1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef BLK_MQ_H
3 #define BLK_MQ_H
4
5 #include <linux/blkdev.h>
6 #include <linux/sbitmap.h>
7 #include <linux/srcu.h>
8
9 struct blk_mq_tags;
10 struct blk_flush_queue;
11
12 /**
13 * struct blk_mq_hw_ctx - State for a hardware queue facing the hardware
14 * block device
15 */
16 struct blk_mq_hw_ctx {
17 struct {
18 /** @lock: Protects the dispatch list. */
19 spinlock_t lock;
20 /**
21 * @dispatch: Used for requests that are ready to be
22 * dispatched to the hardware but for some reason (e.g. lack of
23 * resources) could not be sent to the hardware. As soon as the
24 * driver can send new requests, requests at this list will
25 * be sent first for a fairer dispatch.
26 */
27 struct list_head dispatch;
28 /**
29 * @state: BLK_MQ_S_* flags. Defines the state of the hw
30 * queue (active, scheduled to restart, stopped).
31 */
32 unsigned long state;
33 } ____cacheline_aligned_in_smp;
34
35 /**
36 * @run_work: Used for scheduling a hardware queue run at a later time.
37 */
38 struct delayed_work run_work;
39 /** @cpumask: Map of available CPUs where this hctx can run. */
40 cpumask_var_t cpumask;
41 /**
42 * @next_cpu: Used by blk_mq_hctx_next_cpu() for round-robin CPU
43 * selection from @cpumask.
44 */
45 int next_cpu;
46 /**
47 * @next_cpu_batch: Counter of how many works left in the batch before
48 * changing to the next CPU.
49 */
50 int next_cpu_batch;
51
52 /** @flags: BLK_MQ_F_* flags. Defines the behaviour of the queue. */
53 unsigned long flags;
54
55 /**
56 * @sched_data: Pointer owned by the IO scheduler attached to a request
57 * queue. It's up to the IO scheduler how to use this pointer.
58 */
59 void *sched_data;
60 /**
61 * @queue: Pointer to the request queue that owns this hardware context.
62 */
63 struct request_queue *queue;
64 /** @fq: Queue of requests that need to perform a flush operation. */
65 struct blk_flush_queue *fq;
66
67 /**
68 * @driver_data: Pointer to data owned by the block driver that created
69 * this hctx
70 */
71 void *driver_data;
72
73 /**
74 * @ctx_map: Bitmap for each software queue. If bit is on, there is a
75 * pending request in that software queue.
76 */
77 struct sbitmap ctx_map;
78
79 /**
80 * @dispatch_from: Software queue to be used when no scheduler was
81 * selected.
82 */
83 struct blk_mq_ctx *dispatch_from;
84 /**
85 * @dispatch_busy: Number used by blk_mq_update_dispatch_busy() to
86 * decide if the hw_queue is busy using Exponential Weighted Moving
87 * Average algorithm.
88 */
89 unsigned int dispatch_busy;
90
91 /** @type: HCTX_TYPE_* flags. Type of hardware queue. */
92 unsigned short type;
93 /** @nr_ctx: Number of software queues. */
94 unsigned short nr_ctx;
95 /** @ctxs: Array of software queues. */
96 struct blk_mq_ctx **ctxs;
97
98 /** @dispatch_wait_lock: Lock for dispatch_wait queue. */
99 spinlock_t dispatch_wait_lock;
100 /**
101 * @dispatch_wait: Waitqueue to put requests when there is no tag
102 * available at the moment, to wait for another try in the future.
103 */
104 wait_queue_entry_t dispatch_wait;
105
106 /**
107 * @wait_index: Index of next available dispatch_wait queue to insert
108 * requests.
109 */
110 atomic_t wait_index;
111
112 /**
113 * @tags: Tags owned by the block driver. A tag at this set is only
114 * assigned when a request is dispatched from a hardware queue.
115 */
116 struct blk_mq_tags *tags;
117 /**
118 * @sched_tags: Tags owned by I/O scheduler. If there is an I/O
119 * scheduler associated with a request queue, a tag is assigned when
120 * that request is allocated. Else, this member is not used.
121 */
122 struct blk_mq_tags *sched_tags;
123
124 /** @queued: Number of queued requests. */
125 unsigned long queued;
126 /** @run: Number of dispatched requests. */
127 unsigned long run;
128 #define BLK_MQ_MAX_DISPATCH_ORDER 7
129 /** @dispatched: Number of dispatch requests by queue. */
130 unsigned long dispatched[BLK_MQ_MAX_DISPATCH_ORDER];
131
132 /** @numa_node: NUMA node the storage adapter has been connected to. */
133 unsigned int numa_node;
134 /** @queue_num: Index of this hardware queue. */
135 unsigned int queue_num;
136
137 /**
138 * @nr_active: Number of active requests. Only used when a tag set is
139 * shared across request queues.
140 */
141 atomic_t nr_active;
142 /**
143 * @elevator_queued: Number of queued requests on hctx.
144 */
145 atomic_t elevator_queued;
146
147 /** @cpuhp_online: List to store request if CPU is going to die */
148 struct hlist_node cpuhp_online;
149 /** @cpuhp_dead: List to store request if some CPU die. */
150 struct hlist_node cpuhp_dead;
151 /** @kobj: Kernel object for sysfs. */
152 struct kobject kobj;
153
154 /** @poll_considered: Count times blk_poll() was called. */
155 unsigned long poll_considered;
156 /** @poll_invoked: Count how many requests blk_poll() polled. */
157 unsigned long poll_invoked;
158 /** @poll_success: Count how many polled requests were completed. */
159 unsigned long poll_success;
160
161 #ifdef CONFIG_BLK_DEBUG_FS
162 /**
163 * @debugfs_dir: debugfs directory for this hardware queue. Named
164 * as cpu<cpu_number>.
165 */
166 struct dentry *debugfs_dir;
167 /** @sched_debugfs_dir: debugfs directory for the scheduler. */
168 struct dentry *sched_debugfs_dir;
169 #endif
170
171 /**
172 * @hctx_list: if this hctx is not in use, this is an entry in
173 * q->unused_hctx_list.
174 */
175 struct list_head hctx_list;
176
177 /**
178 * @srcu: Sleepable RCU. Use as lock when type of the hardware queue is
179 * blocking (BLK_MQ_F_BLOCKING). Must be the last member - see also
180 * blk_mq_hw_ctx_size().
181 */
182 struct srcu_struct srcu[];
183 };
184
185 /**
186 * struct blk_mq_queue_map - Map software queues to hardware queues
187 * @mq_map: CPU ID to hardware queue index map. This is an array
188 * with nr_cpu_ids elements. Each element has a value in the range
189 * [@queue_offset, @queue_offset + @nr_queues).
190 * @nr_queues: Number of hardware queues to map CPU IDs onto.
191 * @queue_offset: First hardware queue to map onto. Used by the PCIe NVMe
192 * driver to map each hardware queue type (enum hctx_type) onto a distinct
193 * set of hardware queues.
194 */
195 struct blk_mq_queue_map {
196 unsigned int *mq_map;
197 unsigned int nr_queues;
198 unsigned int queue_offset;
199 };
200
201 /**
202 * enum hctx_type - Type of hardware queue
203 * @HCTX_TYPE_DEFAULT: All I/O not otherwise accounted for.
204 * @HCTX_TYPE_READ: Just for READ I/O.
205 * @HCTX_TYPE_POLL: Polled I/O of any kind.
206 * @HCTX_MAX_TYPES: Number of types of hctx.
207 */
208 enum hctx_type {
209 HCTX_TYPE_DEFAULT,
210 HCTX_TYPE_READ,
211 HCTX_TYPE_POLL,
212
213 HCTX_MAX_TYPES,
214 };
215
216 /**
217 * struct blk_mq_tag_set - tag set that can be shared between request queues
218 * @map: One or more ctx -> hctx mappings. One map exists for each
219 * hardware queue type (enum hctx_type) that the driver wishes
220 * to support. There are no restrictions on maps being of the
221 * same size, and it's perfectly legal to share maps between
222 * types.
223 * @nr_maps: Number of elements in the @map array. A number in the range
224 * [1, HCTX_MAX_TYPES].
225 * @ops: Pointers to functions that implement block driver behavior.
226 * @nr_hw_queues: Number of hardware queues supported by the block driver that
227 * owns this data structure.
228 * @queue_depth: Number of tags per hardware queue, reserved tags included.
229 * @reserved_tags: Number of tags to set aside for BLK_MQ_REQ_RESERVED tag
230 * allocations.
231 * @cmd_size: Number of additional bytes to allocate per request. The block
232 * driver owns these additional bytes.
233 * @numa_node: NUMA node the storage adapter has been connected to.
234 * @timeout: Request processing timeout in jiffies.
235 * @flags: Zero or more BLK_MQ_F_* flags.
236 * @driver_data: Pointer to data owned by the block driver that created this
237 * tag set.
238 * @active_queues_shared_sbitmap:
239 * number of active request queues per tag set.
240 * @__bitmap_tags: A shared tags sbitmap, used over all hctx's
241 * @__breserved_tags:
242 * A shared reserved tags sbitmap, used over all hctx's
243 * @tags: Tag sets. One tag set per hardware queue. Has @nr_hw_queues
244 * elements.
245 * @tag_list_lock: Serializes tag_list accesses.
246 * @tag_list: List of the request queues that use this tag set. See also
247 * request_queue.tag_set_list.
248 */
249 struct blk_mq_tag_set {
250 struct blk_mq_queue_map map[HCTX_MAX_TYPES];
251 unsigned int nr_maps;
252 const struct blk_mq_ops *ops;
253 unsigned int nr_hw_queues;
254 unsigned int queue_depth;
255 unsigned int reserved_tags;
256 unsigned int cmd_size;
257 int numa_node;
258 unsigned int timeout;
259 unsigned int flags;
260 void *driver_data;
261 atomic_t active_queues_shared_sbitmap;
262
263 struct sbitmap_queue __bitmap_tags;
264 struct sbitmap_queue __breserved_tags;
265 struct blk_mq_tags **tags;
266
267 struct mutex tag_list_lock;
268 struct list_head tag_list;
269 };
270
271 /**
272 * struct blk_mq_queue_data - Data about a request inserted in a queue
273 *
274 * @rq: Request pointer.
275 * @last: If it is the last request in the queue.
276 */
277 struct blk_mq_queue_data {
278 struct request *rq;
279 bool last;
280 };
281
282 typedef bool (busy_iter_fn)(struct blk_mq_hw_ctx *, struct request *, void *,
283 bool);
284 typedef bool (busy_tag_iter_fn)(struct request *, void *, bool);
285
286 /**
287 * struct blk_mq_ops - Callback functions that implements block driver
288 * behaviour.
289 */
290 struct blk_mq_ops {
291 /**
292 * @queue_rq: Queue a new request from block IO.
293 */
294 blk_status_t (*queue_rq)(struct blk_mq_hw_ctx *,
295 const struct blk_mq_queue_data *);
296
297 /**
298 * @commit_rqs: If a driver uses bd->last to judge when to submit
299 * requests to hardware, it must define this function. In case of errors
300 * that make us stop issuing further requests, this hook serves the
301 * purpose of kicking the hardware (which the last request otherwise
302 * would have done).
303 */
304 void (*commit_rqs)(struct blk_mq_hw_ctx *);
305
306 /**
307 * @get_budget: Reserve budget before queue request, once .queue_rq is
308 * run, it is driver's responsibility to release the
309 * reserved budget. Also we have to handle failure case
310 * of .get_budget for avoiding I/O deadlock.
311 */
312 bool (*get_budget)(struct request_queue *);
313
314 /**
315 * @put_budget: Release the reserved budget.
316 */
317 void (*put_budget)(struct request_queue *);
318
319 /**
320 * @timeout: Called on request timeout.
321 */
322 enum blk_eh_timer_return (*timeout)(struct request *, bool);
323
324 /**
325 * @poll: Called to poll for completion of a specific tag.
326 */
327 int (*poll)(struct blk_mq_hw_ctx *);
328
329 /**
330 * @complete: Mark the request as complete.
331 */
332 void (*complete)(struct request *);
333
334 /**
335 * @init_hctx: Called when the block layer side of a hardware queue has
336 * been set up, allowing the driver to allocate/init matching
337 * structures.
338 */
339 int (*init_hctx)(struct blk_mq_hw_ctx *, void *, unsigned int);
340 /**
341 * @exit_hctx: Ditto for exit/teardown.
342 */
343 void (*exit_hctx)(struct blk_mq_hw_ctx *, unsigned int);
344
345 /**
346 * @init_request: Called for every command allocated by the block layer
347 * to allow the driver to set up driver specific data.
348 *
349 * Tag greater than or equal to queue_depth is for setting up
350 * flush request.
351 */
352 int (*init_request)(struct blk_mq_tag_set *set, struct request *,
353 unsigned int, unsigned int);
354 /**
355 * @exit_request: Ditto for exit/teardown.
356 */
357 void (*exit_request)(struct blk_mq_tag_set *set, struct request *,
358 unsigned int);
359
360 /**
361 * @initialize_rq_fn: Called from inside blk_get_request().
362 */
363 void (*initialize_rq_fn)(struct request *rq);
364
365 /**
366 * @cleanup_rq: Called before freeing one request which isn't completed
367 * yet, and usually for freeing the driver private data.
368 */
369 void (*cleanup_rq)(struct request *);
370
371 /**
372 * @busy: If set, returns whether or not this queue currently is busy.
373 */
374 bool (*busy)(struct request_queue *);
375
376 /**
377 * @map_queues: This allows drivers specify their own queue mapping by
378 * overriding the setup-time function that builds the mq_map.
379 */
380 int (*map_queues)(struct blk_mq_tag_set *set);
381
382 #ifdef CONFIG_BLK_DEBUG_FS
383 /**
384 * @show_rq: Used by the debugfs implementation to show driver-specific
385 * information about a request.
386 */
387 void (*show_rq)(struct seq_file *m, struct request *rq);
388 #endif
389 };
390
391 enum {
392 BLK_MQ_F_SHOULD_MERGE = 1 << 0,
393 BLK_MQ_F_TAG_QUEUE_SHARED = 1 << 1,
394 /*
395 * Set when this device requires underlying blk-mq device for
396 * completing IO:
397 */
398 BLK_MQ_F_STACKING = 1 << 2,
399 BLK_MQ_F_TAG_HCTX_SHARED = 1 << 3,
400 BLK_MQ_F_BLOCKING = 1 << 5,
401 BLK_MQ_F_NO_SCHED = 1 << 6,
402 BLK_MQ_F_ALLOC_POLICY_START_BIT = 8,
403 BLK_MQ_F_ALLOC_POLICY_BITS = 1,
404
405 BLK_MQ_S_STOPPED = 0,
406 BLK_MQ_S_TAG_ACTIVE = 1,
407 BLK_MQ_S_SCHED_RESTART = 2,
408
409 /* hw queue is inactive after all its CPUs become offline */
410 BLK_MQ_S_INACTIVE = 3,
411
412 BLK_MQ_MAX_DEPTH = 10240,
413
414 BLK_MQ_CPU_WORK_BATCH = 8,
415 };
416 #define BLK_MQ_FLAG_TO_ALLOC_POLICY(flags) \
417 ((flags >> BLK_MQ_F_ALLOC_POLICY_START_BIT) & \
418 ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1))
419 #define BLK_ALLOC_POLICY_TO_MQ_FLAG(policy) \
420 ((policy & ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1)) \
421 << BLK_MQ_F_ALLOC_POLICY_START_BIT)
422
423 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *);
424 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
425 void *queuedata);
426 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
427 struct request_queue *q,
428 bool elevator_init);
429 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
430 const struct blk_mq_ops *ops,
431 unsigned int queue_depth,
432 unsigned int set_flags);
433 void blk_mq_unregister_dev(struct device *, struct request_queue *);
434
435 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set);
436 void blk_mq_free_tag_set(struct blk_mq_tag_set *set);
437
438 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule);
439
440 void blk_mq_free_request(struct request *rq);
441
442 bool blk_mq_queue_inflight(struct request_queue *q);
443
444 enum {
445 /* return when out of requests */
446 BLK_MQ_REQ_NOWAIT = (__force blk_mq_req_flags_t)(1 << 0),
447 /* allocate from reserved pool */
448 BLK_MQ_REQ_RESERVED = (__force blk_mq_req_flags_t)(1 << 1),
449 /* set RQF_PREEMPT */
450 BLK_MQ_REQ_PREEMPT = (__force blk_mq_req_flags_t)(1 << 3),
451 };
452
453 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
454 blk_mq_req_flags_t flags);
455 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
456 unsigned int op, blk_mq_req_flags_t flags,
457 unsigned int hctx_idx);
458 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag);
459
460 enum {
461 BLK_MQ_UNIQUE_TAG_BITS = 16,
462 BLK_MQ_UNIQUE_TAG_MASK = (1 << BLK_MQ_UNIQUE_TAG_BITS) - 1,
463 };
464
465 u32 blk_mq_unique_tag(struct request *rq);
466
blk_mq_unique_tag_to_hwq(u32 unique_tag)467 static inline u16 blk_mq_unique_tag_to_hwq(u32 unique_tag)
468 {
469 return unique_tag >> BLK_MQ_UNIQUE_TAG_BITS;
470 }
471
blk_mq_unique_tag_to_tag(u32 unique_tag)472 static inline u16 blk_mq_unique_tag_to_tag(u32 unique_tag)
473 {
474 return unique_tag & BLK_MQ_UNIQUE_TAG_MASK;
475 }
476
477 /**
478 * blk_mq_rq_state() - read the current MQ_RQ_* state of a request
479 * @rq: target request.
480 */
blk_mq_rq_state(struct request * rq)481 static inline enum mq_rq_state blk_mq_rq_state(struct request *rq)
482 {
483 return READ_ONCE(rq->state);
484 }
485
blk_mq_request_started(struct request * rq)486 static inline int blk_mq_request_started(struct request *rq)
487 {
488 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
489 }
490
blk_mq_request_completed(struct request * rq)491 static inline int blk_mq_request_completed(struct request *rq)
492 {
493 return blk_mq_rq_state(rq) == MQ_RQ_COMPLETE;
494 }
495
496 void blk_mq_start_request(struct request *rq);
497 void blk_mq_end_request(struct request *rq, blk_status_t error);
498 void __blk_mq_end_request(struct request *rq, blk_status_t error);
499
500 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list);
501 void blk_mq_kick_requeue_list(struct request_queue *q);
502 void blk_mq_delay_kick_requeue_list(struct request_queue *q, unsigned long msecs);
503 void blk_mq_complete_request(struct request *rq);
504 bool blk_mq_complete_request_remote(struct request *rq);
505 bool blk_mq_queue_stopped(struct request_queue *q);
506 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx);
507 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx);
508 void blk_mq_stop_hw_queues(struct request_queue *q);
509 void blk_mq_start_hw_queues(struct request_queue *q);
510 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
511 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async);
512 void blk_mq_quiesce_queue(struct request_queue *q);
513 void blk_mq_unquiesce_queue(struct request_queue *q);
514 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs);
515 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
516 void blk_mq_run_hw_queues(struct request_queue *q, bool async);
517 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs);
518 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset,
519 busy_tag_iter_fn *fn, void *priv);
520 void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset);
521 void blk_mq_freeze_queue(struct request_queue *q);
522 void blk_mq_unfreeze_queue(struct request_queue *q);
523 void blk_freeze_queue_start(struct request_queue *q);
524 void blk_mq_freeze_queue_wait(struct request_queue *q);
525 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
526 unsigned long timeout);
527
528 int blk_mq_map_queues(struct blk_mq_queue_map *qmap);
529 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues);
530
531 void blk_mq_quiesce_queue_nowait(struct request_queue *q);
532
533 unsigned int blk_mq_rq_cpu(struct request *rq);
534
535 bool __blk_should_fake_timeout(struct request_queue *q);
blk_should_fake_timeout(struct request_queue * q)536 static inline bool blk_should_fake_timeout(struct request_queue *q)
537 {
538 if (IS_ENABLED(CONFIG_FAIL_IO_TIMEOUT) &&
539 test_bit(QUEUE_FLAG_FAIL_IO, &q->queue_flags))
540 return __blk_should_fake_timeout(q);
541 return false;
542 }
543
544 /**
545 * blk_mq_rq_from_pdu - cast a PDU to a request
546 * @pdu: the PDU (Protocol Data Unit) to be casted
547 *
548 * Return: request
549 *
550 * Driver command data is immediately after the request. So subtract request
551 * size to get back to the original request.
552 */
blk_mq_rq_from_pdu(void * pdu)553 static inline struct request *blk_mq_rq_from_pdu(void *pdu)
554 {
555 return pdu - sizeof(struct request);
556 }
557
558 /**
559 * blk_mq_rq_to_pdu - cast a request to a PDU
560 * @rq: the request to be casted
561 *
562 * Return: pointer to the PDU
563 *
564 * Driver command data is immediately after the request. So add request to get
565 * the PDU.
566 */
blk_mq_rq_to_pdu(struct request * rq)567 static inline void *blk_mq_rq_to_pdu(struct request *rq)
568 {
569 return rq + 1;
570 }
571
572 #define queue_for_each_hw_ctx(q, hctx, i) \
573 for ((i) = 0; (i) < (q)->nr_hw_queues && \
574 ({ hctx = (q)->queue_hw_ctx[i]; 1; }); (i)++)
575
576 #define hctx_for_each_ctx(hctx, ctx, i) \
577 for ((i) = 0; (i) < (hctx)->nr_ctx && \
578 ({ ctx = (hctx)->ctxs[(i)]; 1; }); (i)++)
579
request_to_qc_t(struct blk_mq_hw_ctx * hctx,struct request * rq)580 static inline blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx,
581 struct request *rq)
582 {
583 if (rq->tag != -1)
584 return rq->tag | (hctx->queue_num << BLK_QC_T_SHIFT);
585
586 return rq->internal_tag | (hctx->queue_num << BLK_QC_T_SHIFT) |
587 BLK_QC_T_INTERNAL;
588 }
589
blk_mq_cleanup_rq(struct request * rq)590 static inline void blk_mq_cleanup_rq(struct request *rq)
591 {
592 if (rq->q->mq_ops->cleanup_rq)
593 rq->q->mq_ops->cleanup_rq(rq);
594 }
595
596 blk_qc_t blk_mq_submit_bio(struct bio *bio);
597
598 #endif
599