1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * (C) COPYRIGHT 2018 ARM Limited. All rights reserved.
4 * Author: James.Qian.Wang <james.qian.wang@arm.com>
5 *
6 */
7 #include "d71_dev.h"
8 #include "komeda_kms.h"
9 #include "malidp_io.h"
10 #include "komeda_framebuffer.h"
11 #include "komeda_color_mgmt.h"
12
get_resources_id(u32 hw_id,u32 * pipe_id,u32 * comp_id)13 static void get_resources_id(u32 hw_id, u32 *pipe_id, u32 *comp_id)
14 {
15 u32 id = BLOCK_INFO_BLK_ID(hw_id);
16 u32 pipe = id;
17
18 switch (BLOCK_INFO_BLK_TYPE(hw_id)) {
19 case D71_BLK_TYPE_LPU_WB_LAYER:
20 id = KOMEDA_COMPONENT_WB_LAYER;
21 break;
22 case D71_BLK_TYPE_CU_SPLITTER:
23 id = KOMEDA_COMPONENT_SPLITTER;
24 break;
25 case D71_BLK_TYPE_CU_SCALER:
26 pipe = id / D71_PIPELINE_MAX_SCALERS;
27 id %= D71_PIPELINE_MAX_SCALERS;
28 id += KOMEDA_COMPONENT_SCALER0;
29 break;
30 case D71_BLK_TYPE_CU:
31 id += KOMEDA_COMPONENT_COMPIZ0;
32 break;
33 case D71_BLK_TYPE_LPU_LAYER:
34 pipe = id / D71_PIPELINE_MAX_LAYERS;
35 id %= D71_PIPELINE_MAX_LAYERS;
36 id += KOMEDA_COMPONENT_LAYER0;
37 break;
38 case D71_BLK_TYPE_DOU_IPS:
39 id += KOMEDA_COMPONENT_IPS0;
40 break;
41 case D71_BLK_TYPE_CU_MERGER:
42 id = KOMEDA_COMPONENT_MERGER;
43 break;
44 case D71_BLK_TYPE_DOU:
45 id = KOMEDA_COMPONENT_TIMING_CTRLR;
46 break;
47 default:
48 id = 0xFFFFFFFF;
49 }
50
51 if (comp_id)
52 *comp_id = id;
53
54 if (pipe_id)
55 *pipe_id = pipe;
56 }
57
get_valid_inputs(struct block_header * blk)58 static u32 get_valid_inputs(struct block_header *blk)
59 {
60 u32 valid_inputs = 0, comp_id;
61 int i;
62
63 for (i = 0; i < PIPELINE_INFO_N_VALID_INPUTS(blk->pipeline_info); i++) {
64 get_resources_id(blk->input_ids[i], NULL, &comp_id);
65 if (comp_id == 0xFFFFFFFF)
66 continue;
67 valid_inputs |= BIT(comp_id);
68 }
69
70 return valid_inputs;
71 }
72
get_values_from_reg(void __iomem * reg,u32 offset,u32 count,u32 * val)73 static void get_values_from_reg(void __iomem *reg, u32 offset,
74 u32 count, u32 *val)
75 {
76 u32 i, addr;
77
78 for (i = 0; i < count; i++) {
79 addr = offset + (i << 2);
80 /* 0xA4 is WO register */
81 if (addr != 0xA4)
82 val[i] = malidp_read32(reg, addr);
83 else
84 val[i] = 0xDEADDEAD;
85 }
86 }
87
dump_block_header(struct seq_file * sf,void __iomem * reg)88 static void dump_block_header(struct seq_file *sf, void __iomem *reg)
89 {
90 struct block_header hdr;
91 u32 i, n_input, n_output;
92
93 d71_read_block_header(reg, &hdr);
94 seq_printf(sf, "BLOCK_INFO:\t\t0x%X\n", hdr.block_info);
95 seq_printf(sf, "PIPELINE_INFO:\t\t0x%X\n", hdr.pipeline_info);
96
97 n_output = PIPELINE_INFO_N_OUTPUTS(hdr.pipeline_info);
98 n_input = PIPELINE_INFO_N_VALID_INPUTS(hdr.pipeline_info);
99
100 for (i = 0; i < n_input; i++)
101 seq_printf(sf, "VALID_INPUT_ID%u:\t0x%X\n",
102 i, hdr.input_ids[i]);
103
104 for (i = 0; i < n_output; i++)
105 seq_printf(sf, "OUTPUT_ID%u:\t\t0x%X\n",
106 i, hdr.output_ids[i]);
107 }
108
to_rot_ctrl(u32 rot)109 static u32 to_rot_ctrl(u32 rot)
110 {
111 u32 lr_ctrl = 0;
112
113 switch (rot & DRM_MODE_ROTATE_MASK) {
114 case DRM_MODE_ROTATE_0:
115 lr_ctrl |= L_ROT(L_ROT_R0);
116 break;
117 case DRM_MODE_ROTATE_90:
118 lr_ctrl |= L_ROT(L_ROT_R90);
119 break;
120 case DRM_MODE_ROTATE_180:
121 lr_ctrl |= L_ROT(L_ROT_R180);
122 break;
123 case DRM_MODE_ROTATE_270:
124 lr_ctrl |= L_ROT(L_ROT_R270);
125 break;
126 }
127
128 if (rot & DRM_MODE_REFLECT_X)
129 lr_ctrl |= L_HFLIP;
130 if (rot & DRM_MODE_REFLECT_Y)
131 lr_ctrl |= L_VFLIP;
132
133 return lr_ctrl;
134 }
135
to_ad_ctrl(u64 modifier)136 static u32 to_ad_ctrl(u64 modifier)
137 {
138 u32 afbc_ctrl = AD_AEN;
139
140 if (!modifier)
141 return 0;
142
143 if ((modifier & AFBC_FORMAT_MOD_BLOCK_SIZE_MASK) ==
144 AFBC_FORMAT_MOD_BLOCK_SIZE_32x8)
145 afbc_ctrl |= AD_WB;
146
147 if (modifier & AFBC_FORMAT_MOD_YTR)
148 afbc_ctrl |= AD_YT;
149 if (modifier & AFBC_FORMAT_MOD_SPLIT)
150 afbc_ctrl |= AD_BS;
151 if (modifier & AFBC_FORMAT_MOD_TILED)
152 afbc_ctrl |= AD_TH;
153
154 return afbc_ctrl;
155 }
156
to_d71_input_id(struct komeda_component_state * st,int idx)157 static inline u32 to_d71_input_id(struct komeda_component_state *st, int idx)
158 {
159 struct komeda_component_output *input = &st->inputs[idx];
160
161 /* if input is not active, set hw input_id(0) to disable it */
162 if (has_bit(idx, st->active_inputs))
163 return input->component->hw_id + input->output_port;
164 else
165 return 0;
166 }
167
d71_layer_update_fb(struct komeda_component * c,struct komeda_fb * kfb,dma_addr_t * addr)168 static void d71_layer_update_fb(struct komeda_component *c,
169 struct komeda_fb *kfb,
170 dma_addr_t *addr)
171 {
172 struct drm_framebuffer *fb = &kfb->base;
173 const struct drm_format_info *info = fb->format;
174 u32 __iomem *reg = c->reg;
175 int block_h;
176
177 if (info->num_planes > 2)
178 malidp_write64(reg, BLK_P2_PTR_LOW, addr[2]);
179
180 if (info->num_planes > 1) {
181 block_h = drm_format_info_block_height(info, 1);
182 malidp_write32(reg, BLK_P1_STRIDE, fb->pitches[1] * block_h);
183 malidp_write64(reg, BLK_P1_PTR_LOW, addr[1]);
184 }
185
186 block_h = drm_format_info_block_height(info, 0);
187 malidp_write32(reg, BLK_P0_STRIDE, fb->pitches[0] * block_h);
188 malidp_write64(reg, BLK_P0_PTR_LOW, addr[0]);
189 malidp_write32(reg, LAYER_FMT, kfb->format_caps->hw_id);
190 }
191
d71_layer_disable(struct komeda_component * c)192 static void d71_layer_disable(struct komeda_component *c)
193 {
194 malidp_write32_mask(c->reg, BLK_CONTROL, L_EN, 0);
195 }
196
d71_layer_update(struct komeda_component * c,struct komeda_component_state * state)197 static void d71_layer_update(struct komeda_component *c,
198 struct komeda_component_state *state)
199 {
200 struct komeda_layer_state *st = to_layer_st(state);
201 struct drm_plane_state *plane_st = state->plane->state;
202 struct drm_framebuffer *fb = plane_st->fb;
203 struct komeda_fb *kfb = to_kfb(fb);
204 u32 __iomem *reg = c->reg;
205 u32 ctrl_mask = L_EN | L_ROT(L_ROT_R270) | L_HFLIP | L_VFLIP | L_TBU_EN;
206 u32 ctrl = L_EN | to_rot_ctrl(st->rot);
207
208 d71_layer_update_fb(c, kfb, st->addr);
209
210 malidp_write32(reg, AD_CONTROL, to_ad_ctrl(fb->modifier));
211 if (fb->modifier) {
212 u64 addr;
213
214 malidp_write32(reg, LAYER_AD_H_CROP, HV_CROP(st->afbc_crop_l,
215 st->afbc_crop_r));
216 malidp_write32(reg, LAYER_AD_V_CROP, HV_CROP(st->afbc_crop_t,
217 st->afbc_crop_b));
218 /* afbc 1.2 wants payload, afbc 1.0/1.1 wants end_addr */
219 if (fb->modifier & AFBC_FORMAT_MOD_TILED)
220 addr = st->addr[0] + kfb->offset_payload;
221 else
222 addr = st->addr[0] + kfb->afbc_size - 1;
223
224 malidp_write32(reg, BLK_P1_PTR_LOW, lower_32_bits(addr));
225 malidp_write32(reg, BLK_P1_PTR_HIGH, upper_32_bits(addr));
226 }
227
228 if (fb->format->is_yuv) {
229 u32 upsampling = 0;
230
231 switch (kfb->format_caps->fourcc) {
232 case DRM_FORMAT_YUYV:
233 upsampling = fb->modifier ? LR_CHI422_BILINEAR :
234 LR_CHI422_REPLICATION;
235 break;
236 case DRM_FORMAT_UYVY:
237 upsampling = LR_CHI422_REPLICATION;
238 break;
239 case DRM_FORMAT_NV12:
240 case DRM_FORMAT_YUV420_8BIT:
241 case DRM_FORMAT_YUV420_10BIT:
242 case DRM_FORMAT_YUV420:
243 case DRM_FORMAT_P010:
244 /* these fmt support MPGE/JPEG both, here perfer JPEG*/
245 upsampling = LR_CHI420_JPEG;
246 break;
247 case DRM_FORMAT_X0L2:
248 upsampling = LR_CHI420_JPEG;
249 break;
250 default:
251 break;
252 }
253
254 malidp_write32(reg, LAYER_R_CONTROL, upsampling);
255 malidp_write_group(reg, LAYER_YUV_RGB_COEFF0,
256 KOMEDA_N_YUV2RGB_COEFFS,
257 komeda_select_yuv2rgb_coeffs(
258 plane_st->color_encoding,
259 plane_st->color_range));
260 }
261
262 malidp_write32(reg, BLK_IN_SIZE, HV_SIZE(st->hsize, st->vsize));
263
264 if (kfb->is_va)
265 ctrl |= L_TBU_EN;
266 malidp_write32_mask(reg, BLK_CONTROL, ctrl_mask, ctrl);
267 }
268
d71_layer_dump(struct komeda_component * c,struct seq_file * sf)269 static void d71_layer_dump(struct komeda_component *c, struct seq_file *sf)
270 {
271 u32 v[15], i;
272 bool rich, rgb2rgb;
273 char *prefix;
274
275 get_values_from_reg(c->reg, LAYER_INFO, 1, &v[14]);
276 if (v[14] & 0x1) {
277 rich = true;
278 prefix = "LR_";
279 } else {
280 rich = false;
281 prefix = "LS_";
282 }
283
284 rgb2rgb = !!(v[14] & L_INFO_CM);
285
286 dump_block_header(sf, c->reg);
287
288 seq_printf(sf, "%sLAYER_INFO:\t\t0x%X\n", prefix, v[14]);
289
290 get_values_from_reg(c->reg, 0xD0, 1, v);
291 seq_printf(sf, "%sCONTROL:\t\t0x%X\n", prefix, v[0]);
292 if (rich) {
293 get_values_from_reg(c->reg, 0xD4, 1, v);
294 seq_printf(sf, "LR_RICH_CONTROL:\t0x%X\n", v[0]);
295 }
296 get_values_from_reg(c->reg, 0xD8, 4, v);
297 seq_printf(sf, "%sFORMAT:\t\t0x%X\n", prefix, v[0]);
298 seq_printf(sf, "%sIT_COEFFTAB:\t\t0x%X\n", prefix, v[1]);
299 seq_printf(sf, "%sIN_SIZE:\t\t0x%X\n", prefix, v[2]);
300 seq_printf(sf, "%sPALPHA:\t\t0x%X\n", prefix, v[3]);
301
302 get_values_from_reg(c->reg, 0x100, 3, v);
303 seq_printf(sf, "%sP0_PTR_LOW:\t\t0x%X\n", prefix, v[0]);
304 seq_printf(sf, "%sP0_PTR_HIGH:\t\t0x%X\n", prefix, v[1]);
305 seq_printf(sf, "%sP0_STRIDE:\t\t0x%X\n", prefix, v[2]);
306
307 get_values_from_reg(c->reg, 0x110, 2, v);
308 seq_printf(sf, "%sP1_PTR_LOW:\t\t0x%X\n", prefix, v[0]);
309 seq_printf(sf, "%sP1_PTR_HIGH:\t\t0x%X\n", prefix, v[1]);
310 if (rich) {
311 get_values_from_reg(c->reg, 0x118, 1, v);
312 seq_printf(sf, "LR_P1_STRIDE:\t\t0x%X\n", v[0]);
313
314 get_values_from_reg(c->reg, 0x120, 2, v);
315 seq_printf(sf, "LR_P2_PTR_LOW:\t\t0x%X\n", v[0]);
316 seq_printf(sf, "LR_P2_PTR_HIGH:\t\t0x%X\n", v[1]);
317
318 get_values_from_reg(c->reg, 0x130, 12, v);
319 for (i = 0; i < 12; i++)
320 seq_printf(sf, "LR_YUV_RGB_COEFF%u:\t0x%X\n", i, v[i]);
321 }
322
323 if (rgb2rgb) {
324 get_values_from_reg(c->reg, LAYER_RGB_RGB_COEFF0, 12, v);
325 for (i = 0; i < 12; i++)
326 seq_printf(sf, "LS_RGB_RGB_COEFF%u:\t0x%X\n", i, v[i]);
327 }
328
329 get_values_from_reg(c->reg, 0x160, 3, v);
330 seq_printf(sf, "%sAD_CONTROL:\t\t0x%X\n", prefix, v[0]);
331 seq_printf(sf, "%sAD_H_CROP:\t\t0x%X\n", prefix, v[1]);
332 seq_printf(sf, "%sAD_V_CROP:\t\t0x%X\n", prefix, v[2]);
333 }
334
335 static const struct komeda_component_funcs d71_layer_funcs = {
336 .update = d71_layer_update,
337 .disable = d71_layer_disable,
338 .dump_register = d71_layer_dump,
339 };
340
d71_layer_init(struct d71_dev * d71,struct block_header * blk,u32 __iomem * reg)341 static int d71_layer_init(struct d71_dev *d71,
342 struct block_header *blk, u32 __iomem *reg)
343 {
344 struct komeda_component *c;
345 struct komeda_layer *layer;
346 u32 pipe_id, layer_id, layer_info;
347
348 get_resources_id(blk->block_info, &pipe_id, &layer_id);
349 c = komeda_component_add(&d71->pipes[pipe_id]->base, sizeof(*layer),
350 layer_id,
351 BLOCK_INFO_INPUT_ID(blk->block_info),
352 &d71_layer_funcs, 0,
353 get_valid_inputs(blk),
354 1, reg, "LPU%d_LAYER%d", pipe_id, layer_id);
355 if (IS_ERR(c)) {
356 DRM_ERROR("Failed to add layer component\n");
357 return PTR_ERR(c);
358 }
359
360 layer = to_layer(c);
361 layer_info = malidp_read32(reg, LAYER_INFO);
362
363 if (layer_info & L_INFO_RF)
364 layer->layer_type = KOMEDA_FMT_RICH_LAYER;
365 else
366 layer->layer_type = KOMEDA_FMT_SIMPLE_LAYER;
367
368 set_range(&layer->hsize_in, 4, d71->max_line_size);
369 set_range(&layer->vsize_in, 4, d71->max_vsize);
370
371 malidp_write32(reg, LAYER_PALPHA, D71_PALPHA_DEF_MAP);
372
373 layer->supported_rots = DRM_MODE_ROTATE_MASK | DRM_MODE_REFLECT_MASK;
374
375 return 0;
376 }
377
d71_wb_layer_update(struct komeda_component * c,struct komeda_component_state * state)378 static void d71_wb_layer_update(struct komeda_component *c,
379 struct komeda_component_state *state)
380 {
381 struct komeda_layer_state *st = to_layer_st(state);
382 struct drm_connector_state *conn_st = state->wb_conn->state;
383 struct komeda_fb *kfb = to_kfb(conn_st->writeback_job->fb);
384 u32 ctrl = L_EN | LW_OFM, mask = L_EN | LW_OFM | LW_TBU_EN;
385 u32 __iomem *reg = c->reg;
386
387 d71_layer_update_fb(c, kfb, st->addr);
388
389 if (kfb->is_va)
390 ctrl |= LW_TBU_EN;
391
392 malidp_write32(reg, BLK_IN_SIZE, HV_SIZE(st->hsize, st->vsize));
393 malidp_write32(reg, BLK_INPUT_ID0, to_d71_input_id(state, 0));
394 malidp_write32_mask(reg, BLK_CONTROL, mask, ctrl);
395 }
396
d71_wb_layer_dump(struct komeda_component * c,struct seq_file * sf)397 static void d71_wb_layer_dump(struct komeda_component *c, struct seq_file *sf)
398 {
399 u32 v[12], i;
400
401 dump_block_header(sf, c->reg);
402
403 get_values_from_reg(c->reg, 0x80, 1, v);
404 seq_printf(sf, "LW_INPUT_ID0:\t\t0x%X\n", v[0]);
405
406 get_values_from_reg(c->reg, 0xD0, 3, v);
407 seq_printf(sf, "LW_CONTROL:\t\t0x%X\n", v[0]);
408 seq_printf(sf, "LW_PROG_LINE:\t\t0x%X\n", v[1]);
409 seq_printf(sf, "LW_FORMAT:\t\t0x%X\n", v[2]);
410
411 get_values_from_reg(c->reg, 0xE0, 1, v);
412 seq_printf(sf, "LW_IN_SIZE:\t\t0x%X\n", v[0]);
413
414 for (i = 0; i < 2; i++) {
415 get_values_from_reg(c->reg, 0x100 + i * 0x10, 3, v);
416 seq_printf(sf, "LW_P%u_PTR_LOW:\t\t0x%X\n", i, v[0]);
417 seq_printf(sf, "LW_P%u_PTR_HIGH:\t\t0x%X\n", i, v[1]);
418 seq_printf(sf, "LW_P%u_STRIDE:\t\t0x%X\n", i, v[2]);
419 }
420
421 get_values_from_reg(c->reg, 0x130, 12, v);
422 for (i = 0; i < 12; i++)
423 seq_printf(sf, "LW_RGB_YUV_COEFF%u:\t0x%X\n", i, v[i]);
424 }
425
d71_wb_layer_disable(struct komeda_component * c)426 static void d71_wb_layer_disable(struct komeda_component *c)
427 {
428 malidp_write32(c->reg, BLK_INPUT_ID0, 0);
429 malidp_write32_mask(c->reg, BLK_CONTROL, L_EN, 0);
430 }
431
432 static const struct komeda_component_funcs d71_wb_layer_funcs = {
433 .update = d71_wb_layer_update,
434 .disable = d71_wb_layer_disable,
435 .dump_register = d71_wb_layer_dump,
436 };
437
d71_wb_layer_init(struct d71_dev * d71,struct block_header * blk,u32 __iomem * reg)438 static int d71_wb_layer_init(struct d71_dev *d71,
439 struct block_header *blk, u32 __iomem *reg)
440 {
441 struct komeda_component *c;
442 struct komeda_layer *wb_layer;
443 u32 pipe_id, layer_id;
444
445 get_resources_id(blk->block_info, &pipe_id, &layer_id);
446
447 c = komeda_component_add(&d71->pipes[pipe_id]->base, sizeof(*wb_layer),
448 layer_id, BLOCK_INFO_INPUT_ID(blk->block_info),
449 &d71_wb_layer_funcs,
450 1, get_valid_inputs(blk), 0, reg,
451 "LPU%d_LAYER_WR", pipe_id);
452 if (IS_ERR(c)) {
453 DRM_ERROR("Failed to add wb_layer component\n");
454 return PTR_ERR(c);
455 }
456
457 wb_layer = to_layer(c);
458 wb_layer->layer_type = KOMEDA_FMT_WB_LAYER;
459
460 set_range(&wb_layer->hsize_in, D71_MIN_LINE_SIZE, d71->max_line_size);
461 set_range(&wb_layer->vsize_in, D71_MIN_VERTICAL_SIZE, d71->max_vsize);
462
463 return 0;
464 }
465
d71_component_disable(struct komeda_component * c)466 static void d71_component_disable(struct komeda_component *c)
467 {
468 u32 __iomem *reg = c->reg;
469 u32 i;
470
471 malidp_write32(reg, BLK_CONTROL, 0);
472
473 for (i = 0; i < c->max_active_inputs; i++) {
474 malidp_write32(reg, BLK_INPUT_ID0 + (i << 2), 0);
475
476 /* Besides clearing the input ID to zero, D71 compiz also has
477 * input enable bit in CU_INPUTx_CONTROL which need to be
478 * cleared.
479 */
480 if (has_bit(c->id, KOMEDA_PIPELINE_COMPIZS))
481 malidp_write32(reg, CU_INPUT0_CONTROL +
482 i * CU_PER_INPUT_REGS * 4,
483 CU_INPUT_CTRL_ALPHA(0xFF));
484 }
485 }
486
compiz_enable_input(u32 __iomem * id_reg,u32 __iomem * cfg_reg,u32 input_hw_id,struct komeda_compiz_input_cfg * cin)487 static void compiz_enable_input(u32 __iomem *id_reg,
488 u32 __iomem *cfg_reg,
489 u32 input_hw_id,
490 struct komeda_compiz_input_cfg *cin)
491 {
492 u32 ctrl = CU_INPUT_CTRL_EN;
493 u8 blend = cin->pixel_blend_mode;
494
495 if (blend == DRM_MODE_BLEND_PIXEL_NONE)
496 ctrl |= CU_INPUT_CTRL_PAD;
497 else if (blend == DRM_MODE_BLEND_PREMULTI)
498 ctrl |= CU_INPUT_CTRL_PMUL;
499
500 ctrl |= CU_INPUT_CTRL_ALPHA(cin->layer_alpha);
501
502 malidp_write32(id_reg, BLK_INPUT_ID0, input_hw_id);
503
504 malidp_write32(cfg_reg, CU_INPUT0_SIZE,
505 HV_SIZE(cin->hsize, cin->vsize));
506 malidp_write32(cfg_reg, CU_INPUT0_OFFSET,
507 HV_OFFSET(cin->hoffset, cin->voffset));
508 malidp_write32(cfg_reg, CU_INPUT0_CONTROL, ctrl);
509 }
510
d71_compiz_update(struct komeda_component * c,struct komeda_component_state * state)511 static void d71_compiz_update(struct komeda_component *c,
512 struct komeda_component_state *state)
513 {
514 struct komeda_compiz_state *st = to_compiz_st(state);
515 u32 __iomem *reg = c->reg;
516 u32 __iomem *id_reg, *cfg_reg;
517 u32 index;
518
519 for_each_changed_input(state, index) {
520 id_reg = reg + index;
521 cfg_reg = reg + index * CU_PER_INPUT_REGS;
522 if (state->active_inputs & BIT(index)) {
523 compiz_enable_input(id_reg, cfg_reg,
524 to_d71_input_id(state, index),
525 &st->cins[index]);
526 } else {
527 malidp_write32(id_reg, BLK_INPUT_ID0, 0);
528 malidp_write32(cfg_reg, CU_INPUT0_CONTROL, 0);
529 }
530 }
531
532 malidp_write32(reg, BLK_SIZE, HV_SIZE(st->hsize, st->vsize));
533 }
534
d71_compiz_dump(struct komeda_component * c,struct seq_file * sf)535 static void d71_compiz_dump(struct komeda_component *c, struct seq_file *sf)
536 {
537 u32 v[8], i;
538
539 dump_block_header(sf, c->reg);
540
541 get_values_from_reg(c->reg, 0x80, 5, v);
542 for (i = 0; i < 5; i++)
543 seq_printf(sf, "CU_INPUT_ID%u:\t\t0x%X\n", i, v[i]);
544
545 get_values_from_reg(c->reg, 0xA0, 5, v);
546 seq_printf(sf, "CU_IRQ_RAW_STATUS:\t0x%X\n", v[0]);
547 seq_printf(sf, "CU_IRQ_CLEAR:\t\t0x%X\n", v[1]);
548 seq_printf(sf, "CU_IRQ_MASK:\t\t0x%X\n", v[2]);
549 seq_printf(sf, "CU_IRQ_STATUS:\t\t0x%X\n", v[3]);
550 seq_printf(sf, "CU_STATUS:\t\t0x%X\n", v[4]);
551
552 get_values_from_reg(c->reg, 0xD0, 2, v);
553 seq_printf(sf, "CU_CONTROL:\t\t0x%X\n", v[0]);
554 seq_printf(sf, "CU_SIZE:\t\t0x%X\n", v[1]);
555
556 get_values_from_reg(c->reg, 0xDC, 1, v);
557 seq_printf(sf, "CU_BG_COLOR:\t\t0x%X\n", v[0]);
558
559 for (i = 0, v[4] = 0xE0; i < 5; i++, v[4] += 0x10) {
560 get_values_from_reg(c->reg, v[4], 3, v);
561 seq_printf(sf, "CU_INPUT%u_SIZE:\t\t0x%X\n", i, v[0]);
562 seq_printf(sf, "CU_INPUT%u_OFFSET:\t0x%X\n", i, v[1]);
563 seq_printf(sf, "CU_INPUT%u_CONTROL:\t0x%X\n", i, v[2]);
564 }
565
566 get_values_from_reg(c->reg, 0x130, 2, v);
567 seq_printf(sf, "CU_USER_LOW:\t\t0x%X\n", v[0]);
568 seq_printf(sf, "CU_USER_HIGH:\t\t0x%X\n", v[1]);
569 }
570
571 static const struct komeda_component_funcs d71_compiz_funcs = {
572 .update = d71_compiz_update,
573 .disable = d71_component_disable,
574 .dump_register = d71_compiz_dump,
575 };
576
d71_compiz_init(struct d71_dev * d71,struct block_header * blk,u32 __iomem * reg)577 static int d71_compiz_init(struct d71_dev *d71,
578 struct block_header *blk, u32 __iomem *reg)
579 {
580 struct komeda_component *c;
581 struct komeda_compiz *compiz;
582 u32 pipe_id, comp_id;
583
584 get_resources_id(blk->block_info, &pipe_id, &comp_id);
585
586 c = komeda_component_add(&d71->pipes[pipe_id]->base, sizeof(*compiz),
587 comp_id,
588 BLOCK_INFO_INPUT_ID(blk->block_info),
589 &d71_compiz_funcs,
590 CU_NUM_INPUT_IDS, get_valid_inputs(blk),
591 CU_NUM_OUTPUT_IDS, reg,
592 "CU%d", pipe_id);
593 if (IS_ERR(c))
594 return PTR_ERR(c);
595
596 compiz = to_compiz(c);
597
598 set_range(&compiz->hsize, D71_MIN_LINE_SIZE, d71->max_line_size);
599 set_range(&compiz->vsize, D71_MIN_VERTICAL_SIZE, d71->max_vsize);
600
601 return 0;
602 }
603
d71_scaler_update_filter_lut(u32 __iomem * reg,u32 hsize_in,u32 vsize_in,u32 hsize_out,u32 vsize_out)604 static void d71_scaler_update_filter_lut(u32 __iomem *reg, u32 hsize_in,
605 u32 vsize_in, u32 hsize_out,
606 u32 vsize_out)
607 {
608 u32 val = 0;
609
610 if (hsize_in <= hsize_out)
611 val |= 0x62;
612 else if (hsize_in <= (hsize_out + hsize_out / 2))
613 val |= 0x63;
614 else if (hsize_in <= hsize_out * 2)
615 val |= 0x64;
616 else if (hsize_in <= hsize_out * 2 + (hsize_out * 3) / 4)
617 val |= 0x65;
618 else
619 val |= 0x66;
620
621 if (vsize_in <= vsize_out)
622 val |= SC_VTSEL(0x6A);
623 else if (vsize_in <= (vsize_out + vsize_out / 2))
624 val |= SC_VTSEL(0x6B);
625 else if (vsize_in <= vsize_out * 2)
626 val |= SC_VTSEL(0x6C);
627 else if (vsize_in <= vsize_out * 2 + vsize_out * 3 / 4)
628 val |= SC_VTSEL(0x6D);
629 else
630 val |= SC_VTSEL(0x6E);
631
632 malidp_write32(reg, SC_COEFFTAB, val);
633 }
634
d71_scaler_update(struct komeda_component * c,struct komeda_component_state * state)635 static void d71_scaler_update(struct komeda_component *c,
636 struct komeda_component_state *state)
637 {
638 struct komeda_scaler_state *st = to_scaler_st(state);
639 u32 __iomem *reg = c->reg;
640 u32 init_ph, delta_ph, ctrl;
641
642 d71_scaler_update_filter_lut(reg, st->hsize_in, st->vsize_in,
643 st->hsize_out, st->vsize_out);
644
645 malidp_write32(reg, BLK_IN_SIZE, HV_SIZE(st->hsize_in, st->vsize_in));
646 malidp_write32(reg, SC_OUT_SIZE, HV_SIZE(st->hsize_out, st->vsize_out));
647 malidp_write32(reg, SC_H_CROP, HV_CROP(st->left_crop, st->right_crop));
648
649 /* for right part, HW only sample the valid pixel which means the pixels
650 * in left_crop will be jumpped, and the first sample pixel is:
651 *
652 * dst_a = st->total_hsize_out - st->hsize_out + st->left_crop + 0.5;
653 *
654 * Then the corresponding texel in src is:
655 *
656 * h_delta_phase = st->total_hsize_in / st->total_hsize_out;
657 * src_a = dst_A * h_delta_phase;
658 *
659 * and h_init_phase is src_a deduct the real source start src_S;
660 *
661 * src_S = st->total_hsize_in - st->hsize_in;
662 * h_init_phase = src_a - src_S;
663 *
664 * And HW precision for the initial/delta_phase is 16:16 fixed point,
665 * the following is the simplified formula
666 */
667 if (st->right_part) {
668 u32 dst_a = st->total_hsize_out - st->hsize_out + st->left_crop;
669
670 if (st->en_img_enhancement)
671 dst_a -= 1;
672
673 init_ph = ((st->total_hsize_in * (2 * dst_a + 1) -
674 2 * st->total_hsize_out * (st->total_hsize_in -
675 st->hsize_in)) << 15) / st->total_hsize_out;
676 } else {
677 init_ph = (st->total_hsize_in << 15) / st->total_hsize_out;
678 }
679
680 malidp_write32(reg, SC_H_INIT_PH, init_ph);
681
682 delta_ph = (st->total_hsize_in << 16) / st->total_hsize_out;
683 malidp_write32(reg, SC_H_DELTA_PH, delta_ph);
684
685 init_ph = (st->total_vsize_in << 15) / st->vsize_out;
686 malidp_write32(reg, SC_V_INIT_PH, init_ph);
687
688 delta_ph = (st->total_vsize_in << 16) / st->vsize_out;
689 malidp_write32(reg, SC_V_DELTA_PH, delta_ph);
690
691 ctrl = 0;
692 ctrl |= st->en_scaling ? SC_CTRL_SCL : 0;
693 ctrl |= st->en_alpha ? SC_CTRL_AP : 0;
694 ctrl |= st->en_img_enhancement ? SC_CTRL_IENH : 0;
695 /* If we use the hardware splitter we shouldn't set SC_CTRL_LS */
696 if (st->en_split &&
697 state->inputs[0].component->id != KOMEDA_COMPONENT_SPLITTER)
698 ctrl |= SC_CTRL_LS;
699
700 malidp_write32(reg, BLK_CONTROL, ctrl);
701 malidp_write32(reg, BLK_INPUT_ID0, to_d71_input_id(state, 0));
702 }
703
d71_scaler_dump(struct komeda_component * c,struct seq_file * sf)704 static void d71_scaler_dump(struct komeda_component *c, struct seq_file *sf)
705 {
706 u32 v[9];
707
708 dump_block_header(sf, c->reg);
709
710 get_values_from_reg(c->reg, 0x80, 1, v);
711 seq_printf(sf, "SC_INPUT_ID0:\t\t0x%X\n", v[0]);
712
713 get_values_from_reg(c->reg, 0xD0, 1, v);
714 seq_printf(sf, "SC_CONTROL:\t\t0x%X\n", v[0]);
715
716 get_values_from_reg(c->reg, 0xDC, 9, v);
717 seq_printf(sf, "SC_COEFFTAB:\t\t0x%X\n", v[0]);
718 seq_printf(sf, "SC_IN_SIZE:\t\t0x%X\n", v[1]);
719 seq_printf(sf, "SC_OUT_SIZE:\t\t0x%X\n", v[2]);
720 seq_printf(sf, "SC_H_CROP:\t\t0x%X\n", v[3]);
721 seq_printf(sf, "SC_V_CROP:\t\t0x%X\n", v[4]);
722 seq_printf(sf, "SC_H_INIT_PH:\t\t0x%X\n", v[5]);
723 seq_printf(sf, "SC_H_DELTA_PH:\t\t0x%X\n", v[6]);
724 seq_printf(sf, "SC_V_INIT_PH:\t\t0x%X\n", v[7]);
725 seq_printf(sf, "SC_V_DELTA_PH:\t\t0x%X\n", v[8]);
726 }
727
728 static const struct komeda_component_funcs d71_scaler_funcs = {
729 .update = d71_scaler_update,
730 .disable = d71_component_disable,
731 .dump_register = d71_scaler_dump,
732 };
733
d71_scaler_init(struct d71_dev * d71,struct block_header * blk,u32 __iomem * reg)734 static int d71_scaler_init(struct d71_dev *d71,
735 struct block_header *blk, u32 __iomem *reg)
736 {
737 struct komeda_component *c;
738 struct komeda_scaler *scaler;
739 u32 pipe_id, comp_id;
740
741 get_resources_id(blk->block_info, &pipe_id, &comp_id);
742
743 c = komeda_component_add(&d71->pipes[pipe_id]->base, sizeof(*scaler),
744 comp_id, BLOCK_INFO_INPUT_ID(blk->block_info),
745 &d71_scaler_funcs,
746 1, get_valid_inputs(blk), 1, reg,
747 "CU%d_SCALER%d",
748 pipe_id, BLOCK_INFO_BLK_ID(blk->block_info));
749
750 if (IS_ERR(c)) {
751 DRM_ERROR("Failed to initialize scaler");
752 return PTR_ERR(c);
753 }
754
755 scaler = to_scaler(c);
756 set_range(&scaler->hsize, 4, 2048);
757 set_range(&scaler->vsize, 4, 4096);
758 scaler->max_downscaling = 6;
759 scaler->max_upscaling = 64;
760 scaler->scaling_split_overlap = 8;
761 scaler->enh_split_overlap = 1;
762
763 malidp_write32(c->reg, BLK_CONTROL, 0);
764
765 return 0;
766 }
767
d71_downscaling_clk_check(struct komeda_pipeline * pipe,struct drm_display_mode * mode,unsigned long aclk_rate,struct komeda_data_flow_cfg * dflow)768 static int d71_downscaling_clk_check(struct komeda_pipeline *pipe,
769 struct drm_display_mode *mode,
770 unsigned long aclk_rate,
771 struct komeda_data_flow_cfg *dflow)
772 {
773 u32 h_in = dflow->in_w;
774 u32 v_in = dflow->in_h;
775 u32 v_out = dflow->out_h;
776 u64 fraction, denominator;
777
778 /* D71 downscaling must satisfy the following equation
779 *
780 * ACLK h_in * v_in
781 * ------- >= ---------------------------------------------
782 * PXLCLK (h_total - (1 + 2 * v_in / v_out)) * v_out
783 *
784 * In only horizontal downscaling situation, the right side should be
785 * multiplied by (h_total - 3) / (h_active - 3), then equation becomes
786 *
787 * ACLK h_in
788 * ------- >= ----------------
789 * PXLCLK (h_active - 3)
790 *
791 * To avoid precision lost the equation 1 will be convert to:
792 *
793 * ACLK h_in * v_in
794 * ------- >= -----------------------------------
795 * PXLCLK (h_total -1 ) * v_out - 2 * v_in
796 */
797 if (v_in == v_out) {
798 fraction = h_in;
799 denominator = mode->hdisplay - 3;
800 } else {
801 fraction = h_in * v_in;
802 denominator = (mode->htotal - 1) * v_out - 2 * v_in;
803 }
804
805 return aclk_rate * denominator >= mode->crtc_clock * 1000 * fraction ?
806 0 : -EINVAL;
807 }
808
d71_splitter_update(struct komeda_component * c,struct komeda_component_state * state)809 static void d71_splitter_update(struct komeda_component *c,
810 struct komeda_component_state *state)
811 {
812 struct komeda_splitter_state *st = to_splitter_st(state);
813 u32 __iomem *reg = c->reg;
814
815 malidp_write32(reg, BLK_INPUT_ID0, to_d71_input_id(state, 0));
816 malidp_write32(reg, BLK_SIZE, HV_SIZE(st->hsize, st->vsize));
817 malidp_write32(reg, SP_OVERLAP_SIZE, st->overlap & 0x1FFF);
818 malidp_write32(reg, BLK_CONTROL, BLK_CTRL_EN);
819 }
820
d71_splitter_dump(struct komeda_component * c,struct seq_file * sf)821 static void d71_splitter_dump(struct komeda_component *c, struct seq_file *sf)
822 {
823 u32 v[3];
824
825 dump_block_header(sf, c->reg);
826
827 get_values_from_reg(c->reg, BLK_INPUT_ID0, 1, v);
828 seq_printf(sf, "SP_INPUT_ID0:\t\t0x%X\n", v[0]);
829
830 get_values_from_reg(c->reg, BLK_CONTROL, 3, v);
831 seq_printf(sf, "SP_CONTROL:\t\t0x%X\n", v[0]);
832 seq_printf(sf, "SP_SIZE:\t\t0x%X\n", v[1]);
833 seq_printf(sf, "SP_OVERLAP_SIZE:\t0x%X\n", v[2]);
834 }
835
836 static const struct komeda_component_funcs d71_splitter_funcs = {
837 .update = d71_splitter_update,
838 .disable = d71_component_disable,
839 .dump_register = d71_splitter_dump,
840 };
841
d71_splitter_init(struct d71_dev * d71,struct block_header * blk,u32 __iomem * reg)842 static int d71_splitter_init(struct d71_dev *d71,
843 struct block_header *blk, u32 __iomem *reg)
844 {
845 struct komeda_component *c;
846 struct komeda_splitter *splitter;
847 u32 pipe_id, comp_id;
848
849 get_resources_id(blk->block_info, &pipe_id, &comp_id);
850
851 c = komeda_component_add(&d71->pipes[pipe_id]->base, sizeof(*splitter),
852 comp_id,
853 BLOCK_INFO_INPUT_ID(blk->block_info),
854 &d71_splitter_funcs,
855 1, get_valid_inputs(blk), 2, reg,
856 "CU%d_SPLITTER", pipe_id);
857
858 if (IS_ERR(c)) {
859 DRM_ERROR("Failed to initialize splitter");
860 return -1;
861 }
862
863 splitter = to_splitter(c);
864
865 set_range(&splitter->hsize, 4, d71->max_line_size);
866 set_range(&splitter->vsize, 4, d71->max_vsize);
867
868 return 0;
869 }
870
d71_merger_update(struct komeda_component * c,struct komeda_component_state * state)871 static void d71_merger_update(struct komeda_component *c,
872 struct komeda_component_state *state)
873 {
874 struct komeda_merger_state *st = to_merger_st(state);
875 u32 __iomem *reg = c->reg;
876 u32 index;
877
878 for_each_changed_input(state, index)
879 malidp_write32(reg, MG_INPUT_ID0 + index * 4,
880 to_d71_input_id(state, index));
881
882 malidp_write32(reg, MG_SIZE, HV_SIZE(st->hsize_merged,
883 st->vsize_merged));
884 malidp_write32(reg, BLK_CONTROL, BLK_CTRL_EN);
885 }
886
d71_merger_dump(struct komeda_component * c,struct seq_file * sf)887 static void d71_merger_dump(struct komeda_component *c, struct seq_file *sf)
888 {
889 u32 v;
890
891 dump_block_header(sf, c->reg);
892
893 get_values_from_reg(c->reg, MG_INPUT_ID0, 1, &v);
894 seq_printf(sf, "MG_INPUT_ID0:\t\t0x%X\n", v);
895
896 get_values_from_reg(c->reg, MG_INPUT_ID1, 1, &v);
897 seq_printf(sf, "MG_INPUT_ID1:\t\t0x%X\n", v);
898
899 get_values_from_reg(c->reg, BLK_CONTROL, 1, &v);
900 seq_printf(sf, "MG_CONTROL:\t\t0x%X\n", v);
901
902 get_values_from_reg(c->reg, MG_SIZE, 1, &v);
903 seq_printf(sf, "MG_SIZE:\t\t0x%X\n", v);
904 }
905
906 static const struct komeda_component_funcs d71_merger_funcs = {
907 .update = d71_merger_update,
908 .disable = d71_component_disable,
909 .dump_register = d71_merger_dump,
910 };
911
d71_merger_init(struct d71_dev * d71,struct block_header * blk,u32 __iomem * reg)912 static int d71_merger_init(struct d71_dev *d71,
913 struct block_header *blk, u32 __iomem *reg)
914 {
915 struct komeda_component *c;
916 struct komeda_merger *merger;
917 u32 pipe_id, comp_id;
918
919 get_resources_id(blk->block_info, &pipe_id, &comp_id);
920
921 c = komeda_component_add(&d71->pipes[pipe_id]->base, sizeof(*merger),
922 comp_id,
923 BLOCK_INFO_INPUT_ID(blk->block_info),
924 &d71_merger_funcs,
925 MG_NUM_INPUTS_IDS, get_valid_inputs(blk),
926 MG_NUM_OUTPUTS_IDS, reg,
927 "CU%d_MERGER", pipe_id);
928
929 if (IS_ERR(c)) {
930 DRM_ERROR("Failed to initialize merger.\n");
931 return PTR_ERR(c);
932 }
933
934 merger = to_merger(c);
935
936 set_range(&merger->hsize_merged, 4, 4032);
937 set_range(&merger->vsize_merged, 4, 4096);
938
939 return 0;
940 }
941
d71_improc_update(struct komeda_component * c,struct komeda_component_state * state)942 static void d71_improc_update(struct komeda_component *c,
943 struct komeda_component_state *state)
944 {
945 struct komeda_improc_state *st = to_improc_st(state);
946 u32 __iomem *reg = c->reg;
947 u32 index;
948
949 for_each_changed_input(state, index)
950 malidp_write32(reg, BLK_INPUT_ID0 + index * 4,
951 to_d71_input_id(state, index));
952
953 malidp_write32(reg, BLK_SIZE, HV_SIZE(st->hsize, st->vsize));
954 }
955
d71_improc_dump(struct komeda_component * c,struct seq_file * sf)956 static void d71_improc_dump(struct komeda_component *c, struct seq_file *sf)
957 {
958 u32 v[12], i;
959
960 dump_block_header(sf, c->reg);
961
962 get_values_from_reg(c->reg, 0x80, 2, v);
963 seq_printf(sf, "IPS_INPUT_ID0:\t\t0x%X\n", v[0]);
964 seq_printf(sf, "IPS_INPUT_ID1:\t\t0x%X\n", v[1]);
965
966 get_values_from_reg(c->reg, 0xC0, 1, v);
967 seq_printf(sf, "IPS_INFO:\t\t0x%X\n", v[0]);
968
969 get_values_from_reg(c->reg, 0xD0, 3, v);
970 seq_printf(sf, "IPS_CONTROL:\t\t0x%X\n", v[0]);
971 seq_printf(sf, "IPS_SIZE:\t\t0x%X\n", v[1]);
972 seq_printf(sf, "IPS_DEPTH:\t\t0x%X\n", v[2]);
973
974 get_values_from_reg(c->reg, 0x130, 12, v);
975 for (i = 0; i < 12; i++)
976 seq_printf(sf, "IPS_RGB_RGB_COEFF%u:\t0x%X\n", i, v[i]);
977
978 get_values_from_reg(c->reg, 0x170, 12, v);
979 for (i = 0; i < 12; i++)
980 seq_printf(sf, "IPS_RGB_YUV_COEFF%u:\t0x%X\n", i, v[i]);
981 }
982
983 static const struct komeda_component_funcs d71_improc_funcs = {
984 .update = d71_improc_update,
985 .disable = d71_component_disable,
986 .dump_register = d71_improc_dump,
987 };
988
d71_improc_init(struct d71_dev * d71,struct block_header * blk,u32 __iomem * reg)989 static int d71_improc_init(struct d71_dev *d71,
990 struct block_header *blk, u32 __iomem *reg)
991 {
992 struct komeda_component *c;
993 struct komeda_improc *improc;
994 u32 pipe_id, comp_id, value;
995
996 get_resources_id(blk->block_info, &pipe_id, &comp_id);
997
998 c = komeda_component_add(&d71->pipes[pipe_id]->base, sizeof(*improc),
999 comp_id,
1000 BLOCK_INFO_INPUT_ID(blk->block_info),
1001 &d71_improc_funcs, IPS_NUM_INPUT_IDS,
1002 get_valid_inputs(blk),
1003 IPS_NUM_OUTPUT_IDS, reg, "DOU%d_IPS", pipe_id);
1004 if (IS_ERR(c)) {
1005 DRM_ERROR("Failed to add improc component\n");
1006 return PTR_ERR(c);
1007 }
1008
1009 improc = to_improc(c);
1010 improc->supported_color_depths = BIT(8) | BIT(10);
1011 improc->supported_color_formats = DRM_COLOR_FORMAT_RGB444 |
1012 DRM_COLOR_FORMAT_YCRCB444 |
1013 DRM_COLOR_FORMAT_YCRCB422;
1014 value = malidp_read32(reg, BLK_INFO);
1015 if (value & IPS_INFO_CHD420)
1016 improc->supported_color_formats |= DRM_COLOR_FORMAT_YCRCB420;
1017
1018 improc->supports_csc = true;
1019 improc->supports_gamma = true;
1020
1021 return 0;
1022 }
1023
d71_timing_ctrlr_disable(struct komeda_component * c)1024 static void d71_timing_ctrlr_disable(struct komeda_component *c)
1025 {
1026 malidp_write32_mask(c->reg, BLK_CONTROL, BS_CTRL_EN, 0);
1027 }
1028
d71_timing_ctrlr_update(struct komeda_component * c,struct komeda_component_state * state)1029 static void d71_timing_ctrlr_update(struct komeda_component *c,
1030 struct komeda_component_state *state)
1031 {
1032 struct drm_crtc_state *crtc_st = state->crtc->state;
1033 struct drm_display_mode *mode = &crtc_st->adjusted_mode;
1034 u32 __iomem *reg = c->reg;
1035 u32 hactive, hfront_porch, hback_porch, hsync_len;
1036 u32 vactive, vfront_porch, vback_porch, vsync_len;
1037 u32 value;
1038
1039 hactive = mode->crtc_hdisplay;
1040 hfront_porch = mode->crtc_hsync_start - mode->crtc_hdisplay;
1041 hsync_len = mode->crtc_hsync_end - mode->crtc_hsync_start;
1042 hback_porch = mode->crtc_htotal - mode->crtc_hsync_end;
1043
1044 vactive = mode->crtc_vdisplay;
1045 vfront_porch = mode->crtc_vsync_start - mode->crtc_vdisplay;
1046 vsync_len = mode->crtc_vsync_end - mode->crtc_vsync_start;
1047 vback_porch = mode->crtc_vtotal - mode->crtc_vsync_end;
1048
1049 malidp_write32(reg, BS_ACTIVESIZE, HV_SIZE(hactive, vactive));
1050 malidp_write32(reg, BS_HINTERVALS, BS_H_INTVALS(hfront_porch,
1051 hback_porch));
1052 malidp_write32(reg, BS_VINTERVALS, BS_V_INTVALS(vfront_porch,
1053 vback_porch));
1054
1055 value = BS_SYNC_VSW(vsync_len) | BS_SYNC_HSW(hsync_len);
1056 value |= mode->flags & DRM_MODE_FLAG_PVSYNC ? BS_SYNC_VSP : 0;
1057 value |= mode->flags & DRM_MODE_FLAG_PHSYNC ? BS_SYNC_HSP : 0;
1058 malidp_write32(reg, BS_SYNC, value);
1059
1060 malidp_write32(reg, BS_PROG_LINE, D71_DEFAULT_PREPRETCH_LINE - 1);
1061 malidp_write32(reg, BS_PREFETCH_LINE, D71_DEFAULT_PREPRETCH_LINE);
1062
1063 /* configure bs control register */
1064 value = BS_CTRL_EN | BS_CTRL_VM;
1065 if (c->pipeline->dual_link) {
1066 malidp_write32(reg, BS_DRIFT_TO, hfront_porch + 16);
1067 value |= BS_CTRL_DL;
1068 }
1069
1070 malidp_write32(reg, BLK_CONTROL, value);
1071 }
1072
d71_timing_ctrlr_dump(struct komeda_component * c,struct seq_file * sf)1073 static void d71_timing_ctrlr_dump(struct komeda_component *c,
1074 struct seq_file *sf)
1075 {
1076 u32 v[8], i;
1077
1078 dump_block_header(sf, c->reg);
1079
1080 get_values_from_reg(c->reg, 0xC0, 1, v);
1081 seq_printf(sf, "BS_INFO:\t\t0x%X\n", v[0]);
1082
1083 get_values_from_reg(c->reg, 0xD0, 8, v);
1084 seq_printf(sf, "BS_CONTROL:\t\t0x%X\n", v[0]);
1085 seq_printf(sf, "BS_PROG_LINE:\t\t0x%X\n", v[1]);
1086 seq_printf(sf, "BS_PREFETCH_LINE:\t0x%X\n", v[2]);
1087 seq_printf(sf, "BS_BG_COLOR:\t\t0x%X\n", v[3]);
1088 seq_printf(sf, "BS_ACTIVESIZE:\t\t0x%X\n", v[4]);
1089 seq_printf(sf, "BS_HINTERVALS:\t\t0x%X\n", v[5]);
1090 seq_printf(sf, "BS_VINTERVALS:\t\t0x%X\n", v[6]);
1091 seq_printf(sf, "BS_SYNC:\t\t0x%X\n", v[7]);
1092
1093 get_values_from_reg(c->reg, 0x100, 3, v);
1094 seq_printf(sf, "BS_DRIFT_TO:\t\t0x%X\n", v[0]);
1095 seq_printf(sf, "BS_FRAME_TO:\t\t0x%X\n", v[1]);
1096 seq_printf(sf, "BS_TE_TO:\t\t0x%X\n", v[2]);
1097
1098 get_values_from_reg(c->reg, 0x110, 3, v);
1099 for (i = 0; i < 3; i++)
1100 seq_printf(sf, "BS_T%u_INTERVAL:\t\t0x%X\n", i, v[i]);
1101
1102 get_values_from_reg(c->reg, 0x120, 5, v);
1103 for (i = 0; i < 2; i++) {
1104 seq_printf(sf, "BS_CRC%u_LOW:\t\t0x%X\n", i, v[i << 1]);
1105 seq_printf(sf, "BS_CRC%u_HIGH:\t\t0x%X\n", i, v[(i << 1) + 1]);
1106 }
1107 seq_printf(sf, "BS_USER:\t\t0x%X\n", v[4]);
1108 }
1109
1110 static const struct komeda_component_funcs d71_timing_ctrlr_funcs = {
1111 .update = d71_timing_ctrlr_update,
1112 .disable = d71_timing_ctrlr_disable,
1113 .dump_register = d71_timing_ctrlr_dump,
1114 };
1115
d71_timing_ctrlr_init(struct d71_dev * d71,struct block_header * blk,u32 __iomem * reg)1116 static int d71_timing_ctrlr_init(struct d71_dev *d71,
1117 struct block_header *blk, u32 __iomem *reg)
1118 {
1119 struct komeda_component *c;
1120 struct komeda_timing_ctrlr *ctrlr;
1121 u32 pipe_id, comp_id;
1122
1123 get_resources_id(blk->block_info, &pipe_id, &comp_id);
1124
1125 c = komeda_component_add(&d71->pipes[pipe_id]->base, sizeof(*ctrlr),
1126 KOMEDA_COMPONENT_TIMING_CTRLR,
1127 BLOCK_INFO_INPUT_ID(blk->block_info),
1128 &d71_timing_ctrlr_funcs,
1129 1, BIT(KOMEDA_COMPONENT_IPS0 + pipe_id),
1130 BS_NUM_OUTPUT_IDS, reg, "DOU%d_BS", pipe_id);
1131 if (IS_ERR(c)) {
1132 DRM_ERROR("Failed to add display_ctrl component\n");
1133 return PTR_ERR(c);
1134 }
1135
1136 ctrlr = to_ctrlr(c);
1137
1138 ctrlr->supports_dual_link = true;
1139
1140 return 0;
1141 }
1142
d71_probe_block(struct d71_dev * d71,struct block_header * blk,u32 __iomem * reg)1143 int d71_probe_block(struct d71_dev *d71,
1144 struct block_header *blk, u32 __iomem *reg)
1145 {
1146 struct d71_pipeline *pipe;
1147 int blk_id = BLOCK_INFO_BLK_ID(blk->block_info);
1148
1149 int err = 0;
1150
1151 switch (BLOCK_INFO_BLK_TYPE(blk->block_info)) {
1152 case D71_BLK_TYPE_GCU:
1153 break;
1154
1155 case D71_BLK_TYPE_LPU:
1156 pipe = d71->pipes[blk_id];
1157 pipe->lpu_addr = reg;
1158 break;
1159
1160 case D71_BLK_TYPE_LPU_LAYER:
1161 err = d71_layer_init(d71, blk, reg);
1162 break;
1163
1164 case D71_BLK_TYPE_LPU_WB_LAYER:
1165 err = d71_wb_layer_init(d71, blk, reg);
1166 break;
1167
1168 case D71_BLK_TYPE_CU:
1169 pipe = d71->pipes[blk_id];
1170 pipe->cu_addr = reg;
1171 err = d71_compiz_init(d71, blk, reg);
1172 break;
1173
1174 case D71_BLK_TYPE_CU_SCALER:
1175 err = d71_scaler_init(d71, blk, reg);
1176 break;
1177
1178 case D71_BLK_TYPE_CU_SPLITTER:
1179 err = d71_splitter_init(d71, blk, reg);
1180 break;
1181
1182 case D71_BLK_TYPE_CU_MERGER:
1183 err = d71_merger_init(d71, blk, reg);
1184 break;
1185
1186 case D71_BLK_TYPE_DOU:
1187 pipe = d71->pipes[blk_id];
1188 pipe->dou_addr = reg;
1189 break;
1190
1191 case D71_BLK_TYPE_DOU_IPS:
1192 err = d71_improc_init(d71, blk, reg);
1193 break;
1194
1195 case D71_BLK_TYPE_DOU_FT_COEFF:
1196 pipe = d71->pipes[blk_id];
1197 pipe->dou_ft_coeff_addr = reg;
1198 break;
1199
1200 case D71_BLK_TYPE_DOU_BS:
1201 err = d71_timing_ctrlr_init(d71, blk, reg);
1202 break;
1203
1204 case D71_BLK_TYPE_GLB_LT_COEFF:
1205 break;
1206
1207 case D71_BLK_TYPE_GLB_SCL_COEFF:
1208 d71->glb_scl_coeff_addr[blk_id] = reg;
1209 break;
1210
1211 default:
1212 DRM_ERROR("Unknown block (block_info: 0x%x) is found\n",
1213 blk->block_info);
1214 err = -EINVAL;
1215 break;
1216 }
1217
1218 return err;
1219 }
1220
1221 const struct komeda_pipeline_funcs d71_pipeline_funcs = {
1222 .downscaling_clk_check = d71_downscaling_clk_check,
1223 };
1224