,%llu,%u",
606 cookie->name.name, cookie->name.len, name, nlen,
607 (unsigned long long) ino, dtype);
608
609 /* insanity checks first */
610 BUILD_BUG_ON(sizeof(union afs_xdr_dir_block) != 2048);
611 BUILD_BUG_ON(sizeof(union afs_xdr_dirent) != 32);
612
613 if (cookie->found) {
614 if (cookie->nr_fids < 50) {
615 cookie->fids[cookie->nr_fids].vnode = ino;
616 cookie->fids[cookie->nr_fids].unique = dtype;
617 cookie->nr_fids++;
618 }
619 } else if (cookie->name.len == nlen &&
620 memcmp(cookie->name.name, name, nlen) == 0) {
621 cookie->fids[0].vnode = ino;
622 cookie->fids[0].unique = dtype;
623 cookie->found = 1;
624 if (cookie->one_only)
625 return -1;
626 }
627
628 ret = cookie->nr_fids >= 50 ? -1 : 0;
629 _leave(" = %d", ret);
630 return ret;
631 }
632
633 /*
634 * Do a lookup in a directory. We make use of bulk lookup to query a slew of
635 * files in one go and create inodes for them. The inode of the file we were
636 * asked for is returned.
637 */
afs_do_lookup(struct inode * dir,struct dentry * dentry,struct key * key)638 static struct inode *afs_do_lookup(struct inode *dir, struct dentry *dentry,
639 struct key *key)
640 {
641 struct afs_lookup_cookie *cookie;
642 struct afs_cb_interest *dcbi, *cbi = NULL;
643 struct afs_super_info *as = dir->i_sb->s_fs_info;
644 struct afs_status_cb *scb;
645 struct afs_iget_data iget_data;
646 struct afs_fs_cursor fc;
647 struct afs_server *server;
648 struct afs_vnode *dvnode = AFS_FS_I(dir), *vnode;
649 struct inode *inode = NULL, *ti;
650 afs_dataversion_t data_version = READ_ONCE(dvnode->status.data_version);
651 int ret, i;
652
653 _enter("{%lu},%p{%pd},", dir->i_ino, dentry, dentry);
654
655 cookie = kzalloc(sizeof(struct afs_lookup_cookie), GFP_KERNEL);
656 if (!cookie)
657 return ERR_PTR(-ENOMEM);
658
659 cookie->ctx.actor = afs_lookup_filldir;
660 cookie->name = dentry->d_name;
661 cookie->nr_fids = 1; /* slot 0 is saved for the fid we actually want */
662
663 read_seqlock_excl(&dvnode->cb_lock);
664 dcbi = rcu_dereference_protected(dvnode->cb_interest,
665 lockdep_is_held(&dvnode->cb_lock.lock));
666 if (dcbi) {
667 server = dcbi->server;
668 if (server &&
669 test_bit(AFS_SERVER_FL_NO_IBULK, &server->flags))
670 cookie->one_only = true;
671 }
672 read_sequnlock_excl(&dvnode->cb_lock);
673
674 for (i = 0; i < 50; i++)
675 cookie->fids[i].vid = as->volume->vid;
676
677 /* search the directory */
678 ret = afs_dir_iterate(dir, &cookie->ctx, key, &data_version);
679 if (ret < 0) {
680 inode = ERR_PTR(ret);
681 goto out;
682 }
683
684 dentry->d_fsdata = (void *)(unsigned long)data_version;
685
686 inode = ERR_PTR(-ENOENT);
687 if (!cookie->found)
688 goto out;
689
690 /* Check to see if we already have an inode for the primary fid. */
691 iget_data.fid = cookie->fids[0];
692 iget_data.volume = dvnode->volume;
693 iget_data.cb_v_break = dvnode->volume->cb_v_break;
694 iget_data.cb_s_break = 0;
695 inode = ilookup5(dir->i_sb, cookie->fids[0].vnode,
696 afs_iget5_test, &iget_data);
697 if (inode)
698 goto out;
699
700 /* Need space for examining all the selected files */
701 inode = ERR_PTR(-ENOMEM);
702 cookie->statuses = kvcalloc(cookie->nr_fids, sizeof(struct afs_status_cb),
703 GFP_KERNEL);
704 if (!cookie->statuses)
705 goto out;
706
707 cookie->inodes = kcalloc(cookie->nr_fids, sizeof(struct inode *),
708 GFP_KERNEL);
709 if (!cookie->inodes)
710 goto out_s;
711
712 for (i = 1; i < cookie->nr_fids; i++) {
713 scb = &cookie->statuses[i];
714
715 /* Find any inodes that already exist and get their
716 * callback counters.
717 */
718 iget_data.fid = cookie->fids[i];
719 ti = ilookup5_nowait(dir->i_sb, iget_data.fid.vnode,
720 afs_iget5_test, &iget_data);
721 if (!IS_ERR_OR_NULL(ti)) {
722 vnode = AFS_FS_I(ti);
723 scb->cb_break = afs_calc_vnode_cb_break(vnode);
724 cookie->inodes[i] = ti;
725 }
726 }
727
728 /* Try FS.InlineBulkStatus first. Abort codes for the individual
729 * lookups contained therein are stored in the reply without aborting
730 * the whole operation.
731 */
732 if (cookie->one_only)
733 goto no_inline_bulk_status;
734
735 inode = ERR_PTR(-ERESTARTSYS);
736 if (afs_begin_vnode_operation(&fc, dvnode, key, true)) {
737 while (afs_select_fileserver(&fc)) {
738 if (test_bit(AFS_SERVER_FL_NO_IBULK,
739 &fc.cbi->server->flags)) {
740 fc.ac.abort_code = RX_INVALID_OPERATION;
741 fc.ac.error = -ECONNABORTED;
742 break;
743 }
744 iget_data.cb_v_break = dvnode->volume->cb_v_break;
745 iget_data.cb_s_break = fc.cbi->server->cb_s_break;
746 afs_fs_inline_bulk_status(&fc,
747 afs_v2net(dvnode),
748 cookie->fids,
749 cookie->statuses,
750 cookie->nr_fids, NULL);
751 }
752
753 if (fc.ac.error == 0)
754 cbi = afs_get_cb_interest(fc.cbi);
755 if (fc.ac.abort_code == RX_INVALID_OPERATION)
756 set_bit(AFS_SERVER_FL_NO_IBULK, &fc.cbi->server->flags);
757 inode = ERR_PTR(afs_end_vnode_operation(&fc));
758 }
759
760 if (!IS_ERR(inode))
761 goto success;
762 if (fc.ac.abort_code != RX_INVALID_OPERATION)
763 goto out_c;
764
765 no_inline_bulk_status:
766 /* We could try FS.BulkStatus next, but this aborts the entire op if
767 * any of the lookups fails - so, for the moment, revert to
768 * FS.FetchStatus for just the primary fid.
769 */
770 inode = ERR_PTR(-ERESTARTSYS);
771 if (afs_begin_vnode_operation(&fc, dvnode, key, true)) {
772 while (afs_select_fileserver(&fc)) {
773 iget_data.cb_v_break = dvnode->volume->cb_v_break;
774 iget_data.cb_s_break = fc.cbi->server->cb_s_break;
775 scb = &cookie->statuses[0];
776 afs_fs_fetch_status(&fc,
777 afs_v2net(dvnode),
778 cookie->fids,
779 scb,
780 NULL);
781 }
782
783 if (fc.ac.error == 0)
784 cbi = afs_get_cb_interest(fc.cbi);
785 inode = ERR_PTR(afs_end_vnode_operation(&fc));
786 }
787
788 if (IS_ERR(inode))
789 goto out_c;
790
791 success:
792 /* Turn all the files into inodes and save the first one - which is the
793 * one we actually want.
794 */
795 scb = &cookie->statuses[0];
796 if (scb->status.abort_code != 0)
797 inode = ERR_PTR(afs_abort_to_error(scb->status.abort_code));
798
799 for (i = 0; i < cookie->nr_fids; i++) {
800 struct afs_status_cb *scb = &cookie->statuses[i];
801
802 if (!scb->have_status && !scb->have_error)
803 continue;
804
805 if (cookie->inodes[i]) {
806 struct afs_vnode *iv = AFS_FS_I(cookie->inodes[i]);
807
808 if (test_bit(AFS_VNODE_UNSET, &iv->flags))
809 continue;
810
811 afs_vnode_commit_status(&fc, iv,
812 scb->cb_break, NULL, scb);
813 continue;
814 }
815
816 if (scb->status.abort_code != 0)
817 continue;
818
819 iget_data.fid = cookie->fids[i];
820 ti = afs_iget(dir->i_sb, key, &iget_data, scb, cbi, dvnode);
821 if (!IS_ERR(ti))
822 afs_cache_permit(AFS_FS_I(ti), key,
823 0 /* Assume vnode->cb_break is 0 */ +
824 iget_data.cb_v_break,
825 scb);
826 if (i == 0) {
827 inode = ti;
828 } else {
829 if (!IS_ERR(ti))
830 iput(ti);
831 }
832 }
833
834 out_c:
835 afs_put_cb_interest(afs_v2net(dvnode), cbi);
836 if (cookie->inodes) {
837 for (i = 0; i < cookie->nr_fids; i++)
838 iput(cookie->inodes[i]);
839 kfree(cookie->inodes);
840 }
841 out_s:
842 kvfree(cookie->statuses);
843 out:
844 kfree(cookie);
845 return inode;
846 }
847
848 /*
849 * Look up an entry in a directory with @sys substitution.
850 */
afs_lookup_atsys(struct inode * dir,struct dentry * dentry,struct key * key)851 static struct dentry *afs_lookup_atsys(struct inode *dir, struct dentry *dentry,
852 struct key *key)
853 {
854 struct afs_sysnames *subs;
855 struct afs_net *net = afs_i2net(dir);
856 struct dentry *ret;
857 char *buf, *p, *name;
858 int len, i;
859
860 _enter("");
861
862 ret = ERR_PTR(-ENOMEM);
863 p = buf = kmalloc(AFSNAMEMAX, GFP_KERNEL);
864 if (!buf)
865 goto out_p;
866 if (dentry->d_name.len > 4) {
867 memcpy(p, dentry->d_name.name, dentry->d_name.len - 4);
868 p += dentry->d_name.len - 4;
869 }
870
871 /* There is an ordered list of substitutes that we have to try. */
872 read_lock(&net->sysnames_lock);
873 subs = net->sysnames;
874 refcount_inc(&subs->usage);
875 read_unlock(&net->sysnames_lock);
876
877 for (i = 0; i < subs->nr; i++) {
878 name = subs->subs[i];
879 len = dentry->d_name.len - 4 + strlen(name);
880 if (len >= AFSNAMEMAX) {
881 ret = ERR_PTR(-ENAMETOOLONG);
882 goto out_s;
883 }
884
885 strcpy(p, name);
886 ret = lookup_one_len(buf, dentry->d_parent, len);
887 if (IS_ERR(ret) || d_is_positive(ret))
888 goto out_s;
889 dput(ret);
890 }
891
892 /* We don't want to d_add() the @sys dentry here as we don't want to
893 * the cached dentry to hide changes to the sysnames list.
894 */
895 ret = NULL;
896 out_s:
897 afs_put_sysnames(subs);
898 kfree(buf);
899 out_p:
900 key_put(key);
901 return ret;
902 }
903
904 /*
905 * look up an entry in a directory
906 */
afs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)907 static struct dentry *afs_lookup(struct inode *dir, struct dentry *dentry,
908 unsigned int flags)
909 {
910 struct afs_vnode *dvnode = AFS_FS_I(dir);
911 struct inode *inode;
912 struct dentry *d;
913 struct key *key;
914 int ret;
915
916 _enter("{%llx:%llu},%p{%pd},",
917 dvnode->fid.vid, dvnode->fid.vnode, dentry, dentry);
918
919 ASSERTCMP(d_inode(dentry), ==, NULL);
920
921 if (dentry->d_name.len >= AFSNAMEMAX) {
922 _leave(" = -ENAMETOOLONG");
923 return ERR_PTR(-ENAMETOOLONG);
924 }
925
926 if (test_bit(AFS_VNODE_DELETED, &dvnode->flags)) {
927 _leave(" = -ESTALE");
928 return ERR_PTR(-ESTALE);
929 }
930
931 key = afs_request_key(dvnode->volume->cell);
932 if (IS_ERR(key)) {
933 _leave(" = %ld [key]", PTR_ERR(key));
934 return ERR_CAST(key);
935 }
936
937 ret = afs_validate(dvnode, key);
938 if (ret < 0) {
939 key_put(key);
940 _leave(" = %d [val]", ret);
941 return ERR_PTR(ret);
942 }
943
944 if (dentry->d_name.len >= 4 &&
945 dentry->d_name.name[dentry->d_name.len - 4] == '@' &&
946 dentry->d_name.name[dentry->d_name.len - 3] == 's' &&
947 dentry->d_name.name[dentry->d_name.len - 2] == 'y' &&
948 dentry->d_name.name[dentry->d_name.len - 1] == 's')
949 return afs_lookup_atsys(dir, dentry, key);
950
951 afs_stat_v(dvnode, n_lookup);
952 inode = afs_do_lookup(dir, dentry, key);
953 key_put(key);
954 if (inode == ERR_PTR(-ENOENT)) {
955 inode = afs_try_auto_mntpt(dentry, dir);
956 } else {
957 dentry->d_fsdata =
958 (void *)(unsigned long)dvnode->status.data_version;
959 }
960 d = d_splice_alias(inode, dentry);
961 if (!IS_ERR_OR_NULL(d)) {
962 d->d_fsdata = dentry->d_fsdata;
963 trace_afs_lookup(dvnode, &d->d_name,
964 inode ? AFS_FS_I(inode) : NULL);
965 } else {
966 trace_afs_lookup(dvnode, &dentry->d_name,
967 IS_ERR_OR_NULL(inode) ? NULL
968 : AFS_FS_I(inode));
969 }
970 return d;
971 }
972
973 /*
974 * Check the validity of a dentry under RCU conditions.
975 */
afs_d_revalidate_rcu(struct dentry * dentry)976 static int afs_d_revalidate_rcu(struct dentry *dentry)
977 {
978 struct afs_vnode *dvnode, *vnode;
979 struct dentry *parent;
980 struct inode *dir, *inode;
981 long dir_version, de_version;
982
983 _enter("%p", dentry);
984
985 /* Check the parent directory is still valid first. */
986 parent = READ_ONCE(dentry->d_parent);
987 dir = d_inode_rcu(parent);
988 if (!dir)
989 return -ECHILD;
990 dvnode = AFS_FS_I(dir);
991 if (test_bit(AFS_VNODE_DELETED, &dvnode->flags))
992 return -ECHILD;
993
994 if (!afs_check_validity(dvnode))
995 return -ECHILD;
996
997 /* We only need to invalidate a dentry if the server's copy changed
998 * behind our back. If we made the change, it's no problem. Note that
999 * on a 32-bit system, we only have 32 bits in the dentry to store the
1000 * version.
1001 */
1002 dir_version = (long)READ_ONCE(dvnode->status.data_version);
1003 de_version = (long)READ_ONCE(dentry->d_fsdata);
1004 if (de_version != dir_version) {
1005 dir_version = (long)READ_ONCE(dvnode->invalid_before);
1006 if (de_version - dir_version < 0)
1007 return -ECHILD;
1008 }
1009
1010 /* Check to see if the vnode referred to by the dentry still
1011 * has a callback.
1012 */
1013 if (d_really_is_positive(dentry)) {
1014 inode = d_inode_rcu(dentry);
1015 if (inode) {
1016 vnode = AFS_FS_I(inode);
1017 if (!afs_check_validity(vnode))
1018 return -ECHILD;
1019 }
1020 }
1021
1022 return 1; /* Still valid */
1023 }
1024
1025 /*
1026 * check that a dentry lookup hit has found a valid entry
1027 * - NOTE! the hit can be a negative hit too, so we can't assume we have an
1028 * inode
1029 */
afs_d_revalidate(struct dentry * dentry,unsigned int flags)1030 static int afs_d_revalidate(struct dentry *dentry, unsigned int flags)
1031 {
1032 struct afs_vnode *vnode, *dir;
1033 struct afs_fid uninitialized_var(fid);
1034 struct dentry *parent;
1035 struct inode *inode;
1036 struct key *key;
1037 afs_dataversion_t dir_version;
1038 long de_version;
1039 int ret;
1040
1041 if (flags & LOOKUP_RCU)
1042 return afs_d_revalidate_rcu(dentry);
1043
1044 if (d_really_is_positive(dentry)) {
1045 vnode = AFS_FS_I(d_inode(dentry));
1046 _enter("{v={%llx:%llu} n=%pd fl=%lx},",
1047 vnode->fid.vid, vnode->fid.vnode, dentry,
1048 vnode->flags);
1049 } else {
1050 _enter("{neg n=%pd}", dentry);
1051 }
1052
1053 key = afs_request_key(AFS_FS_S(dentry->d_sb)->volume->cell);
1054 if (IS_ERR(key))
1055 key = NULL;
1056
1057 if (d_really_is_positive(dentry)) {
1058 inode = d_inode(dentry);
1059 if (inode) {
1060 vnode = AFS_FS_I(inode);
1061 afs_validate(vnode, key);
1062 if (test_bit(AFS_VNODE_DELETED, &vnode->flags))
1063 goto out_bad;
1064 }
1065 }
1066
1067 /* lock down the parent dentry so we can peer at it */
1068 parent = dget_parent(dentry);
1069 dir = AFS_FS_I(d_inode(parent));
1070
1071 /* validate the parent directory */
1072 afs_validate(dir, key);
1073
1074 if (test_bit(AFS_VNODE_DELETED, &dir->flags)) {
1075 _debug("%pd: parent dir deleted", dentry);
1076 goto out_bad_parent;
1077 }
1078
1079 /* We only need to invalidate a dentry if the server's copy changed
1080 * behind our back. If we made the change, it's no problem. Note that
1081 * on a 32-bit system, we only have 32 bits in the dentry to store the
1082 * version.
1083 */
1084 dir_version = dir->status.data_version;
1085 de_version = (long)dentry->d_fsdata;
1086 if (de_version == (long)dir_version)
1087 goto out_valid_noupdate;
1088
1089 dir_version = dir->invalid_before;
1090 if (de_version - (long)dir_version >= 0)
1091 goto out_valid;
1092
1093 _debug("dir modified");
1094 afs_stat_v(dir, n_reval);
1095
1096 /* search the directory for this vnode */
1097 ret = afs_do_lookup_one(&dir->vfs_inode, dentry, &fid, key, &dir_version);
1098 switch (ret) {
1099 case 0:
1100 /* the filename maps to something */
1101 if (d_really_is_negative(dentry))
1102 goto out_bad_parent;
1103 inode = d_inode(dentry);
1104 if (is_bad_inode(inode)) {
1105 printk("kAFS: afs_d_revalidate: %pd2 has bad inode\n",
1106 dentry);
1107 goto out_bad_parent;
1108 }
1109
1110 vnode = AFS_FS_I(inode);
1111
1112 /* if the vnode ID has changed, then the dirent points to a
1113 * different file */
1114 if (fid.vnode != vnode->fid.vnode) {
1115 _debug("%pd: dirent changed [%llu != %llu]",
1116 dentry, fid.vnode,
1117 vnode->fid.vnode);
1118 goto not_found;
1119 }
1120
1121 /* if the vnode ID uniqifier has changed, then the file has
1122 * been deleted and replaced, and the original vnode ID has
1123 * been reused */
1124 if (fid.unique != vnode->fid.unique) {
1125 _debug("%pd: file deleted (uq %u -> %u I:%u)",
1126 dentry, fid.unique,
1127 vnode->fid.unique,
1128 vnode->vfs_inode.i_generation);
1129 write_seqlock(&vnode->cb_lock);
1130 set_bit(AFS_VNODE_DELETED, &vnode->flags);
1131 write_sequnlock(&vnode->cb_lock);
1132 goto not_found;
1133 }
1134 goto out_valid;
1135
1136 case -ENOENT:
1137 /* the filename is unknown */
1138 _debug("%pd: dirent not found", dentry);
1139 if (d_really_is_positive(dentry))
1140 goto not_found;
1141 goto out_valid;
1142
1143 default:
1144 _debug("failed to iterate dir %pd: %d",
1145 parent, ret);
1146 goto out_bad_parent;
1147 }
1148
1149 out_valid:
1150 dentry->d_fsdata = (void *)(unsigned long)dir_version;
1151 out_valid_noupdate:
1152 dput(parent);
1153 key_put(key);
1154 _leave(" = 1 [valid]");
1155 return 1;
1156
1157 /* the dirent, if it exists, now points to a different vnode */
1158 not_found:
1159 spin_lock(&dentry->d_lock);
1160 dentry->d_flags |= DCACHE_NFSFS_RENAMED;
1161 spin_unlock(&dentry->d_lock);
1162
1163 out_bad_parent:
1164 _debug("dropping dentry %pd2", dentry);
1165 dput(parent);
1166 out_bad:
1167 key_put(key);
1168
1169 _leave(" = 0 [bad]");
1170 return 0;
1171 }
1172
1173 /*
1174 * allow the VFS to enquire as to whether a dentry should be unhashed (mustn't
1175 * sleep)
1176 * - called from dput() when d_count is going to 0.
1177 * - return 1 to request dentry be unhashed, 0 otherwise
1178 */
afs_d_delete(const struct dentry * dentry)1179 static int afs_d_delete(const struct dentry *dentry)
1180 {
1181 _enter("%pd", dentry);
1182
1183 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1184 goto zap;
1185
1186 if (d_really_is_positive(dentry) &&
1187 (test_bit(AFS_VNODE_DELETED, &AFS_FS_I(d_inode(dentry))->flags) ||
1188 test_bit(AFS_VNODE_PSEUDODIR, &AFS_FS_I(d_inode(dentry))->flags)))
1189 goto zap;
1190
1191 _leave(" = 0 [keep]");
1192 return 0;
1193
1194 zap:
1195 _leave(" = 1 [zap]");
1196 return 1;
1197 }
1198
1199 /*
1200 * Clean up sillyrename files on dentry removal.
1201 */
afs_d_iput(struct dentry * dentry,struct inode * inode)1202 static void afs_d_iput(struct dentry *dentry, struct inode *inode)
1203 {
1204 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1205 afs_silly_iput(dentry, inode);
1206 iput(inode);
1207 }
1208
1209 /*
1210 * handle dentry release
1211 */
afs_d_release(struct dentry * dentry)1212 void afs_d_release(struct dentry *dentry)
1213 {
1214 _enter("%pd", dentry);
1215 }
1216
1217 /*
1218 * Create a new inode for create/mkdir/symlink
1219 */
afs_vnode_new_inode(struct afs_fs_cursor * fc,struct dentry * new_dentry,struct afs_iget_data * new_data,struct afs_status_cb * new_scb)1220 static void afs_vnode_new_inode(struct afs_fs_cursor *fc,
1221 struct dentry *new_dentry,
1222 struct afs_iget_data *new_data,
1223 struct afs_status_cb *new_scb)
1224 {
1225 struct afs_vnode *vnode;
1226 struct inode *inode;
1227
1228 if (fc->ac.error < 0)
1229 return;
1230
1231 inode = afs_iget(fc->vnode->vfs_inode.i_sb, fc->key,
1232 new_data, new_scb, fc->cbi, fc->vnode);
1233 if (IS_ERR(inode)) {
1234 /* ENOMEM or EINTR at a really inconvenient time - just abandon
1235 * the new directory on the server.
1236 */
1237 fc->ac.error = PTR_ERR(inode);
1238 return;
1239 }
1240
1241 vnode = AFS_FS_I(inode);
1242 set_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags);
1243 if (fc->ac.error == 0)
1244 afs_cache_permit(vnode, fc->key, vnode->cb_break, new_scb);
1245 d_instantiate(new_dentry, inode);
1246 }
1247
afs_prep_for_new_inode(struct afs_fs_cursor * fc,struct afs_iget_data * iget_data)1248 static void afs_prep_for_new_inode(struct afs_fs_cursor *fc,
1249 struct afs_iget_data *iget_data)
1250 {
1251 iget_data->volume = fc->vnode->volume;
1252 iget_data->cb_v_break = fc->vnode->volume->cb_v_break;
1253 iget_data->cb_s_break = fc->cbi->server->cb_s_break;
1254 }
1255
1256 /*
1257 * Note that a dentry got changed. We need to set d_fsdata to the data version
1258 * number derived from the result of the operation. It doesn't matter if
1259 * d_fsdata goes backwards as we'll just revalidate.
1260 */
afs_update_dentry_version(struct afs_fs_cursor * fc,struct dentry * dentry,struct afs_status_cb * scb)1261 static void afs_update_dentry_version(struct afs_fs_cursor *fc,
1262 struct dentry *dentry,
1263 struct afs_status_cb *scb)
1264 {
1265 if (fc->ac.error == 0)
1266 dentry->d_fsdata =
1267 (void *)(unsigned long)scb->status.data_version;
1268 }
1269
1270 /*
1271 * create a directory on an AFS filesystem
1272 */
afs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)1273 static int afs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1274 {
1275 struct afs_iget_data iget_data;
1276 struct afs_status_cb *scb;
1277 struct afs_fs_cursor fc;
1278 struct afs_vnode *dvnode = AFS_FS_I(dir);
1279 struct key *key;
1280 int ret;
1281
1282 mode |= S_IFDIR;
1283
1284 _enter("{%llx:%llu},{%pd},%ho",
1285 dvnode->fid.vid, dvnode->fid.vnode, dentry, mode);
1286
1287 ret = -ENOMEM;
1288 scb = kcalloc(2, sizeof(struct afs_status_cb), GFP_KERNEL);
1289 if (!scb)
1290 goto error;
1291
1292 key = afs_request_key(dvnode->volume->cell);
1293 if (IS_ERR(key)) {
1294 ret = PTR_ERR(key);
1295 goto error_scb;
1296 }
1297
1298 ret = -ERESTARTSYS;
1299 if (afs_begin_vnode_operation(&fc, dvnode, key, true)) {
1300 afs_dataversion_t data_version = dvnode->status.data_version + 1;
1301
1302 while (afs_select_fileserver(&fc)) {
1303 fc.cb_break = afs_calc_vnode_cb_break(dvnode);
1304 afs_prep_for_new_inode(&fc, &iget_data);
1305 afs_fs_create(&fc, dentry->d_name.name, mode,
1306 &scb[0], &iget_data.fid, &scb[1]);
1307 }
1308
1309 afs_check_for_remote_deletion(&fc, dvnode);
1310 afs_vnode_commit_status(&fc, dvnode, fc.cb_break,
1311 &data_version, &scb[0]);
1312 afs_update_dentry_version(&fc, dentry, &scb[0]);
1313 afs_vnode_new_inode(&fc, dentry, &iget_data, &scb[1]);
1314 ret = afs_end_vnode_operation(&fc);
1315 if (ret < 0)
1316 goto error_key;
1317 } else {
1318 goto error_key;
1319 }
1320
1321 if (ret == 0 &&
1322 test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags))
1323 afs_edit_dir_add(dvnode, &dentry->d_name, &iget_data.fid,
1324 afs_edit_dir_for_create);
1325
1326 key_put(key);
1327 kfree(scb);
1328 _leave(" = 0");
1329 return 0;
1330
1331 error_key:
1332 key_put(key);
1333 error_scb:
1334 kfree(scb);
1335 error:
1336 d_drop(dentry);
1337 _leave(" = %d", ret);
1338 return ret;
1339 }
1340
1341 /*
1342 * Remove a subdir from a directory.
1343 */
afs_dir_remove_subdir(struct dentry * dentry)1344 static void afs_dir_remove_subdir(struct dentry *dentry)
1345 {
1346 if (d_really_is_positive(dentry)) {
1347 struct afs_vnode *vnode = AFS_FS_I(d_inode(dentry));
1348
1349 clear_nlink(&vnode->vfs_inode);
1350 set_bit(AFS_VNODE_DELETED, &vnode->flags);
1351 clear_bit(AFS_VNODE_CB_PROMISED, &vnode->flags);
1352 clear_bit(AFS_VNODE_DIR_VALID, &vnode->flags);
1353 }
1354 }
1355
1356 /*
1357 * remove a directory from an AFS filesystem
1358 */
afs_rmdir(struct inode * dir,struct dentry * dentry)1359 static int afs_rmdir(struct inode *dir, struct dentry *dentry)
1360 {
1361 struct afs_status_cb *scb;
1362 struct afs_fs_cursor fc;
1363 struct afs_vnode *dvnode = AFS_FS_I(dir), *vnode = NULL;
1364 struct key *key;
1365 int ret;
1366
1367 _enter("{%llx:%llu},{%pd}",
1368 dvnode->fid.vid, dvnode->fid.vnode, dentry);
1369
1370 scb = kzalloc(sizeof(struct afs_status_cb), GFP_KERNEL);
1371 if (!scb)
1372 return -ENOMEM;
1373
1374 key = afs_request_key(dvnode->volume->cell);
1375 if (IS_ERR(key)) {
1376 ret = PTR_ERR(key);
1377 goto error;
1378 }
1379
1380 /* Try to make sure we have a callback promise on the victim. */
1381 if (d_really_is_positive(dentry)) {
1382 vnode = AFS_FS_I(d_inode(dentry));
1383 ret = afs_validate(vnode, key);
1384 if (ret < 0)
1385 goto error_key;
1386 }
1387
1388 if (vnode) {
1389 ret = down_write_killable(&vnode->rmdir_lock);
1390 if (ret < 0)
1391 goto error_key;
1392 }
1393
1394 ret = -ERESTARTSYS;
1395 if (afs_begin_vnode_operation(&fc, dvnode, key, true)) {
1396 afs_dataversion_t data_version = dvnode->status.data_version + 1;
1397
1398 while (afs_select_fileserver(&fc)) {
1399 fc.cb_break = afs_calc_vnode_cb_break(dvnode);
1400 afs_fs_remove(&fc, vnode, dentry->d_name.name, true, scb);
1401 }
1402
1403 afs_vnode_commit_status(&fc, dvnode, fc.cb_break,
1404 &data_version, scb);
1405 afs_update_dentry_version(&fc, dentry, scb);
1406 ret = afs_end_vnode_operation(&fc);
1407 if (ret == 0) {
1408 afs_dir_remove_subdir(dentry);
1409 if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags))
1410 afs_edit_dir_remove(dvnode, &dentry->d_name,
1411 afs_edit_dir_for_rmdir);
1412 }
1413 }
1414
1415 if (vnode)
1416 up_write(&vnode->rmdir_lock);
1417 error_key:
1418 key_put(key);
1419 error:
1420 kfree(scb);
1421 return ret;
1422 }
1423
1424 /*
1425 * Remove a link to a file or symlink from a directory.
1426 *
1427 * If the file was not deleted due to excess hard links, the fileserver will
1428 * break the callback promise on the file - if it had one - before it returns
1429 * to us, and if it was deleted, it won't
1430 *
1431 * However, if we didn't have a callback promise outstanding, or it was
1432 * outstanding on a different server, then it won't break it either...
1433 */
afs_dir_remove_link(struct afs_vnode * dvnode,struct dentry * dentry,struct key * key)1434 static int afs_dir_remove_link(struct afs_vnode *dvnode, struct dentry *dentry,
1435 struct key *key)
1436 {
1437 int ret = 0;
1438
1439 if (d_really_is_positive(dentry)) {
1440 struct afs_vnode *vnode = AFS_FS_I(d_inode(dentry));
1441
1442 if (test_bit(AFS_VNODE_DELETED, &vnode->flags)) {
1443 /* Already done */
1444 } else if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) {
1445 write_seqlock(&vnode->cb_lock);
1446 drop_nlink(&vnode->vfs_inode);
1447 if (vnode->vfs_inode.i_nlink == 0) {
1448 set_bit(AFS_VNODE_DELETED, &vnode->flags);
1449 __afs_break_callback(vnode, afs_cb_break_for_unlink);
1450 }
1451 write_sequnlock(&vnode->cb_lock);
1452 ret = 0;
1453 } else {
1454 afs_break_callback(vnode, afs_cb_break_for_unlink);
1455
1456 if (test_bit(AFS_VNODE_DELETED, &vnode->flags))
1457 kdebug("AFS_VNODE_DELETED");
1458
1459 ret = afs_validate(vnode, key);
1460 if (ret == -ESTALE)
1461 ret = 0;
1462 }
1463 _debug("nlink %d [val %d]", vnode->vfs_inode.i_nlink, ret);
1464 }
1465
1466 return ret;
1467 }
1468
1469 /*
1470 * Remove a file or symlink from an AFS filesystem.
1471 */
afs_unlink(struct inode * dir,struct dentry * dentry)1472 static int afs_unlink(struct inode *dir, struct dentry *dentry)
1473 {
1474 struct afs_fs_cursor fc;
1475 struct afs_status_cb *scb;
1476 struct afs_vnode *dvnode = AFS_FS_I(dir);
1477 struct afs_vnode *vnode = AFS_FS_I(d_inode(dentry));
1478 struct key *key;
1479 bool need_rehash = false;
1480 int ret;
1481
1482 _enter("{%llx:%llu},{%pd}",
1483 dvnode->fid.vid, dvnode->fid.vnode, dentry);
1484
1485 if (dentry->d_name.len >= AFSNAMEMAX)
1486 return -ENAMETOOLONG;
1487
1488 ret = -ENOMEM;
1489 scb = kcalloc(2, sizeof(struct afs_status_cb), GFP_KERNEL);
1490 if (!scb)
1491 goto error;
1492
1493 key = afs_request_key(dvnode->volume->cell);
1494 if (IS_ERR(key)) {
1495 ret = PTR_ERR(key);
1496 goto error_scb;
1497 }
1498
1499 /* Try to make sure we have a callback promise on the victim. */
1500 ret = afs_validate(vnode, key);
1501 if (ret < 0)
1502 goto error_key;
1503
1504 spin_lock(&dentry->d_lock);
1505 if (d_count(dentry) > 1) {
1506 spin_unlock(&dentry->d_lock);
1507 /* Start asynchronous writeout of the inode */
1508 write_inode_now(d_inode(dentry), 0);
1509 ret = afs_sillyrename(dvnode, vnode, dentry, key);
1510 goto error_key;
1511 }
1512 if (!d_unhashed(dentry)) {
1513 /* Prevent a race with RCU lookup. */
1514 __d_drop(dentry);
1515 need_rehash = true;
1516 }
1517 spin_unlock(&dentry->d_lock);
1518
1519 ret = -ERESTARTSYS;
1520 if (afs_begin_vnode_operation(&fc, dvnode, key, true)) {
1521 afs_dataversion_t data_version = dvnode->status.data_version + 1;
1522 afs_dataversion_t data_version_2 = vnode->status.data_version;
1523
1524 while (afs_select_fileserver(&fc)) {
1525 fc.cb_break = afs_calc_vnode_cb_break(dvnode);
1526 fc.cb_break_2 = afs_calc_vnode_cb_break(vnode);
1527
1528 if (test_bit(AFS_SERVER_FL_IS_YFS, &fc.cbi->server->flags) &&
1529 !test_bit(AFS_SERVER_FL_NO_RM2, &fc.cbi->server->flags)) {
1530 yfs_fs_remove_file2(&fc, vnode, dentry->d_name.name,
1531 &scb[0], &scb[1]);
1532 if (fc.ac.error != -ECONNABORTED ||
1533 fc.ac.abort_code != RXGEN_OPCODE)
1534 continue;
1535 set_bit(AFS_SERVER_FL_NO_RM2, &fc.cbi->server->flags);
1536 }
1537
1538 afs_fs_remove(&fc, vnode, dentry->d_name.name, false, &scb[0]);
1539 }
1540
1541 afs_vnode_commit_status(&fc, dvnode, fc.cb_break,
1542 &data_version, &scb[0]);
1543 afs_vnode_commit_status(&fc, vnode, fc.cb_break_2,
1544 &data_version_2, &scb[1]);
1545 afs_update_dentry_version(&fc, dentry, &scb[0]);
1546 ret = afs_end_vnode_operation(&fc);
1547 if (ret == 0 && !(scb[1].have_status || scb[1].have_error))
1548 ret = afs_dir_remove_link(dvnode, dentry, key);
1549 if (ret == 0 &&
1550 test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags))
1551 afs_edit_dir_remove(dvnode, &dentry->d_name,
1552 afs_edit_dir_for_unlink);
1553 }
1554
1555 if (need_rehash && ret < 0 && ret != -ENOENT)
1556 d_rehash(dentry);
1557
1558 error_key:
1559 key_put(key);
1560 error_scb:
1561 kfree(scb);
1562 error:
1563 _leave(" = %d", ret);
1564 return ret;
1565 }
1566
1567 /*
1568 * create a regular file on an AFS filesystem
1569 */
afs_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)1570 static int afs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1571 bool excl)
1572 {
1573 struct afs_iget_data iget_data;
1574 struct afs_fs_cursor fc;
1575 struct afs_status_cb *scb;
1576 struct afs_vnode *dvnode = AFS_FS_I(dir);
1577 struct key *key;
1578 int ret;
1579
1580 mode |= S_IFREG;
1581
1582 _enter("{%llx:%llu},{%pd},%ho,",
1583 dvnode->fid.vid, dvnode->fid.vnode, dentry, mode);
1584
1585 ret = -ENAMETOOLONG;
1586 if (dentry->d_name.len >= AFSNAMEMAX)
1587 goto error;
1588
1589 key = afs_request_key(dvnode->volume->cell);
1590 if (IS_ERR(key)) {
1591 ret = PTR_ERR(key);
1592 goto error;
1593 }
1594
1595 ret = -ENOMEM;
1596 scb = kcalloc(2, sizeof(struct afs_status_cb), GFP_KERNEL);
1597 if (!scb)
1598 goto error_scb;
1599
1600 ret = -ERESTARTSYS;
1601 if (afs_begin_vnode_operation(&fc, dvnode, key, true)) {
1602 afs_dataversion_t data_version = dvnode->status.data_version + 1;
1603
1604 while (afs_select_fileserver(&fc)) {
1605 fc.cb_break = afs_calc_vnode_cb_break(dvnode);
1606 afs_prep_for_new_inode(&fc, &iget_data);
1607 afs_fs_create(&fc, dentry->d_name.name, mode,
1608 &scb[0], &iget_data.fid, &scb[1]);
1609 }
1610
1611 afs_check_for_remote_deletion(&fc, dvnode);
1612 afs_vnode_commit_status(&fc, dvnode, fc.cb_break,
1613 &data_version, &scb[0]);
1614 afs_update_dentry_version(&fc, dentry, &scb[0]);
1615 afs_vnode_new_inode(&fc, dentry, &iget_data, &scb[1]);
1616 ret = afs_end_vnode_operation(&fc);
1617 if (ret < 0)
1618 goto error_key;
1619 } else {
1620 goto error_key;
1621 }
1622
1623 if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags))
1624 afs_edit_dir_add(dvnode, &dentry->d_name, &iget_data.fid,
1625 afs_edit_dir_for_create);
1626
1627 kfree(scb);
1628 key_put(key);
1629 _leave(" = 0");
1630 return 0;
1631
1632 error_scb:
1633 kfree(scb);
1634 error_key:
1635 key_put(key);
1636 error:
1637 d_drop(dentry);
1638 _leave(" = %d", ret);
1639 return ret;
1640 }
1641
1642 /*
1643 * create a hard link between files in an AFS filesystem
1644 */
afs_link(struct dentry * from,struct inode * dir,struct dentry * dentry)1645 static int afs_link(struct dentry *from, struct inode *dir,
1646 struct dentry *dentry)
1647 {
1648 struct afs_fs_cursor fc;
1649 struct afs_status_cb *scb;
1650 struct afs_vnode *dvnode = AFS_FS_I(dir);
1651 struct afs_vnode *vnode = AFS_FS_I(d_inode(from));
1652 struct key *key;
1653 int ret;
1654
1655 _enter("{%llx:%llu},{%llx:%llu},{%pd}",
1656 vnode->fid.vid, vnode->fid.vnode,
1657 dvnode->fid.vid, dvnode->fid.vnode,
1658 dentry);
1659
1660 ret = -ENAMETOOLONG;
1661 if (dentry->d_name.len >= AFSNAMEMAX)
1662 goto error;
1663
1664 ret = -ENOMEM;
1665 scb = kcalloc(2, sizeof(struct afs_status_cb), GFP_KERNEL);
1666 if (!scb)
1667 goto error;
1668
1669 key = afs_request_key(dvnode->volume->cell);
1670 if (IS_ERR(key)) {
1671 ret = PTR_ERR(key);
1672 goto error_scb;
1673 }
1674
1675 ret = -ERESTARTSYS;
1676 if (afs_begin_vnode_operation(&fc, dvnode, key, true)) {
1677 afs_dataversion_t data_version = dvnode->status.data_version + 1;
1678
1679 if (mutex_lock_interruptible_nested(&vnode->io_lock, 1) < 0) {
1680 afs_end_vnode_operation(&fc);
1681 goto error_key;
1682 }
1683
1684 while (afs_select_fileserver(&fc)) {
1685 fc.cb_break = afs_calc_vnode_cb_break(dvnode);
1686 fc.cb_break_2 = afs_calc_vnode_cb_break(vnode);
1687 afs_fs_link(&fc, vnode, dentry->d_name.name,
1688 &scb[0], &scb[1]);
1689 }
1690
1691 afs_vnode_commit_status(&fc, dvnode, fc.cb_break,
1692 &data_version, &scb[0]);
1693 afs_vnode_commit_status(&fc, vnode, fc.cb_break_2,
1694 NULL, &scb[1]);
1695 ihold(&vnode->vfs_inode);
1696 afs_update_dentry_version(&fc, dentry, &scb[0]);
1697 d_instantiate(dentry, &vnode->vfs_inode);
1698
1699 mutex_unlock(&vnode->io_lock);
1700 ret = afs_end_vnode_operation(&fc);
1701 if (ret < 0)
1702 goto error_key;
1703 } else {
1704 goto error_key;
1705 }
1706
1707 if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags))
1708 afs_edit_dir_add(dvnode, &dentry->d_name, &vnode->fid,
1709 afs_edit_dir_for_link);
1710
1711 key_put(key);
1712 kfree(scb);
1713 _leave(" = 0");
1714 return 0;
1715
1716 error_key:
1717 key_put(key);
1718 error_scb:
1719 kfree(scb);
1720 error:
1721 d_drop(dentry);
1722 _leave(" = %d", ret);
1723 return ret;
1724 }
1725
1726 /*
1727 * create a symlink in an AFS filesystem
1728 */
afs_symlink(struct inode * dir,struct dentry * dentry,const char * content)1729 static int afs_symlink(struct inode *dir, struct dentry *dentry,
1730 const char *content)
1731 {
1732 struct afs_iget_data iget_data;
1733 struct afs_fs_cursor fc;
1734 struct afs_status_cb *scb;
1735 struct afs_vnode *dvnode = AFS_FS_I(dir);
1736 struct key *key;
1737 int ret;
1738
1739 _enter("{%llx:%llu},{%pd},%s",
1740 dvnode->fid.vid, dvnode->fid.vnode, dentry,
1741 content);
1742
1743 ret = -ENAMETOOLONG;
1744 if (dentry->d_name.len >= AFSNAMEMAX)
1745 goto error;
1746
1747 ret = -EINVAL;
1748 if (strlen(content) >= AFSPATHMAX)
1749 goto error;
1750
1751 ret = -ENOMEM;
1752 scb = kcalloc(2, sizeof(struct afs_status_cb), GFP_KERNEL);
1753 if (!scb)
1754 goto error;
1755
1756 key = afs_request_key(dvnode->volume->cell);
1757 if (IS_ERR(key)) {
1758 ret = PTR_ERR(key);
1759 goto error_scb;
1760 }
1761
1762 ret = -ERESTARTSYS;
1763 if (afs_begin_vnode_operation(&fc, dvnode, key, true)) {
1764 afs_dataversion_t data_version = dvnode->status.data_version + 1;
1765
1766 while (afs_select_fileserver(&fc)) {
1767 fc.cb_break = afs_calc_vnode_cb_break(dvnode);
1768 afs_prep_for_new_inode(&fc, &iget_data);
1769 afs_fs_symlink(&fc, dentry->d_name.name, content,
1770 &scb[0], &iget_data.fid, &scb[1]);
1771 }
1772
1773 afs_check_for_remote_deletion(&fc, dvnode);
1774 afs_vnode_commit_status(&fc, dvnode, fc.cb_break,
1775 &data_version, &scb[0]);
1776 afs_update_dentry_version(&fc, dentry, &scb[0]);
1777 afs_vnode_new_inode(&fc, dentry, &iget_data, &scb[1]);
1778 ret = afs_end_vnode_operation(&fc);
1779 if (ret < 0)
1780 goto error_key;
1781 } else {
1782 goto error_key;
1783 }
1784
1785 if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags))
1786 afs_edit_dir_add(dvnode, &dentry->d_name, &iget_data.fid,
1787 afs_edit_dir_for_symlink);
1788
1789 key_put(key);
1790 kfree(scb);
1791 _leave(" = 0");
1792 return 0;
1793
1794 error_key:
1795 key_put(key);
1796 error_scb:
1797 kfree(scb);
1798 error:
1799 d_drop(dentry);
1800 _leave(" = %d", ret);
1801 return ret;
1802 }
1803
1804 /*
1805 * rename a file in an AFS filesystem and/or move it between directories
1806 */
afs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)1807 static int afs_rename(struct inode *old_dir, struct dentry *old_dentry,
1808 struct inode *new_dir, struct dentry *new_dentry,
1809 unsigned int flags)
1810 {
1811 struct afs_fs_cursor fc;
1812 struct afs_status_cb *scb;
1813 struct afs_vnode *orig_dvnode, *new_dvnode, *vnode;
1814 struct dentry *tmp = NULL, *rehash = NULL;
1815 struct inode *new_inode;
1816 struct key *key;
1817 bool new_negative = d_is_negative(new_dentry);
1818 int ret;
1819
1820 if (flags)
1821 return -EINVAL;
1822
1823 /* Don't allow silly-rename files be moved around. */
1824 if (old_dentry->d_flags & DCACHE_NFSFS_RENAMED)
1825 return -EINVAL;
1826
1827 vnode = AFS_FS_I(d_inode(old_dentry));
1828 orig_dvnode = AFS_FS_I(old_dir);
1829 new_dvnode = AFS_FS_I(new_dir);
1830
1831 _enter("{%llx:%llu},{%llx:%llu},{%llx:%llu},{%pd}",
1832 orig_dvnode->fid.vid, orig_dvnode->fid.vnode,
1833 vnode->fid.vid, vnode->fid.vnode,
1834 new_dvnode->fid.vid, new_dvnode->fid.vnode,
1835 new_dentry);
1836
1837 ret = -ENOMEM;
1838 scb = kcalloc(2, sizeof(struct afs_status_cb), GFP_KERNEL);
1839 if (!scb)
1840 goto error;
1841
1842 key = afs_request_key(orig_dvnode->volume->cell);
1843 if (IS_ERR(key)) {
1844 ret = PTR_ERR(key);
1845 goto error_scb;
1846 }
1847
1848 /* For non-directories, check whether the target is busy and if so,
1849 * make a copy of the dentry and then do a silly-rename. If the
1850 * silly-rename succeeds, the copied dentry is hashed and becomes the
1851 * new target.
1852 */
1853 if (d_is_positive(new_dentry) && !d_is_dir(new_dentry)) {
1854 /* To prevent any new references to the target during the
1855 * rename, we unhash the dentry in advance.
1856 */
1857 if (!d_unhashed(new_dentry)) {
1858 d_drop(new_dentry);
1859 rehash = new_dentry;
1860 }
1861
1862 if (d_count(new_dentry) > 2) {
1863 /* copy the target dentry's name */
1864 ret = -ENOMEM;
1865 tmp = d_alloc(new_dentry->d_parent,
1866 &new_dentry->d_name);
1867 if (!tmp)
1868 goto error_rehash;
1869
1870 ret = afs_sillyrename(new_dvnode,
1871 AFS_FS_I(d_inode(new_dentry)),
1872 new_dentry, key);
1873 if (ret)
1874 goto error_rehash;
1875
1876 new_dentry = tmp;
1877 rehash = NULL;
1878 new_negative = true;
1879 }
1880 }
1881
1882 /* This bit is potentially nasty as there's a potential race with
1883 * afs_d_revalidate{,_rcu}(). We have to change d_fsdata on the dentry
1884 * to reflect it's new parent's new data_version after the op, but
1885 * d_revalidate may see old_dentry between the op having taken place
1886 * and the version being updated.
1887 *
1888 * So drop the old_dentry for now to make other threads go through
1889 * lookup instead - which we hold a lock against.
1890 */
1891 d_drop(old_dentry);
1892
1893 ret = -ERESTARTSYS;
1894 if (afs_begin_vnode_operation(&fc, orig_dvnode, key, true)) {
1895 afs_dataversion_t orig_data_version;
1896 afs_dataversion_t new_data_version;
1897 struct afs_status_cb *new_scb = &scb[1];
1898
1899 orig_data_version = orig_dvnode->status.data_version + 1;
1900
1901 if (orig_dvnode != new_dvnode) {
1902 if (mutex_lock_interruptible_nested(&new_dvnode->io_lock, 1) < 0) {
1903 afs_end_vnode_operation(&fc);
1904 goto error_rehash_old;
1905 }
1906 new_data_version = new_dvnode->status.data_version + 1;
1907 } else {
1908 new_data_version = orig_data_version;
1909 new_scb = &scb[0];
1910 }
1911
1912 while (afs_select_fileserver(&fc)) {
1913 fc.cb_break = afs_calc_vnode_cb_break(orig_dvnode);
1914 fc.cb_break_2 = afs_calc_vnode_cb_break(new_dvnode);
1915 afs_fs_rename(&fc, old_dentry->d_name.name,
1916 new_dvnode, new_dentry->d_name.name,
1917 &scb[0], new_scb);
1918 }
1919
1920 afs_vnode_commit_status(&fc, orig_dvnode, fc.cb_break,
1921 &orig_data_version, &scb[0]);
1922 if (new_dvnode != orig_dvnode) {
1923 afs_vnode_commit_status(&fc, new_dvnode, fc.cb_break_2,
1924 &new_data_version, &scb[1]);
1925 mutex_unlock(&new_dvnode->io_lock);
1926 }
1927 ret = afs_end_vnode_operation(&fc);
1928 if (ret < 0)
1929 goto error_rehash_old;
1930 }
1931
1932 if (ret == 0) {
1933 if (rehash)
1934 d_rehash(rehash);
1935 if (test_bit(AFS_VNODE_DIR_VALID, &orig_dvnode->flags))
1936 afs_edit_dir_remove(orig_dvnode, &old_dentry->d_name,
1937 afs_edit_dir_for_rename_0);
1938
1939 if (!new_negative &&
1940 test_bit(AFS_VNODE_DIR_VALID, &new_dvnode->flags))
1941 afs_edit_dir_remove(new_dvnode, &new_dentry->d_name,
1942 afs_edit_dir_for_rename_1);
1943
1944 if (test_bit(AFS_VNODE_DIR_VALID, &new_dvnode->flags))
1945 afs_edit_dir_add(new_dvnode, &new_dentry->d_name,
1946 &vnode->fid, afs_edit_dir_for_rename_2);
1947
1948 new_inode = d_inode(new_dentry);
1949 if (new_inode) {
1950 spin_lock(&new_inode->i_lock);
1951 if (new_inode->i_nlink > 0)
1952 drop_nlink(new_inode);
1953 spin_unlock(&new_inode->i_lock);
1954 }
1955
1956 /* Now we can update d_fsdata on the dentries to reflect their
1957 * new parent's data_version.
1958 *
1959 * Note that if we ever implement RENAME_EXCHANGE, we'll have
1960 * to update both dentries with opposing dir versions.
1961 */
1962 if (new_dvnode != orig_dvnode) {
1963 afs_update_dentry_version(&fc, old_dentry, &scb[1]);
1964 afs_update_dentry_version(&fc, new_dentry, &scb[1]);
1965 } else {
1966 afs_update_dentry_version(&fc, old_dentry, &scb[0]);
1967 afs_update_dentry_version(&fc, new_dentry, &scb[0]);
1968 }
1969 d_move(old_dentry, new_dentry);
1970 goto error_tmp;
1971 }
1972
1973 error_rehash_old:
1974 d_rehash(new_dentry);
1975 error_rehash:
1976 if (rehash)
1977 d_rehash(rehash);
1978 error_tmp:
1979 if (tmp)
1980 dput(tmp);
1981 key_put(key);
1982 error_scb:
1983 kfree(scb);
1984 error:
1985 _leave(" = %d", ret);
1986 return ret;
1987 }
1988
1989 /*
1990 * Release a directory page and clean up its private state if it's not busy
1991 * - return true if the page can now be released, false if not
1992 */
afs_dir_releasepage(struct page * page,gfp_t gfp_flags)1993 static int afs_dir_releasepage(struct page *page, gfp_t gfp_flags)
1994 {
1995 struct afs_vnode *dvnode = AFS_FS_I(page->mapping->host);
1996
1997 _enter("{{%llx:%llu}[%lu]}", dvnode->fid.vid, dvnode->fid.vnode, page->index);
1998
1999 set_page_private(page, 0);
2000 ClearPagePrivate(page);
2001
2002 /* The directory will need reloading. */
2003 if (test_and_clear_bit(AFS_VNODE_DIR_VALID, &dvnode->flags))
2004 afs_stat_v(dvnode, n_relpg);
2005 return 1;
2006 }
2007
2008 /*
2009 * invalidate part or all of a page
2010 * - release a page and clean up its private data if offset is 0 (indicating
2011 * the entire page)
2012 */
afs_dir_invalidatepage(struct page * page,unsigned int offset,unsigned int length)2013 static void afs_dir_invalidatepage(struct page *page, unsigned int offset,
2014 unsigned int length)
2015 {
2016 struct afs_vnode *dvnode = AFS_FS_I(page->mapping->host);
2017
2018 _enter("{%lu},%u,%u", page->index, offset, length);
2019
2020 BUG_ON(!PageLocked(page));
2021
2022 /* The directory will need reloading. */
2023 if (test_and_clear_bit(AFS_VNODE_DIR_VALID, &dvnode->flags))
2024 afs_stat_v(dvnode, n_inval);
2025
2026 /* we clean up only if the entire page is being invalidated */
2027 if (offset == 0 && length == PAGE_SIZE) {
2028 set_page_private(page, 0);
2029 ClearPagePrivate(page);
2030 }
2031 }
2032