1 /*
2 * Simple CPU accounting cgroup controller
3 */
4 #include "sched.h"
5
6 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
7
8 /*
9 * There are no locks covering percpu hardirq/softirq time.
10 * They are only modified in vtime_account, on corresponding CPU
11 * with interrupts disabled. So, writes are safe.
12 * They are read and saved off onto struct rq in update_rq_clock().
13 * This may result in other CPU reading this CPU's irq time and can
14 * race with irq/vtime_account on this CPU. We would either get old
15 * or new value with a side effect of accounting a slice of irq time to wrong
16 * task when irq is in progress while we read rq->clock. That is a worthy
17 * compromise in place of having locks on each irq in account_system_time.
18 */
19 DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
20
21 static int sched_clock_irqtime;
22
enable_sched_clock_irqtime(void)23 void enable_sched_clock_irqtime(void)
24 {
25 sched_clock_irqtime = 1;
26 }
27
disable_sched_clock_irqtime(void)28 void disable_sched_clock_irqtime(void)
29 {
30 sched_clock_irqtime = 0;
31 }
32
irqtime_account_delta(struct irqtime * irqtime,u64 delta,enum cpu_usage_stat idx)33 static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
34 enum cpu_usage_stat idx)
35 {
36 u64 *cpustat = kcpustat_this_cpu->cpustat;
37
38 u64_stats_update_begin(&irqtime->sync);
39 cpustat[idx] += delta;
40 irqtime->total += delta;
41 irqtime->tick_delta += delta;
42 u64_stats_update_end(&irqtime->sync);
43 }
44
45 /*
46 * Called before incrementing preempt_count on {soft,}irq_enter
47 * and before decrementing preempt_count on {soft,}irq_exit.
48 */
irqtime_account_irq(struct task_struct * curr)49 void irqtime_account_irq(struct task_struct *curr)
50 {
51 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
52 s64 delta;
53 int cpu;
54
55 if (!sched_clock_irqtime)
56 return;
57
58 cpu = smp_processor_id();
59 delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
60 irqtime->irq_start_time += delta;
61
62 /*
63 * We do not account for softirq time from ksoftirqd here.
64 * We want to continue accounting softirq time to ksoftirqd thread
65 * in that case, so as not to confuse scheduler with a special task
66 * that do not consume any time, but still wants to run.
67 */
68 if (hardirq_count())
69 irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
70 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
71 irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
72 }
73 EXPORT_SYMBOL_GPL(irqtime_account_irq);
74
irqtime_tick_accounted(u64 maxtime)75 static u64 irqtime_tick_accounted(u64 maxtime)
76 {
77 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
78 u64 delta;
79
80 delta = min(irqtime->tick_delta, maxtime);
81 irqtime->tick_delta -= delta;
82
83 return delta;
84 }
85
86 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
87
88 #define sched_clock_irqtime (0)
89
irqtime_tick_accounted(u64 dummy)90 static u64 irqtime_tick_accounted(u64 dummy)
91 {
92 return 0;
93 }
94
95 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
96
task_group_account_field(struct task_struct * p,int index,u64 tmp)97 static inline void task_group_account_field(struct task_struct *p, int index,
98 u64 tmp)
99 {
100 /*
101 * Since all updates are sure to touch the root cgroup, we
102 * get ourselves ahead and touch it first. If the root cgroup
103 * is the only cgroup, then nothing else should be necessary.
104 *
105 */
106 __this_cpu_add(kernel_cpustat.cpustat[index], tmp);
107
108 cgroup_account_cputime_field(p, index, tmp);
109 }
110
111 /*
112 * Account user CPU time to a process.
113 * @p: the process that the CPU time gets accounted to
114 * @cputime: the CPU time spent in user space since the last update
115 */
account_user_time(struct task_struct * p,u64 cputime)116 void account_user_time(struct task_struct *p, u64 cputime)
117 {
118 int index;
119
120 /* Add user time to process. */
121 p->utime += cputime;
122 account_group_user_time(p, cputime);
123
124 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
125
126 /* Add user time to cpustat. */
127 task_group_account_field(p, index, cputime);
128
129 /* Account for user time used */
130 acct_account_cputime(p);
131 }
132
133 /*
134 * Account guest CPU time to a process.
135 * @p: the process that the CPU time gets accounted to
136 * @cputime: the CPU time spent in virtual machine since the last update
137 */
account_guest_time(struct task_struct * p,u64 cputime)138 void account_guest_time(struct task_struct *p, u64 cputime)
139 {
140 u64 *cpustat = kcpustat_this_cpu->cpustat;
141
142 /* Add guest time to process. */
143 p->utime += cputime;
144 account_group_user_time(p, cputime);
145 p->gtime += cputime;
146
147 /* Add guest time to cpustat. */
148 if (task_nice(p) > 0) {
149 cpustat[CPUTIME_NICE] += cputime;
150 cpustat[CPUTIME_GUEST_NICE] += cputime;
151 } else {
152 cpustat[CPUTIME_USER] += cputime;
153 cpustat[CPUTIME_GUEST] += cputime;
154 }
155 }
156
157 /*
158 * Account system CPU time to a process and desired cpustat field
159 * @p: the process that the CPU time gets accounted to
160 * @cputime: the CPU time spent in kernel space since the last update
161 * @index: pointer to cpustat field that has to be updated
162 */
account_system_index_time(struct task_struct * p,u64 cputime,enum cpu_usage_stat index)163 void account_system_index_time(struct task_struct *p,
164 u64 cputime, enum cpu_usage_stat index)
165 {
166 /* Add system time to process. */
167 p->stime += cputime;
168 account_group_system_time(p, cputime);
169
170 /* Add system time to cpustat. */
171 task_group_account_field(p, index, cputime);
172
173 /* Account for system time used */
174 acct_account_cputime(p);
175 }
176
177 /*
178 * Account system CPU time to a process.
179 * @p: the process that the CPU time gets accounted to
180 * @hardirq_offset: the offset to subtract from hardirq_count()
181 * @cputime: the CPU time spent in kernel space since the last update
182 */
account_system_time(struct task_struct * p,int hardirq_offset,u64 cputime)183 void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
184 {
185 int index;
186
187 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
188 account_guest_time(p, cputime);
189 return;
190 }
191
192 if (hardirq_count() - hardirq_offset)
193 index = CPUTIME_IRQ;
194 else if (in_serving_softirq())
195 index = CPUTIME_SOFTIRQ;
196 else
197 index = CPUTIME_SYSTEM;
198
199 account_system_index_time(p, cputime, index);
200 }
201
202 /*
203 * Account for involuntary wait time.
204 * @cputime: the CPU time spent in involuntary wait
205 */
account_steal_time(u64 cputime)206 void account_steal_time(u64 cputime)
207 {
208 u64 *cpustat = kcpustat_this_cpu->cpustat;
209
210 cpustat[CPUTIME_STEAL] += cputime;
211 }
212
213 /*
214 * Account for idle time.
215 * @cputime: the CPU time spent in idle wait
216 */
account_idle_time(u64 cputime)217 void account_idle_time(u64 cputime)
218 {
219 u64 *cpustat = kcpustat_this_cpu->cpustat;
220 struct rq *rq = this_rq();
221
222 if (atomic_read(&rq->nr_iowait) > 0)
223 cpustat[CPUTIME_IOWAIT] += cputime;
224 else
225 cpustat[CPUTIME_IDLE] += cputime;
226 }
227
228 /*
229 * When a guest is interrupted for a longer amount of time, missed clock
230 * ticks are not redelivered later. Due to that, this function may on
231 * occasion account more time than the calling functions think elapsed.
232 */
steal_account_process_time(u64 maxtime)233 static __always_inline u64 steal_account_process_time(u64 maxtime)
234 {
235 #ifdef CONFIG_PARAVIRT
236 if (static_key_false(¶virt_steal_enabled)) {
237 u64 steal;
238
239 steal = paravirt_steal_clock(smp_processor_id());
240 steal -= this_rq()->prev_steal_time;
241 steal = min(steal, maxtime);
242 account_steal_time(steal);
243 this_rq()->prev_steal_time += steal;
244
245 return steal;
246 }
247 #endif
248 return 0;
249 }
250
251 /*
252 * Account how much elapsed time was spent in steal, irq, or softirq time.
253 */
account_other_time(u64 max)254 static inline u64 account_other_time(u64 max)
255 {
256 u64 accounted;
257
258 lockdep_assert_irqs_disabled();
259
260 accounted = steal_account_process_time(max);
261
262 if (accounted < max)
263 accounted += irqtime_tick_accounted(max - accounted);
264
265 return accounted;
266 }
267
268 #ifdef CONFIG_64BIT
read_sum_exec_runtime(struct task_struct * t)269 static inline u64 read_sum_exec_runtime(struct task_struct *t)
270 {
271 return t->se.sum_exec_runtime;
272 }
273 #else
read_sum_exec_runtime(struct task_struct * t)274 static u64 read_sum_exec_runtime(struct task_struct *t)
275 {
276 u64 ns;
277 struct rq_flags rf;
278 struct rq *rq;
279
280 rq = task_rq_lock(t, &rf);
281 ns = t->se.sum_exec_runtime;
282 task_rq_unlock(rq, t, &rf);
283
284 return ns;
285 }
286 #endif
287
288 /*
289 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
290 * tasks (sum on group iteration) belonging to @tsk's group.
291 */
thread_group_cputime(struct task_struct * tsk,struct task_cputime * times)292 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
293 {
294 struct signal_struct *sig = tsk->signal;
295 u64 utime, stime;
296 struct task_struct *t;
297 unsigned int seq, nextseq;
298 unsigned long flags;
299
300 /*
301 * Update current task runtime to account pending time since last
302 * scheduler action or thread_group_cputime() call. This thread group
303 * might have other running tasks on different CPUs, but updating
304 * their runtime can affect syscall performance, so we skip account
305 * those pending times and rely only on values updated on tick or
306 * other scheduler action.
307 */
308 if (same_thread_group(current, tsk))
309 (void) task_sched_runtime(current);
310
311 rcu_read_lock();
312 /* Attempt a lockless read on the first round. */
313 nextseq = 0;
314 do {
315 seq = nextseq;
316 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
317 times->utime = sig->utime;
318 times->stime = sig->stime;
319 times->sum_exec_runtime = sig->sum_sched_runtime;
320
321 for_each_thread(tsk, t) {
322 task_cputime(t, &utime, &stime);
323 times->utime += utime;
324 times->stime += stime;
325 times->sum_exec_runtime += read_sum_exec_runtime(t);
326 }
327 /* If lockless access failed, take the lock. */
328 nextseq = 1;
329 } while (need_seqretry(&sig->stats_lock, seq));
330 done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
331 rcu_read_unlock();
332 }
333
334 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
335 /*
336 * Account a tick to a process and cpustat
337 * @p: the process that the CPU time gets accounted to
338 * @user_tick: is the tick from userspace
339 * @rq: the pointer to rq
340 *
341 * Tick demultiplexing follows the order
342 * - pending hardirq update
343 * - pending softirq update
344 * - user_time
345 * - idle_time
346 * - system time
347 * - check for guest_time
348 * - else account as system_time
349 *
350 * Check for hardirq is done both for system and user time as there is
351 * no timer going off while we are on hardirq and hence we may never get an
352 * opportunity to update it solely in system time.
353 * p->stime and friends are only updated on system time and not on irq
354 * softirq as those do not count in task exec_runtime any more.
355 */
irqtime_account_process_tick(struct task_struct * p,int user_tick,struct rq * rq,int ticks)356 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
357 struct rq *rq, int ticks)
358 {
359 u64 other, cputime = TICK_NSEC * ticks;
360
361 /*
362 * When returning from idle, many ticks can get accounted at
363 * once, including some ticks of steal, irq, and softirq time.
364 * Subtract those ticks from the amount of time accounted to
365 * idle, or potentially user or system time. Due to rounding,
366 * other time can exceed ticks occasionally.
367 */
368 other = account_other_time(ULONG_MAX);
369 if (other >= cputime)
370 return;
371
372 cputime -= other;
373
374 if (this_cpu_ksoftirqd() == p) {
375 /*
376 * ksoftirqd time do not get accounted in cpu_softirq_time.
377 * So, we have to handle it separately here.
378 * Also, p->stime needs to be updated for ksoftirqd.
379 */
380 account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
381 } else if (user_tick) {
382 account_user_time(p, cputime);
383 } else if (p == rq->idle) {
384 account_idle_time(cputime);
385 } else if (p->flags & PF_VCPU) { /* System time or guest time */
386 account_guest_time(p, cputime);
387 } else {
388 account_system_index_time(p, cputime, CPUTIME_SYSTEM);
389 }
390 }
391
irqtime_account_idle_ticks(int ticks)392 static void irqtime_account_idle_ticks(int ticks)
393 {
394 struct rq *rq = this_rq();
395
396 irqtime_account_process_tick(current, 0, rq, ticks);
397 }
398 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
irqtime_account_idle_ticks(int ticks)399 static inline void irqtime_account_idle_ticks(int ticks) { }
irqtime_account_process_tick(struct task_struct * p,int user_tick,struct rq * rq,int nr_ticks)400 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
401 struct rq *rq, int nr_ticks) { }
402 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
403
404 /*
405 * Use precise platform statistics if available:
406 */
407 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
408 # ifndef __ARCH_HAS_VTIME_TASK_SWITCH
vtime_common_task_switch(struct task_struct * prev)409 void vtime_common_task_switch(struct task_struct *prev)
410 {
411 if (is_idle_task(prev))
412 vtime_account_idle(prev);
413 else
414 vtime_account_system(prev);
415
416 vtime_flush(prev);
417 arch_vtime_task_switch(prev);
418 }
419 # endif
420 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
421
422
423 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
424 /*
425 * Archs that account the whole time spent in the idle task
426 * (outside irq) as idle time can rely on this and just implement
427 * vtime_account_system() and vtime_account_idle(). Archs that
428 * have other meaning of the idle time (s390 only includes the
429 * time spent by the CPU when it's in low power mode) must override
430 * vtime_account().
431 */
432 #ifndef __ARCH_HAS_VTIME_ACCOUNT
vtime_account_irq_enter(struct task_struct * tsk)433 void vtime_account_irq_enter(struct task_struct *tsk)
434 {
435 if (!in_interrupt() && is_idle_task(tsk))
436 vtime_account_idle(tsk);
437 else
438 vtime_account_system(tsk);
439 }
440 EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
441 #endif /* __ARCH_HAS_VTIME_ACCOUNT */
442
cputime_adjust(struct task_cputime * curr,struct prev_cputime * prev,u64 * ut,u64 * st)443 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
444 u64 *ut, u64 *st)
445 {
446 *ut = curr->utime;
447 *st = curr->stime;
448 }
449
task_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)450 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
451 {
452 *ut = p->utime;
453 *st = p->stime;
454 }
455 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
456
thread_group_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)457 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
458 {
459 struct task_cputime cputime;
460
461 thread_group_cputime(p, &cputime);
462
463 *ut = cputime.utime;
464 *st = cputime.stime;
465 }
466
467 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */
468
469 /*
470 * Account a single tick of CPU time.
471 * @p: the process that the CPU time gets accounted to
472 * @user_tick: indicates if the tick is a user or a system tick
473 */
account_process_tick(struct task_struct * p,int user_tick)474 void account_process_tick(struct task_struct *p, int user_tick)
475 {
476 u64 cputime, steal;
477 struct rq *rq = this_rq();
478
479 if (vtime_accounting_cpu_enabled())
480 return;
481
482 if (sched_clock_irqtime) {
483 irqtime_account_process_tick(p, user_tick, rq, 1);
484 return;
485 }
486
487 cputime = TICK_NSEC;
488 steal = steal_account_process_time(ULONG_MAX);
489
490 if (steal >= cputime)
491 return;
492
493 cputime -= steal;
494
495 if (user_tick)
496 account_user_time(p, cputime);
497 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
498 account_system_time(p, HARDIRQ_OFFSET, cputime);
499 else
500 account_idle_time(cputime);
501 }
502
503 /*
504 * Account multiple ticks of idle time.
505 * @ticks: number of stolen ticks
506 */
account_idle_ticks(unsigned long ticks)507 void account_idle_ticks(unsigned long ticks)
508 {
509 u64 cputime, steal;
510
511 if (sched_clock_irqtime) {
512 irqtime_account_idle_ticks(ticks);
513 return;
514 }
515
516 cputime = ticks * TICK_NSEC;
517 steal = steal_account_process_time(ULONG_MAX);
518
519 if (steal >= cputime)
520 return;
521
522 cputime -= steal;
523 account_idle_time(cputime);
524 }
525
526 /*
527 * Perform (stime * rtime) / total, but avoid multiplication overflow by
528 * loosing precision when the numbers are big.
529 */
scale_stime(u64 stime,u64 rtime,u64 total)530 static u64 scale_stime(u64 stime, u64 rtime, u64 total)
531 {
532 u64 scaled;
533
534 for (;;) {
535 /* Make sure "rtime" is the bigger of stime/rtime */
536 if (stime > rtime)
537 swap(rtime, stime);
538
539 /* Make sure 'total' fits in 32 bits */
540 if (total >> 32)
541 goto drop_precision;
542
543 /* Does rtime (and thus stime) fit in 32 bits? */
544 if (!(rtime >> 32))
545 break;
546
547 /* Can we just balance rtime/stime rather than dropping bits? */
548 if (stime >> 31)
549 goto drop_precision;
550
551 /* We can grow stime and shrink rtime and try to make them both fit */
552 stime <<= 1;
553 rtime >>= 1;
554 continue;
555
556 drop_precision:
557 /* We drop from rtime, it has more bits than stime */
558 rtime >>= 1;
559 total >>= 1;
560 }
561
562 /*
563 * Make sure gcc understands that this is a 32x32->64 multiply,
564 * followed by a 64/32->64 divide.
565 */
566 scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
567 return scaled;
568 }
569
570 /*
571 * Adjust tick based cputime random precision against scheduler runtime
572 * accounting.
573 *
574 * Tick based cputime accounting depend on random scheduling timeslices of a
575 * task to be interrupted or not by the timer. Depending on these
576 * circumstances, the number of these interrupts may be over or
577 * under-optimistic, matching the real user and system cputime with a variable
578 * precision.
579 *
580 * Fix this by scaling these tick based values against the total runtime
581 * accounted by the CFS scheduler.
582 *
583 * This code provides the following guarantees:
584 *
585 * stime + utime == rtime
586 * stime_i+1 >= stime_i, utime_i+1 >= utime_i
587 *
588 * Assuming that rtime_i+1 >= rtime_i.
589 */
cputime_adjust(struct task_cputime * curr,struct prev_cputime * prev,u64 * ut,u64 * st)590 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
591 u64 *ut, u64 *st)
592 {
593 u64 rtime, stime, utime;
594 unsigned long flags;
595
596 /* Serialize concurrent callers such that we can honour our guarantees */
597 raw_spin_lock_irqsave(&prev->lock, flags);
598 rtime = curr->sum_exec_runtime;
599
600 /*
601 * This is possible under two circumstances:
602 * - rtime isn't monotonic after all (a bug);
603 * - we got reordered by the lock.
604 *
605 * In both cases this acts as a filter such that the rest of the code
606 * can assume it is monotonic regardless of anything else.
607 */
608 if (prev->stime + prev->utime >= rtime)
609 goto out;
610
611 stime = curr->stime;
612 utime = curr->utime;
613
614 /*
615 * If either stime or utime are 0, assume all runtime is userspace.
616 * Once a task gets some ticks, the monotonicy code at 'update:'
617 * will ensure things converge to the observed ratio.
618 */
619 if (stime == 0) {
620 utime = rtime;
621 goto update;
622 }
623
624 if (utime == 0) {
625 stime = rtime;
626 goto update;
627 }
628
629 stime = scale_stime(stime, rtime, stime + utime);
630
631 update:
632 /*
633 * Make sure stime doesn't go backwards; this preserves monotonicity
634 * for utime because rtime is monotonic.
635 *
636 * utime_i+1 = rtime_i+1 - stime_i
637 * = rtime_i+1 - (rtime_i - utime_i)
638 * = (rtime_i+1 - rtime_i) + utime_i
639 * >= utime_i
640 */
641 if (stime < prev->stime)
642 stime = prev->stime;
643 utime = rtime - stime;
644
645 /*
646 * Make sure utime doesn't go backwards; this still preserves
647 * monotonicity for stime, analogous argument to above.
648 */
649 if (utime < prev->utime) {
650 utime = prev->utime;
651 stime = rtime - utime;
652 }
653
654 prev->stime = stime;
655 prev->utime = utime;
656 out:
657 *ut = prev->utime;
658 *st = prev->stime;
659 raw_spin_unlock_irqrestore(&prev->lock, flags);
660 }
661
task_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)662 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
663 {
664 struct task_cputime cputime = {
665 .sum_exec_runtime = p->se.sum_exec_runtime,
666 };
667
668 task_cputime(p, &cputime.utime, &cputime.stime);
669 cputime_adjust(&cputime, &p->prev_cputime, ut, st);
670 }
671 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
672
thread_group_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)673 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
674 {
675 struct task_cputime cputime;
676
677 thread_group_cputime(p, &cputime);
678 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
679 }
680 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
681
682 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
vtime_delta(struct vtime * vtime)683 static u64 vtime_delta(struct vtime *vtime)
684 {
685 unsigned long long clock;
686
687 clock = sched_clock();
688 if (clock < vtime->starttime)
689 return 0;
690
691 return clock - vtime->starttime;
692 }
693
get_vtime_delta(struct vtime * vtime)694 static u64 get_vtime_delta(struct vtime *vtime)
695 {
696 u64 delta = vtime_delta(vtime);
697 u64 other;
698
699 /*
700 * Unlike tick based timing, vtime based timing never has lost
701 * ticks, and no need for steal time accounting to make up for
702 * lost ticks. Vtime accounts a rounded version of actual
703 * elapsed time. Limit account_other_time to prevent rounding
704 * errors from causing elapsed vtime to go negative.
705 */
706 other = account_other_time(delta);
707 WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
708 vtime->starttime += delta;
709
710 return delta - other;
711 }
712
__vtime_account_system(struct task_struct * tsk,struct vtime * vtime)713 static void __vtime_account_system(struct task_struct *tsk,
714 struct vtime *vtime)
715 {
716 vtime->stime += get_vtime_delta(vtime);
717 if (vtime->stime >= TICK_NSEC) {
718 account_system_time(tsk, irq_count(), vtime->stime);
719 vtime->stime = 0;
720 }
721 }
722
vtime_account_guest(struct task_struct * tsk,struct vtime * vtime)723 static void vtime_account_guest(struct task_struct *tsk,
724 struct vtime *vtime)
725 {
726 vtime->gtime += get_vtime_delta(vtime);
727 if (vtime->gtime >= TICK_NSEC) {
728 account_guest_time(tsk, vtime->gtime);
729 vtime->gtime = 0;
730 }
731 }
732
vtime_account_system(struct task_struct * tsk)733 void vtime_account_system(struct task_struct *tsk)
734 {
735 struct vtime *vtime = &tsk->vtime;
736
737 if (!vtime_delta(vtime))
738 return;
739
740 write_seqcount_begin(&vtime->seqcount);
741 /* We might have scheduled out from guest path */
742 if (current->flags & PF_VCPU)
743 vtime_account_guest(tsk, vtime);
744 else
745 __vtime_account_system(tsk, vtime);
746 write_seqcount_end(&vtime->seqcount);
747 }
748
vtime_user_enter(struct task_struct * tsk)749 void vtime_user_enter(struct task_struct *tsk)
750 {
751 struct vtime *vtime = &tsk->vtime;
752
753 write_seqcount_begin(&vtime->seqcount);
754 __vtime_account_system(tsk, vtime);
755 vtime->state = VTIME_USER;
756 write_seqcount_end(&vtime->seqcount);
757 }
758
vtime_user_exit(struct task_struct * tsk)759 void vtime_user_exit(struct task_struct *tsk)
760 {
761 struct vtime *vtime = &tsk->vtime;
762
763 write_seqcount_begin(&vtime->seqcount);
764 vtime->utime += get_vtime_delta(vtime);
765 if (vtime->utime >= TICK_NSEC) {
766 account_user_time(tsk, vtime->utime);
767 vtime->utime = 0;
768 }
769 vtime->state = VTIME_SYS;
770 write_seqcount_end(&vtime->seqcount);
771 }
772
vtime_guest_enter(struct task_struct * tsk)773 void vtime_guest_enter(struct task_struct *tsk)
774 {
775 struct vtime *vtime = &tsk->vtime;
776 /*
777 * The flags must be updated under the lock with
778 * the vtime_starttime flush and update.
779 * That enforces a right ordering and update sequence
780 * synchronization against the reader (task_gtime())
781 * that can thus safely catch up with a tickless delta.
782 */
783 write_seqcount_begin(&vtime->seqcount);
784 __vtime_account_system(tsk, vtime);
785 current->flags |= PF_VCPU;
786 write_seqcount_end(&vtime->seqcount);
787 }
788 EXPORT_SYMBOL_GPL(vtime_guest_enter);
789
vtime_guest_exit(struct task_struct * tsk)790 void vtime_guest_exit(struct task_struct *tsk)
791 {
792 struct vtime *vtime = &tsk->vtime;
793
794 write_seqcount_begin(&vtime->seqcount);
795 vtime_account_guest(tsk, vtime);
796 current->flags &= ~PF_VCPU;
797 write_seqcount_end(&vtime->seqcount);
798 }
799 EXPORT_SYMBOL_GPL(vtime_guest_exit);
800
vtime_account_idle(struct task_struct * tsk)801 void vtime_account_idle(struct task_struct *tsk)
802 {
803 account_idle_time(get_vtime_delta(&tsk->vtime));
804 }
805
arch_vtime_task_switch(struct task_struct * prev)806 void arch_vtime_task_switch(struct task_struct *prev)
807 {
808 struct vtime *vtime = &prev->vtime;
809
810 write_seqcount_begin(&vtime->seqcount);
811 vtime->state = VTIME_INACTIVE;
812 write_seqcount_end(&vtime->seqcount);
813
814 vtime = ¤t->vtime;
815
816 write_seqcount_begin(&vtime->seqcount);
817 vtime->state = VTIME_SYS;
818 vtime->starttime = sched_clock();
819 write_seqcount_end(&vtime->seqcount);
820 }
821
vtime_init_idle(struct task_struct * t,int cpu)822 void vtime_init_idle(struct task_struct *t, int cpu)
823 {
824 struct vtime *vtime = &t->vtime;
825 unsigned long flags;
826
827 local_irq_save(flags);
828 write_seqcount_begin(&vtime->seqcount);
829 vtime->state = VTIME_SYS;
830 vtime->starttime = sched_clock();
831 write_seqcount_end(&vtime->seqcount);
832 local_irq_restore(flags);
833 }
834
task_gtime(struct task_struct * t)835 u64 task_gtime(struct task_struct *t)
836 {
837 struct vtime *vtime = &t->vtime;
838 unsigned int seq;
839 u64 gtime;
840
841 if (!vtime_accounting_enabled())
842 return t->gtime;
843
844 do {
845 seq = read_seqcount_begin(&vtime->seqcount);
846
847 gtime = t->gtime;
848 if (vtime->state == VTIME_SYS && t->flags & PF_VCPU)
849 gtime += vtime->gtime + vtime_delta(vtime);
850
851 } while (read_seqcount_retry(&vtime->seqcount, seq));
852
853 return gtime;
854 }
855
856 /*
857 * Fetch cputime raw values from fields of task_struct and
858 * add up the pending nohz execution time since the last
859 * cputime snapshot.
860 */
task_cputime(struct task_struct * t,u64 * utime,u64 * stime)861 void task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
862 {
863 struct vtime *vtime = &t->vtime;
864 unsigned int seq;
865 u64 delta;
866
867 if (!vtime_accounting_enabled()) {
868 *utime = t->utime;
869 *stime = t->stime;
870 return;
871 }
872
873 do {
874 seq = read_seqcount_begin(&vtime->seqcount);
875
876 *utime = t->utime;
877 *stime = t->stime;
878
879 /* Task is sleeping, nothing to add */
880 if (vtime->state == VTIME_INACTIVE || is_idle_task(t))
881 continue;
882
883 delta = vtime_delta(vtime);
884
885 /*
886 * Task runs either in user or kernel space, add pending nohz time to
887 * the right place.
888 */
889 if (vtime->state == VTIME_USER || t->flags & PF_VCPU)
890 *utime += vtime->utime + delta;
891 else if (vtime->state == VTIME_SYS)
892 *stime += vtime->stime + delta;
893 } while (read_seqcount_retry(&vtime->seqcount, seq));
894 }
895 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
896