1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2007-2017 Nicira, Inc.
4 */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/skbuff.h>
9 #include <linux/in.h>
10 #include <linux/ip.h>
11 #include <linux/openvswitch.h>
12 #include <linux/sctp.h>
13 #include <linux/tcp.h>
14 #include <linux/udp.h>
15 #include <linux/in6.h>
16 #include <linux/if_arp.h>
17 #include <linux/if_vlan.h>
18
19 #include <net/dst.h>
20 #include <net/ip.h>
21 #include <net/ipv6.h>
22 #include <net/ip6_fib.h>
23 #include <net/checksum.h>
24 #include <net/dsfield.h>
25 #include <net/mpls.h>
26 #include <net/sctp/checksum.h>
27
28 #include "datapath.h"
29 #include "flow.h"
30 #include "conntrack.h"
31 #include "vport.h"
32 #include "flow_netlink.h"
33
34 struct deferred_action {
35 struct sk_buff *skb;
36 const struct nlattr *actions;
37 int actions_len;
38
39 /* Store pkt_key clone when creating deferred action. */
40 struct sw_flow_key pkt_key;
41 };
42
43 #define MAX_L2_LEN (VLAN_ETH_HLEN + 3 * MPLS_HLEN)
44 struct ovs_frag_data {
45 unsigned long dst;
46 struct vport *vport;
47 struct ovs_skb_cb cb;
48 __be16 inner_protocol;
49 u16 network_offset; /* valid only for MPLS */
50 u16 vlan_tci;
51 __be16 vlan_proto;
52 unsigned int l2_len;
53 u8 mac_proto;
54 u8 l2_data[MAX_L2_LEN];
55 };
56
57 static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
58
59 #define DEFERRED_ACTION_FIFO_SIZE 10
60 #define OVS_RECURSION_LIMIT 5
61 #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
62 struct action_fifo {
63 int head;
64 int tail;
65 /* Deferred action fifo queue storage. */
66 struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
67 };
68
69 struct action_flow_keys {
70 struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
71 };
72
73 static struct action_fifo __percpu *action_fifos;
74 static struct action_flow_keys __percpu *flow_keys;
75 static DEFINE_PER_CPU(int, exec_actions_level);
76
77 /* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
78 * space. Return NULL if out of key spaces.
79 */
clone_key(const struct sw_flow_key * key_)80 static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
81 {
82 struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
83 int level = this_cpu_read(exec_actions_level);
84 struct sw_flow_key *key = NULL;
85
86 if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
87 key = &keys->key[level - 1];
88 *key = *key_;
89 }
90
91 return key;
92 }
93
action_fifo_init(struct action_fifo * fifo)94 static void action_fifo_init(struct action_fifo *fifo)
95 {
96 fifo->head = 0;
97 fifo->tail = 0;
98 }
99
action_fifo_is_empty(const struct action_fifo * fifo)100 static bool action_fifo_is_empty(const struct action_fifo *fifo)
101 {
102 return (fifo->head == fifo->tail);
103 }
104
action_fifo_get(struct action_fifo * fifo)105 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
106 {
107 if (action_fifo_is_empty(fifo))
108 return NULL;
109
110 return &fifo->fifo[fifo->tail++];
111 }
112
action_fifo_put(struct action_fifo * fifo)113 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
114 {
115 if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
116 return NULL;
117
118 return &fifo->fifo[fifo->head++];
119 }
120
121 /* Return true if fifo is not full */
add_deferred_actions(struct sk_buff * skb,const struct sw_flow_key * key,const struct nlattr * actions,const int actions_len)122 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
123 const struct sw_flow_key *key,
124 const struct nlattr *actions,
125 const int actions_len)
126 {
127 struct action_fifo *fifo;
128 struct deferred_action *da;
129
130 fifo = this_cpu_ptr(action_fifos);
131 da = action_fifo_put(fifo);
132 if (da) {
133 da->skb = skb;
134 da->actions = actions;
135 da->actions_len = actions_len;
136 da->pkt_key = *key;
137 }
138
139 return da;
140 }
141
invalidate_flow_key(struct sw_flow_key * key)142 static void invalidate_flow_key(struct sw_flow_key *key)
143 {
144 key->mac_proto |= SW_FLOW_KEY_INVALID;
145 }
146
is_flow_key_valid(const struct sw_flow_key * key)147 static bool is_flow_key_valid(const struct sw_flow_key *key)
148 {
149 return !(key->mac_proto & SW_FLOW_KEY_INVALID);
150 }
151
152 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
153 struct sw_flow_key *key,
154 u32 recirc_id,
155 const struct nlattr *actions, int len,
156 bool last, bool clone_flow_key);
157
158 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
159 struct sw_flow_key *key,
160 const struct nlattr *attr, int len);
161
push_mpls(struct sk_buff * skb,struct sw_flow_key * key,__be32 mpls_lse,__be16 mpls_ethertype,__u16 mac_len)162 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
163 __be32 mpls_lse, __be16 mpls_ethertype, __u16 mac_len)
164 {
165 int err;
166
167 err = skb_mpls_push(skb, mpls_lse, mpls_ethertype, mac_len, !!mac_len);
168 if (err)
169 return err;
170
171 if (!mac_len)
172 key->mac_proto = MAC_PROTO_NONE;
173
174 invalidate_flow_key(key);
175 return 0;
176 }
177
pop_mpls(struct sk_buff * skb,struct sw_flow_key * key,const __be16 ethertype)178 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
179 const __be16 ethertype)
180 {
181 int err;
182
183 err = skb_mpls_pop(skb, ethertype, skb->mac_len,
184 ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET);
185 if (err)
186 return err;
187
188 if (ethertype == htons(ETH_P_TEB))
189 key->mac_proto = MAC_PROTO_ETHERNET;
190
191 invalidate_flow_key(key);
192 return 0;
193 }
194
set_mpls(struct sk_buff * skb,struct sw_flow_key * flow_key,const __be32 * mpls_lse,const __be32 * mask)195 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
196 const __be32 *mpls_lse, const __be32 *mask)
197 {
198 struct mpls_shim_hdr *stack;
199 __be32 lse;
200 int err;
201
202 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
203 return -ENOMEM;
204
205 stack = mpls_hdr(skb);
206 lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
207 err = skb_mpls_update_lse(skb, lse);
208 if (err)
209 return err;
210
211 flow_key->mpls.lse[0] = lse;
212 return 0;
213 }
214
pop_vlan(struct sk_buff * skb,struct sw_flow_key * key)215 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
216 {
217 int err;
218
219 err = skb_vlan_pop(skb);
220 if (skb_vlan_tag_present(skb)) {
221 invalidate_flow_key(key);
222 } else {
223 key->eth.vlan.tci = 0;
224 key->eth.vlan.tpid = 0;
225 }
226 return err;
227 }
228
push_vlan(struct sk_buff * skb,struct sw_flow_key * key,const struct ovs_action_push_vlan * vlan)229 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
230 const struct ovs_action_push_vlan *vlan)
231 {
232 if (skb_vlan_tag_present(skb)) {
233 invalidate_flow_key(key);
234 } else {
235 key->eth.vlan.tci = vlan->vlan_tci;
236 key->eth.vlan.tpid = vlan->vlan_tpid;
237 }
238 return skb_vlan_push(skb, vlan->vlan_tpid,
239 ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK);
240 }
241
242 /* 'src' is already properly masked. */
ether_addr_copy_masked(u8 * dst_,const u8 * src_,const u8 * mask_)243 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
244 {
245 u16 *dst = (u16 *)dst_;
246 const u16 *src = (const u16 *)src_;
247 const u16 *mask = (const u16 *)mask_;
248
249 OVS_SET_MASKED(dst[0], src[0], mask[0]);
250 OVS_SET_MASKED(dst[1], src[1], mask[1]);
251 OVS_SET_MASKED(dst[2], src[2], mask[2]);
252 }
253
set_eth_addr(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_ethernet * key,const struct ovs_key_ethernet * mask)254 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
255 const struct ovs_key_ethernet *key,
256 const struct ovs_key_ethernet *mask)
257 {
258 int err;
259
260 err = skb_ensure_writable(skb, ETH_HLEN);
261 if (unlikely(err))
262 return err;
263
264 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
265
266 ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
267 mask->eth_src);
268 ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
269 mask->eth_dst);
270
271 skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
272
273 ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
274 ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
275 return 0;
276 }
277
278 /* pop_eth does not support VLAN packets as this action is never called
279 * for them.
280 */
pop_eth(struct sk_buff * skb,struct sw_flow_key * key)281 static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
282 {
283 int err;
284
285 err = skb_eth_pop(skb);
286 if (err)
287 return err;
288
289 /* safe right before invalidate_flow_key */
290 key->mac_proto = MAC_PROTO_NONE;
291 invalidate_flow_key(key);
292 return 0;
293 }
294
push_eth(struct sk_buff * skb,struct sw_flow_key * key,const struct ovs_action_push_eth * ethh)295 static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
296 const struct ovs_action_push_eth *ethh)
297 {
298 int err;
299
300 err = skb_eth_push(skb, ethh->addresses.eth_dst,
301 ethh->addresses.eth_src);
302 if (err)
303 return err;
304
305 /* safe right before invalidate_flow_key */
306 key->mac_proto = MAC_PROTO_ETHERNET;
307 invalidate_flow_key(key);
308 return 0;
309 }
310
push_nsh(struct sk_buff * skb,struct sw_flow_key * key,const struct nshhdr * nh)311 static int push_nsh(struct sk_buff *skb, struct sw_flow_key *key,
312 const struct nshhdr *nh)
313 {
314 int err;
315
316 err = nsh_push(skb, nh);
317 if (err)
318 return err;
319
320 /* safe right before invalidate_flow_key */
321 key->mac_proto = MAC_PROTO_NONE;
322 invalidate_flow_key(key);
323 return 0;
324 }
325
pop_nsh(struct sk_buff * skb,struct sw_flow_key * key)326 static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key)
327 {
328 int err;
329
330 err = nsh_pop(skb);
331 if (err)
332 return err;
333
334 /* safe right before invalidate_flow_key */
335 if (skb->protocol == htons(ETH_P_TEB))
336 key->mac_proto = MAC_PROTO_ETHERNET;
337 else
338 key->mac_proto = MAC_PROTO_NONE;
339 invalidate_flow_key(key);
340 return 0;
341 }
342
update_ip_l4_checksum(struct sk_buff * skb,struct iphdr * nh,__be32 addr,__be32 new_addr)343 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
344 __be32 addr, __be32 new_addr)
345 {
346 int transport_len = skb->len - skb_transport_offset(skb);
347
348 if (nh->frag_off & htons(IP_OFFSET))
349 return;
350
351 if (nh->protocol == IPPROTO_TCP) {
352 if (likely(transport_len >= sizeof(struct tcphdr)))
353 inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
354 addr, new_addr, true);
355 } else if (nh->protocol == IPPROTO_UDP) {
356 if (likely(transport_len >= sizeof(struct udphdr))) {
357 struct udphdr *uh = udp_hdr(skb);
358
359 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
360 inet_proto_csum_replace4(&uh->check, skb,
361 addr, new_addr, true);
362 if (!uh->check)
363 uh->check = CSUM_MANGLED_0;
364 }
365 }
366 }
367 }
368
set_ip_addr(struct sk_buff * skb,struct iphdr * nh,__be32 * addr,__be32 new_addr)369 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
370 __be32 *addr, __be32 new_addr)
371 {
372 update_ip_l4_checksum(skb, nh, *addr, new_addr);
373 csum_replace4(&nh->check, *addr, new_addr);
374 skb_clear_hash(skb);
375 *addr = new_addr;
376 }
377
update_ipv6_checksum(struct sk_buff * skb,u8 l4_proto,__be32 addr[4],const __be32 new_addr[4])378 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
379 __be32 addr[4], const __be32 new_addr[4])
380 {
381 int transport_len = skb->len - skb_transport_offset(skb);
382
383 if (l4_proto == NEXTHDR_TCP) {
384 if (likely(transport_len >= sizeof(struct tcphdr)))
385 inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
386 addr, new_addr, true);
387 } else if (l4_proto == NEXTHDR_UDP) {
388 if (likely(transport_len >= sizeof(struct udphdr))) {
389 struct udphdr *uh = udp_hdr(skb);
390
391 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
392 inet_proto_csum_replace16(&uh->check, skb,
393 addr, new_addr, true);
394 if (!uh->check)
395 uh->check = CSUM_MANGLED_0;
396 }
397 }
398 } else if (l4_proto == NEXTHDR_ICMP) {
399 if (likely(transport_len >= sizeof(struct icmp6hdr)))
400 inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
401 skb, addr, new_addr, true);
402 }
403 }
404
mask_ipv6_addr(const __be32 old[4],const __be32 addr[4],const __be32 mask[4],__be32 masked[4])405 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
406 const __be32 mask[4], __be32 masked[4])
407 {
408 masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
409 masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
410 masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
411 masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
412 }
413
set_ipv6_addr(struct sk_buff * skb,u8 l4_proto,__be32 addr[4],const __be32 new_addr[4],bool recalculate_csum)414 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
415 __be32 addr[4], const __be32 new_addr[4],
416 bool recalculate_csum)
417 {
418 if (recalculate_csum)
419 update_ipv6_checksum(skb, l4_proto, addr, new_addr);
420
421 skb_clear_hash(skb);
422 memcpy(addr, new_addr, sizeof(__be32[4]));
423 }
424
set_ipv6_fl(struct ipv6hdr * nh,u32 fl,u32 mask)425 static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask)
426 {
427 /* Bits 21-24 are always unmasked, so this retains their values. */
428 OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16));
429 OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8));
430 OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask);
431 }
432
set_ip_ttl(struct sk_buff * skb,struct iphdr * nh,u8 new_ttl,u8 mask)433 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
434 u8 mask)
435 {
436 new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
437
438 csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
439 nh->ttl = new_ttl;
440 }
441
set_ipv4(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_ipv4 * key,const struct ovs_key_ipv4 * mask)442 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
443 const struct ovs_key_ipv4 *key,
444 const struct ovs_key_ipv4 *mask)
445 {
446 struct iphdr *nh;
447 __be32 new_addr;
448 int err;
449
450 err = skb_ensure_writable(skb, skb_network_offset(skb) +
451 sizeof(struct iphdr));
452 if (unlikely(err))
453 return err;
454
455 nh = ip_hdr(skb);
456
457 /* Setting an IP addresses is typically only a side effect of
458 * matching on them in the current userspace implementation, so it
459 * makes sense to check if the value actually changed.
460 */
461 if (mask->ipv4_src) {
462 new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
463
464 if (unlikely(new_addr != nh->saddr)) {
465 set_ip_addr(skb, nh, &nh->saddr, new_addr);
466 flow_key->ipv4.addr.src = new_addr;
467 }
468 }
469 if (mask->ipv4_dst) {
470 new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
471
472 if (unlikely(new_addr != nh->daddr)) {
473 set_ip_addr(skb, nh, &nh->daddr, new_addr);
474 flow_key->ipv4.addr.dst = new_addr;
475 }
476 }
477 if (mask->ipv4_tos) {
478 ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
479 flow_key->ip.tos = nh->tos;
480 }
481 if (mask->ipv4_ttl) {
482 set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
483 flow_key->ip.ttl = nh->ttl;
484 }
485
486 return 0;
487 }
488
is_ipv6_mask_nonzero(const __be32 addr[4])489 static bool is_ipv6_mask_nonzero(const __be32 addr[4])
490 {
491 return !!(addr[0] | addr[1] | addr[2] | addr[3]);
492 }
493
set_ipv6(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_ipv6 * key,const struct ovs_key_ipv6 * mask)494 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
495 const struct ovs_key_ipv6 *key,
496 const struct ovs_key_ipv6 *mask)
497 {
498 struct ipv6hdr *nh;
499 int err;
500
501 err = skb_ensure_writable(skb, skb_network_offset(skb) +
502 sizeof(struct ipv6hdr));
503 if (unlikely(err))
504 return err;
505
506 nh = ipv6_hdr(skb);
507
508 /* Setting an IP addresses is typically only a side effect of
509 * matching on them in the current userspace implementation, so it
510 * makes sense to check if the value actually changed.
511 */
512 if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
513 __be32 *saddr = (__be32 *)&nh->saddr;
514 __be32 masked[4];
515
516 mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
517
518 if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
519 set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
520 true);
521 memcpy(&flow_key->ipv6.addr.src, masked,
522 sizeof(flow_key->ipv6.addr.src));
523 }
524 }
525 if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
526 unsigned int offset = 0;
527 int flags = IP6_FH_F_SKIP_RH;
528 bool recalc_csum = true;
529 __be32 *daddr = (__be32 *)&nh->daddr;
530 __be32 masked[4];
531
532 mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
533
534 if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
535 if (ipv6_ext_hdr(nh->nexthdr))
536 recalc_csum = (ipv6_find_hdr(skb, &offset,
537 NEXTHDR_ROUTING,
538 NULL, &flags)
539 != NEXTHDR_ROUTING);
540
541 set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
542 recalc_csum);
543 memcpy(&flow_key->ipv6.addr.dst, masked,
544 sizeof(flow_key->ipv6.addr.dst));
545 }
546 }
547 if (mask->ipv6_tclass) {
548 ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass);
549 flow_key->ip.tos = ipv6_get_dsfield(nh);
550 }
551 if (mask->ipv6_label) {
552 set_ipv6_fl(nh, ntohl(key->ipv6_label),
553 ntohl(mask->ipv6_label));
554 flow_key->ipv6.label =
555 *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
556 }
557 if (mask->ipv6_hlimit) {
558 OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit,
559 mask->ipv6_hlimit);
560 flow_key->ip.ttl = nh->hop_limit;
561 }
562 return 0;
563 }
564
set_nsh(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct nlattr * a)565 static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key,
566 const struct nlattr *a)
567 {
568 struct nshhdr *nh;
569 size_t length;
570 int err;
571 u8 flags;
572 u8 ttl;
573 int i;
574
575 struct ovs_key_nsh key;
576 struct ovs_key_nsh mask;
577
578 err = nsh_key_from_nlattr(a, &key, &mask);
579 if (err)
580 return err;
581
582 /* Make sure the NSH base header is there */
583 if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN))
584 return -ENOMEM;
585
586 nh = nsh_hdr(skb);
587 length = nsh_hdr_len(nh);
588
589 /* Make sure the whole NSH header is there */
590 err = skb_ensure_writable(skb, skb_network_offset(skb) +
591 length);
592 if (unlikely(err))
593 return err;
594
595 nh = nsh_hdr(skb);
596 skb_postpull_rcsum(skb, nh, length);
597 flags = nsh_get_flags(nh);
598 flags = OVS_MASKED(flags, key.base.flags, mask.base.flags);
599 flow_key->nsh.base.flags = flags;
600 ttl = nsh_get_ttl(nh);
601 ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl);
602 flow_key->nsh.base.ttl = ttl;
603 nsh_set_flags_and_ttl(nh, flags, ttl);
604 nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr,
605 mask.base.path_hdr);
606 flow_key->nsh.base.path_hdr = nh->path_hdr;
607 switch (nh->mdtype) {
608 case NSH_M_TYPE1:
609 for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) {
610 nh->md1.context[i] =
611 OVS_MASKED(nh->md1.context[i], key.context[i],
612 mask.context[i]);
613 }
614 memcpy(flow_key->nsh.context, nh->md1.context,
615 sizeof(nh->md1.context));
616 break;
617 case NSH_M_TYPE2:
618 memset(flow_key->nsh.context, 0,
619 sizeof(flow_key->nsh.context));
620 break;
621 default:
622 return -EINVAL;
623 }
624 skb_postpush_rcsum(skb, nh, length);
625 return 0;
626 }
627
628 /* Must follow skb_ensure_writable() since that can move the skb data. */
set_tp_port(struct sk_buff * skb,__be16 * port,__be16 new_port,__sum16 * check)629 static void set_tp_port(struct sk_buff *skb, __be16 *port,
630 __be16 new_port, __sum16 *check)
631 {
632 inet_proto_csum_replace2(check, skb, *port, new_port, false);
633 *port = new_port;
634 }
635
set_udp(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_udp * key,const struct ovs_key_udp * mask)636 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
637 const struct ovs_key_udp *key,
638 const struct ovs_key_udp *mask)
639 {
640 struct udphdr *uh;
641 __be16 src, dst;
642 int err;
643
644 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
645 sizeof(struct udphdr));
646 if (unlikely(err))
647 return err;
648
649 uh = udp_hdr(skb);
650 /* Either of the masks is non-zero, so do not bother checking them. */
651 src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
652 dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
653
654 if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
655 if (likely(src != uh->source)) {
656 set_tp_port(skb, &uh->source, src, &uh->check);
657 flow_key->tp.src = src;
658 }
659 if (likely(dst != uh->dest)) {
660 set_tp_port(skb, &uh->dest, dst, &uh->check);
661 flow_key->tp.dst = dst;
662 }
663
664 if (unlikely(!uh->check))
665 uh->check = CSUM_MANGLED_0;
666 } else {
667 uh->source = src;
668 uh->dest = dst;
669 flow_key->tp.src = src;
670 flow_key->tp.dst = dst;
671 }
672
673 skb_clear_hash(skb);
674
675 return 0;
676 }
677
set_tcp(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_tcp * key,const struct ovs_key_tcp * mask)678 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
679 const struct ovs_key_tcp *key,
680 const struct ovs_key_tcp *mask)
681 {
682 struct tcphdr *th;
683 __be16 src, dst;
684 int err;
685
686 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
687 sizeof(struct tcphdr));
688 if (unlikely(err))
689 return err;
690
691 th = tcp_hdr(skb);
692 src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
693 if (likely(src != th->source)) {
694 set_tp_port(skb, &th->source, src, &th->check);
695 flow_key->tp.src = src;
696 }
697 dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
698 if (likely(dst != th->dest)) {
699 set_tp_port(skb, &th->dest, dst, &th->check);
700 flow_key->tp.dst = dst;
701 }
702 skb_clear_hash(skb);
703
704 return 0;
705 }
706
set_sctp(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_sctp * key,const struct ovs_key_sctp * mask)707 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
708 const struct ovs_key_sctp *key,
709 const struct ovs_key_sctp *mask)
710 {
711 unsigned int sctphoff = skb_transport_offset(skb);
712 struct sctphdr *sh;
713 __le32 old_correct_csum, new_csum, old_csum;
714 int err;
715
716 err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
717 if (unlikely(err))
718 return err;
719
720 sh = sctp_hdr(skb);
721 old_csum = sh->checksum;
722 old_correct_csum = sctp_compute_cksum(skb, sctphoff);
723
724 sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
725 sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
726
727 new_csum = sctp_compute_cksum(skb, sctphoff);
728
729 /* Carry any checksum errors through. */
730 sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
731
732 skb_clear_hash(skb);
733 flow_key->tp.src = sh->source;
734 flow_key->tp.dst = sh->dest;
735
736 return 0;
737 }
738
ovs_vport_output(struct net * net,struct sock * sk,struct sk_buff * skb)739 static int ovs_vport_output(struct net *net, struct sock *sk,
740 struct sk_buff *skb)
741 {
742 struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
743 struct vport *vport = data->vport;
744
745 if (skb_cow_head(skb, data->l2_len) < 0) {
746 kfree_skb(skb);
747 return -ENOMEM;
748 }
749
750 __skb_dst_copy(skb, data->dst);
751 *OVS_CB(skb) = data->cb;
752 skb->inner_protocol = data->inner_protocol;
753 if (data->vlan_tci & VLAN_CFI_MASK)
754 __vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK);
755 else
756 __vlan_hwaccel_clear_tag(skb);
757
758 /* Reconstruct the MAC header. */
759 skb_push(skb, data->l2_len);
760 memcpy(skb->data, &data->l2_data, data->l2_len);
761 skb_postpush_rcsum(skb, skb->data, data->l2_len);
762 skb_reset_mac_header(skb);
763
764 if (eth_p_mpls(skb->protocol)) {
765 skb->inner_network_header = skb->network_header;
766 skb_set_network_header(skb, data->network_offset);
767 skb_reset_mac_len(skb);
768 }
769
770 ovs_vport_send(vport, skb, data->mac_proto);
771 return 0;
772 }
773
774 static unsigned int
ovs_dst_get_mtu(const struct dst_entry * dst)775 ovs_dst_get_mtu(const struct dst_entry *dst)
776 {
777 return dst->dev->mtu;
778 }
779
780 static struct dst_ops ovs_dst_ops = {
781 .family = AF_UNSPEC,
782 .mtu = ovs_dst_get_mtu,
783 };
784
785 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
786 * ovs_vport_output(), which is called once per fragmented packet.
787 */
prepare_frag(struct vport * vport,struct sk_buff * skb,u16 orig_network_offset,u8 mac_proto)788 static void prepare_frag(struct vport *vport, struct sk_buff *skb,
789 u16 orig_network_offset, u8 mac_proto)
790 {
791 unsigned int hlen = skb_network_offset(skb);
792 struct ovs_frag_data *data;
793
794 data = this_cpu_ptr(&ovs_frag_data_storage);
795 data->dst = skb->_skb_refdst;
796 data->vport = vport;
797 data->cb = *OVS_CB(skb);
798 data->inner_protocol = skb->inner_protocol;
799 data->network_offset = orig_network_offset;
800 if (skb_vlan_tag_present(skb))
801 data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK;
802 else
803 data->vlan_tci = 0;
804 data->vlan_proto = skb->vlan_proto;
805 data->mac_proto = mac_proto;
806 data->l2_len = hlen;
807 memcpy(&data->l2_data, skb->data, hlen);
808
809 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
810 skb_pull(skb, hlen);
811 }
812
ovs_fragment(struct net * net,struct vport * vport,struct sk_buff * skb,u16 mru,struct sw_flow_key * key)813 static void ovs_fragment(struct net *net, struct vport *vport,
814 struct sk_buff *skb, u16 mru,
815 struct sw_flow_key *key)
816 {
817 u16 orig_network_offset = 0;
818
819 if (eth_p_mpls(skb->protocol)) {
820 orig_network_offset = skb_network_offset(skb);
821 skb->network_header = skb->inner_network_header;
822 }
823
824 if (skb_network_offset(skb) > MAX_L2_LEN) {
825 OVS_NLERR(1, "L2 header too long to fragment");
826 goto err;
827 }
828
829 if (key->eth.type == htons(ETH_P_IP)) {
830 struct dst_entry ovs_dst;
831 unsigned long orig_dst;
832
833 prepare_frag(vport, skb, orig_network_offset,
834 ovs_key_mac_proto(key));
835 dst_init(&ovs_dst, &ovs_dst_ops, NULL, 1,
836 DST_OBSOLETE_NONE, DST_NOCOUNT);
837 ovs_dst.dev = vport->dev;
838
839 orig_dst = skb->_skb_refdst;
840 skb_dst_set_noref(skb, &ovs_dst);
841 IPCB(skb)->frag_max_size = mru;
842
843 ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
844 refdst_drop(orig_dst);
845 } else if (key->eth.type == htons(ETH_P_IPV6)) {
846 unsigned long orig_dst;
847 struct rt6_info ovs_rt;
848
849 prepare_frag(vport, skb, orig_network_offset,
850 ovs_key_mac_proto(key));
851 memset(&ovs_rt, 0, sizeof(ovs_rt));
852 dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
853 DST_OBSOLETE_NONE, DST_NOCOUNT);
854 ovs_rt.dst.dev = vport->dev;
855
856 orig_dst = skb->_skb_refdst;
857 skb_dst_set_noref(skb, &ovs_rt.dst);
858 IP6CB(skb)->frag_max_size = mru;
859
860 ipv6_stub->ipv6_fragment(net, skb->sk, skb, ovs_vport_output);
861 refdst_drop(orig_dst);
862 } else {
863 WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
864 ovs_vport_name(vport), ntohs(key->eth.type), mru,
865 vport->dev->mtu);
866 goto err;
867 }
868
869 return;
870 err:
871 kfree_skb(skb);
872 }
873
do_output(struct datapath * dp,struct sk_buff * skb,int out_port,struct sw_flow_key * key)874 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
875 struct sw_flow_key *key)
876 {
877 struct vport *vport = ovs_vport_rcu(dp, out_port);
878
879 if (likely(vport)) {
880 u16 mru = OVS_CB(skb)->mru;
881 u32 cutlen = OVS_CB(skb)->cutlen;
882
883 if (unlikely(cutlen > 0)) {
884 if (skb->len - cutlen > ovs_mac_header_len(key))
885 pskb_trim(skb, skb->len - cutlen);
886 else
887 pskb_trim(skb, ovs_mac_header_len(key));
888 }
889
890 if (likely(!mru ||
891 (skb->len <= mru + vport->dev->hard_header_len))) {
892 ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
893 } else if (mru <= vport->dev->mtu) {
894 struct net *net = read_pnet(&dp->net);
895
896 ovs_fragment(net, vport, skb, mru, key);
897 } else {
898 kfree_skb(skb);
899 }
900 } else {
901 kfree_skb(skb);
902 }
903 }
904
output_userspace(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr,const struct nlattr * actions,int actions_len,uint32_t cutlen)905 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
906 struct sw_flow_key *key, const struct nlattr *attr,
907 const struct nlattr *actions, int actions_len,
908 uint32_t cutlen)
909 {
910 struct dp_upcall_info upcall;
911 const struct nlattr *a;
912 int rem;
913
914 memset(&upcall, 0, sizeof(upcall));
915 upcall.cmd = OVS_PACKET_CMD_ACTION;
916 upcall.mru = OVS_CB(skb)->mru;
917
918 for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
919 a = nla_next(a, &rem)) {
920 switch (nla_type(a)) {
921 case OVS_USERSPACE_ATTR_USERDATA:
922 upcall.userdata = a;
923 break;
924
925 case OVS_USERSPACE_ATTR_PID:
926 upcall.portid = nla_get_u32(a);
927 break;
928
929 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
930 /* Get out tunnel info. */
931 struct vport *vport;
932
933 vport = ovs_vport_rcu(dp, nla_get_u32(a));
934 if (vport) {
935 int err;
936
937 err = dev_fill_metadata_dst(vport->dev, skb);
938 if (!err)
939 upcall.egress_tun_info = skb_tunnel_info(skb);
940 }
941
942 break;
943 }
944
945 case OVS_USERSPACE_ATTR_ACTIONS: {
946 /* Include actions. */
947 upcall.actions = actions;
948 upcall.actions_len = actions_len;
949 break;
950 }
951
952 } /* End of switch. */
953 }
954
955 return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
956 }
957
dec_ttl_exception_handler(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr,bool last)958 static int dec_ttl_exception_handler(struct datapath *dp, struct sk_buff *skb,
959 struct sw_flow_key *key,
960 const struct nlattr *attr, bool last)
961 {
962 /* The first action is always 'OVS_DEC_TTL_ATTR_ARG'. */
963 struct nlattr *dec_ttl_arg = nla_data(attr);
964
965 if (nla_len(dec_ttl_arg)) {
966 struct nlattr *actions = nla_data(dec_ttl_arg);
967
968 if (actions)
969 return clone_execute(dp, skb, key, 0, nla_data(actions),
970 nla_len(actions), last, false);
971 }
972 consume_skb(skb);
973 return 0;
974 }
975
976 /* When 'last' is true, sample() should always consume the 'skb'.
977 * Otherwise, sample() should keep 'skb' intact regardless what
978 * actions are executed within sample().
979 */
sample(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr,bool last)980 static int sample(struct datapath *dp, struct sk_buff *skb,
981 struct sw_flow_key *key, const struct nlattr *attr,
982 bool last)
983 {
984 struct nlattr *actions;
985 struct nlattr *sample_arg;
986 int rem = nla_len(attr);
987 const struct sample_arg *arg;
988 bool clone_flow_key;
989
990 /* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
991 sample_arg = nla_data(attr);
992 arg = nla_data(sample_arg);
993 actions = nla_next(sample_arg, &rem);
994
995 if ((arg->probability != U32_MAX) &&
996 (!arg->probability || prandom_u32() > arg->probability)) {
997 if (last)
998 consume_skb(skb);
999 return 0;
1000 }
1001
1002 clone_flow_key = !arg->exec;
1003 return clone_execute(dp, skb, key, 0, actions, rem, last,
1004 clone_flow_key);
1005 }
1006
1007 /* When 'last' is true, clone() should always consume the 'skb'.
1008 * Otherwise, clone() should keep 'skb' intact regardless what
1009 * actions are executed within clone().
1010 */
clone(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr,bool last)1011 static int clone(struct datapath *dp, struct sk_buff *skb,
1012 struct sw_flow_key *key, const struct nlattr *attr,
1013 bool last)
1014 {
1015 struct nlattr *actions;
1016 struct nlattr *clone_arg;
1017 int rem = nla_len(attr);
1018 bool dont_clone_flow_key;
1019
1020 /* The first action is always 'OVS_CLONE_ATTR_ARG'. */
1021 clone_arg = nla_data(attr);
1022 dont_clone_flow_key = nla_get_u32(clone_arg);
1023 actions = nla_next(clone_arg, &rem);
1024
1025 return clone_execute(dp, skb, key, 0, actions, rem, last,
1026 !dont_clone_flow_key);
1027 }
1028
execute_hash(struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr)1029 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
1030 const struct nlattr *attr)
1031 {
1032 struct ovs_action_hash *hash_act = nla_data(attr);
1033 u32 hash = 0;
1034
1035 /* OVS_HASH_ALG_L4 is the only possible hash algorithm. */
1036 hash = skb_get_hash(skb);
1037 hash = jhash_1word(hash, hash_act->hash_basis);
1038 if (!hash)
1039 hash = 0x1;
1040
1041 key->ovs_flow_hash = hash;
1042 }
1043
execute_set_action(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct nlattr * a)1044 static int execute_set_action(struct sk_buff *skb,
1045 struct sw_flow_key *flow_key,
1046 const struct nlattr *a)
1047 {
1048 /* Only tunnel set execution is supported without a mask. */
1049 if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
1050 struct ovs_tunnel_info *tun = nla_data(a);
1051
1052 skb_dst_drop(skb);
1053 dst_hold((struct dst_entry *)tun->tun_dst);
1054 skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
1055 return 0;
1056 }
1057
1058 return -EINVAL;
1059 }
1060
1061 /* Mask is at the midpoint of the data. */
1062 #define get_mask(a, type) ((const type)nla_data(a) + 1)
1063
execute_masked_set_action(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct nlattr * a)1064 static int execute_masked_set_action(struct sk_buff *skb,
1065 struct sw_flow_key *flow_key,
1066 const struct nlattr *a)
1067 {
1068 int err = 0;
1069
1070 switch (nla_type(a)) {
1071 case OVS_KEY_ATTR_PRIORITY:
1072 OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1073 *get_mask(a, u32 *));
1074 flow_key->phy.priority = skb->priority;
1075 break;
1076
1077 case OVS_KEY_ATTR_SKB_MARK:
1078 OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1079 flow_key->phy.skb_mark = skb->mark;
1080 break;
1081
1082 case OVS_KEY_ATTR_TUNNEL_INFO:
1083 /* Masked data not supported for tunnel. */
1084 err = -EINVAL;
1085 break;
1086
1087 case OVS_KEY_ATTR_ETHERNET:
1088 err = set_eth_addr(skb, flow_key, nla_data(a),
1089 get_mask(a, struct ovs_key_ethernet *));
1090 break;
1091
1092 case OVS_KEY_ATTR_NSH:
1093 err = set_nsh(skb, flow_key, a);
1094 break;
1095
1096 case OVS_KEY_ATTR_IPV4:
1097 err = set_ipv4(skb, flow_key, nla_data(a),
1098 get_mask(a, struct ovs_key_ipv4 *));
1099 break;
1100
1101 case OVS_KEY_ATTR_IPV6:
1102 err = set_ipv6(skb, flow_key, nla_data(a),
1103 get_mask(a, struct ovs_key_ipv6 *));
1104 break;
1105
1106 case OVS_KEY_ATTR_TCP:
1107 err = set_tcp(skb, flow_key, nla_data(a),
1108 get_mask(a, struct ovs_key_tcp *));
1109 break;
1110
1111 case OVS_KEY_ATTR_UDP:
1112 err = set_udp(skb, flow_key, nla_data(a),
1113 get_mask(a, struct ovs_key_udp *));
1114 break;
1115
1116 case OVS_KEY_ATTR_SCTP:
1117 err = set_sctp(skb, flow_key, nla_data(a),
1118 get_mask(a, struct ovs_key_sctp *));
1119 break;
1120
1121 case OVS_KEY_ATTR_MPLS:
1122 err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1123 __be32 *));
1124 break;
1125
1126 case OVS_KEY_ATTR_CT_STATE:
1127 case OVS_KEY_ATTR_CT_ZONE:
1128 case OVS_KEY_ATTR_CT_MARK:
1129 case OVS_KEY_ATTR_CT_LABELS:
1130 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
1131 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
1132 err = -EINVAL;
1133 break;
1134 }
1135
1136 return err;
1137 }
1138
execute_recirc(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * a,bool last)1139 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1140 struct sw_flow_key *key,
1141 const struct nlattr *a, bool last)
1142 {
1143 u32 recirc_id;
1144
1145 if (!is_flow_key_valid(key)) {
1146 int err;
1147
1148 err = ovs_flow_key_update(skb, key);
1149 if (err)
1150 return err;
1151 }
1152 BUG_ON(!is_flow_key_valid(key));
1153
1154 recirc_id = nla_get_u32(a);
1155 return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
1156 }
1157
execute_check_pkt_len(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr,bool last)1158 static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb,
1159 struct sw_flow_key *key,
1160 const struct nlattr *attr, bool last)
1161 {
1162 struct ovs_skb_cb *ovs_cb = OVS_CB(skb);
1163 const struct nlattr *actions, *cpl_arg;
1164 int len, max_len, rem = nla_len(attr);
1165 const struct check_pkt_len_arg *arg;
1166 bool clone_flow_key;
1167
1168 /* The first netlink attribute in 'attr' is always
1169 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
1170 */
1171 cpl_arg = nla_data(attr);
1172 arg = nla_data(cpl_arg);
1173
1174 len = ovs_cb->mru ? ovs_cb->mru + skb->mac_len : skb->len;
1175 max_len = arg->pkt_len;
1176
1177 if ((skb_is_gso(skb) && skb_gso_validate_mac_len(skb, max_len)) ||
1178 len <= max_len) {
1179 /* Second netlink attribute in 'attr' is always
1180 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
1181 */
1182 actions = nla_next(cpl_arg, &rem);
1183 clone_flow_key = !arg->exec_for_lesser_equal;
1184 } else {
1185 /* Third netlink attribute in 'attr' is always
1186 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'.
1187 */
1188 actions = nla_next(cpl_arg, &rem);
1189 actions = nla_next(actions, &rem);
1190 clone_flow_key = !arg->exec_for_greater;
1191 }
1192
1193 return clone_execute(dp, skb, key, 0, nla_data(actions),
1194 nla_len(actions), last, clone_flow_key);
1195 }
1196
execute_dec_ttl(struct sk_buff * skb,struct sw_flow_key * key)1197 static int execute_dec_ttl(struct sk_buff *skb, struct sw_flow_key *key)
1198 {
1199 int err;
1200
1201 if (skb->protocol == htons(ETH_P_IPV6)) {
1202 struct ipv6hdr *nh;
1203
1204 err = skb_ensure_writable(skb, skb_network_offset(skb) +
1205 sizeof(*nh));
1206 if (unlikely(err))
1207 return err;
1208
1209 nh = ipv6_hdr(skb);
1210
1211 if (nh->hop_limit <= 1)
1212 return -EHOSTUNREACH;
1213
1214 key->ip.ttl = --nh->hop_limit;
1215 } else {
1216 struct iphdr *nh;
1217 u8 old_ttl;
1218
1219 err = skb_ensure_writable(skb, skb_network_offset(skb) +
1220 sizeof(*nh));
1221 if (unlikely(err))
1222 return err;
1223
1224 nh = ip_hdr(skb);
1225 if (nh->ttl <= 1)
1226 return -EHOSTUNREACH;
1227
1228 old_ttl = nh->ttl--;
1229 csum_replace2(&nh->check, htons(old_ttl << 8),
1230 htons(nh->ttl << 8));
1231 key->ip.ttl = nh->ttl;
1232 }
1233 return 0;
1234 }
1235
1236 /* Execute a list of actions against 'skb'. */
do_execute_actions(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr,int len)1237 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1238 struct sw_flow_key *key,
1239 const struct nlattr *attr, int len)
1240 {
1241 const struct nlattr *a;
1242 int rem;
1243
1244 for (a = attr, rem = len; rem > 0;
1245 a = nla_next(a, &rem)) {
1246 int err = 0;
1247
1248 switch (nla_type(a)) {
1249 case OVS_ACTION_ATTR_OUTPUT: {
1250 int port = nla_get_u32(a);
1251 struct sk_buff *clone;
1252
1253 /* Every output action needs a separate clone
1254 * of 'skb', In case the output action is the
1255 * last action, cloning can be avoided.
1256 */
1257 if (nla_is_last(a, rem)) {
1258 do_output(dp, skb, port, key);
1259 /* 'skb' has been used for output.
1260 */
1261 return 0;
1262 }
1263
1264 clone = skb_clone(skb, GFP_ATOMIC);
1265 if (clone)
1266 do_output(dp, clone, port, key);
1267 OVS_CB(skb)->cutlen = 0;
1268 break;
1269 }
1270
1271 case OVS_ACTION_ATTR_TRUNC: {
1272 struct ovs_action_trunc *trunc = nla_data(a);
1273
1274 if (skb->len > trunc->max_len)
1275 OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1276 break;
1277 }
1278
1279 case OVS_ACTION_ATTR_USERSPACE:
1280 output_userspace(dp, skb, key, a, attr,
1281 len, OVS_CB(skb)->cutlen);
1282 OVS_CB(skb)->cutlen = 0;
1283 break;
1284
1285 case OVS_ACTION_ATTR_HASH:
1286 execute_hash(skb, key, a);
1287 break;
1288
1289 case OVS_ACTION_ATTR_PUSH_MPLS: {
1290 struct ovs_action_push_mpls *mpls = nla_data(a);
1291
1292 err = push_mpls(skb, key, mpls->mpls_lse,
1293 mpls->mpls_ethertype, skb->mac_len);
1294 break;
1295 }
1296 case OVS_ACTION_ATTR_ADD_MPLS: {
1297 struct ovs_action_add_mpls *mpls = nla_data(a);
1298 __u16 mac_len = 0;
1299
1300 if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK)
1301 mac_len = skb->mac_len;
1302
1303 err = push_mpls(skb, key, mpls->mpls_lse,
1304 mpls->mpls_ethertype, mac_len);
1305 break;
1306 }
1307 case OVS_ACTION_ATTR_POP_MPLS:
1308 err = pop_mpls(skb, key, nla_get_be16(a));
1309 break;
1310
1311 case OVS_ACTION_ATTR_PUSH_VLAN:
1312 err = push_vlan(skb, key, nla_data(a));
1313 break;
1314
1315 case OVS_ACTION_ATTR_POP_VLAN:
1316 err = pop_vlan(skb, key);
1317 break;
1318
1319 case OVS_ACTION_ATTR_RECIRC: {
1320 bool last = nla_is_last(a, rem);
1321
1322 err = execute_recirc(dp, skb, key, a, last);
1323 if (last) {
1324 /* If this is the last action, the skb has
1325 * been consumed or freed.
1326 * Return immediately.
1327 */
1328 return err;
1329 }
1330 break;
1331 }
1332
1333 case OVS_ACTION_ATTR_SET:
1334 err = execute_set_action(skb, key, nla_data(a));
1335 break;
1336
1337 case OVS_ACTION_ATTR_SET_MASKED:
1338 case OVS_ACTION_ATTR_SET_TO_MASKED:
1339 err = execute_masked_set_action(skb, key, nla_data(a));
1340 break;
1341
1342 case OVS_ACTION_ATTR_SAMPLE: {
1343 bool last = nla_is_last(a, rem);
1344
1345 err = sample(dp, skb, key, a, last);
1346 if (last)
1347 return err;
1348
1349 break;
1350 }
1351
1352 case OVS_ACTION_ATTR_CT:
1353 if (!is_flow_key_valid(key)) {
1354 err = ovs_flow_key_update(skb, key);
1355 if (err)
1356 return err;
1357 }
1358
1359 err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1360 nla_data(a));
1361
1362 /* Hide stolen IP fragments from user space. */
1363 if (err)
1364 return err == -EINPROGRESS ? 0 : err;
1365 break;
1366
1367 case OVS_ACTION_ATTR_CT_CLEAR:
1368 err = ovs_ct_clear(skb, key);
1369 break;
1370
1371 case OVS_ACTION_ATTR_PUSH_ETH:
1372 err = push_eth(skb, key, nla_data(a));
1373 break;
1374
1375 case OVS_ACTION_ATTR_POP_ETH:
1376 err = pop_eth(skb, key);
1377 break;
1378
1379 case OVS_ACTION_ATTR_PUSH_NSH: {
1380 u8 buffer[NSH_HDR_MAX_LEN];
1381 struct nshhdr *nh = (struct nshhdr *)buffer;
1382
1383 err = nsh_hdr_from_nlattr(nla_data(a), nh,
1384 NSH_HDR_MAX_LEN);
1385 if (unlikely(err))
1386 break;
1387 err = push_nsh(skb, key, nh);
1388 break;
1389 }
1390
1391 case OVS_ACTION_ATTR_POP_NSH:
1392 err = pop_nsh(skb, key);
1393 break;
1394
1395 case OVS_ACTION_ATTR_METER:
1396 if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) {
1397 consume_skb(skb);
1398 return 0;
1399 }
1400 break;
1401
1402 case OVS_ACTION_ATTR_CLONE: {
1403 bool last = nla_is_last(a, rem);
1404
1405 err = clone(dp, skb, key, a, last);
1406 if (last)
1407 return err;
1408
1409 break;
1410 }
1411
1412 case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
1413 bool last = nla_is_last(a, rem);
1414
1415 err = execute_check_pkt_len(dp, skb, key, a, last);
1416 if (last)
1417 return err;
1418
1419 break;
1420 }
1421
1422 case OVS_ACTION_ATTR_DEC_TTL:
1423 err = execute_dec_ttl(skb, key);
1424 if (err == -EHOSTUNREACH) {
1425 err = dec_ttl_exception_handler(dp, skb, key,
1426 a, true);
1427 return err;
1428 }
1429 break;
1430 }
1431
1432 if (unlikely(err)) {
1433 kfree_skb(skb);
1434 return err;
1435 }
1436 }
1437
1438 consume_skb(skb);
1439 return 0;
1440 }
1441
1442 /* Execute the actions on the clone of the packet. The effect of the
1443 * execution does not affect the original 'skb' nor the original 'key'.
1444 *
1445 * The execution may be deferred in case the actions can not be executed
1446 * immediately.
1447 */
clone_execute(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,u32 recirc_id,const struct nlattr * actions,int len,bool last,bool clone_flow_key)1448 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
1449 struct sw_flow_key *key, u32 recirc_id,
1450 const struct nlattr *actions, int len,
1451 bool last, bool clone_flow_key)
1452 {
1453 struct deferred_action *da;
1454 struct sw_flow_key *clone;
1455
1456 skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
1457 if (!skb) {
1458 /* Out of memory, skip this action.
1459 */
1460 return 0;
1461 }
1462
1463 /* When clone_flow_key is false, the 'key' will not be change
1464 * by the actions, then the 'key' can be used directly.
1465 * Otherwise, try to clone key from the next recursion level of
1466 * 'flow_keys'. If clone is successful, execute the actions
1467 * without deferring.
1468 */
1469 clone = clone_flow_key ? clone_key(key) : key;
1470 if (clone) {
1471 int err = 0;
1472
1473 if (actions) { /* Sample action */
1474 if (clone_flow_key)
1475 __this_cpu_inc(exec_actions_level);
1476
1477 err = do_execute_actions(dp, skb, clone,
1478 actions, len);
1479
1480 if (clone_flow_key)
1481 __this_cpu_dec(exec_actions_level);
1482 } else { /* Recirc action */
1483 clone->recirc_id = recirc_id;
1484 ovs_dp_process_packet(skb, clone);
1485 }
1486 return err;
1487 }
1488
1489 /* Out of 'flow_keys' space. Defer actions */
1490 da = add_deferred_actions(skb, key, actions, len);
1491 if (da) {
1492 if (!actions) { /* Recirc action */
1493 key = &da->pkt_key;
1494 key->recirc_id = recirc_id;
1495 }
1496 } else {
1497 /* Out of per CPU action FIFO space. Drop the 'skb' and
1498 * log an error.
1499 */
1500 kfree_skb(skb);
1501
1502 if (net_ratelimit()) {
1503 if (actions) { /* Sample action */
1504 pr_warn("%s: deferred action limit reached, drop sample action\n",
1505 ovs_dp_name(dp));
1506 } else { /* Recirc action */
1507 pr_warn("%s: deferred action limit reached, drop recirc action\n",
1508 ovs_dp_name(dp));
1509 }
1510 }
1511 }
1512 return 0;
1513 }
1514
process_deferred_actions(struct datapath * dp)1515 static void process_deferred_actions(struct datapath *dp)
1516 {
1517 struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1518
1519 /* Do not touch the FIFO in case there is no deferred actions. */
1520 if (action_fifo_is_empty(fifo))
1521 return;
1522
1523 /* Finishing executing all deferred actions. */
1524 do {
1525 struct deferred_action *da = action_fifo_get(fifo);
1526 struct sk_buff *skb = da->skb;
1527 struct sw_flow_key *key = &da->pkt_key;
1528 const struct nlattr *actions = da->actions;
1529 int actions_len = da->actions_len;
1530
1531 if (actions)
1532 do_execute_actions(dp, skb, key, actions, actions_len);
1533 else
1534 ovs_dp_process_packet(skb, key);
1535 } while (!action_fifo_is_empty(fifo));
1536
1537 /* Reset FIFO for the next packet. */
1538 action_fifo_init(fifo);
1539 }
1540
1541 /* Execute a list of actions against 'skb'. */
ovs_execute_actions(struct datapath * dp,struct sk_buff * skb,const struct sw_flow_actions * acts,struct sw_flow_key * key)1542 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1543 const struct sw_flow_actions *acts,
1544 struct sw_flow_key *key)
1545 {
1546 int err, level;
1547
1548 level = __this_cpu_inc_return(exec_actions_level);
1549 if (unlikely(level > OVS_RECURSION_LIMIT)) {
1550 net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1551 ovs_dp_name(dp));
1552 kfree_skb(skb);
1553 err = -ENETDOWN;
1554 goto out;
1555 }
1556
1557 OVS_CB(skb)->acts_origlen = acts->orig_len;
1558 err = do_execute_actions(dp, skb, key,
1559 acts->actions, acts->actions_len);
1560
1561 if (level == 1)
1562 process_deferred_actions(dp);
1563
1564 out:
1565 __this_cpu_dec(exec_actions_level);
1566 return err;
1567 }
1568
action_fifos_init(void)1569 int action_fifos_init(void)
1570 {
1571 action_fifos = alloc_percpu(struct action_fifo);
1572 if (!action_fifos)
1573 return -ENOMEM;
1574
1575 flow_keys = alloc_percpu(struct action_flow_keys);
1576 if (!flow_keys) {
1577 free_percpu(action_fifos);
1578 return -ENOMEM;
1579 }
1580
1581 return 0;
1582 }
1583
action_fifos_exit(void)1584 void action_fifos_exit(void)
1585 {
1586 free_percpu(action_fifos);
1587 free_percpu(flow_keys);
1588 }
1589