1 /*
2 * linux/mm/memory_hotplug.c
3 *
4 * Copyright (C)
5 */
6
7 #include <linux/stddef.h>
8 #include <linux/mm.h>
9 #include <linux/sched/signal.h>
10 #include <linux/swap.h>
11 #include <linux/interrupt.h>
12 #include <linux/pagemap.h>
13 #include <linux/compiler.h>
14 #include <linux/export.h>
15 #include <linux/pagevec.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sysctl.h>
19 #include <linux/cpu.h>
20 #include <linux/memory.h>
21 #include <linux/memremap.h>
22 #include <linux/memory_hotplug.h>
23 #include <linux/highmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ioport.h>
26 #include <linux/delay.h>
27 #include <linux/migrate.h>
28 #include <linux/page-isolation.h>
29 #include <linux/pfn.h>
30 #include <linux/suspend.h>
31 #include <linux/mm_inline.h>
32 #include <linux/firmware-map.h>
33 #include <linux/stop_machine.h>
34 #include <linux/hugetlb.h>
35 #include <linux/memblock.h>
36 #include <linux/bootmem.h>
37 #include <linux/compaction.h>
38
39 #include <asm/tlbflush.h>
40
41 #include "internal.h"
42
43 /*
44 * online_page_callback contains pointer to current page onlining function.
45 * Initially it is generic_online_page(). If it is required it could be
46 * changed by calling set_online_page_callback() for callback registration
47 * and restore_online_page_callback() for generic callback restore.
48 */
49
50 static void generic_online_page(struct page *page);
51
52 static online_page_callback_t online_page_callback = generic_online_page;
53 static DEFINE_MUTEX(online_page_callback_lock);
54
55 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
56
get_online_mems(void)57 void get_online_mems(void)
58 {
59 percpu_down_read(&mem_hotplug_lock);
60 }
61
put_online_mems(void)62 void put_online_mems(void)
63 {
64 percpu_up_read(&mem_hotplug_lock);
65 }
66
67 bool movable_node_enabled = false;
68
69 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
70 bool memhp_auto_online;
71 #else
72 bool memhp_auto_online = true;
73 #endif
74 EXPORT_SYMBOL_GPL(memhp_auto_online);
75
setup_memhp_default_state(char * str)76 static int __init setup_memhp_default_state(char *str)
77 {
78 if (!strcmp(str, "online"))
79 memhp_auto_online = true;
80 else if (!strcmp(str, "offline"))
81 memhp_auto_online = false;
82
83 return 1;
84 }
85 __setup("memhp_default_state=", setup_memhp_default_state);
86
mem_hotplug_begin(void)87 void mem_hotplug_begin(void)
88 {
89 cpus_read_lock();
90 percpu_down_write(&mem_hotplug_lock);
91 }
92
mem_hotplug_done(void)93 void mem_hotplug_done(void)
94 {
95 percpu_up_write(&mem_hotplug_lock);
96 cpus_read_unlock();
97 }
98
99 /* add this memory to iomem resource */
register_memory_resource(u64 start,u64 size)100 static struct resource *register_memory_resource(u64 start, u64 size)
101 {
102 struct resource *res, *conflict;
103 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
104 if (!res)
105 return ERR_PTR(-ENOMEM);
106
107 res->name = "System RAM";
108 res->start = start;
109 res->end = start + size - 1;
110 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
111 conflict = request_resource_conflict(&iomem_resource, res);
112 if (conflict) {
113 if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
114 pr_debug("Device unaddressable memory block "
115 "memory hotplug at %#010llx !\n",
116 (unsigned long long)start);
117 }
118 pr_debug("System RAM resource %pR cannot be added\n", res);
119 kfree(res);
120 return ERR_PTR(-EEXIST);
121 }
122 return res;
123 }
124
release_memory_resource(struct resource * res)125 static void release_memory_resource(struct resource *res)
126 {
127 if (!res)
128 return;
129 release_resource(res);
130 kfree(res);
131 return;
132 }
133
134 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
get_page_bootmem(unsigned long info,struct page * page,unsigned long type)135 void get_page_bootmem(unsigned long info, struct page *page,
136 unsigned long type)
137 {
138 page->freelist = (void *)type;
139 SetPagePrivate(page);
140 set_page_private(page, info);
141 page_ref_inc(page);
142 }
143
put_page_bootmem(struct page * page)144 void put_page_bootmem(struct page *page)
145 {
146 unsigned long type;
147
148 type = (unsigned long) page->freelist;
149 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
150 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
151
152 if (page_ref_dec_return(page) == 1) {
153 page->freelist = NULL;
154 ClearPagePrivate(page);
155 set_page_private(page, 0);
156 INIT_LIST_HEAD(&page->lru);
157 free_reserved_page(page);
158 }
159 }
160
161 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
162 #ifndef CONFIG_SPARSEMEM_VMEMMAP
register_page_bootmem_info_section(unsigned long start_pfn)163 static void register_page_bootmem_info_section(unsigned long start_pfn)
164 {
165 unsigned long *usemap, mapsize, section_nr, i;
166 struct mem_section *ms;
167 struct page *page, *memmap;
168
169 section_nr = pfn_to_section_nr(start_pfn);
170 ms = __nr_to_section(section_nr);
171
172 /* Get section's memmap address */
173 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
174
175 /*
176 * Get page for the memmap's phys address
177 * XXX: need more consideration for sparse_vmemmap...
178 */
179 page = virt_to_page(memmap);
180 mapsize = sizeof(struct page) * PAGES_PER_SECTION;
181 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
182
183 /* remember memmap's page */
184 for (i = 0; i < mapsize; i++, page++)
185 get_page_bootmem(section_nr, page, SECTION_INFO);
186
187 usemap = ms->pageblock_flags;
188 page = virt_to_page(usemap);
189
190 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
191
192 for (i = 0; i < mapsize; i++, page++)
193 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
194
195 }
196 #else /* CONFIG_SPARSEMEM_VMEMMAP */
register_page_bootmem_info_section(unsigned long start_pfn)197 static void register_page_bootmem_info_section(unsigned long start_pfn)
198 {
199 unsigned long *usemap, mapsize, section_nr, i;
200 struct mem_section *ms;
201 struct page *page, *memmap;
202
203 section_nr = pfn_to_section_nr(start_pfn);
204 ms = __nr_to_section(section_nr);
205
206 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
207
208 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
209
210 usemap = ms->pageblock_flags;
211 page = virt_to_page(usemap);
212
213 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
214
215 for (i = 0; i < mapsize; i++, page++)
216 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
217 }
218 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
219
register_page_bootmem_info_node(struct pglist_data * pgdat)220 void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
221 {
222 unsigned long i, pfn, end_pfn, nr_pages;
223 int node = pgdat->node_id;
224 struct page *page;
225
226 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
227 page = virt_to_page(pgdat);
228
229 for (i = 0; i < nr_pages; i++, page++)
230 get_page_bootmem(node, page, NODE_INFO);
231
232 pfn = pgdat->node_start_pfn;
233 end_pfn = pgdat_end_pfn(pgdat);
234
235 /* register section info */
236 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
237 /*
238 * Some platforms can assign the same pfn to multiple nodes - on
239 * node0 as well as nodeN. To avoid registering a pfn against
240 * multiple nodes we check that this pfn does not already
241 * reside in some other nodes.
242 */
243 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
244 register_page_bootmem_info_section(pfn);
245 }
246 }
247 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
248
__add_section(int nid,unsigned long phys_start_pfn,struct vmem_altmap * altmap,bool want_memblock)249 static int __meminit __add_section(int nid, unsigned long phys_start_pfn,
250 struct vmem_altmap *altmap, bool want_memblock)
251 {
252 int ret;
253
254 if (pfn_valid(phys_start_pfn))
255 return -EEXIST;
256
257 ret = sparse_add_one_section(NODE_DATA(nid), phys_start_pfn, altmap);
258 if (ret < 0)
259 return ret;
260
261 if (!want_memblock)
262 return 0;
263
264 return hotplug_memory_register(nid, __pfn_to_section(phys_start_pfn));
265 }
266
267 /*
268 * Reasonably generic function for adding memory. It is
269 * expected that archs that support memory hotplug will
270 * call this function after deciding the zone to which to
271 * add the new pages.
272 */
__add_pages(int nid,unsigned long phys_start_pfn,unsigned long nr_pages,struct vmem_altmap * altmap,bool want_memblock)273 int __ref __add_pages(int nid, unsigned long phys_start_pfn,
274 unsigned long nr_pages, struct vmem_altmap *altmap,
275 bool want_memblock)
276 {
277 unsigned long i;
278 int err = 0;
279 int start_sec, end_sec;
280
281 /* during initialize mem_map, align hot-added range to section */
282 start_sec = pfn_to_section_nr(phys_start_pfn);
283 end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
284
285 if (altmap) {
286 /*
287 * Validate altmap is within bounds of the total request
288 */
289 if (altmap->base_pfn != phys_start_pfn
290 || vmem_altmap_offset(altmap) > nr_pages) {
291 pr_warn_once("memory add fail, invalid altmap\n");
292 err = -EINVAL;
293 goto out;
294 }
295 altmap->alloc = 0;
296 }
297
298 for (i = start_sec; i <= end_sec; i++) {
299 err = __add_section(nid, section_nr_to_pfn(i), altmap,
300 want_memblock);
301
302 /*
303 * EEXIST is finally dealt with by ioresource collision
304 * check. see add_memory() => register_memory_resource()
305 * Warning will be printed if there is collision.
306 */
307 if (err && (err != -EEXIST))
308 break;
309 err = 0;
310 cond_resched();
311 }
312 vmemmap_populate_print_last();
313 out:
314 return err;
315 }
316
317 #ifdef CONFIG_MEMORY_HOTREMOVE
318 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
find_smallest_section_pfn(int nid,struct zone * zone,unsigned long start_pfn,unsigned long end_pfn)319 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
320 unsigned long start_pfn,
321 unsigned long end_pfn)
322 {
323 struct mem_section *ms;
324
325 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
326 ms = __pfn_to_section(start_pfn);
327
328 if (unlikely(!valid_section(ms)))
329 continue;
330
331 if (unlikely(pfn_to_nid(start_pfn) != nid))
332 continue;
333
334 if (zone && zone != page_zone(pfn_to_page(start_pfn)))
335 continue;
336
337 return start_pfn;
338 }
339
340 return 0;
341 }
342
343 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
find_biggest_section_pfn(int nid,struct zone * zone,unsigned long start_pfn,unsigned long end_pfn)344 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
345 unsigned long start_pfn,
346 unsigned long end_pfn)
347 {
348 struct mem_section *ms;
349 unsigned long pfn;
350
351 /* pfn is the end pfn of a memory section. */
352 pfn = end_pfn - 1;
353 for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
354 ms = __pfn_to_section(pfn);
355
356 if (unlikely(!valid_section(ms)))
357 continue;
358
359 if (unlikely(pfn_to_nid(pfn) != nid))
360 continue;
361
362 if (zone && zone != page_zone(pfn_to_page(pfn)))
363 continue;
364
365 return pfn;
366 }
367
368 return 0;
369 }
370
shrink_zone_span(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn)371 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
372 unsigned long end_pfn)
373 {
374 unsigned long zone_start_pfn = zone->zone_start_pfn;
375 unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
376 unsigned long zone_end_pfn = z;
377 unsigned long pfn;
378 struct mem_section *ms;
379 int nid = zone_to_nid(zone);
380
381 zone_span_writelock(zone);
382 if (zone_start_pfn == start_pfn) {
383 /*
384 * If the section is smallest section in the zone, it need
385 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
386 * In this case, we find second smallest valid mem_section
387 * for shrinking zone.
388 */
389 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
390 zone_end_pfn);
391 if (pfn) {
392 zone->zone_start_pfn = pfn;
393 zone->spanned_pages = zone_end_pfn - pfn;
394 }
395 } else if (zone_end_pfn == end_pfn) {
396 /*
397 * If the section is biggest section in the zone, it need
398 * shrink zone->spanned_pages.
399 * In this case, we find second biggest valid mem_section for
400 * shrinking zone.
401 */
402 pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
403 start_pfn);
404 if (pfn)
405 zone->spanned_pages = pfn - zone_start_pfn + 1;
406 }
407
408 /*
409 * The section is not biggest or smallest mem_section in the zone, it
410 * only creates a hole in the zone. So in this case, we need not
411 * change the zone. But perhaps, the zone has only hole data. Thus
412 * it check the zone has only hole or not.
413 */
414 pfn = zone_start_pfn;
415 for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
416 ms = __pfn_to_section(pfn);
417
418 if (unlikely(!valid_section(ms)))
419 continue;
420
421 if (page_zone(pfn_to_page(pfn)) != zone)
422 continue;
423
424 /* If the section is current section, it continues the loop */
425 if (start_pfn == pfn)
426 continue;
427
428 /* If we find valid section, we have nothing to do */
429 zone_span_writeunlock(zone);
430 return;
431 }
432
433 /* The zone has no valid section */
434 zone->zone_start_pfn = 0;
435 zone->spanned_pages = 0;
436 zone_span_writeunlock(zone);
437 }
438
shrink_pgdat_span(struct pglist_data * pgdat,unsigned long start_pfn,unsigned long end_pfn)439 static void shrink_pgdat_span(struct pglist_data *pgdat,
440 unsigned long start_pfn, unsigned long end_pfn)
441 {
442 unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
443 unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
444 unsigned long pgdat_end_pfn = p;
445 unsigned long pfn;
446 struct mem_section *ms;
447 int nid = pgdat->node_id;
448
449 if (pgdat_start_pfn == start_pfn) {
450 /*
451 * If the section is smallest section in the pgdat, it need
452 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
453 * In this case, we find second smallest valid mem_section
454 * for shrinking zone.
455 */
456 pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
457 pgdat_end_pfn);
458 if (pfn) {
459 pgdat->node_start_pfn = pfn;
460 pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
461 }
462 } else if (pgdat_end_pfn == end_pfn) {
463 /*
464 * If the section is biggest section in the pgdat, it need
465 * shrink pgdat->node_spanned_pages.
466 * In this case, we find second biggest valid mem_section for
467 * shrinking zone.
468 */
469 pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
470 start_pfn);
471 if (pfn)
472 pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
473 }
474
475 /*
476 * If the section is not biggest or smallest mem_section in the pgdat,
477 * it only creates a hole in the pgdat. So in this case, we need not
478 * change the pgdat.
479 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
480 * has only hole or not.
481 */
482 pfn = pgdat_start_pfn;
483 for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
484 ms = __pfn_to_section(pfn);
485
486 if (unlikely(!valid_section(ms)))
487 continue;
488
489 if (pfn_to_nid(pfn) != nid)
490 continue;
491
492 /* If the section is current section, it continues the loop */
493 if (start_pfn == pfn)
494 continue;
495
496 /* If we find valid section, we have nothing to do */
497 return;
498 }
499
500 /* The pgdat has no valid section */
501 pgdat->node_start_pfn = 0;
502 pgdat->node_spanned_pages = 0;
503 }
504
__remove_zone(struct zone * zone,unsigned long start_pfn)505 static void __remove_zone(struct zone *zone, unsigned long start_pfn)
506 {
507 struct pglist_data *pgdat = zone->zone_pgdat;
508 int nr_pages = PAGES_PER_SECTION;
509 unsigned long flags;
510
511 pgdat_resize_lock(zone->zone_pgdat, &flags);
512 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
513 shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
514 pgdat_resize_unlock(zone->zone_pgdat, &flags);
515 }
516
__remove_section(struct zone * zone,struct mem_section * ms,unsigned long map_offset,struct vmem_altmap * altmap)517 static int __remove_section(struct zone *zone, struct mem_section *ms,
518 unsigned long map_offset, struct vmem_altmap *altmap)
519 {
520 unsigned long start_pfn;
521 int scn_nr;
522 int ret = -EINVAL;
523
524 if (!valid_section(ms))
525 return ret;
526
527 ret = unregister_memory_section(ms);
528 if (ret)
529 return ret;
530
531 scn_nr = __section_nr(ms);
532 start_pfn = section_nr_to_pfn((unsigned long)scn_nr);
533 __remove_zone(zone, start_pfn);
534
535 sparse_remove_one_section(zone, ms, map_offset, altmap);
536 return 0;
537 }
538
539 /**
540 * __remove_pages() - remove sections of pages from a zone
541 * @zone: zone from which pages need to be removed
542 * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
543 * @nr_pages: number of pages to remove (must be multiple of section size)
544 * @altmap: alternative device page map or %NULL if default memmap is used
545 *
546 * Generic helper function to remove section mappings and sysfs entries
547 * for the section of the memory we are removing. Caller needs to make
548 * sure that pages are marked reserved and zones are adjust properly by
549 * calling offline_pages().
550 */
__remove_pages(struct zone * zone,unsigned long phys_start_pfn,unsigned long nr_pages,struct vmem_altmap * altmap)551 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
552 unsigned long nr_pages, struct vmem_altmap *altmap)
553 {
554 unsigned long i;
555 unsigned long map_offset = 0;
556 int sections_to_remove, ret = 0;
557
558 /* In the ZONE_DEVICE case device driver owns the memory region */
559 if (is_dev_zone(zone)) {
560 if (altmap)
561 map_offset = vmem_altmap_offset(altmap);
562 } else {
563 resource_size_t start, size;
564
565 start = phys_start_pfn << PAGE_SHIFT;
566 size = nr_pages * PAGE_SIZE;
567
568 ret = release_mem_region_adjustable(&iomem_resource, start,
569 size);
570 if (ret) {
571 resource_size_t endres = start + size - 1;
572
573 pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
574 &start, &endres, ret);
575 }
576 }
577
578 clear_zone_contiguous(zone);
579
580 /*
581 * We can only remove entire sections
582 */
583 BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
584 BUG_ON(nr_pages % PAGES_PER_SECTION);
585
586 sections_to_remove = nr_pages / PAGES_PER_SECTION;
587 for (i = 0; i < sections_to_remove; i++) {
588 unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
589
590 ret = __remove_section(zone, __pfn_to_section(pfn), map_offset,
591 altmap);
592 map_offset = 0;
593 if (ret)
594 break;
595 }
596
597 set_zone_contiguous(zone);
598
599 return ret;
600 }
601 #endif /* CONFIG_MEMORY_HOTREMOVE */
602
set_online_page_callback(online_page_callback_t callback)603 int set_online_page_callback(online_page_callback_t callback)
604 {
605 int rc = -EINVAL;
606
607 get_online_mems();
608 mutex_lock(&online_page_callback_lock);
609
610 if (online_page_callback == generic_online_page) {
611 online_page_callback = callback;
612 rc = 0;
613 }
614
615 mutex_unlock(&online_page_callback_lock);
616 put_online_mems();
617
618 return rc;
619 }
620 EXPORT_SYMBOL_GPL(set_online_page_callback);
621
restore_online_page_callback(online_page_callback_t callback)622 int restore_online_page_callback(online_page_callback_t callback)
623 {
624 int rc = -EINVAL;
625
626 get_online_mems();
627 mutex_lock(&online_page_callback_lock);
628
629 if (online_page_callback == callback) {
630 online_page_callback = generic_online_page;
631 rc = 0;
632 }
633
634 mutex_unlock(&online_page_callback_lock);
635 put_online_mems();
636
637 return rc;
638 }
639 EXPORT_SYMBOL_GPL(restore_online_page_callback);
640
__online_page_set_limits(struct page * page)641 void __online_page_set_limits(struct page *page)
642 {
643 }
644 EXPORT_SYMBOL_GPL(__online_page_set_limits);
645
__online_page_increment_counters(struct page * page)646 void __online_page_increment_counters(struct page *page)
647 {
648 adjust_managed_page_count(page, 1);
649 }
650 EXPORT_SYMBOL_GPL(__online_page_increment_counters);
651
__online_page_free(struct page * page)652 void __online_page_free(struct page *page)
653 {
654 __free_reserved_page(page);
655 }
656 EXPORT_SYMBOL_GPL(__online_page_free);
657
generic_online_page(struct page * page)658 static void generic_online_page(struct page *page)
659 {
660 __online_page_set_limits(page);
661 __online_page_increment_counters(page);
662 __online_page_free(page);
663 }
664
online_pages_range(unsigned long start_pfn,unsigned long nr_pages,void * arg)665 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
666 void *arg)
667 {
668 unsigned long i;
669 unsigned long onlined_pages = *(unsigned long *)arg;
670 struct page *page;
671
672 if (PageReserved(pfn_to_page(start_pfn)))
673 for (i = 0; i < nr_pages; i++) {
674 page = pfn_to_page(start_pfn + i);
675 (*online_page_callback)(page);
676 onlined_pages++;
677 }
678
679 online_mem_sections(start_pfn, start_pfn + nr_pages);
680
681 *(unsigned long *)arg = onlined_pages;
682 return 0;
683 }
684
685 /* check which state of node_states will be changed when online memory */
node_states_check_changes_online(unsigned long nr_pages,struct zone * zone,struct memory_notify * arg)686 static void node_states_check_changes_online(unsigned long nr_pages,
687 struct zone *zone, struct memory_notify *arg)
688 {
689 int nid = zone_to_nid(zone);
690 enum zone_type zone_last = ZONE_NORMAL;
691
692 /*
693 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
694 * contains nodes which have zones of 0...ZONE_NORMAL,
695 * set zone_last to ZONE_NORMAL.
696 *
697 * If we don't have HIGHMEM nor movable node,
698 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
699 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
700 */
701 if (N_MEMORY == N_NORMAL_MEMORY)
702 zone_last = ZONE_MOVABLE;
703
704 /*
705 * if the memory to be online is in a zone of 0...zone_last, and
706 * the zones of 0...zone_last don't have memory before online, we will
707 * need to set the node to node_states[N_NORMAL_MEMORY] after
708 * the memory is online.
709 */
710 if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY))
711 arg->status_change_nid_normal = nid;
712 else
713 arg->status_change_nid_normal = -1;
714
715 #ifdef CONFIG_HIGHMEM
716 /*
717 * If we have movable node, node_states[N_HIGH_MEMORY]
718 * contains nodes which have zones of 0...ZONE_HIGHMEM,
719 * set zone_last to ZONE_HIGHMEM.
720 *
721 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
722 * contains nodes which have zones of 0...ZONE_MOVABLE,
723 * set zone_last to ZONE_MOVABLE.
724 */
725 zone_last = ZONE_HIGHMEM;
726 if (N_MEMORY == N_HIGH_MEMORY)
727 zone_last = ZONE_MOVABLE;
728
729 if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY))
730 arg->status_change_nid_high = nid;
731 else
732 arg->status_change_nid_high = -1;
733 #else
734 arg->status_change_nid_high = arg->status_change_nid_normal;
735 #endif
736
737 /*
738 * if the node don't have memory befor online, we will need to
739 * set the node to node_states[N_MEMORY] after the memory
740 * is online.
741 */
742 if (!node_state(nid, N_MEMORY))
743 arg->status_change_nid = nid;
744 else
745 arg->status_change_nid = -1;
746 }
747
node_states_set_node(int node,struct memory_notify * arg)748 static void node_states_set_node(int node, struct memory_notify *arg)
749 {
750 if (arg->status_change_nid_normal >= 0)
751 node_set_state(node, N_NORMAL_MEMORY);
752
753 if (arg->status_change_nid_high >= 0)
754 node_set_state(node, N_HIGH_MEMORY);
755
756 node_set_state(node, N_MEMORY);
757 }
758
resize_zone_range(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)759 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
760 unsigned long nr_pages)
761 {
762 unsigned long old_end_pfn = zone_end_pfn(zone);
763
764 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
765 zone->zone_start_pfn = start_pfn;
766
767 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
768 }
769
resize_pgdat_range(struct pglist_data * pgdat,unsigned long start_pfn,unsigned long nr_pages)770 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
771 unsigned long nr_pages)
772 {
773 unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
774
775 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
776 pgdat->node_start_pfn = start_pfn;
777
778 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
779 }
780
move_pfn_range_to_zone(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages,struct vmem_altmap * altmap)781 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
782 unsigned long nr_pages, struct vmem_altmap *altmap)
783 {
784 struct pglist_data *pgdat = zone->zone_pgdat;
785 int nid = pgdat->node_id;
786 unsigned long flags;
787
788 if (zone_is_empty(zone))
789 init_currently_empty_zone(zone, start_pfn, nr_pages);
790
791 clear_zone_contiguous(zone);
792
793 /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
794 pgdat_resize_lock(pgdat, &flags);
795 zone_span_writelock(zone);
796 resize_zone_range(zone, start_pfn, nr_pages);
797 zone_span_writeunlock(zone);
798 resize_pgdat_range(pgdat, start_pfn, nr_pages);
799 pgdat_resize_unlock(pgdat, &flags);
800
801 /*
802 * TODO now we have a visible range of pages which are not associated
803 * with their zone properly. Not nice but set_pfnblock_flags_mask
804 * expects the zone spans the pfn range. All the pages in the range
805 * are reserved so nobody should be touching them so we should be safe
806 */
807 memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn,
808 MEMMAP_HOTPLUG, altmap);
809
810 set_zone_contiguous(zone);
811 }
812
813 /*
814 * Returns a default kernel memory zone for the given pfn range.
815 * If no kernel zone covers this pfn range it will automatically go
816 * to the ZONE_NORMAL.
817 */
default_kernel_zone_for_pfn(int nid,unsigned long start_pfn,unsigned long nr_pages)818 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
819 unsigned long nr_pages)
820 {
821 struct pglist_data *pgdat = NODE_DATA(nid);
822 int zid;
823
824 for (zid = 0; zid <= ZONE_NORMAL; zid++) {
825 struct zone *zone = &pgdat->node_zones[zid];
826
827 if (zone_intersects(zone, start_pfn, nr_pages))
828 return zone;
829 }
830
831 return &pgdat->node_zones[ZONE_NORMAL];
832 }
833
default_zone_for_pfn(int nid,unsigned long start_pfn,unsigned long nr_pages)834 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
835 unsigned long nr_pages)
836 {
837 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
838 nr_pages);
839 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
840 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
841 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
842
843 /*
844 * We inherit the existing zone in a simple case where zones do not
845 * overlap in the given range
846 */
847 if (in_kernel ^ in_movable)
848 return (in_kernel) ? kernel_zone : movable_zone;
849
850 /*
851 * If the range doesn't belong to any zone or two zones overlap in the
852 * given range then we use movable zone only if movable_node is
853 * enabled because we always online to a kernel zone by default.
854 */
855 return movable_node_enabled ? movable_zone : kernel_zone;
856 }
857
zone_for_pfn_range(int online_type,int nid,unsigned start_pfn,unsigned long nr_pages)858 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
859 unsigned long nr_pages)
860 {
861 if (online_type == MMOP_ONLINE_KERNEL)
862 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
863
864 if (online_type == MMOP_ONLINE_MOVABLE)
865 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
866
867 return default_zone_for_pfn(nid, start_pfn, nr_pages);
868 }
869
870 /*
871 * Associates the given pfn range with the given node and the zone appropriate
872 * for the given online type.
873 */
move_pfn_range(int online_type,int nid,unsigned long start_pfn,unsigned long nr_pages)874 static struct zone * __meminit move_pfn_range(int online_type, int nid,
875 unsigned long start_pfn, unsigned long nr_pages)
876 {
877 struct zone *zone;
878
879 zone = zone_for_pfn_range(online_type, nid, start_pfn, nr_pages);
880 move_pfn_range_to_zone(zone, start_pfn, nr_pages, NULL);
881 return zone;
882 }
883
884 /* Must be protected by mem_hotplug_begin() or a device_lock */
online_pages(unsigned long pfn,unsigned long nr_pages,int online_type)885 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
886 {
887 unsigned long flags;
888 unsigned long onlined_pages = 0;
889 struct zone *zone;
890 int need_zonelists_rebuild = 0;
891 int nid;
892 int ret;
893 struct memory_notify arg;
894 struct memory_block *mem;
895
896 /*
897 * We can't use pfn_to_nid() because nid might be stored in struct page
898 * which is not yet initialized. Instead, we find nid from memory block.
899 */
900 mem = find_memory_block(__pfn_to_section(pfn));
901 nid = mem->nid;
902
903 /* associate pfn range with the zone */
904 zone = move_pfn_range(online_type, nid, pfn, nr_pages);
905
906 arg.start_pfn = pfn;
907 arg.nr_pages = nr_pages;
908 node_states_check_changes_online(nr_pages, zone, &arg);
909
910 ret = memory_notify(MEM_GOING_ONLINE, &arg);
911 ret = notifier_to_errno(ret);
912 if (ret)
913 goto failed_addition;
914
915 /*
916 * If this zone is not populated, then it is not in zonelist.
917 * This means the page allocator ignores this zone.
918 * So, zonelist must be updated after online.
919 */
920 if (!populated_zone(zone)) {
921 need_zonelists_rebuild = 1;
922 setup_zone_pageset(zone);
923 }
924
925 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
926 online_pages_range);
927 if (ret) {
928 if (need_zonelists_rebuild)
929 zone_pcp_reset(zone);
930 goto failed_addition;
931 }
932
933 zone->present_pages += onlined_pages;
934
935 pgdat_resize_lock(zone->zone_pgdat, &flags);
936 zone->zone_pgdat->node_present_pages += onlined_pages;
937 pgdat_resize_unlock(zone->zone_pgdat, &flags);
938
939 if (onlined_pages) {
940 node_states_set_node(nid, &arg);
941 if (need_zonelists_rebuild)
942 build_all_zonelists(NULL);
943 else
944 zone_pcp_update(zone);
945 }
946
947 init_per_zone_wmark_min();
948
949 if (onlined_pages) {
950 kswapd_run(nid);
951 kcompactd_run(nid);
952 }
953
954 vm_total_pages = nr_free_pagecache_pages();
955
956 writeback_set_ratelimit();
957
958 if (onlined_pages)
959 memory_notify(MEM_ONLINE, &arg);
960 return 0;
961
962 failed_addition:
963 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
964 (unsigned long long) pfn << PAGE_SHIFT,
965 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
966 memory_notify(MEM_CANCEL_ONLINE, &arg);
967 return ret;
968 }
969 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
970
reset_node_present_pages(pg_data_t * pgdat)971 static void reset_node_present_pages(pg_data_t *pgdat)
972 {
973 struct zone *z;
974
975 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
976 z->present_pages = 0;
977
978 pgdat->node_present_pages = 0;
979 }
980
981 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
hotadd_new_pgdat(int nid,u64 start)982 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
983 {
984 struct pglist_data *pgdat;
985 unsigned long start_pfn = PFN_DOWN(start);
986
987 pgdat = NODE_DATA(nid);
988 if (!pgdat) {
989 pgdat = arch_alloc_nodedata(nid);
990 if (!pgdat)
991 return NULL;
992
993 arch_refresh_nodedata(nid, pgdat);
994 } else {
995 /*
996 * Reset the nr_zones, order and classzone_idx before reuse.
997 * Note that kswapd will init kswapd_classzone_idx properly
998 * when it starts in the near future.
999 */
1000 pgdat->nr_zones = 0;
1001 pgdat->kswapd_order = 0;
1002 pgdat->kswapd_classzone_idx = 0;
1003 }
1004
1005 /* we can use NODE_DATA(nid) from here */
1006
1007 pgdat->node_id = nid;
1008 pgdat->node_start_pfn = start_pfn;
1009
1010 /* init node's zones as empty zones, we don't have any present pages.*/
1011 free_area_init_core_hotplug(nid);
1012 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
1013
1014 /*
1015 * The node we allocated has no zone fallback lists. For avoiding
1016 * to access not-initialized zonelist, build here.
1017 */
1018 build_all_zonelists(pgdat);
1019
1020 /*
1021 * When memory is hot-added, all the memory is in offline state. So
1022 * clear all zones' present_pages because they will be updated in
1023 * online_pages() and offline_pages().
1024 */
1025 reset_node_managed_pages(pgdat);
1026 reset_node_present_pages(pgdat);
1027
1028 return pgdat;
1029 }
1030
rollback_node_hotadd(int nid)1031 static void rollback_node_hotadd(int nid)
1032 {
1033 pg_data_t *pgdat = NODE_DATA(nid);
1034
1035 arch_refresh_nodedata(nid, NULL);
1036 free_percpu(pgdat->per_cpu_nodestats);
1037 arch_free_nodedata(pgdat);
1038 return;
1039 }
1040
1041
1042 /**
1043 * try_online_node - online a node if offlined
1044 * @nid: the node ID
1045 * @start: start addr of the node
1046 * @set_node_online: Whether we want to online the node
1047 * called by cpu_up() to online a node without onlined memory.
1048 *
1049 * Returns:
1050 * 1 -> a new node has been allocated
1051 * 0 -> the node is already online
1052 * -ENOMEM -> the node could not be allocated
1053 */
__try_online_node(int nid,u64 start,bool set_node_online)1054 static int __try_online_node(int nid, u64 start, bool set_node_online)
1055 {
1056 pg_data_t *pgdat;
1057 int ret = 1;
1058
1059 if (node_online(nid))
1060 return 0;
1061
1062 pgdat = hotadd_new_pgdat(nid, start);
1063 if (!pgdat) {
1064 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1065 ret = -ENOMEM;
1066 goto out;
1067 }
1068
1069 if (set_node_online) {
1070 node_set_online(nid);
1071 ret = register_one_node(nid);
1072 BUG_ON(ret);
1073 }
1074 out:
1075 return ret;
1076 }
1077
1078 /*
1079 * Users of this function always want to online/register the node
1080 */
try_online_node(int nid)1081 int try_online_node(int nid)
1082 {
1083 int ret;
1084
1085 mem_hotplug_begin();
1086 ret = __try_online_node(nid, 0, true);
1087 mem_hotplug_done();
1088 return ret;
1089 }
1090
check_hotplug_memory_range(u64 start,u64 size)1091 static int check_hotplug_memory_range(u64 start, u64 size)
1092 {
1093 unsigned long block_sz = memory_block_size_bytes();
1094 u64 block_nr_pages = block_sz >> PAGE_SHIFT;
1095 u64 nr_pages = size >> PAGE_SHIFT;
1096 u64 start_pfn = PFN_DOWN(start);
1097
1098 /* memory range must be block size aligned */
1099 if (!nr_pages || !IS_ALIGNED(start_pfn, block_nr_pages) ||
1100 !IS_ALIGNED(nr_pages, block_nr_pages)) {
1101 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1102 block_sz, start, size);
1103 return -EINVAL;
1104 }
1105
1106 return 0;
1107 }
1108
online_memory_block(struct memory_block * mem,void * arg)1109 static int online_memory_block(struct memory_block *mem, void *arg)
1110 {
1111 return device_online(&mem->dev);
1112 }
1113
1114 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
add_memory_resource(int nid,struct resource * res,bool online)1115 int __ref add_memory_resource(int nid, struct resource *res, bool online)
1116 {
1117 u64 start, size;
1118 bool new_node = false;
1119 int ret;
1120
1121 start = res->start;
1122 size = resource_size(res);
1123
1124 ret = check_hotplug_memory_range(start, size);
1125 if (ret)
1126 return ret;
1127
1128 mem_hotplug_begin();
1129
1130 /*
1131 * Add new range to memblock so that when hotadd_new_pgdat() is called
1132 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1133 * this new range and calculate total pages correctly. The range will
1134 * be removed at hot-remove time.
1135 */
1136 memblock_add_node(start, size, nid);
1137
1138 ret = __try_online_node(nid, start, false);
1139 if (ret < 0)
1140 goto error;
1141 new_node = ret;
1142
1143 /* call arch's memory hotadd */
1144 ret = arch_add_memory(nid, start, size, NULL, true);
1145 if (ret < 0)
1146 goto error;
1147
1148 if (new_node) {
1149 /* If sysfs file of new node can't be created, cpu on the node
1150 * can't be hot-added. There is no rollback way now.
1151 * So, check by BUG_ON() to catch it reluctantly..
1152 * We online node here. We can't roll back from here.
1153 */
1154 node_set_online(nid);
1155 ret = __register_one_node(nid);
1156 BUG_ON(ret);
1157 }
1158
1159 /* link memory sections under this node.*/
1160 ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1));
1161 BUG_ON(ret);
1162
1163 /* create new memmap entry */
1164 firmware_map_add_hotplug(start, start + size, "System RAM");
1165
1166 /* online pages if requested */
1167 if (online)
1168 walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1),
1169 NULL, online_memory_block);
1170
1171 goto out;
1172
1173 error:
1174 /* rollback pgdat allocation and others */
1175 if (new_node)
1176 rollback_node_hotadd(nid);
1177 memblock_remove(start, size);
1178
1179 out:
1180 mem_hotplug_done();
1181 return ret;
1182 }
1183 EXPORT_SYMBOL_GPL(add_memory_resource);
1184
add_memory(int nid,u64 start,u64 size)1185 int __ref add_memory(int nid, u64 start, u64 size)
1186 {
1187 struct resource *res;
1188 int ret;
1189
1190 res = register_memory_resource(start, size);
1191 if (IS_ERR(res))
1192 return PTR_ERR(res);
1193
1194 ret = add_memory_resource(nid, res, memhp_auto_online);
1195 if (ret < 0)
1196 release_memory_resource(res);
1197 return ret;
1198 }
1199 EXPORT_SYMBOL_GPL(add_memory);
1200
1201 #ifdef CONFIG_MEMORY_HOTREMOVE
1202 /*
1203 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1204 * set and the size of the free page is given by page_order(). Using this,
1205 * the function determines if the pageblock contains only free pages.
1206 * Due to buddy contraints, a free page at least the size of a pageblock will
1207 * be located at the start of the pageblock
1208 */
pageblock_free(struct page * page)1209 static inline int pageblock_free(struct page *page)
1210 {
1211 return PageBuddy(page) && page_order(page) >= pageblock_order;
1212 }
1213
1214 /* Return the start of the next active pageblock after a given page */
next_active_pageblock(struct page * page)1215 static struct page *next_active_pageblock(struct page *page)
1216 {
1217 /* Ensure the starting page is pageblock-aligned */
1218 BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1));
1219
1220 /* If the entire pageblock is free, move to the end of free page */
1221 if (pageblock_free(page)) {
1222 int order;
1223 /* be careful. we don't have locks, page_order can be changed.*/
1224 order = page_order(page);
1225 if ((order < MAX_ORDER) && (order >= pageblock_order))
1226 return page + (1 << order);
1227 }
1228
1229 return page + pageblock_nr_pages;
1230 }
1231
is_pageblock_removable_nolock(struct page * page)1232 static bool is_pageblock_removable_nolock(struct page *page)
1233 {
1234 struct zone *zone;
1235 unsigned long pfn;
1236
1237 /*
1238 * We have to be careful here because we are iterating over memory
1239 * sections which are not zone aware so we might end up outside of
1240 * the zone but still within the section.
1241 * We have to take care about the node as well. If the node is offline
1242 * its NODE_DATA will be NULL - see page_zone.
1243 */
1244 if (!node_online(page_to_nid(page)))
1245 return false;
1246
1247 zone = page_zone(page);
1248 pfn = page_to_pfn(page);
1249 if (!zone_spans_pfn(zone, pfn))
1250 return false;
1251
1252 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true);
1253 }
1254
1255 /* Checks if this range of memory is likely to be hot-removable. */
is_mem_section_removable(unsigned long start_pfn,unsigned long nr_pages)1256 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1257 {
1258 struct page *page = pfn_to_page(start_pfn);
1259 struct page *end_page = page + nr_pages;
1260
1261 /* Check the starting page of each pageblock within the range */
1262 for (; page < end_page; page = next_active_pageblock(page)) {
1263 if (!is_pageblock_removable_nolock(page))
1264 return false;
1265 cond_resched();
1266 }
1267
1268 /* All pageblocks in the memory block are likely to be hot-removable */
1269 return true;
1270 }
1271
1272 /*
1273 * Confirm all pages in a range [start, end) belong to the same zone.
1274 * When true, return its valid [start, end).
1275 */
test_pages_in_a_zone(unsigned long start_pfn,unsigned long end_pfn,unsigned long * valid_start,unsigned long * valid_end)1276 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn,
1277 unsigned long *valid_start, unsigned long *valid_end)
1278 {
1279 unsigned long pfn, sec_end_pfn;
1280 unsigned long start, end;
1281 struct zone *zone = NULL;
1282 struct page *page;
1283 int i;
1284 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1285 pfn < end_pfn;
1286 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1287 /* Make sure the memory section is present first */
1288 if (!present_section_nr(pfn_to_section_nr(pfn)))
1289 continue;
1290 for (; pfn < sec_end_pfn && pfn < end_pfn;
1291 pfn += MAX_ORDER_NR_PAGES) {
1292 i = 0;
1293 /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1294 while ((i < MAX_ORDER_NR_PAGES) &&
1295 !pfn_valid_within(pfn + i))
1296 i++;
1297 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1298 continue;
1299 page = pfn_to_page(pfn + i);
1300 if (zone && page_zone(page) != zone)
1301 return 0;
1302 if (!zone)
1303 start = pfn + i;
1304 zone = page_zone(page);
1305 end = pfn + MAX_ORDER_NR_PAGES;
1306 }
1307 }
1308
1309 if (zone) {
1310 *valid_start = start;
1311 *valid_end = min(end, end_pfn);
1312 return 1;
1313 } else {
1314 return 0;
1315 }
1316 }
1317
1318 /*
1319 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1320 * non-lru movable pages and hugepages). We scan pfn because it's much
1321 * easier than scanning over linked list. This function returns the pfn
1322 * of the first found movable page if it's found, otherwise 0.
1323 */
scan_movable_pages(unsigned long start,unsigned long end)1324 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1325 {
1326 unsigned long pfn;
1327 struct page *page;
1328 for (pfn = start; pfn < end; pfn++) {
1329 if (pfn_valid(pfn)) {
1330 page = pfn_to_page(pfn);
1331 if (PageLRU(page))
1332 return pfn;
1333 if (__PageMovable(page))
1334 return pfn;
1335 if (PageHuge(page)) {
1336 if (hugepage_migration_supported(page_hstate(page)) &&
1337 page_huge_active(page))
1338 return pfn;
1339 else
1340 pfn = round_up(pfn + 1,
1341 1 << compound_order(page)) - 1;
1342 }
1343 }
1344 }
1345 return 0;
1346 }
1347
new_node_page(struct page * page,unsigned long private)1348 static struct page *new_node_page(struct page *page, unsigned long private)
1349 {
1350 int nid = page_to_nid(page);
1351 nodemask_t nmask = node_states[N_MEMORY];
1352
1353 /*
1354 * try to allocate from a different node but reuse this node if there
1355 * are no other online nodes to be used (e.g. we are offlining a part
1356 * of the only existing node)
1357 */
1358 node_clear(nid, nmask);
1359 if (nodes_empty(nmask))
1360 node_set(nid, nmask);
1361
1362 return new_page_nodemask(page, nid, &nmask);
1363 }
1364
1365 #define NR_OFFLINE_AT_ONCE_PAGES (256)
1366 static int
do_migrate_range(unsigned long start_pfn,unsigned long end_pfn)1367 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1368 {
1369 unsigned long pfn;
1370 struct page *page;
1371 int move_pages = NR_OFFLINE_AT_ONCE_PAGES;
1372 int not_managed = 0;
1373 int ret = 0;
1374 LIST_HEAD(source);
1375
1376 for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) {
1377 if (!pfn_valid(pfn))
1378 continue;
1379 page = pfn_to_page(pfn);
1380
1381 if (PageHuge(page)) {
1382 struct page *head = compound_head(page);
1383 pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1384 if (compound_order(head) > PFN_SECTION_SHIFT) {
1385 ret = -EBUSY;
1386 break;
1387 }
1388 if (isolate_huge_page(page, &source))
1389 move_pages -= 1 << compound_order(head);
1390 continue;
1391 } else if (PageTransHuge(page))
1392 pfn = page_to_pfn(compound_head(page))
1393 + hpage_nr_pages(page) - 1;
1394
1395 if (!get_page_unless_zero(page))
1396 continue;
1397 /*
1398 * We can skip free pages. And we can deal with pages on
1399 * LRU and non-lru movable pages.
1400 */
1401 if (PageLRU(page))
1402 ret = isolate_lru_page(page);
1403 else
1404 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1405 if (!ret) { /* Success */
1406 put_page(page);
1407 list_add_tail(&page->lru, &source);
1408 move_pages--;
1409 if (!__PageMovable(page))
1410 inc_node_page_state(page, NR_ISOLATED_ANON +
1411 page_is_file_cache(page));
1412
1413 } else {
1414 #ifdef CONFIG_DEBUG_VM
1415 pr_alert("failed to isolate pfn %lx\n", pfn);
1416 dump_page(page, "isolation failed");
1417 #endif
1418 put_page(page);
1419 /* Because we don't have big zone->lock. we should
1420 check this again here. */
1421 if (page_count(page)) {
1422 not_managed++;
1423 ret = -EBUSY;
1424 break;
1425 }
1426 }
1427 }
1428 if (!list_empty(&source)) {
1429 if (not_managed) {
1430 putback_movable_pages(&source);
1431 goto out;
1432 }
1433
1434 /* Allocate a new page from the nearest neighbor node */
1435 ret = migrate_pages(&source, new_node_page, NULL, 0,
1436 MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1437 if (ret)
1438 putback_movable_pages(&source);
1439 }
1440 out:
1441 return ret;
1442 }
1443
1444 /*
1445 * remove from free_area[] and mark all as Reserved.
1446 */
1447 static int
offline_isolated_pages_cb(unsigned long start,unsigned long nr_pages,void * data)1448 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1449 void *data)
1450 {
1451 __offline_isolated_pages(start, start + nr_pages);
1452 return 0;
1453 }
1454
1455 static void
offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)1456 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1457 {
1458 walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1459 offline_isolated_pages_cb);
1460 }
1461
1462 /*
1463 * Check all pages in range, recoreded as memory resource, are isolated.
1464 */
1465 static int
check_pages_isolated_cb(unsigned long start_pfn,unsigned long nr_pages,void * data)1466 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1467 void *data)
1468 {
1469 int ret;
1470 long offlined = *(long *)data;
1471 ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1472 offlined = nr_pages;
1473 if (!ret)
1474 *(long *)data += offlined;
1475 return ret;
1476 }
1477
1478 static long
check_pages_isolated(unsigned long start_pfn,unsigned long end_pfn)1479 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1480 {
1481 long offlined = 0;
1482 int ret;
1483
1484 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1485 check_pages_isolated_cb);
1486 if (ret < 0)
1487 offlined = (long)ret;
1488 return offlined;
1489 }
1490
cmdline_parse_movable_node(char * p)1491 static int __init cmdline_parse_movable_node(char *p)
1492 {
1493 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1494 movable_node_enabled = true;
1495 #else
1496 pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n");
1497 #endif
1498 return 0;
1499 }
1500 early_param("movable_node", cmdline_parse_movable_node);
1501
1502 /* check which state of node_states will be changed when offline memory */
node_states_check_changes_offline(unsigned long nr_pages,struct zone * zone,struct memory_notify * arg)1503 static void node_states_check_changes_offline(unsigned long nr_pages,
1504 struct zone *zone, struct memory_notify *arg)
1505 {
1506 struct pglist_data *pgdat = zone->zone_pgdat;
1507 unsigned long present_pages = 0;
1508 enum zone_type zt, zone_last = ZONE_NORMAL;
1509
1510 /*
1511 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
1512 * contains nodes which have zones of 0...ZONE_NORMAL,
1513 * set zone_last to ZONE_NORMAL.
1514 *
1515 * If we don't have HIGHMEM nor movable node,
1516 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
1517 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
1518 */
1519 if (N_MEMORY == N_NORMAL_MEMORY)
1520 zone_last = ZONE_MOVABLE;
1521
1522 /*
1523 * check whether node_states[N_NORMAL_MEMORY] will be changed.
1524 * If the memory to be offline is in a zone of 0...zone_last,
1525 * and it is the last present memory, 0...zone_last will
1526 * become empty after offline , thus we can determind we will
1527 * need to clear the node from node_states[N_NORMAL_MEMORY].
1528 */
1529 for (zt = 0; zt <= zone_last; zt++)
1530 present_pages += pgdat->node_zones[zt].present_pages;
1531 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1532 arg->status_change_nid_normal = zone_to_nid(zone);
1533 else
1534 arg->status_change_nid_normal = -1;
1535
1536 #ifdef CONFIG_HIGHMEM
1537 /*
1538 * If we have movable node, node_states[N_HIGH_MEMORY]
1539 * contains nodes which have zones of 0...ZONE_HIGHMEM,
1540 * set zone_last to ZONE_HIGHMEM.
1541 *
1542 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1543 * contains nodes which have zones of 0...ZONE_MOVABLE,
1544 * set zone_last to ZONE_MOVABLE.
1545 */
1546 zone_last = ZONE_HIGHMEM;
1547 if (N_MEMORY == N_HIGH_MEMORY)
1548 zone_last = ZONE_MOVABLE;
1549
1550 for (; zt <= zone_last; zt++)
1551 present_pages += pgdat->node_zones[zt].present_pages;
1552 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1553 arg->status_change_nid_high = zone_to_nid(zone);
1554 else
1555 arg->status_change_nid_high = -1;
1556 #else
1557 arg->status_change_nid_high = arg->status_change_nid_normal;
1558 #endif
1559
1560 /*
1561 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE
1562 */
1563 zone_last = ZONE_MOVABLE;
1564
1565 /*
1566 * check whether node_states[N_HIGH_MEMORY] will be changed
1567 * If we try to offline the last present @nr_pages from the node,
1568 * we can determind we will need to clear the node from
1569 * node_states[N_HIGH_MEMORY].
1570 */
1571 for (; zt <= zone_last; zt++)
1572 present_pages += pgdat->node_zones[zt].present_pages;
1573 if (nr_pages >= present_pages)
1574 arg->status_change_nid = zone_to_nid(zone);
1575 else
1576 arg->status_change_nid = -1;
1577 }
1578
node_states_clear_node(int node,struct memory_notify * arg)1579 static void node_states_clear_node(int node, struct memory_notify *arg)
1580 {
1581 if (arg->status_change_nid_normal >= 0)
1582 node_clear_state(node, N_NORMAL_MEMORY);
1583
1584 if ((N_MEMORY != N_NORMAL_MEMORY) &&
1585 (arg->status_change_nid_high >= 0))
1586 node_clear_state(node, N_HIGH_MEMORY);
1587
1588 if ((N_MEMORY != N_HIGH_MEMORY) &&
1589 (arg->status_change_nid >= 0))
1590 node_clear_state(node, N_MEMORY);
1591 }
1592
__offline_pages(unsigned long start_pfn,unsigned long end_pfn)1593 static int __ref __offline_pages(unsigned long start_pfn,
1594 unsigned long end_pfn)
1595 {
1596 unsigned long pfn, nr_pages;
1597 long offlined_pages;
1598 int ret, node;
1599 unsigned long flags;
1600 unsigned long valid_start, valid_end;
1601 struct zone *zone;
1602 struct memory_notify arg;
1603
1604 /* at least, alignment against pageblock is necessary */
1605 if (!IS_ALIGNED(start_pfn, pageblock_nr_pages))
1606 return -EINVAL;
1607 if (!IS_ALIGNED(end_pfn, pageblock_nr_pages))
1608 return -EINVAL;
1609 /* This makes hotplug much easier...and readable.
1610 we assume this for now. .*/
1611 if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start, &valid_end))
1612 return -EINVAL;
1613
1614 zone = page_zone(pfn_to_page(valid_start));
1615 node = zone_to_nid(zone);
1616 nr_pages = end_pfn - start_pfn;
1617
1618 /* set above range as isolated */
1619 ret = start_isolate_page_range(start_pfn, end_pfn,
1620 MIGRATE_MOVABLE, true);
1621 if (ret)
1622 return ret;
1623
1624 arg.start_pfn = start_pfn;
1625 arg.nr_pages = nr_pages;
1626 node_states_check_changes_offline(nr_pages, zone, &arg);
1627
1628 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1629 ret = notifier_to_errno(ret);
1630 if (ret)
1631 goto failed_removal;
1632
1633 pfn = start_pfn;
1634 repeat:
1635 /* start memory hot removal */
1636 ret = -EINTR;
1637 if (signal_pending(current))
1638 goto failed_removal;
1639
1640 cond_resched();
1641 lru_add_drain_all();
1642 drain_all_pages(zone);
1643
1644 pfn = scan_movable_pages(start_pfn, end_pfn);
1645 if (pfn) { /* We have movable pages */
1646 ret = do_migrate_range(pfn, end_pfn);
1647 goto repeat;
1648 }
1649
1650 /*
1651 * dissolve free hugepages in the memory block before doing offlining
1652 * actually in order to make hugetlbfs's object counting consistent.
1653 */
1654 ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1655 if (ret)
1656 goto failed_removal;
1657 /* check again */
1658 offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1659 if (offlined_pages < 0)
1660 goto repeat;
1661 pr_info("Offlined Pages %ld\n", offlined_pages);
1662 /* Ok, all of our target is isolated.
1663 We cannot do rollback at this point. */
1664 offline_isolated_pages(start_pfn, end_pfn);
1665 /* reset pagetype flags and makes migrate type to be MOVABLE */
1666 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1667 /* removal success */
1668 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1669 zone->present_pages -= offlined_pages;
1670
1671 pgdat_resize_lock(zone->zone_pgdat, &flags);
1672 zone->zone_pgdat->node_present_pages -= offlined_pages;
1673 pgdat_resize_unlock(zone->zone_pgdat, &flags);
1674
1675 init_per_zone_wmark_min();
1676
1677 if (!populated_zone(zone)) {
1678 zone_pcp_reset(zone);
1679 build_all_zonelists(NULL);
1680 } else
1681 zone_pcp_update(zone);
1682
1683 node_states_clear_node(node, &arg);
1684 if (arg.status_change_nid >= 0) {
1685 kswapd_stop(node);
1686 kcompactd_stop(node);
1687 }
1688
1689 vm_total_pages = nr_free_pagecache_pages();
1690 writeback_set_ratelimit();
1691
1692 memory_notify(MEM_OFFLINE, &arg);
1693 return 0;
1694
1695 failed_removal:
1696 pr_debug("memory offlining [mem %#010llx-%#010llx] failed\n",
1697 (unsigned long long) start_pfn << PAGE_SHIFT,
1698 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1699 memory_notify(MEM_CANCEL_OFFLINE, &arg);
1700 /* pushback to free area */
1701 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1702 return ret;
1703 }
1704
1705 /* Must be protected by mem_hotplug_begin() or a device_lock */
offline_pages(unsigned long start_pfn,unsigned long nr_pages)1706 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1707 {
1708 return __offline_pages(start_pfn, start_pfn + nr_pages);
1709 }
1710 #endif /* CONFIG_MEMORY_HOTREMOVE */
1711
1712 /**
1713 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1714 * @start_pfn: start pfn of the memory range
1715 * @end_pfn: end pfn of the memory range
1716 * @arg: argument passed to func
1717 * @func: callback for each memory section walked
1718 *
1719 * This function walks through all present mem sections in range
1720 * [start_pfn, end_pfn) and call func on each mem section.
1721 *
1722 * Returns the return value of func.
1723 */
walk_memory_range(unsigned long start_pfn,unsigned long end_pfn,void * arg,int (* func)(struct memory_block *,void *))1724 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
1725 void *arg, int (*func)(struct memory_block *, void *))
1726 {
1727 struct memory_block *mem = NULL;
1728 struct mem_section *section;
1729 unsigned long pfn, section_nr;
1730 int ret;
1731
1732 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1733 section_nr = pfn_to_section_nr(pfn);
1734 if (!present_section_nr(section_nr))
1735 continue;
1736
1737 section = __nr_to_section(section_nr);
1738 /* same memblock? */
1739 if (mem)
1740 if ((section_nr >= mem->start_section_nr) &&
1741 (section_nr <= mem->end_section_nr))
1742 continue;
1743
1744 mem = find_memory_block_hinted(section, mem);
1745 if (!mem)
1746 continue;
1747
1748 ret = func(mem, arg);
1749 if (ret) {
1750 kobject_put(&mem->dev.kobj);
1751 return ret;
1752 }
1753 }
1754
1755 if (mem)
1756 kobject_put(&mem->dev.kobj);
1757
1758 return 0;
1759 }
1760
1761 #ifdef CONFIG_MEMORY_HOTREMOVE
check_memblock_offlined_cb(struct memory_block * mem,void * arg)1762 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1763 {
1764 int ret = !is_memblock_offlined(mem);
1765
1766 if (unlikely(ret)) {
1767 phys_addr_t beginpa, endpa;
1768
1769 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1770 endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1771 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1772 &beginpa, &endpa);
1773 }
1774
1775 return ret;
1776 }
1777
check_cpu_on_node(pg_data_t * pgdat)1778 static int check_cpu_on_node(pg_data_t *pgdat)
1779 {
1780 int cpu;
1781
1782 for_each_present_cpu(cpu) {
1783 if (cpu_to_node(cpu) == pgdat->node_id)
1784 /*
1785 * the cpu on this node isn't removed, and we can't
1786 * offline this node.
1787 */
1788 return -EBUSY;
1789 }
1790
1791 return 0;
1792 }
1793
unmap_cpu_on_node(pg_data_t * pgdat)1794 static void unmap_cpu_on_node(pg_data_t *pgdat)
1795 {
1796 #ifdef CONFIG_ACPI_NUMA
1797 int cpu;
1798
1799 for_each_possible_cpu(cpu)
1800 if (cpu_to_node(cpu) == pgdat->node_id)
1801 numa_clear_node(cpu);
1802 #endif
1803 }
1804
check_and_unmap_cpu_on_node(pg_data_t * pgdat)1805 static int check_and_unmap_cpu_on_node(pg_data_t *pgdat)
1806 {
1807 int ret;
1808
1809 ret = check_cpu_on_node(pgdat);
1810 if (ret)
1811 return ret;
1812
1813 /*
1814 * the node will be offlined when we come here, so we can clear
1815 * the cpu_to_node() now.
1816 */
1817
1818 unmap_cpu_on_node(pgdat);
1819 return 0;
1820 }
1821
1822 /**
1823 * try_offline_node
1824 * @nid: the node ID
1825 *
1826 * Offline a node if all memory sections and cpus of the node are removed.
1827 *
1828 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1829 * and online/offline operations before this call.
1830 */
try_offline_node(int nid)1831 void try_offline_node(int nid)
1832 {
1833 pg_data_t *pgdat = NODE_DATA(nid);
1834 unsigned long start_pfn = pgdat->node_start_pfn;
1835 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1836 unsigned long pfn;
1837
1838 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1839 unsigned long section_nr = pfn_to_section_nr(pfn);
1840
1841 if (!present_section_nr(section_nr))
1842 continue;
1843
1844 if (pfn_to_nid(pfn) != nid)
1845 continue;
1846
1847 /*
1848 * some memory sections of this node are not removed, and we
1849 * can't offline node now.
1850 */
1851 return;
1852 }
1853
1854 if (check_and_unmap_cpu_on_node(pgdat))
1855 return;
1856
1857 /*
1858 * all memory/cpu of this node are removed, we can offline this
1859 * node now.
1860 */
1861 node_set_offline(nid);
1862 unregister_one_node(nid);
1863 }
1864 EXPORT_SYMBOL(try_offline_node);
1865
1866 /**
1867 * remove_memory
1868 * @nid: the node ID
1869 * @start: physical address of the region to remove
1870 * @size: size of the region to remove
1871 *
1872 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1873 * and online/offline operations before this call, as required by
1874 * try_offline_node().
1875 */
remove_memory(int nid,u64 start,u64 size)1876 void __ref remove_memory(int nid, u64 start, u64 size)
1877 {
1878 int ret;
1879
1880 BUG_ON(check_hotplug_memory_range(start, size));
1881
1882 mem_hotplug_begin();
1883
1884 /*
1885 * All memory blocks must be offlined before removing memory. Check
1886 * whether all memory blocks in question are offline and trigger a BUG()
1887 * if this is not the case.
1888 */
1889 ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
1890 check_memblock_offlined_cb);
1891 if (ret)
1892 BUG();
1893
1894 /* remove memmap entry */
1895 firmware_map_remove(start, start + size, "System RAM");
1896 memblock_free(start, size);
1897 memblock_remove(start, size);
1898
1899 arch_remove_memory(start, size, NULL);
1900
1901 try_offline_node(nid);
1902
1903 mem_hotplug_done();
1904 }
1905 EXPORT_SYMBOL_GPL(remove_memory);
1906 #endif /* CONFIG_MEMORY_HOTREMOVE */
1907