1 /*
2 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3 *
4 * Copyright (C) 2000 Andrew Henroid
5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7 * Copyright (c) 2008 Intel Corporation
8 * Author: Matthew Wilcox <willy@linux.intel.com>
9 *
10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23 *
24 */
25
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/pci.h>
32 #include <linux/interrupt.h>
33 #include <linux/kmod.h>
34 #include <linux/delay.h>
35 #include <linux/workqueue.h>
36 #include <linux/nmi.h>
37 #include <linux/acpi.h>
38 #include <linux/efi.h>
39 #include <linux/ioport.h>
40 #include <linux/list.h>
41 #include <linux/jiffies.h>
42 #include <linux/semaphore.h>
43
44 #include <asm/io.h>
45 #include <linux/uaccess.h>
46 #include <linux/io-64-nonatomic-lo-hi.h>
47
48 #include "acpica/accommon.h"
49 #include "acpica/acnamesp.h"
50 #include "internal.h"
51
52 #define _COMPONENT ACPI_OS_SERVICES
53 ACPI_MODULE_NAME("osl");
54
55 struct acpi_os_dpc {
56 acpi_osd_exec_callback function;
57 void *context;
58 struct work_struct work;
59 };
60
61 #ifdef ENABLE_DEBUGGER
62 #include <linux/kdb.h>
63
64 /* stuff for debugger support */
65 int acpi_in_debugger;
66 EXPORT_SYMBOL(acpi_in_debugger);
67 #endif /*ENABLE_DEBUGGER */
68
69 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
70 u32 pm1b_ctrl);
71 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
72 u32 val_b);
73
74 static acpi_osd_handler acpi_irq_handler;
75 static void *acpi_irq_context;
76 static struct workqueue_struct *kacpid_wq;
77 static struct workqueue_struct *kacpi_notify_wq;
78 static struct workqueue_struct *kacpi_hotplug_wq;
79 static bool acpi_os_initialized;
80 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
81 bool acpi_permanent_mmap = false;
82
83 /*
84 * This list of permanent mappings is for memory that may be accessed from
85 * interrupt context, where we can't do the ioremap().
86 */
87 struct acpi_ioremap {
88 struct list_head list;
89 void __iomem *virt;
90 acpi_physical_address phys;
91 acpi_size size;
92 unsigned long refcount;
93 };
94
95 static LIST_HEAD(acpi_ioremaps);
96 static DEFINE_MUTEX(acpi_ioremap_lock);
97
acpi_request_region(struct acpi_generic_address * gas,unsigned int length,char * desc)98 static void __init acpi_request_region (struct acpi_generic_address *gas,
99 unsigned int length, char *desc)
100 {
101 u64 addr;
102
103 /* Handle possible alignment issues */
104 memcpy(&addr, &gas->address, sizeof(addr));
105 if (!addr || !length)
106 return;
107
108 /* Resources are never freed */
109 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
110 request_region(addr, length, desc);
111 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
112 request_mem_region(addr, length, desc);
113 }
114
acpi_reserve_resources(void)115 static int __init acpi_reserve_resources(void)
116 {
117 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
118 "ACPI PM1a_EVT_BLK");
119
120 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
121 "ACPI PM1b_EVT_BLK");
122
123 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
124 "ACPI PM1a_CNT_BLK");
125
126 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
127 "ACPI PM1b_CNT_BLK");
128
129 if (acpi_gbl_FADT.pm_timer_length == 4)
130 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
131
132 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
133 "ACPI PM2_CNT_BLK");
134
135 /* Length of GPE blocks must be a non-negative multiple of 2 */
136
137 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
138 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
139 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
140
141 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
142 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
143 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
144
145 return 0;
146 }
147 fs_initcall_sync(acpi_reserve_resources);
148
acpi_os_printf(const char * fmt,...)149 void acpi_os_printf(const char *fmt, ...)
150 {
151 va_list args;
152 va_start(args, fmt);
153 acpi_os_vprintf(fmt, args);
154 va_end(args);
155 }
156 EXPORT_SYMBOL(acpi_os_printf);
157
acpi_os_vprintf(const char * fmt,va_list args)158 void acpi_os_vprintf(const char *fmt, va_list args)
159 {
160 static char buffer[512];
161
162 vsprintf(buffer, fmt, args);
163
164 #ifdef ENABLE_DEBUGGER
165 if (acpi_in_debugger) {
166 kdb_printf("%s", buffer);
167 } else {
168 if (printk_get_level(buffer))
169 printk("%s", buffer);
170 else
171 printk(KERN_CONT "%s", buffer);
172 }
173 #else
174 if (acpi_debugger_write_log(buffer) < 0) {
175 if (printk_get_level(buffer))
176 printk("%s", buffer);
177 else
178 printk(KERN_CONT "%s", buffer);
179 }
180 #endif
181 }
182
183 #ifdef CONFIG_KEXEC
184 static unsigned long acpi_rsdp;
setup_acpi_rsdp(char * arg)185 static int __init setup_acpi_rsdp(char *arg)
186 {
187 return kstrtoul(arg, 16, &acpi_rsdp);
188 }
189 early_param("acpi_rsdp", setup_acpi_rsdp);
190 #endif
191
acpi_os_get_root_pointer(void)192 acpi_physical_address __init acpi_os_get_root_pointer(void)
193 {
194 acpi_physical_address pa;
195
196 #ifdef CONFIG_KEXEC
197 if (acpi_rsdp)
198 return acpi_rsdp;
199 #endif
200 pa = acpi_arch_get_root_pointer();
201 if (pa)
202 return pa;
203
204 if (efi_enabled(EFI_CONFIG_TABLES)) {
205 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
206 return efi.acpi20;
207 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
208 return efi.acpi;
209 pr_err(PREFIX "System description tables not found\n");
210 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
211 acpi_find_root_pointer(&pa);
212 }
213
214 return pa;
215 }
216
217 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
218 static struct acpi_ioremap *
acpi_map_lookup(acpi_physical_address phys,acpi_size size)219 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
220 {
221 struct acpi_ioremap *map;
222
223 list_for_each_entry_rcu(map, &acpi_ioremaps, list)
224 if (map->phys <= phys &&
225 phys + size <= map->phys + map->size)
226 return map;
227
228 return NULL;
229 }
230
231 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
232 static void __iomem *
acpi_map_vaddr_lookup(acpi_physical_address phys,unsigned int size)233 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
234 {
235 struct acpi_ioremap *map;
236
237 map = acpi_map_lookup(phys, size);
238 if (map)
239 return map->virt + (phys - map->phys);
240
241 return NULL;
242 }
243
acpi_os_get_iomem(acpi_physical_address phys,unsigned int size)244 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
245 {
246 struct acpi_ioremap *map;
247 void __iomem *virt = NULL;
248
249 mutex_lock(&acpi_ioremap_lock);
250 map = acpi_map_lookup(phys, size);
251 if (map) {
252 virt = map->virt + (phys - map->phys);
253 map->refcount++;
254 }
255 mutex_unlock(&acpi_ioremap_lock);
256 return virt;
257 }
258 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
259
260 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
261 static struct acpi_ioremap *
acpi_map_lookup_virt(void __iomem * virt,acpi_size size)262 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
263 {
264 struct acpi_ioremap *map;
265
266 list_for_each_entry_rcu(map, &acpi_ioremaps, list)
267 if (map->virt <= virt &&
268 virt + size <= map->virt + map->size)
269 return map;
270
271 return NULL;
272 }
273
274 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
275 /* ioremap will take care of cache attributes */
276 #define should_use_kmap(pfn) 0
277 #else
278 #define should_use_kmap(pfn) page_is_ram(pfn)
279 #endif
280
acpi_map(acpi_physical_address pg_off,unsigned long pg_sz)281 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
282 {
283 unsigned long pfn;
284
285 pfn = pg_off >> PAGE_SHIFT;
286 if (should_use_kmap(pfn)) {
287 if (pg_sz > PAGE_SIZE)
288 return NULL;
289 return (void __iomem __force *)kmap(pfn_to_page(pfn));
290 } else
291 return acpi_os_ioremap(pg_off, pg_sz);
292 }
293
acpi_unmap(acpi_physical_address pg_off,void __iomem * vaddr)294 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
295 {
296 unsigned long pfn;
297
298 pfn = pg_off >> PAGE_SHIFT;
299 if (should_use_kmap(pfn))
300 kunmap(pfn_to_page(pfn));
301 else
302 iounmap(vaddr);
303 }
304
305 /**
306 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
307 * @phys: Start of the physical address range to map.
308 * @size: Size of the physical address range to map.
309 *
310 * Look up the given physical address range in the list of existing ACPI memory
311 * mappings. If found, get a reference to it and return a pointer to it (its
312 * virtual address). If not found, map it, add it to that list and return a
313 * pointer to it.
314 *
315 * During early init (when acpi_permanent_mmap has not been set yet) this
316 * routine simply calls __acpi_map_table() to get the job done.
317 */
318 void __iomem *__ref
acpi_os_map_iomem(acpi_physical_address phys,acpi_size size)319 acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
320 {
321 struct acpi_ioremap *map;
322 void __iomem *virt;
323 acpi_physical_address pg_off;
324 acpi_size pg_sz;
325
326 if (phys > ULONG_MAX) {
327 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
328 return NULL;
329 }
330
331 if (!acpi_permanent_mmap)
332 return __acpi_map_table((unsigned long)phys, size);
333
334 mutex_lock(&acpi_ioremap_lock);
335 /* Check if there's a suitable mapping already. */
336 map = acpi_map_lookup(phys, size);
337 if (map) {
338 map->refcount++;
339 goto out;
340 }
341
342 map = kzalloc(sizeof(*map), GFP_KERNEL);
343 if (!map) {
344 mutex_unlock(&acpi_ioremap_lock);
345 return NULL;
346 }
347
348 pg_off = round_down(phys, PAGE_SIZE);
349 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
350 virt = acpi_map(pg_off, pg_sz);
351 if (!virt) {
352 mutex_unlock(&acpi_ioremap_lock);
353 kfree(map);
354 return NULL;
355 }
356
357 INIT_LIST_HEAD(&map->list);
358 map->virt = virt;
359 map->phys = pg_off;
360 map->size = pg_sz;
361 map->refcount = 1;
362
363 list_add_tail_rcu(&map->list, &acpi_ioremaps);
364
365 out:
366 mutex_unlock(&acpi_ioremap_lock);
367 return map->virt + (phys - map->phys);
368 }
369 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
370
acpi_os_map_memory(acpi_physical_address phys,acpi_size size)371 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
372 {
373 return (void *)acpi_os_map_iomem(phys, size);
374 }
375 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
376
acpi_os_drop_map_ref(struct acpi_ioremap * map)377 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
378 {
379 if (!--map->refcount)
380 list_del_rcu(&map->list);
381 }
382
acpi_os_map_cleanup(struct acpi_ioremap * map)383 static void acpi_os_map_cleanup(struct acpi_ioremap *map)
384 {
385 if (!map->refcount) {
386 synchronize_rcu_expedited();
387 acpi_unmap(map->phys, map->virt);
388 kfree(map);
389 }
390 }
391
392 /**
393 * acpi_os_unmap_iomem - Drop a memory mapping reference.
394 * @virt: Start of the address range to drop a reference to.
395 * @size: Size of the address range to drop a reference to.
396 *
397 * Look up the given virtual address range in the list of existing ACPI memory
398 * mappings, drop a reference to it and unmap it if there are no more active
399 * references to it.
400 *
401 * During early init (when acpi_permanent_mmap has not been set yet) this
402 * routine simply calls __acpi_unmap_table() to get the job done. Since
403 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
404 * here.
405 */
acpi_os_unmap_iomem(void __iomem * virt,acpi_size size)406 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
407 {
408 struct acpi_ioremap *map;
409
410 if (!acpi_permanent_mmap) {
411 __acpi_unmap_table(virt, size);
412 return;
413 }
414
415 mutex_lock(&acpi_ioremap_lock);
416 map = acpi_map_lookup_virt(virt, size);
417 if (!map) {
418 mutex_unlock(&acpi_ioremap_lock);
419 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
420 return;
421 }
422 acpi_os_drop_map_ref(map);
423 mutex_unlock(&acpi_ioremap_lock);
424
425 acpi_os_map_cleanup(map);
426 }
427 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
428
acpi_os_unmap_memory(void * virt,acpi_size size)429 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
430 {
431 return acpi_os_unmap_iomem((void __iomem *)virt, size);
432 }
433 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
434
acpi_os_map_generic_address(struct acpi_generic_address * gas)435 int acpi_os_map_generic_address(struct acpi_generic_address *gas)
436 {
437 u64 addr;
438 void __iomem *virt;
439
440 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
441 return 0;
442
443 /* Handle possible alignment issues */
444 memcpy(&addr, &gas->address, sizeof(addr));
445 if (!addr || !gas->bit_width)
446 return -EINVAL;
447
448 virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
449 if (!virt)
450 return -EIO;
451
452 return 0;
453 }
454 EXPORT_SYMBOL(acpi_os_map_generic_address);
455
acpi_os_unmap_generic_address(struct acpi_generic_address * gas)456 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
457 {
458 u64 addr;
459 struct acpi_ioremap *map;
460
461 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
462 return;
463
464 /* Handle possible alignment issues */
465 memcpy(&addr, &gas->address, sizeof(addr));
466 if (!addr || !gas->bit_width)
467 return;
468
469 mutex_lock(&acpi_ioremap_lock);
470 map = acpi_map_lookup(addr, gas->bit_width / 8);
471 if (!map) {
472 mutex_unlock(&acpi_ioremap_lock);
473 return;
474 }
475 acpi_os_drop_map_ref(map);
476 mutex_unlock(&acpi_ioremap_lock);
477
478 acpi_os_map_cleanup(map);
479 }
480 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
481
482 #ifdef ACPI_FUTURE_USAGE
483 acpi_status
acpi_os_get_physical_address(void * virt,acpi_physical_address * phys)484 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
485 {
486 if (!phys || !virt)
487 return AE_BAD_PARAMETER;
488
489 *phys = virt_to_phys(virt);
490
491 return AE_OK;
492 }
493 #endif
494
495 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
496 static bool acpi_rev_override;
497
acpi_rev_override_setup(char * str)498 int __init acpi_rev_override_setup(char *str)
499 {
500 acpi_rev_override = true;
501 return 1;
502 }
503 __setup("acpi_rev_override", acpi_rev_override_setup);
504 #else
505 #define acpi_rev_override false
506 #endif
507
508 #define ACPI_MAX_OVERRIDE_LEN 100
509
510 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
511
512 acpi_status
acpi_os_predefined_override(const struct acpi_predefined_names * init_val,acpi_string * new_val)513 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
514 acpi_string *new_val)
515 {
516 if (!init_val || !new_val)
517 return AE_BAD_PARAMETER;
518
519 *new_val = NULL;
520 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
521 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
522 acpi_os_name);
523 *new_val = acpi_os_name;
524 }
525
526 if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
527 printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
528 *new_val = (char *)5;
529 }
530
531 return AE_OK;
532 }
533
acpi_irq(int irq,void * dev_id)534 static irqreturn_t acpi_irq(int irq, void *dev_id)
535 {
536 u32 handled;
537
538 handled = (*acpi_irq_handler) (acpi_irq_context);
539
540 if (handled) {
541 acpi_irq_handled++;
542 return IRQ_HANDLED;
543 } else {
544 acpi_irq_not_handled++;
545 return IRQ_NONE;
546 }
547 }
548
549 acpi_status
acpi_os_install_interrupt_handler(u32 gsi,acpi_osd_handler handler,void * context)550 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
551 void *context)
552 {
553 unsigned int irq;
554
555 acpi_irq_stats_init();
556
557 /*
558 * ACPI interrupts different from the SCI in our copy of the FADT are
559 * not supported.
560 */
561 if (gsi != acpi_gbl_FADT.sci_interrupt)
562 return AE_BAD_PARAMETER;
563
564 if (acpi_irq_handler)
565 return AE_ALREADY_ACQUIRED;
566
567 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
568 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
569 gsi);
570 return AE_OK;
571 }
572
573 acpi_irq_handler = handler;
574 acpi_irq_context = context;
575 if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
576 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
577 acpi_irq_handler = NULL;
578 return AE_NOT_ACQUIRED;
579 }
580 acpi_sci_irq = irq;
581
582 return AE_OK;
583 }
584
acpi_os_remove_interrupt_handler(u32 gsi,acpi_osd_handler handler)585 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
586 {
587 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
588 return AE_BAD_PARAMETER;
589
590 free_irq(acpi_sci_irq, acpi_irq);
591 acpi_irq_handler = NULL;
592 acpi_sci_irq = INVALID_ACPI_IRQ;
593
594 return AE_OK;
595 }
596
597 /*
598 * Running in interpreter thread context, safe to sleep
599 */
600
acpi_os_sleep(u64 ms)601 void acpi_os_sleep(u64 ms)
602 {
603 msleep(ms);
604 }
605
acpi_os_stall(u32 us)606 void acpi_os_stall(u32 us)
607 {
608 while (us) {
609 u32 delay = 1000;
610
611 if (delay > us)
612 delay = us;
613 udelay(delay);
614 touch_nmi_watchdog();
615 us -= delay;
616 }
617 }
618
619 /*
620 * Support ACPI 3.0 AML Timer operand
621 * Returns 64-bit free-running, monotonically increasing timer
622 * with 100ns granularity
623 */
acpi_os_get_timer(void)624 u64 acpi_os_get_timer(void)
625 {
626 u64 time_ns = ktime_to_ns(ktime_get());
627 do_div(time_ns, 100);
628 return time_ns;
629 }
630
acpi_os_read_port(acpi_io_address port,u32 * value,u32 width)631 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
632 {
633 u32 dummy;
634
635 if (!value)
636 value = &dummy;
637
638 *value = 0;
639 if (width <= 8) {
640 *(u8 *) value = inb(port);
641 } else if (width <= 16) {
642 *(u16 *) value = inw(port);
643 } else if (width <= 32) {
644 *(u32 *) value = inl(port);
645 } else {
646 BUG();
647 }
648
649 return AE_OK;
650 }
651
652 EXPORT_SYMBOL(acpi_os_read_port);
653
acpi_os_write_port(acpi_io_address port,u32 value,u32 width)654 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
655 {
656 if (width <= 8) {
657 outb(value, port);
658 } else if (width <= 16) {
659 outw(value, port);
660 } else if (width <= 32) {
661 outl(value, port);
662 } else {
663 BUG();
664 }
665
666 return AE_OK;
667 }
668
669 EXPORT_SYMBOL(acpi_os_write_port);
670
acpi_os_read_iomem(void __iomem * virt_addr,u64 * value,u32 width)671 int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
672 {
673
674 switch (width) {
675 case 8:
676 *(u8 *) value = readb(virt_addr);
677 break;
678 case 16:
679 *(u16 *) value = readw(virt_addr);
680 break;
681 case 32:
682 *(u32 *) value = readl(virt_addr);
683 break;
684 case 64:
685 *(u64 *) value = readq(virt_addr);
686 break;
687 default:
688 return -EINVAL;
689 }
690
691 return 0;
692 }
693
694 acpi_status
acpi_os_read_memory(acpi_physical_address phys_addr,u64 * value,u32 width)695 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
696 {
697 void __iomem *virt_addr;
698 unsigned int size = width / 8;
699 bool unmap = false;
700 u64 dummy;
701 int error;
702
703 rcu_read_lock();
704 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
705 if (!virt_addr) {
706 rcu_read_unlock();
707 virt_addr = acpi_os_ioremap(phys_addr, size);
708 if (!virt_addr)
709 return AE_BAD_ADDRESS;
710 unmap = true;
711 }
712
713 if (!value)
714 value = &dummy;
715
716 error = acpi_os_read_iomem(virt_addr, value, width);
717 BUG_ON(error);
718
719 if (unmap)
720 iounmap(virt_addr);
721 else
722 rcu_read_unlock();
723
724 return AE_OK;
725 }
726
727 acpi_status
acpi_os_write_memory(acpi_physical_address phys_addr,u64 value,u32 width)728 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
729 {
730 void __iomem *virt_addr;
731 unsigned int size = width / 8;
732 bool unmap = false;
733
734 rcu_read_lock();
735 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
736 if (!virt_addr) {
737 rcu_read_unlock();
738 virt_addr = acpi_os_ioremap(phys_addr, size);
739 if (!virt_addr)
740 return AE_BAD_ADDRESS;
741 unmap = true;
742 }
743
744 switch (width) {
745 case 8:
746 writeb(value, virt_addr);
747 break;
748 case 16:
749 writew(value, virt_addr);
750 break;
751 case 32:
752 writel(value, virt_addr);
753 break;
754 case 64:
755 writeq(value, virt_addr);
756 break;
757 default:
758 BUG();
759 }
760
761 if (unmap)
762 iounmap(virt_addr);
763 else
764 rcu_read_unlock();
765
766 return AE_OK;
767 }
768
769 acpi_status
acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id,u32 reg,u64 * value,u32 width)770 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
771 u64 *value, u32 width)
772 {
773 int result, size;
774 u32 value32;
775
776 if (!value)
777 return AE_BAD_PARAMETER;
778
779 switch (width) {
780 case 8:
781 size = 1;
782 break;
783 case 16:
784 size = 2;
785 break;
786 case 32:
787 size = 4;
788 break;
789 default:
790 return AE_ERROR;
791 }
792
793 result = raw_pci_read(pci_id->segment, pci_id->bus,
794 PCI_DEVFN(pci_id->device, pci_id->function),
795 reg, size, &value32);
796 *value = value32;
797
798 return (result ? AE_ERROR : AE_OK);
799 }
800
801 acpi_status
acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id,u32 reg,u64 value,u32 width)802 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
803 u64 value, u32 width)
804 {
805 int result, size;
806
807 switch (width) {
808 case 8:
809 size = 1;
810 break;
811 case 16:
812 size = 2;
813 break;
814 case 32:
815 size = 4;
816 break;
817 default:
818 return AE_ERROR;
819 }
820
821 result = raw_pci_write(pci_id->segment, pci_id->bus,
822 PCI_DEVFN(pci_id->device, pci_id->function),
823 reg, size, value);
824
825 return (result ? AE_ERROR : AE_OK);
826 }
827
acpi_os_execute_deferred(struct work_struct * work)828 static void acpi_os_execute_deferred(struct work_struct *work)
829 {
830 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
831
832 dpc->function(dpc->context);
833 kfree(dpc);
834 }
835
836 #ifdef CONFIG_ACPI_DEBUGGER
837 static struct acpi_debugger acpi_debugger;
838 static bool acpi_debugger_initialized;
839
acpi_register_debugger(struct module * owner,const struct acpi_debugger_ops * ops)840 int acpi_register_debugger(struct module *owner,
841 const struct acpi_debugger_ops *ops)
842 {
843 int ret = 0;
844
845 mutex_lock(&acpi_debugger.lock);
846 if (acpi_debugger.ops) {
847 ret = -EBUSY;
848 goto err_lock;
849 }
850
851 acpi_debugger.owner = owner;
852 acpi_debugger.ops = ops;
853
854 err_lock:
855 mutex_unlock(&acpi_debugger.lock);
856 return ret;
857 }
858 EXPORT_SYMBOL(acpi_register_debugger);
859
acpi_unregister_debugger(const struct acpi_debugger_ops * ops)860 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
861 {
862 mutex_lock(&acpi_debugger.lock);
863 if (ops == acpi_debugger.ops) {
864 acpi_debugger.ops = NULL;
865 acpi_debugger.owner = NULL;
866 }
867 mutex_unlock(&acpi_debugger.lock);
868 }
869 EXPORT_SYMBOL(acpi_unregister_debugger);
870
acpi_debugger_create_thread(acpi_osd_exec_callback function,void * context)871 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
872 {
873 int ret;
874 int (*func)(acpi_osd_exec_callback, void *);
875 struct module *owner;
876
877 if (!acpi_debugger_initialized)
878 return -ENODEV;
879 mutex_lock(&acpi_debugger.lock);
880 if (!acpi_debugger.ops) {
881 ret = -ENODEV;
882 goto err_lock;
883 }
884 if (!try_module_get(acpi_debugger.owner)) {
885 ret = -ENODEV;
886 goto err_lock;
887 }
888 func = acpi_debugger.ops->create_thread;
889 owner = acpi_debugger.owner;
890 mutex_unlock(&acpi_debugger.lock);
891
892 ret = func(function, context);
893
894 mutex_lock(&acpi_debugger.lock);
895 module_put(owner);
896 err_lock:
897 mutex_unlock(&acpi_debugger.lock);
898 return ret;
899 }
900
acpi_debugger_write_log(const char * msg)901 ssize_t acpi_debugger_write_log(const char *msg)
902 {
903 ssize_t ret;
904 ssize_t (*func)(const char *);
905 struct module *owner;
906
907 if (!acpi_debugger_initialized)
908 return -ENODEV;
909 mutex_lock(&acpi_debugger.lock);
910 if (!acpi_debugger.ops) {
911 ret = -ENODEV;
912 goto err_lock;
913 }
914 if (!try_module_get(acpi_debugger.owner)) {
915 ret = -ENODEV;
916 goto err_lock;
917 }
918 func = acpi_debugger.ops->write_log;
919 owner = acpi_debugger.owner;
920 mutex_unlock(&acpi_debugger.lock);
921
922 ret = func(msg);
923
924 mutex_lock(&acpi_debugger.lock);
925 module_put(owner);
926 err_lock:
927 mutex_unlock(&acpi_debugger.lock);
928 return ret;
929 }
930
acpi_debugger_read_cmd(char * buffer,size_t buffer_length)931 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
932 {
933 ssize_t ret;
934 ssize_t (*func)(char *, size_t);
935 struct module *owner;
936
937 if (!acpi_debugger_initialized)
938 return -ENODEV;
939 mutex_lock(&acpi_debugger.lock);
940 if (!acpi_debugger.ops) {
941 ret = -ENODEV;
942 goto err_lock;
943 }
944 if (!try_module_get(acpi_debugger.owner)) {
945 ret = -ENODEV;
946 goto err_lock;
947 }
948 func = acpi_debugger.ops->read_cmd;
949 owner = acpi_debugger.owner;
950 mutex_unlock(&acpi_debugger.lock);
951
952 ret = func(buffer, buffer_length);
953
954 mutex_lock(&acpi_debugger.lock);
955 module_put(owner);
956 err_lock:
957 mutex_unlock(&acpi_debugger.lock);
958 return ret;
959 }
960
acpi_debugger_wait_command_ready(void)961 int acpi_debugger_wait_command_ready(void)
962 {
963 int ret;
964 int (*func)(bool, char *, size_t);
965 struct module *owner;
966
967 if (!acpi_debugger_initialized)
968 return -ENODEV;
969 mutex_lock(&acpi_debugger.lock);
970 if (!acpi_debugger.ops) {
971 ret = -ENODEV;
972 goto err_lock;
973 }
974 if (!try_module_get(acpi_debugger.owner)) {
975 ret = -ENODEV;
976 goto err_lock;
977 }
978 func = acpi_debugger.ops->wait_command_ready;
979 owner = acpi_debugger.owner;
980 mutex_unlock(&acpi_debugger.lock);
981
982 ret = func(acpi_gbl_method_executing,
983 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
984
985 mutex_lock(&acpi_debugger.lock);
986 module_put(owner);
987 err_lock:
988 mutex_unlock(&acpi_debugger.lock);
989 return ret;
990 }
991
acpi_debugger_notify_command_complete(void)992 int acpi_debugger_notify_command_complete(void)
993 {
994 int ret;
995 int (*func)(void);
996 struct module *owner;
997
998 if (!acpi_debugger_initialized)
999 return -ENODEV;
1000 mutex_lock(&acpi_debugger.lock);
1001 if (!acpi_debugger.ops) {
1002 ret = -ENODEV;
1003 goto err_lock;
1004 }
1005 if (!try_module_get(acpi_debugger.owner)) {
1006 ret = -ENODEV;
1007 goto err_lock;
1008 }
1009 func = acpi_debugger.ops->notify_command_complete;
1010 owner = acpi_debugger.owner;
1011 mutex_unlock(&acpi_debugger.lock);
1012
1013 ret = func();
1014
1015 mutex_lock(&acpi_debugger.lock);
1016 module_put(owner);
1017 err_lock:
1018 mutex_unlock(&acpi_debugger.lock);
1019 return ret;
1020 }
1021
acpi_debugger_init(void)1022 int __init acpi_debugger_init(void)
1023 {
1024 mutex_init(&acpi_debugger.lock);
1025 acpi_debugger_initialized = true;
1026 return 0;
1027 }
1028 #endif
1029
1030 /*******************************************************************************
1031 *
1032 * FUNCTION: acpi_os_execute
1033 *
1034 * PARAMETERS: Type - Type of the callback
1035 * Function - Function to be executed
1036 * Context - Function parameters
1037 *
1038 * RETURN: Status
1039 *
1040 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1041 * immediately executes function on a separate thread.
1042 *
1043 ******************************************************************************/
1044
acpi_os_execute(acpi_execute_type type,acpi_osd_exec_callback function,void * context)1045 acpi_status acpi_os_execute(acpi_execute_type type,
1046 acpi_osd_exec_callback function, void *context)
1047 {
1048 acpi_status status = AE_OK;
1049 struct acpi_os_dpc *dpc;
1050 struct workqueue_struct *queue;
1051 int ret;
1052 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1053 "Scheduling function [%p(%p)] for deferred execution.\n",
1054 function, context));
1055
1056 if (type == OSL_DEBUGGER_MAIN_THREAD) {
1057 ret = acpi_debugger_create_thread(function, context);
1058 if (ret) {
1059 pr_err("Call to kthread_create() failed.\n");
1060 status = AE_ERROR;
1061 }
1062 goto out_thread;
1063 }
1064
1065 /*
1066 * Allocate/initialize DPC structure. Note that this memory will be
1067 * freed by the callee. The kernel handles the work_struct list in a
1068 * way that allows us to also free its memory inside the callee.
1069 * Because we may want to schedule several tasks with different
1070 * parameters we can't use the approach some kernel code uses of
1071 * having a static work_struct.
1072 */
1073
1074 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1075 if (!dpc)
1076 return AE_NO_MEMORY;
1077
1078 dpc->function = function;
1079 dpc->context = context;
1080
1081 /*
1082 * To prevent lockdep from complaining unnecessarily, make sure that
1083 * there is a different static lockdep key for each workqueue by using
1084 * INIT_WORK() for each of them separately.
1085 */
1086 if (type == OSL_NOTIFY_HANDLER) {
1087 queue = kacpi_notify_wq;
1088 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1089 } else if (type == OSL_GPE_HANDLER) {
1090 queue = kacpid_wq;
1091 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1092 } else {
1093 pr_err("Unsupported os_execute type %d.\n", type);
1094 status = AE_ERROR;
1095 }
1096
1097 if (ACPI_FAILURE(status))
1098 goto err_workqueue;
1099
1100 /*
1101 * On some machines, a software-initiated SMI causes corruption unless
1102 * the SMI runs on CPU 0. An SMI can be initiated by any AML, but
1103 * typically it's done in GPE-related methods that are run via
1104 * workqueues, so we can avoid the known corruption cases by always
1105 * queueing on CPU 0.
1106 */
1107 ret = queue_work_on(0, queue, &dpc->work);
1108 if (!ret) {
1109 printk(KERN_ERR PREFIX
1110 "Call to queue_work() failed.\n");
1111 status = AE_ERROR;
1112 }
1113 err_workqueue:
1114 if (ACPI_FAILURE(status))
1115 kfree(dpc);
1116 out_thread:
1117 return status;
1118 }
1119 EXPORT_SYMBOL(acpi_os_execute);
1120
acpi_os_wait_events_complete(void)1121 void acpi_os_wait_events_complete(void)
1122 {
1123 /*
1124 * Make sure the GPE handler or the fixed event handler is not used
1125 * on another CPU after removal.
1126 */
1127 if (acpi_sci_irq_valid())
1128 synchronize_hardirq(acpi_sci_irq);
1129 flush_workqueue(kacpid_wq);
1130 flush_workqueue(kacpi_notify_wq);
1131 }
1132
1133 struct acpi_hp_work {
1134 struct work_struct work;
1135 struct acpi_device *adev;
1136 u32 src;
1137 };
1138
acpi_hotplug_work_fn(struct work_struct * work)1139 static void acpi_hotplug_work_fn(struct work_struct *work)
1140 {
1141 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1142
1143 acpi_os_wait_events_complete();
1144 acpi_device_hotplug(hpw->adev, hpw->src);
1145 kfree(hpw);
1146 }
1147
acpi_hotplug_schedule(struct acpi_device * adev,u32 src)1148 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1149 {
1150 struct acpi_hp_work *hpw;
1151
1152 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1153 "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1154 adev, src));
1155
1156 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1157 if (!hpw)
1158 return AE_NO_MEMORY;
1159
1160 INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1161 hpw->adev = adev;
1162 hpw->src = src;
1163 /*
1164 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1165 * the hotplug code may call driver .remove() functions, which may
1166 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1167 * these workqueues.
1168 */
1169 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1170 kfree(hpw);
1171 return AE_ERROR;
1172 }
1173 return AE_OK;
1174 }
1175
acpi_queue_hotplug_work(struct work_struct * work)1176 bool acpi_queue_hotplug_work(struct work_struct *work)
1177 {
1178 return queue_work(kacpi_hotplug_wq, work);
1179 }
1180
1181 acpi_status
acpi_os_create_semaphore(u32 max_units,u32 initial_units,acpi_handle * handle)1182 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1183 {
1184 struct semaphore *sem = NULL;
1185
1186 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1187 if (!sem)
1188 return AE_NO_MEMORY;
1189
1190 sema_init(sem, initial_units);
1191
1192 *handle = (acpi_handle *) sem;
1193
1194 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1195 *handle, initial_units));
1196
1197 return AE_OK;
1198 }
1199
1200 /*
1201 * TODO: A better way to delete semaphores? Linux doesn't have a
1202 * 'delete_semaphore()' function -- may result in an invalid
1203 * pointer dereference for non-synchronized consumers. Should
1204 * we at least check for blocked threads and signal/cancel them?
1205 */
1206
acpi_os_delete_semaphore(acpi_handle handle)1207 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1208 {
1209 struct semaphore *sem = (struct semaphore *)handle;
1210
1211 if (!sem)
1212 return AE_BAD_PARAMETER;
1213
1214 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1215
1216 BUG_ON(!list_empty(&sem->wait_list));
1217 kfree(sem);
1218 sem = NULL;
1219
1220 return AE_OK;
1221 }
1222
1223 /*
1224 * TODO: Support for units > 1?
1225 */
acpi_os_wait_semaphore(acpi_handle handle,u32 units,u16 timeout)1226 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1227 {
1228 acpi_status status = AE_OK;
1229 struct semaphore *sem = (struct semaphore *)handle;
1230 long jiffies;
1231 int ret = 0;
1232
1233 if (!acpi_os_initialized)
1234 return AE_OK;
1235
1236 if (!sem || (units < 1))
1237 return AE_BAD_PARAMETER;
1238
1239 if (units > 1)
1240 return AE_SUPPORT;
1241
1242 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1243 handle, units, timeout));
1244
1245 if (timeout == ACPI_WAIT_FOREVER)
1246 jiffies = MAX_SCHEDULE_TIMEOUT;
1247 else
1248 jiffies = msecs_to_jiffies(timeout);
1249
1250 ret = down_timeout(sem, jiffies);
1251 if (ret)
1252 status = AE_TIME;
1253
1254 if (ACPI_FAILURE(status)) {
1255 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1256 "Failed to acquire semaphore[%p|%d|%d], %s",
1257 handle, units, timeout,
1258 acpi_format_exception(status)));
1259 } else {
1260 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1261 "Acquired semaphore[%p|%d|%d]", handle,
1262 units, timeout));
1263 }
1264
1265 return status;
1266 }
1267
1268 /*
1269 * TODO: Support for units > 1?
1270 */
acpi_os_signal_semaphore(acpi_handle handle,u32 units)1271 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1272 {
1273 struct semaphore *sem = (struct semaphore *)handle;
1274
1275 if (!acpi_os_initialized)
1276 return AE_OK;
1277
1278 if (!sem || (units < 1))
1279 return AE_BAD_PARAMETER;
1280
1281 if (units > 1)
1282 return AE_SUPPORT;
1283
1284 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1285 units));
1286
1287 up(sem);
1288
1289 return AE_OK;
1290 }
1291
acpi_os_get_line(char * buffer,u32 buffer_length,u32 * bytes_read)1292 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1293 {
1294 #ifdef ENABLE_DEBUGGER
1295 if (acpi_in_debugger) {
1296 u32 chars;
1297
1298 kdb_read(buffer, buffer_length);
1299
1300 /* remove the CR kdb includes */
1301 chars = strlen(buffer) - 1;
1302 buffer[chars] = '\0';
1303 }
1304 #else
1305 int ret;
1306
1307 ret = acpi_debugger_read_cmd(buffer, buffer_length);
1308 if (ret < 0)
1309 return AE_ERROR;
1310 if (bytes_read)
1311 *bytes_read = ret;
1312 #endif
1313
1314 return AE_OK;
1315 }
1316 EXPORT_SYMBOL(acpi_os_get_line);
1317
acpi_os_wait_command_ready(void)1318 acpi_status acpi_os_wait_command_ready(void)
1319 {
1320 int ret;
1321
1322 ret = acpi_debugger_wait_command_ready();
1323 if (ret < 0)
1324 return AE_ERROR;
1325 return AE_OK;
1326 }
1327
acpi_os_notify_command_complete(void)1328 acpi_status acpi_os_notify_command_complete(void)
1329 {
1330 int ret;
1331
1332 ret = acpi_debugger_notify_command_complete();
1333 if (ret < 0)
1334 return AE_ERROR;
1335 return AE_OK;
1336 }
1337
acpi_os_signal(u32 function,void * info)1338 acpi_status acpi_os_signal(u32 function, void *info)
1339 {
1340 switch (function) {
1341 case ACPI_SIGNAL_FATAL:
1342 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1343 break;
1344 case ACPI_SIGNAL_BREAKPOINT:
1345 /*
1346 * AML Breakpoint
1347 * ACPI spec. says to treat it as a NOP unless
1348 * you are debugging. So if/when we integrate
1349 * AML debugger into the kernel debugger its
1350 * hook will go here. But until then it is
1351 * not useful to print anything on breakpoints.
1352 */
1353 break;
1354 default:
1355 break;
1356 }
1357
1358 return AE_OK;
1359 }
1360
acpi_os_name_setup(char * str)1361 static int __init acpi_os_name_setup(char *str)
1362 {
1363 char *p = acpi_os_name;
1364 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1365
1366 if (!str || !*str)
1367 return 0;
1368
1369 for (; count-- && *str; str++) {
1370 if (isalnum(*str) || *str == ' ' || *str == ':')
1371 *p++ = *str;
1372 else if (*str == '\'' || *str == '"')
1373 continue;
1374 else
1375 break;
1376 }
1377 *p = 0;
1378
1379 return 1;
1380
1381 }
1382
1383 __setup("acpi_os_name=", acpi_os_name_setup);
1384
1385 /*
1386 * Disable the auto-serialization of named objects creation methods.
1387 *
1388 * This feature is enabled by default. It marks the AML control methods
1389 * that contain the opcodes to create named objects as "Serialized".
1390 */
acpi_no_auto_serialize_setup(char * str)1391 static int __init acpi_no_auto_serialize_setup(char *str)
1392 {
1393 acpi_gbl_auto_serialize_methods = FALSE;
1394 pr_info("ACPI: auto-serialization disabled\n");
1395
1396 return 1;
1397 }
1398
1399 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1400
1401 /* Check of resource interference between native drivers and ACPI
1402 * OperationRegions (SystemIO and System Memory only).
1403 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1404 * in arbitrary AML code and can interfere with legacy drivers.
1405 * acpi_enforce_resources= can be set to:
1406 *
1407 * - strict (default) (2)
1408 * -> further driver trying to access the resources will not load
1409 * - lax (1)
1410 * -> further driver trying to access the resources will load, but you
1411 * get a system message that something might go wrong...
1412 *
1413 * - no (0)
1414 * -> ACPI Operation Region resources will not be registered
1415 *
1416 */
1417 #define ENFORCE_RESOURCES_STRICT 2
1418 #define ENFORCE_RESOURCES_LAX 1
1419 #define ENFORCE_RESOURCES_NO 0
1420
1421 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1422
acpi_enforce_resources_setup(char * str)1423 static int __init acpi_enforce_resources_setup(char *str)
1424 {
1425 if (str == NULL || *str == '\0')
1426 return 0;
1427
1428 if (!strcmp("strict", str))
1429 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1430 else if (!strcmp("lax", str))
1431 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1432 else if (!strcmp("no", str))
1433 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1434
1435 return 1;
1436 }
1437
1438 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1439
1440 /* Check for resource conflicts between ACPI OperationRegions and native
1441 * drivers */
acpi_check_resource_conflict(const struct resource * res)1442 int acpi_check_resource_conflict(const struct resource *res)
1443 {
1444 acpi_adr_space_type space_id;
1445 acpi_size length;
1446 u8 warn = 0;
1447 int clash = 0;
1448
1449 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1450 return 0;
1451 if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1452 return 0;
1453
1454 if (res->flags & IORESOURCE_IO)
1455 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1456 else
1457 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1458
1459 length = resource_size(res);
1460 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1461 warn = 1;
1462 clash = acpi_check_address_range(space_id, res->start, length, warn);
1463
1464 if (clash) {
1465 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1466 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1467 printk(KERN_NOTICE "ACPI: This conflict may"
1468 " cause random problems and system"
1469 " instability\n");
1470 printk(KERN_INFO "ACPI: If an ACPI driver is available"
1471 " for this device, you should use it instead of"
1472 " the native driver\n");
1473 }
1474 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1475 return -EBUSY;
1476 }
1477 return 0;
1478 }
1479 EXPORT_SYMBOL(acpi_check_resource_conflict);
1480
acpi_check_region(resource_size_t start,resource_size_t n,const char * name)1481 int acpi_check_region(resource_size_t start, resource_size_t n,
1482 const char *name)
1483 {
1484 struct resource res = {
1485 .start = start,
1486 .end = start + n - 1,
1487 .name = name,
1488 .flags = IORESOURCE_IO,
1489 };
1490
1491 return acpi_check_resource_conflict(&res);
1492 }
1493 EXPORT_SYMBOL(acpi_check_region);
1494
acpi_deactivate_mem_region(acpi_handle handle,u32 level,void * _res,void ** return_value)1495 static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1496 void *_res, void **return_value)
1497 {
1498 struct acpi_mem_space_context **mem_ctx;
1499 union acpi_operand_object *handler_obj;
1500 union acpi_operand_object *region_obj2;
1501 union acpi_operand_object *region_obj;
1502 struct resource *res = _res;
1503 acpi_status status;
1504
1505 region_obj = acpi_ns_get_attached_object(handle);
1506 if (!region_obj)
1507 return AE_OK;
1508
1509 handler_obj = region_obj->region.handler;
1510 if (!handler_obj)
1511 return AE_OK;
1512
1513 if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1514 return AE_OK;
1515
1516 if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1517 return AE_OK;
1518
1519 region_obj2 = acpi_ns_get_secondary_object(region_obj);
1520 if (!region_obj2)
1521 return AE_OK;
1522
1523 mem_ctx = (void *)®ion_obj2->extra.region_context;
1524
1525 if (!(mem_ctx[0]->address >= res->start &&
1526 mem_ctx[0]->address < res->end))
1527 return AE_OK;
1528
1529 status = handler_obj->address_space.setup(region_obj,
1530 ACPI_REGION_DEACTIVATE,
1531 NULL, (void **)mem_ctx);
1532 if (ACPI_SUCCESS(status))
1533 region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1534
1535 return status;
1536 }
1537
1538 /**
1539 * acpi_release_memory - Release any mappings done to a memory region
1540 * @handle: Handle to namespace node
1541 * @res: Memory resource
1542 * @level: A level that terminates the search
1543 *
1544 * Walks through @handle and unmaps all SystemMemory Operation Regions that
1545 * overlap with @res and that have already been activated (mapped).
1546 *
1547 * This is a helper that allows drivers to place special requirements on memory
1548 * region that may overlap with operation regions, primarily allowing them to
1549 * safely map the region as non-cached memory.
1550 *
1551 * The unmapped Operation Regions will be automatically remapped next time they
1552 * are called, so the drivers do not need to do anything else.
1553 */
acpi_release_memory(acpi_handle handle,struct resource * res,u32 level)1554 acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1555 u32 level)
1556 {
1557 if (!(res->flags & IORESOURCE_MEM))
1558 return AE_TYPE;
1559
1560 return acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1561 acpi_deactivate_mem_region, NULL, res, NULL);
1562 }
1563 EXPORT_SYMBOL_GPL(acpi_release_memory);
1564
1565 /*
1566 * Let drivers know whether the resource checks are effective
1567 */
acpi_resources_are_enforced(void)1568 int acpi_resources_are_enforced(void)
1569 {
1570 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1571 }
1572 EXPORT_SYMBOL(acpi_resources_are_enforced);
1573
1574 /*
1575 * Deallocate the memory for a spinlock.
1576 */
acpi_os_delete_lock(acpi_spinlock handle)1577 void acpi_os_delete_lock(acpi_spinlock handle)
1578 {
1579 ACPI_FREE(handle);
1580 }
1581
1582 /*
1583 * Acquire a spinlock.
1584 *
1585 * handle is a pointer to the spinlock_t.
1586 */
1587
acpi_os_acquire_lock(acpi_spinlock lockp)1588 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1589 {
1590 acpi_cpu_flags flags;
1591 spin_lock_irqsave(lockp, flags);
1592 return flags;
1593 }
1594
1595 /*
1596 * Release a spinlock. See above.
1597 */
1598
acpi_os_release_lock(acpi_spinlock lockp,acpi_cpu_flags flags)1599 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1600 {
1601 spin_unlock_irqrestore(lockp, flags);
1602 }
1603
1604 #ifndef ACPI_USE_LOCAL_CACHE
1605
1606 /*******************************************************************************
1607 *
1608 * FUNCTION: acpi_os_create_cache
1609 *
1610 * PARAMETERS: name - Ascii name for the cache
1611 * size - Size of each cached object
1612 * depth - Maximum depth of the cache (in objects) <ignored>
1613 * cache - Where the new cache object is returned
1614 *
1615 * RETURN: status
1616 *
1617 * DESCRIPTION: Create a cache object
1618 *
1619 ******************************************************************************/
1620
1621 acpi_status
acpi_os_create_cache(char * name,u16 size,u16 depth,acpi_cache_t ** cache)1622 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1623 {
1624 *cache = kmem_cache_create(name, size, 0, 0, NULL);
1625 if (*cache == NULL)
1626 return AE_ERROR;
1627 else
1628 return AE_OK;
1629 }
1630
1631 /*******************************************************************************
1632 *
1633 * FUNCTION: acpi_os_purge_cache
1634 *
1635 * PARAMETERS: Cache - Handle to cache object
1636 *
1637 * RETURN: Status
1638 *
1639 * DESCRIPTION: Free all objects within the requested cache.
1640 *
1641 ******************************************************************************/
1642
acpi_os_purge_cache(acpi_cache_t * cache)1643 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1644 {
1645 kmem_cache_shrink(cache);
1646 return (AE_OK);
1647 }
1648
1649 /*******************************************************************************
1650 *
1651 * FUNCTION: acpi_os_delete_cache
1652 *
1653 * PARAMETERS: Cache - Handle to cache object
1654 *
1655 * RETURN: Status
1656 *
1657 * DESCRIPTION: Free all objects within the requested cache and delete the
1658 * cache object.
1659 *
1660 ******************************************************************************/
1661
acpi_os_delete_cache(acpi_cache_t * cache)1662 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1663 {
1664 kmem_cache_destroy(cache);
1665 return (AE_OK);
1666 }
1667
1668 /*******************************************************************************
1669 *
1670 * FUNCTION: acpi_os_release_object
1671 *
1672 * PARAMETERS: Cache - Handle to cache object
1673 * Object - The object to be released
1674 *
1675 * RETURN: None
1676 *
1677 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1678 * the object is deleted.
1679 *
1680 ******************************************************************************/
1681
acpi_os_release_object(acpi_cache_t * cache,void * object)1682 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1683 {
1684 kmem_cache_free(cache, object);
1685 return (AE_OK);
1686 }
1687 #endif
1688
acpi_no_static_ssdt_setup(char * s)1689 static int __init acpi_no_static_ssdt_setup(char *s)
1690 {
1691 acpi_gbl_disable_ssdt_table_install = TRUE;
1692 pr_info("ACPI: static SSDT installation disabled\n");
1693
1694 return 0;
1695 }
1696
1697 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1698
acpi_disable_return_repair(char * s)1699 static int __init acpi_disable_return_repair(char *s)
1700 {
1701 printk(KERN_NOTICE PREFIX
1702 "ACPI: Predefined validation mechanism disabled\n");
1703 acpi_gbl_disable_auto_repair = TRUE;
1704
1705 return 1;
1706 }
1707
1708 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1709
acpi_os_initialize(void)1710 acpi_status __init acpi_os_initialize(void)
1711 {
1712 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1713 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1714 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1715 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1716 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1717 /*
1718 * Use acpi_os_map_generic_address to pre-map the reset
1719 * register if it's in system memory.
1720 */
1721 int rv;
1722
1723 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1724 pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1725 }
1726 acpi_os_initialized = true;
1727
1728 return AE_OK;
1729 }
1730
acpi_os_initialize1(void)1731 acpi_status __init acpi_os_initialize1(void)
1732 {
1733 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1734 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1735 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1736 BUG_ON(!kacpid_wq);
1737 BUG_ON(!kacpi_notify_wq);
1738 BUG_ON(!kacpi_hotplug_wq);
1739 acpi_osi_init();
1740 return AE_OK;
1741 }
1742
acpi_os_terminate(void)1743 acpi_status acpi_os_terminate(void)
1744 {
1745 if (acpi_irq_handler) {
1746 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1747 acpi_irq_handler);
1748 }
1749
1750 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1751 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1752 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1753 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1754 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1755 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1756
1757 destroy_workqueue(kacpid_wq);
1758 destroy_workqueue(kacpi_notify_wq);
1759 destroy_workqueue(kacpi_hotplug_wq);
1760
1761 return AE_OK;
1762 }
1763
acpi_os_prepare_sleep(u8 sleep_state,u32 pm1a_control,u32 pm1b_control)1764 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1765 u32 pm1b_control)
1766 {
1767 int rc = 0;
1768 if (__acpi_os_prepare_sleep)
1769 rc = __acpi_os_prepare_sleep(sleep_state,
1770 pm1a_control, pm1b_control);
1771 if (rc < 0)
1772 return AE_ERROR;
1773 else if (rc > 0)
1774 return AE_CTRL_TERMINATE;
1775
1776 return AE_OK;
1777 }
1778
acpi_os_set_prepare_sleep(int (* func)(u8 sleep_state,u32 pm1a_ctrl,u32 pm1b_ctrl))1779 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1780 u32 pm1a_ctrl, u32 pm1b_ctrl))
1781 {
1782 __acpi_os_prepare_sleep = func;
1783 }
1784
1785 #if (ACPI_REDUCED_HARDWARE)
acpi_os_prepare_extended_sleep(u8 sleep_state,u32 val_a,u32 val_b)1786 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1787 u32 val_b)
1788 {
1789 int rc = 0;
1790 if (__acpi_os_prepare_extended_sleep)
1791 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1792 val_a, val_b);
1793 if (rc < 0)
1794 return AE_ERROR;
1795 else if (rc > 0)
1796 return AE_CTRL_TERMINATE;
1797
1798 return AE_OK;
1799 }
1800 #else
acpi_os_prepare_extended_sleep(u8 sleep_state,u32 val_a,u32 val_b)1801 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1802 u32 val_b)
1803 {
1804 return AE_OK;
1805 }
1806 #endif
1807
acpi_os_set_prepare_extended_sleep(int (* func)(u8 sleep_state,u32 val_a,u32 val_b))1808 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1809 u32 val_a, u32 val_b))
1810 {
1811 __acpi_os_prepare_extended_sleep = func;
1812 }
1813
acpi_os_enter_sleep(u8 sleep_state,u32 reg_a_value,u32 reg_b_value)1814 acpi_status acpi_os_enter_sleep(u8 sleep_state,
1815 u32 reg_a_value, u32 reg_b_value)
1816 {
1817 acpi_status status;
1818
1819 if (acpi_gbl_reduced_hardware)
1820 status = acpi_os_prepare_extended_sleep(sleep_state,
1821 reg_a_value,
1822 reg_b_value);
1823 else
1824 status = acpi_os_prepare_sleep(sleep_state,
1825 reg_a_value, reg_b_value);
1826 return status;
1827 }
1828