1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 
7 #ifdef __KERNEL__
8 
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/mmap_lock.h>
19 #include <linux/range.h>
20 #include <linux/pfn.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/bit_spinlock.h>
23 #include <linux/shrinker.h>
24 #include <linux/resource.h>
25 #include <linux/page_ext.h>
26 #include <linux/err.h>
27 #include <linux/page-flags.h>
28 #include <linux/page_ref.h>
29 #include <linux/memremap.h>
30 #include <linux/overflow.h>
31 #include <linux/sizes.h>
32 #include <linux/sched.h>
33 #include <linux/pgtable.h>
34 #include <linux/kasan.h>
35 
36 struct mempolicy;
37 struct anon_vma;
38 struct anon_vma_chain;
39 struct file_ra_state;
40 struct user_struct;
41 struct writeback_control;
42 struct bdi_writeback;
43 struct pt_regs;
44 
45 extern int sysctl_page_lock_unfairness;
46 
47 void init_mm_internals(void);
48 
49 #ifndef CONFIG_NUMA		/* Don't use mapnrs, do it properly */
50 extern unsigned long max_mapnr;
51 
set_max_mapnr(unsigned long limit)52 static inline void set_max_mapnr(unsigned long limit)
53 {
54 	max_mapnr = limit;
55 }
56 #else
set_max_mapnr(unsigned long limit)57 static inline void set_max_mapnr(unsigned long limit) { }
58 #endif
59 
60 extern atomic_long_t _totalram_pages;
totalram_pages(void)61 static inline unsigned long totalram_pages(void)
62 {
63 	return (unsigned long)atomic_long_read(&_totalram_pages);
64 }
65 
totalram_pages_inc(void)66 static inline void totalram_pages_inc(void)
67 {
68 	atomic_long_inc(&_totalram_pages);
69 }
70 
totalram_pages_dec(void)71 static inline void totalram_pages_dec(void)
72 {
73 	atomic_long_dec(&_totalram_pages);
74 }
75 
totalram_pages_add(long count)76 static inline void totalram_pages_add(long count)
77 {
78 	atomic_long_add(count, &_totalram_pages);
79 }
80 
81 extern void * high_memory;
82 extern int page_cluster;
83 
84 #ifdef CONFIG_SYSCTL
85 extern int sysctl_legacy_va_layout;
86 #else
87 #define sysctl_legacy_va_layout 0
88 #endif
89 
90 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
91 extern const int mmap_rnd_bits_min;
92 extern const int mmap_rnd_bits_max;
93 extern int mmap_rnd_bits __read_mostly;
94 #endif
95 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
96 extern const int mmap_rnd_compat_bits_min;
97 extern const int mmap_rnd_compat_bits_max;
98 extern int mmap_rnd_compat_bits __read_mostly;
99 #endif
100 
101 #include <asm/page.h>
102 #include <asm/processor.h>
103 
104 /*
105  * Architectures that support memory tagging (assigning tags to memory regions,
106  * embedding these tags into addresses that point to these memory regions, and
107  * checking that the memory and the pointer tags match on memory accesses)
108  * redefine this macro to strip tags from pointers.
109  * It's defined as noop for architectures that don't support memory tagging.
110  */
111 #ifndef untagged_addr
112 #define untagged_addr(addr) (addr)
113 #endif
114 
115 #ifndef __pa_symbol
116 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
117 #endif
118 
119 #ifndef page_to_virt
120 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
121 #endif
122 
123 #ifndef lm_alias
124 #define lm_alias(x)	__va(__pa_symbol(x))
125 #endif
126 
127 /*
128  * To prevent common memory management code establishing
129  * a zero page mapping on a read fault.
130  * This macro should be defined within <asm/pgtable.h>.
131  * s390 does this to prevent multiplexing of hardware bits
132  * related to the physical page in case of virtualization.
133  */
134 #ifndef mm_forbids_zeropage
135 #define mm_forbids_zeropage(X)	(0)
136 #endif
137 
138 /*
139  * On some architectures it is expensive to call memset() for small sizes.
140  * If an architecture decides to implement their own version of
141  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
142  * define their own version of this macro in <asm/pgtable.h>
143  */
144 #if BITS_PER_LONG == 64
145 /* This function must be updated when the size of struct page grows above 80
146  * or reduces below 56. The idea that compiler optimizes out switch()
147  * statement, and only leaves move/store instructions. Also the compiler can
148  * combine write statements if they are both assignments and can be reordered,
149  * this can result in several of the writes here being dropped.
150  */
151 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
__mm_zero_struct_page(struct page * page)152 static inline void __mm_zero_struct_page(struct page *page)
153 {
154 	unsigned long *_pp = (void *)page;
155 
156 	 /* Check that struct page is either 56, 64, 72, or 80 bytes */
157 	BUILD_BUG_ON(sizeof(struct page) & 7);
158 	BUILD_BUG_ON(sizeof(struct page) < 56);
159 	BUILD_BUG_ON(sizeof(struct page) > 80);
160 
161 	switch (sizeof(struct page)) {
162 	case 80:
163 		_pp[9] = 0;
164 		fallthrough;
165 	case 72:
166 		_pp[8] = 0;
167 		fallthrough;
168 	case 64:
169 		_pp[7] = 0;
170 		fallthrough;
171 	case 56:
172 		_pp[6] = 0;
173 		_pp[5] = 0;
174 		_pp[4] = 0;
175 		_pp[3] = 0;
176 		_pp[2] = 0;
177 		_pp[1] = 0;
178 		_pp[0] = 0;
179 	}
180 }
181 #else
182 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
183 #endif
184 
185 /*
186  * Default maximum number of active map areas, this limits the number of vmas
187  * per mm struct. Users can overwrite this number by sysctl but there is a
188  * problem.
189  *
190  * When a program's coredump is generated as ELF format, a section is created
191  * per a vma. In ELF, the number of sections is represented in unsigned short.
192  * This means the number of sections should be smaller than 65535 at coredump.
193  * Because the kernel adds some informative sections to a image of program at
194  * generating coredump, we need some margin. The number of extra sections is
195  * 1-3 now and depends on arch. We use "5" as safe margin, here.
196  *
197  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
198  * not a hard limit any more. Although some userspace tools can be surprised by
199  * that.
200  */
201 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
202 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
203 
204 extern int sysctl_max_map_count;
205 
206 extern unsigned long sysctl_user_reserve_kbytes;
207 extern unsigned long sysctl_admin_reserve_kbytes;
208 
209 extern int sysctl_overcommit_memory;
210 extern int sysctl_overcommit_ratio;
211 extern unsigned long sysctl_overcommit_kbytes;
212 
213 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
214 		loff_t *);
215 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
216 		loff_t *);
217 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
218 		loff_t *);
219 /*
220  * Any attempt to mark this function as static leads to build failure
221  * when CONFIG_DEBUG_INFO_BTF is enabled because __add_to_page_cache_locked()
222  * is referred to by BPF code. This must be visible for error injection.
223  */
224 int __add_to_page_cache_locked(struct page *page, struct address_space *mapping,
225 		pgoff_t index, gfp_t gfp, void **shadowp);
226 
227 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
228 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
229 #else
230 #define nth_page(page,n) ((page) + (n))
231 #endif
232 
233 /* to align the pointer to the (next) page boundary */
234 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
235 
236 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
237 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
238 
239 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
240 
241 void setup_initial_init_mm(void *start_code, void *end_code,
242 			   void *end_data, void *brk);
243 
244 /*
245  * Linux kernel virtual memory manager primitives.
246  * The idea being to have a "virtual" mm in the same way
247  * we have a virtual fs - giving a cleaner interface to the
248  * mm details, and allowing different kinds of memory mappings
249  * (from shared memory to executable loading to arbitrary
250  * mmap() functions).
251  */
252 
253 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
254 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
255 void vm_area_free(struct vm_area_struct *);
256 
257 #ifndef CONFIG_MMU
258 extern struct rb_root nommu_region_tree;
259 extern struct rw_semaphore nommu_region_sem;
260 
261 extern unsigned int kobjsize(const void *objp);
262 #endif
263 
264 /*
265  * vm_flags in vm_area_struct, see mm_types.h.
266  * When changing, update also include/trace/events/mmflags.h
267  */
268 #define VM_NONE		0x00000000
269 
270 #define VM_READ		0x00000001	/* currently active flags */
271 #define VM_WRITE	0x00000002
272 #define VM_EXEC		0x00000004
273 #define VM_SHARED	0x00000008
274 
275 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
276 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
277 #define VM_MAYWRITE	0x00000020
278 #define VM_MAYEXEC	0x00000040
279 #define VM_MAYSHARE	0x00000080
280 
281 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
282 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
283 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
284 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
285 
286 #define VM_LOCKED	0x00002000
287 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
288 
289 					/* Used by sys_madvise() */
290 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
291 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
292 
293 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
294 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
295 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
296 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
297 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
298 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
299 #define VM_SYNC		0x00800000	/* Synchronous page faults */
300 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
301 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
302 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
303 
304 #ifdef CONFIG_MEM_SOFT_DIRTY
305 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
306 #else
307 # define VM_SOFTDIRTY	0
308 #endif
309 
310 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
311 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
312 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
313 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
314 
315 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
316 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
317 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
318 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
319 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
320 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
321 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
322 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
323 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
324 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
325 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
326 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
327 
328 #ifdef CONFIG_ARCH_HAS_PKEYS
329 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
330 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
331 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
332 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
333 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
334 #ifdef CONFIG_PPC
335 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
336 #else
337 # define VM_PKEY_BIT4  0
338 #endif
339 #endif /* CONFIG_ARCH_HAS_PKEYS */
340 
341 #if defined(CONFIG_X86)
342 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
343 #elif defined(CONFIG_PPC)
344 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
345 #elif defined(CONFIG_PARISC)
346 # define VM_GROWSUP	VM_ARCH_1
347 #elif defined(CONFIG_IA64)
348 # define VM_GROWSUP	VM_ARCH_1
349 #elif defined(CONFIG_SPARC64)
350 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
351 # define VM_ARCH_CLEAR	VM_SPARC_ADI
352 #elif defined(CONFIG_ARM64)
353 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
354 # define VM_ARCH_CLEAR	VM_ARM64_BTI
355 #elif !defined(CONFIG_MMU)
356 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
357 #endif
358 
359 #if defined(CONFIG_ARM64_MTE)
360 # define VM_MTE		VM_HIGH_ARCH_0	/* Use Tagged memory for access control */
361 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_1	/* Tagged memory permitted */
362 #else
363 # define VM_MTE		VM_NONE
364 # define VM_MTE_ALLOWED	VM_NONE
365 #endif
366 
367 #ifndef VM_GROWSUP
368 # define VM_GROWSUP	VM_NONE
369 #endif
370 
371 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
372 # define VM_UFFD_MINOR_BIT	37
373 # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
374 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
375 # define VM_UFFD_MINOR		VM_NONE
376 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
377 
378 /* Bits set in the VMA until the stack is in its final location */
379 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
380 
381 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
382 
383 /* Common data flag combinations */
384 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
385 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
386 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
387 				 VM_MAYWRITE | VM_MAYEXEC)
388 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
389 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
390 
391 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
392 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
393 #endif
394 
395 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
396 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
397 #endif
398 
399 #ifdef CONFIG_STACK_GROWSUP
400 #define VM_STACK	VM_GROWSUP
401 #else
402 #define VM_STACK	VM_GROWSDOWN
403 #endif
404 
405 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
406 
407 /* VMA basic access permission flags */
408 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
409 
410 
411 /*
412  * Special vmas that are non-mergable, non-mlock()able.
413  */
414 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
415 
416 /* This mask prevents VMA from being scanned with khugepaged */
417 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
418 
419 /* This mask defines which mm->def_flags a process can inherit its parent */
420 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
421 
422 /* This mask is used to clear all the VMA flags used by mlock */
423 #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
424 
425 /* Arch-specific flags to clear when updating VM flags on protection change */
426 #ifndef VM_ARCH_CLEAR
427 # define VM_ARCH_CLEAR	VM_NONE
428 #endif
429 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
430 
431 /*
432  * mapping from the currently active vm_flags protection bits (the
433  * low four bits) to a page protection mask..
434  */
435 extern pgprot_t protection_map[16];
436 
437 /**
438  * enum fault_flag - Fault flag definitions.
439  * @FAULT_FLAG_WRITE: Fault was a write fault.
440  * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
441  * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
442  * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
443  * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
444  * @FAULT_FLAG_TRIED: The fault has been tried once.
445  * @FAULT_FLAG_USER: The fault originated in userspace.
446  * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
447  * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
448  * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
449  *
450  * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
451  * whether we would allow page faults to retry by specifying these two
452  * fault flags correctly.  Currently there can be three legal combinations:
453  *
454  * (a) ALLOW_RETRY and !TRIED:  this means the page fault allows retry, and
455  *                              this is the first try
456  *
457  * (b) ALLOW_RETRY and TRIED:   this means the page fault allows retry, and
458  *                              we've already tried at least once
459  *
460  * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
461  *
462  * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
463  * be used.  Note that page faults can be allowed to retry for multiple times,
464  * in which case we'll have an initial fault with flags (a) then later on
465  * continuous faults with flags (b).  We should always try to detect pending
466  * signals before a retry to make sure the continuous page faults can still be
467  * interrupted if necessary.
468  */
469 enum fault_flag {
470 	FAULT_FLAG_WRITE =		1 << 0,
471 	FAULT_FLAG_MKWRITE =		1 << 1,
472 	FAULT_FLAG_ALLOW_RETRY =	1 << 2,
473 	FAULT_FLAG_RETRY_NOWAIT = 	1 << 3,
474 	FAULT_FLAG_KILLABLE =		1 << 4,
475 	FAULT_FLAG_TRIED = 		1 << 5,
476 	FAULT_FLAG_USER =		1 << 6,
477 	FAULT_FLAG_REMOTE =		1 << 7,
478 	FAULT_FLAG_INSTRUCTION =	1 << 8,
479 	FAULT_FLAG_INTERRUPTIBLE =	1 << 9,
480 };
481 
482 /*
483  * The default fault flags that should be used by most of the
484  * arch-specific page fault handlers.
485  */
486 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
487 			     FAULT_FLAG_KILLABLE | \
488 			     FAULT_FLAG_INTERRUPTIBLE)
489 
490 /**
491  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
492  * @flags: Fault flags.
493  *
494  * This is mostly used for places where we want to try to avoid taking
495  * the mmap_lock for too long a time when waiting for another condition
496  * to change, in which case we can try to be polite to release the
497  * mmap_lock in the first round to avoid potential starvation of other
498  * processes that would also want the mmap_lock.
499  *
500  * Return: true if the page fault allows retry and this is the first
501  * attempt of the fault handling; false otherwise.
502  */
fault_flag_allow_retry_first(enum fault_flag flags)503 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
504 {
505 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
506 	    (!(flags & FAULT_FLAG_TRIED));
507 }
508 
509 #define FAULT_FLAG_TRACE \
510 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
511 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
512 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
513 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
514 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
515 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
516 	{ FAULT_FLAG_USER,		"USER" }, \
517 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
518 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
519 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }
520 
521 /*
522  * vm_fault is filled by the pagefault handler and passed to the vma's
523  * ->fault function. The vma's ->fault is responsible for returning a bitmask
524  * of VM_FAULT_xxx flags that give details about how the fault was handled.
525  *
526  * MM layer fills up gfp_mask for page allocations but fault handler might
527  * alter it if its implementation requires a different allocation context.
528  *
529  * pgoff should be used in favour of virtual_address, if possible.
530  */
531 struct vm_fault {
532 	const struct {
533 		struct vm_area_struct *vma;	/* Target VMA */
534 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
535 		pgoff_t pgoff;			/* Logical page offset based on vma */
536 		unsigned long address;		/* Faulting virtual address */
537 	};
538 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
539 					 * XXX: should really be 'const' */
540 	pmd_t *pmd;			/* Pointer to pmd entry matching
541 					 * the 'address' */
542 	pud_t *pud;			/* Pointer to pud entry matching
543 					 * the 'address'
544 					 */
545 	union {
546 		pte_t orig_pte;		/* Value of PTE at the time of fault */
547 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
548 					 * used by PMD fault only.
549 					 */
550 	};
551 
552 	struct page *cow_page;		/* Page handler may use for COW fault */
553 	struct page *page;		/* ->fault handlers should return a
554 					 * page here, unless VM_FAULT_NOPAGE
555 					 * is set (which is also implied by
556 					 * VM_FAULT_ERROR).
557 					 */
558 	/* These three entries are valid only while holding ptl lock */
559 	pte_t *pte;			/* Pointer to pte entry matching
560 					 * the 'address'. NULL if the page
561 					 * table hasn't been allocated.
562 					 */
563 	spinlock_t *ptl;		/* Page table lock.
564 					 * Protects pte page table if 'pte'
565 					 * is not NULL, otherwise pmd.
566 					 */
567 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
568 					 * vm_ops->map_pages() sets up a page
569 					 * table from atomic context.
570 					 * do_fault_around() pre-allocates
571 					 * page table to avoid allocation from
572 					 * atomic context.
573 					 */
574 };
575 
576 /* page entry size for vm->huge_fault() */
577 enum page_entry_size {
578 	PE_SIZE_PTE = 0,
579 	PE_SIZE_PMD,
580 	PE_SIZE_PUD,
581 };
582 
583 /*
584  * These are the virtual MM functions - opening of an area, closing and
585  * unmapping it (needed to keep files on disk up-to-date etc), pointer
586  * to the functions called when a no-page or a wp-page exception occurs.
587  */
588 struct vm_operations_struct {
589 	void (*open)(struct vm_area_struct * area);
590 	void (*close)(struct vm_area_struct * area);
591 	/* Called any time before splitting to check if it's allowed */
592 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
593 	int (*mremap)(struct vm_area_struct *area);
594 	/*
595 	 * Called by mprotect() to make driver-specific permission
596 	 * checks before mprotect() is finalised.   The VMA must not
597 	 * be modified.  Returns 0 if eprotect() can proceed.
598 	 */
599 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
600 			unsigned long end, unsigned long newflags);
601 	vm_fault_t (*fault)(struct vm_fault *vmf);
602 	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
603 			enum page_entry_size pe_size);
604 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
605 			pgoff_t start_pgoff, pgoff_t end_pgoff);
606 	unsigned long (*pagesize)(struct vm_area_struct * area);
607 
608 	/* notification that a previously read-only page is about to become
609 	 * writable, if an error is returned it will cause a SIGBUS */
610 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
611 
612 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
613 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
614 
615 	/* called by access_process_vm when get_user_pages() fails, typically
616 	 * for use by special VMAs. See also generic_access_phys() for a generic
617 	 * implementation useful for any iomem mapping.
618 	 */
619 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
620 		      void *buf, int len, int write);
621 
622 	/* Called by the /proc/PID/maps code to ask the vma whether it
623 	 * has a special name.  Returning non-NULL will also cause this
624 	 * vma to be dumped unconditionally. */
625 	const char *(*name)(struct vm_area_struct *vma);
626 
627 #ifdef CONFIG_NUMA
628 	/*
629 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
630 	 * to hold the policy upon return.  Caller should pass NULL @new to
631 	 * remove a policy and fall back to surrounding context--i.e. do not
632 	 * install a MPOL_DEFAULT policy, nor the task or system default
633 	 * mempolicy.
634 	 */
635 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
636 
637 	/*
638 	 * get_policy() op must add reference [mpol_get()] to any policy at
639 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
640 	 * in mm/mempolicy.c will do this automatically.
641 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
642 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
643 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
644 	 * must return NULL--i.e., do not "fallback" to task or system default
645 	 * policy.
646 	 */
647 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
648 					unsigned long addr);
649 #endif
650 	/*
651 	 * Called by vm_normal_page() for special PTEs to find the
652 	 * page for @addr.  This is useful if the default behavior
653 	 * (using pte_page()) would not find the correct page.
654 	 */
655 	struct page *(*find_special_page)(struct vm_area_struct *vma,
656 					  unsigned long addr);
657 };
658 
vma_init(struct vm_area_struct * vma,struct mm_struct * mm)659 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
660 {
661 	static const struct vm_operations_struct dummy_vm_ops = {};
662 
663 	memset(vma, 0, sizeof(*vma));
664 	vma->vm_mm = mm;
665 	vma->vm_ops = &dummy_vm_ops;
666 	INIT_LIST_HEAD(&vma->anon_vma_chain);
667 }
668 
vma_set_anonymous(struct vm_area_struct * vma)669 static inline void vma_set_anonymous(struct vm_area_struct *vma)
670 {
671 	vma->vm_ops = NULL;
672 }
673 
vma_is_anonymous(struct vm_area_struct * vma)674 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
675 {
676 	return !vma->vm_ops;
677 }
678 
vma_is_temporary_stack(struct vm_area_struct * vma)679 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
680 {
681 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
682 
683 	if (!maybe_stack)
684 		return false;
685 
686 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
687 						VM_STACK_INCOMPLETE_SETUP)
688 		return true;
689 
690 	return false;
691 }
692 
vma_is_foreign(struct vm_area_struct * vma)693 static inline bool vma_is_foreign(struct vm_area_struct *vma)
694 {
695 	if (!current->mm)
696 		return true;
697 
698 	if (current->mm != vma->vm_mm)
699 		return true;
700 
701 	return false;
702 }
703 
vma_is_accessible(struct vm_area_struct * vma)704 static inline bool vma_is_accessible(struct vm_area_struct *vma)
705 {
706 	return vma->vm_flags & VM_ACCESS_FLAGS;
707 }
708 
709 #ifdef CONFIG_SHMEM
710 /*
711  * The vma_is_shmem is not inline because it is used only by slow
712  * paths in userfault.
713  */
714 bool vma_is_shmem(struct vm_area_struct *vma);
715 #else
vma_is_shmem(struct vm_area_struct * vma)716 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
717 #endif
718 
719 int vma_is_stack_for_current(struct vm_area_struct *vma);
720 
721 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
722 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
723 
724 struct mmu_gather;
725 struct inode;
726 
727 #include <linux/huge_mm.h>
728 
729 /*
730  * Methods to modify the page usage count.
731  *
732  * What counts for a page usage:
733  * - cache mapping   (page->mapping)
734  * - private data    (page->private)
735  * - page mapped in a task's page tables, each mapping
736  *   is counted separately
737  *
738  * Also, many kernel routines increase the page count before a critical
739  * routine so they can be sure the page doesn't go away from under them.
740  */
741 
742 /*
743  * Drop a ref, return true if the refcount fell to zero (the page has no users)
744  */
put_page_testzero(struct page * page)745 static inline int put_page_testzero(struct page *page)
746 {
747 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
748 	return page_ref_dec_and_test(page);
749 }
750 
751 /*
752  * Try to grab a ref unless the page has a refcount of zero, return false if
753  * that is the case.
754  * This can be called when MMU is off so it must not access
755  * any of the virtual mappings.
756  */
get_page_unless_zero(struct page * page)757 static inline int get_page_unless_zero(struct page *page)
758 {
759 	return page_ref_add_unless(page, 1, 0);
760 }
761 
762 extern int page_is_ram(unsigned long pfn);
763 
764 enum {
765 	REGION_INTERSECTS,
766 	REGION_DISJOINT,
767 	REGION_MIXED,
768 };
769 
770 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
771 		      unsigned long desc);
772 
773 /* Support for virtually mapped pages */
774 struct page *vmalloc_to_page(const void *addr);
775 unsigned long vmalloc_to_pfn(const void *addr);
776 
777 /*
778  * Determine if an address is within the vmalloc range
779  *
780  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
781  * is no special casing required.
782  */
783 
784 #ifndef is_ioremap_addr
785 #define is_ioremap_addr(x) is_vmalloc_addr(x)
786 #endif
787 
788 #ifdef CONFIG_MMU
789 extern bool is_vmalloc_addr(const void *x);
790 extern int is_vmalloc_or_module_addr(const void *x);
791 #else
is_vmalloc_addr(const void * x)792 static inline bool is_vmalloc_addr(const void *x)
793 {
794 	return false;
795 }
is_vmalloc_or_module_addr(const void * x)796 static inline int is_vmalloc_or_module_addr(const void *x)
797 {
798 	return 0;
799 }
800 #endif
801 
802 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
kvmalloc(size_t size,gfp_t flags)803 static inline void *kvmalloc(size_t size, gfp_t flags)
804 {
805 	return kvmalloc_node(size, flags, NUMA_NO_NODE);
806 }
kvzalloc_node(size_t size,gfp_t flags,int node)807 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
808 {
809 	return kvmalloc_node(size, flags | __GFP_ZERO, node);
810 }
kvzalloc(size_t size,gfp_t flags)811 static inline void *kvzalloc(size_t size, gfp_t flags)
812 {
813 	return kvmalloc(size, flags | __GFP_ZERO);
814 }
815 
kvmalloc_array(size_t n,size_t size,gfp_t flags)816 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
817 {
818 	size_t bytes;
819 
820 	if (unlikely(check_mul_overflow(n, size, &bytes)))
821 		return NULL;
822 
823 	return kvmalloc(bytes, flags);
824 }
825 
kvcalloc(size_t n,size_t size,gfp_t flags)826 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
827 {
828 	return kvmalloc_array(n, size, flags | __GFP_ZERO);
829 }
830 
831 extern void *kvrealloc(const void *p, size_t oldsize, size_t newsize,
832 		gfp_t flags);
833 extern void kvfree(const void *addr);
834 extern void kvfree_sensitive(const void *addr, size_t len);
835 
head_compound_mapcount(struct page * head)836 static inline int head_compound_mapcount(struct page *head)
837 {
838 	return atomic_read(compound_mapcount_ptr(head)) + 1;
839 }
840 
841 /*
842  * Mapcount of compound page as a whole, does not include mapped sub-pages.
843  *
844  * Must be called only for compound pages or any their tail sub-pages.
845  */
compound_mapcount(struct page * page)846 static inline int compound_mapcount(struct page *page)
847 {
848 	VM_BUG_ON_PAGE(!PageCompound(page), page);
849 	page = compound_head(page);
850 	return head_compound_mapcount(page);
851 }
852 
853 /*
854  * The atomic page->_mapcount, starts from -1: so that transitions
855  * both from it and to it can be tracked, using atomic_inc_and_test
856  * and atomic_add_negative(-1).
857  */
page_mapcount_reset(struct page * page)858 static inline void page_mapcount_reset(struct page *page)
859 {
860 	atomic_set(&(page)->_mapcount, -1);
861 }
862 
863 int __page_mapcount(struct page *page);
864 
865 /*
866  * Mapcount of 0-order page; when compound sub-page, includes
867  * compound_mapcount().
868  *
869  * Result is undefined for pages which cannot be mapped into userspace.
870  * For example SLAB or special types of pages. See function page_has_type().
871  * They use this place in struct page differently.
872  */
page_mapcount(struct page * page)873 static inline int page_mapcount(struct page *page)
874 {
875 	if (unlikely(PageCompound(page)))
876 		return __page_mapcount(page);
877 	return atomic_read(&page->_mapcount) + 1;
878 }
879 
880 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
881 int total_mapcount(struct page *page);
882 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
883 #else
total_mapcount(struct page * page)884 static inline int total_mapcount(struct page *page)
885 {
886 	return page_mapcount(page);
887 }
page_trans_huge_mapcount(struct page * page,int * total_mapcount)888 static inline int page_trans_huge_mapcount(struct page *page,
889 					   int *total_mapcount)
890 {
891 	int mapcount = page_mapcount(page);
892 	if (total_mapcount)
893 		*total_mapcount = mapcount;
894 	return mapcount;
895 }
896 #endif
897 
virt_to_head_page(const void * x)898 static inline struct page *virt_to_head_page(const void *x)
899 {
900 	struct page *page = virt_to_page(x);
901 
902 	return compound_head(page);
903 }
904 
905 void __put_page(struct page *page);
906 
907 void put_pages_list(struct list_head *pages);
908 
909 void split_page(struct page *page, unsigned int order);
910 void copy_huge_page(struct page *dst, struct page *src);
911 
912 /*
913  * Compound pages have a destructor function.  Provide a
914  * prototype for that function and accessor functions.
915  * These are _only_ valid on the head of a compound page.
916  */
917 typedef void compound_page_dtor(struct page *);
918 
919 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
920 enum compound_dtor_id {
921 	NULL_COMPOUND_DTOR,
922 	COMPOUND_PAGE_DTOR,
923 #ifdef CONFIG_HUGETLB_PAGE
924 	HUGETLB_PAGE_DTOR,
925 #endif
926 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
927 	TRANSHUGE_PAGE_DTOR,
928 #endif
929 	NR_COMPOUND_DTORS,
930 };
931 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
932 
set_compound_page_dtor(struct page * page,enum compound_dtor_id compound_dtor)933 static inline void set_compound_page_dtor(struct page *page,
934 		enum compound_dtor_id compound_dtor)
935 {
936 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
937 	page[1].compound_dtor = compound_dtor;
938 }
939 
destroy_compound_page(struct page * page)940 static inline void destroy_compound_page(struct page *page)
941 {
942 	VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
943 	compound_page_dtors[page[1].compound_dtor](page);
944 }
945 
compound_order(struct page * page)946 static inline unsigned int compound_order(struct page *page)
947 {
948 	if (!PageHead(page))
949 		return 0;
950 	return page[1].compound_order;
951 }
952 
hpage_pincount_available(struct page * page)953 static inline bool hpage_pincount_available(struct page *page)
954 {
955 	/*
956 	 * Can the page->hpage_pinned_refcount field be used? That field is in
957 	 * the 3rd page of the compound page, so the smallest (2-page) compound
958 	 * pages cannot support it.
959 	 */
960 	page = compound_head(page);
961 	return PageCompound(page) && compound_order(page) > 1;
962 }
963 
head_compound_pincount(struct page * head)964 static inline int head_compound_pincount(struct page *head)
965 {
966 	return atomic_read(compound_pincount_ptr(head));
967 }
968 
compound_pincount(struct page * page)969 static inline int compound_pincount(struct page *page)
970 {
971 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
972 	page = compound_head(page);
973 	return head_compound_pincount(page);
974 }
975 
set_compound_order(struct page * page,unsigned int order)976 static inline void set_compound_order(struct page *page, unsigned int order)
977 {
978 	page[1].compound_order = order;
979 	page[1].compound_nr = 1U << order;
980 }
981 
982 /* Returns the number of pages in this potentially compound page. */
compound_nr(struct page * page)983 static inline unsigned long compound_nr(struct page *page)
984 {
985 	if (!PageHead(page))
986 		return 1;
987 	return page[1].compound_nr;
988 }
989 
990 /* Returns the number of bytes in this potentially compound page. */
page_size(struct page * page)991 static inline unsigned long page_size(struct page *page)
992 {
993 	return PAGE_SIZE << compound_order(page);
994 }
995 
996 /* Returns the number of bits needed for the number of bytes in a page */
page_shift(struct page * page)997 static inline unsigned int page_shift(struct page *page)
998 {
999 	return PAGE_SHIFT + compound_order(page);
1000 }
1001 
1002 void free_compound_page(struct page *page);
1003 
1004 #ifdef CONFIG_MMU
1005 /*
1006  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1007  * servicing faults for write access.  In the normal case, do always want
1008  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1009  * that do not have writing enabled, when used by access_process_vm.
1010  */
maybe_mkwrite(pte_t pte,struct vm_area_struct * vma)1011 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1012 {
1013 	if (likely(vma->vm_flags & VM_WRITE))
1014 		pte = pte_mkwrite(pte);
1015 	return pte;
1016 }
1017 
1018 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1019 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
1020 
1021 vm_fault_t finish_fault(struct vm_fault *vmf);
1022 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
1023 #endif
1024 
1025 /*
1026  * Multiple processes may "see" the same page. E.g. for untouched
1027  * mappings of /dev/null, all processes see the same page full of
1028  * zeroes, and text pages of executables and shared libraries have
1029  * only one copy in memory, at most, normally.
1030  *
1031  * For the non-reserved pages, page_count(page) denotes a reference count.
1032  *   page_count() == 0 means the page is free. page->lru is then used for
1033  *   freelist management in the buddy allocator.
1034  *   page_count() > 0  means the page has been allocated.
1035  *
1036  * Pages are allocated by the slab allocator in order to provide memory
1037  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1038  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1039  * unless a particular usage is carefully commented. (the responsibility of
1040  * freeing the kmalloc memory is the caller's, of course).
1041  *
1042  * A page may be used by anyone else who does a __get_free_page().
1043  * In this case, page_count still tracks the references, and should only
1044  * be used through the normal accessor functions. The top bits of page->flags
1045  * and page->virtual store page management information, but all other fields
1046  * are unused and could be used privately, carefully. The management of this
1047  * page is the responsibility of the one who allocated it, and those who have
1048  * subsequently been given references to it.
1049  *
1050  * The other pages (we may call them "pagecache pages") are completely
1051  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1052  * The following discussion applies only to them.
1053  *
1054  * A pagecache page contains an opaque `private' member, which belongs to the
1055  * page's address_space. Usually, this is the address of a circular list of
1056  * the page's disk buffers. PG_private must be set to tell the VM to call
1057  * into the filesystem to release these pages.
1058  *
1059  * A page may belong to an inode's memory mapping. In this case, page->mapping
1060  * is the pointer to the inode, and page->index is the file offset of the page,
1061  * in units of PAGE_SIZE.
1062  *
1063  * If pagecache pages are not associated with an inode, they are said to be
1064  * anonymous pages. These may become associated with the swapcache, and in that
1065  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1066  *
1067  * In either case (swapcache or inode backed), the pagecache itself holds one
1068  * reference to the page. Setting PG_private should also increment the
1069  * refcount. The each user mapping also has a reference to the page.
1070  *
1071  * The pagecache pages are stored in a per-mapping radix tree, which is
1072  * rooted at mapping->i_pages, and indexed by offset.
1073  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1074  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1075  *
1076  * All pagecache pages may be subject to I/O:
1077  * - inode pages may need to be read from disk,
1078  * - inode pages which have been modified and are MAP_SHARED may need
1079  *   to be written back to the inode on disk,
1080  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1081  *   modified may need to be swapped out to swap space and (later) to be read
1082  *   back into memory.
1083  */
1084 
1085 /*
1086  * The zone field is never updated after free_area_init_core()
1087  * sets it, so none of the operations on it need to be atomic.
1088  */
1089 
1090 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1091 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1092 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
1093 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
1094 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
1095 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1096 
1097 /*
1098  * Define the bit shifts to access each section.  For non-existent
1099  * sections we define the shift as 0; that plus a 0 mask ensures
1100  * the compiler will optimise away reference to them.
1101  */
1102 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1103 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
1104 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
1105 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1106 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1107 
1108 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1109 #ifdef NODE_NOT_IN_PAGE_FLAGS
1110 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
1111 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
1112 						SECTIONS_PGOFF : ZONES_PGOFF)
1113 #else
1114 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
1115 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
1116 						NODES_PGOFF : ZONES_PGOFF)
1117 #endif
1118 
1119 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1120 
1121 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
1122 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
1123 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
1124 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
1125 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
1126 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
1127 
page_zonenum(const struct page * page)1128 static inline enum zone_type page_zonenum(const struct page *page)
1129 {
1130 	ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1131 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1132 }
1133 
1134 #ifdef CONFIG_ZONE_DEVICE
is_zone_device_page(const struct page * page)1135 static inline bool is_zone_device_page(const struct page *page)
1136 {
1137 	return page_zonenum(page) == ZONE_DEVICE;
1138 }
1139 extern void memmap_init_zone_device(struct zone *, unsigned long,
1140 				    unsigned long, struct dev_pagemap *);
1141 #else
is_zone_device_page(const struct page * page)1142 static inline bool is_zone_device_page(const struct page *page)
1143 {
1144 	return false;
1145 }
1146 #endif
1147 
is_zone_movable_page(const struct page * page)1148 static inline bool is_zone_movable_page(const struct page *page)
1149 {
1150 	return page_zonenum(page) == ZONE_MOVABLE;
1151 }
1152 
1153 #ifdef CONFIG_DEV_PAGEMAP_OPS
1154 void free_devmap_managed_page(struct page *page);
1155 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1156 
page_is_devmap_managed(struct page * page)1157 static inline bool page_is_devmap_managed(struct page *page)
1158 {
1159 	if (!static_branch_unlikely(&devmap_managed_key))
1160 		return false;
1161 	if (!is_zone_device_page(page))
1162 		return false;
1163 	switch (page->pgmap->type) {
1164 	case MEMORY_DEVICE_PRIVATE:
1165 	case MEMORY_DEVICE_FS_DAX:
1166 		return true;
1167 	default:
1168 		break;
1169 	}
1170 	return false;
1171 }
1172 
1173 void put_devmap_managed_page(struct page *page);
1174 
1175 #else /* CONFIG_DEV_PAGEMAP_OPS */
page_is_devmap_managed(struct page * page)1176 static inline bool page_is_devmap_managed(struct page *page)
1177 {
1178 	return false;
1179 }
1180 
put_devmap_managed_page(struct page * page)1181 static inline void put_devmap_managed_page(struct page *page)
1182 {
1183 }
1184 #endif /* CONFIG_DEV_PAGEMAP_OPS */
1185 
is_device_private_page(const struct page * page)1186 static inline bool is_device_private_page(const struct page *page)
1187 {
1188 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1189 		IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1190 		is_zone_device_page(page) &&
1191 		page->pgmap->type == MEMORY_DEVICE_PRIVATE;
1192 }
1193 
is_pci_p2pdma_page(const struct page * page)1194 static inline bool is_pci_p2pdma_page(const struct page *page)
1195 {
1196 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1197 		IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1198 		is_zone_device_page(page) &&
1199 		page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
1200 }
1201 
1202 /* 127: arbitrary random number, small enough to assemble well */
1203 #define page_ref_zero_or_close_to_overflow(page) \
1204 	((unsigned int) page_ref_count(page) + 127u <= 127u)
1205 
get_page(struct page * page)1206 static inline void get_page(struct page *page)
1207 {
1208 	page = compound_head(page);
1209 	/*
1210 	 * Getting a normal page or the head of a compound page
1211 	 * requires to already have an elevated page->_refcount.
1212 	 */
1213 	VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1214 	page_ref_inc(page);
1215 }
1216 
1217 bool __must_check try_grab_page(struct page *page, unsigned int flags);
1218 struct page *try_grab_compound_head(struct page *page, int refs,
1219 				    unsigned int flags);
1220 
1221 
try_get_page(struct page * page)1222 static inline __must_check bool try_get_page(struct page *page)
1223 {
1224 	page = compound_head(page);
1225 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1226 		return false;
1227 	page_ref_inc(page);
1228 	return true;
1229 }
1230 
put_page(struct page * page)1231 static inline void put_page(struct page *page)
1232 {
1233 	page = compound_head(page);
1234 
1235 	/*
1236 	 * For devmap managed pages we need to catch refcount transition from
1237 	 * 2 to 1, when refcount reach one it means the page is free and we
1238 	 * need to inform the device driver through callback. See
1239 	 * include/linux/memremap.h and HMM for details.
1240 	 */
1241 	if (page_is_devmap_managed(page)) {
1242 		put_devmap_managed_page(page);
1243 		return;
1244 	}
1245 
1246 	if (put_page_testzero(page))
1247 		__put_page(page);
1248 }
1249 
1250 /*
1251  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1252  * the page's refcount so that two separate items are tracked: the original page
1253  * reference count, and also a new count of how many pin_user_pages() calls were
1254  * made against the page. ("gup-pinned" is another term for the latter).
1255  *
1256  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1257  * distinct from normal pages. As such, the unpin_user_page() call (and its
1258  * variants) must be used in order to release gup-pinned pages.
1259  *
1260  * Choice of value:
1261  *
1262  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1263  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1264  * simpler, due to the fact that adding an even power of two to the page
1265  * refcount has the effect of using only the upper N bits, for the code that
1266  * counts up using the bias value. This means that the lower bits are left for
1267  * the exclusive use of the original code that increments and decrements by one
1268  * (or at least, by much smaller values than the bias value).
1269  *
1270  * Of course, once the lower bits overflow into the upper bits (and this is
1271  * OK, because subtraction recovers the original values), then visual inspection
1272  * no longer suffices to directly view the separate counts. However, for normal
1273  * applications that don't have huge page reference counts, this won't be an
1274  * issue.
1275  *
1276  * Locking: the lockless algorithm described in page_cache_get_speculative()
1277  * and page_cache_gup_pin_speculative() provides safe operation for
1278  * get_user_pages and page_mkclean and other calls that race to set up page
1279  * table entries.
1280  */
1281 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1282 
1283 void unpin_user_page(struct page *page);
1284 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1285 				 bool make_dirty);
1286 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1287 				      bool make_dirty);
1288 void unpin_user_pages(struct page **pages, unsigned long npages);
1289 
1290 /**
1291  * page_maybe_dma_pinned - Report if a page is pinned for DMA.
1292  * @page: The page.
1293  *
1294  * This function checks if a page has been pinned via a call to
1295  * a function in the pin_user_pages() family.
1296  *
1297  * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1298  * because it means "definitely not pinned for DMA", but true means "probably
1299  * pinned for DMA, but possibly a false positive due to having at least
1300  * GUP_PIN_COUNTING_BIAS worth of normal page references".
1301  *
1302  * False positives are OK, because: a) it's unlikely for a page to get that many
1303  * refcounts, and b) all the callers of this routine are expected to be able to
1304  * deal gracefully with a false positive.
1305  *
1306  * For huge pages, the result will be exactly correct. That's because we have
1307  * more tracking data available: the 3rd struct page in the compound page is
1308  * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1309  * scheme).
1310  *
1311  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1312  *
1313  * Return: True, if it is likely that the page has been "dma-pinned".
1314  * False, if the page is definitely not dma-pinned.
1315  */
page_maybe_dma_pinned(struct page * page)1316 static inline bool page_maybe_dma_pinned(struct page *page)
1317 {
1318 	if (hpage_pincount_available(page))
1319 		return compound_pincount(page) > 0;
1320 
1321 	/*
1322 	 * page_ref_count() is signed. If that refcount overflows, then
1323 	 * page_ref_count() returns a negative value, and callers will avoid
1324 	 * further incrementing the refcount.
1325 	 *
1326 	 * Here, for that overflow case, use the signed bit to count a little
1327 	 * bit higher via unsigned math, and thus still get an accurate result.
1328 	 */
1329 	return ((unsigned int)page_ref_count(compound_head(page))) >=
1330 		GUP_PIN_COUNTING_BIAS;
1331 }
1332 
is_cow_mapping(vm_flags_t flags)1333 static inline bool is_cow_mapping(vm_flags_t flags)
1334 {
1335 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1336 }
1337 
1338 /*
1339  * This should most likely only be called during fork() to see whether we
1340  * should break the cow immediately for a page on the src mm.
1341  */
page_needs_cow_for_dma(struct vm_area_struct * vma,struct page * page)1342 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1343 					  struct page *page)
1344 {
1345 	if (!is_cow_mapping(vma->vm_flags))
1346 		return false;
1347 
1348 	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1349 		return false;
1350 
1351 	return page_maybe_dma_pinned(page);
1352 }
1353 
1354 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1355 #define SECTION_IN_PAGE_FLAGS
1356 #endif
1357 
1358 /*
1359  * The identification function is mainly used by the buddy allocator for
1360  * determining if two pages could be buddies. We are not really identifying
1361  * the zone since we could be using the section number id if we do not have
1362  * node id available in page flags.
1363  * We only guarantee that it will return the same value for two combinable
1364  * pages in a zone.
1365  */
page_zone_id(struct page * page)1366 static inline int page_zone_id(struct page *page)
1367 {
1368 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1369 }
1370 
1371 #ifdef NODE_NOT_IN_PAGE_FLAGS
1372 extern int page_to_nid(const struct page *page);
1373 #else
page_to_nid(const struct page * page)1374 static inline int page_to_nid(const struct page *page)
1375 {
1376 	struct page *p = (struct page *)page;
1377 
1378 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1379 }
1380 #endif
1381 
1382 #ifdef CONFIG_NUMA_BALANCING
cpu_pid_to_cpupid(int cpu,int pid)1383 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1384 {
1385 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1386 }
1387 
cpupid_to_pid(int cpupid)1388 static inline int cpupid_to_pid(int cpupid)
1389 {
1390 	return cpupid & LAST__PID_MASK;
1391 }
1392 
cpupid_to_cpu(int cpupid)1393 static inline int cpupid_to_cpu(int cpupid)
1394 {
1395 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1396 }
1397 
cpupid_to_nid(int cpupid)1398 static inline int cpupid_to_nid(int cpupid)
1399 {
1400 	return cpu_to_node(cpupid_to_cpu(cpupid));
1401 }
1402 
cpupid_pid_unset(int cpupid)1403 static inline bool cpupid_pid_unset(int cpupid)
1404 {
1405 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1406 }
1407 
cpupid_cpu_unset(int cpupid)1408 static inline bool cpupid_cpu_unset(int cpupid)
1409 {
1410 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1411 }
1412 
__cpupid_match_pid(pid_t task_pid,int cpupid)1413 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1414 {
1415 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1416 }
1417 
1418 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1419 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
page_cpupid_xchg_last(struct page * page,int cpupid)1420 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1421 {
1422 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1423 }
1424 
page_cpupid_last(struct page * page)1425 static inline int page_cpupid_last(struct page *page)
1426 {
1427 	return page->_last_cpupid;
1428 }
page_cpupid_reset_last(struct page * page)1429 static inline void page_cpupid_reset_last(struct page *page)
1430 {
1431 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1432 }
1433 #else
page_cpupid_last(struct page * page)1434 static inline int page_cpupid_last(struct page *page)
1435 {
1436 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1437 }
1438 
1439 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1440 
page_cpupid_reset_last(struct page * page)1441 static inline void page_cpupid_reset_last(struct page *page)
1442 {
1443 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1444 }
1445 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1446 #else /* !CONFIG_NUMA_BALANCING */
page_cpupid_xchg_last(struct page * page,int cpupid)1447 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1448 {
1449 	return page_to_nid(page); /* XXX */
1450 }
1451 
page_cpupid_last(struct page * page)1452 static inline int page_cpupid_last(struct page *page)
1453 {
1454 	return page_to_nid(page); /* XXX */
1455 }
1456 
cpupid_to_nid(int cpupid)1457 static inline int cpupid_to_nid(int cpupid)
1458 {
1459 	return -1;
1460 }
1461 
cpupid_to_pid(int cpupid)1462 static inline int cpupid_to_pid(int cpupid)
1463 {
1464 	return -1;
1465 }
1466 
cpupid_to_cpu(int cpupid)1467 static inline int cpupid_to_cpu(int cpupid)
1468 {
1469 	return -1;
1470 }
1471 
cpu_pid_to_cpupid(int nid,int pid)1472 static inline int cpu_pid_to_cpupid(int nid, int pid)
1473 {
1474 	return -1;
1475 }
1476 
cpupid_pid_unset(int cpupid)1477 static inline bool cpupid_pid_unset(int cpupid)
1478 {
1479 	return true;
1480 }
1481 
page_cpupid_reset_last(struct page * page)1482 static inline void page_cpupid_reset_last(struct page *page)
1483 {
1484 }
1485 
cpupid_match_pid(struct task_struct * task,int cpupid)1486 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1487 {
1488 	return false;
1489 }
1490 #endif /* CONFIG_NUMA_BALANCING */
1491 
1492 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1493 
1494 /*
1495  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1496  * setting tags for all pages to native kernel tag value 0xff, as the default
1497  * value 0x00 maps to 0xff.
1498  */
1499 
page_kasan_tag(const struct page * page)1500 static inline u8 page_kasan_tag(const struct page *page)
1501 {
1502 	u8 tag = 0xff;
1503 
1504 	if (kasan_enabled()) {
1505 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1506 		tag ^= 0xff;
1507 	}
1508 
1509 	return tag;
1510 }
1511 
page_kasan_tag_set(struct page * page,u8 tag)1512 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1513 {
1514 	if (kasan_enabled()) {
1515 		tag ^= 0xff;
1516 		page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1517 		page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1518 	}
1519 }
1520 
page_kasan_tag_reset(struct page * page)1521 static inline void page_kasan_tag_reset(struct page *page)
1522 {
1523 	if (kasan_enabled())
1524 		page_kasan_tag_set(page, 0xff);
1525 }
1526 
1527 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1528 
page_kasan_tag(const struct page * page)1529 static inline u8 page_kasan_tag(const struct page *page)
1530 {
1531 	return 0xff;
1532 }
1533 
page_kasan_tag_set(struct page * page,u8 tag)1534 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
page_kasan_tag_reset(struct page * page)1535 static inline void page_kasan_tag_reset(struct page *page) { }
1536 
1537 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1538 
page_zone(const struct page * page)1539 static inline struct zone *page_zone(const struct page *page)
1540 {
1541 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1542 }
1543 
page_pgdat(const struct page * page)1544 static inline pg_data_t *page_pgdat(const struct page *page)
1545 {
1546 	return NODE_DATA(page_to_nid(page));
1547 }
1548 
1549 #ifdef SECTION_IN_PAGE_FLAGS
set_page_section(struct page * page,unsigned long section)1550 static inline void set_page_section(struct page *page, unsigned long section)
1551 {
1552 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1553 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1554 }
1555 
page_to_section(const struct page * page)1556 static inline unsigned long page_to_section(const struct page *page)
1557 {
1558 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1559 }
1560 #endif
1561 
1562 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1563 #ifdef CONFIG_MIGRATION
is_pinnable_page(struct page * page)1564 static inline bool is_pinnable_page(struct page *page)
1565 {
1566 	return !(is_zone_movable_page(page) || is_migrate_cma_page(page)) ||
1567 		is_zero_pfn(page_to_pfn(page));
1568 }
1569 #else
is_pinnable_page(struct page * page)1570 static inline bool is_pinnable_page(struct page *page)
1571 {
1572 	return true;
1573 }
1574 #endif
1575 
set_page_zone(struct page * page,enum zone_type zone)1576 static inline void set_page_zone(struct page *page, enum zone_type zone)
1577 {
1578 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1579 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1580 }
1581 
set_page_node(struct page * page,unsigned long node)1582 static inline void set_page_node(struct page *page, unsigned long node)
1583 {
1584 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1585 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1586 }
1587 
set_page_links(struct page * page,enum zone_type zone,unsigned long node,unsigned long pfn)1588 static inline void set_page_links(struct page *page, enum zone_type zone,
1589 	unsigned long node, unsigned long pfn)
1590 {
1591 	set_page_zone(page, zone);
1592 	set_page_node(page, node);
1593 #ifdef SECTION_IN_PAGE_FLAGS
1594 	set_page_section(page, pfn_to_section_nr(pfn));
1595 #endif
1596 }
1597 
1598 /*
1599  * Some inline functions in vmstat.h depend on page_zone()
1600  */
1601 #include <linux/vmstat.h>
1602 
lowmem_page_address(const struct page * page)1603 static __always_inline void *lowmem_page_address(const struct page *page)
1604 {
1605 	return page_to_virt(page);
1606 }
1607 
1608 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1609 #define HASHED_PAGE_VIRTUAL
1610 #endif
1611 
1612 #if defined(WANT_PAGE_VIRTUAL)
page_address(const struct page * page)1613 static inline void *page_address(const struct page *page)
1614 {
1615 	return page->virtual;
1616 }
set_page_address(struct page * page,void * address)1617 static inline void set_page_address(struct page *page, void *address)
1618 {
1619 	page->virtual = address;
1620 }
1621 #define page_address_init()  do { } while(0)
1622 #endif
1623 
1624 #if defined(HASHED_PAGE_VIRTUAL)
1625 void *page_address(const struct page *page);
1626 void set_page_address(struct page *page, void *virtual);
1627 void page_address_init(void);
1628 #endif
1629 
1630 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1631 #define page_address(page) lowmem_page_address(page)
1632 #define set_page_address(page, address)  do { } while(0)
1633 #define page_address_init()  do { } while(0)
1634 #endif
1635 
1636 extern void *page_rmapping(struct page *page);
1637 extern struct anon_vma *page_anon_vma(struct page *page);
1638 extern struct address_space *page_mapping(struct page *page);
1639 
1640 extern struct address_space *__page_file_mapping(struct page *);
1641 
1642 static inline
page_file_mapping(struct page * page)1643 struct address_space *page_file_mapping(struct page *page)
1644 {
1645 	if (unlikely(PageSwapCache(page)))
1646 		return __page_file_mapping(page);
1647 
1648 	return page->mapping;
1649 }
1650 
1651 extern pgoff_t __page_file_index(struct page *page);
1652 
1653 /*
1654  * Return the pagecache index of the passed page.  Regular pagecache pages
1655  * use ->index whereas swapcache pages use swp_offset(->private)
1656  */
page_index(struct page * page)1657 static inline pgoff_t page_index(struct page *page)
1658 {
1659 	if (unlikely(PageSwapCache(page)))
1660 		return __page_file_index(page);
1661 	return page->index;
1662 }
1663 
1664 bool page_mapped(struct page *page);
1665 struct address_space *page_mapping(struct page *page);
1666 
1667 /*
1668  * Return true only if the page has been allocated with
1669  * ALLOC_NO_WATERMARKS and the low watermark was not
1670  * met implying that the system is under some pressure.
1671  */
page_is_pfmemalloc(const struct page * page)1672 static inline bool page_is_pfmemalloc(const struct page *page)
1673 {
1674 	/*
1675 	 * lru.next has bit 1 set if the page is allocated from the
1676 	 * pfmemalloc reserves.  Callers may simply overwrite it if
1677 	 * they do not need to preserve that information.
1678 	 */
1679 	return (uintptr_t)page->lru.next & BIT(1);
1680 }
1681 
1682 /*
1683  * Only to be called by the page allocator on a freshly allocated
1684  * page.
1685  */
set_page_pfmemalloc(struct page * page)1686 static inline void set_page_pfmemalloc(struct page *page)
1687 {
1688 	page->lru.next = (void *)BIT(1);
1689 }
1690 
clear_page_pfmemalloc(struct page * page)1691 static inline void clear_page_pfmemalloc(struct page *page)
1692 {
1693 	page->lru.next = NULL;
1694 }
1695 
1696 /*
1697  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1698  */
1699 extern void pagefault_out_of_memory(void);
1700 
1701 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1702 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
1703 
1704 /*
1705  * Flags passed to show_mem() and show_free_areas() to suppress output in
1706  * various contexts.
1707  */
1708 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1709 
1710 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1711 
1712 #ifdef CONFIG_MMU
1713 extern bool can_do_mlock(void);
1714 #else
can_do_mlock(void)1715 static inline bool can_do_mlock(void) { return false; }
1716 #endif
1717 extern int user_shm_lock(size_t, struct ucounts *);
1718 extern void user_shm_unlock(size_t, struct ucounts *);
1719 
1720 /*
1721  * Parameter block passed down to zap_pte_range in exceptional cases.
1722  */
1723 struct zap_details {
1724 	struct address_space *check_mapping;	/* Check page->mapping if set */
1725 	pgoff_t	first_index;			/* Lowest page->index to unmap */
1726 	pgoff_t last_index;			/* Highest page->index to unmap */
1727 	struct page *single_page;		/* Locked page to be unmapped */
1728 };
1729 
1730 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1731 			     pte_t pte);
1732 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1733 				pmd_t pmd);
1734 
1735 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1736 		  unsigned long size);
1737 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1738 		    unsigned long size);
1739 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1740 		unsigned long start, unsigned long end);
1741 
1742 struct mmu_notifier_range;
1743 
1744 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1745 		unsigned long end, unsigned long floor, unsigned long ceiling);
1746 int
1747 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
1748 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
1749 			  struct mmu_notifier_range *range, pte_t **ptepp,
1750 			  pmd_t **pmdpp, spinlock_t **ptlp);
1751 int follow_pte(struct mm_struct *mm, unsigned long address,
1752 	       pte_t **ptepp, spinlock_t **ptlp);
1753 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1754 	unsigned long *pfn);
1755 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1756 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1757 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1758 			void *buf, int len, int write);
1759 
1760 extern void truncate_pagecache(struct inode *inode, loff_t new);
1761 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1762 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1763 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1764 int truncate_inode_page(struct address_space *mapping, struct page *page);
1765 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1766 int invalidate_inode_page(struct page *page);
1767 
1768 #ifdef CONFIG_MMU
1769 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1770 				  unsigned long address, unsigned int flags,
1771 				  struct pt_regs *regs);
1772 extern int fixup_user_fault(struct mm_struct *mm,
1773 			    unsigned long address, unsigned int fault_flags,
1774 			    bool *unlocked);
1775 void unmap_mapping_page(struct page *page);
1776 void unmap_mapping_pages(struct address_space *mapping,
1777 		pgoff_t start, pgoff_t nr, bool even_cows);
1778 void unmap_mapping_range(struct address_space *mapping,
1779 		loff_t const holebegin, loff_t const holelen, int even_cows);
1780 #else
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)1781 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1782 					 unsigned long address, unsigned int flags,
1783 					 struct pt_regs *regs)
1784 {
1785 	/* should never happen if there's no MMU */
1786 	BUG();
1787 	return VM_FAULT_SIGBUS;
1788 }
fixup_user_fault(struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)1789 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
1790 		unsigned int fault_flags, bool *unlocked)
1791 {
1792 	/* should never happen if there's no MMU */
1793 	BUG();
1794 	return -EFAULT;
1795 }
unmap_mapping_page(struct page * page)1796 static inline void unmap_mapping_page(struct page *page) { }
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)1797 static inline void unmap_mapping_pages(struct address_space *mapping,
1798 		pgoff_t start, pgoff_t nr, bool even_cows) { }
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)1799 static inline void unmap_mapping_range(struct address_space *mapping,
1800 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
1801 #endif
1802 
unmap_shared_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen)1803 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1804 		loff_t const holebegin, loff_t const holelen)
1805 {
1806 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1807 }
1808 
1809 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1810 		void *buf, int len, unsigned int gup_flags);
1811 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1812 		void *buf, int len, unsigned int gup_flags);
1813 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1814 			      void *buf, int len, unsigned int gup_flags);
1815 
1816 long get_user_pages_remote(struct mm_struct *mm,
1817 			    unsigned long start, unsigned long nr_pages,
1818 			    unsigned int gup_flags, struct page **pages,
1819 			    struct vm_area_struct **vmas, int *locked);
1820 long pin_user_pages_remote(struct mm_struct *mm,
1821 			   unsigned long start, unsigned long nr_pages,
1822 			   unsigned int gup_flags, struct page **pages,
1823 			   struct vm_area_struct **vmas, int *locked);
1824 long get_user_pages(unsigned long start, unsigned long nr_pages,
1825 			    unsigned int gup_flags, struct page **pages,
1826 			    struct vm_area_struct **vmas);
1827 long pin_user_pages(unsigned long start, unsigned long nr_pages,
1828 		    unsigned int gup_flags, struct page **pages,
1829 		    struct vm_area_struct **vmas);
1830 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1831 		    unsigned int gup_flags, struct page **pages, int *locked);
1832 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1833 		    unsigned int gup_flags, struct page **pages, int *locked);
1834 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1835 		    struct page **pages, unsigned int gup_flags);
1836 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1837 		    struct page **pages, unsigned int gup_flags);
1838 
1839 int get_user_pages_fast(unsigned long start, int nr_pages,
1840 			unsigned int gup_flags, struct page **pages);
1841 int pin_user_pages_fast(unsigned long start, int nr_pages,
1842 			unsigned int gup_flags, struct page **pages);
1843 
1844 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1845 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1846 			struct task_struct *task, bool bypass_rlim);
1847 
1848 struct kvec;
1849 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1850 			struct page **pages);
1851 struct page *get_dump_page(unsigned long addr);
1852 
1853 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1854 extern void do_invalidatepage(struct page *page, unsigned int offset,
1855 			      unsigned int length);
1856 
1857 int redirty_page_for_writepage(struct writeback_control *wbc,
1858 				struct page *page);
1859 void account_page_cleaned(struct page *page, struct address_space *mapping,
1860 			  struct bdi_writeback *wb);
1861 int set_page_dirty(struct page *page);
1862 int set_page_dirty_lock(struct page *page);
1863 void __cancel_dirty_page(struct page *page);
cancel_dirty_page(struct page * page)1864 static inline void cancel_dirty_page(struct page *page)
1865 {
1866 	/* Avoid atomic ops, locking, etc. when not actually needed. */
1867 	if (PageDirty(page))
1868 		__cancel_dirty_page(page);
1869 }
1870 int clear_page_dirty_for_io(struct page *page);
1871 
1872 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1873 
1874 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1875 		unsigned long old_addr, struct vm_area_struct *new_vma,
1876 		unsigned long new_addr, unsigned long len,
1877 		bool need_rmap_locks);
1878 
1879 /*
1880  * Flags used by change_protection().  For now we make it a bitmap so
1881  * that we can pass in multiple flags just like parameters.  However
1882  * for now all the callers are only use one of the flags at the same
1883  * time.
1884  */
1885 /* Whether we should allow dirty bit accounting */
1886 #define  MM_CP_DIRTY_ACCT                  (1UL << 0)
1887 /* Whether this protection change is for NUMA hints */
1888 #define  MM_CP_PROT_NUMA                   (1UL << 1)
1889 /* Whether this change is for write protecting */
1890 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
1891 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
1892 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
1893 					    MM_CP_UFFD_WP_RESOLVE)
1894 
1895 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1896 			      unsigned long end, pgprot_t newprot,
1897 			      unsigned long cp_flags);
1898 extern int mprotect_fixup(struct vm_area_struct *vma,
1899 			  struct vm_area_struct **pprev, unsigned long start,
1900 			  unsigned long end, unsigned long newflags);
1901 
1902 /*
1903  * doesn't attempt to fault and will return short.
1904  */
1905 int get_user_pages_fast_only(unsigned long start, int nr_pages,
1906 			     unsigned int gup_flags, struct page **pages);
1907 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1908 			     unsigned int gup_flags, struct page **pages);
1909 
get_user_page_fast_only(unsigned long addr,unsigned int gup_flags,struct page ** pagep)1910 static inline bool get_user_page_fast_only(unsigned long addr,
1911 			unsigned int gup_flags, struct page **pagep)
1912 {
1913 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1914 }
1915 /*
1916  * per-process(per-mm_struct) statistics.
1917  */
get_mm_counter(struct mm_struct * mm,int member)1918 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1919 {
1920 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1921 
1922 #ifdef SPLIT_RSS_COUNTING
1923 	/*
1924 	 * counter is updated in asynchronous manner and may go to minus.
1925 	 * But it's never be expected number for users.
1926 	 */
1927 	if (val < 0)
1928 		val = 0;
1929 #endif
1930 	return (unsigned long)val;
1931 }
1932 
1933 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
1934 
add_mm_counter(struct mm_struct * mm,int member,long value)1935 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1936 {
1937 	long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1938 
1939 	mm_trace_rss_stat(mm, member, count);
1940 }
1941 
inc_mm_counter(struct mm_struct * mm,int member)1942 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1943 {
1944 	long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1945 
1946 	mm_trace_rss_stat(mm, member, count);
1947 }
1948 
dec_mm_counter(struct mm_struct * mm,int member)1949 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1950 {
1951 	long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1952 
1953 	mm_trace_rss_stat(mm, member, count);
1954 }
1955 
1956 /* Optimized variant when page is already known not to be PageAnon */
mm_counter_file(struct page * page)1957 static inline int mm_counter_file(struct page *page)
1958 {
1959 	if (PageSwapBacked(page))
1960 		return MM_SHMEMPAGES;
1961 	return MM_FILEPAGES;
1962 }
1963 
mm_counter(struct page * page)1964 static inline int mm_counter(struct page *page)
1965 {
1966 	if (PageAnon(page))
1967 		return MM_ANONPAGES;
1968 	return mm_counter_file(page);
1969 }
1970 
get_mm_rss(struct mm_struct * mm)1971 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1972 {
1973 	return get_mm_counter(mm, MM_FILEPAGES) +
1974 		get_mm_counter(mm, MM_ANONPAGES) +
1975 		get_mm_counter(mm, MM_SHMEMPAGES);
1976 }
1977 
get_mm_hiwater_rss(struct mm_struct * mm)1978 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1979 {
1980 	return max(mm->hiwater_rss, get_mm_rss(mm));
1981 }
1982 
get_mm_hiwater_vm(struct mm_struct * mm)1983 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1984 {
1985 	return max(mm->hiwater_vm, mm->total_vm);
1986 }
1987 
update_hiwater_rss(struct mm_struct * mm)1988 static inline void update_hiwater_rss(struct mm_struct *mm)
1989 {
1990 	unsigned long _rss = get_mm_rss(mm);
1991 
1992 	if ((mm)->hiwater_rss < _rss)
1993 		(mm)->hiwater_rss = _rss;
1994 }
1995 
update_hiwater_vm(struct mm_struct * mm)1996 static inline void update_hiwater_vm(struct mm_struct *mm)
1997 {
1998 	if (mm->hiwater_vm < mm->total_vm)
1999 		mm->hiwater_vm = mm->total_vm;
2000 }
2001 
reset_mm_hiwater_rss(struct mm_struct * mm)2002 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2003 {
2004 	mm->hiwater_rss = get_mm_rss(mm);
2005 }
2006 
setmax_mm_hiwater_rss(unsigned long * maxrss,struct mm_struct * mm)2007 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2008 					 struct mm_struct *mm)
2009 {
2010 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2011 
2012 	if (*maxrss < hiwater_rss)
2013 		*maxrss = hiwater_rss;
2014 }
2015 
2016 #if defined(SPLIT_RSS_COUNTING)
2017 void sync_mm_rss(struct mm_struct *mm);
2018 #else
sync_mm_rss(struct mm_struct * mm)2019 static inline void sync_mm_rss(struct mm_struct *mm)
2020 {
2021 }
2022 #endif
2023 
2024 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
pte_special(pte_t pte)2025 static inline int pte_special(pte_t pte)
2026 {
2027 	return 0;
2028 }
2029 
pte_mkspecial(pte_t pte)2030 static inline pte_t pte_mkspecial(pte_t pte)
2031 {
2032 	return pte;
2033 }
2034 #endif
2035 
2036 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
pte_devmap(pte_t pte)2037 static inline int pte_devmap(pte_t pte)
2038 {
2039 	return 0;
2040 }
2041 #endif
2042 
2043 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2044 
2045 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2046 			       spinlock_t **ptl);
get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)2047 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2048 				    spinlock_t **ptl)
2049 {
2050 	pte_t *ptep;
2051 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2052 	return ptep;
2053 }
2054 
2055 #ifdef __PAGETABLE_P4D_FOLDED
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2056 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2057 						unsigned long address)
2058 {
2059 	return 0;
2060 }
2061 #else
2062 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2063 #endif
2064 
2065 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2066 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2067 						unsigned long address)
2068 {
2069 	return 0;
2070 }
mm_inc_nr_puds(struct mm_struct * mm)2071 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
mm_dec_nr_puds(struct mm_struct * mm)2072 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2073 
2074 #else
2075 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2076 
mm_inc_nr_puds(struct mm_struct * mm)2077 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2078 {
2079 	if (mm_pud_folded(mm))
2080 		return;
2081 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2082 }
2083 
mm_dec_nr_puds(struct mm_struct * mm)2084 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2085 {
2086 	if (mm_pud_folded(mm))
2087 		return;
2088 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2089 }
2090 #endif
2091 
2092 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2093 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2094 						unsigned long address)
2095 {
2096 	return 0;
2097 }
2098 
mm_inc_nr_pmds(struct mm_struct * mm)2099 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
mm_dec_nr_pmds(struct mm_struct * mm)2100 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2101 
2102 #else
2103 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2104 
mm_inc_nr_pmds(struct mm_struct * mm)2105 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2106 {
2107 	if (mm_pmd_folded(mm))
2108 		return;
2109 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2110 }
2111 
mm_dec_nr_pmds(struct mm_struct * mm)2112 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2113 {
2114 	if (mm_pmd_folded(mm))
2115 		return;
2116 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2117 }
2118 #endif
2119 
2120 #ifdef CONFIG_MMU
mm_pgtables_bytes_init(struct mm_struct * mm)2121 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2122 {
2123 	atomic_long_set(&mm->pgtables_bytes, 0);
2124 }
2125 
mm_pgtables_bytes(const struct mm_struct * mm)2126 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2127 {
2128 	return atomic_long_read(&mm->pgtables_bytes);
2129 }
2130 
mm_inc_nr_ptes(struct mm_struct * mm)2131 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2132 {
2133 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2134 }
2135 
mm_dec_nr_ptes(struct mm_struct * mm)2136 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2137 {
2138 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2139 }
2140 #else
2141 
mm_pgtables_bytes_init(struct mm_struct * mm)2142 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
mm_pgtables_bytes(const struct mm_struct * mm)2143 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2144 {
2145 	return 0;
2146 }
2147 
mm_inc_nr_ptes(struct mm_struct * mm)2148 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
mm_dec_nr_ptes(struct mm_struct * mm)2149 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2150 #endif
2151 
2152 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2153 int __pte_alloc_kernel(pmd_t *pmd);
2154 
2155 #if defined(CONFIG_MMU)
2156 
p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2157 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2158 		unsigned long address)
2159 {
2160 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2161 		NULL : p4d_offset(pgd, address);
2162 }
2163 
pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2164 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2165 		unsigned long address)
2166 {
2167 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2168 		NULL : pud_offset(p4d, address);
2169 }
2170 
pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2171 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2172 {
2173 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2174 		NULL: pmd_offset(pud, address);
2175 }
2176 #endif /* CONFIG_MMU */
2177 
2178 #if USE_SPLIT_PTE_PTLOCKS
2179 #if ALLOC_SPLIT_PTLOCKS
2180 void __init ptlock_cache_init(void);
2181 extern bool ptlock_alloc(struct page *page);
2182 extern void ptlock_free(struct page *page);
2183 
ptlock_ptr(struct page * page)2184 static inline spinlock_t *ptlock_ptr(struct page *page)
2185 {
2186 	return page->ptl;
2187 }
2188 #else /* ALLOC_SPLIT_PTLOCKS */
ptlock_cache_init(void)2189 static inline void ptlock_cache_init(void)
2190 {
2191 }
2192 
ptlock_alloc(struct page * page)2193 static inline bool ptlock_alloc(struct page *page)
2194 {
2195 	return true;
2196 }
2197 
ptlock_free(struct page * page)2198 static inline void ptlock_free(struct page *page)
2199 {
2200 }
2201 
ptlock_ptr(struct page * page)2202 static inline spinlock_t *ptlock_ptr(struct page *page)
2203 {
2204 	return &page->ptl;
2205 }
2206 #endif /* ALLOC_SPLIT_PTLOCKS */
2207 
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2208 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2209 {
2210 	return ptlock_ptr(pmd_page(*pmd));
2211 }
2212 
ptlock_init(struct page * page)2213 static inline bool ptlock_init(struct page *page)
2214 {
2215 	/*
2216 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2217 	 * with 0. Make sure nobody took it in use in between.
2218 	 *
2219 	 * It can happen if arch try to use slab for page table allocation:
2220 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2221 	 */
2222 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2223 	if (!ptlock_alloc(page))
2224 		return false;
2225 	spin_lock_init(ptlock_ptr(page));
2226 	return true;
2227 }
2228 
2229 #else	/* !USE_SPLIT_PTE_PTLOCKS */
2230 /*
2231  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2232  */
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2233 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2234 {
2235 	return &mm->page_table_lock;
2236 }
ptlock_cache_init(void)2237 static inline void ptlock_cache_init(void) {}
ptlock_init(struct page * page)2238 static inline bool ptlock_init(struct page *page) { return true; }
ptlock_free(struct page * page)2239 static inline void ptlock_free(struct page *page) {}
2240 #endif /* USE_SPLIT_PTE_PTLOCKS */
2241 
pgtable_init(void)2242 static inline void pgtable_init(void)
2243 {
2244 	ptlock_cache_init();
2245 	pgtable_cache_init();
2246 }
2247 
pgtable_pte_page_ctor(struct page * page)2248 static inline bool pgtable_pte_page_ctor(struct page *page)
2249 {
2250 	if (!ptlock_init(page))
2251 		return false;
2252 	__SetPageTable(page);
2253 	inc_lruvec_page_state(page, NR_PAGETABLE);
2254 	return true;
2255 }
2256 
pgtable_pte_page_dtor(struct page * page)2257 static inline void pgtable_pte_page_dtor(struct page *page)
2258 {
2259 	ptlock_free(page);
2260 	__ClearPageTable(page);
2261 	dec_lruvec_page_state(page, NR_PAGETABLE);
2262 }
2263 
2264 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
2265 ({							\
2266 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
2267 	pte_t *__pte = pte_offset_map(pmd, address);	\
2268 	*(ptlp) = __ptl;				\
2269 	spin_lock(__ptl);				\
2270 	__pte;						\
2271 })
2272 
2273 #define pte_unmap_unlock(pte, ptl)	do {		\
2274 	spin_unlock(ptl);				\
2275 	pte_unmap(pte);					\
2276 } while (0)
2277 
2278 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2279 
2280 #define pte_alloc_map(mm, pmd, address)			\
2281 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2282 
2283 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
2284 	(pte_alloc(mm, pmd) ?			\
2285 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2286 
2287 #define pte_alloc_kernel(pmd, address)			\
2288 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2289 		NULL: pte_offset_kernel(pmd, address))
2290 
2291 #if USE_SPLIT_PMD_PTLOCKS
2292 
pmd_to_page(pmd_t * pmd)2293 static struct page *pmd_to_page(pmd_t *pmd)
2294 {
2295 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2296 	return virt_to_page((void *)((unsigned long) pmd & mask));
2297 }
2298 
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)2299 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2300 {
2301 	return ptlock_ptr(pmd_to_page(pmd));
2302 }
2303 
pmd_ptlock_init(struct page * page)2304 static inline bool pmd_ptlock_init(struct page *page)
2305 {
2306 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2307 	page->pmd_huge_pte = NULL;
2308 #endif
2309 	return ptlock_init(page);
2310 }
2311 
pmd_ptlock_free(struct page * page)2312 static inline void pmd_ptlock_free(struct page *page)
2313 {
2314 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2315 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2316 #endif
2317 	ptlock_free(page);
2318 }
2319 
2320 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2321 
2322 #else
2323 
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)2324 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2325 {
2326 	return &mm->page_table_lock;
2327 }
2328 
pmd_ptlock_init(struct page * page)2329 static inline bool pmd_ptlock_init(struct page *page) { return true; }
pmd_ptlock_free(struct page * page)2330 static inline void pmd_ptlock_free(struct page *page) {}
2331 
2332 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2333 
2334 #endif
2335 
pmd_lock(struct mm_struct * mm,pmd_t * pmd)2336 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2337 {
2338 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
2339 	spin_lock(ptl);
2340 	return ptl;
2341 }
2342 
pgtable_pmd_page_ctor(struct page * page)2343 static inline bool pgtable_pmd_page_ctor(struct page *page)
2344 {
2345 	if (!pmd_ptlock_init(page))
2346 		return false;
2347 	__SetPageTable(page);
2348 	inc_lruvec_page_state(page, NR_PAGETABLE);
2349 	return true;
2350 }
2351 
pgtable_pmd_page_dtor(struct page * page)2352 static inline void pgtable_pmd_page_dtor(struct page *page)
2353 {
2354 	pmd_ptlock_free(page);
2355 	__ClearPageTable(page);
2356 	dec_lruvec_page_state(page, NR_PAGETABLE);
2357 }
2358 
2359 /*
2360  * No scalability reason to split PUD locks yet, but follow the same pattern
2361  * as the PMD locks to make it easier if we decide to.  The VM should not be
2362  * considered ready to switch to split PUD locks yet; there may be places
2363  * which need to be converted from page_table_lock.
2364  */
pud_lockptr(struct mm_struct * mm,pud_t * pud)2365 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2366 {
2367 	return &mm->page_table_lock;
2368 }
2369 
pud_lock(struct mm_struct * mm,pud_t * pud)2370 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2371 {
2372 	spinlock_t *ptl = pud_lockptr(mm, pud);
2373 
2374 	spin_lock(ptl);
2375 	return ptl;
2376 }
2377 
2378 extern void __init pagecache_init(void);
2379 extern void __init free_area_init_memoryless_node(int nid);
2380 extern void free_initmem(void);
2381 
2382 /*
2383  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2384  * into the buddy system. The freed pages will be poisoned with pattern
2385  * "poison" if it's within range [0, UCHAR_MAX].
2386  * Return pages freed into the buddy system.
2387  */
2388 extern unsigned long free_reserved_area(void *start, void *end,
2389 					int poison, const char *s);
2390 
2391 extern void adjust_managed_page_count(struct page *page, long count);
2392 extern void mem_init_print_info(void);
2393 
2394 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2395 
2396 /* Free the reserved page into the buddy system, so it gets managed. */
free_reserved_page(struct page * page)2397 static inline void free_reserved_page(struct page *page)
2398 {
2399 	ClearPageReserved(page);
2400 	init_page_count(page);
2401 	__free_page(page);
2402 	adjust_managed_page_count(page, 1);
2403 }
2404 #define free_highmem_page(page) free_reserved_page(page)
2405 
mark_page_reserved(struct page * page)2406 static inline void mark_page_reserved(struct page *page)
2407 {
2408 	SetPageReserved(page);
2409 	adjust_managed_page_count(page, -1);
2410 }
2411 
2412 /*
2413  * Default method to free all the __init memory into the buddy system.
2414  * The freed pages will be poisoned with pattern "poison" if it's within
2415  * range [0, UCHAR_MAX].
2416  * Return pages freed into the buddy system.
2417  */
free_initmem_default(int poison)2418 static inline unsigned long free_initmem_default(int poison)
2419 {
2420 	extern char __init_begin[], __init_end[];
2421 
2422 	return free_reserved_area(&__init_begin, &__init_end,
2423 				  poison, "unused kernel image (initmem)");
2424 }
2425 
get_num_physpages(void)2426 static inline unsigned long get_num_physpages(void)
2427 {
2428 	int nid;
2429 	unsigned long phys_pages = 0;
2430 
2431 	for_each_online_node(nid)
2432 		phys_pages += node_present_pages(nid);
2433 
2434 	return phys_pages;
2435 }
2436 
2437 /*
2438  * Using memblock node mappings, an architecture may initialise its
2439  * zones, allocate the backing mem_map and account for memory holes in an
2440  * architecture independent manner.
2441  *
2442  * An architecture is expected to register range of page frames backed by
2443  * physical memory with memblock_add[_node]() before calling
2444  * free_area_init() passing in the PFN each zone ends at. At a basic
2445  * usage, an architecture is expected to do something like
2446  *
2447  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2448  * 							 max_highmem_pfn};
2449  * for_each_valid_physical_page_range()
2450  * 	memblock_add_node(base, size, nid)
2451  * free_area_init(max_zone_pfns);
2452  */
2453 void free_area_init(unsigned long *max_zone_pfn);
2454 unsigned long node_map_pfn_alignment(void);
2455 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2456 						unsigned long end_pfn);
2457 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2458 						unsigned long end_pfn);
2459 extern void get_pfn_range_for_nid(unsigned int nid,
2460 			unsigned long *start_pfn, unsigned long *end_pfn);
2461 extern unsigned long find_min_pfn_with_active_regions(void);
2462 
2463 #ifndef CONFIG_NUMA
early_pfn_to_nid(unsigned long pfn)2464 static inline int early_pfn_to_nid(unsigned long pfn)
2465 {
2466 	return 0;
2467 }
2468 #else
2469 /* please see mm/page_alloc.c */
2470 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2471 #endif
2472 
2473 extern void set_dma_reserve(unsigned long new_dma_reserve);
2474 extern void memmap_init_range(unsigned long, int, unsigned long,
2475 		unsigned long, unsigned long, enum meminit_context,
2476 		struct vmem_altmap *, int migratetype);
2477 extern void setup_per_zone_wmarks(void);
2478 extern int __meminit init_per_zone_wmark_min(void);
2479 extern void mem_init(void);
2480 extern void __init mmap_init(void);
2481 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2482 extern long si_mem_available(void);
2483 extern void si_meminfo(struct sysinfo * val);
2484 extern void si_meminfo_node(struct sysinfo *val, int nid);
2485 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2486 extern unsigned long arch_reserved_kernel_pages(void);
2487 #endif
2488 
2489 extern __printf(3, 4)
2490 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2491 
2492 extern void setup_per_cpu_pageset(void);
2493 
2494 /* page_alloc.c */
2495 extern int min_free_kbytes;
2496 extern int watermark_boost_factor;
2497 extern int watermark_scale_factor;
2498 extern bool arch_has_descending_max_zone_pfns(void);
2499 
2500 /* nommu.c */
2501 extern atomic_long_t mmap_pages_allocated;
2502 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2503 
2504 /* interval_tree.c */
2505 void vma_interval_tree_insert(struct vm_area_struct *node,
2506 			      struct rb_root_cached *root);
2507 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2508 				    struct vm_area_struct *prev,
2509 				    struct rb_root_cached *root);
2510 void vma_interval_tree_remove(struct vm_area_struct *node,
2511 			      struct rb_root_cached *root);
2512 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2513 				unsigned long start, unsigned long last);
2514 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2515 				unsigned long start, unsigned long last);
2516 
2517 #define vma_interval_tree_foreach(vma, root, start, last)		\
2518 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
2519 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
2520 
2521 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2522 				   struct rb_root_cached *root);
2523 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2524 				   struct rb_root_cached *root);
2525 struct anon_vma_chain *
2526 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2527 				  unsigned long start, unsigned long last);
2528 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2529 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
2530 #ifdef CONFIG_DEBUG_VM_RB
2531 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2532 #endif
2533 
2534 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
2535 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2536 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2537 
2538 /* mmap.c */
2539 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2540 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2541 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2542 	struct vm_area_struct *expand);
vma_adjust(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * insert)2543 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2544 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2545 {
2546 	return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2547 }
2548 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2549 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2550 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2551 	struct mempolicy *, struct vm_userfaultfd_ctx);
2552 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2553 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2554 	unsigned long addr, int new_below);
2555 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2556 	unsigned long addr, int new_below);
2557 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2558 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2559 	struct rb_node **, struct rb_node *);
2560 extern void unlink_file_vma(struct vm_area_struct *);
2561 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2562 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2563 	bool *need_rmap_locks);
2564 extern void exit_mmap(struct mm_struct *);
2565 
check_data_rlimit(unsigned long rlim,unsigned long new,unsigned long start,unsigned long end_data,unsigned long start_data)2566 static inline int check_data_rlimit(unsigned long rlim,
2567 				    unsigned long new,
2568 				    unsigned long start,
2569 				    unsigned long end_data,
2570 				    unsigned long start_data)
2571 {
2572 	if (rlim < RLIM_INFINITY) {
2573 		if (((new - start) + (end_data - start_data)) > rlim)
2574 			return -ENOSPC;
2575 	}
2576 
2577 	return 0;
2578 }
2579 
2580 extern int mm_take_all_locks(struct mm_struct *mm);
2581 extern void mm_drop_all_locks(struct mm_struct *mm);
2582 
2583 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2584 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2585 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2586 extern struct file *get_task_exe_file(struct task_struct *task);
2587 
2588 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2589 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2590 
2591 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2592 				   const struct vm_special_mapping *sm);
2593 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2594 				   unsigned long addr, unsigned long len,
2595 				   unsigned long flags,
2596 				   const struct vm_special_mapping *spec);
2597 /* This is an obsolete alternative to _install_special_mapping. */
2598 extern int install_special_mapping(struct mm_struct *mm,
2599 				   unsigned long addr, unsigned long len,
2600 				   unsigned long flags, struct page **pages);
2601 
2602 unsigned long randomize_stack_top(unsigned long stack_top);
2603 
2604 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2605 
2606 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2607 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2608 	struct list_head *uf);
2609 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2610 	unsigned long len, unsigned long prot, unsigned long flags,
2611 	unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2612 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2613 		       struct list_head *uf, bool downgrade);
2614 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2615 		     struct list_head *uf);
2616 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
2617 
2618 #ifdef CONFIG_MMU
2619 extern int __mm_populate(unsigned long addr, unsigned long len,
2620 			 int ignore_errors);
mm_populate(unsigned long addr,unsigned long len)2621 static inline void mm_populate(unsigned long addr, unsigned long len)
2622 {
2623 	/* Ignore errors */
2624 	(void) __mm_populate(addr, len, 1);
2625 }
2626 #else
mm_populate(unsigned long addr,unsigned long len)2627 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2628 #endif
2629 
2630 /* These take the mm semaphore themselves */
2631 extern int __must_check vm_brk(unsigned long, unsigned long);
2632 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2633 extern int vm_munmap(unsigned long, size_t);
2634 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2635         unsigned long, unsigned long,
2636         unsigned long, unsigned long);
2637 
2638 struct vm_unmapped_area_info {
2639 #define VM_UNMAPPED_AREA_TOPDOWN 1
2640 	unsigned long flags;
2641 	unsigned long length;
2642 	unsigned long low_limit;
2643 	unsigned long high_limit;
2644 	unsigned long align_mask;
2645 	unsigned long align_offset;
2646 };
2647 
2648 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2649 
2650 /* truncate.c */
2651 extern void truncate_inode_pages(struct address_space *, loff_t);
2652 extern void truncate_inode_pages_range(struct address_space *,
2653 				       loff_t lstart, loff_t lend);
2654 extern void truncate_inode_pages_final(struct address_space *);
2655 
2656 /* generic vm_area_ops exported for stackable file systems */
2657 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2658 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
2659 		pgoff_t start_pgoff, pgoff_t end_pgoff);
2660 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2661 
2662 /* mm/page-writeback.c */
2663 int __must_check write_one_page(struct page *page);
2664 void task_dirty_inc(struct task_struct *tsk);
2665 
2666 extern unsigned long stack_guard_gap;
2667 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2668 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2669 
2670 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2671 extern int expand_downwards(struct vm_area_struct *vma,
2672 		unsigned long address);
2673 #if VM_GROWSUP
2674 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2675 #else
2676   #define expand_upwards(vma, address) (0)
2677 #endif
2678 
2679 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2680 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2681 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2682 					     struct vm_area_struct **pprev);
2683 
2684 /**
2685  * find_vma_intersection() - Look up the first VMA which intersects the interval
2686  * @mm: The process address space.
2687  * @start_addr: The inclusive start user address.
2688  * @end_addr: The exclusive end user address.
2689  *
2690  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
2691  * start_addr < end_addr.
2692  */
2693 static inline
find_vma_intersection(struct mm_struct * mm,unsigned long start_addr,unsigned long end_addr)2694 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
2695 					     unsigned long start_addr,
2696 					     unsigned long end_addr)
2697 {
2698 	struct vm_area_struct *vma = find_vma(mm, start_addr);
2699 
2700 	if (vma && end_addr <= vma->vm_start)
2701 		vma = NULL;
2702 	return vma;
2703 }
2704 
2705 /**
2706  * vma_lookup() - Find a VMA at a specific address
2707  * @mm: The process address space.
2708  * @addr: The user address.
2709  *
2710  * Return: The vm_area_struct at the given address, %NULL otherwise.
2711  */
2712 static inline
vma_lookup(struct mm_struct * mm,unsigned long addr)2713 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
2714 {
2715 	struct vm_area_struct *vma = find_vma(mm, addr);
2716 
2717 	if (vma && addr < vma->vm_start)
2718 		vma = NULL;
2719 
2720 	return vma;
2721 }
2722 
vm_start_gap(struct vm_area_struct * vma)2723 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2724 {
2725 	unsigned long vm_start = vma->vm_start;
2726 
2727 	if (vma->vm_flags & VM_GROWSDOWN) {
2728 		vm_start -= stack_guard_gap;
2729 		if (vm_start > vma->vm_start)
2730 			vm_start = 0;
2731 	}
2732 	return vm_start;
2733 }
2734 
vm_end_gap(struct vm_area_struct * vma)2735 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2736 {
2737 	unsigned long vm_end = vma->vm_end;
2738 
2739 	if (vma->vm_flags & VM_GROWSUP) {
2740 		vm_end += stack_guard_gap;
2741 		if (vm_end < vma->vm_end)
2742 			vm_end = -PAGE_SIZE;
2743 	}
2744 	return vm_end;
2745 }
2746 
vma_pages(struct vm_area_struct * vma)2747 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2748 {
2749 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2750 }
2751 
2752 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
find_exact_vma(struct mm_struct * mm,unsigned long vm_start,unsigned long vm_end)2753 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2754 				unsigned long vm_start, unsigned long vm_end)
2755 {
2756 	struct vm_area_struct *vma = find_vma(mm, vm_start);
2757 
2758 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2759 		vma = NULL;
2760 
2761 	return vma;
2762 }
2763 
range_in_vma(struct vm_area_struct * vma,unsigned long start,unsigned long end)2764 static inline bool range_in_vma(struct vm_area_struct *vma,
2765 				unsigned long start, unsigned long end)
2766 {
2767 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
2768 }
2769 
2770 #ifdef CONFIG_MMU
2771 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2772 void vma_set_page_prot(struct vm_area_struct *vma);
2773 #else
vm_get_page_prot(unsigned long vm_flags)2774 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2775 {
2776 	return __pgprot(0);
2777 }
vma_set_page_prot(struct vm_area_struct * vma)2778 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2779 {
2780 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2781 }
2782 #endif
2783 
2784 void vma_set_file(struct vm_area_struct *vma, struct file *file);
2785 
2786 #ifdef CONFIG_NUMA_BALANCING
2787 unsigned long change_prot_numa(struct vm_area_struct *vma,
2788 			unsigned long start, unsigned long end);
2789 #endif
2790 
2791 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2792 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2793 			unsigned long pfn, unsigned long size, pgprot_t);
2794 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2795 		unsigned long pfn, unsigned long size, pgprot_t prot);
2796 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2797 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2798 			struct page **pages, unsigned long *num);
2799 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2800 				unsigned long num);
2801 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2802 				unsigned long num);
2803 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2804 			unsigned long pfn);
2805 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2806 			unsigned long pfn, pgprot_t pgprot);
2807 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2808 			pfn_t pfn);
2809 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2810 			pfn_t pfn, pgprot_t pgprot);
2811 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2812 		unsigned long addr, pfn_t pfn);
2813 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2814 
vmf_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)2815 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2816 				unsigned long addr, struct page *page)
2817 {
2818 	int err = vm_insert_page(vma, addr, page);
2819 
2820 	if (err == -ENOMEM)
2821 		return VM_FAULT_OOM;
2822 	if (err < 0 && err != -EBUSY)
2823 		return VM_FAULT_SIGBUS;
2824 
2825 	return VM_FAULT_NOPAGE;
2826 }
2827 
2828 #ifndef io_remap_pfn_range
io_remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2829 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2830 				     unsigned long addr, unsigned long pfn,
2831 				     unsigned long size, pgprot_t prot)
2832 {
2833 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2834 }
2835 #endif
2836 
vmf_error(int err)2837 static inline vm_fault_t vmf_error(int err)
2838 {
2839 	if (err == -ENOMEM)
2840 		return VM_FAULT_OOM;
2841 	return VM_FAULT_SIGBUS;
2842 }
2843 
2844 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2845 			 unsigned int foll_flags);
2846 
2847 #define FOLL_WRITE	0x01	/* check pte is writable */
2848 #define FOLL_TOUCH	0x02	/* mark page accessed */
2849 #define FOLL_GET	0x04	/* do get_page on page */
2850 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2851 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2852 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2853 				 * and return without waiting upon it */
2854 #define FOLL_POPULATE	0x40	/* fault in page */
2855 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2856 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2857 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2858 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2859 #define FOLL_MLOCK	0x1000	/* lock present pages */
2860 #define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */
2861 #define FOLL_COW	0x4000	/* internal GUP flag */
2862 #define FOLL_ANON	0x8000	/* don't do file mappings */
2863 #define FOLL_LONGTERM	0x10000	/* mapping lifetime is indefinite: see below */
2864 #define FOLL_SPLIT_PMD	0x20000	/* split huge pmd before returning */
2865 #define FOLL_PIN	0x40000	/* pages must be released via unpin_user_page */
2866 #define FOLL_FAST_ONLY	0x80000	/* gup_fast: prevent fall-back to slow gup */
2867 
2868 /*
2869  * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2870  * other. Here is what they mean, and how to use them:
2871  *
2872  * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2873  * period _often_ under userspace control.  This is in contrast to
2874  * iov_iter_get_pages(), whose usages are transient.
2875  *
2876  * FIXME: For pages which are part of a filesystem, mappings are subject to the
2877  * lifetime enforced by the filesystem and we need guarantees that longterm
2878  * users like RDMA and V4L2 only establish mappings which coordinate usage with
2879  * the filesystem.  Ideas for this coordination include revoking the longterm
2880  * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
2881  * added after the problem with filesystems was found FS DAX VMAs are
2882  * specifically failed.  Filesystem pages are still subject to bugs and use of
2883  * FOLL_LONGTERM should be avoided on those pages.
2884  *
2885  * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2886  * Currently only get_user_pages() and get_user_pages_fast() support this flag
2887  * and calls to get_user_pages_[un]locked are specifically not allowed.  This
2888  * is due to an incompatibility with the FS DAX check and
2889  * FAULT_FLAG_ALLOW_RETRY.
2890  *
2891  * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2892  * that region.  And so, CMA attempts to migrate the page before pinning, when
2893  * FOLL_LONGTERM is specified.
2894  *
2895  * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2896  * but an additional pin counting system) will be invoked. This is intended for
2897  * anything that gets a page reference and then touches page data (for example,
2898  * Direct IO). This lets the filesystem know that some non-file-system entity is
2899  * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2900  * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
2901  * a call to unpin_user_page().
2902  *
2903  * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2904  * and separate refcounting mechanisms, however, and that means that each has
2905  * its own acquire and release mechanisms:
2906  *
2907  *     FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2908  *
2909  *     FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
2910  *
2911  * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2912  * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2913  * calls applied to them, and that's perfectly OK. This is a constraint on the
2914  * callers, not on the pages.)
2915  *
2916  * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2917  * directly by the caller. That's in order to help avoid mismatches when
2918  * releasing pages: get_user_pages*() pages must be released via put_page(),
2919  * while pin_user_pages*() pages must be released via unpin_user_page().
2920  *
2921  * Please see Documentation/core-api/pin_user_pages.rst for more information.
2922  */
2923 
vm_fault_to_errno(vm_fault_t vm_fault,int foll_flags)2924 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2925 {
2926 	if (vm_fault & VM_FAULT_OOM)
2927 		return -ENOMEM;
2928 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2929 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2930 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2931 		return -EFAULT;
2932 	return 0;
2933 }
2934 
2935 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
2936 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2937 			       unsigned long size, pte_fn_t fn, void *data);
2938 extern int apply_to_existing_page_range(struct mm_struct *mm,
2939 				   unsigned long address, unsigned long size,
2940 				   pte_fn_t fn, void *data);
2941 
2942 extern void init_mem_debugging_and_hardening(void);
2943 #ifdef CONFIG_PAGE_POISONING
2944 extern void __kernel_poison_pages(struct page *page, int numpages);
2945 extern void __kernel_unpoison_pages(struct page *page, int numpages);
2946 extern bool _page_poisoning_enabled_early;
2947 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
page_poisoning_enabled(void)2948 static inline bool page_poisoning_enabled(void)
2949 {
2950 	return _page_poisoning_enabled_early;
2951 }
2952 /*
2953  * For use in fast paths after init_mem_debugging() has run, or when a
2954  * false negative result is not harmful when called too early.
2955  */
page_poisoning_enabled_static(void)2956 static inline bool page_poisoning_enabled_static(void)
2957 {
2958 	return static_branch_unlikely(&_page_poisoning_enabled);
2959 }
kernel_poison_pages(struct page * page,int numpages)2960 static inline void kernel_poison_pages(struct page *page, int numpages)
2961 {
2962 	if (page_poisoning_enabled_static())
2963 		__kernel_poison_pages(page, numpages);
2964 }
kernel_unpoison_pages(struct page * page,int numpages)2965 static inline void kernel_unpoison_pages(struct page *page, int numpages)
2966 {
2967 	if (page_poisoning_enabled_static())
2968 		__kernel_unpoison_pages(page, numpages);
2969 }
2970 #else
page_poisoning_enabled(void)2971 static inline bool page_poisoning_enabled(void) { return false; }
page_poisoning_enabled_static(void)2972 static inline bool page_poisoning_enabled_static(void) { return false; }
__kernel_poison_pages(struct page * page,int nunmpages)2973 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
kernel_poison_pages(struct page * page,int numpages)2974 static inline void kernel_poison_pages(struct page *page, int numpages) { }
kernel_unpoison_pages(struct page * page,int numpages)2975 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
2976 #endif
2977 
2978 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
want_init_on_alloc(gfp_t flags)2979 static inline bool want_init_on_alloc(gfp_t flags)
2980 {
2981 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
2982 				&init_on_alloc))
2983 		return true;
2984 	return flags & __GFP_ZERO;
2985 }
2986 
2987 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
want_init_on_free(void)2988 static inline bool want_init_on_free(void)
2989 {
2990 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
2991 				   &init_on_free);
2992 }
2993 
2994 extern bool _debug_pagealloc_enabled_early;
2995 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2996 
debug_pagealloc_enabled(void)2997 static inline bool debug_pagealloc_enabled(void)
2998 {
2999 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3000 		_debug_pagealloc_enabled_early;
3001 }
3002 
3003 /*
3004  * For use in fast paths after init_debug_pagealloc() has run, or when a
3005  * false negative result is not harmful when called too early.
3006  */
debug_pagealloc_enabled_static(void)3007 static inline bool debug_pagealloc_enabled_static(void)
3008 {
3009 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3010 		return false;
3011 
3012 	return static_branch_unlikely(&_debug_pagealloc_enabled);
3013 }
3014 
3015 #ifdef CONFIG_DEBUG_PAGEALLOC
3016 /*
3017  * To support DEBUG_PAGEALLOC architecture must ensure that
3018  * __kernel_map_pages() never fails
3019  */
3020 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3021 
debug_pagealloc_map_pages(struct page * page,int numpages)3022 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3023 {
3024 	if (debug_pagealloc_enabled_static())
3025 		__kernel_map_pages(page, numpages, 1);
3026 }
3027 
debug_pagealloc_unmap_pages(struct page * page,int numpages)3028 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3029 {
3030 	if (debug_pagealloc_enabled_static())
3031 		__kernel_map_pages(page, numpages, 0);
3032 }
3033 #else	/* CONFIG_DEBUG_PAGEALLOC */
debug_pagealloc_map_pages(struct page * page,int numpages)3034 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
debug_pagealloc_unmap_pages(struct page * page,int numpages)3035 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3036 #endif	/* CONFIG_DEBUG_PAGEALLOC */
3037 
3038 #ifdef __HAVE_ARCH_GATE_AREA
3039 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3040 extern int in_gate_area_no_mm(unsigned long addr);
3041 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3042 #else
get_gate_vma(struct mm_struct * mm)3043 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3044 {
3045 	return NULL;
3046 }
in_gate_area_no_mm(unsigned long addr)3047 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
in_gate_area(struct mm_struct * mm,unsigned long addr)3048 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3049 {
3050 	return 0;
3051 }
3052 #endif	/* __HAVE_ARCH_GATE_AREA */
3053 
3054 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3055 
3056 #ifdef CONFIG_SYSCTL
3057 extern int sysctl_drop_caches;
3058 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3059 		loff_t *);
3060 #endif
3061 
3062 void drop_slab(void);
3063 void drop_slab_node(int nid);
3064 
3065 #ifndef CONFIG_MMU
3066 #define randomize_va_space 0
3067 #else
3068 extern int randomize_va_space;
3069 #endif
3070 
3071 const char * arch_vma_name(struct vm_area_struct *vma);
3072 #ifdef CONFIG_MMU
3073 void print_vma_addr(char *prefix, unsigned long rip);
3074 #else
print_vma_addr(char * prefix,unsigned long rip)3075 static inline void print_vma_addr(char *prefix, unsigned long rip)
3076 {
3077 }
3078 #endif
3079 
3080 int vmemmap_remap_free(unsigned long start, unsigned long end,
3081 		       unsigned long reuse);
3082 int vmemmap_remap_alloc(unsigned long start, unsigned long end,
3083 			unsigned long reuse, gfp_t gfp_mask);
3084 
3085 void *sparse_buffer_alloc(unsigned long size);
3086 struct page * __populate_section_memmap(unsigned long pfn,
3087 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
3088 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3089 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3090 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3091 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3092 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3093 			    struct vmem_altmap *altmap);
3094 void *vmemmap_alloc_block(unsigned long size, int node);
3095 struct vmem_altmap;
3096 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3097 			      struct vmem_altmap *altmap);
3098 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3099 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3100 			       int node, struct vmem_altmap *altmap);
3101 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3102 		struct vmem_altmap *altmap);
3103 void vmemmap_populate_print_last(void);
3104 #ifdef CONFIG_MEMORY_HOTPLUG
3105 void vmemmap_free(unsigned long start, unsigned long end,
3106 		struct vmem_altmap *altmap);
3107 #endif
3108 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3109 				  unsigned long nr_pages);
3110 
3111 enum mf_flags {
3112 	MF_COUNT_INCREASED = 1 << 0,
3113 	MF_ACTION_REQUIRED = 1 << 1,
3114 	MF_MUST_KILL = 1 << 2,
3115 	MF_SOFT_OFFLINE = 1 << 3,
3116 };
3117 extern int memory_failure(unsigned long pfn, int flags);
3118 extern void memory_failure_queue(unsigned long pfn, int flags);
3119 extern void memory_failure_queue_kick(int cpu);
3120 extern int unpoison_memory(unsigned long pfn);
3121 extern int sysctl_memory_failure_early_kill;
3122 extern int sysctl_memory_failure_recovery;
3123 extern void shake_page(struct page *p);
3124 extern atomic_long_t num_poisoned_pages __read_mostly;
3125 extern int soft_offline_page(unsigned long pfn, int flags);
3126 
3127 
3128 /*
3129  * Error handlers for various types of pages.
3130  */
3131 enum mf_result {
3132 	MF_IGNORED,	/* Error: cannot be handled */
3133 	MF_FAILED,	/* Error: handling failed */
3134 	MF_DELAYED,	/* Will be handled later */
3135 	MF_RECOVERED,	/* Successfully recovered */
3136 };
3137 
3138 enum mf_action_page_type {
3139 	MF_MSG_KERNEL,
3140 	MF_MSG_KERNEL_HIGH_ORDER,
3141 	MF_MSG_SLAB,
3142 	MF_MSG_DIFFERENT_COMPOUND,
3143 	MF_MSG_POISONED_HUGE,
3144 	MF_MSG_HUGE,
3145 	MF_MSG_FREE_HUGE,
3146 	MF_MSG_NON_PMD_HUGE,
3147 	MF_MSG_UNMAP_FAILED,
3148 	MF_MSG_DIRTY_SWAPCACHE,
3149 	MF_MSG_CLEAN_SWAPCACHE,
3150 	MF_MSG_DIRTY_MLOCKED_LRU,
3151 	MF_MSG_CLEAN_MLOCKED_LRU,
3152 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
3153 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
3154 	MF_MSG_DIRTY_LRU,
3155 	MF_MSG_CLEAN_LRU,
3156 	MF_MSG_TRUNCATED_LRU,
3157 	MF_MSG_BUDDY,
3158 	MF_MSG_BUDDY_2ND,
3159 	MF_MSG_DAX,
3160 	MF_MSG_UNSPLIT_THP,
3161 	MF_MSG_UNKNOWN,
3162 };
3163 
3164 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3165 extern void clear_huge_page(struct page *page,
3166 			    unsigned long addr_hint,
3167 			    unsigned int pages_per_huge_page);
3168 extern void copy_user_huge_page(struct page *dst, struct page *src,
3169 				unsigned long addr_hint,
3170 				struct vm_area_struct *vma,
3171 				unsigned int pages_per_huge_page);
3172 extern long copy_huge_page_from_user(struct page *dst_page,
3173 				const void __user *usr_src,
3174 				unsigned int pages_per_huge_page,
3175 				bool allow_pagefault);
3176 
3177 /**
3178  * vma_is_special_huge - Are transhuge page-table entries considered special?
3179  * @vma: Pointer to the struct vm_area_struct to consider
3180  *
3181  * Whether transhuge page-table entries are considered "special" following
3182  * the definition in vm_normal_page().
3183  *
3184  * Return: true if transhuge page-table entries should be considered special,
3185  * false otherwise.
3186  */
vma_is_special_huge(const struct vm_area_struct * vma)3187 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3188 {
3189 	return vma_is_dax(vma) || (vma->vm_file &&
3190 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3191 }
3192 
3193 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3194 
3195 #ifdef CONFIG_DEBUG_PAGEALLOC
3196 extern unsigned int _debug_guardpage_minorder;
3197 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3198 
debug_guardpage_minorder(void)3199 static inline unsigned int debug_guardpage_minorder(void)
3200 {
3201 	return _debug_guardpage_minorder;
3202 }
3203 
debug_guardpage_enabled(void)3204 static inline bool debug_guardpage_enabled(void)
3205 {
3206 	return static_branch_unlikely(&_debug_guardpage_enabled);
3207 }
3208 
page_is_guard(struct page * page)3209 static inline bool page_is_guard(struct page *page)
3210 {
3211 	if (!debug_guardpage_enabled())
3212 		return false;
3213 
3214 	return PageGuard(page);
3215 }
3216 #else
debug_guardpage_minorder(void)3217 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
debug_guardpage_enabled(void)3218 static inline bool debug_guardpage_enabled(void) { return false; }
page_is_guard(struct page * page)3219 static inline bool page_is_guard(struct page *page) { return false; }
3220 #endif /* CONFIG_DEBUG_PAGEALLOC */
3221 
3222 #if MAX_NUMNODES > 1
3223 void __init setup_nr_node_ids(void);
3224 #else
setup_nr_node_ids(void)3225 static inline void setup_nr_node_ids(void) {}
3226 #endif
3227 
3228 extern int memcmp_pages(struct page *page1, struct page *page2);
3229 
pages_identical(struct page * page1,struct page * page2)3230 static inline int pages_identical(struct page *page1, struct page *page2)
3231 {
3232 	return !memcmp_pages(page1, page2);
3233 }
3234 
3235 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3236 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3237 						pgoff_t first_index, pgoff_t nr,
3238 						pgoff_t bitmap_pgoff,
3239 						unsigned long *bitmap,
3240 						pgoff_t *start,
3241 						pgoff_t *end);
3242 
3243 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3244 				      pgoff_t first_index, pgoff_t nr);
3245 #endif
3246 
3247 extern int sysctl_nr_trim_pages;
3248 
3249 #ifdef CONFIG_PRINTK
3250 void mem_dump_obj(void *object);
3251 #else
mem_dump_obj(void * object)3252 static inline void mem_dump_obj(void *object) {}
3253 #endif
3254 
3255 /**
3256  * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3257  * @seals: the seals to check
3258  * @vma: the vma to operate on
3259  *
3260  * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3261  * the vma flags.  Return 0 if check pass, or <0 for errors.
3262  */
seal_check_future_write(int seals,struct vm_area_struct * vma)3263 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3264 {
3265 	if (seals & F_SEAL_FUTURE_WRITE) {
3266 		/*
3267 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3268 		 * "future write" seal active.
3269 		 */
3270 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3271 			return -EPERM;
3272 
3273 		/*
3274 		 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3275 		 * MAP_SHARED and read-only, take care to not allow mprotect to
3276 		 * revert protections on such mappings. Do this only for shared
3277 		 * mappings. For private mappings, don't need to mask
3278 		 * VM_MAYWRITE as we still want them to be COW-writable.
3279 		 */
3280 		if (vma->vm_flags & VM_SHARED)
3281 			vma->vm_flags &= ~(VM_MAYWRITE);
3282 	}
3283 
3284 	return 0;
3285 }
3286 
3287 #endif /* __KERNEL__ */
3288 #endif /* _LINUX_MM_H */
3289