1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #ifndef _LINUX_BPF_VERIFIER_H
5 #define _LINUX_BPF_VERIFIER_H 1
6 
7 #include <linux/bpf.h> /* for enum bpf_reg_type */
8 #include <linux/btf.h> /* for struct btf and btf_id() */
9 #include <linux/filter.h> /* for MAX_BPF_STACK */
10 #include <linux/tnum.h>
11 
12 /* Maximum variable offset umax_value permitted when resolving memory accesses.
13  * In practice this is far bigger than any realistic pointer offset; this limit
14  * ensures that umax_value + (int)off + (int)size cannot overflow a u64.
15  */
16 #define BPF_MAX_VAR_OFF	(1 << 29)
17 /* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO].  This ensures
18  * that converting umax_value to int cannot overflow.
19  */
20 #define BPF_MAX_VAR_SIZ	(1 << 29)
21 
22 /* Liveness marks, used for registers and spilled-regs (in stack slots).
23  * Read marks propagate upwards until they find a write mark; they record that
24  * "one of this state's descendants read this reg" (and therefore the reg is
25  * relevant for states_equal() checks).
26  * Write marks collect downwards and do not propagate; they record that "the
27  * straight-line code that reached this state (from its parent) wrote this reg"
28  * (and therefore that reads propagated from this state or its descendants
29  * should not propagate to its parent).
30  * A state with a write mark can receive read marks; it just won't propagate
31  * them to its parent, since the write mark is a property, not of the state,
32  * but of the link between it and its parent.  See mark_reg_read() and
33  * mark_stack_slot_read() in kernel/bpf/verifier.c.
34  */
35 enum bpf_reg_liveness {
36 	REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */
37 	REG_LIVE_READ32 = 0x1, /* reg was read, so we're sensitive to initial value */
38 	REG_LIVE_READ64 = 0x2, /* likewise, but full 64-bit content matters */
39 	REG_LIVE_READ = REG_LIVE_READ32 | REG_LIVE_READ64,
40 	REG_LIVE_WRITTEN = 0x4, /* reg was written first, screening off later reads */
41 	REG_LIVE_DONE = 0x8, /* liveness won't be updating this register anymore */
42 };
43 
44 struct bpf_reg_state {
45 	/* Ordering of fields matters.  See states_equal() */
46 	enum bpf_reg_type type;
47 	/* Fixed part of pointer offset, pointer types only */
48 	s32 off;
49 	union {
50 		/* valid when type == PTR_TO_PACKET */
51 		int range;
52 
53 		/* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
54 		 *   PTR_TO_MAP_VALUE_OR_NULL
55 		 */
56 		struct {
57 			struct bpf_map *map_ptr;
58 			/* To distinguish map lookups from outer map
59 			 * the map_uid is non-zero for registers
60 			 * pointing to inner maps.
61 			 */
62 			u32 map_uid;
63 		};
64 
65 		/* for PTR_TO_BTF_ID */
66 		struct {
67 			struct btf *btf;
68 			u32 btf_id;
69 		};
70 
71 		u32 mem_size; /* for PTR_TO_MEM | PTR_TO_MEM_OR_NULL */
72 
73 		/* Max size from any of the above. */
74 		struct {
75 			unsigned long raw1;
76 			unsigned long raw2;
77 		} raw;
78 
79 		u32 subprogno; /* for PTR_TO_FUNC */
80 	};
81 	/* For PTR_TO_PACKET, used to find other pointers with the same variable
82 	 * offset, so they can share range knowledge.
83 	 * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we
84 	 * came from, when one is tested for != NULL.
85 	 * For PTR_TO_MEM_OR_NULL this is used to identify memory allocation
86 	 * for the purpose of tracking that it's freed.
87 	 * For PTR_TO_SOCKET this is used to share which pointers retain the
88 	 * same reference to the socket, to determine proper reference freeing.
89 	 */
90 	u32 id;
91 	/* PTR_TO_SOCKET and PTR_TO_TCP_SOCK could be a ptr returned
92 	 * from a pointer-cast helper, bpf_sk_fullsock() and
93 	 * bpf_tcp_sock().
94 	 *
95 	 * Consider the following where "sk" is a reference counted
96 	 * pointer returned from "sk = bpf_sk_lookup_tcp();":
97 	 *
98 	 * 1: sk = bpf_sk_lookup_tcp();
99 	 * 2: if (!sk) { return 0; }
100 	 * 3: fullsock = bpf_sk_fullsock(sk);
101 	 * 4: if (!fullsock) { bpf_sk_release(sk); return 0; }
102 	 * 5: tp = bpf_tcp_sock(fullsock);
103 	 * 6: if (!tp) { bpf_sk_release(sk); return 0; }
104 	 * 7: bpf_sk_release(sk);
105 	 * 8: snd_cwnd = tp->snd_cwnd;  // verifier will complain
106 	 *
107 	 * After bpf_sk_release(sk) at line 7, both "fullsock" ptr and
108 	 * "tp" ptr should be invalidated also.  In order to do that,
109 	 * the reg holding "fullsock" and "sk" need to remember
110 	 * the original refcounted ptr id (i.e. sk_reg->id) in ref_obj_id
111 	 * such that the verifier can reset all regs which have
112 	 * ref_obj_id matching the sk_reg->id.
113 	 *
114 	 * sk_reg->ref_obj_id is set to sk_reg->id at line 1.
115 	 * sk_reg->id will stay as NULL-marking purpose only.
116 	 * After NULL-marking is done, sk_reg->id can be reset to 0.
117 	 *
118 	 * After "fullsock = bpf_sk_fullsock(sk);" at line 3,
119 	 * fullsock_reg->ref_obj_id is set to sk_reg->ref_obj_id.
120 	 *
121 	 * After "tp = bpf_tcp_sock(fullsock);" at line 5,
122 	 * tp_reg->ref_obj_id is set to fullsock_reg->ref_obj_id
123 	 * which is the same as sk_reg->ref_obj_id.
124 	 *
125 	 * From the verifier perspective, if sk, fullsock and tp
126 	 * are not NULL, they are the same ptr with different
127 	 * reg->type.  In particular, bpf_sk_release(tp) is also
128 	 * allowed and has the same effect as bpf_sk_release(sk).
129 	 */
130 	u32 ref_obj_id;
131 	/* For scalar types (SCALAR_VALUE), this represents our knowledge of
132 	 * the actual value.
133 	 * For pointer types, this represents the variable part of the offset
134 	 * from the pointed-to object, and is shared with all bpf_reg_states
135 	 * with the same id as us.
136 	 */
137 	struct tnum var_off;
138 	/* Used to determine if any memory access using this register will
139 	 * result in a bad access.
140 	 * These refer to the same value as var_off, not necessarily the actual
141 	 * contents of the register.
142 	 */
143 	s64 smin_value; /* minimum possible (s64)value */
144 	s64 smax_value; /* maximum possible (s64)value */
145 	u64 umin_value; /* minimum possible (u64)value */
146 	u64 umax_value; /* maximum possible (u64)value */
147 	s32 s32_min_value; /* minimum possible (s32)value */
148 	s32 s32_max_value; /* maximum possible (s32)value */
149 	u32 u32_min_value; /* minimum possible (u32)value */
150 	u32 u32_max_value; /* maximum possible (u32)value */
151 	/* parentage chain for liveness checking */
152 	struct bpf_reg_state *parent;
153 	/* Inside the callee two registers can be both PTR_TO_STACK like
154 	 * R1=fp-8 and R2=fp-8, but one of them points to this function stack
155 	 * while another to the caller's stack. To differentiate them 'frameno'
156 	 * is used which is an index in bpf_verifier_state->frame[] array
157 	 * pointing to bpf_func_state.
158 	 */
159 	u32 frameno;
160 	/* Tracks subreg definition. The stored value is the insn_idx of the
161 	 * writing insn. This is safe because subreg_def is used before any insn
162 	 * patching which only happens after main verification finished.
163 	 */
164 	s32 subreg_def;
165 	enum bpf_reg_liveness live;
166 	/* if (!precise && SCALAR_VALUE) min/max/tnum don't affect safety */
167 	bool precise;
168 };
169 
170 enum bpf_stack_slot_type {
171 	STACK_INVALID,    /* nothing was stored in this stack slot */
172 	STACK_SPILL,      /* register spilled into stack */
173 	STACK_MISC,	  /* BPF program wrote some data into this slot */
174 	STACK_ZERO,	  /* BPF program wrote constant zero */
175 };
176 
177 #define BPF_REG_SIZE 8	/* size of eBPF register in bytes */
178 
179 struct bpf_stack_state {
180 	struct bpf_reg_state spilled_ptr;
181 	u8 slot_type[BPF_REG_SIZE];
182 };
183 
184 struct bpf_reference_state {
185 	/* Track each reference created with a unique id, even if the same
186 	 * instruction creates the reference multiple times (eg, via CALL).
187 	 */
188 	int id;
189 	/* Instruction where the allocation of this reference occurred. This
190 	 * is used purely to inform the user of a reference leak.
191 	 */
192 	int insn_idx;
193 };
194 
195 /* state of the program:
196  * type of all registers and stack info
197  */
198 struct bpf_func_state {
199 	struct bpf_reg_state regs[MAX_BPF_REG];
200 	/* index of call instruction that called into this func */
201 	int callsite;
202 	/* stack frame number of this function state from pov of
203 	 * enclosing bpf_verifier_state.
204 	 * 0 = main function, 1 = first callee.
205 	 */
206 	u32 frameno;
207 	/* subprog number == index within subprog_info
208 	 * zero == main subprog
209 	 */
210 	u32 subprogno;
211 	/* Every bpf_timer_start will increment async_entry_cnt.
212 	 * It's used to distinguish:
213 	 * void foo(void) { for(;;); }
214 	 * void foo(void) { bpf_timer_set_callback(,foo); }
215 	 */
216 	u32 async_entry_cnt;
217 	bool in_callback_fn;
218 	bool in_async_callback_fn;
219 
220 	/* The following fields should be last. See copy_func_state() */
221 	int acquired_refs;
222 	struct bpf_reference_state *refs;
223 	int allocated_stack;
224 	struct bpf_stack_state *stack;
225 };
226 
227 struct bpf_idx_pair {
228 	u32 prev_idx;
229 	u32 idx;
230 };
231 
232 struct bpf_id_pair {
233 	u32 old;
234 	u32 cur;
235 };
236 
237 /* Maximum number of register states that can exist at once */
238 #define BPF_ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
239 #define MAX_CALL_FRAMES 8
240 struct bpf_verifier_state {
241 	/* call stack tracking */
242 	struct bpf_func_state *frame[MAX_CALL_FRAMES];
243 	struct bpf_verifier_state *parent;
244 	/*
245 	 * 'branches' field is the number of branches left to explore:
246 	 * 0 - all possible paths from this state reached bpf_exit or
247 	 * were safely pruned
248 	 * 1 - at least one path is being explored.
249 	 * This state hasn't reached bpf_exit
250 	 * 2 - at least two paths are being explored.
251 	 * This state is an immediate parent of two children.
252 	 * One is fallthrough branch with branches==1 and another
253 	 * state is pushed into stack (to be explored later) also with
254 	 * branches==1. The parent of this state has branches==1.
255 	 * The verifier state tree connected via 'parent' pointer looks like:
256 	 * 1
257 	 * 1
258 	 * 2 -> 1 (first 'if' pushed into stack)
259 	 * 1
260 	 * 2 -> 1 (second 'if' pushed into stack)
261 	 * 1
262 	 * 1
263 	 * 1 bpf_exit.
264 	 *
265 	 * Once do_check() reaches bpf_exit, it calls update_branch_counts()
266 	 * and the verifier state tree will look:
267 	 * 1
268 	 * 1
269 	 * 2 -> 1 (first 'if' pushed into stack)
270 	 * 1
271 	 * 1 -> 1 (second 'if' pushed into stack)
272 	 * 0
273 	 * 0
274 	 * 0 bpf_exit.
275 	 * After pop_stack() the do_check() will resume at second 'if'.
276 	 *
277 	 * If is_state_visited() sees a state with branches > 0 it means
278 	 * there is a loop. If such state is exactly equal to the current state
279 	 * it's an infinite loop. Note states_equal() checks for states
280 	 * equvalency, so two states being 'states_equal' does not mean
281 	 * infinite loop. The exact comparison is provided by
282 	 * states_maybe_looping() function. It's a stronger pre-check and
283 	 * much faster than states_equal().
284 	 *
285 	 * This algorithm may not find all possible infinite loops or
286 	 * loop iteration count may be too high.
287 	 * In such cases BPF_COMPLEXITY_LIMIT_INSNS limit kicks in.
288 	 */
289 	u32 branches;
290 	u32 insn_idx;
291 	u32 curframe;
292 	u32 active_spin_lock;
293 	bool speculative;
294 
295 	/* first and last insn idx of this verifier state */
296 	u32 first_insn_idx;
297 	u32 last_insn_idx;
298 	/* jmp history recorded from first to last.
299 	 * backtracking is using it to go from last to first.
300 	 * For most states jmp_history_cnt is [0-3].
301 	 * For loops can go up to ~40.
302 	 */
303 	struct bpf_idx_pair *jmp_history;
304 	u32 jmp_history_cnt;
305 };
306 
307 #define bpf_get_spilled_reg(slot, frame)				\
308 	(((slot < frame->allocated_stack / BPF_REG_SIZE) &&		\
309 	  (frame->stack[slot].slot_type[0] == STACK_SPILL))		\
310 	 ? &frame->stack[slot].spilled_ptr : NULL)
311 
312 /* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */
313 #define bpf_for_each_spilled_reg(iter, frame, reg)			\
314 	for (iter = 0, reg = bpf_get_spilled_reg(iter, frame);		\
315 	     iter < frame->allocated_stack / BPF_REG_SIZE;		\
316 	     iter++, reg = bpf_get_spilled_reg(iter, frame))
317 
318 /* linked list of verifier states used to prune search */
319 struct bpf_verifier_state_list {
320 	struct bpf_verifier_state state;
321 	struct bpf_verifier_state_list *next;
322 	int miss_cnt, hit_cnt;
323 };
324 
325 /* Possible states for alu_state member. */
326 #define BPF_ALU_SANITIZE_SRC		(1U << 0)
327 #define BPF_ALU_SANITIZE_DST		(1U << 1)
328 #define BPF_ALU_NEG_VALUE		(1U << 2)
329 #define BPF_ALU_NON_POINTER		(1U << 3)
330 #define BPF_ALU_IMMEDIATE		(1U << 4)
331 #define BPF_ALU_SANITIZE		(BPF_ALU_SANITIZE_SRC | \
332 					 BPF_ALU_SANITIZE_DST)
333 
334 struct bpf_insn_aux_data {
335 	union {
336 		enum bpf_reg_type ptr_type;	/* pointer type for load/store insns */
337 		unsigned long map_ptr_state;	/* pointer/poison value for maps */
338 		s32 call_imm;			/* saved imm field of call insn */
339 		u32 alu_limit;			/* limit for add/sub register with pointer */
340 		struct {
341 			u32 map_index;		/* index into used_maps[] */
342 			u32 map_off;		/* offset from value base address */
343 		};
344 		struct {
345 			enum bpf_reg_type reg_type;	/* type of pseudo_btf_id */
346 			union {
347 				struct {
348 					struct btf *btf;
349 					u32 btf_id;	/* btf_id for struct typed var */
350 				};
351 				u32 mem_size;	/* mem_size for non-struct typed var */
352 			};
353 		} btf_var;
354 	};
355 	u64 map_key_state; /* constant (32 bit) key tracking for maps */
356 	int ctx_field_size; /* the ctx field size for load insn, maybe 0 */
357 	u32 seen; /* this insn was processed by the verifier at env->pass_cnt */
358 	bool sanitize_stack_spill; /* subject to Spectre v4 sanitation */
359 	bool zext_dst; /* this insn zero extends dst reg */
360 	u8 alu_state; /* used in combination with alu_limit */
361 
362 	/* below fields are initialized once */
363 	unsigned int orig_idx; /* original instruction index */
364 	bool prune_point;
365 };
366 
367 #define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
368 #define MAX_USED_BTFS 64 /* max number of BTFs accessed by one BPF program */
369 
370 #define BPF_VERIFIER_TMP_LOG_SIZE	1024
371 
372 struct bpf_verifier_log {
373 	u32 level;
374 	char kbuf[BPF_VERIFIER_TMP_LOG_SIZE];
375 	char __user *ubuf;
376 	u32 len_used;
377 	u32 len_total;
378 };
379 
bpf_verifier_log_full(const struct bpf_verifier_log * log)380 static inline bool bpf_verifier_log_full(const struct bpf_verifier_log *log)
381 {
382 	return log->len_used >= log->len_total - 1;
383 }
384 
385 #define BPF_LOG_LEVEL1	1
386 #define BPF_LOG_LEVEL2	2
387 #define BPF_LOG_STATS	4
388 #define BPF_LOG_LEVEL	(BPF_LOG_LEVEL1 | BPF_LOG_LEVEL2)
389 #define BPF_LOG_MASK	(BPF_LOG_LEVEL | BPF_LOG_STATS)
390 #define BPF_LOG_KERNEL	(BPF_LOG_MASK + 1) /* kernel internal flag */
391 
bpf_verifier_log_needed(const struct bpf_verifier_log * log)392 static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log)
393 {
394 	return log &&
395 		((log->level && log->ubuf && !bpf_verifier_log_full(log)) ||
396 		 log->level == BPF_LOG_KERNEL);
397 }
398 
399 #define BPF_MAX_SUBPROGS 256
400 
401 struct bpf_subprog_info {
402 	/* 'start' has to be the first field otherwise find_subprog() won't work */
403 	u32 start; /* insn idx of function entry point */
404 	u32 linfo_idx; /* The idx to the main_prog->aux->linfo */
405 	u16 stack_depth; /* max. stack depth used by this function */
406 	bool has_tail_call;
407 	bool tail_call_reachable;
408 	bool has_ld_abs;
409 	bool is_async_cb;
410 };
411 
412 /* single container for all structs
413  * one verifier_env per bpf_check() call
414  */
415 struct bpf_verifier_env {
416 	u32 insn_idx;
417 	u32 prev_insn_idx;
418 	struct bpf_prog *prog;		/* eBPF program being verified */
419 	const struct bpf_verifier_ops *ops;
420 	struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */
421 	int stack_size;			/* number of states to be processed */
422 	bool strict_alignment;		/* perform strict pointer alignment checks */
423 	bool test_state_freq;		/* test verifier with different pruning frequency */
424 	struct bpf_verifier_state *cur_state; /* current verifier state */
425 	struct bpf_verifier_state_list **explored_states; /* search pruning optimization */
426 	struct bpf_verifier_state_list *free_list;
427 	struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
428 	struct btf_mod_pair used_btfs[MAX_USED_BTFS]; /* array of BTF's used by BPF program */
429 	u32 used_map_cnt;		/* number of used maps */
430 	u32 used_btf_cnt;		/* number of used BTF objects */
431 	u32 id_gen;			/* used to generate unique reg IDs */
432 	bool explore_alu_limits;
433 	bool allow_ptr_leaks;
434 	bool allow_uninit_stack;
435 	bool allow_ptr_to_map_access;
436 	bool bpf_capable;
437 	bool bypass_spec_v1;
438 	bool bypass_spec_v4;
439 	bool seen_direct_write;
440 	struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */
441 	const struct bpf_line_info *prev_linfo;
442 	struct bpf_verifier_log log;
443 	struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 1];
444 	struct bpf_id_pair idmap_scratch[BPF_ID_MAP_SIZE];
445 	struct {
446 		int *insn_state;
447 		int *insn_stack;
448 		int cur_stack;
449 	} cfg;
450 	u32 pass_cnt; /* number of times do_check() was called */
451 	u32 subprog_cnt;
452 	/* number of instructions analyzed by the verifier */
453 	u32 prev_insn_processed, insn_processed;
454 	/* number of jmps, calls, exits analyzed so far */
455 	u32 prev_jmps_processed, jmps_processed;
456 	/* total verification time */
457 	u64 verification_time;
458 	/* maximum number of verifier states kept in 'branching' instructions */
459 	u32 max_states_per_insn;
460 	/* total number of allocated verifier states */
461 	u32 total_states;
462 	/* some states are freed during program analysis.
463 	 * this is peak number of states. this number dominates kernel
464 	 * memory consumption during verification
465 	 */
466 	u32 peak_states;
467 	/* longest register parentage chain walked for liveness marking */
468 	u32 longest_mark_read_walk;
469 	bpfptr_t fd_array;
470 };
471 
472 __printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log,
473 				      const char *fmt, va_list args);
474 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
475 					   const char *fmt, ...);
476 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
477 			    const char *fmt, ...);
478 
cur_func(struct bpf_verifier_env * env)479 static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env)
480 {
481 	struct bpf_verifier_state *cur = env->cur_state;
482 
483 	return cur->frame[cur->curframe];
484 }
485 
cur_regs(struct bpf_verifier_env * env)486 static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env)
487 {
488 	return cur_func(env)->regs;
489 }
490 
491 int bpf_prog_offload_verifier_prep(struct bpf_prog *prog);
492 int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env,
493 				 int insn_idx, int prev_insn_idx);
494 int bpf_prog_offload_finalize(struct bpf_verifier_env *env);
495 void
496 bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off,
497 			      struct bpf_insn *insn);
498 void
499 bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt);
500 
501 int check_ctx_reg(struct bpf_verifier_env *env,
502 		  const struct bpf_reg_state *reg, int regno);
503 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
504 		   u32 regno, u32 mem_size);
505 
506 /* this lives here instead of in bpf.h because it needs to dereference tgt_prog */
bpf_trampoline_compute_key(const struct bpf_prog * tgt_prog,struct btf * btf,u32 btf_id)507 static inline u64 bpf_trampoline_compute_key(const struct bpf_prog *tgt_prog,
508 					     struct btf *btf, u32 btf_id)
509 {
510 	if (tgt_prog)
511 		return ((u64)tgt_prog->aux->id << 32) | btf_id;
512 	else
513 		return ((u64)btf_obj_id(btf) << 32) | 0x80000000 | btf_id;
514 }
515 
516 /* unpack the IDs from the key as constructed above */
bpf_trampoline_unpack_key(u64 key,u32 * obj_id,u32 * btf_id)517 static inline void bpf_trampoline_unpack_key(u64 key, u32 *obj_id, u32 *btf_id)
518 {
519 	if (obj_id)
520 		*obj_id = key >> 32;
521 	if (btf_id)
522 		*btf_id = key & 0x7FFFFFFF;
523 }
524 
525 int bpf_check_attach_target(struct bpf_verifier_log *log,
526 			    const struct bpf_prog *prog,
527 			    const struct bpf_prog *tgt_prog,
528 			    u32 btf_id,
529 			    struct bpf_attach_target_info *tgt_info);
530 
531 #endif /* _LINUX_BPF_VERIFIER_H */
532