1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6
7 #include <linux/acpi.h>
8 #include <linux/cache.h>
9 #include <linux/clk/clk-conf.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/export.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/highmem.h>
17 #include <linux/idr.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/kernel.h>
21 #include <linux/kthread.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mutex.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/percpu.h>
27 #include <linux/platform_data/x86/apple.h>
28 #include <linux/pm_domain.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/property.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/sched/rt.h>
33 #include <linux/slab.h>
34 #include <linux/spi/spi.h>
35 #include <linux/spi/spi-mem.h>
36 #include <uapi/linux/sched/types.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/spi.h>
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42
43 #include "internals.h"
44
45 static DEFINE_IDR(spi_master_idr);
46
spidev_release(struct device * dev)47 static void spidev_release(struct device *dev)
48 {
49 struct spi_device *spi = to_spi_device(dev);
50
51 spi_controller_put(spi->controller);
52 kfree(spi->driver_override);
53 free_percpu(spi->pcpu_statistics);
54 kfree(spi);
55 }
56
57 static ssize_t
modalias_show(struct device * dev,struct device_attribute * a,char * buf)58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60 const struct spi_device *spi = to_spi_device(dev);
61 int len;
62
63 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64 if (len != -ENODEV)
65 return len;
66
67 return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70
driver_override_store(struct device * dev,struct device_attribute * a,const char * buf,size_t count)71 static ssize_t driver_override_store(struct device *dev,
72 struct device_attribute *a,
73 const char *buf, size_t count)
74 {
75 struct spi_device *spi = to_spi_device(dev);
76 int ret;
77
78 ret = driver_set_override(dev, &spi->driver_override, buf, count);
79 if (ret)
80 return ret;
81
82 return count;
83 }
84
driver_override_show(struct device * dev,struct device_attribute * a,char * buf)85 static ssize_t driver_override_show(struct device *dev,
86 struct device_attribute *a, char *buf)
87 {
88 const struct spi_device *spi = to_spi_device(dev);
89 ssize_t len;
90
91 device_lock(dev);
92 len = sysfs_emit(buf, "%s\n", spi->driver_override ? : "");
93 device_unlock(dev);
94 return len;
95 }
96 static DEVICE_ATTR_RW(driver_override);
97
spi_alloc_pcpu_stats(struct device * dev)98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
99 {
100 struct spi_statistics __percpu *pcpu_stats;
101
102 if (dev)
103 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
104 else
105 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
106
107 if (pcpu_stats) {
108 int cpu;
109
110 for_each_possible_cpu(cpu) {
111 struct spi_statistics *stat;
112
113 stat = per_cpu_ptr(pcpu_stats, cpu);
114 u64_stats_init(&stat->syncp);
115 }
116 }
117 return pcpu_stats;
118 }
119
spi_emit_pcpu_stats(struct spi_statistics __percpu * stat,char * buf,size_t offset)120 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat,
121 char *buf, size_t offset)
122 {
123 u64 val = 0;
124 int i;
125
126 for_each_possible_cpu(i) {
127 const struct spi_statistics *pcpu_stats;
128 u64_stats_t *field;
129 unsigned int start;
130 u64 inc;
131
132 pcpu_stats = per_cpu_ptr(stat, i);
133 field = (void *)pcpu_stats + offset;
134 do {
135 start = u64_stats_fetch_begin(&pcpu_stats->syncp);
136 inc = u64_stats_read(field);
137 } while (u64_stats_fetch_retry(&pcpu_stats->syncp, start));
138 val += inc;
139 }
140 return sysfs_emit(buf, "%llu\n", val);
141 }
142
143 #define SPI_STATISTICS_ATTRS(field, file) \
144 static ssize_t spi_controller_##field##_show(struct device *dev, \
145 struct device_attribute *attr, \
146 char *buf) \
147 { \
148 struct spi_controller *ctlr = container_of(dev, \
149 struct spi_controller, dev); \
150 return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
151 } \
152 static struct device_attribute dev_attr_spi_controller_##field = { \
153 .attr = { .name = file, .mode = 0444 }, \
154 .show = spi_controller_##field##_show, \
155 }; \
156 static ssize_t spi_device_##field##_show(struct device *dev, \
157 struct device_attribute *attr, \
158 char *buf) \
159 { \
160 struct spi_device *spi = to_spi_device(dev); \
161 return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
162 } \
163 static struct device_attribute dev_attr_spi_device_##field = { \
164 .attr = { .name = file, .mode = 0444 }, \
165 .show = spi_device_##field##_show, \
166 }
167
168 #define SPI_STATISTICS_SHOW_NAME(name, file, field) \
169 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
170 char *buf) \
171 { \
172 return spi_emit_pcpu_stats(stat, buf, \
173 offsetof(struct spi_statistics, field)); \
174 } \
175 SPI_STATISTICS_ATTRS(name, file)
176
177 #define SPI_STATISTICS_SHOW(field) \
178 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
179 field)
180
181 SPI_STATISTICS_SHOW(messages);
182 SPI_STATISTICS_SHOW(transfers);
183 SPI_STATISTICS_SHOW(errors);
184 SPI_STATISTICS_SHOW(timedout);
185
186 SPI_STATISTICS_SHOW(spi_sync);
187 SPI_STATISTICS_SHOW(spi_sync_immediate);
188 SPI_STATISTICS_SHOW(spi_async);
189
190 SPI_STATISTICS_SHOW(bytes);
191 SPI_STATISTICS_SHOW(bytes_rx);
192 SPI_STATISTICS_SHOW(bytes_tx);
193
194 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
195 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
196 "transfer_bytes_histo_" number, \
197 transfer_bytes_histo[index])
198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
215
216 SPI_STATISTICS_SHOW(transfers_split_maxsize);
217
218 static struct attribute *spi_dev_attrs[] = {
219 &dev_attr_modalias.attr,
220 &dev_attr_driver_override.attr,
221 NULL,
222 };
223
224 static const struct attribute_group spi_dev_group = {
225 .attrs = spi_dev_attrs,
226 };
227
228 static struct attribute *spi_device_statistics_attrs[] = {
229 &dev_attr_spi_device_messages.attr,
230 &dev_attr_spi_device_transfers.attr,
231 &dev_attr_spi_device_errors.attr,
232 &dev_attr_spi_device_timedout.attr,
233 &dev_attr_spi_device_spi_sync.attr,
234 &dev_attr_spi_device_spi_sync_immediate.attr,
235 &dev_attr_spi_device_spi_async.attr,
236 &dev_attr_spi_device_bytes.attr,
237 &dev_attr_spi_device_bytes_rx.attr,
238 &dev_attr_spi_device_bytes_tx.attr,
239 &dev_attr_spi_device_transfer_bytes_histo0.attr,
240 &dev_attr_spi_device_transfer_bytes_histo1.attr,
241 &dev_attr_spi_device_transfer_bytes_histo2.attr,
242 &dev_attr_spi_device_transfer_bytes_histo3.attr,
243 &dev_attr_spi_device_transfer_bytes_histo4.attr,
244 &dev_attr_spi_device_transfer_bytes_histo5.attr,
245 &dev_attr_spi_device_transfer_bytes_histo6.attr,
246 &dev_attr_spi_device_transfer_bytes_histo7.attr,
247 &dev_attr_spi_device_transfer_bytes_histo8.attr,
248 &dev_attr_spi_device_transfer_bytes_histo9.attr,
249 &dev_attr_spi_device_transfer_bytes_histo10.attr,
250 &dev_attr_spi_device_transfer_bytes_histo11.attr,
251 &dev_attr_spi_device_transfer_bytes_histo12.attr,
252 &dev_attr_spi_device_transfer_bytes_histo13.attr,
253 &dev_attr_spi_device_transfer_bytes_histo14.attr,
254 &dev_attr_spi_device_transfer_bytes_histo15.attr,
255 &dev_attr_spi_device_transfer_bytes_histo16.attr,
256 &dev_attr_spi_device_transfers_split_maxsize.attr,
257 NULL,
258 };
259
260 static const struct attribute_group spi_device_statistics_group = {
261 .name = "statistics",
262 .attrs = spi_device_statistics_attrs,
263 };
264
265 static const struct attribute_group *spi_dev_groups[] = {
266 &spi_dev_group,
267 &spi_device_statistics_group,
268 NULL,
269 };
270
271 static struct attribute *spi_controller_statistics_attrs[] = {
272 &dev_attr_spi_controller_messages.attr,
273 &dev_attr_spi_controller_transfers.attr,
274 &dev_attr_spi_controller_errors.attr,
275 &dev_attr_spi_controller_timedout.attr,
276 &dev_attr_spi_controller_spi_sync.attr,
277 &dev_attr_spi_controller_spi_sync_immediate.attr,
278 &dev_attr_spi_controller_spi_async.attr,
279 &dev_attr_spi_controller_bytes.attr,
280 &dev_attr_spi_controller_bytes_rx.attr,
281 &dev_attr_spi_controller_bytes_tx.attr,
282 &dev_attr_spi_controller_transfer_bytes_histo0.attr,
283 &dev_attr_spi_controller_transfer_bytes_histo1.attr,
284 &dev_attr_spi_controller_transfer_bytes_histo2.attr,
285 &dev_attr_spi_controller_transfer_bytes_histo3.attr,
286 &dev_attr_spi_controller_transfer_bytes_histo4.attr,
287 &dev_attr_spi_controller_transfer_bytes_histo5.attr,
288 &dev_attr_spi_controller_transfer_bytes_histo6.attr,
289 &dev_attr_spi_controller_transfer_bytes_histo7.attr,
290 &dev_attr_spi_controller_transfer_bytes_histo8.attr,
291 &dev_attr_spi_controller_transfer_bytes_histo9.attr,
292 &dev_attr_spi_controller_transfer_bytes_histo10.attr,
293 &dev_attr_spi_controller_transfer_bytes_histo11.attr,
294 &dev_attr_spi_controller_transfer_bytes_histo12.attr,
295 &dev_attr_spi_controller_transfer_bytes_histo13.attr,
296 &dev_attr_spi_controller_transfer_bytes_histo14.attr,
297 &dev_attr_spi_controller_transfer_bytes_histo15.attr,
298 &dev_attr_spi_controller_transfer_bytes_histo16.attr,
299 &dev_attr_spi_controller_transfers_split_maxsize.attr,
300 NULL,
301 };
302
303 static const struct attribute_group spi_controller_statistics_group = {
304 .name = "statistics",
305 .attrs = spi_controller_statistics_attrs,
306 };
307
308 static const struct attribute_group *spi_master_groups[] = {
309 &spi_controller_statistics_group,
310 NULL,
311 };
312
spi_statistics_add_transfer_stats(struct spi_statistics __percpu * pcpu_stats,struct spi_transfer * xfer,struct spi_controller * ctlr)313 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
314 struct spi_transfer *xfer,
315 struct spi_controller *ctlr)
316 {
317 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
318 struct spi_statistics *stats;
319
320 if (l2len < 0)
321 l2len = 0;
322
323 get_cpu();
324 stats = this_cpu_ptr(pcpu_stats);
325 u64_stats_update_begin(&stats->syncp);
326
327 u64_stats_inc(&stats->transfers);
328 u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
329
330 u64_stats_add(&stats->bytes, xfer->len);
331 if ((xfer->tx_buf) &&
332 (xfer->tx_buf != ctlr->dummy_tx))
333 u64_stats_add(&stats->bytes_tx, xfer->len);
334 if ((xfer->rx_buf) &&
335 (xfer->rx_buf != ctlr->dummy_rx))
336 u64_stats_add(&stats->bytes_rx, xfer->len);
337
338 u64_stats_update_end(&stats->syncp);
339 put_cpu();
340 }
341
342 /*
343 * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
344 * and the sysfs version makes coldplug work too.
345 */
spi_match_id(const struct spi_device_id * id,const char * name)346 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
347 {
348 while (id->name[0]) {
349 if (!strcmp(name, id->name))
350 return id;
351 id++;
352 }
353 return NULL;
354 }
355
spi_get_device_id(const struct spi_device * sdev)356 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
357 {
358 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
359
360 return spi_match_id(sdrv->id_table, sdev->modalias);
361 }
362 EXPORT_SYMBOL_GPL(spi_get_device_id);
363
spi_get_device_match_data(const struct spi_device * sdev)364 const void *spi_get_device_match_data(const struct spi_device *sdev)
365 {
366 const void *match;
367
368 match = device_get_match_data(&sdev->dev);
369 if (match)
370 return match;
371
372 return (const void *)spi_get_device_id(sdev)->driver_data;
373 }
374 EXPORT_SYMBOL_GPL(spi_get_device_match_data);
375
spi_match_device(struct device * dev,struct device_driver * drv)376 static int spi_match_device(struct device *dev, struct device_driver *drv)
377 {
378 const struct spi_device *spi = to_spi_device(dev);
379 const struct spi_driver *sdrv = to_spi_driver(drv);
380
381 /* Check override first, and if set, only use the named driver */
382 if (spi->driver_override)
383 return strcmp(spi->driver_override, drv->name) == 0;
384
385 /* Attempt an OF style match */
386 if (of_driver_match_device(dev, drv))
387 return 1;
388
389 /* Then try ACPI */
390 if (acpi_driver_match_device(dev, drv))
391 return 1;
392
393 if (sdrv->id_table)
394 return !!spi_match_id(sdrv->id_table, spi->modalias);
395
396 return strcmp(spi->modalias, drv->name) == 0;
397 }
398
spi_uevent(const struct device * dev,struct kobj_uevent_env * env)399 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
400 {
401 const struct spi_device *spi = to_spi_device(dev);
402 int rc;
403
404 rc = acpi_device_uevent_modalias(dev, env);
405 if (rc != -ENODEV)
406 return rc;
407
408 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
409 }
410
spi_probe(struct device * dev)411 static int spi_probe(struct device *dev)
412 {
413 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
414 struct spi_device *spi = to_spi_device(dev);
415 int ret;
416
417 ret = of_clk_set_defaults(dev->of_node, false);
418 if (ret)
419 return ret;
420
421 if (dev->of_node) {
422 spi->irq = of_irq_get(dev->of_node, 0);
423 if (spi->irq == -EPROBE_DEFER)
424 return -EPROBE_DEFER;
425 if (spi->irq < 0)
426 spi->irq = 0;
427 }
428
429 ret = dev_pm_domain_attach(dev, true);
430 if (ret)
431 return ret;
432
433 if (sdrv->probe) {
434 ret = sdrv->probe(spi);
435 if (ret)
436 dev_pm_domain_detach(dev, true);
437 }
438
439 return ret;
440 }
441
spi_remove(struct device * dev)442 static void spi_remove(struct device *dev)
443 {
444 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
445
446 if (sdrv->remove)
447 sdrv->remove(to_spi_device(dev));
448
449 dev_pm_domain_detach(dev, true);
450 }
451
spi_shutdown(struct device * dev)452 static void spi_shutdown(struct device *dev)
453 {
454 if (dev->driver) {
455 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
456
457 if (sdrv->shutdown)
458 sdrv->shutdown(to_spi_device(dev));
459 }
460 }
461
462 struct bus_type spi_bus_type = {
463 .name = "spi",
464 .dev_groups = spi_dev_groups,
465 .match = spi_match_device,
466 .uevent = spi_uevent,
467 .probe = spi_probe,
468 .remove = spi_remove,
469 .shutdown = spi_shutdown,
470 };
471 EXPORT_SYMBOL_GPL(spi_bus_type);
472
473 /**
474 * __spi_register_driver - register a SPI driver
475 * @owner: owner module of the driver to register
476 * @sdrv: the driver to register
477 * Context: can sleep
478 *
479 * Return: zero on success, else a negative error code.
480 */
__spi_register_driver(struct module * owner,struct spi_driver * sdrv)481 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
482 {
483 sdrv->driver.owner = owner;
484 sdrv->driver.bus = &spi_bus_type;
485
486 /*
487 * For Really Good Reasons we use spi: modaliases not of:
488 * modaliases for DT so module autoloading won't work if we
489 * don't have a spi_device_id as well as a compatible string.
490 */
491 if (sdrv->driver.of_match_table) {
492 const struct of_device_id *of_id;
493
494 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
495 of_id++) {
496 const char *of_name;
497
498 /* Strip off any vendor prefix */
499 of_name = strnchr(of_id->compatible,
500 sizeof(of_id->compatible), ',');
501 if (of_name)
502 of_name++;
503 else
504 of_name = of_id->compatible;
505
506 if (sdrv->id_table) {
507 const struct spi_device_id *spi_id;
508
509 spi_id = spi_match_id(sdrv->id_table, of_name);
510 if (spi_id)
511 continue;
512 } else {
513 if (strcmp(sdrv->driver.name, of_name) == 0)
514 continue;
515 }
516
517 pr_warn("SPI driver %s has no spi_device_id for %s\n",
518 sdrv->driver.name, of_id->compatible);
519 }
520 }
521
522 return driver_register(&sdrv->driver);
523 }
524 EXPORT_SYMBOL_GPL(__spi_register_driver);
525
526 /*-------------------------------------------------------------------------*/
527
528 /*
529 * SPI devices should normally not be created by SPI device drivers; that
530 * would make them board-specific. Similarly with SPI controller drivers.
531 * Device registration normally goes into like arch/.../mach.../board-YYY.c
532 * with other readonly (flashable) information about mainboard devices.
533 */
534
535 struct boardinfo {
536 struct list_head list;
537 struct spi_board_info board_info;
538 };
539
540 static LIST_HEAD(board_list);
541 static LIST_HEAD(spi_controller_list);
542
543 /*
544 * Used to protect add/del operation for board_info list and
545 * spi_controller list, and their matching process also used
546 * to protect object of type struct idr.
547 */
548 static DEFINE_MUTEX(board_lock);
549
550 /**
551 * spi_alloc_device - Allocate a new SPI device
552 * @ctlr: Controller to which device is connected
553 * Context: can sleep
554 *
555 * Allows a driver to allocate and initialize a spi_device without
556 * registering it immediately. This allows a driver to directly
557 * fill the spi_device with device parameters before calling
558 * spi_add_device() on it.
559 *
560 * Caller is responsible to call spi_add_device() on the returned
561 * spi_device structure to add it to the SPI controller. If the caller
562 * needs to discard the spi_device without adding it, then it should
563 * call spi_dev_put() on it.
564 *
565 * Return: a pointer to the new device, or NULL.
566 */
spi_alloc_device(struct spi_controller * ctlr)567 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
568 {
569 struct spi_device *spi;
570
571 if (!spi_controller_get(ctlr))
572 return NULL;
573
574 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
575 if (!spi) {
576 spi_controller_put(ctlr);
577 return NULL;
578 }
579
580 spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
581 if (!spi->pcpu_statistics) {
582 kfree(spi);
583 spi_controller_put(ctlr);
584 return NULL;
585 }
586
587 spi->master = spi->controller = ctlr;
588 spi->dev.parent = &ctlr->dev;
589 spi->dev.bus = &spi_bus_type;
590 spi->dev.release = spidev_release;
591 spi->mode = ctlr->buswidth_override_bits;
592
593 device_initialize(&spi->dev);
594 return spi;
595 }
596 EXPORT_SYMBOL_GPL(spi_alloc_device);
597
spi_dev_set_name(struct spi_device * spi)598 static void spi_dev_set_name(struct spi_device *spi)
599 {
600 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
601
602 if (adev) {
603 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
604 return;
605 }
606
607 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
608 spi_get_chipselect(spi, 0));
609 }
610
spi_dev_check(struct device * dev,void * data)611 static int spi_dev_check(struct device *dev, void *data)
612 {
613 struct spi_device *spi = to_spi_device(dev);
614 struct spi_device *new_spi = data;
615
616 if (spi->controller == new_spi->controller &&
617 spi_get_chipselect(spi, 0) == spi_get_chipselect(new_spi, 0))
618 return -EBUSY;
619 return 0;
620 }
621
spi_cleanup(struct spi_device * spi)622 static void spi_cleanup(struct spi_device *spi)
623 {
624 if (spi->controller->cleanup)
625 spi->controller->cleanup(spi);
626 }
627
__spi_add_device(struct spi_device * spi)628 static int __spi_add_device(struct spi_device *spi)
629 {
630 struct spi_controller *ctlr = spi->controller;
631 struct device *dev = ctlr->dev.parent;
632 int status;
633
634 /* Chipselects are numbered 0..max; validate. */
635 if (spi_get_chipselect(spi, 0) >= ctlr->num_chipselect) {
636 dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, 0),
637 ctlr->num_chipselect);
638 return -EINVAL;
639 }
640
641 /* Set the bus ID string */
642 spi_dev_set_name(spi);
643
644 /*
645 * We need to make sure there's no other device with this
646 * chipselect **BEFORE** we call setup(), else we'll trash
647 * its configuration.
648 */
649 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
650 if (status) {
651 dev_err(dev, "chipselect %d already in use\n",
652 spi_get_chipselect(spi, 0));
653 return status;
654 }
655
656 /* Controller may unregister concurrently */
657 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
658 !device_is_registered(&ctlr->dev)) {
659 return -ENODEV;
660 }
661
662 if (ctlr->cs_gpiods)
663 spi_set_csgpiod(spi, 0, ctlr->cs_gpiods[spi_get_chipselect(spi, 0)]);
664
665 /*
666 * Drivers may modify this initial i/o setup, but will
667 * normally rely on the device being setup. Devices
668 * using SPI_CS_HIGH can't coexist well otherwise...
669 */
670 status = spi_setup(spi);
671 if (status < 0) {
672 dev_err(dev, "can't setup %s, status %d\n",
673 dev_name(&spi->dev), status);
674 return status;
675 }
676
677 /* Device may be bound to an active driver when this returns */
678 status = device_add(&spi->dev);
679 if (status < 0) {
680 dev_err(dev, "can't add %s, status %d\n",
681 dev_name(&spi->dev), status);
682 spi_cleanup(spi);
683 } else {
684 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
685 }
686
687 return status;
688 }
689
690 /**
691 * spi_add_device - Add spi_device allocated with spi_alloc_device
692 * @spi: spi_device to register
693 *
694 * Companion function to spi_alloc_device. Devices allocated with
695 * spi_alloc_device can be added onto the SPI bus with this function.
696 *
697 * Return: 0 on success; negative errno on failure
698 */
spi_add_device(struct spi_device * spi)699 int spi_add_device(struct spi_device *spi)
700 {
701 struct spi_controller *ctlr = spi->controller;
702 int status;
703
704 mutex_lock(&ctlr->add_lock);
705 status = __spi_add_device(spi);
706 mutex_unlock(&ctlr->add_lock);
707 return status;
708 }
709 EXPORT_SYMBOL_GPL(spi_add_device);
710
711 /**
712 * spi_new_device - instantiate one new SPI device
713 * @ctlr: Controller to which device is connected
714 * @chip: Describes the SPI device
715 * Context: can sleep
716 *
717 * On typical mainboards, this is purely internal; and it's not needed
718 * after board init creates the hard-wired devices. Some development
719 * platforms may not be able to use spi_register_board_info though, and
720 * this is exported so that for example a USB or parport based adapter
721 * driver could add devices (which it would learn about out-of-band).
722 *
723 * Return: the new device, or NULL.
724 */
spi_new_device(struct spi_controller * ctlr,struct spi_board_info * chip)725 struct spi_device *spi_new_device(struct spi_controller *ctlr,
726 struct spi_board_info *chip)
727 {
728 struct spi_device *proxy;
729 int status;
730
731 /*
732 * NOTE: caller did any chip->bus_num checks necessary.
733 *
734 * Also, unless we change the return value convention to use
735 * error-or-pointer (not NULL-or-pointer), troubleshootability
736 * suggests syslogged diagnostics are best here (ugh).
737 */
738
739 proxy = spi_alloc_device(ctlr);
740 if (!proxy)
741 return NULL;
742
743 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
744
745 spi_set_chipselect(proxy, 0, chip->chip_select);
746 proxy->max_speed_hz = chip->max_speed_hz;
747 proxy->mode = chip->mode;
748 proxy->irq = chip->irq;
749 strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
750 proxy->dev.platform_data = (void *) chip->platform_data;
751 proxy->controller_data = chip->controller_data;
752 proxy->controller_state = NULL;
753
754 if (chip->swnode) {
755 status = device_add_software_node(&proxy->dev, chip->swnode);
756 if (status) {
757 dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
758 chip->modalias, status);
759 goto err_dev_put;
760 }
761 }
762
763 status = spi_add_device(proxy);
764 if (status < 0)
765 goto err_dev_put;
766
767 return proxy;
768
769 err_dev_put:
770 device_remove_software_node(&proxy->dev);
771 spi_dev_put(proxy);
772 return NULL;
773 }
774 EXPORT_SYMBOL_GPL(spi_new_device);
775
776 /**
777 * spi_unregister_device - unregister a single SPI device
778 * @spi: spi_device to unregister
779 *
780 * Start making the passed SPI device vanish. Normally this would be handled
781 * by spi_unregister_controller().
782 */
spi_unregister_device(struct spi_device * spi)783 void spi_unregister_device(struct spi_device *spi)
784 {
785 if (!spi)
786 return;
787
788 if (spi->dev.of_node) {
789 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
790 of_node_put(spi->dev.of_node);
791 }
792 if (ACPI_COMPANION(&spi->dev))
793 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
794 device_remove_software_node(&spi->dev);
795 device_del(&spi->dev);
796 spi_cleanup(spi);
797 put_device(&spi->dev);
798 }
799 EXPORT_SYMBOL_GPL(spi_unregister_device);
800
spi_match_controller_to_boardinfo(struct spi_controller * ctlr,struct spi_board_info * bi)801 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
802 struct spi_board_info *bi)
803 {
804 struct spi_device *dev;
805
806 if (ctlr->bus_num != bi->bus_num)
807 return;
808
809 dev = spi_new_device(ctlr, bi);
810 if (!dev)
811 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
812 bi->modalias);
813 }
814
815 /**
816 * spi_register_board_info - register SPI devices for a given board
817 * @info: array of chip descriptors
818 * @n: how many descriptors are provided
819 * Context: can sleep
820 *
821 * Board-specific early init code calls this (probably during arch_initcall)
822 * with segments of the SPI device table. Any device nodes are created later,
823 * after the relevant parent SPI controller (bus_num) is defined. We keep
824 * this table of devices forever, so that reloading a controller driver will
825 * not make Linux forget about these hard-wired devices.
826 *
827 * Other code can also call this, e.g. a particular add-on board might provide
828 * SPI devices through its expansion connector, so code initializing that board
829 * would naturally declare its SPI devices.
830 *
831 * The board info passed can safely be __initdata ... but be careful of
832 * any embedded pointers (platform_data, etc), they're copied as-is.
833 *
834 * Return: zero on success, else a negative error code.
835 */
spi_register_board_info(struct spi_board_info const * info,unsigned n)836 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
837 {
838 struct boardinfo *bi;
839 int i;
840
841 if (!n)
842 return 0;
843
844 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
845 if (!bi)
846 return -ENOMEM;
847
848 for (i = 0; i < n; i++, bi++, info++) {
849 struct spi_controller *ctlr;
850
851 memcpy(&bi->board_info, info, sizeof(*info));
852
853 mutex_lock(&board_lock);
854 list_add_tail(&bi->list, &board_list);
855 list_for_each_entry(ctlr, &spi_controller_list, list)
856 spi_match_controller_to_boardinfo(ctlr,
857 &bi->board_info);
858 mutex_unlock(&board_lock);
859 }
860
861 return 0;
862 }
863
864 /*-------------------------------------------------------------------------*/
865
866 /* Core methods for SPI resource management */
867
868 /**
869 * spi_res_alloc - allocate a spi resource that is life-cycle managed
870 * during the processing of a spi_message while using
871 * spi_transfer_one
872 * @spi: the SPI device for which we allocate memory
873 * @release: the release code to execute for this resource
874 * @size: size to alloc and return
875 * @gfp: GFP allocation flags
876 *
877 * Return: the pointer to the allocated data
878 *
879 * This may get enhanced in the future to allocate from a memory pool
880 * of the @spi_device or @spi_controller to avoid repeated allocations.
881 */
spi_res_alloc(struct spi_device * spi,spi_res_release_t release,size_t size,gfp_t gfp)882 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
883 size_t size, gfp_t gfp)
884 {
885 struct spi_res *sres;
886
887 sres = kzalloc(sizeof(*sres) + size, gfp);
888 if (!sres)
889 return NULL;
890
891 INIT_LIST_HEAD(&sres->entry);
892 sres->release = release;
893
894 return sres->data;
895 }
896
897 /**
898 * spi_res_free - free an SPI resource
899 * @res: pointer to the custom data of a resource
900 */
spi_res_free(void * res)901 static void spi_res_free(void *res)
902 {
903 struct spi_res *sres = container_of(res, struct spi_res, data);
904
905 if (!res)
906 return;
907
908 WARN_ON(!list_empty(&sres->entry));
909 kfree(sres);
910 }
911
912 /**
913 * spi_res_add - add a spi_res to the spi_message
914 * @message: the SPI message
915 * @res: the spi_resource
916 */
spi_res_add(struct spi_message * message,void * res)917 static void spi_res_add(struct spi_message *message, void *res)
918 {
919 struct spi_res *sres = container_of(res, struct spi_res, data);
920
921 WARN_ON(!list_empty(&sres->entry));
922 list_add_tail(&sres->entry, &message->resources);
923 }
924
925 /**
926 * spi_res_release - release all SPI resources for this message
927 * @ctlr: the @spi_controller
928 * @message: the @spi_message
929 */
spi_res_release(struct spi_controller * ctlr,struct spi_message * message)930 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
931 {
932 struct spi_res *res, *tmp;
933
934 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
935 if (res->release)
936 res->release(ctlr, message, res->data);
937
938 list_del(&res->entry);
939
940 kfree(res);
941 }
942 }
943
944 /*-------------------------------------------------------------------------*/
945
spi_set_cs(struct spi_device * spi,bool enable,bool force)946 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
947 {
948 bool activate = enable;
949
950 /*
951 * Avoid calling into the driver (or doing delays) if the chip select
952 * isn't actually changing from the last time this was called.
953 */
954 if (!force && ((enable && spi->controller->last_cs == spi_get_chipselect(spi, 0)) ||
955 (!enable && spi->controller->last_cs != spi_get_chipselect(spi, 0))) &&
956 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
957 return;
958
959 trace_spi_set_cs(spi, activate);
960
961 spi->controller->last_cs = enable ? spi_get_chipselect(spi, 0) : -1;
962 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
963
964 if ((spi_get_csgpiod(spi, 0) || !spi->controller->set_cs_timing) && !activate)
965 spi_delay_exec(&spi->cs_hold, NULL);
966
967 if (spi->mode & SPI_CS_HIGH)
968 enable = !enable;
969
970 if (spi_get_csgpiod(spi, 0)) {
971 if (!(spi->mode & SPI_NO_CS)) {
972 /*
973 * Historically ACPI has no means of the GPIO polarity and
974 * thus the SPISerialBus() resource defines it on the per-chip
975 * basis. In order to avoid a chain of negations, the GPIO
976 * polarity is considered being Active High. Even for the cases
977 * when _DSD() is involved (in the updated versions of ACPI)
978 * the GPIO CS polarity must be defined Active High to avoid
979 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
980 * into account.
981 */
982 if (has_acpi_companion(&spi->dev))
983 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), !enable);
984 else
985 /* Polarity handled by GPIO library */
986 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), activate);
987 }
988 /* Some SPI masters need both GPIO CS & slave_select */
989 if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) &&
990 spi->controller->set_cs)
991 spi->controller->set_cs(spi, !enable);
992 } else if (spi->controller->set_cs) {
993 spi->controller->set_cs(spi, !enable);
994 }
995
996 if (spi_get_csgpiod(spi, 0) || !spi->controller->set_cs_timing) {
997 if (activate)
998 spi_delay_exec(&spi->cs_setup, NULL);
999 else
1000 spi_delay_exec(&spi->cs_inactive, NULL);
1001 }
1002 }
1003
1004 #ifdef CONFIG_HAS_DMA
spi_map_buf_attrs(struct spi_controller * ctlr,struct device * dev,struct sg_table * sgt,void * buf,size_t len,enum dma_data_direction dir,unsigned long attrs)1005 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1006 struct sg_table *sgt, void *buf, size_t len,
1007 enum dma_data_direction dir, unsigned long attrs)
1008 {
1009 const bool vmalloced_buf = is_vmalloc_addr(buf);
1010 unsigned int max_seg_size = dma_get_max_seg_size(dev);
1011 #ifdef CONFIG_HIGHMEM
1012 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1013 (unsigned long)buf < (PKMAP_BASE +
1014 (LAST_PKMAP * PAGE_SIZE)));
1015 #else
1016 const bool kmap_buf = false;
1017 #endif
1018 int desc_len;
1019 int sgs;
1020 struct page *vm_page;
1021 struct scatterlist *sg;
1022 void *sg_buf;
1023 size_t min;
1024 int i, ret;
1025
1026 if (vmalloced_buf || kmap_buf) {
1027 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1028 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1029 } else if (virt_addr_valid(buf)) {
1030 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1031 sgs = DIV_ROUND_UP(len, desc_len);
1032 } else {
1033 return -EINVAL;
1034 }
1035
1036 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1037 if (ret != 0)
1038 return ret;
1039
1040 sg = &sgt->sgl[0];
1041 for (i = 0; i < sgs; i++) {
1042
1043 if (vmalloced_buf || kmap_buf) {
1044 /*
1045 * Next scatterlist entry size is the minimum between
1046 * the desc_len and the remaining buffer length that
1047 * fits in a page.
1048 */
1049 min = min_t(size_t, desc_len,
1050 min_t(size_t, len,
1051 PAGE_SIZE - offset_in_page(buf)));
1052 if (vmalloced_buf)
1053 vm_page = vmalloc_to_page(buf);
1054 else
1055 vm_page = kmap_to_page(buf);
1056 if (!vm_page) {
1057 sg_free_table(sgt);
1058 return -ENOMEM;
1059 }
1060 sg_set_page(sg, vm_page,
1061 min, offset_in_page(buf));
1062 } else {
1063 min = min_t(size_t, len, desc_len);
1064 sg_buf = buf;
1065 sg_set_buf(sg, sg_buf, min);
1066 }
1067
1068 buf += min;
1069 len -= min;
1070 sg = sg_next(sg);
1071 }
1072
1073 ret = dma_map_sgtable(dev, sgt, dir, attrs);
1074 if (ret < 0) {
1075 sg_free_table(sgt);
1076 return ret;
1077 }
1078
1079 return 0;
1080 }
1081
spi_map_buf(struct spi_controller * ctlr,struct device * dev,struct sg_table * sgt,void * buf,size_t len,enum dma_data_direction dir)1082 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1083 struct sg_table *sgt, void *buf, size_t len,
1084 enum dma_data_direction dir)
1085 {
1086 return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1087 }
1088
spi_unmap_buf_attrs(struct spi_controller * ctlr,struct device * dev,struct sg_table * sgt,enum dma_data_direction dir,unsigned long attrs)1089 static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1090 struct device *dev, struct sg_table *sgt,
1091 enum dma_data_direction dir,
1092 unsigned long attrs)
1093 {
1094 if (sgt->orig_nents) {
1095 dma_unmap_sgtable(dev, sgt, dir, attrs);
1096 sg_free_table(sgt);
1097 sgt->orig_nents = 0;
1098 sgt->nents = 0;
1099 }
1100 }
1101
spi_unmap_buf(struct spi_controller * ctlr,struct device * dev,struct sg_table * sgt,enum dma_data_direction dir)1102 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1103 struct sg_table *sgt, enum dma_data_direction dir)
1104 {
1105 spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1106 }
1107
__spi_map_msg(struct spi_controller * ctlr,struct spi_message * msg)1108 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1109 {
1110 struct device *tx_dev, *rx_dev;
1111 struct spi_transfer *xfer;
1112 int ret;
1113
1114 if (!ctlr->can_dma)
1115 return 0;
1116
1117 if (ctlr->dma_tx)
1118 tx_dev = ctlr->dma_tx->device->dev;
1119 else if (ctlr->dma_map_dev)
1120 tx_dev = ctlr->dma_map_dev;
1121 else
1122 tx_dev = ctlr->dev.parent;
1123
1124 if (ctlr->dma_rx)
1125 rx_dev = ctlr->dma_rx->device->dev;
1126 else if (ctlr->dma_map_dev)
1127 rx_dev = ctlr->dma_map_dev;
1128 else
1129 rx_dev = ctlr->dev.parent;
1130
1131 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1132 /* The sync is done before each transfer. */
1133 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1134
1135 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1136 continue;
1137
1138 if (xfer->tx_buf != NULL) {
1139 ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1140 (void *)xfer->tx_buf,
1141 xfer->len, DMA_TO_DEVICE,
1142 attrs);
1143 if (ret != 0)
1144 return ret;
1145 }
1146
1147 if (xfer->rx_buf != NULL) {
1148 ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1149 xfer->rx_buf, xfer->len,
1150 DMA_FROM_DEVICE, attrs);
1151 if (ret != 0) {
1152 spi_unmap_buf_attrs(ctlr, tx_dev,
1153 &xfer->tx_sg, DMA_TO_DEVICE,
1154 attrs);
1155
1156 return ret;
1157 }
1158 }
1159 }
1160
1161 ctlr->cur_rx_dma_dev = rx_dev;
1162 ctlr->cur_tx_dma_dev = tx_dev;
1163 ctlr->cur_msg_mapped = true;
1164
1165 return 0;
1166 }
1167
__spi_unmap_msg(struct spi_controller * ctlr,struct spi_message * msg)1168 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1169 {
1170 struct device *rx_dev = ctlr->cur_rx_dma_dev;
1171 struct device *tx_dev = ctlr->cur_tx_dma_dev;
1172 struct spi_transfer *xfer;
1173
1174 if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1175 return 0;
1176
1177 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1178 /* The sync has already been done after each transfer. */
1179 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1180
1181 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1182 continue;
1183
1184 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1185 DMA_FROM_DEVICE, attrs);
1186 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1187 DMA_TO_DEVICE, attrs);
1188 }
1189
1190 ctlr->cur_msg_mapped = false;
1191
1192 return 0;
1193 }
1194
spi_dma_sync_for_device(struct spi_controller * ctlr,struct spi_transfer * xfer)1195 static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1196 struct spi_transfer *xfer)
1197 {
1198 struct device *rx_dev = ctlr->cur_rx_dma_dev;
1199 struct device *tx_dev = ctlr->cur_tx_dma_dev;
1200
1201 if (!ctlr->cur_msg_mapped)
1202 return;
1203
1204 if (xfer->tx_sg.orig_nents)
1205 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1206 if (xfer->rx_sg.orig_nents)
1207 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1208 }
1209
spi_dma_sync_for_cpu(struct spi_controller * ctlr,struct spi_transfer * xfer)1210 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1211 struct spi_transfer *xfer)
1212 {
1213 struct device *rx_dev = ctlr->cur_rx_dma_dev;
1214 struct device *tx_dev = ctlr->cur_tx_dma_dev;
1215
1216 if (!ctlr->cur_msg_mapped)
1217 return;
1218
1219 if (xfer->rx_sg.orig_nents)
1220 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1221 if (xfer->tx_sg.orig_nents)
1222 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1223 }
1224 #else /* !CONFIG_HAS_DMA */
__spi_map_msg(struct spi_controller * ctlr,struct spi_message * msg)1225 static inline int __spi_map_msg(struct spi_controller *ctlr,
1226 struct spi_message *msg)
1227 {
1228 return 0;
1229 }
1230
__spi_unmap_msg(struct spi_controller * ctlr,struct spi_message * msg)1231 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1232 struct spi_message *msg)
1233 {
1234 return 0;
1235 }
1236
spi_dma_sync_for_device(struct spi_controller * ctrl,struct spi_transfer * xfer)1237 static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1238 struct spi_transfer *xfer)
1239 {
1240 }
1241
spi_dma_sync_for_cpu(struct spi_controller * ctrl,struct spi_transfer * xfer)1242 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1243 struct spi_transfer *xfer)
1244 {
1245 }
1246 #endif /* !CONFIG_HAS_DMA */
1247
spi_unmap_msg(struct spi_controller * ctlr,struct spi_message * msg)1248 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1249 struct spi_message *msg)
1250 {
1251 struct spi_transfer *xfer;
1252
1253 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1254 /*
1255 * Restore the original value of tx_buf or rx_buf if they are
1256 * NULL.
1257 */
1258 if (xfer->tx_buf == ctlr->dummy_tx)
1259 xfer->tx_buf = NULL;
1260 if (xfer->rx_buf == ctlr->dummy_rx)
1261 xfer->rx_buf = NULL;
1262 }
1263
1264 return __spi_unmap_msg(ctlr, msg);
1265 }
1266
spi_map_msg(struct spi_controller * ctlr,struct spi_message * msg)1267 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1268 {
1269 struct spi_transfer *xfer;
1270 void *tmp;
1271 unsigned int max_tx, max_rx;
1272
1273 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1274 && !(msg->spi->mode & SPI_3WIRE)) {
1275 max_tx = 0;
1276 max_rx = 0;
1277
1278 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1279 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1280 !xfer->tx_buf)
1281 max_tx = max(xfer->len, max_tx);
1282 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1283 !xfer->rx_buf)
1284 max_rx = max(xfer->len, max_rx);
1285 }
1286
1287 if (max_tx) {
1288 tmp = krealloc(ctlr->dummy_tx, max_tx,
1289 GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1290 if (!tmp)
1291 return -ENOMEM;
1292 ctlr->dummy_tx = tmp;
1293 }
1294
1295 if (max_rx) {
1296 tmp = krealloc(ctlr->dummy_rx, max_rx,
1297 GFP_KERNEL | GFP_DMA);
1298 if (!tmp)
1299 return -ENOMEM;
1300 ctlr->dummy_rx = tmp;
1301 }
1302
1303 if (max_tx || max_rx) {
1304 list_for_each_entry(xfer, &msg->transfers,
1305 transfer_list) {
1306 if (!xfer->len)
1307 continue;
1308 if (!xfer->tx_buf)
1309 xfer->tx_buf = ctlr->dummy_tx;
1310 if (!xfer->rx_buf)
1311 xfer->rx_buf = ctlr->dummy_rx;
1312 }
1313 }
1314 }
1315
1316 return __spi_map_msg(ctlr, msg);
1317 }
1318
spi_transfer_wait(struct spi_controller * ctlr,struct spi_message * msg,struct spi_transfer * xfer)1319 static int spi_transfer_wait(struct spi_controller *ctlr,
1320 struct spi_message *msg,
1321 struct spi_transfer *xfer)
1322 {
1323 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1324 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1325 u32 speed_hz = xfer->speed_hz;
1326 unsigned long long ms;
1327
1328 if (spi_controller_is_slave(ctlr)) {
1329 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1330 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1331 return -EINTR;
1332 }
1333 } else {
1334 if (!speed_hz)
1335 speed_hz = 100000;
1336
1337 /*
1338 * For each byte we wait for 8 cycles of the SPI clock.
1339 * Since speed is defined in Hz and we want milliseconds,
1340 * use respective multiplier, but before the division,
1341 * otherwise we may get 0 for short transfers.
1342 */
1343 ms = 8LL * MSEC_PER_SEC * xfer->len;
1344 do_div(ms, speed_hz);
1345
1346 /*
1347 * Increase it twice and add 200 ms tolerance, use
1348 * predefined maximum in case of overflow.
1349 */
1350 ms += ms + 200;
1351 if (ms > UINT_MAX)
1352 ms = UINT_MAX;
1353
1354 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1355 msecs_to_jiffies(ms));
1356
1357 if (ms == 0) {
1358 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1359 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1360 dev_err(&msg->spi->dev,
1361 "SPI transfer timed out\n");
1362 return -ETIMEDOUT;
1363 }
1364 }
1365
1366 return 0;
1367 }
1368
_spi_transfer_delay_ns(u32 ns)1369 static void _spi_transfer_delay_ns(u32 ns)
1370 {
1371 if (!ns)
1372 return;
1373 if (ns <= NSEC_PER_USEC) {
1374 ndelay(ns);
1375 } else {
1376 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1377
1378 if (us <= 10)
1379 udelay(us);
1380 else
1381 usleep_range(us, us + DIV_ROUND_UP(us, 10));
1382 }
1383 }
1384
spi_delay_to_ns(struct spi_delay * _delay,struct spi_transfer * xfer)1385 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1386 {
1387 u32 delay = _delay->value;
1388 u32 unit = _delay->unit;
1389 u32 hz;
1390
1391 if (!delay)
1392 return 0;
1393
1394 switch (unit) {
1395 case SPI_DELAY_UNIT_USECS:
1396 delay *= NSEC_PER_USEC;
1397 break;
1398 case SPI_DELAY_UNIT_NSECS:
1399 /* Nothing to do here */
1400 break;
1401 case SPI_DELAY_UNIT_SCK:
1402 /* Clock cycles need to be obtained from spi_transfer */
1403 if (!xfer)
1404 return -EINVAL;
1405 /*
1406 * If there is unknown effective speed, approximate it
1407 * by underestimating with half of the requested Hz.
1408 */
1409 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1410 if (!hz)
1411 return -EINVAL;
1412
1413 /* Convert delay to nanoseconds */
1414 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1415 break;
1416 default:
1417 return -EINVAL;
1418 }
1419
1420 return delay;
1421 }
1422 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1423
spi_delay_exec(struct spi_delay * _delay,struct spi_transfer * xfer)1424 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1425 {
1426 int delay;
1427
1428 might_sleep();
1429
1430 if (!_delay)
1431 return -EINVAL;
1432
1433 delay = spi_delay_to_ns(_delay, xfer);
1434 if (delay < 0)
1435 return delay;
1436
1437 _spi_transfer_delay_ns(delay);
1438
1439 return 0;
1440 }
1441 EXPORT_SYMBOL_GPL(spi_delay_exec);
1442
_spi_transfer_cs_change_delay(struct spi_message * msg,struct spi_transfer * xfer)1443 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1444 struct spi_transfer *xfer)
1445 {
1446 u32 default_delay_ns = 10 * NSEC_PER_USEC;
1447 u32 delay = xfer->cs_change_delay.value;
1448 u32 unit = xfer->cs_change_delay.unit;
1449 int ret;
1450
1451 /* Return early on "fast" mode - for everything but USECS */
1452 if (!delay) {
1453 if (unit == SPI_DELAY_UNIT_USECS)
1454 _spi_transfer_delay_ns(default_delay_ns);
1455 return;
1456 }
1457
1458 ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1459 if (ret) {
1460 dev_err_once(&msg->spi->dev,
1461 "Use of unsupported delay unit %i, using default of %luus\n",
1462 unit, default_delay_ns / NSEC_PER_USEC);
1463 _spi_transfer_delay_ns(default_delay_ns);
1464 }
1465 }
1466
spi_transfer_cs_change_delay_exec(struct spi_message * msg,struct spi_transfer * xfer)1467 void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1468 struct spi_transfer *xfer)
1469 {
1470 _spi_transfer_cs_change_delay(msg, xfer);
1471 }
1472 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1473
1474 /*
1475 * spi_transfer_one_message - Default implementation of transfer_one_message()
1476 *
1477 * This is a standard implementation of transfer_one_message() for
1478 * drivers which implement a transfer_one() operation. It provides
1479 * standard handling of delays and chip select management.
1480 */
spi_transfer_one_message(struct spi_controller * ctlr,struct spi_message * msg)1481 static int spi_transfer_one_message(struct spi_controller *ctlr,
1482 struct spi_message *msg)
1483 {
1484 struct spi_transfer *xfer;
1485 bool keep_cs = false;
1486 int ret = 0;
1487 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1488 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1489
1490 xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1491 spi_set_cs(msg->spi, !xfer->cs_off, false);
1492
1493 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1494 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1495
1496 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1497 trace_spi_transfer_start(msg, xfer);
1498
1499 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1500 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1501
1502 if (!ctlr->ptp_sts_supported) {
1503 xfer->ptp_sts_word_pre = 0;
1504 ptp_read_system_prets(xfer->ptp_sts);
1505 }
1506
1507 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1508 reinit_completion(&ctlr->xfer_completion);
1509
1510 fallback_pio:
1511 spi_dma_sync_for_device(ctlr, xfer);
1512 ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1513 if (ret < 0) {
1514 spi_dma_sync_for_cpu(ctlr, xfer);
1515
1516 if (ctlr->cur_msg_mapped &&
1517 (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1518 __spi_unmap_msg(ctlr, msg);
1519 ctlr->fallback = true;
1520 xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1521 goto fallback_pio;
1522 }
1523
1524 SPI_STATISTICS_INCREMENT_FIELD(statm,
1525 errors);
1526 SPI_STATISTICS_INCREMENT_FIELD(stats,
1527 errors);
1528 dev_err(&msg->spi->dev,
1529 "SPI transfer failed: %d\n", ret);
1530 goto out;
1531 }
1532
1533 if (ret > 0) {
1534 ret = spi_transfer_wait(ctlr, msg, xfer);
1535 if (ret < 0)
1536 msg->status = ret;
1537 }
1538
1539 spi_dma_sync_for_cpu(ctlr, xfer);
1540 } else {
1541 if (xfer->len)
1542 dev_err(&msg->spi->dev,
1543 "Bufferless transfer has length %u\n",
1544 xfer->len);
1545 }
1546
1547 if (!ctlr->ptp_sts_supported) {
1548 ptp_read_system_postts(xfer->ptp_sts);
1549 xfer->ptp_sts_word_post = xfer->len;
1550 }
1551
1552 trace_spi_transfer_stop(msg, xfer);
1553
1554 if (msg->status != -EINPROGRESS)
1555 goto out;
1556
1557 spi_transfer_delay_exec(xfer);
1558
1559 if (xfer->cs_change) {
1560 if (list_is_last(&xfer->transfer_list,
1561 &msg->transfers)) {
1562 keep_cs = true;
1563 } else {
1564 if (!xfer->cs_off)
1565 spi_set_cs(msg->spi, false, false);
1566 _spi_transfer_cs_change_delay(msg, xfer);
1567 if (!list_next_entry(xfer, transfer_list)->cs_off)
1568 spi_set_cs(msg->spi, true, false);
1569 }
1570 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1571 xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1572 spi_set_cs(msg->spi, xfer->cs_off, false);
1573 }
1574
1575 msg->actual_length += xfer->len;
1576 }
1577
1578 out:
1579 if (ret != 0 || !keep_cs)
1580 spi_set_cs(msg->spi, false, false);
1581
1582 if (msg->status == -EINPROGRESS)
1583 msg->status = ret;
1584
1585 if (msg->status && ctlr->handle_err)
1586 ctlr->handle_err(ctlr, msg);
1587
1588 spi_finalize_current_message(ctlr);
1589
1590 return ret;
1591 }
1592
1593 /**
1594 * spi_finalize_current_transfer - report completion of a transfer
1595 * @ctlr: the controller reporting completion
1596 *
1597 * Called by SPI drivers using the core transfer_one_message()
1598 * implementation to notify it that the current interrupt driven
1599 * transfer has finished and the next one may be scheduled.
1600 */
spi_finalize_current_transfer(struct spi_controller * ctlr)1601 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1602 {
1603 complete(&ctlr->xfer_completion);
1604 }
1605 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1606
spi_idle_runtime_pm(struct spi_controller * ctlr)1607 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1608 {
1609 if (ctlr->auto_runtime_pm) {
1610 pm_runtime_mark_last_busy(ctlr->dev.parent);
1611 pm_runtime_put_autosuspend(ctlr->dev.parent);
1612 }
1613 }
1614
__spi_pump_transfer_message(struct spi_controller * ctlr,struct spi_message * msg,bool was_busy)1615 static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1616 struct spi_message *msg, bool was_busy)
1617 {
1618 struct spi_transfer *xfer;
1619 int ret;
1620
1621 if (!was_busy && ctlr->auto_runtime_pm) {
1622 ret = pm_runtime_get_sync(ctlr->dev.parent);
1623 if (ret < 0) {
1624 pm_runtime_put_noidle(ctlr->dev.parent);
1625 dev_err(&ctlr->dev, "Failed to power device: %d\n",
1626 ret);
1627 return ret;
1628 }
1629 }
1630
1631 if (!was_busy)
1632 trace_spi_controller_busy(ctlr);
1633
1634 if (!was_busy && ctlr->prepare_transfer_hardware) {
1635 ret = ctlr->prepare_transfer_hardware(ctlr);
1636 if (ret) {
1637 dev_err(&ctlr->dev,
1638 "failed to prepare transfer hardware: %d\n",
1639 ret);
1640
1641 if (ctlr->auto_runtime_pm)
1642 pm_runtime_put(ctlr->dev.parent);
1643
1644 msg->status = ret;
1645 spi_finalize_current_message(ctlr);
1646
1647 return ret;
1648 }
1649 }
1650
1651 trace_spi_message_start(msg);
1652
1653 ret = spi_split_transfers_maxsize(ctlr, msg,
1654 spi_max_transfer_size(msg->spi),
1655 GFP_KERNEL | GFP_DMA);
1656 if (ret) {
1657 msg->status = ret;
1658 spi_finalize_current_message(ctlr);
1659 return ret;
1660 }
1661
1662 if (ctlr->prepare_message) {
1663 ret = ctlr->prepare_message(ctlr, msg);
1664 if (ret) {
1665 dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1666 ret);
1667 msg->status = ret;
1668 spi_finalize_current_message(ctlr);
1669 return ret;
1670 }
1671 msg->prepared = true;
1672 }
1673
1674 ret = spi_map_msg(ctlr, msg);
1675 if (ret) {
1676 msg->status = ret;
1677 spi_finalize_current_message(ctlr);
1678 return ret;
1679 }
1680
1681 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1682 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1683 xfer->ptp_sts_word_pre = 0;
1684 ptp_read_system_prets(xfer->ptp_sts);
1685 }
1686 }
1687
1688 /*
1689 * Drivers implementation of transfer_one_message() must arrange for
1690 * spi_finalize_current_message() to get called. Most drivers will do
1691 * this in the calling context, but some don't. For those cases, a
1692 * completion is used to guarantee that this function does not return
1693 * until spi_finalize_current_message() is done accessing
1694 * ctlr->cur_msg.
1695 * Use of the following two flags enable to opportunistically skip the
1696 * use of the completion since its use involves expensive spin locks.
1697 * In case of a race with the context that calls
1698 * spi_finalize_current_message() the completion will always be used,
1699 * due to strict ordering of these flags using barriers.
1700 */
1701 WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1702 WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1703 reinit_completion(&ctlr->cur_msg_completion);
1704 smp_wmb(); /* Make these available to spi_finalize_current_message() */
1705
1706 ret = ctlr->transfer_one_message(ctlr, msg);
1707 if (ret) {
1708 dev_err(&ctlr->dev,
1709 "failed to transfer one message from queue\n");
1710 return ret;
1711 }
1712
1713 WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1714 smp_mb(); /* See spi_finalize_current_message()... */
1715 if (READ_ONCE(ctlr->cur_msg_incomplete))
1716 wait_for_completion(&ctlr->cur_msg_completion);
1717
1718 return 0;
1719 }
1720
1721 /**
1722 * __spi_pump_messages - function which processes SPI message queue
1723 * @ctlr: controller to process queue for
1724 * @in_kthread: true if we are in the context of the message pump thread
1725 *
1726 * This function checks if there is any SPI message in the queue that
1727 * needs processing and if so call out to the driver to initialize hardware
1728 * and transfer each message.
1729 *
1730 * Note that it is called both from the kthread itself and also from
1731 * inside spi_sync(); the queue extraction handling at the top of the
1732 * function should deal with this safely.
1733 */
__spi_pump_messages(struct spi_controller * ctlr,bool in_kthread)1734 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1735 {
1736 struct spi_message *msg;
1737 bool was_busy = false;
1738 unsigned long flags;
1739 int ret;
1740
1741 /* Take the I/O mutex */
1742 mutex_lock(&ctlr->io_mutex);
1743
1744 /* Lock queue */
1745 spin_lock_irqsave(&ctlr->queue_lock, flags);
1746
1747 /* Make sure we are not already running a message */
1748 if (ctlr->cur_msg)
1749 goto out_unlock;
1750
1751 /* Check if the queue is idle */
1752 if (list_empty(&ctlr->queue) || !ctlr->running) {
1753 if (!ctlr->busy)
1754 goto out_unlock;
1755
1756 /* Defer any non-atomic teardown to the thread */
1757 if (!in_kthread) {
1758 if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1759 !ctlr->unprepare_transfer_hardware) {
1760 spi_idle_runtime_pm(ctlr);
1761 ctlr->busy = false;
1762 ctlr->queue_empty = true;
1763 trace_spi_controller_idle(ctlr);
1764 } else {
1765 kthread_queue_work(ctlr->kworker,
1766 &ctlr->pump_messages);
1767 }
1768 goto out_unlock;
1769 }
1770
1771 ctlr->busy = false;
1772 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1773
1774 kfree(ctlr->dummy_rx);
1775 ctlr->dummy_rx = NULL;
1776 kfree(ctlr->dummy_tx);
1777 ctlr->dummy_tx = NULL;
1778 if (ctlr->unprepare_transfer_hardware &&
1779 ctlr->unprepare_transfer_hardware(ctlr))
1780 dev_err(&ctlr->dev,
1781 "failed to unprepare transfer hardware\n");
1782 spi_idle_runtime_pm(ctlr);
1783 trace_spi_controller_idle(ctlr);
1784
1785 spin_lock_irqsave(&ctlr->queue_lock, flags);
1786 ctlr->queue_empty = true;
1787 goto out_unlock;
1788 }
1789
1790 /* Extract head of queue */
1791 msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1792 ctlr->cur_msg = msg;
1793
1794 list_del_init(&msg->queue);
1795 if (ctlr->busy)
1796 was_busy = true;
1797 else
1798 ctlr->busy = true;
1799 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1800
1801 ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1802 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1803
1804 ctlr->cur_msg = NULL;
1805 ctlr->fallback = false;
1806
1807 mutex_unlock(&ctlr->io_mutex);
1808
1809 /* Prod the scheduler in case transfer_one() was busy waiting */
1810 if (!ret)
1811 cond_resched();
1812 return;
1813
1814 out_unlock:
1815 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1816 mutex_unlock(&ctlr->io_mutex);
1817 }
1818
1819 /**
1820 * spi_pump_messages - kthread work function which processes spi message queue
1821 * @work: pointer to kthread work struct contained in the controller struct
1822 */
spi_pump_messages(struct kthread_work * work)1823 static void spi_pump_messages(struct kthread_work *work)
1824 {
1825 struct spi_controller *ctlr =
1826 container_of(work, struct spi_controller, pump_messages);
1827
1828 __spi_pump_messages(ctlr, true);
1829 }
1830
1831 /**
1832 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1833 * @ctlr: Pointer to the spi_controller structure of the driver
1834 * @xfer: Pointer to the transfer being timestamped
1835 * @progress: How many words (not bytes) have been transferred so far
1836 * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1837 * transfer, for less jitter in time measurement. Only compatible
1838 * with PIO drivers. If true, must follow up with
1839 * spi_take_timestamp_post or otherwise system will crash.
1840 * WARNING: for fully predictable results, the CPU frequency must
1841 * also be under control (governor).
1842 *
1843 * This is a helper for drivers to collect the beginning of the TX timestamp
1844 * for the requested byte from the SPI transfer. The frequency with which this
1845 * function must be called (once per word, once for the whole transfer, once
1846 * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1847 * greater than or equal to the requested byte at the time of the call. The
1848 * timestamp is only taken once, at the first such call. It is assumed that
1849 * the driver advances its @tx buffer pointer monotonically.
1850 */
spi_take_timestamp_pre(struct spi_controller * ctlr,struct spi_transfer * xfer,size_t progress,bool irqs_off)1851 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1852 struct spi_transfer *xfer,
1853 size_t progress, bool irqs_off)
1854 {
1855 if (!xfer->ptp_sts)
1856 return;
1857
1858 if (xfer->timestamped)
1859 return;
1860
1861 if (progress > xfer->ptp_sts_word_pre)
1862 return;
1863
1864 /* Capture the resolution of the timestamp */
1865 xfer->ptp_sts_word_pre = progress;
1866
1867 if (irqs_off) {
1868 local_irq_save(ctlr->irq_flags);
1869 preempt_disable();
1870 }
1871
1872 ptp_read_system_prets(xfer->ptp_sts);
1873 }
1874 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1875
1876 /**
1877 * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1878 * @ctlr: Pointer to the spi_controller structure of the driver
1879 * @xfer: Pointer to the transfer being timestamped
1880 * @progress: How many words (not bytes) have been transferred so far
1881 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1882 *
1883 * This is a helper for drivers to collect the end of the TX timestamp for
1884 * the requested byte from the SPI transfer. Can be called with an arbitrary
1885 * frequency: only the first call where @tx exceeds or is equal to the
1886 * requested word will be timestamped.
1887 */
spi_take_timestamp_post(struct spi_controller * ctlr,struct spi_transfer * xfer,size_t progress,bool irqs_off)1888 void spi_take_timestamp_post(struct spi_controller *ctlr,
1889 struct spi_transfer *xfer,
1890 size_t progress, bool irqs_off)
1891 {
1892 if (!xfer->ptp_sts)
1893 return;
1894
1895 if (xfer->timestamped)
1896 return;
1897
1898 if (progress < xfer->ptp_sts_word_post)
1899 return;
1900
1901 ptp_read_system_postts(xfer->ptp_sts);
1902
1903 if (irqs_off) {
1904 local_irq_restore(ctlr->irq_flags);
1905 preempt_enable();
1906 }
1907
1908 /* Capture the resolution of the timestamp */
1909 xfer->ptp_sts_word_post = progress;
1910
1911 xfer->timestamped = 1;
1912 }
1913 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1914
1915 /**
1916 * spi_set_thread_rt - set the controller to pump at realtime priority
1917 * @ctlr: controller to boost priority of
1918 *
1919 * This can be called because the controller requested realtime priority
1920 * (by setting the ->rt value before calling spi_register_controller()) or
1921 * because a device on the bus said that its transfers needed realtime
1922 * priority.
1923 *
1924 * NOTE: at the moment if any device on a bus says it needs realtime then
1925 * the thread will be at realtime priority for all transfers on that
1926 * controller. If this eventually becomes a problem we may see if we can
1927 * find a way to boost the priority only temporarily during relevant
1928 * transfers.
1929 */
spi_set_thread_rt(struct spi_controller * ctlr)1930 static void spi_set_thread_rt(struct spi_controller *ctlr)
1931 {
1932 dev_info(&ctlr->dev,
1933 "will run message pump with realtime priority\n");
1934 sched_set_fifo(ctlr->kworker->task);
1935 }
1936
spi_init_queue(struct spi_controller * ctlr)1937 static int spi_init_queue(struct spi_controller *ctlr)
1938 {
1939 ctlr->running = false;
1940 ctlr->busy = false;
1941 ctlr->queue_empty = true;
1942
1943 ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1944 if (IS_ERR(ctlr->kworker)) {
1945 dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1946 return PTR_ERR(ctlr->kworker);
1947 }
1948
1949 kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1950
1951 /*
1952 * Controller config will indicate if this controller should run the
1953 * message pump with high (realtime) priority to reduce the transfer
1954 * latency on the bus by minimising the delay between a transfer
1955 * request and the scheduling of the message pump thread. Without this
1956 * setting the message pump thread will remain at default priority.
1957 */
1958 if (ctlr->rt)
1959 spi_set_thread_rt(ctlr);
1960
1961 return 0;
1962 }
1963
1964 /**
1965 * spi_get_next_queued_message() - called by driver to check for queued
1966 * messages
1967 * @ctlr: the controller to check for queued messages
1968 *
1969 * If there are more messages in the queue, the next message is returned from
1970 * this call.
1971 *
1972 * Return: the next message in the queue, else NULL if the queue is empty.
1973 */
spi_get_next_queued_message(struct spi_controller * ctlr)1974 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1975 {
1976 struct spi_message *next;
1977 unsigned long flags;
1978
1979 /* Get a pointer to the next message, if any */
1980 spin_lock_irqsave(&ctlr->queue_lock, flags);
1981 next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1982 queue);
1983 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1984
1985 return next;
1986 }
1987 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1988
1989 /**
1990 * spi_finalize_current_message() - the current message is complete
1991 * @ctlr: the controller to return the message to
1992 *
1993 * Called by the driver to notify the core that the message in the front of the
1994 * queue is complete and can be removed from the queue.
1995 */
spi_finalize_current_message(struct spi_controller * ctlr)1996 void spi_finalize_current_message(struct spi_controller *ctlr)
1997 {
1998 struct spi_transfer *xfer;
1999 struct spi_message *mesg;
2000 int ret;
2001
2002 mesg = ctlr->cur_msg;
2003
2004 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2005 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2006 ptp_read_system_postts(xfer->ptp_sts);
2007 xfer->ptp_sts_word_post = xfer->len;
2008 }
2009 }
2010
2011 if (unlikely(ctlr->ptp_sts_supported))
2012 list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2013 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2014
2015 spi_unmap_msg(ctlr, mesg);
2016
2017 /*
2018 * In the prepare_messages callback the SPI bus has the opportunity
2019 * to split a transfer to smaller chunks.
2020 *
2021 * Release the split transfers here since spi_map_msg() is done on
2022 * the split transfers.
2023 */
2024 spi_res_release(ctlr, mesg);
2025
2026 if (mesg->prepared && ctlr->unprepare_message) {
2027 ret = ctlr->unprepare_message(ctlr, mesg);
2028 if (ret) {
2029 dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2030 ret);
2031 }
2032 }
2033
2034 mesg->prepared = false;
2035
2036 WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2037 smp_mb(); /* See __spi_pump_transfer_message()... */
2038 if (READ_ONCE(ctlr->cur_msg_need_completion))
2039 complete(&ctlr->cur_msg_completion);
2040
2041 trace_spi_message_done(mesg);
2042
2043 mesg->state = NULL;
2044 if (mesg->complete)
2045 mesg->complete(mesg->context);
2046 }
2047 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2048
spi_start_queue(struct spi_controller * ctlr)2049 static int spi_start_queue(struct spi_controller *ctlr)
2050 {
2051 unsigned long flags;
2052
2053 spin_lock_irqsave(&ctlr->queue_lock, flags);
2054
2055 if (ctlr->running || ctlr->busy) {
2056 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2057 return -EBUSY;
2058 }
2059
2060 ctlr->running = true;
2061 ctlr->cur_msg = NULL;
2062 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2063
2064 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2065
2066 return 0;
2067 }
2068
spi_stop_queue(struct spi_controller * ctlr)2069 static int spi_stop_queue(struct spi_controller *ctlr)
2070 {
2071 unsigned long flags;
2072 unsigned limit = 500;
2073 int ret = 0;
2074
2075 spin_lock_irqsave(&ctlr->queue_lock, flags);
2076
2077 /*
2078 * This is a bit lame, but is optimized for the common execution path.
2079 * A wait_queue on the ctlr->busy could be used, but then the common
2080 * execution path (pump_messages) would be required to call wake_up or
2081 * friends on every SPI message. Do this instead.
2082 */
2083 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
2084 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2085 usleep_range(10000, 11000);
2086 spin_lock_irqsave(&ctlr->queue_lock, flags);
2087 }
2088
2089 if (!list_empty(&ctlr->queue) || ctlr->busy)
2090 ret = -EBUSY;
2091 else
2092 ctlr->running = false;
2093
2094 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2095
2096 if (ret) {
2097 dev_warn(&ctlr->dev, "could not stop message queue\n");
2098 return ret;
2099 }
2100 return ret;
2101 }
2102
spi_destroy_queue(struct spi_controller * ctlr)2103 static int spi_destroy_queue(struct spi_controller *ctlr)
2104 {
2105 int ret;
2106
2107 ret = spi_stop_queue(ctlr);
2108
2109 /*
2110 * kthread_flush_worker will block until all work is done.
2111 * If the reason that stop_queue timed out is that the work will never
2112 * finish, then it does no good to call flush/stop thread, so
2113 * return anyway.
2114 */
2115 if (ret) {
2116 dev_err(&ctlr->dev, "problem destroying queue\n");
2117 return ret;
2118 }
2119
2120 kthread_destroy_worker(ctlr->kworker);
2121
2122 return 0;
2123 }
2124
__spi_queued_transfer(struct spi_device * spi,struct spi_message * msg,bool need_pump)2125 static int __spi_queued_transfer(struct spi_device *spi,
2126 struct spi_message *msg,
2127 bool need_pump)
2128 {
2129 struct spi_controller *ctlr = spi->controller;
2130 unsigned long flags;
2131
2132 spin_lock_irqsave(&ctlr->queue_lock, flags);
2133
2134 if (!ctlr->running) {
2135 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2136 return -ESHUTDOWN;
2137 }
2138 msg->actual_length = 0;
2139 msg->status = -EINPROGRESS;
2140
2141 list_add_tail(&msg->queue, &ctlr->queue);
2142 ctlr->queue_empty = false;
2143 if (!ctlr->busy && need_pump)
2144 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2145
2146 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2147 return 0;
2148 }
2149
2150 /**
2151 * spi_queued_transfer - transfer function for queued transfers
2152 * @spi: SPI device which is requesting transfer
2153 * @msg: SPI message which is to handled is queued to driver queue
2154 *
2155 * Return: zero on success, else a negative error code.
2156 */
spi_queued_transfer(struct spi_device * spi,struct spi_message * msg)2157 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2158 {
2159 return __spi_queued_transfer(spi, msg, true);
2160 }
2161
spi_controller_initialize_queue(struct spi_controller * ctlr)2162 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2163 {
2164 int ret;
2165
2166 ctlr->transfer = spi_queued_transfer;
2167 if (!ctlr->transfer_one_message)
2168 ctlr->transfer_one_message = spi_transfer_one_message;
2169
2170 /* Initialize and start queue */
2171 ret = spi_init_queue(ctlr);
2172 if (ret) {
2173 dev_err(&ctlr->dev, "problem initializing queue\n");
2174 goto err_init_queue;
2175 }
2176 ctlr->queued = true;
2177 ret = spi_start_queue(ctlr);
2178 if (ret) {
2179 dev_err(&ctlr->dev, "problem starting queue\n");
2180 goto err_start_queue;
2181 }
2182
2183 return 0;
2184
2185 err_start_queue:
2186 spi_destroy_queue(ctlr);
2187 err_init_queue:
2188 return ret;
2189 }
2190
2191 /**
2192 * spi_flush_queue - Send all pending messages in the queue from the callers'
2193 * context
2194 * @ctlr: controller to process queue for
2195 *
2196 * This should be used when one wants to ensure all pending messages have been
2197 * sent before doing something. Is used by the spi-mem code to make sure SPI
2198 * memory operations do not preempt regular SPI transfers that have been queued
2199 * before the spi-mem operation.
2200 */
spi_flush_queue(struct spi_controller * ctlr)2201 void spi_flush_queue(struct spi_controller *ctlr)
2202 {
2203 if (ctlr->transfer == spi_queued_transfer)
2204 __spi_pump_messages(ctlr, false);
2205 }
2206
2207 /*-------------------------------------------------------------------------*/
2208
2209 #if defined(CONFIG_OF)
of_spi_parse_dt_cs_delay(struct device_node * nc,struct spi_delay * delay,const char * prop)2210 static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2211 struct spi_delay *delay, const char *prop)
2212 {
2213 u32 value;
2214
2215 if (!of_property_read_u32(nc, prop, &value)) {
2216 if (value > U16_MAX) {
2217 delay->value = DIV_ROUND_UP(value, 1000);
2218 delay->unit = SPI_DELAY_UNIT_USECS;
2219 } else {
2220 delay->value = value;
2221 delay->unit = SPI_DELAY_UNIT_NSECS;
2222 }
2223 }
2224 }
2225
of_spi_parse_dt(struct spi_controller * ctlr,struct spi_device * spi,struct device_node * nc)2226 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2227 struct device_node *nc)
2228 {
2229 u32 value;
2230 int rc;
2231
2232 /* Mode (clock phase/polarity/etc.) */
2233 if (of_property_read_bool(nc, "spi-cpha"))
2234 spi->mode |= SPI_CPHA;
2235 if (of_property_read_bool(nc, "spi-cpol"))
2236 spi->mode |= SPI_CPOL;
2237 if (of_property_read_bool(nc, "spi-3wire"))
2238 spi->mode |= SPI_3WIRE;
2239 if (of_property_read_bool(nc, "spi-lsb-first"))
2240 spi->mode |= SPI_LSB_FIRST;
2241 if (of_property_read_bool(nc, "spi-cs-high"))
2242 spi->mode |= SPI_CS_HIGH;
2243
2244 /* Device DUAL/QUAD mode */
2245 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2246 switch (value) {
2247 case 0:
2248 spi->mode |= SPI_NO_TX;
2249 break;
2250 case 1:
2251 break;
2252 case 2:
2253 spi->mode |= SPI_TX_DUAL;
2254 break;
2255 case 4:
2256 spi->mode |= SPI_TX_QUAD;
2257 break;
2258 case 8:
2259 spi->mode |= SPI_TX_OCTAL;
2260 break;
2261 default:
2262 dev_warn(&ctlr->dev,
2263 "spi-tx-bus-width %d not supported\n",
2264 value);
2265 break;
2266 }
2267 }
2268
2269 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2270 switch (value) {
2271 case 0:
2272 spi->mode |= SPI_NO_RX;
2273 break;
2274 case 1:
2275 break;
2276 case 2:
2277 spi->mode |= SPI_RX_DUAL;
2278 break;
2279 case 4:
2280 spi->mode |= SPI_RX_QUAD;
2281 break;
2282 case 8:
2283 spi->mode |= SPI_RX_OCTAL;
2284 break;
2285 default:
2286 dev_warn(&ctlr->dev,
2287 "spi-rx-bus-width %d not supported\n",
2288 value);
2289 break;
2290 }
2291 }
2292
2293 if (spi_controller_is_slave(ctlr)) {
2294 if (!of_node_name_eq(nc, "slave")) {
2295 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2296 nc);
2297 return -EINVAL;
2298 }
2299 return 0;
2300 }
2301
2302 /* Device address */
2303 rc = of_property_read_u32(nc, "reg", &value);
2304 if (rc) {
2305 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2306 nc, rc);
2307 return rc;
2308 }
2309 spi_set_chipselect(spi, 0, value);
2310
2311 /* Device speed */
2312 if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2313 spi->max_speed_hz = value;
2314
2315 /* Device CS delays */
2316 of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2317 of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns");
2318 of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns");
2319
2320 return 0;
2321 }
2322
2323 static struct spi_device *
of_register_spi_device(struct spi_controller * ctlr,struct device_node * nc)2324 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2325 {
2326 struct spi_device *spi;
2327 int rc;
2328
2329 /* Alloc an spi_device */
2330 spi = spi_alloc_device(ctlr);
2331 if (!spi) {
2332 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2333 rc = -ENOMEM;
2334 goto err_out;
2335 }
2336
2337 /* Select device driver */
2338 rc = of_alias_from_compatible(nc, spi->modalias,
2339 sizeof(spi->modalias));
2340 if (rc < 0) {
2341 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2342 goto err_out;
2343 }
2344
2345 rc = of_spi_parse_dt(ctlr, spi, nc);
2346 if (rc)
2347 goto err_out;
2348
2349 /* Store a pointer to the node in the device structure */
2350 of_node_get(nc);
2351
2352 device_set_node(&spi->dev, of_fwnode_handle(nc));
2353
2354 /* Register the new device */
2355 rc = spi_add_device(spi);
2356 if (rc) {
2357 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2358 goto err_of_node_put;
2359 }
2360
2361 return spi;
2362
2363 err_of_node_put:
2364 of_node_put(nc);
2365 err_out:
2366 spi_dev_put(spi);
2367 return ERR_PTR(rc);
2368 }
2369
2370 /**
2371 * of_register_spi_devices() - Register child devices onto the SPI bus
2372 * @ctlr: Pointer to spi_controller device
2373 *
2374 * Registers an spi_device for each child node of controller node which
2375 * represents a valid SPI slave.
2376 */
of_register_spi_devices(struct spi_controller * ctlr)2377 static void of_register_spi_devices(struct spi_controller *ctlr)
2378 {
2379 struct spi_device *spi;
2380 struct device_node *nc;
2381
2382 for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2383 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2384 continue;
2385 spi = of_register_spi_device(ctlr, nc);
2386 if (IS_ERR(spi)) {
2387 dev_warn(&ctlr->dev,
2388 "Failed to create SPI device for %pOF\n", nc);
2389 of_node_clear_flag(nc, OF_POPULATED);
2390 }
2391 }
2392 }
2393 #else
of_register_spi_devices(struct spi_controller * ctlr)2394 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2395 #endif
2396
2397 /**
2398 * spi_new_ancillary_device() - Register ancillary SPI device
2399 * @spi: Pointer to the main SPI device registering the ancillary device
2400 * @chip_select: Chip Select of the ancillary device
2401 *
2402 * Register an ancillary SPI device; for example some chips have a chip-select
2403 * for normal device usage and another one for setup/firmware upload.
2404 *
2405 * This may only be called from main SPI device's probe routine.
2406 *
2407 * Return: 0 on success; negative errno on failure
2408 */
spi_new_ancillary_device(struct spi_device * spi,u8 chip_select)2409 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2410 u8 chip_select)
2411 {
2412 struct spi_controller *ctlr = spi->controller;
2413 struct spi_device *ancillary;
2414 int rc = 0;
2415
2416 /* Alloc an spi_device */
2417 ancillary = spi_alloc_device(ctlr);
2418 if (!ancillary) {
2419 rc = -ENOMEM;
2420 goto err_out;
2421 }
2422
2423 strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2424
2425 /* Use provided chip-select for ancillary device */
2426 spi_set_chipselect(ancillary, 0, chip_select);
2427
2428 /* Take over SPI mode/speed from SPI main device */
2429 ancillary->max_speed_hz = spi->max_speed_hz;
2430 ancillary->mode = spi->mode;
2431
2432 WARN_ON(!mutex_is_locked(&ctlr->add_lock));
2433
2434 /* Register the new device */
2435 rc = __spi_add_device(ancillary);
2436 if (rc) {
2437 dev_err(&spi->dev, "failed to register ancillary device\n");
2438 goto err_out;
2439 }
2440
2441 return ancillary;
2442
2443 err_out:
2444 spi_dev_put(ancillary);
2445 return ERR_PTR(rc);
2446 }
2447 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2448
2449 #ifdef CONFIG_ACPI
2450 struct acpi_spi_lookup {
2451 struct spi_controller *ctlr;
2452 u32 max_speed_hz;
2453 u32 mode;
2454 int irq;
2455 u8 bits_per_word;
2456 u8 chip_select;
2457 int n;
2458 int index;
2459 };
2460
acpi_spi_count(struct acpi_resource * ares,void * data)2461 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2462 {
2463 struct acpi_resource_spi_serialbus *sb;
2464 int *count = data;
2465
2466 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2467 return 1;
2468
2469 sb = &ares->data.spi_serial_bus;
2470 if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2471 return 1;
2472
2473 *count = *count + 1;
2474
2475 return 1;
2476 }
2477
2478 /**
2479 * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2480 * @adev: ACPI device
2481 *
2482 * Return: the number of SpiSerialBus resources in the ACPI-device's
2483 * resource-list; or a negative error code.
2484 */
acpi_spi_count_resources(struct acpi_device * adev)2485 int acpi_spi_count_resources(struct acpi_device *adev)
2486 {
2487 LIST_HEAD(r);
2488 int count = 0;
2489 int ret;
2490
2491 ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2492 if (ret < 0)
2493 return ret;
2494
2495 acpi_dev_free_resource_list(&r);
2496
2497 return count;
2498 }
2499 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2500
acpi_spi_parse_apple_properties(struct acpi_device * dev,struct acpi_spi_lookup * lookup)2501 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2502 struct acpi_spi_lookup *lookup)
2503 {
2504 const union acpi_object *obj;
2505
2506 if (!x86_apple_machine)
2507 return;
2508
2509 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2510 && obj->buffer.length >= 4)
2511 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2512
2513 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2514 && obj->buffer.length == 8)
2515 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2516
2517 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2518 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2519 lookup->mode |= SPI_LSB_FIRST;
2520
2521 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2522 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
2523 lookup->mode |= SPI_CPOL;
2524
2525 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2526 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
2527 lookup->mode |= SPI_CPHA;
2528 }
2529
2530 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev);
2531
acpi_spi_add_resource(struct acpi_resource * ares,void * data)2532 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2533 {
2534 struct acpi_spi_lookup *lookup = data;
2535 struct spi_controller *ctlr = lookup->ctlr;
2536
2537 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2538 struct acpi_resource_spi_serialbus *sb;
2539 acpi_handle parent_handle;
2540 acpi_status status;
2541
2542 sb = &ares->data.spi_serial_bus;
2543 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2544
2545 if (lookup->index != -1 && lookup->n++ != lookup->index)
2546 return 1;
2547
2548 status = acpi_get_handle(NULL,
2549 sb->resource_source.string_ptr,
2550 &parent_handle);
2551
2552 if (ACPI_FAILURE(status))
2553 return -ENODEV;
2554
2555 if (ctlr) {
2556 if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2557 return -ENODEV;
2558 } else {
2559 struct acpi_device *adev;
2560
2561 adev = acpi_fetch_acpi_dev(parent_handle);
2562 if (!adev)
2563 return -ENODEV;
2564
2565 ctlr = acpi_spi_find_controller_by_adev(adev);
2566 if (!ctlr)
2567 return -EPROBE_DEFER;
2568
2569 lookup->ctlr = ctlr;
2570 }
2571
2572 /*
2573 * ACPI DeviceSelection numbering is handled by the
2574 * host controller driver in Windows and can vary
2575 * from driver to driver. In Linux we always expect
2576 * 0 .. max - 1 so we need to ask the driver to
2577 * translate between the two schemes.
2578 */
2579 if (ctlr->fw_translate_cs) {
2580 int cs = ctlr->fw_translate_cs(ctlr,
2581 sb->device_selection);
2582 if (cs < 0)
2583 return cs;
2584 lookup->chip_select = cs;
2585 } else {
2586 lookup->chip_select = sb->device_selection;
2587 }
2588
2589 lookup->max_speed_hz = sb->connection_speed;
2590 lookup->bits_per_word = sb->data_bit_length;
2591
2592 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2593 lookup->mode |= SPI_CPHA;
2594 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2595 lookup->mode |= SPI_CPOL;
2596 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2597 lookup->mode |= SPI_CS_HIGH;
2598 }
2599 } else if (lookup->irq < 0) {
2600 struct resource r;
2601
2602 if (acpi_dev_resource_interrupt(ares, 0, &r))
2603 lookup->irq = r.start;
2604 }
2605
2606 /* Always tell the ACPI core to skip this resource */
2607 return 1;
2608 }
2609
2610 /**
2611 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2612 * @ctlr: controller to which the spi device belongs
2613 * @adev: ACPI Device for the spi device
2614 * @index: Index of the spi resource inside the ACPI Node
2615 *
2616 * This should be used to allocate a new SPI device from and ACPI Device node.
2617 * The caller is responsible for calling spi_add_device to register the SPI device.
2618 *
2619 * If ctlr is set to NULL, the Controller for the SPI device will be looked up
2620 * using the resource.
2621 * If index is set to -1, index is not used.
2622 * Note: If index is -1, ctlr must be set.
2623 *
2624 * Return: a pointer to the new device, or ERR_PTR on error.
2625 */
acpi_spi_device_alloc(struct spi_controller * ctlr,struct acpi_device * adev,int index)2626 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2627 struct acpi_device *adev,
2628 int index)
2629 {
2630 acpi_handle parent_handle = NULL;
2631 struct list_head resource_list;
2632 struct acpi_spi_lookup lookup = {};
2633 struct spi_device *spi;
2634 int ret;
2635
2636 if (!ctlr && index == -1)
2637 return ERR_PTR(-EINVAL);
2638
2639 lookup.ctlr = ctlr;
2640 lookup.irq = -1;
2641 lookup.index = index;
2642 lookup.n = 0;
2643
2644 INIT_LIST_HEAD(&resource_list);
2645 ret = acpi_dev_get_resources(adev, &resource_list,
2646 acpi_spi_add_resource, &lookup);
2647 acpi_dev_free_resource_list(&resource_list);
2648
2649 if (ret < 0)
2650 /* Found SPI in _CRS but it points to another controller */
2651 return ERR_PTR(ret);
2652
2653 if (!lookup.max_speed_hz &&
2654 ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2655 ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2656 /* Apple does not use _CRS but nested devices for SPI slaves */
2657 acpi_spi_parse_apple_properties(adev, &lookup);
2658 }
2659
2660 if (!lookup.max_speed_hz)
2661 return ERR_PTR(-ENODEV);
2662
2663 spi = spi_alloc_device(lookup.ctlr);
2664 if (!spi) {
2665 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2666 dev_name(&adev->dev));
2667 return ERR_PTR(-ENOMEM);
2668 }
2669
2670 ACPI_COMPANION_SET(&spi->dev, adev);
2671 spi->max_speed_hz = lookup.max_speed_hz;
2672 spi->mode |= lookup.mode;
2673 spi->irq = lookup.irq;
2674 spi->bits_per_word = lookup.bits_per_word;
2675 spi_set_chipselect(spi, 0, lookup.chip_select);
2676
2677 return spi;
2678 }
2679 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2680
acpi_register_spi_device(struct spi_controller * ctlr,struct acpi_device * adev)2681 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2682 struct acpi_device *adev)
2683 {
2684 struct spi_device *spi;
2685
2686 if (acpi_bus_get_status(adev) || !adev->status.present ||
2687 acpi_device_enumerated(adev))
2688 return AE_OK;
2689
2690 spi = acpi_spi_device_alloc(ctlr, adev, -1);
2691 if (IS_ERR(spi)) {
2692 if (PTR_ERR(spi) == -ENOMEM)
2693 return AE_NO_MEMORY;
2694 else
2695 return AE_OK;
2696 }
2697
2698 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2699 sizeof(spi->modalias));
2700
2701 if (spi->irq < 0)
2702 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2703
2704 acpi_device_set_enumerated(adev);
2705
2706 adev->power.flags.ignore_parent = true;
2707 if (spi_add_device(spi)) {
2708 adev->power.flags.ignore_parent = false;
2709 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2710 dev_name(&adev->dev));
2711 spi_dev_put(spi);
2712 }
2713
2714 return AE_OK;
2715 }
2716
acpi_spi_add_device(acpi_handle handle,u32 level,void * data,void ** return_value)2717 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2718 void *data, void **return_value)
2719 {
2720 struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2721 struct spi_controller *ctlr = data;
2722
2723 if (!adev)
2724 return AE_OK;
2725
2726 return acpi_register_spi_device(ctlr, adev);
2727 }
2728
2729 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32
2730
acpi_register_spi_devices(struct spi_controller * ctlr)2731 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2732 {
2733 acpi_status status;
2734 acpi_handle handle;
2735
2736 handle = ACPI_HANDLE(ctlr->dev.parent);
2737 if (!handle)
2738 return;
2739
2740 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2741 SPI_ACPI_ENUMERATE_MAX_DEPTH,
2742 acpi_spi_add_device, NULL, ctlr, NULL);
2743 if (ACPI_FAILURE(status))
2744 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2745 }
2746 #else
acpi_register_spi_devices(struct spi_controller * ctlr)2747 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2748 #endif /* CONFIG_ACPI */
2749
spi_controller_release(struct device * dev)2750 static void spi_controller_release(struct device *dev)
2751 {
2752 struct spi_controller *ctlr;
2753
2754 ctlr = container_of(dev, struct spi_controller, dev);
2755 kfree(ctlr);
2756 }
2757
2758 static struct class spi_master_class = {
2759 .name = "spi_master",
2760 .dev_release = spi_controller_release,
2761 .dev_groups = spi_master_groups,
2762 };
2763
2764 #ifdef CONFIG_SPI_SLAVE
2765 /**
2766 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2767 * controller
2768 * @spi: device used for the current transfer
2769 */
spi_slave_abort(struct spi_device * spi)2770 int spi_slave_abort(struct spi_device *spi)
2771 {
2772 struct spi_controller *ctlr = spi->controller;
2773
2774 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2775 return ctlr->slave_abort(ctlr);
2776
2777 return -ENOTSUPP;
2778 }
2779 EXPORT_SYMBOL_GPL(spi_slave_abort);
2780
spi_target_abort(struct spi_device * spi)2781 int spi_target_abort(struct spi_device *spi)
2782 {
2783 struct spi_controller *ctlr = spi->controller;
2784
2785 if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2786 return ctlr->target_abort(ctlr);
2787
2788 return -ENOTSUPP;
2789 }
2790 EXPORT_SYMBOL_GPL(spi_target_abort);
2791
slave_show(struct device * dev,struct device_attribute * attr,char * buf)2792 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2793 char *buf)
2794 {
2795 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2796 dev);
2797 struct device *child;
2798
2799 child = device_find_any_child(&ctlr->dev);
2800 return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL);
2801 }
2802
slave_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2803 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2804 const char *buf, size_t count)
2805 {
2806 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2807 dev);
2808 struct spi_device *spi;
2809 struct device *child;
2810 char name[32];
2811 int rc;
2812
2813 rc = sscanf(buf, "%31s", name);
2814 if (rc != 1 || !name[0])
2815 return -EINVAL;
2816
2817 child = device_find_any_child(&ctlr->dev);
2818 if (child) {
2819 /* Remove registered slave */
2820 device_unregister(child);
2821 put_device(child);
2822 }
2823
2824 if (strcmp(name, "(null)")) {
2825 /* Register new slave */
2826 spi = spi_alloc_device(ctlr);
2827 if (!spi)
2828 return -ENOMEM;
2829
2830 strscpy(spi->modalias, name, sizeof(spi->modalias));
2831
2832 rc = spi_add_device(spi);
2833 if (rc) {
2834 spi_dev_put(spi);
2835 return rc;
2836 }
2837 }
2838
2839 return count;
2840 }
2841
2842 static DEVICE_ATTR_RW(slave);
2843
2844 static struct attribute *spi_slave_attrs[] = {
2845 &dev_attr_slave.attr,
2846 NULL,
2847 };
2848
2849 static const struct attribute_group spi_slave_group = {
2850 .attrs = spi_slave_attrs,
2851 };
2852
2853 static const struct attribute_group *spi_slave_groups[] = {
2854 &spi_controller_statistics_group,
2855 &spi_slave_group,
2856 NULL,
2857 };
2858
2859 static struct class spi_slave_class = {
2860 .name = "spi_slave",
2861 .dev_release = spi_controller_release,
2862 .dev_groups = spi_slave_groups,
2863 };
2864 #else
2865 extern struct class spi_slave_class; /* dummy */
2866 #endif
2867
2868 /**
2869 * __spi_alloc_controller - allocate an SPI master or slave controller
2870 * @dev: the controller, possibly using the platform_bus
2871 * @size: how much zeroed driver-private data to allocate; the pointer to this
2872 * memory is in the driver_data field of the returned device, accessible
2873 * with spi_controller_get_devdata(); the memory is cacheline aligned;
2874 * drivers granting DMA access to portions of their private data need to
2875 * round up @size using ALIGN(size, dma_get_cache_alignment()).
2876 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2877 * slave (true) controller
2878 * Context: can sleep
2879 *
2880 * This call is used only by SPI controller drivers, which are the
2881 * only ones directly touching chip registers. It's how they allocate
2882 * an spi_controller structure, prior to calling spi_register_controller().
2883 *
2884 * This must be called from context that can sleep.
2885 *
2886 * The caller is responsible for assigning the bus number and initializing the
2887 * controller's methods before calling spi_register_controller(); and (after
2888 * errors adding the device) calling spi_controller_put() to prevent a memory
2889 * leak.
2890 *
2891 * Return: the SPI controller structure on success, else NULL.
2892 */
__spi_alloc_controller(struct device * dev,unsigned int size,bool slave)2893 struct spi_controller *__spi_alloc_controller(struct device *dev,
2894 unsigned int size, bool slave)
2895 {
2896 struct spi_controller *ctlr;
2897 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2898
2899 if (!dev)
2900 return NULL;
2901
2902 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2903 if (!ctlr)
2904 return NULL;
2905
2906 device_initialize(&ctlr->dev);
2907 INIT_LIST_HEAD(&ctlr->queue);
2908 spin_lock_init(&ctlr->queue_lock);
2909 spin_lock_init(&ctlr->bus_lock_spinlock);
2910 mutex_init(&ctlr->bus_lock_mutex);
2911 mutex_init(&ctlr->io_mutex);
2912 mutex_init(&ctlr->add_lock);
2913 ctlr->bus_num = -1;
2914 ctlr->num_chipselect = 1;
2915 ctlr->slave = slave;
2916 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2917 ctlr->dev.class = &spi_slave_class;
2918 else
2919 ctlr->dev.class = &spi_master_class;
2920 ctlr->dev.parent = dev;
2921 pm_suspend_ignore_children(&ctlr->dev, true);
2922 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2923
2924 return ctlr;
2925 }
2926 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2927
devm_spi_release_controller(struct device * dev,void * ctlr)2928 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2929 {
2930 spi_controller_put(*(struct spi_controller **)ctlr);
2931 }
2932
2933 /**
2934 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2935 * @dev: physical device of SPI controller
2936 * @size: how much zeroed driver-private data to allocate
2937 * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2938 * Context: can sleep
2939 *
2940 * Allocate an SPI controller and automatically release a reference on it
2941 * when @dev is unbound from its driver. Drivers are thus relieved from
2942 * having to call spi_controller_put().
2943 *
2944 * The arguments to this function are identical to __spi_alloc_controller().
2945 *
2946 * Return: the SPI controller structure on success, else NULL.
2947 */
__devm_spi_alloc_controller(struct device * dev,unsigned int size,bool slave)2948 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2949 unsigned int size,
2950 bool slave)
2951 {
2952 struct spi_controller **ptr, *ctlr;
2953
2954 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2955 GFP_KERNEL);
2956 if (!ptr)
2957 return NULL;
2958
2959 ctlr = __spi_alloc_controller(dev, size, slave);
2960 if (ctlr) {
2961 ctlr->devm_allocated = true;
2962 *ptr = ctlr;
2963 devres_add(dev, ptr);
2964 } else {
2965 devres_free(ptr);
2966 }
2967
2968 return ctlr;
2969 }
2970 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2971
2972 /**
2973 * spi_get_gpio_descs() - grab chip select GPIOs for the master
2974 * @ctlr: The SPI master to grab GPIO descriptors for
2975 */
spi_get_gpio_descs(struct spi_controller * ctlr)2976 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2977 {
2978 int nb, i;
2979 struct gpio_desc **cs;
2980 struct device *dev = &ctlr->dev;
2981 unsigned long native_cs_mask = 0;
2982 unsigned int num_cs_gpios = 0;
2983
2984 nb = gpiod_count(dev, "cs");
2985 if (nb < 0) {
2986 /* No GPIOs at all is fine, else return the error */
2987 if (nb == -ENOENT)
2988 return 0;
2989 return nb;
2990 }
2991
2992 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2993
2994 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2995 GFP_KERNEL);
2996 if (!cs)
2997 return -ENOMEM;
2998 ctlr->cs_gpiods = cs;
2999
3000 for (i = 0; i < nb; i++) {
3001 /*
3002 * Most chipselects are active low, the inverted
3003 * semantics are handled by special quirks in gpiolib,
3004 * so initializing them GPIOD_OUT_LOW here means
3005 * "unasserted", in most cases this will drive the physical
3006 * line high.
3007 */
3008 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3009 GPIOD_OUT_LOW);
3010 if (IS_ERR(cs[i]))
3011 return PTR_ERR(cs[i]);
3012
3013 if (cs[i]) {
3014 /*
3015 * If we find a CS GPIO, name it after the device and
3016 * chip select line.
3017 */
3018 char *gpioname;
3019
3020 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3021 dev_name(dev), i);
3022 if (!gpioname)
3023 return -ENOMEM;
3024 gpiod_set_consumer_name(cs[i], gpioname);
3025 num_cs_gpios++;
3026 continue;
3027 }
3028
3029 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3030 dev_err(dev, "Invalid native chip select %d\n", i);
3031 return -EINVAL;
3032 }
3033 native_cs_mask |= BIT(i);
3034 }
3035
3036 ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3037
3038 if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios &&
3039 ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3040 dev_err(dev, "No unused native chip select available\n");
3041 return -EINVAL;
3042 }
3043
3044 return 0;
3045 }
3046
spi_controller_check_ops(struct spi_controller * ctlr)3047 static int spi_controller_check_ops(struct spi_controller *ctlr)
3048 {
3049 /*
3050 * The controller may implement only the high-level SPI-memory like
3051 * operations if it does not support regular SPI transfers, and this is
3052 * valid use case.
3053 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3054 * one of the ->transfer_xxx() method be implemented.
3055 */
3056 if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
3057 if (!ctlr->transfer && !ctlr->transfer_one &&
3058 !ctlr->transfer_one_message) {
3059 return -EINVAL;
3060 }
3061 }
3062
3063 return 0;
3064 }
3065
3066 /* Allocate dynamic bus number using Linux idr */
spi_controller_id_alloc(struct spi_controller * ctlr,int start,int end)3067 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end)
3068 {
3069 int id;
3070
3071 mutex_lock(&board_lock);
3072 id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL);
3073 mutex_unlock(&board_lock);
3074 if (WARN(id < 0, "couldn't get idr"))
3075 return id == -ENOSPC ? -EBUSY : id;
3076 ctlr->bus_num = id;
3077 return 0;
3078 }
3079
3080 /**
3081 * spi_register_controller - register SPI master or slave controller
3082 * @ctlr: initialized master, originally from spi_alloc_master() or
3083 * spi_alloc_slave()
3084 * Context: can sleep
3085 *
3086 * SPI controllers connect to their drivers using some non-SPI bus,
3087 * such as the platform bus. The final stage of probe() in that code
3088 * includes calling spi_register_controller() to hook up to this SPI bus glue.
3089 *
3090 * SPI controllers use board specific (often SOC specific) bus numbers,
3091 * and board-specific addressing for SPI devices combines those numbers
3092 * with chip select numbers. Since SPI does not directly support dynamic
3093 * device identification, boards need configuration tables telling which
3094 * chip is at which address.
3095 *
3096 * This must be called from context that can sleep. It returns zero on
3097 * success, else a negative error code (dropping the controller's refcount).
3098 * After a successful return, the caller is responsible for calling
3099 * spi_unregister_controller().
3100 *
3101 * Return: zero on success, else a negative error code.
3102 */
spi_register_controller(struct spi_controller * ctlr)3103 int spi_register_controller(struct spi_controller *ctlr)
3104 {
3105 struct device *dev = ctlr->dev.parent;
3106 struct boardinfo *bi;
3107 int first_dynamic;
3108 int status;
3109
3110 if (!dev)
3111 return -ENODEV;
3112
3113 /*
3114 * Make sure all necessary hooks are implemented before registering
3115 * the SPI controller.
3116 */
3117 status = spi_controller_check_ops(ctlr);
3118 if (status)
3119 return status;
3120
3121 if (ctlr->bus_num < 0)
3122 ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi");
3123 if (ctlr->bus_num >= 0) {
3124 /* Devices with a fixed bus num must check-in with the num */
3125 status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1);
3126 if (status)
3127 return status;
3128 }
3129 if (ctlr->bus_num < 0) {
3130 first_dynamic = of_alias_get_highest_id("spi");
3131 if (first_dynamic < 0)
3132 first_dynamic = 0;
3133 else
3134 first_dynamic++;
3135
3136 status = spi_controller_id_alloc(ctlr, first_dynamic, 0);
3137 if (status)
3138 return status;
3139 }
3140 ctlr->bus_lock_flag = 0;
3141 init_completion(&ctlr->xfer_completion);
3142 init_completion(&ctlr->cur_msg_completion);
3143 if (!ctlr->max_dma_len)
3144 ctlr->max_dma_len = INT_MAX;
3145
3146 /*
3147 * Register the device, then userspace will see it.
3148 * Registration fails if the bus ID is in use.
3149 */
3150 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3151
3152 if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3153 status = spi_get_gpio_descs(ctlr);
3154 if (status)
3155 goto free_bus_id;
3156 /*
3157 * A controller using GPIO descriptors always
3158 * supports SPI_CS_HIGH if need be.
3159 */
3160 ctlr->mode_bits |= SPI_CS_HIGH;
3161 }
3162
3163 /*
3164 * Even if it's just one always-selected device, there must
3165 * be at least one chipselect.
3166 */
3167 if (!ctlr->num_chipselect) {
3168 status = -EINVAL;
3169 goto free_bus_id;
3170 }
3171
3172 /* Setting last_cs to -1 means no chip selected */
3173 ctlr->last_cs = -1;
3174
3175 status = device_add(&ctlr->dev);
3176 if (status < 0)
3177 goto free_bus_id;
3178 dev_dbg(dev, "registered %s %s\n",
3179 spi_controller_is_slave(ctlr) ? "slave" : "master",
3180 dev_name(&ctlr->dev));
3181
3182 /*
3183 * If we're using a queued driver, start the queue. Note that we don't
3184 * need the queueing logic if the driver is only supporting high-level
3185 * memory operations.
3186 */
3187 if (ctlr->transfer) {
3188 dev_info(dev, "controller is unqueued, this is deprecated\n");
3189 } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3190 status = spi_controller_initialize_queue(ctlr);
3191 if (status) {
3192 device_del(&ctlr->dev);
3193 goto free_bus_id;
3194 }
3195 }
3196 /* Add statistics */
3197 ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3198 if (!ctlr->pcpu_statistics) {
3199 dev_err(dev, "Error allocating per-cpu statistics\n");
3200 status = -ENOMEM;
3201 goto destroy_queue;
3202 }
3203
3204 mutex_lock(&board_lock);
3205 list_add_tail(&ctlr->list, &spi_controller_list);
3206 list_for_each_entry(bi, &board_list, list)
3207 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3208 mutex_unlock(&board_lock);
3209
3210 /* Register devices from the device tree and ACPI */
3211 of_register_spi_devices(ctlr);
3212 acpi_register_spi_devices(ctlr);
3213 return status;
3214
3215 destroy_queue:
3216 spi_destroy_queue(ctlr);
3217 free_bus_id:
3218 mutex_lock(&board_lock);
3219 idr_remove(&spi_master_idr, ctlr->bus_num);
3220 mutex_unlock(&board_lock);
3221 return status;
3222 }
3223 EXPORT_SYMBOL_GPL(spi_register_controller);
3224
devm_spi_unregister(struct device * dev,void * res)3225 static void devm_spi_unregister(struct device *dev, void *res)
3226 {
3227 spi_unregister_controller(*(struct spi_controller **)res);
3228 }
3229
3230 /**
3231 * devm_spi_register_controller - register managed SPI master or slave
3232 * controller
3233 * @dev: device managing SPI controller
3234 * @ctlr: initialized controller, originally from spi_alloc_master() or
3235 * spi_alloc_slave()
3236 * Context: can sleep
3237 *
3238 * Register a SPI device as with spi_register_controller() which will
3239 * automatically be unregistered and freed.
3240 *
3241 * Return: zero on success, else a negative error code.
3242 */
devm_spi_register_controller(struct device * dev,struct spi_controller * ctlr)3243 int devm_spi_register_controller(struct device *dev,
3244 struct spi_controller *ctlr)
3245 {
3246 struct spi_controller **ptr;
3247 int ret;
3248
3249 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3250 if (!ptr)
3251 return -ENOMEM;
3252
3253 ret = spi_register_controller(ctlr);
3254 if (!ret) {
3255 *ptr = ctlr;
3256 devres_add(dev, ptr);
3257 } else {
3258 devres_free(ptr);
3259 }
3260
3261 return ret;
3262 }
3263 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3264
__unregister(struct device * dev,void * null)3265 static int __unregister(struct device *dev, void *null)
3266 {
3267 spi_unregister_device(to_spi_device(dev));
3268 return 0;
3269 }
3270
3271 /**
3272 * spi_unregister_controller - unregister SPI master or slave controller
3273 * @ctlr: the controller being unregistered
3274 * Context: can sleep
3275 *
3276 * This call is used only by SPI controller drivers, which are the
3277 * only ones directly touching chip registers.
3278 *
3279 * This must be called from context that can sleep.
3280 *
3281 * Note that this function also drops a reference to the controller.
3282 */
spi_unregister_controller(struct spi_controller * ctlr)3283 void spi_unregister_controller(struct spi_controller *ctlr)
3284 {
3285 struct spi_controller *found;
3286 int id = ctlr->bus_num;
3287
3288 /* Prevent addition of new devices, unregister existing ones */
3289 if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3290 mutex_lock(&ctlr->add_lock);
3291
3292 device_for_each_child(&ctlr->dev, NULL, __unregister);
3293
3294 /* First make sure that this controller was ever added */
3295 mutex_lock(&board_lock);
3296 found = idr_find(&spi_master_idr, id);
3297 mutex_unlock(&board_lock);
3298 if (ctlr->queued) {
3299 if (spi_destroy_queue(ctlr))
3300 dev_err(&ctlr->dev, "queue remove failed\n");
3301 }
3302 mutex_lock(&board_lock);
3303 list_del(&ctlr->list);
3304 mutex_unlock(&board_lock);
3305
3306 device_del(&ctlr->dev);
3307
3308 /* Free bus id */
3309 mutex_lock(&board_lock);
3310 if (found == ctlr)
3311 idr_remove(&spi_master_idr, id);
3312 mutex_unlock(&board_lock);
3313
3314 if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3315 mutex_unlock(&ctlr->add_lock);
3316
3317 /*
3318 * Release the last reference on the controller if its driver
3319 * has not yet been converted to devm_spi_alloc_master/slave().
3320 */
3321 if (!ctlr->devm_allocated)
3322 put_device(&ctlr->dev);
3323 }
3324 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3325
spi_controller_suspend(struct spi_controller * ctlr)3326 int spi_controller_suspend(struct spi_controller *ctlr)
3327 {
3328 int ret;
3329
3330 /* Basically no-ops for non-queued controllers */
3331 if (!ctlr->queued)
3332 return 0;
3333
3334 ret = spi_stop_queue(ctlr);
3335 if (ret)
3336 dev_err(&ctlr->dev, "queue stop failed\n");
3337
3338 return ret;
3339 }
3340 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3341
spi_controller_resume(struct spi_controller * ctlr)3342 int spi_controller_resume(struct spi_controller *ctlr)
3343 {
3344 int ret;
3345
3346 if (!ctlr->queued)
3347 return 0;
3348
3349 ret = spi_start_queue(ctlr);
3350 if (ret)
3351 dev_err(&ctlr->dev, "queue restart failed\n");
3352
3353 return ret;
3354 }
3355 EXPORT_SYMBOL_GPL(spi_controller_resume);
3356
3357 /*-------------------------------------------------------------------------*/
3358
3359 /* Core methods for spi_message alterations */
3360
__spi_replace_transfers_release(struct spi_controller * ctlr,struct spi_message * msg,void * res)3361 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3362 struct spi_message *msg,
3363 void *res)
3364 {
3365 struct spi_replaced_transfers *rxfer = res;
3366 size_t i;
3367
3368 /* Call extra callback if requested */
3369 if (rxfer->release)
3370 rxfer->release(ctlr, msg, res);
3371
3372 /* Insert replaced transfers back into the message */
3373 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3374
3375 /* Remove the formerly inserted entries */
3376 for (i = 0; i < rxfer->inserted; i++)
3377 list_del(&rxfer->inserted_transfers[i].transfer_list);
3378 }
3379
3380 /**
3381 * spi_replace_transfers - replace transfers with several transfers
3382 * and register change with spi_message.resources
3383 * @msg: the spi_message we work upon
3384 * @xfer_first: the first spi_transfer we want to replace
3385 * @remove: number of transfers to remove
3386 * @insert: the number of transfers we want to insert instead
3387 * @release: extra release code necessary in some circumstances
3388 * @extradatasize: extra data to allocate (with alignment guarantees
3389 * of struct @spi_transfer)
3390 * @gfp: gfp flags
3391 *
3392 * Returns: pointer to @spi_replaced_transfers,
3393 * PTR_ERR(...) in case of errors.
3394 */
spi_replace_transfers(struct spi_message * msg,struct spi_transfer * xfer_first,size_t remove,size_t insert,spi_replaced_release_t release,size_t extradatasize,gfp_t gfp)3395 static struct spi_replaced_transfers *spi_replace_transfers(
3396 struct spi_message *msg,
3397 struct spi_transfer *xfer_first,
3398 size_t remove,
3399 size_t insert,
3400 spi_replaced_release_t release,
3401 size_t extradatasize,
3402 gfp_t gfp)
3403 {
3404 struct spi_replaced_transfers *rxfer;
3405 struct spi_transfer *xfer;
3406 size_t i;
3407
3408 /* Allocate the structure using spi_res */
3409 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3410 struct_size(rxfer, inserted_transfers, insert)
3411 + extradatasize,
3412 gfp);
3413 if (!rxfer)
3414 return ERR_PTR(-ENOMEM);
3415
3416 /* The release code to invoke before running the generic release */
3417 rxfer->release = release;
3418
3419 /* Assign extradata */
3420 if (extradatasize)
3421 rxfer->extradata =
3422 &rxfer->inserted_transfers[insert];
3423
3424 /* Init the replaced_transfers list */
3425 INIT_LIST_HEAD(&rxfer->replaced_transfers);
3426
3427 /*
3428 * Assign the list_entry after which we should reinsert
3429 * the @replaced_transfers - it may be spi_message.messages!
3430 */
3431 rxfer->replaced_after = xfer_first->transfer_list.prev;
3432
3433 /* Remove the requested number of transfers */
3434 for (i = 0; i < remove; i++) {
3435 /*
3436 * If the entry after replaced_after it is msg->transfers
3437 * then we have been requested to remove more transfers
3438 * than are in the list.
3439 */
3440 if (rxfer->replaced_after->next == &msg->transfers) {
3441 dev_err(&msg->spi->dev,
3442 "requested to remove more spi_transfers than are available\n");
3443 /* Insert replaced transfers back into the message */
3444 list_splice(&rxfer->replaced_transfers,
3445 rxfer->replaced_after);
3446
3447 /* Free the spi_replace_transfer structure... */
3448 spi_res_free(rxfer);
3449
3450 /* ...and return with an error */
3451 return ERR_PTR(-EINVAL);
3452 }
3453
3454 /*
3455 * Remove the entry after replaced_after from list of
3456 * transfers and add it to list of replaced_transfers.
3457 */
3458 list_move_tail(rxfer->replaced_after->next,
3459 &rxfer->replaced_transfers);
3460 }
3461
3462 /*
3463 * Create copy of the given xfer with identical settings
3464 * based on the first transfer to get removed.
3465 */
3466 for (i = 0; i < insert; i++) {
3467 /* We need to run in reverse order */
3468 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3469
3470 /* Copy all spi_transfer data */
3471 memcpy(xfer, xfer_first, sizeof(*xfer));
3472
3473 /* Add to list */
3474 list_add(&xfer->transfer_list, rxfer->replaced_after);
3475
3476 /* Clear cs_change and delay for all but the last */
3477 if (i) {
3478 xfer->cs_change = false;
3479 xfer->delay.value = 0;
3480 }
3481 }
3482
3483 /* Set up inserted... */
3484 rxfer->inserted = insert;
3485
3486 /* ...and register it with spi_res/spi_message */
3487 spi_res_add(msg, rxfer);
3488
3489 return rxfer;
3490 }
3491
__spi_split_transfer_maxsize(struct spi_controller * ctlr,struct spi_message * msg,struct spi_transfer ** xferp,size_t maxsize,gfp_t gfp)3492 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3493 struct spi_message *msg,
3494 struct spi_transfer **xferp,
3495 size_t maxsize,
3496 gfp_t gfp)
3497 {
3498 struct spi_transfer *xfer = *xferp, *xfers;
3499 struct spi_replaced_transfers *srt;
3500 size_t offset;
3501 size_t count, i;
3502
3503 /* Calculate how many we have to replace */
3504 count = DIV_ROUND_UP(xfer->len, maxsize);
3505
3506 /* Create replacement */
3507 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3508 if (IS_ERR(srt))
3509 return PTR_ERR(srt);
3510 xfers = srt->inserted_transfers;
3511
3512 /*
3513 * Now handle each of those newly inserted spi_transfers.
3514 * Note that the replacements spi_transfers all are preset
3515 * to the same values as *xferp, so tx_buf, rx_buf and len
3516 * are all identical (as well as most others)
3517 * so we just have to fix up len and the pointers.
3518 *
3519 * This also includes support for the depreciated
3520 * spi_message.is_dma_mapped interface.
3521 */
3522
3523 /*
3524 * The first transfer just needs the length modified, so we
3525 * run it outside the loop.
3526 */
3527 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3528
3529 /* All the others need rx_buf/tx_buf also set */
3530 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3531 /* Update rx_buf, tx_buf and DMA */
3532 if (xfers[i].rx_buf)
3533 xfers[i].rx_buf += offset;
3534 if (xfers[i].rx_dma)
3535 xfers[i].rx_dma += offset;
3536 if (xfers[i].tx_buf)
3537 xfers[i].tx_buf += offset;
3538 if (xfers[i].tx_dma)
3539 xfers[i].tx_dma += offset;
3540
3541 /* Update length */
3542 xfers[i].len = min(maxsize, xfers[i].len - offset);
3543 }
3544
3545 /*
3546 * We set up xferp to the last entry we have inserted,
3547 * so that we skip those already split transfers.
3548 */
3549 *xferp = &xfers[count - 1];
3550
3551 /* Increment statistics counters */
3552 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3553 transfers_split_maxsize);
3554 SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3555 transfers_split_maxsize);
3556
3557 return 0;
3558 }
3559
3560 /**
3561 * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3562 * when an individual transfer exceeds a
3563 * certain size
3564 * @ctlr: the @spi_controller for this transfer
3565 * @msg: the @spi_message to transform
3566 * @maxsize: the maximum when to apply this
3567 * @gfp: GFP allocation flags
3568 *
3569 * Return: status of transformation
3570 */
spi_split_transfers_maxsize(struct spi_controller * ctlr,struct spi_message * msg,size_t maxsize,gfp_t gfp)3571 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3572 struct spi_message *msg,
3573 size_t maxsize,
3574 gfp_t gfp)
3575 {
3576 struct spi_transfer *xfer;
3577 int ret;
3578
3579 /*
3580 * Iterate over the transfer_list,
3581 * but note that xfer is advanced to the last transfer inserted
3582 * to avoid checking sizes again unnecessarily (also xfer does
3583 * potentially belong to a different list by the time the
3584 * replacement has happened).
3585 */
3586 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3587 if (xfer->len > maxsize) {
3588 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3589 maxsize, gfp);
3590 if (ret)
3591 return ret;
3592 }
3593 }
3594
3595 return 0;
3596 }
3597 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3598
3599
3600 /**
3601 * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
3602 * when an individual transfer exceeds a
3603 * certain number of SPI words
3604 * @ctlr: the @spi_controller for this transfer
3605 * @msg: the @spi_message to transform
3606 * @maxwords: the number of words to limit each transfer to
3607 * @gfp: GFP allocation flags
3608 *
3609 * Return: status of transformation
3610 */
spi_split_transfers_maxwords(struct spi_controller * ctlr,struct spi_message * msg,size_t maxwords,gfp_t gfp)3611 int spi_split_transfers_maxwords(struct spi_controller *ctlr,
3612 struct spi_message *msg,
3613 size_t maxwords,
3614 gfp_t gfp)
3615 {
3616 struct spi_transfer *xfer;
3617
3618 /*
3619 * Iterate over the transfer_list,
3620 * but note that xfer is advanced to the last transfer inserted
3621 * to avoid checking sizes again unnecessarily (also xfer does
3622 * potentially belong to a different list by the time the
3623 * replacement has happened).
3624 */
3625 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3626 size_t maxsize;
3627 int ret;
3628
3629 maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word));
3630 if (xfer->len > maxsize) {
3631 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3632 maxsize, gfp);
3633 if (ret)
3634 return ret;
3635 }
3636 }
3637
3638 return 0;
3639 }
3640 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
3641
3642 /*-------------------------------------------------------------------------*/
3643
3644 /*
3645 * Core methods for SPI controller protocol drivers. Some of the
3646 * other core methods are currently defined as inline functions.
3647 */
3648
__spi_validate_bits_per_word(struct spi_controller * ctlr,u8 bits_per_word)3649 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3650 u8 bits_per_word)
3651 {
3652 if (ctlr->bits_per_word_mask) {
3653 /* Only 32 bits fit in the mask */
3654 if (bits_per_word > 32)
3655 return -EINVAL;
3656 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3657 return -EINVAL;
3658 }
3659
3660 return 0;
3661 }
3662
3663 /**
3664 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3665 * @spi: the device that requires specific CS timing configuration
3666 *
3667 * Return: zero on success, else a negative error code.
3668 */
spi_set_cs_timing(struct spi_device * spi)3669 static int spi_set_cs_timing(struct spi_device *spi)
3670 {
3671 struct device *parent = spi->controller->dev.parent;
3672 int status = 0;
3673
3674 if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3675 if (spi->controller->auto_runtime_pm) {
3676 status = pm_runtime_get_sync(parent);
3677 if (status < 0) {
3678 pm_runtime_put_noidle(parent);
3679 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3680 status);
3681 return status;
3682 }
3683
3684 status = spi->controller->set_cs_timing(spi);
3685 pm_runtime_mark_last_busy(parent);
3686 pm_runtime_put_autosuspend(parent);
3687 } else {
3688 status = spi->controller->set_cs_timing(spi);
3689 }
3690 }
3691 return status;
3692 }
3693
3694 /**
3695 * spi_setup - setup SPI mode and clock rate
3696 * @spi: the device whose settings are being modified
3697 * Context: can sleep, and no requests are queued to the device
3698 *
3699 * SPI protocol drivers may need to update the transfer mode if the
3700 * device doesn't work with its default. They may likewise need
3701 * to update clock rates or word sizes from initial values. This function
3702 * changes those settings, and must be called from a context that can sleep.
3703 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3704 * effect the next time the device is selected and data is transferred to
3705 * or from it. When this function returns, the SPI device is deselected.
3706 *
3707 * Note that this call will fail if the protocol driver specifies an option
3708 * that the underlying controller or its driver does not support. For
3709 * example, not all hardware supports wire transfers using nine bit words,
3710 * LSB-first wire encoding, or active-high chipselects.
3711 *
3712 * Return: zero on success, else a negative error code.
3713 */
spi_setup(struct spi_device * spi)3714 int spi_setup(struct spi_device *spi)
3715 {
3716 unsigned bad_bits, ugly_bits;
3717 int status = 0;
3718
3719 /*
3720 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3721 * are set at the same time.
3722 */
3723 if ((hweight_long(spi->mode &
3724 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3725 (hweight_long(spi->mode &
3726 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3727 dev_err(&spi->dev,
3728 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3729 return -EINVAL;
3730 }
3731 /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3732 if ((spi->mode & SPI_3WIRE) && (spi->mode &
3733 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3734 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3735 return -EINVAL;
3736 /*
3737 * Help drivers fail *cleanly* when they need options
3738 * that aren't supported with their current controller.
3739 * SPI_CS_WORD has a fallback software implementation,
3740 * so it is ignored here.
3741 */
3742 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3743 SPI_NO_TX | SPI_NO_RX);
3744 ugly_bits = bad_bits &
3745 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3746 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3747 if (ugly_bits) {
3748 dev_warn(&spi->dev,
3749 "setup: ignoring unsupported mode bits %x\n",
3750 ugly_bits);
3751 spi->mode &= ~ugly_bits;
3752 bad_bits &= ~ugly_bits;
3753 }
3754 if (bad_bits) {
3755 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3756 bad_bits);
3757 return -EINVAL;
3758 }
3759
3760 if (!spi->bits_per_word) {
3761 spi->bits_per_word = 8;
3762 } else {
3763 /*
3764 * Some controllers may not support the default 8 bits-per-word
3765 * so only perform the check when this is explicitly provided.
3766 */
3767 status = __spi_validate_bits_per_word(spi->controller,
3768 spi->bits_per_word);
3769 if (status)
3770 return status;
3771 }
3772
3773 if (spi->controller->max_speed_hz &&
3774 (!spi->max_speed_hz ||
3775 spi->max_speed_hz > spi->controller->max_speed_hz))
3776 spi->max_speed_hz = spi->controller->max_speed_hz;
3777
3778 mutex_lock(&spi->controller->io_mutex);
3779
3780 if (spi->controller->setup) {
3781 status = spi->controller->setup(spi);
3782 if (status) {
3783 mutex_unlock(&spi->controller->io_mutex);
3784 dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3785 status);
3786 return status;
3787 }
3788 }
3789
3790 status = spi_set_cs_timing(spi);
3791 if (status) {
3792 mutex_unlock(&spi->controller->io_mutex);
3793 return status;
3794 }
3795
3796 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3797 status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3798 if (status < 0) {
3799 mutex_unlock(&spi->controller->io_mutex);
3800 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3801 status);
3802 return status;
3803 }
3804
3805 /*
3806 * We do not want to return positive value from pm_runtime_get,
3807 * there are many instances of devices calling spi_setup() and
3808 * checking for a non-zero return value instead of a negative
3809 * return value.
3810 */
3811 status = 0;
3812
3813 spi_set_cs(spi, false, true);
3814 pm_runtime_mark_last_busy(spi->controller->dev.parent);
3815 pm_runtime_put_autosuspend(spi->controller->dev.parent);
3816 } else {
3817 spi_set_cs(spi, false, true);
3818 }
3819
3820 mutex_unlock(&spi->controller->io_mutex);
3821
3822 if (spi->rt && !spi->controller->rt) {
3823 spi->controller->rt = true;
3824 spi_set_thread_rt(spi->controller);
3825 }
3826
3827 trace_spi_setup(spi, status);
3828
3829 dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3830 spi->mode & SPI_MODE_X_MASK,
3831 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3832 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3833 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
3834 (spi->mode & SPI_LOOP) ? "loopback, " : "",
3835 spi->bits_per_word, spi->max_speed_hz,
3836 status);
3837
3838 return status;
3839 }
3840 EXPORT_SYMBOL_GPL(spi_setup);
3841
_spi_xfer_word_delay_update(struct spi_transfer * xfer,struct spi_device * spi)3842 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3843 struct spi_device *spi)
3844 {
3845 int delay1, delay2;
3846
3847 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3848 if (delay1 < 0)
3849 return delay1;
3850
3851 delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3852 if (delay2 < 0)
3853 return delay2;
3854
3855 if (delay1 < delay2)
3856 memcpy(&xfer->word_delay, &spi->word_delay,
3857 sizeof(xfer->word_delay));
3858
3859 return 0;
3860 }
3861
__spi_validate(struct spi_device * spi,struct spi_message * message)3862 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3863 {
3864 struct spi_controller *ctlr = spi->controller;
3865 struct spi_transfer *xfer;
3866 int w_size;
3867
3868 if (list_empty(&message->transfers))
3869 return -EINVAL;
3870
3871 /*
3872 * If an SPI controller does not support toggling the CS line on each
3873 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3874 * for the CS line, we can emulate the CS-per-word hardware function by
3875 * splitting transfers into one-word transfers and ensuring that
3876 * cs_change is set for each transfer.
3877 */
3878 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3879 spi_get_csgpiod(spi, 0))) {
3880 size_t maxsize = BITS_TO_BYTES(spi->bits_per_word);
3881 int ret;
3882
3883 /* spi_split_transfers_maxsize() requires message->spi */
3884 message->spi = spi;
3885
3886 ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3887 GFP_KERNEL);
3888 if (ret)
3889 return ret;
3890
3891 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3892 /* Don't change cs_change on the last entry in the list */
3893 if (list_is_last(&xfer->transfer_list, &message->transfers))
3894 break;
3895 xfer->cs_change = 1;
3896 }
3897 }
3898
3899 /*
3900 * Half-duplex links include original MicroWire, and ones with
3901 * only one data pin like SPI_3WIRE (switches direction) or where
3902 * either MOSI or MISO is missing. They can also be caused by
3903 * software limitations.
3904 */
3905 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3906 (spi->mode & SPI_3WIRE)) {
3907 unsigned flags = ctlr->flags;
3908
3909 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3910 if (xfer->rx_buf && xfer->tx_buf)
3911 return -EINVAL;
3912 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3913 return -EINVAL;
3914 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3915 return -EINVAL;
3916 }
3917 }
3918
3919 /*
3920 * Set transfer bits_per_word and max speed as spi device default if
3921 * it is not set for this transfer.
3922 * Set transfer tx_nbits and rx_nbits as single transfer default
3923 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3924 * Ensure transfer word_delay is at least as long as that required by
3925 * device itself.
3926 */
3927 message->frame_length = 0;
3928 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3929 xfer->effective_speed_hz = 0;
3930 message->frame_length += xfer->len;
3931 if (!xfer->bits_per_word)
3932 xfer->bits_per_word = spi->bits_per_word;
3933
3934 if (!xfer->speed_hz)
3935 xfer->speed_hz = spi->max_speed_hz;
3936
3937 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3938 xfer->speed_hz = ctlr->max_speed_hz;
3939
3940 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3941 return -EINVAL;
3942
3943 /*
3944 * SPI transfer length should be multiple of SPI word size
3945 * where SPI word size should be power-of-two multiple.
3946 */
3947 if (xfer->bits_per_word <= 8)
3948 w_size = 1;
3949 else if (xfer->bits_per_word <= 16)
3950 w_size = 2;
3951 else
3952 w_size = 4;
3953
3954 /* No partial transfers accepted */
3955 if (xfer->len % w_size)
3956 return -EINVAL;
3957
3958 if (xfer->speed_hz && ctlr->min_speed_hz &&
3959 xfer->speed_hz < ctlr->min_speed_hz)
3960 return -EINVAL;
3961
3962 if (xfer->tx_buf && !xfer->tx_nbits)
3963 xfer->tx_nbits = SPI_NBITS_SINGLE;
3964 if (xfer->rx_buf && !xfer->rx_nbits)
3965 xfer->rx_nbits = SPI_NBITS_SINGLE;
3966 /*
3967 * Check transfer tx/rx_nbits:
3968 * 1. check the value matches one of single, dual and quad
3969 * 2. check tx/rx_nbits match the mode in spi_device
3970 */
3971 if (xfer->tx_buf) {
3972 if (spi->mode & SPI_NO_TX)
3973 return -EINVAL;
3974 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3975 xfer->tx_nbits != SPI_NBITS_DUAL &&
3976 xfer->tx_nbits != SPI_NBITS_QUAD)
3977 return -EINVAL;
3978 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3979 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3980 return -EINVAL;
3981 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3982 !(spi->mode & SPI_TX_QUAD))
3983 return -EINVAL;
3984 }
3985 /* Check transfer rx_nbits */
3986 if (xfer->rx_buf) {
3987 if (spi->mode & SPI_NO_RX)
3988 return -EINVAL;
3989 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3990 xfer->rx_nbits != SPI_NBITS_DUAL &&
3991 xfer->rx_nbits != SPI_NBITS_QUAD)
3992 return -EINVAL;
3993 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3994 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3995 return -EINVAL;
3996 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3997 !(spi->mode & SPI_RX_QUAD))
3998 return -EINVAL;
3999 }
4000
4001 if (_spi_xfer_word_delay_update(xfer, spi))
4002 return -EINVAL;
4003 }
4004
4005 message->status = -EINPROGRESS;
4006
4007 return 0;
4008 }
4009
__spi_async(struct spi_device * spi,struct spi_message * message)4010 static int __spi_async(struct spi_device *spi, struct spi_message *message)
4011 {
4012 struct spi_controller *ctlr = spi->controller;
4013 struct spi_transfer *xfer;
4014
4015 /*
4016 * Some controllers do not support doing regular SPI transfers. Return
4017 * ENOTSUPP when this is the case.
4018 */
4019 if (!ctlr->transfer)
4020 return -ENOTSUPP;
4021
4022 message->spi = spi;
4023
4024 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4025 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4026
4027 trace_spi_message_submit(message);
4028
4029 if (!ctlr->ptp_sts_supported) {
4030 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4031 xfer->ptp_sts_word_pre = 0;
4032 ptp_read_system_prets(xfer->ptp_sts);
4033 }
4034 }
4035
4036 return ctlr->transfer(spi, message);
4037 }
4038
4039 /**
4040 * spi_async - asynchronous SPI transfer
4041 * @spi: device with which data will be exchanged
4042 * @message: describes the data transfers, including completion callback
4043 * Context: any (IRQs may be blocked, etc)
4044 *
4045 * This call may be used in_irq and other contexts which can't sleep,
4046 * as well as from task contexts which can sleep.
4047 *
4048 * The completion callback is invoked in a context which can't sleep.
4049 * Before that invocation, the value of message->status is undefined.
4050 * When the callback is issued, message->status holds either zero (to
4051 * indicate complete success) or a negative error code. After that
4052 * callback returns, the driver which issued the transfer request may
4053 * deallocate the associated memory; it's no longer in use by any SPI
4054 * core or controller driver code.
4055 *
4056 * Note that although all messages to a spi_device are handled in
4057 * FIFO order, messages may go to different devices in other orders.
4058 * Some device might be higher priority, or have various "hard" access
4059 * time requirements, for example.
4060 *
4061 * On detection of any fault during the transfer, processing of
4062 * the entire message is aborted, and the device is deselected.
4063 * Until returning from the associated message completion callback,
4064 * no other spi_message queued to that device will be processed.
4065 * (This rule applies equally to all the synchronous transfer calls,
4066 * which are wrappers around this core asynchronous primitive.)
4067 *
4068 * Return: zero on success, else a negative error code.
4069 */
spi_async(struct spi_device * spi,struct spi_message * message)4070 int spi_async(struct spi_device *spi, struct spi_message *message)
4071 {
4072 struct spi_controller *ctlr = spi->controller;
4073 int ret;
4074 unsigned long flags;
4075
4076 ret = __spi_validate(spi, message);
4077 if (ret != 0)
4078 return ret;
4079
4080 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4081
4082 if (ctlr->bus_lock_flag)
4083 ret = -EBUSY;
4084 else
4085 ret = __spi_async(spi, message);
4086
4087 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4088
4089 return ret;
4090 }
4091 EXPORT_SYMBOL_GPL(spi_async);
4092
4093 /**
4094 * spi_async_locked - version of spi_async with exclusive bus usage
4095 * @spi: device with which data will be exchanged
4096 * @message: describes the data transfers, including completion callback
4097 * Context: any (IRQs may be blocked, etc)
4098 *
4099 * This call may be used in_irq and other contexts which can't sleep,
4100 * as well as from task contexts which can sleep.
4101 *
4102 * The completion callback is invoked in a context which can't sleep.
4103 * Before that invocation, the value of message->status is undefined.
4104 * When the callback is issued, message->status holds either zero (to
4105 * indicate complete success) or a negative error code. After that
4106 * callback returns, the driver which issued the transfer request may
4107 * deallocate the associated memory; it's no longer in use by any SPI
4108 * core or controller driver code.
4109 *
4110 * Note that although all messages to a spi_device are handled in
4111 * FIFO order, messages may go to different devices in other orders.
4112 * Some device might be higher priority, or have various "hard" access
4113 * time requirements, for example.
4114 *
4115 * On detection of any fault during the transfer, processing of
4116 * the entire message is aborted, and the device is deselected.
4117 * Until returning from the associated message completion callback,
4118 * no other spi_message queued to that device will be processed.
4119 * (This rule applies equally to all the synchronous transfer calls,
4120 * which are wrappers around this core asynchronous primitive.)
4121 *
4122 * Return: zero on success, else a negative error code.
4123 */
spi_async_locked(struct spi_device * spi,struct spi_message * message)4124 static int spi_async_locked(struct spi_device *spi, struct spi_message *message)
4125 {
4126 struct spi_controller *ctlr = spi->controller;
4127 int ret;
4128 unsigned long flags;
4129
4130 ret = __spi_validate(spi, message);
4131 if (ret != 0)
4132 return ret;
4133
4134 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4135
4136 ret = __spi_async(spi, message);
4137
4138 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4139
4140 return ret;
4141
4142 }
4143
__spi_transfer_message_noqueue(struct spi_controller * ctlr,struct spi_message * msg)4144 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4145 {
4146 bool was_busy;
4147 int ret;
4148
4149 mutex_lock(&ctlr->io_mutex);
4150
4151 was_busy = ctlr->busy;
4152
4153 ctlr->cur_msg = msg;
4154 ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4155 if (ret)
4156 goto out;
4157
4158 ctlr->cur_msg = NULL;
4159 ctlr->fallback = false;
4160
4161 if (!was_busy) {
4162 kfree(ctlr->dummy_rx);
4163 ctlr->dummy_rx = NULL;
4164 kfree(ctlr->dummy_tx);
4165 ctlr->dummy_tx = NULL;
4166 if (ctlr->unprepare_transfer_hardware &&
4167 ctlr->unprepare_transfer_hardware(ctlr))
4168 dev_err(&ctlr->dev,
4169 "failed to unprepare transfer hardware\n");
4170 spi_idle_runtime_pm(ctlr);
4171 }
4172
4173 out:
4174 mutex_unlock(&ctlr->io_mutex);
4175 }
4176
4177 /*-------------------------------------------------------------------------*/
4178
4179 /*
4180 * Utility methods for SPI protocol drivers, layered on
4181 * top of the core. Some other utility methods are defined as
4182 * inline functions.
4183 */
4184
spi_complete(void * arg)4185 static void spi_complete(void *arg)
4186 {
4187 complete(arg);
4188 }
4189
__spi_sync(struct spi_device * spi,struct spi_message * message)4190 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4191 {
4192 DECLARE_COMPLETION_ONSTACK(done);
4193 int status;
4194 struct spi_controller *ctlr = spi->controller;
4195
4196 status = __spi_validate(spi, message);
4197 if (status != 0)
4198 return status;
4199
4200 message->spi = spi;
4201
4202 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4203 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4204
4205 /*
4206 * Checking queue_empty here only guarantees async/sync message
4207 * ordering when coming from the same context. It does not need to
4208 * guard against reentrancy from a different context. The io_mutex
4209 * will catch those cases.
4210 */
4211 if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4212 message->actual_length = 0;
4213 message->status = -EINPROGRESS;
4214
4215 trace_spi_message_submit(message);
4216
4217 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4218 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4219
4220 __spi_transfer_message_noqueue(ctlr, message);
4221
4222 return message->status;
4223 }
4224
4225 /*
4226 * There are messages in the async queue that could have originated
4227 * from the same context, so we need to preserve ordering.
4228 * Therefor we send the message to the async queue and wait until they
4229 * are completed.
4230 */
4231 message->complete = spi_complete;
4232 message->context = &done;
4233 status = spi_async_locked(spi, message);
4234 if (status == 0) {
4235 wait_for_completion(&done);
4236 status = message->status;
4237 }
4238 message->context = NULL;
4239
4240 return status;
4241 }
4242
4243 /**
4244 * spi_sync - blocking/synchronous SPI data transfers
4245 * @spi: device with which data will be exchanged
4246 * @message: describes the data transfers
4247 * Context: can sleep
4248 *
4249 * This call may only be used from a context that may sleep. The sleep
4250 * is non-interruptible, and has no timeout. Low-overhead controller
4251 * drivers may DMA directly into and out of the message buffers.
4252 *
4253 * Note that the SPI device's chip select is active during the message,
4254 * and then is normally disabled between messages. Drivers for some
4255 * frequently-used devices may want to minimize costs of selecting a chip,
4256 * by leaving it selected in anticipation that the next message will go
4257 * to the same chip. (That may increase power usage.)
4258 *
4259 * Also, the caller is guaranteeing that the memory associated with the
4260 * message will not be freed before this call returns.
4261 *
4262 * Return: zero on success, else a negative error code.
4263 */
spi_sync(struct spi_device * spi,struct spi_message * message)4264 int spi_sync(struct spi_device *spi, struct spi_message *message)
4265 {
4266 int ret;
4267
4268 mutex_lock(&spi->controller->bus_lock_mutex);
4269 ret = __spi_sync(spi, message);
4270 mutex_unlock(&spi->controller->bus_lock_mutex);
4271
4272 return ret;
4273 }
4274 EXPORT_SYMBOL_GPL(spi_sync);
4275
4276 /**
4277 * spi_sync_locked - version of spi_sync with exclusive bus usage
4278 * @spi: device with which data will be exchanged
4279 * @message: describes the data transfers
4280 * Context: can sleep
4281 *
4282 * This call may only be used from a context that may sleep. The sleep
4283 * is non-interruptible, and has no timeout. Low-overhead controller
4284 * drivers may DMA directly into and out of the message buffers.
4285 *
4286 * This call should be used by drivers that require exclusive access to the
4287 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4288 * be released by a spi_bus_unlock call when the exclusive access is over.
4289 *
4290 * Return: zero on success, else a negative error code.
4291 */
spi_sync_locked(struct spi_device * spi,struct spi_message * message)4292 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4293 {
4294 return __spi_sync(spi, message);
4295 }
4296 EXPORT_SYMBOL_GPL(spi_sync_locked);
4297
4298 /**
4299 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4300 * @ctlr: SPI bus master that should be locked for exclusive bus access
4301 * Context: can sleep
4302 *
4303 * This call may only be used from a context that may sleep. The sleep
4304 * is non-interruptible, and has no timeout.
4305 *
4306 * This call should be used by drivers that require exclusive access to the
4307 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4308 * exclusive access is over. Data transfer must be done by spi_sync_locked
4309 * and spi_async_locked calls when the SPI bus lock is held.
4310 *
4311 * Return: always zero.
4312 */
spi_bus_lock(struct spi_controller * ctlr)4313 int spi_bus_lock(struct spi_controller *ctlr)
4314 {
4315 unsigned long flags;
4316
4317 mutex_lock(&ctlr->bus_lock_mutex);
4318
4319 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4320 ctlr->bus_lock_flag = 1;
4321 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4322
4323 /* Mutex remains locked until spi_bus_unlock() is called */
4324
4325 return 0;
4326 }
4327 EXPORT_SYMBOL_GPL(spi_bus_lock);
4328
4329 /**
4330 * spi_bus_unlock - release the lock for exclusive SPI bus usage
4331 * @ctlr: SPI bus master that was locked for exclusive bus access
4332 * Context: can sleep
4333 *
4334 * This call may only be used from a context that may sleep. The sleep
4335 * is non-interruptible, and has no timeout.
4336 *
4337 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4338 * call.
4339 *
4340 * Return: always zero.
4341 */
spi_bus_unlock(struct spi_controller * ctlr)4342 int spi_bus_unlock(struct spi_controller *ctlr)
4343 {
4344 ctlr->bus_lock_flag = 0;
4345
4346 mutex_unlock(&ctlr->bus_lock_mutex);
4347
4348 return 0;
4349 }
4350 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4351
4352 /* Portable code must never pass more than 32 bytes */
4353 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
4354
4355 static u8 *buf;
4356
4357 /**
4358 * spi_write_then_read - SPI synchronous write followed by read
4359 * @spi: device with which data will be exchanged
4360 * @txbuf: data to be written (need not be DMA-safe)
4361 * @n_tx: size of txbuf, in bytes
4362 * @rxbuf: buffer into which data will be read (need not be DMA-safe)
4363 * @n_rx: size of rxbuf, in bytes
4364 * Context: can sleep
4365 *
4366 * This performs a half duplex MicroWire style transaction with the
4367 * device, sending txbuf and then reading rxbuf. The return value
4368 * is zero for success, else a negative errno status code.
4369 * This call may only be used from a context that may sleep.
4370 *
4371 * Parameters to this routine are always copied using a small buffer.
4372 * Performance-sensitive or bulk transfer code should instead use
4373 * spi_{async,sync}() calls with DMA-safe buffers.
4374 *
4375 * Return: zero on success, else a negative error code.
4376 */
spi_write_then_read(struct spi_device * spi,const void * txbuf,unsigned n_tx,void * rxbuf,unsigned n_rx)4377 int spi_write_then_read(struct spi_device *spi,
4378 const void *txbuf, unsigned n_tx,
4379 void *rxbuf, unsigned n_rx)
4380 {
4381 static DEFINE_MUTEX(lock);
4382
4383 int status;
4384 struct spi_message message;
4385 struct spi_transfer x[2];
4386 u8 *local_buf;
4387
4388 /*
4389 * Use preallocated DMA-safe buffer if we can. We can't avoid
4390 * copying here, (as a pure convenience thing), but we can
4391 * keep heap costs out of the hot path unless someone else is
4392 * using the pre-allocated buffer or the transfer is too large.
4393 */
4394 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4395 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4396 GFP_KERNEL | GFP_DMA);
4397 if (!local_buf)
4398 return -ENOMEM;
4399 } else {
4400 local_buf = buf;
4401 }
4402
4403 spi_message_init(&message);
4404 memset(x, 0, sizeof(x));
4405 if (n_tx) {
4406 x[0].len = n_tx;
4407 spi_message_add_tail(&x[0], &message);
4408 }
4409 if (n_rx) {
4410 x[1].len = n_rx;
4411 spi_message_add_tail(&x[1], &message);
4412 }
4413
4414 memcpy(local_buf, txbuf, n_tx);
4415 x[0].tx_buf = local_buf;
4416 x[1].rx_buf = local_buf + n_tx;
4417
4418 /* Do the I/O */
4419 status = spi_sync(spi, &message);
4420 if (status == 0)
4421 memcpy(rxbuf, x[1].rx_buf, n_rx);
4422
4423 if (x[0].tx_buf == buf)
4424 mutex_unlock(&lock);
4425 else
4426 kfree(local_buf);
4427
4428 return status;
4429 }
4430 EXPORT_SYMBOL_GPL(spi_write_then_read);
4431
4432 /*-------------------------------------------------------------------------*/
4433
4434 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4435 /* Must call put_device() when done with returned spi_device device */
of_find_spi_device_by_node(struct device_node * node)4436 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4437 {
4438 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4439
4440 return dev ? to_spi_device(dev) : NULL;
4441 }
4442
4443 /* The spi controllers are not using spi_bus, so we find it with another way */
of_find_spi_controller_by_node(struct device_node * node)4444 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4445 {
4446 struct device *dev;
4447
4448 dev = class_find_device_by_of_node(&spi_master_class, node);
4449 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4450 dev = class_find_device_by_of_node(&spi_slave_class, node);
4451 if (!dev)
4452 return NULL;
4453
4454 /* Reference got in class_find_device */
4455 return container_of(dev, struct spi_controller, dev);
4456 }
4457
of_spi_notify(struct notifier_block * nb,unsigned long action,void * arg)4458 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4459 void *arg)
4460 {
4461 struct of_reconfig_data *rd = arg;
4462 struct spi_controller *ctlr;
4463 struct spi_device *spi;
4464
4465 switch (of_reconfig_get_state_change(action, arg)) {
4466 case OF_RECONFIG_CHANGE_ADD:
4467 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4468 if (ctlr == NULL)
4469 return NOTIFY_OK; /* Not for us */
4470
4471 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4472 put_device(&ctlr->dev);
4473 return NOTIFY_OK;
4474 }
4475
4476 /*
4477 * Clear the flag before adding the device so that fw_devlink
4478 * doesn't skip adding consumers to this device.
4479 */
4480 rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE;
4481 spi = of_register_spi_device(ctlr, rd->dn);
4482 put_device(&ctlr->dev);
4483
4484 if (IS_ERR(spi)) {
4485 pr_err("%s: failed to create for '%pOF'\n",
4486 __func__, rd->dn);
4487 of_node_clear_flag(rd->dn, OF_POPULATED);
4488 return notifier_from_errno(PTR_ERR(spi));
4489 }
4490 break;
4491
4492 case OF_RECONFIG_CHANGE_REMOVE:
4493 /* Already depopulated? */
4494 if (!of_node_check_flag(rd->dn, OF_POPULATED))
4495 return NOTIFY_OK;
4496
4497 /* Find our device by node */
4498 spi = of_find_spi_device_by_node(rd->dn);
4499 if (spi == NULL)
4500 return NOTIFY_OK; /* No? not meant for us */
4501
4502 /* Unregister takes one ref away */
4503 spi_unregister_device(spi);
4504
4505 /* And put the reference of the find */
4506 put_device(&spi->dev);
4507 break;
4508 }
4509
4510 return NOTIFY_OK;
4511 }
4512
4513 static struct notifier_block spi_of_notifier = {
4514 .notifier_call = of_spi_notify,
4515 };
4516 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4517 extern struct notifier_block spi_of_notifier;
4518 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4519
4520 #if IS_ENABLED(CONFIG_ACPI)
spi_acpi_controller_match(struct device * dev,const void * data)4521 static int spi_acpi_controller_match(struct device *dev, const void *data)
4522 {
4523 return ACPI_COMPANION(dev->parent) == data;
4524 }
4525
acpi_spi_find_controller_by_adev(struct acpi_device * adev)4526 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4527 {
4528 struct device *dev;
4529
4530 dev = class_find_device(&spi_master_class, NULL, adev,
4531 spi_acpi_controller_match);
4532 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4533 dev = class_find_device(&spi_slave_class, NULL, adev,
4534 spi_acpi_controller_match);
4535 if (!dev)
4536 return NULL;
4537
4538 return container_of(dev, struct spi_controller, dev);
4539 }
4540
acpi_spi_find_device_by_adev(struct acpi_device * adev)4541 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4542 {
4543 struct device *dev;
4544
4545 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4546 return to_spi_device(dev);
4547 }
4548
acpi_spi_notify(struct notifier_block * nb,unsigned long value,void * arg)4549 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4550 void *arg)
4551 {
4552 struct acpi_device *adev = arg;
4553 struct spi_controller *ctlr;
4554 struct spi_device *spi;
4555
4556 switch (value) {
4557 case ACPI_RECONFIG_DEVICE_ADD:
4558 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4559 if (!ctlr)
4560 break;
4561
4562 acpi_register_spi_device(ctlr, adev);
4563 put_device(&ctlr->dev);
4564 break;
4565 case ACPI_RECONFIG_DEVICE_REMOVE:
4566 if (!acpi_device_enumerated(adev))
4567 break;
4568
4569 spi = acpi_spi_find_device_by_adev(adev);
4570 if (!spi)
4571 break;
4572
4573 spi_unregister_device(spi);
4574 put_device(&spi->dev);
4575 break;
4576 }
4577
4578 return NOTIFY_OK;
4579 }
4580
4581 static struct notifier_block spi_acpi_notifier = {
4582 .notifier_call = acpi_spi_notify,
4583 };
4584 #else
4585 extern struct notifier_block spi_acpi_notifier;
4586 #endif
4587
spi_init(void)4588 static int __init spi_init(void)
4589 {
4590 int status;
4591
4592 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4593 if (!buf) {
4594 status = -ENOMEM;
4595 goto err0;
4596 }
4597
4598 status = bus_register(&spi_bus_type);
4599 if (status < 0)
4600 goto err1;
4601
4602 status = class_register(&spi_master_class);
4603 if (status < 0)
4604 goto err2;
4605
4606 if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4607 status = class_register(&spi_slave_class);
4608 if (status < 0)
4609 goto err3;
4610 }
4611
4612 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4613 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4614 if (IS_ENABLED(CONFIG_ACPI))
4615 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4616
4617 return 0;
4618
4619 err3:
4620 class_unregister(&spi_master_class);
4621 err2:
4622 bus_unregister(&spi_bus_type);
4623 err1:
4624 kfree(buf);
4625 buf = NULL;
4626 err0:
4627 return status;
4628 }
4629
4630 /*
4631 * A board_info is normally registered in arch_initcall(),
4632 * but even essential drivers wait till later.
4633 *
4634 * REVISIT only boardinfo really needs static linking. The rest (device and
4635 * driver registration) _could_ be dynamically linked (modular) ... Costs
4636 * include needing to have boardinfo data structures be much more public.
4637 */
4638 postcore_initcall(spi_init);
4639