1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 /*
3 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
6 *
7 * This driver produces cryptographically secure pseudorandom data. It is divided
8 * into roughly six sections, each with a section header:
9 *
10 * - Initialization and readiness waiting.
11 * - Fast key erasure RNG, the "crng".
12 * - Entropy accumulation and extraction routines.
13 * - Entropy collection routines.
14 * - Userspace reader/writer interfaces.
15 * - Sysctl interface.
16 *
17 * The high level overview is that there is one input pool, into which
18 * various pieces of data are hashed. Prior to initialization, some of that
19 * data is then "credited" as having a certain number of bits of entropy.
20 * When enough bits of entropy are available, the hash is finalized and
21 * handed as a key to a stream cipher that expands it indefinitely for
22 * various consumers. This key is periodically refreshed as the various
23 * entropy collectors, described below, add data to the input pool.
24 */
25
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28 #include <linux/utsname.h>
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/major.h>
32 #include <linux/string.h>
33 #include <linux/fcntl.h>
34 #include <linux/slab.h>
35 #include <linux/random.h>
36 #include <linux/poll.h>
37 #include <linux/init.h>
38 #include <linux/fs.h>
39 #include <linux/blkdev.h>
40 #include <linux/interrupt.h>
41 #include <linux/mm.h>
42 #include <linux/nodemask.h>
43 #include <linux/spinlock.h>
44 #include <linux/kthread.h>
45 #include <linux/percpu.h>
46 #include <linux/ptrace.h>
47 #include <linux/workqueue.h>
48 #include <linux/irq.h>
49 #include <linux/ratelimit.h>
50 #include <linux/syscalls.h>
51 #include <linux/completion.h>
52 #include <linux/uuid.h>
53 #include <linux/uaccess.h>
54 #include <linux/suspend.h>
55 #include <linux/siphash.h>
56 #include <crypto/chacha.h>
57 #include <crypto/blake2s.h>
58 #include <asm/processor.h>
59 #include <asm/irq.h>
60 #include <asm/irq_regs.h>
61 #include <asm/io.h>
62
63 /*********************************************************************
64 *
65 * Initialization and readiness waiting.
66 *
67 * Much of the RNG infrastructure is devoted to various dependencies
68 * being able to wait until the RNG has collected enough entropy and
69 * is ready for safe consumption.
70 *
71 *********************************************************************/
72
73 /*
74 * crng_init is protected by base_crng->lock, and only increases
75 * its value (from empty->early->ready).
76 */
77 static enum {
78 CRNG_EMPTY = 0, /* Little to no entropy collected */
79 CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */
80 CRNG_READY = 2 /* Fully initialized with POOL_READY_BITS collected */
81 } crng_init __read_mostly = CRNG_EMPTY;
82 static DEFINE_STATIC_KEY_FALSE(crng_is_ready);
83 #define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY)
84 /* Various types of waiters for crng_init->CRNG_READY transition. */
85 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
86 static struct fasync_struct *fasync;
87
88 /* Control how we warn userspace. */
89 static struct ratelimit_state urandom_warning =
90 RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ, 3, RATELIMIT_MSG_ON_RELEASE);
91 static int ratelimit_disable __read_mostly =
92 IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM);
93 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
94 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
95
96 /*
97 * Returns whether or not the input pool has been seeded and thus guaranteed
98 * to supply cryptographically secure random numbers. This applies to: the
99 * /dev/urandom device, the get_random_bytes function, and the get_random_{u8,
100 * u16,u32,u64,long} family of functions.
101 *
102 * Returns: true if the input pool has been seeded.
103 * false if the input pool has not been seeded.
104 */
rng_is_initialized(void)105 bool rng_is_initialized(void)
106 {
107 return crng_ready();
108 }
109 EXPORT_SYMBOL(rng_is_initialized);
110
crng_set_ready(struct work_struct * work)111 static void __cold crng_set_ready(struct work_struct *work)
112 {
113 static_branch_enable(&crng_is_ready);
114 }
115
116 /* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
117 static void try_to_generate_entropy(void);
118
119 /*
120 * Wait for the input pool to be seeded and thus guaranteed to supply
121 * cryptographically secure random numbers. This applies to: the /dev/urandom
122 * device, the get_random_bytes function, and the get_random_{u8,u16,u32,u64,
123 * int,long} family of functions. Using any of these functions without first
124 * calling this function forfeits the guarantee of security.
125 *
126 * Returns: 0 if the input pool has been seeded.
127 * -ERESTARTSYS if the function was interrupted by a signal.
128 */
wait_for_random_bytes(void)129 int wait_for_random_bytes(void)
130 {
131 while (!crng_ready()) {
132 int ret;
133
134 try_to_generate_entropy();
135 ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
136 if (ret)
137 return ret > 0 ? 0 : ret;
138 }
139 return 0;
140 }
141 EXPORT_SYMBOL(wait_for_random_bytes);
142
143 #define warn_unseeded_randomness() \
144 if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \
145 printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \
146 __func__, (void *)_RET_IP_, crng_init)
147
148
149 /*********************************************************************
150 *
151 * Fast key erasure RNG, the "crng".
152 *
153 * These functions expand entropy from the entropy extractor into
154 * long streams for external consumption using the "fast key erasure"
155 * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
156 *
157 * There are a few exported interfaces for use by other drivers:
158 *
159 * void get_random_bytes(void *buf, size_t len)
160 * u8 get_random_u8()
161 * u16 get_random_u16()
162 * u32 get_random_u32()
163 * u64 get_random_u64()
164 * unsigned long get_random_long()
165 *
166 * These interfaces will return the requested number of random bytes
167 * into the given buffer or as a return value. This is equivalent to
168 * a read from /dev/urandom. The u8, u16, u32, u64, long family of
169 * functions may be higher performance for one-off random integers,
170 * because they do a bit of buffering and do not invoke reseeding
171 * until the buffer is emptied.
172 *
173 *********************************************************************/
174
175 enum {
176 CRNG_RESEED_START_INTERVAL = HZ,
177 CRNG_RESEED_INTERVAL = 60 * HZ
178 };
179
180 static struct {
181 u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
182 unsigned long birth;
183 unsigned long generation;
184 spinlock_t lock;
185 } base_crng = {
186 .lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
187 };
188
189 struct crng {
190 u8 key[CHACHA_KEY_SIZE];
191 unsigned long generation;
192 local_lock_t lock;
193 };
194
195 static DEFINE_PER_CPU(struct crng, crngs) = {
196 .generation = ULONG_MAX,
197 .lock = INIT_LOCAL_LOCK(crngs.lock),
198 };
199
200 /* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */
201 static void extract_entropy(void *buf, size_t len);
202
203 /* This extracts a new crng key from the input pool. */
crng_reseed(void)204 static void crng_reseed(void)
205 {
206 unsigned long flags;
207 unsigned long next_gen;
208 u8 key[CHACHA_KEY_SIZE];
209
210 extract_entropy(key, sizeof(key));
211
212 /*
213 * We copy the new key into the base_crng, overwriting the old one,
214 * and update the generation counter. We avoid hitting ULONG_MAX,
215 * because the per-cpu crngs are initialized to ULONG_MAX, so this
216 * forces new CPUs that come online to always initialize.
217 */
218 spin_lock_irqsave(&base_crng.lock, flags);
219 memcpy(base_crng.key, key, sizeof(base_crng.key));
220 next_gen = base_crng.generation + 1;
221 if (next_gen == ULONG_MAX)
222 ++next_gen;
223 WRITE_ONCE(base_crng.generation, next_gen);
224 WRITE_ONCE(base_crng.birth, jiffies);
225 if (!static_branch_likely(&crng_is_ready))
226 crng_init = CRNG_READY;
227 spin_unlock_irqrestore(&base_crng.lock, flags);
228 memzero_explicit(key, sizeof(key));
229 }
230
231 /*
232 * This generates a ChaCha block using the provided key, and then
233 * immediately overwrites that key with half the block. It returns
234 * the resultant ChaCha state to the user, along with the second
235 * half of the block containing 32 bytes of random data that may
236 * be used; random_data_len may not be greater than 32.
237 *
238 * The returned ChaCha state contains within it a copy of the old
239 * key value, at index 4, so the state should always be zeroed out
240 * immediately after using in order to maintain forward secrecy.
241 * If the state cannot be erased in a timely manner, then it is
242 * safer to set the random_data parameter to &chacha_state[4] so
243 * that this function overwrites it before returning.
244 */
crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],u32 chacha_state[CHACHA_STATE_WORDS],u8 * random_data,size_t random_data_len)245 static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
246 u32 chacha_state[CHACHA_STATE_WORDS],
247 u8 *random_data, size_t random_data_len)
248 {
249 u8 first_block[CHACHA_BLOCK_SIZE];
250
251 BUG_ON(random_data_len > 32);
252
253 chacha_init_consts(chacha_state);
254 memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
255 memset(&chacha_state[12], 0, sizeof(u32) * 4);
256 chacha20_block(chacha_state, first_block);
257
258 memcpy(key, first_block, CHACHA_KEY_SIZE);
259 memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
260 memzero_explicit(first_block, sizeof(first_block));
261 }
262
263 /*
264 * Return the interval until the next reseeding, which is normally
265 * CRNG_RESEED_INTERVAL, but during early boot, it is at an interval
266 * proportional to the uptime.
267 */
crng_reseed_interval(void)268 static unsigned int crng_reseed_interval(void)
269 {
270 static bool early_boot = true;
271
272 if (unlikely(READ_ONCE(early_boot))) {
273 time64_t uptime = ktime_get_seconds();
274 if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
275 WRITE_ONCE(early_boot, false);
276 else
277 return max_t(unsigned int, CRNG_RESEED_START_INTERVAL,
278 (unsigned int)uptime / 2 * HZ);
279 }
280 return CRNG_RESEED_INTERVAL;
281 }
282
283 /*
284 * This function returns a ChaCha state that you may use for generating
285 * random data. It also returns up to 32 bytes on its own of random data
286 * that may be used; random_data_len may not be greater than 32.
287 */
crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],u8 * random_data,size_t random_data_len)288 static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
289 u8 *random_data, size_t random_data_len)
290 {
291 unsigned long flags;
292 struct crng *crng;
293
294 BUG_ON(random_data_len > 32);
295
296 /*
297 * For the fast path, we check whether we're ready, unlocked first, and
298 * then re-check once locked later. In the case where we're really not
299 * ready, we do fast key erasure with the base_crng directly, extracting
300 * when crng_init is CRNG_EMPTY.
301 */
302 if (!crng_ready()) {
303 bool ready;
304
305 spin_lock_irqsave(&base_crng.lock, flags);
306 ready = crng_ready();
307 if (!ready) {
308 if (crng_init == CRNG_EMPTY)
309 extract_entropy(base_crng.key, sizeof(base_crng.key));
310 crng_fast_key_erasure(base_crng.key, chacha_state,
311 random_data, random_data_len);
312 }
313 spin_unlock_irqrestore(&base_crng.lock, flags);
314 if (!ready)
315 return;
316 }
317
318 /*
319 * If the base_crng is old enough, we reseed, which in turn bumps the
320 * generation counter that we check below.
321 */
322 if (unlikely(time_is_before_jiffies(READ_ONCE(base_crng.birth) + crng_reseed_interval())))
323 crng_reseed();
324
325 local_lock_irqsave(&crngs.lock, flags);
326 crng = raw_cpu_ptr(&crngs);
327
328 /*
329 * If our per-cpu crng is older than the base_crng, then it means
330 * somebody reseeded the base_crng. In that case, we do fast key
331 * erasure on the base_crng, and use its output as the new key
332 * for our per-cpu crng. This brings us up to date with base_crng.
333 */
334 if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
335 spin_lock(&base_crng.lock);
336 crng_fast_key_erasure(base_crng.key, chacha_state,
337 crng->key, sizeof(crng->key));
338 crng->generation = base_crng.generation;
339 spin_unlock(&base_crng.lock);
340 }
341
342 /*
343 * Finally, when we've made it this far, our per-cpu crng has an up
344 * to date key, and we can do fast key erasure with it to produce
345 * some random data and a ChaCha state for the caller. All other
346 * branches of this function are "unlikely", so most of the time we
347 * should wind up here immediately.
348 */
349 crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
350 local_unlock_irqrestore(&crngs.lock, flags);
351 }
352
_get_random_bytes(void * buf,size_t len)353 static void _get_random_bytes(void *buf, size_t len)
354 {
355 u32 chacha_state[CHACHA_STATE_WORDS];
356 u8 tmp[CHACHA_BLOCK_SIZE];
357 size_t first_block_len;
358
359 if (!len)
360 return;
361
362 first_block_len = min_t(size_t, 32, len);
363 crng_make_state(chacha_state, buf, first_block_len);
364 len -= first_block_len;
365 buf += first_block_len;
366
367 while (len) {
368 if (len < CHACHA_BLOCK_SIZE) {
369 chacha20_block(chacha_state, tmp);
370 memcpy(buf, tmp, len);
371 memzero_explicit(tmp, sizeof(tmp));
372 break;
373 }
374
375 chacha20_block(chacha_state, buf);
376 if (unlikely(chacha_state[12] == 0))
377 ++chacha_state[13];
378 len -= CHACHA_BLOCK_SIZE;
379 buf += CHACHA_BLOCK_SIZE;
380 }
381
382 memzero_explicit(chacha_state, sizeof(chacha_state));
383 }
384
385 /*
386 * This function is the exported kernel interface. It returns some number of
387 * good random numbers, suitable for key generation, seeding TCP sequence
388 * numbers, etc. In order to ensure that the randomness returned by this
389 * function is okay, the function wait_for_random_bytes() should be called and
390 * return 0 at least once at any point prior.
391 */
get_random_bytes(void * buf,size_t len)392 void get_random_bytes(void *buf, size_t len)
393 {
394 warn_unseeded_randomness();
395 _get_random_bytes(buf, len);
396 }
397 EXPORT_SYMBOL(get_random_bytes);
398
get_random_bytes_user(struct iov_iter * iter)399 static ssize_t get_random_bytes_user(struct iov_iter *iter)
400 {
401 u32 chacha_state[CHACHA_STATE_WORDS];
402 u8 block[CHACHA_BLOCK_SIZE];
403 size_t ret = 0, copied;
404
405 if (unlikely(!iov_iter_count(iter)))
406 return 0;
407
408 /*
409 * Immediately overwrite the ChaCha key at index 4 with random
410 * bytes, in case userspace causes copy_to_iter() below to sleep
411 * forever, so that we still retain forward secrecy in that case.
412 */
413 crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE);
414 /*
415 * However, if we're doing a read of len <= 32, we don't need to
416 * use chacha_state after, so we can simply return those bytes to
417 * the user directly.
418 */
419 if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) {
420 ret = copy_to_iter(&chacha_state[4], CHACHA_KEY_SIZE, iter);
421 goto out_zero_chacha;
422 }
423
424 for (;;) {
425 chacha20_block(chacha_state, block);
426 if (unlikely(chacha_state[12] == 0))
427 ++chacha_state[13];
428
429 copied = copy_to_iter(block, sizeof(block), iter);
430 ret += copied;
431 if (!iov_iter_count(iter) || copied != sizeof(block))
432 break;
433
434 BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
435 if (ret % PAGE_SIZE == 0) {
436 if (signal_pending(current))
437 break;
438 cond_resched();
439 }
440 }
441
442 memzero_explicit(block, sizeof(block));
443 out_zero_chacha:
444 memzero_explicit(chacha_state, sizeof(chacha_state));
445 return ret ? ret : -EFAULT;
446 }
447
448 /*
449 * Batched entropy returns random integers. The quality of the random
450 * number is good as /dev/urandom. In order to ensure that the randomness
451 * provided by this function is okay, the function wait_for_random_bytes()
452 * should be called and return 0 at least once at any point prior.
453 */
454
455 #define DEFINE_BATCHED_ENTROPY(type) \
456 struct batch_ ##type { \
457 /* \
458 * We make this 1.5x a ChaCha block, so that we get the \
459 * remaining 32 bytes from fast key erasure, plus one full \
460 * block from the detached ChaCha state. We can increase \
461 * the size of this later if needed so long as we keep the \
462 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE. \
463 */ \
464 type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))]; \
465 local_lock_t lock; \
466 unsigned long generation; \
467 unsigned int position; \
468 }; \
469 \
470 static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = { \
471 .lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock), \
472 .position = UINT_MAX \
473 }; \
474 \
475 type get_random_ ##type(void) \
476 { \
477 type ret; \
478 unsigned long flags; \
479 struct batch_ ##type *batch; \
480 unsigned long next_gen; \
481 \
482 warn_unseeded_randomness(); \
483 \
484 if (!crng_ready()) { \
485 _get_random_bytes(&ret, sizeof(ret)); \
486 return ret; \
487 } \
488 \
489 local_lock_irqsave(&batched_entropy_ ##type.lock, flags); \
490 batch = raw_cpu_ptr(&batched_entropy_##type); \
491 \
492 next_gen = READ_ONCE(base_crng.generation); \
493 if (batch->position >= ARRAY_SIZE(batch->entropy) || \
494 next_gen != batch->generation) { \
495 _get_random_bytes(batch->entropy, sizeof(batch->entropy)); \
496 batch->position = 0; \
497 batch->generation = next_gen; \
498 } \
499 \
500 ret = batch->entropy[batch->position]; \
501 batch->entropy[batch->position] = 0; \
502 ++batch->position; \
503 local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags); \
504 return ret; \
505 } \
506 EXPORT_SYMBOL(get_random_ ##type);
507
508 DEFINE_BATCHED_ENTROPY(u8)
DEFINE_BATCHED_ENTROPY(u16)509 DEFINE_BATCHED_ENTROPY(u16)
510 DEFINE_BATCHED_ENTROPY(u32)
511 DEFINE_BATCHED_ENTROPY(u64)
512
513 #ifdef CONFIG_SMP
514 /*
515 * This function is called when the CPU is coming up, with entry
516 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
517 */
518 int __cold random_prepare_cpu(unsigned int cpu)
519 {
520 /*
521 * When the cpu comes back online, immediately invalidate both
522 * the per-cpu crng and all batches, so that we serve fresh
523 * randomness.
524 */
525 per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
526 per_cpu_ptr(&batched_entropy_u8, cpu)->position = UINT_MAX;
527 per_cpu_ptr(&batched_entropy_u16, cpu)->position = UINT_MAX;
528 per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
529 per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
530 return 0;
531 }
532 #endif
533
534
535 /**********************************************************************
536 *
537 * Entropy accumulation and extraction routines.
538 *
539 * Callers may add entropy via:
540 *
541 * static void mix_pool_bytes(const void *buf, size_t len)
542 *
543 * After which, if added entropy should be credited:
544 *
545 * static void credit_init_bits(size_t bits)
546 *
547 * Finally, extract entropy via:
548 *
549 * static void extract_entropy(void *buf, size_t len)
550 *
551 **********************************************************************/
552
553 enum {
554 POOL_BITS = BLAKE2S_HASH_SIZE * 8,
555 POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */
556 POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */
557 };
558
559 static struct {
560 struct blake2s_state hash;
561 spinlock_t lock;
562 unsigned int init_bits;
563 } input_pool = {
564 .hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
565 BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
566 BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
567 .hash.outlen = BLAKE2S_HASH_SIZE,
568 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
569 };
570
_mix_pool_bytes(const void * buf,size_t len)571 static void _mix_pool_bytes(const void *buf, size_t len)
572 {
573 blake2s_update(&input_pool.hash, buf, len);
574 }
575
576 /*
577 * This function adds bytes into the input pool. It does not
578 * update the initialization bit counter; the caller should call
579 * credit_init_bits if this is appropriate.
580 */
mix_pool_bytes(const void * buf,size_t len)581 static void mix_pool_bytes(const void *buf, size_t len)
582 {
583 unsigned long flags;
584
585 spin_lock_irqsave(&input_pool.lock, flags);
586 _mix_pool_bytes(buf, len);
587 spin_unlock_irqrestore(&input_pool.lock, flags);
588 }
589
590 /*
591 * This is an HKDF-like construction for using the hashed collected entropy
592 * as a PRF key, that's then expanded block-by-block.
593 */
extract_entropy(void * buf,size_t len)594 static void extract_entropy(void *buf, size_t len)
595 {
596 unsigned long flags;
597 u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
598 struct {
599 unsigned long rdseed[32 / sizeof(long)];
600 size_t counter;
601 } block;
602 size_t i, longs;
603
604 for (i = 0; i < ARRAY_SIZE(block.rdseed);) {
605 longs = arch_get_random_seed_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
606 if (longs) {
607 i += longs;
608 continue;
609 }
610 longs = arch_get_random_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
611 if (longs) {
612 i += longs;
613 continue;
614 }
615 block.rdseed[i++] = random_get_entropy();
616 }
617
618 spin_lock_irqsave(&input_pool.lock, flags);
619
620 /* seed = HASHPRF(last_key, entropy_input) */
621 blake2s_final(&input_pool.hash, seed);
622
623 /* next_key = HASHPRF(seed, RDSEED || 0) */
624 block.counter = 0;
625 blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
626 blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));
627
628 spin_unlock_irqrestore(&input_pool.lock, flags);
629 memzero_explicit(next_key, sizeof(next_key));
630
631 while (len) {
632 i = min_t(size_t, len, BLAKE2S_HASH_SIZE);
633 /* output = HASHPRF(seed, RDSEED || ++counter) */
634 ++block.counter;
635 blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
636 len -= i;
637 buf += i;
638 }
639
640 memzero_explicit(seed, sizeof(seed));
641 memzero_explicit(&block, sizeof(block));
642 }
643
644 #define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits)
645
_credit_init_bits(size_t bits)646 static void __cold _credit_init_bits(size_t bits)
647 {
648 static struct execute_work set_ready;
649 unsigned int new, orig, add;
650 unsigned long flags;
651
652 if (!bits)
653 return;
654
655 add = min_t(size_t, bits, POOL_BITS);
656
657 orig = READ_ONCE(input_pool.init_bits);
658 do {
659 new = min_t(unsigned int, POOL_BITS, orig + add);
660 } while (!try_cmpxchg(&input_pool.init_bits, &orig, new));
661
662 if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) {
663 crng_reseed(); /* Sets crng_init to CRNG_READY under base_crng.lock. */
664 if (static_key_initialized)
665 execute_in_process_context(crng_set_ready, &set_ready);
666 wake_up_interruptible(&crng_init_wait);
667 kill_fasync(&fasync, SIGIO, POLL_IN);
668 pr_notice("crng init done\n");
669 if (urandom_warning.missed)
670 pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
671 urandom_warning.missed);
672 } else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) {
673 spin_lock_irqsave(&base_crng.lock, flags);
674 /* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */
675 if (crng_init == CRNG_EMPTY) {
676 extract_entropy(base_crng.key, sizeof(base_crng.key));
677 crng_init = CRNG_EARLY;
678 }
679 spin_unlock_irqrestore(&base_crng.lock, flags);
680 }
681 }
682
683
684 /**********************************************************************
685 *
686 * Entropy collection routines.
687 *
688 * The following exported functions are used for pushing entropy into
689 * the above entropy accumulation routines:
690 *
691 * void add_device_randomness(const void *buf, size_t len);
692 * void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy);
693 * void add_bootloader_randomness(const void *buf, size_t len);
694 * void add_vmfork_randomness(const void *unique_vm_id, size_t len);
695 * void add_interrupt_randomness(int irq);
696 * void add_input_randomness(unsigned int type, unsigned int code, unsigned int value);
697 * void add_disk_randomness(struct gendisk *disk);
698 *
699 * add_device_randomness() adds data to the input pool that
700 * is likely to differ between two devices (or possibly even per boot).
701 * This would be things like MAC addresses or serial numbers, or the
702 * read-out of the RTC. This does *not* credit any actual entropy to
703 * the pool, but it initializes the pool to different values for devices
704 * that might otherwise be identical and have very little entropy
705 * available to them (particularly common in the embedded world).
706 *
707 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
708 * entropy as specified by the caller. If the entropy pool is full it will
709 * block until more entropy is needed.
710 *
711 * add_bootloader_randomness() is called by bootloader drivers, such as EFI
712 * and device tree, and credits its input depending on whether or not the
713 * configuration option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
714 *
715 * add_vmfork_randomness() adds a unique (but not necessarily secret) ID
716 * representing the current instance of a VM to the pool, without crediting,
717 * and then force-reseeds the crng so that it takes effect immediately.
718 *
719 * add_interrupt_randomness() uses the interrupt timing as random
720 * inputs to the entropy pool. Using the cycle counters and the irq source
721 * as inputs, it feeds the input pool roughly once a second or after 64
722 * interrupts, crediting 1 bit of entropy for whichever comes first.
723 *
724 * add_input_randomness() uses the input layer interrupt timing, as well
725 * as the event type information from the hardware.
726 *
727 * add_disk_randomness() uses what amounts to the seek time of block
728 * layer request events, on a per-disk_devt basis, as input to the
729 * entropy pool. Note that high-speed solid state drives with very low
730 * seek times do not make for good sources of entropy, as their seek
731 * times are usually fairly consistent.
732 *
733 * The last two routines try to estimate how many bits of entropy
734 * to credit. They do this by keeping track of the first and second
735 * order deltas of the event timings.
736 *
737 **********************************************************************/
738
739 static bool trust_cpu __initdata = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
740 static bool trust_bootloader __initdata = IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER);
parse_trust_cpu(char * arg)741 static int __init parse_trust_cpu(char *arg)
742 {
743 return kstrtobool(arg, &trust_cpu);
744 }
parse_trust_bootloader(char * arg)745 static int __init parse_trust_bootloader(char *arg)
746 {
747 return kstrtobool(arg, &trust_bootloader);
748 }
749 early_param("random.trust_cpu", parse_trust_cpu);
750 early_param("random.trust_bootloader", parse_trust_bootloader);
751
random_pm_notification(struct notifier_block * nb,unsigned long action,void * data)752 static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data)
753 {
754 unsigned long flags, entropy = random_get_entropy();
755
756 /*
757 * Encode a representation of how long the system has been suspended,
758 * in a way that is distinct from prior system suspends.
759 */
760 ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() };
761
762 spin_lock_irqsave(&input_pool.lock, flags);
763 _mix_pool_bytes(&action, sizeof(action));
764 _mix_pool_bytes(stamps, sizeof(stamps));
765 _mix_pool_bytes(&entropy, sizeof(entropy));
766 spin_unlock_irqrestore(&input_pool.lock, flags);
767
768 if (crng_ready() && (action == PM_RESTORE_PREPARE ||
769 (action == PM_POST_SUSPEND && !IS_ENABLED(CONFIG_PM_AUTOSLEEP) &&
770 !IS_ENABLED(CONFIG_PM_USERSPACE_AUTOSLEEP)))) {
771 crng_reseed();
772 pr_notice("crng reseeded on system resumption\n");
773 }
774 return 0;
775 }
776
777 static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification };
778
779 /*
780 * This is called extremely early, before time keeping functionality is
781 * available, but arch randomness is. Interrupts are not yet enabled.
782 */
random_init_early(const char * command_line)783 void __init random_init_early(const char *command_line)
784 {
785 unsigned long entropy[BLAKE2S_BLOCK_SIZE / sizeof(long)];
786 size_t i, longs, arch_bits;
787
788 #if defined(LATENT_ENTROPY_PLUGIN)
789 static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy;
790 _mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));
791 #endif
792
793 for (i = 0, arch_bits = sizeof(entropy) * 8; i < ARRAY_SIZE(entropy);) {
794 longs = arch_get_random_seed_longs_early(entropy, ARRAY_SIZE(entropy) - i);
795 if (longs) {
796 _mix_pool_bytes(entropy, sizeof(*entropy) * longs);
797 i += longs;
798 continue;
799 }
800 longs = arch_get_random_longs_early(entropy, ARRAY_SIZE(entropy) - i);
801 if (longs) {
802 _mix_pool_bytes(entropy, sizeof(*entropy) * longs);
803 i += longs;
804 continue;
805 }
806 arch_bits -= sizeof(*entropy) * 8;
807 ++i;
808 }
809
810 _mix_pool_bytes(init_utsname(), sizeof(*(init_utsname())));
811 _mix_pool_bytes(command_line, strlen(command_line));
812
813 /* Reseed if already seeded by earlier phases. */
814 if (crng_ready())
815 crng_reseed();
816 else if (trust_cpu)
817 _credit_init_bits(arch_bits);
818 }
819
820 /*
821 * This is called a little bit after the prior function, and now there is
822 * access to timestamps counters. Interrupts are not yet enabled.
823 */
random_init(void)824 void __init random_init(void)
825 {
826 unsigned long entropy = random_get_entropy();
827 ktime_t now = ktime_get_real();
828
829 _mix_pool_bytes(&now, sizeof(now));
830 _mix_pool_bytes(&entropy, sizeof(entropy));
831 add_latent_entropy();
832
833 /*
834 * If we were initialized by the cpu or bootloader before jump labels
835 * are initialized, then we should enable the static branch here, where
836 * it's guaranteed that jump labels have been initialized.
837 */
838 if (!static_branch_likely(&crng_is_ready) && crng_init >= CRNG_READY)
839 crng_set_ready(NULL);
840
841 /* Reseed if already seeded by earlier phases. */
842 if (crng_ready())
843 crng_reseed();
844
845 WARN_ON(register_pm_notifier(&pm_notifier));
846
847 WARN(!entropy, "Missing cycle counter and fallback timer; RNG "
848 "entropy collection will consequently suffer.");
849 }
850
851 /*
852 * Add device- or boot-specific data to the input pool to help
853 * initialize it.
854 *
855 * None of this adds any entropy; it is meant to avoid the problem of
856 * the entropy pool having similar initial state across largely
857 * identical devices.
858 */
add_device_randomness(const void * buf,size_t len)859 void add_device_randomness(const void *buf, size_t len)
860 {
861 unsigned long entropy = random_get_entropy();
862 unsigned long flags;
863
864 spin_lock_irqsave(&input_pool.lock, flags);
865 _mix_pool_bytes(&entropy, sizeof(entropy));
866 _mix_pool_bytes(buf, len);
867 spin_unlock_irqrestore(&input_pool.lock, flags);
868 }
869 EXPORT_SYMBOL(add_device_randomness);
870
871 /*
872 * Interface for in-kernel drivers of true hardware RNGs.
873 * Those devices may produce endless random bits and will be throttled
874 * when our pool is full.
875 */
add_hwgenerator_randomness(const void * buf,size_t len,size_t entropy)876 void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy)
877 {
878 mix_pool_bytes(buf, len);
879 credit_init_bits(entropy);
880
881 /*
882 * Throttle writing to once every reseed interval, unless we're not yet
883 * initialized or no entropy is credited.
884 */
885 if (!kthread_should_stop() && (crng_ready() || !entropy))
886 schedule_timeout_interruptible(crng_reseed_interval());
887 }
888 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
889
890 /*
891 * Handle random seed passed by bootloader, and credit it if
892 * CONFIG_RANDOM_TRUST_BOOTLOADER is set.
893 */
add_bootloader_randomness(const void * buf,size_t len)894 void __init add_bootloader_randomness(const void *buf, size_t len)
895 {
896 mix_pool_bytes(buf, len);
897 if (trust_bootloader)
898 credit_init_bits(len * 8);
899 }
900
901 #if IS_ENABLED(CONFIG_VMGENID)
902 static BLOCKING_NOTIFIER_HEAD(vmfork_chain);
903
904 /*
905 * Handle a new unique VM ID, which is unique, not secret, so we
906 * don't credit it, but we do immediately force a reseed after so
907 * that it's used by the crng posthaste.
908 */
add_vmfork_randomness(const void * unique_vm_id,size_t len)909 void __cold add_vmfork_randomness(const void *unique_vm_id, size_t len)
910 {
911 add_device_randomness(unique_vm_id, len);
912 if (crng_ready()) {
913 crng_reseed();
914 pr_notice("crng reseeded due to virtual machine fork\n");
915 }
916 blocking_notifier_call_chain(&vmfork_chain, 0, NULL);
917 }
918 #if IS_MODULE(CONFIG_VMGENID)
919 EXPORT_SYMBOL_GPL(add_vmfork_randomness);
920 #endif
921
register_random_vmfork_notifier(struct notifier_block * nb)922 int __cold register_random_vmfork_notifier(struct notifier_block *nb)
923 {
924 return blocking_notifier_chain_register(&vmfork_chain, nb);
925 }
926 EXPORT_SYMBOL_GPL(register_random_vmfork_notifier);
927
unregister_random_vmfork_notifier(struct notifier_block * nb)928 int __cold unregister_random_vmfork_notifier(struct notifier_block *nb)
929 {
930 return blocking_notifier_chain_unregister(&vmfork_chain, nb);
931 }
932 EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier);
933 #endif
934
935 struct fast_pool {
936 unsigned long pool[4];
937 unsigned long last;
938 unsigned int count;
939 struct timer_list mix;
940 };
941
942 static void mix_interrupt_randomness(struct timer_list *work);
943
944 static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
945 #ifdef CONFIG_64BIT
946 #define FASTMIX_PERM SIPHASH_PERMUTATION
947 .pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 },
948 #else
949 #define FASTMIX_PERM HSIPHASH_PERMUTATION
950 .pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 },
951 #endif
952 .mix = __TIMER_INITIALIZER(mix_interrupt_randomness, 0)
953 };
954
955 /*
956 * This is [Half]SipHash-1-x, starting from an empty key. Because
957 * the key is fixed, it assumes that its inputs are non-malicious,
958 * and therefore this has no security on its own. s represents the
959 * four-word SipHash state, while v represents a two-word input.
960 */
fast_mix(unsigned long s[4],unsigned long v1,unsigned long v2)961 static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2)
962 {
963 s[3] ^= v1;
964 FASTMIX_PERM(s[0], s[1], s[2], s[3]);
965 s[0] ^= v1;
966 s[3] ^= v2;
967 FASTMIX_PERM(s[0], s[1], s[2], s[3]);
968 s[0] ^= v2;
969 }
970
971 #ifdef CONFIG_SMP
972 /*
973 * This function is called when the CPU has just come online, with
974 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
975 */
random_online_cpu(unsigned int cpu)976 int __cold random_online_cpu(unsigned int cpu)
977 {
978 /*
979 * During CPU shutdown and before CPU onlining, add_interrupt_
980 * randomness() may schedule mix_interrupt_randomness(), and
981 * set the MIX_INFLIGHT flag. However, because the worker can
982 * be scheduled on a different CPU during this period, that
983 * flag will never be cleared. For that reason, we zero out
984 * the flag here, which runs just after workqueues are onlined
985 * for the CPU again. This also has the effect of setting the
986 * irq randomness count to zero so that new accumulated irqs
987 * are fresh.
988 */
989 per_cpu_ptr(&irq_randomness, cpu)->count = 0;
990 return 0;
991 }
992 #endif
993
mix_interrupt_randomness(struct timer_list * work)994 static void mix_interrupt_randomness(struct timer_list *work)
995 {
996 struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
997 /*
998 * The size of the copied stack pool is explicitly 2 longs so that we
999 * only ever ingest half of the siphash output each time, retaining
1000 * the other half as the next "key" that carries over. The entropy is
1001 * supposed to be sufficiently dispersed between bits so on average
1002 * we don't wind up "losing" some.
1003 */
1004 unsigned long pool[2];
1005 unsigned int count;
1006
1007 /* Check to see if we're running on the wrong CPU due to hotplug. */
1008 local_irq_disable();
1009 if (fast_pool != this_cpu_ptr(&irq_randomness)) {
1010 local_irq_enable();
1011 return;
1012 }
1013
1014 /*
1015 * Copy the pool to the stack so that the mixer always has a
1016 * consistent view, before we reenable irqs again.
1017 */
1018 memcpy(pool, fast_pool->pool, sizeof(pool));
1019 count = fast_pool->count;
1020 fast_pool->count = 0;
1021 fast_pool->last = jiffies;
1022 local_irq_enable();
1023
1024 mix_pool_bytes(pool, sizeof(pool));
1025 credit_init_bits(clamp_t(unsigned int, (count & U16_MAX) / 64, 1, sizeof(pool) * 8));
1026
1027 memzero_explicit(pool, sizeof(pool));
1028 }
1029
add_interrupt_randomness(int irq)1030 void add_interrupt_randomness(int irq)
1031 {
1032 enum { MIX_INFLIGHT = 1U << 31 };
1033 unsigned long entropy = random_get_entropy();
1034 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
1035 struct pt_regs *regs = get_irq_regs();
1036 unsigned int new_count;
1037
1038 fast_mix(fast_pool->pool, entropy,
1039 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq));
1040 new_count = ++fast_pool->count;
1041
1042 if (new_count & MIX_INFLIGHT)
1043 return;
1044
1045 if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ))
1046 return;
1047
1048 fast_pool->count |= MIX_INFLIGHT;
1049 if (!timer_pending(&fast_pool->mix)) {
1050 fast_pool->mix.expires = jiffies;
1051 add_timer_on(&fast_pool->mix, raw_smp_processor_id());
1052 }
1053 }
1054 EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1055
1056 /* There is one of these per entropy source */
1057 struct timer_rand_state {
1058 unsigned long last_time;
1059 long last_delta, last_delta2;
1060 };
1061
1062 /*
1063 * This function adds entropy to the entropy "pool" by using timing
1064 * delays. It uses the timer_rand_state structure to make an estimate
1065 * of how many bits of entropy this call has added to the pool. The
1066 * value "num" is also added to the pool; it should somehow describe
1067 * the type of event that just happened.
1068 */
add_timer_randomness(struct timer_rand_state * state,unsigned int num)1069 static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
1070 {
1071 unsigned long entropy = random_get_entropy(), now = jiffies, flags;
1072 long delta, delta2, delta3;
1073 unsigned int bits;
1074
1075 /*
1076 * If we're in a hard IRQ, add_interrupt_randomness() will be called
1077 * sometime after, so mix into the fast pool.
1078 */
1079 if (in_hardirq()) {
1080 fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num);
1081 } else {
1082 spin_lock_irqsave(&input_pool.lock, flags);
1083 _mix_pool_bytes(&entropy, sizeof(entropy));
1084 _mix_pool_bytes(&num, sizeof(num));
1085 spin_unlock_irqrestore(&input_pool.lock, flags);
1086 }
1087
1088 if (crng_ready())
1089 return;
1090
1091 /*
1092 * Calculate number of bits of randomness we probably added.
1093 * We take into account the first, second and third-order deltas
1094 * in order to make our estimate.
1095 */
1096 delta = now - READ_ONCE(state->last_time);
1097 WRITE_ONCE(state->last_time, now);
1098
1099 delta2 = delta - READ_ONCE(state->last_delta);
1100 WRITE_ONCE(state->last_delta, delta);
1101
1102 delta3 = delta2 - READ_ONCE(state->last_delta2);
1103 WRITE_ONCE(state->last_delta2, delta2);
1104
1105 if (delta < 0)
1106 delta = -delta;
1107 if (delta2 < 0)
1108 delta2 = -delta2;
1109 if (delta3 < 0)
1110 delta3 = -delta3;
1111 if (delta > delta2)
1112 delta = delta2;
1113 if (delta > delta3)
1114 delta = delta3;
1115
1116 /*
1117 * delta is now minimum absolute delta. Round down by 1 bit
1118 * on general principles, and limit entropy estimate to 11 bits.
1119 */
1120 bits = min(fls(delta >> 1), 11);
1121
1122 /*
1123 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness()
1124 * will run after this, which uses a different crediting scheme of 1 bit
1125 * per every 64 interrupts. In order to let that function do accounting
1126 * close to the one in this function, we credit a full 64/64 bit per bit,
1127 * and then subtract one to account for the extra one added.
1128 */
1129 if (in_hardirq())
1130 this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1;
1131 else
1132 _credit_init_bits(bits);
1133 }
1134
add_input_randomness(unsigned int type,unsigned int code,unsigned int value)1135 void add_input_randomness(unsigned int type, unsigned int code, unsigned int value)
1136 {
1137 static unsigned char last_value;
1138 static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };
1139
1140 /* Ignore autorepeat and the like. */
1141 if (value == last_value)
1142 return;
1143
1144 last_value = value;
1145 add_timer_randomness(&input_timer_state,
1146 (type << 4) ^ code ^ (code >> 4) ^ value);
1147 }
1148 EXPORT_SYMBOL_GPL(add_input_randomness);
1149
1150 #ifdef CONFIG_BLOCK
add_disk_randomness(struct gendisk * disk)1151 void add_disk_randomness(struct gendisk *disk)
1152 {
1153 if (!disk || !disk->random)
1154 return;
1155 /* First major is 1, so we get >= 0x200 here. */
1156 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1157 }
1158 EXPORT_SYMBOL_GPL(add_disk_randomness);
1159
rand_initialize_disk(struct gendisk * disk)1160 void __cold rand_initialize_disk(struct gendisk *disk)
1161 {
1162 struct timer_rand_state *state;
1163
1164 /*
1165 * If kzalloc returns null, we just won't use that entropy
1166 * source.
1167 */
1168 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1169 if (state) {
1170 state->last_time = INITIAL_JIFFIES;
1171 disk->random = state;
1172 }
1173 }
1174 #endif
1175
1176 struct entropy_timer_state {
1177 unsigned long entropy;
1178 struct timer_list timer;
1179 unsigned int samples, samples_per_bit;
1180 };
1181
1182 /*
1183 * Each time the timer fires, we expect that we got an unpredictable
1184 * jump in the cycle counter. Even if the timer is running on another
1185 * CPU, the timer activity will be touching the stack of the CPU that is
1186 * generating entropy..
1187 *
1188 * Note that we don't re-arm the timer in the timer itself - we are
1189 * happy to be scheduled away, since that just makes the load more
1190 * complex, but we do not want the timer to keep ticking unless the
1191 * entropy loop is running.
1192 *
1193 * So the re-arming always happens in the entropy loop itself.
1194 */
entropy_timer(struct timer_list * timer)1195 static void __cold entropy_timer(struct timer_list *timer)
1196 {
1197 struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer);
1198
1199 if (++state->samples == state->samples_per_bit) {
1200 credit_init_bits(1);
1201 state->samples = 0;
1202 }
1203 }
1204
1205 /*
1206 * If we have an actual cycle counter, see if we can
1207 * generate enough entropy with timing noise
1208 */
try_to_generate_entropy(void)1209 static void __cold try_to_generate_entropy(void)
1210 {
1211 enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = HZ / 15 };
1212 struct entropy_timer_state stack;
1213 unsigned int i, num_different = 0;
1214 unsigned long last = random_get_entropy();
1215
1216 for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) {
1217 stack.entropy = random_get_entropy();
1218 if (stack.entropy != last)
1219 ++num_different;
1220 last = stack.entropy;
1221 }
1222 stack.samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1);
1223 if (stack.samples_per_bit > MAX_SAMPLES_PER_BIT)
1224 return;
1225
1226 stack.samples = 0;
1227 timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1228 while (!crng_ready() && !signal_pending(current)) {
1229 if (!timer_pending(&stack.timer))
1230 mod_timer(&stack.timer, jiffies);
1231 mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
1232 schedule();
1233 stack.entropy = random_get_entropy();
1234 }
1235
1236 del_timer_sync(&stack.timer);
1237 destroy_timer_on_stack(&stack.timer);
1238 mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
1239 }
1240
1241
1242 /**********************************************************************
1243 *
1244 * Userspace reader/writer interfaces.
1245 *
1246 * getrandom(2) is the primary modern interface into the RNG and should
1247 * be used in preference to anything else.
1248 *
1249 * Reading from /dev/random has the same functionality as calling
1250 * getrandom(2) with flags=0. In earlier versions, however, it had
1251 * vastly different semantics and should therefore be avoided, to
1252 * prevent backwards compatibility issues.
1253 *
1254 * Reading from /dev/urandom has the same functionality as calling
1255 * getrandom(2) with flags=GRND_INSECURE. Because it does not block
1256 * waiting for the RNG to be ready, it should not be used.
1257 *
1258 * Writing to either /dev/random or /dev/urandom adds entropy to
1259 * the input pool but does not credit it.
1260 *
1261 * Polling on /dev/random indicates when the RNG is initialized, on
1262 * the read side, and when it wants new entropy, on the write side.
1263 *
1264 * Both /dev/random and /dev/urandom have the same set of ioctls for
1265 * adding entropy, getting the entropy count, zeroing the count, and
1266 * reseeding the crng.
1267 *
1268 **********************************************************************/
1269
SYSCALL_DEFINE3(getrandom,char __user *,ubuf,size_t,len,unsigned int,flags)1270 SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags)
1271 {
1272 struct iov_iter iter;
1273 struct iovec iov;
1274 int ret;
1275
1276 if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
1277 return -EINVAL;
1278
1279 /*
1280 * Requesting insecure and blocking randomness at the same time makes
1281 * no sense.
1282 */
1283 if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
1284 return -EINVAL;
1285
1286 if (!crng_ready() && !(flags & GRND_INSECURE)) {
1287 if (flags & GRND_NONBLOCK)
1288 return -EAGAIN;
1289 ret = wait_for_random_bytes();
1290 if (unlikely(ret))
1291 return ret;
1292 }
1293
1294 ret = import_single_range(READ, ubuf, len, &iov, &iter);
1295 if (unlikely(ret))
1296 return ret;
1297 return get_random_bytes_user(&iter);
1298 }
1299
random_poll(struct file * file,poll_table * wait)1300 static __poll_t random_poll(struct file *file, poll_table *wait)
1301 {
1302 poll_wait(file, &crng_init_wait, wait);
1303 return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM;
1304 }
1305
write_pool_user(struct iov_iter * iter)1306 static ssize_t write_pool_user(struct iov_iter *iter)
1307 {
1308 u8 block[BLAKE2S_BLOCK_SIZE];
1309 ssize_t ret = 0;
1310 size_t copied;
1311
1312 if (unlikely(!iov_iter_count(iter)))
1313 return 0;
1314
1315 for (;;) {
1316 copied = copy_from_iter(block, sizeof(block), iter);
1317 ret += copied;
1318 mix_pool_bytes(block, copied);
1319 if (!iov_iter_count(iter) || copied != sizeof(block))
1320 break;
1321
1322 BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
1323 if (ret % PAGE_SIZE == 0) {
1324 if (signal_pending(current))
1325 break;
1326 cond_resched();
1327 }
1328 }
1329
1330 memzero_explicit(block, sizeof(block));
1331 return ret ? ret : -EFAULT;
1332 }
1333
random_write_iter(struct kiocb * kiocb,struct iov_iter * iter)1334 static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter)
1335 {
1336 return write_pool_user(iter);
1337 }
1338
urandom_read_iter(struct kiocb * kiocb,struct iov_iter * iter)1339 static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1340 {
1341 static int maxwarn = 10;
1342
1343 /*
1344 * Opportunistically attempt to initialize the RNG on platforms that
1345 * have fast cycle counters, but don't (for now) require it to succeed.
1346 */
1347 if (!crng_ready())
1348 try_to_generate_entropy();
1349
1350 if (!crng_ready()) {
1351 if (!ratelimit_disable && maxwarn <= 0)
1352 ++urandom_warning.missed;
1353 else if (ratelimit_disable || __ratelimit(&urandom_warning)) {
1354 --maxwarn;
1355 pr_notice("%s: uninitialized urandom read (%zu bytes read)\n",
1356 current->comm, iov_iter_count(iter));
1357 }
1358 }
1359
1360 return get_random_bytes_user(iter);
1361 }
1362
random_read_iter(struct kiocb * kiocb,struct iov_iter * iter)1363 static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1364 {
1365 int ret;
1366
1367 if (!crng_ready() &&
1368 ((kiocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) ||
1369 (kiocb->ki_filp->f_flags & O_NONBLOCK)))
1370 return -EAGAIN;
1371
1372 ret = wait_for_random_bytes();
1373 if (ret != 0)
1374 return ret;
1375 return get_random_bytes_user(iter);
1376 }
1377
random_ioctl(struct file * f,unsigned int cmd,unsigned long arg)1378 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1379 {
1380 int __user *p = (int __user *)arg;
1381 int ent_count;
1382
1383 switch (cmd) {
1384 case RNDGETENTCNT:
1385 /* Inherently racy, no point locking. */
1386 if (put_user(input_pool.init_bits, p))
1387 return -EFAULT;
1388 return 0;
1389 case RNDADDTOENTCNT:
1390 if (!capable(CAP_SYS_ADMIN))
1391 return -EPERM;
1392 if (get_user(ent_count, p))
1393 return -EFAULT;
1394 if (ent_count < 0)
1395 return -EINVAL;
1396 credit_init_bits(ent_count);
1397 return 0;
1398 case RNDADDENTROPY: {
1399 struct iov_iter iter;
1400 struct iovec iov;
1401 ssize_t ret;
1402 int len;
1403
1404 if (!capable(CAP_SYS_ADMIN))
1405 return -EPERM;
1406 if (get_user(ent_count, p++))
1407 return -EFAULT;
1408 if (ent_count < 0)
1409 return -EINVAL;
1410 if (get_user(len, p++))
1411 return -EFAULT;
1412 ret = import_single_range(WRITE, p, len, &iov, &iter);
1413 if (unlikely(ret))
1414 return ret;
1415 ret = write_pool_user(&iter);
1416 if (unlikely(ret < 0))
1417 return ret;
1418 /* Since we're crediting, enforce that it was all written into the pool. */
1419 if (unlikely(ret != len))
1420 return -EFAULT;
1421 credit_init_bits(ent_count);
1422 return 0;
1423 }
1424 case RNDZAPENTCNT:
1425 case RNDCLEARPOOL:
1426 /* No longer has any effect. */
1427 if (!capable(CAP_SYS_ADMIN))
1428 return -EPERM;
1429 return 0;
1430 case RNDRESEEDCRNG:
1431 if (!capable(CAP_SYS_ADMIN))
1432 return -EPERM;
1433 if (!crng_ready())
1434 return -ENODATA;
1435 crng_reseed();
1436 return 0;
1437 default:
1438 return -EINVAL;
1439 }
1440 }
1441
random_fasync(int fd,struct file * filp,int on)1442 static int random_fasync(int fd, struct file *filp, int on)
1443 {
1444 return fasync_helper(fd, filp, on, &fasync);
1445 }
1446
1447 const struct file_operations random_fops = {
1448 .read_iter = random_read_iter,
1449 .write_iter = random_write_iter,
1450 .poll = random_poll,
1451 .unlocked_ioctl = random_ioctl,
1452 .compat_ioctl = compat_ptr_ioctl,
1453 .fasync = random_fasync,
1454 .llseek = noop_llseek,
1455 .splice_read = generic_file_splice_read,
1456 .splice_write = iter_file_splice_write,
1457 };
1458
1459 const struct file_operations urandom_fops = {
1460 .read_iter = urandom_read_iter,
1461 .write_iter = random_write_iter,
1462 .unlocked_ioctl = random_ioctl,
1463 .compat_ioctl = compat_ptr_ioctl,
1464 .fasync = random_fasync,
1465 .llseek = noop_llseek,
1466 .splice_read = generic_file_splice_read,
1467 .splice_write = iter_file_splice_write,
1468 };
1469
1470
1471 /********************************************************************
1472 *
1473 * Sysctl interface.
1474 *
1475 * These are partly unused legacy knobs with dummy values to not break
1476 * userspace and partly still useful things. They are usually accessible
1477 * in /proc/sys/kernel/random/ and are as follows:
1478 *
1479 * - boot_id - a UUID representing the current boot.
1480 *
1481 * - uuid - a random UUID, different each time the file is read.
1482 *
1483 * - poolsize - the number of bits of entropy that the input pool can
1484 * hold, tied to the POOL_BITS constant.
1485 *
1486 * - entropy_avail - the number of bits of entropy currently in the
1487 * input pool. Always <= poolsize.
1488 *
1489 * - write_wakeup_threshold - the amount of entropy in the input pool
1490 * below which write polls to /dev/random will unblock, requesting
1491 * more entropy, tied to the POOL_READY_BITS constant. It is writable
1492 * to avoid breaking old userspaces, but writing to it does not
1493 * change any behavior of the RNG.
1494 *
1495 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
1496 * It is writable to avoid breaking old userspaces, but writing
1497 * to it does not change any behavior of the RNG.
1498 *
1499 ********************************************************************/
1500
1501 #ifdef CONFIG_SYSCTL
1502
1503 #include <linux/sysctl.h>
1504
1505 static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
1506 static int sysctl_random_write_wakeup_bits = POOL_READY_BITS;
1507 static int sysctl_poolsize = POOL_BITS;
1508 static u8 sysctl_bootid[UUID_SIZE];
1509
1510 /*
1511 * This function is used to return both the bootid UUID, and random
1512 * UUID. The difference is in whether table->data is NULL; if it is,
1513 * then a new UUID is generated and returned to the user.
1514 */
proc_do_uuid(struct ctl_table * table,int write,void * buf,size_t * lenp,loff_t * ppos)1515 static int proc_do_uuid(struct ctl_table *table, int write, void *buf,
1516 size_t *lenp, loff_t *ppos)
1517 {
1518 u8 tmp_uuid[UUID_SIZE], *uuid;
1519 char uuid_string[UUID_STRING_LEN + 1];
1520 struct ctl_table fake_table = {
1521 .data = uuid_string,
1522 .maxlen = UUID_STRING_LEN
1523 };
1524
1525 if (write)
1526 return -EPERM;
1527
1528 uuid = table->data;
1529 if (!uuid) {
1530 uuid = tmp_uuid;
1531 generate_random_uuid(uuid);
1532 } else {
1533 static DEFINE_SPINLOCK(bootid_spinlock);
1534
1535 spin_lock(&bootid_spinlock);
1536 if (!uuid[8])
1537 generate_random_uuid(uuid);
1538 spin_unlock(&bootid_spinlock);
1539 }
1540
1541 snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
1542 return proc_dostring(&fake_table, 0, buf, lenp, ppos);
1543 }
1544
1545 /* The same as proc_dointvec, but writes don't change anything. */
proc_do_rointvec(struct ctl_table * table,int write,void * buf,size_t * lenp,loff_t * ppos)1546 static int proc_do_rointvec(struct ctl_table *table, int write, void *buf,
1547 size_t *lenp, loff_t *ppos)
1548 {
1549 return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos);
1550 }
1551
1552 static struct ctl_table random_table[] = {
1553 {
1554 .procname = "poolsize",
1555 .data = &sysctl_poolsize,
1556 .maxlen = sizeof(int),
1557 .mode = 0444,
1558 .proc_handler = proc_dointvec,
1559 },
1560 {
1561 .procname = "entropy_avail",
1562 .data = &input_pool.init_bits,
1563 .maxlen = sizeof(int),
1564 .mode = 0444,
1565 .proc_handler = proc_dointvec,
1566 },
1567 {
1568 .procname = "write_wakeup_threshold",
1569 .data = &sysctl_random_write_wakeup_bits,
1570 .maxlen = sizeof(int),
1571 .mode = 0644,
1572 .proc_handler = proc_do_rointvec,
1573 },
1574 {
1575 .procname = "urandom_min_reseed_secs",
1576 .data = &sysctl_random_min_urandom_seed,
1577 .maxlen = sizeof(int),
1578 .mode = 0644,
1579 .proc_handler = proc_do_rointvec,
1580 },
1581 {
1582 .procname = "boot_id",
1583 .data = &sysctl_bootid,
1584 .mode = 0444,
1585 .proc_handler = proc_do_uuid,
1586 },
1587 {
1588 .procname = "uuid",
1589 .mode = 0444,
1590 .proc_handler = proc_do_uuid,
1591 },
1592 { }
1593 };
1594
1595 /*
1596 * random_init() is called before sysctl_init(),
1597 * so we cannot call register_sysctl_init() in random_init()
1598 */
random_sysctls_init(void)1599 static int __init random_sysctls_init(void)
1600 {
1601 register_sysctl_init("kernel/random", random_table);
1602 return 0;
1603 }
1604 device_initcall(random_sysctls_init);
1605 #endif
1606