1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
4 *
5 * Copyright (C) 2000 Andrew Henroid
6 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
7 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8 * Copyright (c) 2008 Intel Corporation
9 * Author: Matthew Wilcox <willy@linux.intel.com>
10 */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/mm.h>
16 #include <linux/highmem.h>
17 #include <linux/lockdep.h>
18 #include <linux/pci.h>
19 #include <linux/interrupt.h>
20 #include <linux/kmod.h>
21 #include <linux/delay.h>
22 #include <linux/workqueue.h>
23 #include <linux/nmi.h>
24 #include <linux/acpi.h>
25 #include <linux/efi.h>
26 #include <linux/ioport.h>
27 #include <linux/list.h>
28 #include <linux/jiffies.h>
29 #include <linux/semaphore.h>
30 #include <linux/security.h>
31
32 #include <asm/io.h>
33 #include <linux/uaccess.h>
34 #include <linux/io-64-nonatomic-lo-hi.h>
35
36 #include "acpica/accommon.h"
37 #include "acpica/acnamesp.h"
38 #include "internal.h"
39
40 #define _COMPONENT ACPI_OS_SERVICES
41 ACPI_MODULE_NAME("osl");
42
43 struct acpi_os_dpc {
44 acpi_osd_exec_callback function;
45 void *context;
46 struct work_struct work;
47 };
48
49 #ifdef ENABLE_DEBUGGER
50 #include <linux/kdb.h>
51
52 /* stuff for debugger support */
53 int acpi_in_debugger;
54 EXPORT_SYMBOL(acpi_in_debugger);
55 #endif /*ENABLE_DEBUGGER */
56
57 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
58 u32 pm1b_ctrl);
59 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
60 u32 val_b);
61
62 static acpi_osd_handler acpi_irq_handler;
63 static void *acpi_irq_context;
64 static struct workqueue_struct *kacpid_wq;
65 static struct workqueue_struct *kacpi_notify_wq;
66 static struct workqueue_struct *kacpi_hotplug_wq;
67 static bool acpi_os_initialized;
68 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
69 bool acpi_permanent_mmap = false;
70
71 /*
72 * This list of permanent mappings is for memory that may be accessed from
73 * interrupt context, where we can't do the ioremap().
74 */
75 struct acpi_ioremap {
76 struct list_head list;
77 void __iomem *virt;
78 acpi_physical_address phys;
79 acpi_size size;
80 unsigned long refcount;
81 };
82
83 static LIST_HEAD(acpi_ioremaps);
84 static DEFINE_MUTEX(acpi_ioremap_lock);
85 #define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
86
acpi_request_region(struct acpi_generic_address * gas,unsigned int length,char * desc)87 static void __init acpi_request_region (struct acpi_generic_address *gas,
88 unsigned int length, char *desc)
89 {
90 u64 addr;
91
92 /* Handle possible alignment issues */
93 memcpy(&addr, &gas->address, sizeof(addr));
94 if (!addr || !length)
95 return;
96
97 /* Resources are never freed */
98 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
99 request_region(addr, length, desc);
100 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
101 request_mem_region(addr, length, desc);
102 }
103
acpi_reserve_resources(void)104 static int __init acpi_reserve_resources(void)
105 {
106 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
107 "ACPI PM1a_EVT_BLK");
108
109 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
110 "ACPI PM1b_EVT_BLK");
111
112 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
113 "ACPI PM1a_CNT_BLK");
114
115 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
116 "ACPI PM1b_CNT_BLK");
117
118 if (acpi_gbl_FADT.pm_timer_length == 4)
119 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
120
121 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
122 "ACPI PM2_CNT_BLK");
123
124 /* Length of GPE blocks must be a non-negative multiple of 2 */
125
126 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
127 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
128 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
129
130 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
131 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
132 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
133
134 return 0;
135 }
136 fs_initcall_sync(acpi_reserve_resources);
137
acpi_os_printf(const char * fmt,...)138 void acpi_os_printf(const char *fmt, ...)
139 {
140 va_list args;
141 va_start(args, fmt);
142 acpi_os_vprintf(fmt, args);
143 va_end(args);
144 }
145 EXPORT_SYMBOL(acpi_os_printf);
146
acpi_os_vprintf(const char * fmt,va_list args)147 void acpi_os_vprintf(const char *fmt, va_list args)
148 {
149 static char buffer[512];
150
151 vsprintf(buffer, fmt, args);
152
153 #ifdef ENABLE_DEBUGGER
154 if (acpi_in_debugger) {
155 kdb_printf("%s", buffer);
156 } else {
157 if (printk_get_level(buffer))
158 printk("%s", buffer);
159 else
160 printk(KERN_CONT "%s", buffer);
161 }
162 #else
163 if (acpi_debugger_write_log(buffer) < 0) {
164 if (printk_get_level(buffer))
165 printk("%s", buffer);
166 else
167 printk(KERN_CONT "%s", buffer);
168 }
169 #endif
170 }
171
172 #ifdef CONFIG_KEXEC
173 static unsigned long acpi_rsdp;
setup_acpi_rsdp(char * arg)174 static int __init setup_acpi_rsdp(char *arg)
175 {
176 return kstrtoul(arg, 16, &acpi_rsdp);
177 }
178 early_param("acpi_rsdp", setup_acpi_rsdp);
179 #endif
180
acpi_os_get_root_pointer(void)181 acpi_physical_address __init acpi_os_get_root_pointer(void)
182 {
183 acpi_physical_address pa;
184
185 #ifdef CONFIG_KEXEC
186 /*
187 * We may have been provided with an RSDP on the command line,
188 * but if a malicious user has done so they may be pointing us
189 * at modified ACPI tables that could alter kernel behaviour -
190 * so, we check the lockdown status before making use of
191 * it. If we trust it then also stash it in an architecture
192 * specific location (if appropriate) so it can be carried
193 * over further kexec()s.
194 */
195 if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
196 acpi_arch_set_root_pointer(acpi_rsdp);
197 return acpi_rsdp;
198 }
199 #endif
200 pa = acpi_arch_get_root_pointer();
201 if (pa)
202 return pa;
203
204 if (efi_enabled(EFI_CONFIG_TABLES)) {
205 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
206 return efi.acpi20;
207 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
208 return efi.acpi;
209 pr_err(PREFIX "System description tables not found\n");
210 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
211 acpi_find_root_pointer(&pa);
212 }
213
214 return pa;
215 }
216
217 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
218 static struct acpi_ioremap *
acpi_map_lookup(acpi_physical_address phys,acpi_size size)219 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
220 {
221 struct acpi_ioremap *map;
222
223 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
224 if (map->phys <= phys &&
225 phys + size <= map->phys + map->size)
226 return map;
227
228 return NULL;
229 }
230
231 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
232 static void __iomem *
acpi_map_vaddr_lookup(acpi_physical_address phys,unsigned int size)233 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
234 {
235 struct acpi_ioremap *map;
236
237 map = acpi_map_lookup(phys, size);
238 if (map)
239 return map->virt + (phys - map->phys);
240
241 return NULL;
242 }
243
acpi_os_get_iomem(acpi_physical_address phys,unsigned int size)244 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
245 {
246 struct acpi_ioremap *map;
247 void __iomem *virt = NULL;
248
249 mutex_lock(&acpi_ioremap_lock);
250 map = acpi_map_lookup(phys, size);
251 if (map) {
252 virt = map->virt + (phys - map->phys);
253 map->refcount++;
254 }
255 mutex_unlock(&acpi_ioremap_lock);
256 return virt;
257 }
258 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
259
260 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
261 static struct acpi_ioremap *
acpi_map_lookup_virt(void __iomem * virt,acpi_size size)262 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
263 {
264 struct acpi_ioremap *map;
265
266 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
267 if (map->virt <= virt &&
268 virt + size <= map->virt + map->size)
269 return map;
270
271 return NULL;
272 }
273
274 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
275 /* ioremap will take care of cache attributes */
276 #define should_use_kmap(pfn) 0
277 #else
278 #define should_use_kmap(pfn) page_is_ram(pfn)
279 #endif
280
acpi_map(acpi_physical_address pg_off,unsigned long pg_sz)281 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
282 {
283 unsigned long pfn;
284
285 pfn = pg_off >> PAGE_SHIFT;
286 if (should_use_kmap(pfn)) {
287 if (pg_sz > PAGE_SIZE)
288 return NULL;
289 return (void __iomem __force *)kmap(pfn_to_page(pfn));
290 } else
291 return acpi_os_ioremap(pg_off, pg_sz);
292 }
293
acpi_unmap(acpi_physical_address pg_off,void __iomem * vaddr)294 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
295 {
296 unsigned long pfn;
297
298 pfn = pg_off >> PAGE_SHIFT;
299 if (should_use_kmap(pfn))
300 kunmap(pfn_to_page(pfn));
301 else
302 iounmap(vaddr);
303 }
304
305 /**
306 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
307 * @phys: Start of the physical address range to map.
308 * @size: Size of the physical address range to map.
309 *
310 * Look up the given physical address range in the list of existing ACPI memory
311 * mappings. If found, get a reference to it and return a pointer to it (its
312 * virtual address). If not found, map it, add it to that list and return a
313 * pointer to it.
314 *
315 * During early init (when acpi_permanent_mmap has not been set yet) this
316 * routine simply calls __acpi_map_table() to get the job done.
317 */
318 void __iomem __ref
acpi_os_map_iomem(acpi_physical_address phys,acpi_size size)319 *acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
320 {
321 struct acpi_ioremap *map;
322 void __iomem *virt;
323 acpi_physical_address pg_off;
324 acpi_size pg_sz;
325
326 if (phys > ULONG_MAX) {
327 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
328 return NULL;
329 }
330
331 if (!acpi_permanent_mmap)
332 return __acpi_map_table((unsigned long)phys, size);
333
334 mutex_lock(&acpi_ioremap_lock);
335 /* Check if there's a suitable mapping already. */
336 map = acpi_map_lookup(phys, size);
337 if (map) {
338 map->refcount++;
339 goto out;
340 }
341
342 map = kzalloc(sizeof(*map), GFP_KERNEL);
343 if (!map) {
344 mutex_unlock(&acpi_ioremap_lock);
345 return NULL;
346 }
347
348 pg_off = round_down(phys, PAGE_SIZE);
349 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
350 virt = acpi_map(pg_off, pg_sz);
351 if (!virt) {
352 mutex_unlock(&acpi_ioremap_lock);
353 kfree(map);
354 return NULL;
355 }
356
357 INIT_LIST_HEAD(&map->list);
358 map->virt = virt;
359 map->phys = pg_off;
360 map->size = pg_sz;
361 map->refcount = 1;
362
363 list_add_tail_rcu(&map->list, &acpi_ioremaps);
364
365 out:
366 mutex_unlock(&acpi_ioremap_lock);
367 return map->virt + (phys - map->phys);
368 }
369 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
370
acpi_os_map_memory(acpi_physical_address phys,acpi_size size)371 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
372 {
373 return (void *)acpi_os_map_iomem(phys, size);
374 }
375 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
376
acpi_os_drop_map_ref(struct acpi_ioremap * map)377 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
378 {
379 if (!--map->refcount)
380 list_del_rcu(&map->list);
381 }
382
acpi_os_map_cleanup(struct acpi_ioremap * map)383 static void acpi_os_map_cleanup(struct acpi_ioremap *map)
384 {
385 if (!map->refcount) {
386 synchronize_rcu_expedited();
387 acpi_unmap(map->phys, map->virt);
388 kfree(map);
389 }
390 }
391
392 /**
393 * acpi_os_unmap_iomem - Drop a memory mapping reference.
394 * @virt: Start of the address range to drop a reference to.
395 * @size: Size of the address range to drop a reference to.
396 *
397 * Look up the given virtual address range in the list of existing ACPI memory
398 * mappings, drop a reference to it and unmap it if there are no more active
399 * references to it.
400 *
401 * During early init (when acpi_permanent_mmap has not been set yet) this
402 * routine simply calls __acpi_unmap_table() to get the job done. Since
403 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
404 * here.
405 */
acpi_os_unmap_iomem(void __iomem * virt,acpi_size size)406 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
407 {
408 struct acpi_ioremap *map;
409
410 if (!acpi_permanent_mmap) {
411 __acpi_unmap_table(virt, size);
412 return;
413 }
414
415 mutex_lock(&acpi_ioremap_lock);
416 map = acpi_map_lookup_virt(virt, size);
417 if (!map) {
418 mutex_unlock(&acpi_ioremap_lock);
419 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
420 return;
421 }
422 acpi_os_drop_map_ref(map);
423 mutex_unlock(&acpi_ioremap_lock);
424
425 acpi_os_map_cleanup(map);
426 }
427 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
428
acpi_os_unmap_memory(void * virt,acpi_size size)429 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
430 {
431 return acpi_os_unmap_iomem((void __iomem *)virt, size);
432 }
433 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
434
acpi_os_map_generic_address(struct acpi_generic_address * gas)435 int acpi_os_map_generic_address(struct acpi_generic_address *gas)
436 {
437 u64 addr;
438 void __iomem *virt;
439
440 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
441 return 0;
442
443 /* Handle possible alignment issues */
444 memcpy(&addr, &gas->address, sizeof(addr));
445 if (!addr || !gas->bit_width)
446 return -EINVAL;
447
448 virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
449 if (!virt)
450 return -EIO;
451
452 return 0;
453 }
454 EXPORT_SYMBOL(acpi_os_map_generic_address);
455
acpi_os_unmap_generic_address(struct acpi_generic_address * gas)456 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
457 {
458 u64 addr;
459 struct acpi_ioremap *map;
460
461 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
462 return;
463
464 /* Handle possible alignment issues */
465 memcpy(&addr, &gas->address, sizeof(addr));
466 if (!addr || !gas->bit_width)
467 return;
468
469 mutex_lock(&acpi_ioremap_lock);
470 map = acpi_map_lookup(addr, gas->bit_width / 8);
471 if (!map) {
472 mutex_unlock(&acpi_ioremap_lock);
473 return;
474 }
475 acpi_os_drop_map_ref(map);
476 mutex_unlock(&acpi_ioremap_lock);
477
478 acpi_os_map_cleanup(map);
479 }
480 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
481
482 #ifdef ACPI_FUTURE_USAGE
483 acpi_status
acpi_os_get_physical_address(void * virt,acpi_physical_address * phys)484 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
485 {
486 if (!phys || !virt)
487 return AE_BAD_PARAMETER;
488
489 *phys = virt_to_phys(virt);
490
491 return AE_OK;
492 }
493 #endif
494
495 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
496 static bool acpi_rev_override;
497
acpi_rev_override_setup(char * str)498 int __init acpi_rev_override_setup(char *str)
499 {
500 acpi_rev_override = true;
501 return 1;
502 }
503 __setup("acpi_rev_override", acpi_rev_override_setup);
504 #else
505 #define acpi_rev_override false
506 #endif
507
508 #define ACPI_MAX_OVERRIDE_LEN 100
509
510 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
511
512 acpi_status
acpi_os_predefined_override(const struct acpi_predefined_names * init_val,acpi_string * new_val)513 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
514 acpi_string *new_val)
515 {
516 if (!init_val || !new_val)
517 return AE_BAD_PARAMETER;
518
519 *new_val = NULL;
520 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
521 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
522 acpi_os_name);
523 *new_val = acpi_os_name;
524 }
525
526 if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
527 printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
528 *new_val = (char *)5;
529 }
530
531 return AE_OK;
532 }
533
acpi_irq(int irq,void * dev_id)534 static irqreturn_t acpi_irq(int irq, void *dev_id)
535 {
536 u32 handled;
537
538 handled = (*acpi_irq_handler) (acpi_irq_context);
539
540 if (handled) {
541 acpi_irq_handled++;
542 return IRQ_HANDLED;
543 } else {
544 acpi_irq_not_handled++;
545 return IRQ_NONE;
546 }
547 }
548
549 acpi_status
acpi_os_install_interrupt_handler(u32 gsi,acpi_osd_handler handler,void * context)550 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
551 void *context)
552 {
553 unsigned int irq;
554
555 acpi_irq_stats_init();
556
557 /*
558 * ACPI interrupts different from the SCI in our copy of the FADT are
559 * not supported.
560 */
561 if (gsi != acpi_gbl_FADT.sci_interrupt)
562 return AE_BAD_PARAMETER;
563
564 if (acpi_irq_handler)
565 return AE_ALREADY_ACQUIRED;
566
567 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
568 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
569 gsi);
570 return AE_OK;
571 }
572
573 acpi_irq_handler = handler;
574 acpi_irq_context = context;
575 if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
576 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
577 acpi_irq_handler = NULL;
578 return AE_NOT_ACQUIRED;
579 }
580 acpi_sci_irq = irq;
581
582 return AE_OK;
583 }
584
acpi_os_remove_interrupt_handler(u32 gsi,acpi_osd_handler handler)585 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
586 {
587 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
588 return AE_BAD_PARAMETER;
589
590 free_irq(acpi_sci_irq, acpi_irq);
591 acpi_irq_handler = NULL;
592 acpi_sci_irq = INVALID_ACPI_IRQ;
593
594 return AE_OK;
595 }
596
597 /*
598 * Running in interpreter thread context, safe to sleep
599 */
600
acpi_os_sleep(u64 ms)601 void acpi_os_sleep(u64 ms)
602 {
603 msleep(ms);
604 }
605
acpi_os_stall(u32 us)606 void acpi_os_stall(u32 us)
607 {
608 while (us) {
609 u32 delay = 1000;
610
611 if (delay > us)
612 delay = us;
613 udelay(delay);
614 touch_nmi_watchdog();
615 us -= delay;
616 }
617 }
618
619 /*
620 * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
621 * monotonically increasing timer with 100ns granularity. Do not use
622 * ktime_get() to implement this function because this function may get
623 * called after timekeeping has been suspended. Note: calling this function
624 * after timekeeping has been suspended may lead to unexpected results
625 * because when timekeeping is suspended the jiffies counter is not
626 * incremented. See also timekeeping_suspend().
627 */
acpi_os_get_timer(void)628 u64 acpi_os_get_timer(void)
629 {
630 return (get_jiffies_64() - INITIAL_JIFFIES) *
631 (ACPI_100NSEC_PER_SEC / HZ);
632 }
633
acpi_os_read_port(acpi_io_address port,u32 * value,u32 width)634 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
635 {
636 u32 dummy;
637
638 if (!value)
639 value = &dummy;
640
641 *value = 0;
642 if (width <= 8) {
643 *(u8 *) value = inb(port);
644 } else if (width <= 16) {
645 *(u16 *) value = inw(port);
646 } else if (width <= 32) {
647 *(u32 *) value = inl(port);
648 } else {
649 BUG();
650 }
651
652 return AE_OK;
653 }
654
655 EXPORT_SYMBOL(acpi_os_read_port);
656
acpi_os_write_port(acpi_io_address port,u32 value,u32 width)657 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
658 {
659 if (width <= 8) {
660 outb(value, port);
661 } else if (width <= 16) {
662 outw(value, port);
663 } else if (width <= 32) {
664 outl(value, port);
665 } else {
666 BUG();
667 }
668
669 return AE_OK;
670 }
671
672 EXPORT_SYMBOL(acpi_os_write_port);
673
acpi_os_read_iomem(void __iomem * virt_addr,u64 * value,u32 width)674 int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
675 {
676
677 switch (width) {
678 case 8:
679 *(u8 *) value = readb(virt_addr);
680 break;
681 case 16:
682 *(u16 *) value = readw(virt_addr);
683 break;
684 case 32:
685 *(u32 *) value = readl(virt_addr);
686 break;
687 case 64:
688 *(u64 *) value = readq(virt_addr);
689 break;
690 default:
691 return -EINVAL;
692 }
693
694 return 0;
695 }
696
697 acpi_status
acpi_os_read_memory(acpi_physical_address phys_addr,u64 * value,u32 width)698 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
699 {
700 void __iomem *virt_addr;
701 unsigned int size = width / 8;
702 bool unmap = false;
703 u64 dummy;
704 int error;
705
706 rcu_read_lock();
707 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
708 if (!virt_addr) {
709 rcu_read_unlock();
710 virt_addr = acpi_os_ioremap(phys_addr, size);
711 if (!virt_addr)
712 return AE_BAD_ADDRESS;
713 unmap = true;
714 }
715
716 if (!value)
717 value = &dummy;
718
719 error = acpi_os_read_iomem(virt_addr, value, width);
720 BUG_ON(error);
721
722 if (unmap)
723 iounmap(virt_addr);
724 else
725 rcu_read_unlock();
726
727 return AE_OK;
728 }
729
730 acpi_status
acpi_os_write_memory(acpi_physical_address phys_addr,u64 value,u32 width)731 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
732 {
733 void __iomem *virt_addr;
734 unsigned int size = width / 8;
735 bool unmap = false;
736
737 rcu_read_lock();
738 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
739 if (!virt_addr) {
740 rcu_read_unlock();
741 virt_addr = acpi_os_ioremap(phys_addr, size);
742 if (!virt_addr)
743 return AE_BAD_ADDRESS;
744 unmap = true;
745 }
746
747 switch (width) {
748 case 8:
749 writeb(value, virt_addr);
750 break;
751 case 16:
752 writew(value, virt_addr);
753 break;
754 case 32:
755 writel(value, virt_addr);
756 break;
757 case 64:
758 writeq(value, virt_addr);
759 break;
760 default:
761 BUG();
762 }
763
764 if (unmap)
765 iounmap(virt_addr);
766 else
767 rcu_read_unlock();
768
769 return AE_OK;
770 }
771
772 #ifdef CONFIG_PCI
773 acpi_status
acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id,u32 reg,u64 * value,u32 width)774 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
775 u64 *value, u32 width)
776 {
777 int result, size;
778 u32 value32;
779
780 if (!value)
781 return AE_BAD_PARAMETER;
782
783 switch (width) {
784 case 8:
785 size = 1;
786 break;
787 case 16:
788 size = 2;
789 break;
790 case 32:
791 size = 4;
792 break;
793 default:
794 return AE_ERROR;
795 }
796
797 result = raw_pci_read(pci_id->segment, pci_id->bus,
798 PCI_DEVFN(pci_id->device, pci_id->function),
799 reg, size, &value32);
800 *value = value32;
801
802 return (result ? AE_ERROR : AE_OK);
803 }
804
805 acpi_status
acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id,u32 reg,u64 value,u32 width)806 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
807 u64 value, u32 width)
808 {
809 int result, size;
810
811 switch (width) {
812 case 8:
813 size = 1;
814 break;
815 case 16:
816 size = 2;
817 break;
818 case 32:
819 size = 4;
820 break;
821 default:
822 return AE_ERROR;
823 }
824
825 result = raw_pci_write(pci_id->segment, pci_id->bus,
826 PCI_DEVFN(pci_id->device, pci_id->function),
827 reg, size, value);
828
829 return (result ? AE_ERROR : AE_OK);
830 }
831 #endif
832
acpi_os_execute_deferred(struct work_struct * work)833 static void acpi_os_execute_deferred(struct work_struct *work)
834 {
835 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
836
837 dpc->function(dpc->context);
838 kfree(dpc);
839 }
840
841 #ifdef CONFIG_ACPI_DEBUGGER
842 static struct acpi_debugger acpi_debugger;
843 static bool acpi_debugger_initialized;
844
acpi_register_debugger(struct module * owner,const struct acpi_debugger_ops * ops)845 int acpi_register_debugger(struct module *owner,
846 const struct acpi_debugger_ops *ops)
847 {
848 int ret = 0;
849
850 mutex_lock(&acpi_debugger.lock);
851 if (acpi_debugger.ops) {
852 ret = -EBUSY;
853 goto err_lock;
854 }
855
856 acpi_debugger.owner = owner;
857 acpi_debugger.ops = ops;
858
859 err_lock:
860 mutex_unlock(&acpi_debugger.lock);
861 return ret;
862 }
863 EXPORT_SYMBOL(acpi_register_debugger);
864
acpi_unregister_debugger(const struct acpi_debugger_ops * ops)865 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
866 {
867 mutex_lock(&acpi_debugger.lock);
868 if (ops == acpi_debugger.ops) {
869 acpi_debugger.ops = NULL;
870 acpi_debugger.owner = NULL;
871 }
872 mutex_unlock(&acpi_debugger.lock);
873 }
874 EXPORT_SYMBOL(acpi_unregister_debugger);
875
acpi_debugger_create_thread(acpi_osd_exec_callback function,void * context)876 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
877 {
878 int ret;
879 int (*func)(acpi_osd_exec_callback, void *);
880 struct module *owner;
881
882 if (!acpi_debugger_initialized)
883 return -ENODEV;
884 mutex_lock(&acpi_debugger.lock);
885 if (!acpi_debugger.ops) {
886 ret = -ENODEV;
887 goto err_lock;
888 }
889 if (!try_module_get(acpi_debugger.owner)) {
890 ret = -ENODEV;
891 goto err_lock;
892 }
893 func = acpi_debugger.ops->create_thread;
894 owner = acpi_debugger.owner;
895 mutex_unlock(&acpi_debugger.lock);
896
897 ret = func(function, context);
898
899 mutex_lock(&acpi_debugger.lock);
900 module_put(owner);
901 err_lock:
902 mutex_unlock(&acpi_debugger.lock);
903 return ret;
904 }
905
acpi_debugger_write_log(const char * msg)906 ssize_t acpi_debugger_write_log(const char *msg)
907 {
908 ssize_t ret;
909 ssize_t (*func)(const char *);
910 struct module *owner;
911
912 if (!acpi_debugger_initialized)
913 return -ENODEV;
914 mutex_lock(&acpi_debugger.lock);
915 if (!acpi_debugger.ops) {
916 ret = -ENODEV;
917 goto err_lock;
918 }
919 if (!try_module_get(acpi_debugger.owner)) {
920 ret = -ENODEV;
921 goto err_lock;
922 }
923 func = acpi_debugger.ops->write_log;
924 owner = acpi_debugger.owner;
925 mutex_unlock(&acpi_debugger.lock);
926
927 ret = func(msg);
928
929 mutex_lock(&acpi_debugger.lock);
930 module_put(owner);
931 err_lock:
932 mutex_unlock(&acpi_debugger.lock);
933 return ret;
934 }
935
acpi_debugger_read_cmd(char * buffer,size_t buffer_length)936 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
937 {
938 ssize_t ret;
939 ssize_t (*func)(char *, size_t);
940 struct module *owner;
941
942 if (!acpi_debugger_initialized)
943 return -ENODEV;
944 mutex_lock(&acpi_debugger.lock);
945 if (!acpi_debugger.ops) {
946 ret = -ENODEV;
947 goto err_lock;
948 }
949 if (!try_module_get(acpi_debugger.owner)) {
950 ret = -ENODEV;
951 goto err_lock;
952 }
953 func = acpi_debugger.ops->read_cmd;
954 owner = acpi_debugger.owner;
955 mutex_unlock(&acpi_debugger.lock);
956
957 ret = func(buffer, buffer_length);
958
959 mutex_lock(&acpi_debugger.lock);
960 module_put(owner);
961 err_lock:
962 mutex_unlock(&acpi_debugger.lock);
963 return ret;
964 }
965
acpi_debugger_wait_command_ready(void)966 int acpi_debugger_wait_command_ready(void)
967 {
968 int ret;
969 int (*func)(bool, char *, size_t);
970 struct module *owner;
971
972 if (!acpi_debugger_initialized)
973 return -ENODEV;
974 mutex_lock(&acpi_debugger.lock);
975 if (!acpi_debugger.ops) {
976 ret = -ENODEV;
977 goto err_lock;
978 }
979 if (!try_module_get(acpi_debugger.owner)) {
980 ret = -ENODEV;
981 goto err_lock;
982 }
983 func = acpi_debugger.ops->wait_command_ready;
984 owner = acpi_debugger.owner;
985 mutex_unlock(&acpi_debugger.lock);
986
987 ret = func(acpi_gbl_method_executing,
988 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
989
990 mutex_lock(&acpi_debugger.lock);
991 module_put(owner);
992 err_lock:
993 mutex_unlock(&acpi_debugger.lock);
994 return ret;
995 }
996
acpi_debugger_notify_command_complete(void)997 int acpi_debugger_notify_command_complete(void)
998 {
999 int ret;
1000 int (*func)(void);
1001 struct module *owner;
1002
1003 if (!acpi_debugger_initialized)
1004 return -ENODEV;
1005 mutex_lock(&acpi_debugger.lock);
1006 if (!acpi_debugger.ops) {
1007 ret = -ENODEV;
1008 goto err_lock;
1009 }
1010 if (!try_module_get(acpi_debugger.owner)) {
1011 ret = -ENODEV;
1012 goto err_lock;
1013 }
1014 func = acpi_debugger.ops->notify_command_complete;
1015 owner = acpi_debugger.owner;
1016 mutex_unlock(&acpi_debugger.lock);
1017
1018 ret = func();
1019
1020 mutex_lock(&acpi_debugger.lock);
1021 module_put(owner);
1022 err_lock:
1023 mutex_unlock(&acpi_debugger.lock);
1024 return ret;
1025 }
1026
acpi_debugger_init(void)1027 int __init acpi_debugger_init(void)
1028 {
1029 mutex_init(&acpi_debugger.lock);
1030 acpi_debugger_initialized = true;
1031 return 0;
1032 }
1033 #endif
1034
1035 /*******************************************************************************
1036 *
1037 * FUNCTION: acpi_os_execute
1038 *
1039 * PARAMETERS: Type - Type of the callback
1040 * Function - Function to be executed
1041 * Context - Function parameters
1042 *
1043 * RETURN: Status
1044 *
1045 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1046 * immediately executes function on a separate thread.
1047 *
1048 ******************************************************************************/
1049
acpi_os_execute(acpi_execute_type type,acpi_osd_exec_callback function,void * context)1050 acpi_status acpi_os_execute(acpi_execute_type type,
1051 acpi_osd_exec_callback function, void *context)
1052 {
1053 acpi_status status = AE_OK;
1054 struct acpi_os_dpc *dpc;
1055 struct workqueue_struct *queue;
1056 int ret;
1057 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1058 "Scheduling function [%p(%p)] for deferred execution.\n",
1059 function, context));
1060
1061 if (type == OSL_DEBUGGER_MAIN_THREAD) {
1062 ret = acpi_debugger_create_thread(function, context);
1063 if (ret) {
1064 pr_err("Call to kthread_create() failed.\n");
1065 status = AE_ERROR;
1066 }
1067 goto out_thread;
1068 }
1069
1070 /*
1071 * Allocate/initialize DPC structure. Note that this memory will be
1072 * freed by the callee. The kernel handles the work_struct list in a
1073 * way that allows us to also free its memory inside the callee.
1074 * Because we may want to schedule several tasks with different
1075 * parameters we can't use the approach some kernel code uses of
1076 * having a static work_struct.
1077 */
1078
1079 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1080 if (!dpc)
1081 return AE_NO_MEMORY;
1082
1083 dpc->function = function;
1084 dpc->context = context;
1085
1086 /*
1087 * To prevent lockdep from complaining unnecessarily, make sure that
1088 * there is a different static lockdep key for each workqueue by using
1089 * INIT_WORK() for each of them separately.
1090 */
1091 if (type == OSL_NOTIFY_HANDLER) {
1092 queue = kacpi_notify_wq;
1093 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1094 } else if (type == OSL_GPE_HANDLER) {
1095 queue = kacpid_wq;
1096 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1097 } else {
1098 pr_err("Unsupported os_execute type %d.\n", type);
1099 status = AE_ERROR;
1100 }
1101
1102 if (ACPI_FAILURE(status))
1103 goto err_workqueue;
1104
1105 /*
1106 * On some machines, a software-initiated SMI causes corruption unless
1107 * the SMI runs on CPU 0. An SMI can be initiated by any AML, but
1108 * typically it's done in GPE-related methods that are run via
1109 * workqueues, so we can avoid the known corruption cases by always
1110 * queueing on CPU 0.
1111 */
1112 ret = queue_work_on(0, queue, &dpc->work);
1113 if (!ret) {
1114 printk(KERN_ERR PREFIX
1115 "Call to queue_work() failed.\n");
1116 status = AE_ERROR;
1117 }
1118 err_workqueue:
1119 if (ACPI_FAILURE(status))
1120 kfree(dpc);
1121 out_thread:
1122 return status;
1123 }
1124 EXPORT_SYMBOL(acpi_os_execute);
1125
acpi_os_wait_events_complete(void)1126 void acpi_os_wait_events_complete(void)
1127 {
1128 /*
1129 * Make sure the GPE handler or the fixed event handler is not used
1130 * on another CPU after removal.
1131 */
1132 if (acpi_sci_irq_valid())
1133 synchronize_hardirq(acpi_sci_irq);
1134 flush_workqueue(kacpid_wq);
1135 flush_workqueue(kacpi_notify_wq);
1136 }
1137 EXPORT_SYMBOL(acpi_os_wait_events_complete);
1138
1139 struct acpi_hp_work {
1140 struct work_struct work;
1141 struct acpi_device *adev;
1142 u32 src;
1143 };
1144
acpi_hotplug_work_fn(struct work_struct * work)1145 static void acpi_hotplug_work_fn(struct work_struct *work)
1146 {
1147 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1148
1149 acpi_os_wait_events_complete();
1150 acpi_device_hotplug(hpw->adev, hpw->src);
1151 kfree(hpw);
1152 }
1153
acpi_hotplug_schedule(struct acpi_device * adev,u32 src)1154 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1155 {
1156 struct acpi_hp_work *hpw;
1157
1158 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1159 "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1160 adev, src));
1161
1162 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1163 if (!hpw)
1164 return AE_NO_MEMORY;
1165
1166 INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1167 hpw->adev = adev;
1168 hpw->src = src;
1169 /*
1170 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1171 * the hotplug code may call driver .remove() functions, which may
1172 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1173 * these workqueues.
1174 */
1175 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1176 kfree(hpw);
1177 return AE_ERROR;
1178 }
1179 return AE_OK;
1180 }
1181
acpi_queue_hotplug_work(struct work_struct * work)1182 bool acpi_queue_hotplug_work(struct work_struct *work)
1183 {
1184 return queue_work(kacpi_hotplug_wq, work);
1185 }
1186
1187 acpi_status
acpi_os_create_semaphore(u32 max_units,u32 initial_units,acpi_handle * handle)1188 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1189 {
1190 struct semaphore *sem = NULL;
1191
1192 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1193 if (!sem)
1194 return AE_NO_MEMORY;
1195
1196 sema_init(sem, initial_units);
1197
1198 *handle = (acpi_handle *) sem;
1199
1200 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1201 *handle, initial_units));
1202
1203 return AE_OK;
1204 }
1205
1206 /*
1207 * TODO: A better way to delete semaphores? Linux doesn't have a
1208 * 'delete_semaphore()' function -- may result in an invalid
1209 * pointer dereference for non-synchronized consumers. Should
1210 * we at least check for blocked threads and signal/cancel them?
1211 */
1212
acpi_os_delete_semaphore(acpi_handle handle)1213 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1214 {
1215 struct semaphore *sem = (struct semaphore *)handle;
1216
1217 if (!sem)
1218 return AE_BAD_PARAMETER;
1219
1220 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1221
1222 BUG_ON(!list_empty(&sem->wait_list));
1223 kfree(sem);
1224 sem = NULL;
1225
1226 return AE_OK;
1227 }
1228
1229 /*
1230 * TODO: Support for units > 1?
1231 */
acpi_os_wait_semaphore(acpi_handle handle,u32 units,u16 timeout)1232 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1233 {
1234 acpi_status status = AE_OK;
1235 struct semaphore *sem = (struct semaphore *)handle;
1236 long jiffies;
1237 int ret = 0;
1238
1239 if (!acpi_os_initialized)
1240 return AE_OK;
1241
1242 if (!sem || (units < 1))
1243 return AE_BAD_PARAMETER;
1244
1245 if (units > 1)
1246 return AE_SUPPORT;
1247
1248 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1249 handle, units, timeout));
1250
1251 if (timeout == ACPI_WAIT_FOREVER)
1252 jiffies = MAX_SCHEDULE_TIMEOUT;
1253 else
1254 jiffies = msecs_to_jiffies(timeout);
1255
1256 ret = down_timeout(sem, jiffies);
1257 if (ret)
1258 status = AE_TIME;
1259
1260 if (ACPI_FAILURE(status)) {
1261 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1262 "Failed to acquire semaphore[%p|%d|%d], %s",
1263 handle, units, timeout,
1264 acpi_format_exception(status)));
1265 } else {
1266 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1267 "Acquired semaphore[%p|%d|%d]", handle,
1268 units, timeout));
1269 }
1270
1271 return status;
1272 }
1273
1274 /*
1275 * TODO: Support for units > 1?
1276 */
acpi_os_signal_semaphore(acpi_handle handle,u32 units)1277 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1278 {
1279 struct semaphore *sem = (struct semaphore *)handle;
1280
1281 if (!acpi_os_initialized)
1282 return AE_OK;
1283
1284 if (!sem || (units < 1))
1285 return AE_BAD_PARAMETER;
1286
1287 if (units > 1)
1288 return AE_SUPPORT;
1289
1290 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1291 units));
1292
1293 up(sem);
1294
1295 return AE_OK;
1296 }
1297
acpi_os_get_line(char * buffer,u32 buffer_length,u32 * bytes_read)1298 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1299 {
1300 #ifdef ENABLE_DEBUGGER
1301 if (acpi_in_debugger) {
1302 u32 chars;
1303
1304 kdb_read(buffer, buffer_length);
1305
1306 /* remove the CR kdb includes */
1307 chars = strlen(buffer) - 1;
1308 buffer[chars] = '\0';
1309 }
1310 #else
1311 int ret;
1312
1313 ret = acpi_debugger_read_cmd(buffer, buffer_length);
1314 if (ret < 0)
1315 return AE_ERROR;
1316 if (bytes_read)
1317 *bytes_read = ret;
1318 #endif
1319
1320 return AE_OK;
1321 }
1322 EXPORT_SYMBOL(acpi_os_get_line);
1323
acpi_os_wait_command_ready(void)1324 acpi_status acpi_os_wait_command_ready(void)
1325 {
1326 int ret;
1327
1328 ret = acpi_debugger_wait_command_ready();
1329 if (ret < 0)
1330 return AE_ERROR;
1331 return AE_OK;
1332 }
1333
acpi_os_notify_command_complete(void)1334 acpi_status acpi_os_notify_command_complete(void)
1335 {
1336 int ret;
1337
1338 ret = acpi_debugger_notify_command_complete();
1339 if (ret < 0)
1340 return AE_ERROR;
1341 return AE_OK;
1342 }
1343
acpi_os_signal(u32 function,void * info)1344 acpi_status acpi_os_signal(u32 function, void *info)
1345 {
1346 switch (function) {
1347 case ACPI_SIGNAL_FATAL:
1348 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1349 break;
1350 case ACPI_SIGNAL_BREAKPOINT:
1351 /*
1352 * AML Breakpoint
1353 * ACPI spec. says to treat it as a NOP unless
1354 * you are debugging. So if/when we integrate
1355 * AML debugger into the kernel debugger its
1356 * hook will go here. But until then it is
1357 * not useful to print anything on breakpoints.
1358 */
1359 break;
1360 default:
1361 break;
1362 }
1363
1364 return AE_OK;
1365 }
1366
acpi_os_name_setup(char * str)1367 static int __init acpi_os_name_setup(char *str)
1368 {
1369 char *p = acpi_os_name;
1370 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1371
1372 if (!str || !*str)
1373 return 0;
1374
1375 for (; count-- && *str; str++) {
1376 if (isalnum(*str) || *str == ' ' || *str == ':')
1377 *p++ = *str;
1378 else if (*str == '\'' || *str == '"')
1379 continue;
1380 else
1381 break;
1382 }
1383 *p = 0;
1384
1385 return 1;
1386
1387 }
1388
1389 __setup("acpi_os_name=", acpi_os_name_setup);
1390
1391 /*
1392 * Disable the auto-serialization of named objects creation methods.
1393 *
1394 * This feature is enabled by default. It marks the AML control methods
1395 * that contain the opcodes to create named objects as "Serialized".
1396 */
acpi_no_auto_serialize_setup(char * str)1397 static int __init acpi_no_auto_serialize_setup(char *str)
1398 {
1399 acpi_gbl_auto_serialize_methods = FALSE;
1400 pr_info("ACPI: auto-serialization disabled\n");
1401
1402 return 1;
1403 }
1404
1405 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1406
1407 /* Check of resource interference between native drivers and ACPI
1408 * OperationRegions (SystemIO and System Memory only).
1409 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1410 * in arbitrary AML code and can interfere with legacy drivers.
1411 * acpi_enforce_resources= can be set to:
1412 *
1413 * - strict (default) (2)
1414 * -> further driver trying to access the resources will not load
1415 * - lax (1)
1416 * -> further driver trying to access the resources will load, but you
1417 * get a system message that something might go wrong...
1418 *
1419 * - no (0)
1420 * -> ACPI Operation Region resources will not be registered
1421 *
1422 */
1423 #define ENFORCE_RESOURCES_STRICT 2
1424 #define ENFORCE_RESOURCES_LAX 1
1425 #define ENFORCE_RESOURCES_NO 0
1426
1427 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1428
acpi_enforce_resources_setup(char * str)1429 static int __init acpi_enforce_resources_setup(char *str)
1430 {
1431 if (str == NULL || *str == '\0')
1432 return 0;
1433
1434 if (!strcmp("strict", str))
1435 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1436 else if (!strcmp("lax", str))
1437 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1438 else if (!strcmp("no", str))
1439 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1440
1441 return 1;
1442 }
1443
1444 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1445
1446 /* Check for resource conflicts between ACPI OperationRegions and native
1447 * drivers */
acpi_check_resource_conflict(const struct resource * res)1448 int acpi_check_resource_conflict(const struct resource *res)
1449 {
1450 acpi_adr_space_type space_id;
1451 acpi_size length;
1452 u8 warn = 0;
1453 int clash = 0;
1454
1455 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1456 return 0;
1457 if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1458 return 0;
1459
1460 if (res->flags & IORESOURCE_IO)
1461 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1462 else
1463 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1464
1465 length = resource_size(res);
1466 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1467 warn = 1;
1468 clash = acpi_check_address_range(space_id, res->start, length, warn);
1469
1470 if (clash) {
1471 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1472 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1473 printk(KERN_NOTICE "ACPI: This conflict may"
1474 " cause random problems and system"
1475 " instability\n");
1476 printk(KERN_INFO "ACPI: If an ACPI driver is available"
1477 " for this device, you should use it instead of"
1478 " the native driver\n");
1479 }
1480 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1481 return -EBUSY;
1482 }
1483 return 0;
1484 }
1485 EXPORT_SYMBOL(acpi_check_resource_conflict);
1486
acpi_check_region(resource_size_t start,resource_size_t n,const char * name)1487 int acpi_check_region(resource_size_t start, resource_size_t n,
1488 const char *name)
1489 {
1490 struct resource res = {
1491 .start = start,
1492 .end = start + n - 1,
1493 .name = name,
1494 .flags = IORESOURCE_IO,
1495 };
1496
1497 return acpi_check_resource_conflict(&res);
1498 }
1499 EXPORT_SYMBOL(acpi_check_region);
1500
acpi_deactivate_mem_region(acpi_handle handle,u32 level,void * _res,void ** return_value)1501 static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1502 void *_res, void **return_value)
1503 {
1504 struct acpi_mem_space_context **mem_ctx;
1505 union acpi_operand_object *handler_obj;
1506 union acpi_operand_object *region_obj2;
1507 union acpi_operand_object *region_obj;
1508 struct resource *res = _res;
1509 acpi_status status;
1510
1511 region_obj = acpi_ns_get_attached_object(handle);
1512 if (!region_obj)
1513 return AE_OK;
1514
1515 handler_obj = region_obj->region.handler;
1516 if (!handler_obj)
1517 return AE_OK;
1518
1519 if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1520 return AE_OK;
1521
1522 if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1523 return AE_OK;
1524
1525 region_obj2 = acpi_ns_get_secondary_object(region_obj);
1526 if (!region_obj2)
1527 return AE_OK;
1528
1529 mem_ctx = (void *)®ion_obj2->extra.region_context;
1530
1531 if (!(mem_ctx[0]->address >= res->start &&
1532 mem_ctx[0]->address < res->end))
1533 return AE_OK;
1534
1535 status = handler_obj->address_space.setup(region_obj,
1536 ACPI_REGION_DEACTIVATE,
1537 NULL, (void **)mem_ctx);
1538 if (ACPI_SUCCESS(status))
1539 region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1540
1541 return status;
1542 }
1543
1544 /**
1545 * acpi_release_memory - Release any mappings done to a memory region
1546 * @handle: Handle to namespace node
1547 * @res: Memory resource
1548 * @level: A level that terminates the search
1549 *
1550 * Walks through @handle and unmaps all SystemMemory Operation Regions that
1551 * overlap with @res and that have already been activated (mapped).
1552 *
1553 * This is a helper that allows drivers to place special requirements on memory
1554 * region that may overlap with operation regions, primarily allowing them to
1555 * safely map the region as non-cached memory.
1556 *
1557 * The unmapped Operation Regions will be automatically remapped next time they
1558 * are called, so the drivers do not need to do anything else.
1559 */
acpi_release_memory(acpi_handle handle,struct resource * res,u32 level)1560 acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1561 u32 level)
1562 {
1563 if (!(res->flags & IORESOURCE_MEM))
1564 return AE_TYPE;
1565
1566 return acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1567 acpi_deactivate_mem_region, NULL, res, NULL);
1568 }
1569 EXPORT_SYMBOL_GPL(acpi_release_memory);
1570
1571 /*
1572 * Let drivers know whether the resource checks are effective
1573 */
acpi_resources_are_enforced(void)1574 int acpi_resources_are_enforced(void)
1575 {
1576 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1577 }
1578 EXPORT_SYMBOL(acpi_resources_are_enforced);
1579
1580 /*
1581 * Deallocate the memory for a spinlock.
1582 */
acpi_os_delete_lock(acpi_spinlock handle)1583 void acpi_os_delete_lock(acpi_spinlock handle)
1584 {
1585 ACPI_FREE(handle);
1586 }
1587
1588 /*
1589 * Acquire a spinlock.
1590 *
1591 * handle is a pointer to the spinlock_t.
1592 */
1593
acpi_os_acquire_lock(acpi_spinlock lockp)1594 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1595 {
1596 acpi_cpu_flags flags;
1597 spin_lock_irqsave(lockp, flags);
1598 return flags;
1599 }
1600
1601 /*
1602 * Release a spinlock. See above.
1603 */
1604
acpi_os_release_lock(acpi_spinlock lockp,acpi_cpu_flags flags)1605 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1606 {
1607 spin_unlock_irqrestore(lockp, flags);
1608 }
1609
1610 #ifndef ACPI_USE_LOCAL_CACHE
1611
1612 /*******************************************************************************
1613 *
1614 * FUNCTION: acpi_os_create_cache
1615 *
1616 * PARAMETERS: name - Ascii name for the cache
1617 * size - Size of each cached object
1618 * depth - Maximum depth of the cache (in objects) <ignored>
1619 * cache - Where the new cache object is returned
1620 *
1621 * RETURN: status
1622 *
1623 * DESCRIPTION: Create a cache object
1624 *
1625 ******************************************************************************/
1626
1627 acpi_status
acpi_os_create_cache(char * name,u16 size,u16 depth,acpi_cache_t ** cache)1628 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1629 {
1630 *cache = kmem_cache_create(name, size, 0, 0, NULL);
1631 if (*cache == NULL)
1632 return AE_ERROR;
1633 else
1634 return AE_OK;
1635 }
1636
1637 /*******************************************************************************
1638 *
1639 * FUNCTION: acpi_os_purge_cache
1640 *
1641 * PARAMETERS: Cache - Handle to cache object
1642 *
1643 * RETURN: Status
1644 *
1645 * DESCRIPTION: Free all objects within the requested cache.
1646 *
1647 ******************************************************************************/
1648
acpi_os_purge_cache(acpi_cache_t * cache)1649 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1650 {
1651 kmem_cache_shrink(cache);
1652 return (AE_OK);
1653 }
1654
1655 /*******************************************************************************
1656 *
1657 * FUNCTION: acpi_os_delete_cache
1658 *
1659 * PARAMETERS: Cache - Handle to cache object
1660 *
1661 * RETURN: Status
1662 *
1663 * DESCRIPTION: Free all objects within the requested cache and delete the
1664 * cache object.
1665 *
1666 ******************************************************************************/
1667
acpi_os_delete_cache(acpi_cache_t * cache)1668 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1669 {
1670 kmem_cache_destroy(cache);
1671 return (AE_OK);
1672 }
1673
1674 /*******************************************************************************
1675 *
1676 * FUNCTION: acpi_os_release_object
1677 *
1678 * PARAMETERS: Cache - Handle to cache object
1679 * Object - The object to be released
1680 *
1681 * RETURN: None
1682 *
1683 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1684 * the object is deleted.
1685 *
1686 ******************************************************************************/
1687
acpi_os_release_object(acpi_cache_t * cache,void * object)1688 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1689 {
1690 kmem_cache_free(cache, object);
1691 return (AE_OK);
1692 }
1693 #endif
1694
acpi_no_static_ssdt_setup(char * s)1695 static int __init acpi_no_static_ssdt_setup(char *s)
1696 {
1697 acpi_gbl_disable_ssdt_table_install = TRUE;
1698 pr_info("ACPI: static SSDT installation disabled\n");
1699
1700 return 0;
1701 }
1702
1703 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1704
acpi_disable_return_repair(char * s)1705 static int __init acpi_disable_return_repair(char *s)
1706 {
1707 printk(KERN_NOTICE PREFIX
1708 "ACPI: Predefined validation mechanism disabled\n");
1709 acpi_gbl_disable_auto_repair = TRUE;
1710
1711 return 1;
1712 }
1713
1714 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1715
acpi_os_initialize(void)1716 acpi_status __init acpi_os_initialize(void)
1717 {
1718 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1719 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1720 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1721 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1722 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1723 /*
1724 * Use acpi_os_map_generic_address to pre-map the reset
1725 * register if it's in system memory.
1726 */
1727 int rv;
1728
1729 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1730 pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1731 }
1732 acpi_os_initialized = true;
1733
1734 return AE_OK;
1735 }
1736
acpi_os_initialize1(void)1737 acpi_status __init acpi_os_initialize1(void)
1738 {
1739 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1740 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1741 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1742 BUG_ON(!kacpid_wq);
1743 BUG_ON(!kacpi_notify_wq);
1744 BUG_ON(!kacpi_hotplug_wq);
1745 acpi_osi_init();
1746 return AE_OK;
1747 }
1748
acpi_os_terminate(void)1749 acpi_status acpi_os_terminate(void)
1750 {
1751 if (acpi_irq_handler) {
1752 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1753 acpi_irq_handler);
1754 }
1755
1756 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1757 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1758 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1759 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1760 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1761 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1762
1763 destroy_workqueue(kacpid_wq);
1764 destroy_workqueue(kacpi_notify_wq);
1765 destroy_workqueue(kacpi_hotplug_wq);
1766
1767 return AE_OK;
1768 }
1769
acpi_os_prepare_sleep(u8 sleep_state,u32 pm1a_control,u32 pm1b_control)1770 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1771 u32 pm1b_control)
1772 {
1773 int rc = 0;
1774 if (__acpi_os_prepare_sleep)
1775 rc = __acpi_os_prepare_sleep(sleep_state,
1776 pm1a_control, pm1b_control);
1777 if (rc < 0)
1778 return AE_ERROR;
1779 else if (rc > 0)
1780 return AE_CTRL_TERMINATE;
1781
1782 return AE_OK;
1783 }
1784
acpi_os_set_prepare_sleep(int (* func)(u8 sleep_state,u32 pm1a_ctrl,u32 pm1b_ctrl))1785 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1786 u32 pm1a_ctrl, u32 pm1b_ctrl))
1787 {
1788 __acpi_os_prepare_sleep = func;
1789 }
1790
1791 #if (ACPI_REDUCED_HARDWARE)
acpi_os_prepare_extended_sleep(u8 sleep_state,u32 val_a,u32 val_b)1792 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1793 u32 val_b)
1794 {
1795 int rc = 0;
1796 if (__acpi_os_prepare_extended_sleep)
1797 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1798 val_a, val_b);
1799 if (rc < 0)
1800 return AE_ERROR;
1801 else if (rc > 0)
1802 return AE_CTRL_TERMINATE;
1803
1804 return AE_OK;
1805 }
1806 #else
acpi_os_prepare_extended_sleep(u8 sleep_state,u32 val_a,u32 val_b)1807 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1808 u32 val_b)
1809 {
1810 return AE_OK;
1811 }
1812 #endif
1813
acpi_os_set_prepare_extended_sleep(int (* func)(u8 sleep_state,u32 val_a,u32 val_b))1814 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1815 u32 val_a, u32 val_b))
1816 {
1817 __acpi_os_prepare_extended_sleep = func;
1818 }
1819
acpi_os_enter_sleep(u8 sleep_state,u32 reg_a_value,u32 reg_b_value)1820 acpi_status acpi_os_enter_sleep(u8 sleep_state,
1821 u32 reg_a_value, u32 reg_b_value)
1822 {
1823 acpi_status status;
1824
1825 if (acpi_gbl_reduced_hardware)
1826 status = acpi_os_prepare_extended_sleep(sleep_state,
1827 reg_a_value,
1828 reg_b_value);
1829 else
1830 status = acpi_os_prepare_sleep(sleep_state,
1831 reg_a_value, reg_b_value);
1832 return status;
1833 }
1834