1 /*
2 * Copyright (C) ST-Ericsson AB 2012
3 *
4 * Main and Back-up battery management driver.
5 *
6 * Note: Backup battery management is required in case of Li-Ion battery and not
7 * for capacitive battery. HREF boards have capacitive battery and hence backup
8 * battery management is not used and the supported code is available in this
9 * driver.
10 *
11 * License Terms: GNU General Public License v2
12 * Author:
13 * Johan Palsson <johan.palsson@stericsson.com>
14 * Karl Komierowski <karl.komierowski@stericsson.com>
15 * Arun R Murthy <arun.murthy@stericsson.com>
16 */
17
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/device.h>
21 #include <linux/interrupt.h>
22 #include <linux/platform_device.h>
23 #include <linux/power_supply.h>
24 #include <linux/kobject.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/time.h>
28 #include <linux/time64.h>
29 #include <linux/of.h>
30 #include <linux/completion.h>
31 #include <linux/mfd/core.h>
32 #include <linux/mfd/abx500.h>
33 #include <linux/mfd/abx500/ab8500.h>
34 #include <linux/mfd/abx500/ab8500-bm.h>
35 #include <linux/mfd/abx500/ab8500-gpadc.h>
36 #include <linux/kernel.h>
37
38 #define MILLI_TO_MICRO 1000
39 #define FG_LSB_IN_MA 1627
40 #define QLSB_NANO_AMP_HOURS_X10 1071
41 #define INS_CURR_TIMEOUT (3 * HZ)
42
43 #define SEC_TO_SAMPLE(S) (S * 4)
44
45 #define NBR_AVG_SAMPLES 20
46
47 #define LOW_BAT_CHECK_INTERVAL (HZ / 16) /* 62.5 ms */
48
49 #define VALID_CAPACITY_SEC (45 * 60) /* 45 minutes */
50 #define BATT_OK_MIN 2360 /* mV */
51 #define BATT_OK_INCREMENT 50 /* mV */
52 #define BATT_OK_MAX_NR_INCREMENTS 0xE
53
54 /* FG constants */
55 #define BATT_OVV 0x01
56
57 #define interpolate(x, x1, y1, x2, y2) \
58 ((y1) + ((((y2) - (y1)) * ((x) - (x1))) / ((x2) - (x1))));
59
60 /**
61 * struct ab8500_fg_interrupts - ab8500 fg interupts
62 * @name: name of the interrupt
63 * @isr function pointer to the isr
64 */
65 struct ab8500_fg_interrupts {
66 char *name;
67 irqreturn_t (*isr)(int irq, void *data);
68 };
69
70 enum ab8500_fg_discharge_state {
71 AB8500_FG_DISCHARGE_INIT,
72 AB8500_FG_DISCHARGE_INITMEASURING,
73 AB8500_FG_DISCHARGE_INIT_RECOVERY,
74 AB8500_FG_DISCHARGE_RECOVERY,
75 AB8500_FG_DISCHARGE_READOUT_INIT,
76 AB8500_FG_DISCHARGE_READOUT,
77 AB8500_FG_DISCHARGE_WAKEUP,
78 };
79
80 static char *discharge_state[] = {
81 "DISCHARGE_INIT",
82 "DISCHARGE_INITMEASURING",
83 "DISCHARGE_INIT_RECOVERY",
84 "DISCHARGE_RECOVERY",
85 "DISCHARGE_READOUT_INIT",
86 "DISCHARGE_READOUT",
87 "DISCHARGE_WAKEUP",
88 };
89
90 enum ab8500_fg_charge_state {
91 AB8500_FG_CHARGE_INIT,
92 AB8500_FG_CHARGE_READOUT,
93 };
94
95 static char *charge_state[] = {
96 "CHARGE_INIT",
97 "CHARGE_READOUT",
98 };
99
100 enum ab8500_fg_calibration_state {
101 AB8500_FG_CALIB_INIT,
102 AB8500_FG_CALIB_WAIT,
103 AB8500_FG_CALIB_END,
104 };
105
106 struct ab8500_fg_avg_cap {
107 int avg;
108 int samples[NBR_AVG_SAMPLES];
109 time64_t time_stamps[NBR_AVG_SAMPLES];
110 int pos;
111 int nbr_samples;
112 int sum;
113 };
114
115 struct ab8500_fg_cap_scaling {
116 bool enable;
117 int cap_to_scale[2];
118 int disable_cap_level;
119 int scaled_cap;
120 };
121
122 struct ab8500_fg_battery_capacity {
123 int max_mah_design;
124 int max_mah;
125 int mah;
126 int permille;
127 int level;
128 int prev_mah;
129 int prev_percent;
130 int prev_level;
131 int user_mah;
132 struct ab8500_fg_cap_scaling cap_scale;
133 };
134
135 struct ab8500_fg_flags {
136 bool fg_enabled;
137 bool conv_done;
138 bool charging;
139 bool fully_charged;
140 bool force_full;
141 bool low_bat_delay;
142 bool low_bat;
143 bool bat_ovv;
144 bool batt_unknown;
145 bool calibrate;
146 bool user_cap;
147 bool batt_id_received;
148 };
149
150 struct inst_curr_result_list {
151 struct list_head list;
152 int *result;
153 };
154
155 /**
156 * struct ab8500_fg - ab8500 FG device information
157 * @dev: Pointer to the structure device
158 * @node: a list of AB8500 FGs, hence prepared for reentrance
159 * @irq holds the CCEOC interrupt number
160 * @vbat: Battery voltage in mV
161 * @vbat_nom: Nominal battery voltage in mV
162 * @inst_curr: Instantenous battery current in mA
163 * @avg_curr: Average battery current in mA
164 * @bat_temp battery temperature
165 * @fg_samples: Number of samples used in the FG accumulation
166 * @accu_charge: Accumulated charge from the last conversion
167 * @recovery_cnt: Counter for recovery mode
168 * @high_curr_cnt: Counter for high current mode
169 * @init_cnt: Counter for init mode
170 * @low_bat_cnt Counter for number of consecutive low battery measures
171 * @nbr_cceoc_irq_cnt Counter for number of CCEOC irqs received since enabled
172 * @recovery_needed: Indicate if recovery is needed
173 * @high_curr_mode: Indicate if we're in high current mode
174 * @init_capacity: Indicate if initial capacity measuring should be done
175 * @turn_off_fg: True if fg was off before current measurement
176 * @calib_state State during offset calibration
177 * @discharge_state: Current discharge state
178 * @charge_state: Current charge state
179 * @ab8500_fg_started Completion struct used for the instant current start
180 * @ab8500_fg_complete Completion struct used for the instant current reading
181 * @flags: Structure for information about events triggered
182 * @bat_cap: Structure for battery capacity specific parameters
183 * @avg_cap: Average capacity filter
184 * @parent: Pointer to the struct ab8500
185 * @gpadc: Pointer to the struct gpadc
186 * @bm: Platform specific battery management information
187 * @fg_psy: Structure that holds the FG specific battery properties
188 * @fg_wq: Work queue for running the FG algorithm
189 * @fg_periodic_work: Work to run the FG algorithm periodically
190 * @fg_low_bat_work: Work to check low bat condition
191 * @fg_reinit_work Work used to reset and reinitialise the FG algorithm
192 * @fg_work: Work to run the FG algorithm instantly
193 * @fg_acc_cur_work: Work to read the FG accumulator
194 * @fg_check_hw_failure_work: Work for checking HW state
195 * @cc_lock: Mutex for locking the CC
196 * @fg_kobject: Structure of type kobject
197 */
198 struct ab8500_fg {
199 struct device *dev;
200 struct list_head node;
201 int irq;
202 int vbat;
203 int vbat_nom;
204 int inst_curr;
205 int avg_curr;
206 int bat_temp;
207 int fg_samples;
208 int accu_charge;
209 int recovery_cnt;
210 int high_curr_cnt;
211 int init_cnt;
212 int low_bat_cnt;
213 int nbr_cceoc_irq_cnt;
214 bool recovery_needed;
215 bool high_curr_mode;
216 bool init_capacity;
217 bool turn_off_fg;
218 enum ab8500_fg_calibration_state calib_state;
219 enum ab8500_fg_discharge_state discharge_state;
220 enum ab8500_fg_charge_state charge_state;
221 struct completion ab8500_fg_started;
222 struct completion ab8500_fg_complete;
223 struct ab8500_fg_flags flags;
224 struct ab8500_fg_battery_capacity bat_cap;
225 struct ab8500_fg_avg_cap avg_cap;
226 struct ab8500 *parent;
227 struct ab8500_gpadc *gpadc;
228 struct abx500_bm_data *bm;
229 struct power_supply *fg_psy;
230 struct workqueue_struct *fg_wq;
231 struct delayed_work fg_periodic_work;
232 struct delayed_work fg_low_bat_work;
233 struct delayed_work fg_reinit_work;
234 struct work_struct fg_work;
235 struct work_struct fg_acc_cur_work;
236 struct delayed_work fg_check_hw_failure_work;
237 struct mutex cc_lock;
238 struct kobject fg_kobject;
239 };
240 static LIST_HEAD(ab8500_fg_list);
241
242 /**
243 * ab8500_fg_get() - returns a reference to the primary AB8500 fuel gauge
244 * (i.e. the first fuel gauge in the instance list)
245 */
ab8500_fg_get(void)246 struct ab8500_fg *ab8500_fg_get(void)
247 {
248 return list_first_entry_or_null(&ab8500_fg_list, struct ab8500_fg,
249 node);
250 }
251
252 /* Main battery properties */
253 static enum power_supply_property ab8500_fg_props[] = {
254 POWER_SUPPLY_PROP_VOLTAGE_NOW,
255 POWER_SUPPLY_PROP_CURRENT_NOW,
256 POWER_SUPPLY_PROP_CURRENT_AVG,
257 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
258 POWER_SUPPLY_PROP_ENERGY_FULL,
259 POWER_SUPPLY_PROP_ENERGY_NOW,
260 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
261 POWER_SUPPLY_PROP_CHARGE_FULL,
262 POWER_SUPPLY_PROP_CHARGE_NOW,
263 POWER_SUPPLY_PROP_CAPACITY,
264 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
265 };
266
267 /*
268 * This array maps the raw hex value to lowbat voltage used by the AB8500
269 * Values taken from the UM0836
270 */
271 static int ab8500_fg_lowbat_voltage_map[] = {
272 2300 ,
273 2325 ,
274 2350 ,
275 2375 ,
276 2400 ,
277 2425 ,
278 2450 ,
279 2475 ,
280 2500 ,
281 2525 ,
282 2550 ,
283 2575 ,
284 2600 ,
285 2625 ,
286 2650 ,
287 2675 ,
288 2700 ,
289 2725 ,
290 2750 ,
291 2775 ,
292 2800 ,
293 2825 ,
294 2850 ,
295 2875 ,
296 2900 ,
297 2925 ,
298 2950 ,
299 2975 ,
300 3000 ,
301 3025 ,
302 3050 ,
303 3075 ,
304 3100 ,
305 3125 ,
306 3150 ,
307 3175 ,
308 3200 ,
309 3225 ,
310 3250 ,
311 3275 ,
312 3300 ,
313 3325 ,
314 3350 ,
315 3375 ,
316 3400 ,
317 3425 ,
318 3450 ,
319 3475 ,
320 3500 ,
321 3525 ,
322 3550 ,
323 3575 ,
324 3600 ,
325 3625 ,
326 3650 ,
327 3675 ,
328 3700 ,
329 3725 ,
330 3750 ,
331 3775 ,
332 3800 ,
333 3825 ,
334 3850 ,
335 3850 ,
336 };
337
ab8500_volt_to_regval(int voltage)338 static u8 ab8500_volt_to_regval(int voltage)
339 {
340 int i;
341
342 if (voltage < ab8500_fg_lowbat_voltage_map[0])
343 return 0;
344
345 for (i = 0; i < ARRAY_SIZE(ab8500_fg_lowbat_voltage_map); i++) {
346 if (voltage < ab8500_fg_lowbat_voltage_map[i])
347 return (u8) i - 1;
348 }
349
350 /* If not captured above, return index of last element */
351 return (u8) ARRAY_SIZE(ab8500_fg_lowbat_voltage_map) - 1;
352 }
353
354 /**
355 * ab8500_fg_is_low_curr() - Low or high current mode
356 * @di: pointer to the ab8500_fg structure
357 * @curr: the current to base or our decision on
358 *
359 * Low current mode if the current consumption is below a certain threshold
360 */
ab8500_fg_is_low_curr(struct ab8500_fg * di,int curr)361 static int ab8500_fg_is_low_curr(struct ab8500_fg *di, int curr)
362 {
363 /*
364 * We want to know if we're in low current mode
365 */
366 if (curr > -di->bm->fg_params->high_curr_threshold)
367 return true;
368 else
369 return false;
370 }
371
372 /**
373 * ab8500_fg_add_cap_sample() - Add capacity to average filter
374 * @di: pointer to the ab8500_fg structure
375 * @sample: the capacity in mAh to add to the filter
376 *
377 * A capacity is added to the filter and a new mean capacity is calculated and
378 * returned
379 */
ab8500_fg_add_cap_sample(struct ab8500_fg * di,int sample)380 static int ab8500_fg_add_cap_sample(struct ab8500_fg *di, int sample)
381 {
382 time64_t now = ktime_get_boottime_seconds();
383 struct ab8500_fg_avg_cap *avg = &di->avg_cap;
384
385 do {
386 avg->sum += sample - avg->samples[avg->pos];
387 avg->samples[avg->pos] = sample;
388 avg->time_stamps[avg->pos] = now;
389 avg->pos++;
390
391 if (avg->pos == NBR_AVG_SAMPLES)
392 avg->pos = 0;
393
394 if (avg->nbr_samples < NBR_AVG_SAMPLES)
395 avg->nbr_samples++;
396
397 /*
398 * Check the time stamp for each sample. If too old,
399 * replace with latest sample
400 */
401 } while (now - VALID_CAPACITY_SEC > avg->time_stamps[avg->pos]);
402
403 avg->avg = avg->sum / avg->nbr_samples;
404
405 return avg->avg;
406 }
407
408 /**
409 * ab8500_fg_clear_cap_samples() - Clear average filter
410 * @di: pointer to the ab8500_fg structure
411 *
412 * The capacity filter is is reset to zero.
413 */
ab8500_fg_clear_cap_samples(struct ab8500_fg * di)414 static void ab8500_fg_clear_cap_samples(struct ab8500_fg *di)
415 {
416 int i;
417 struct ab8500_fg_avg_cap *avg = &di->avg_cap;
418
419 avg->pos = 0;
420 avg->nbr_samples = 0;
421 avg->sum = 0;
422 avg->avg = 0;
423
424 for (i = 0; i < NBR_AVG_SAMPLES; i++) {
425 avg->samples[i] = 0;
426 avg->time_stamps[i] = 0;
427 }
428 }
429
430 /**
431 * ab8500_fg_fill_cap_sample() - Fill average filter
432 * @di: pointer to the ab8500_fg structure
433 * @sample: the capacity in mAh to fill the filter with
434 *
435 * The capacity filter is filled with a capacity in mAh
436 */
ab8500_fg_fill_cap_sample(struct ab8500_fg * di,int sample)437 static void ab8500_fg_fill_cap_sample(struct ab8500_fg *di, int sample)
438 {
439 int i;
440 time64_t now;
441 struct ab8500_fg_avg_cap *avg = &di->avg_cap;
442
443 now = ktime_get_boottime_seconds();
444
445 for (i = 0; i < NBR_AVG_SAMPLES; i++) {
446 avg->samples[i] = sample;
447 avg->time_stamps[i] = now;
448 }
449
450 avg->pos = 0;
451 avg->nbr_samples = NBR_AVG_SAMPLES;
452 avg->sum = sample * NBR_AVG_SAMPLES;
453 avg->avg = sample;
454 }
455
456 /**
457 * ab8500_fg_coulomb_counter() - enable coulomb counter
458 * @di: pointer to the ab8500_fg structure
459 * @enable: enable/disable
460 *
461 * Enable/Disable coulomb counter.
462 * On failure returns negative value.
463 */
ab8500_fg_coulomb_counter(struct ab8500_fg * di,bool enable)464 static int ab8500_fg_coulomb_counter(struct ab8500_fg *di, bool enable)
465 {
466 int ret = 0;
467 mutex_lock(&di->cc_lock);
468 if (enable) {
469 /* To be able to reprogram the number of samples, we have to
470 * first stop the CC and then enable it again */
471 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
472 AB8500_RTC_CC_CONF_REG, 0x00);
473 if (ret)
474 goto cc_err;
475
476 /* Program the samples */
477 ret = abx500_set_register_interruptible(di->dev,
478 AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
479 di->fg_samples);
480 if (ret)
481 goto cc_err;
482
483 /* Start the CC */
484 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
485 AB8500_RTC_CC_CONF_REG,
486 (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
487 if (ret)
488 goto cc_err;
489
490 di->flags.fg_enabled = true;
491 } else {
492 /* Clear any pending read requests */
493 ret = abx500_mask_and_set_register_interruptible(di->dev,
494 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
495 (RESET_ACCU | READ_REQ), 0);
496 if (ret)
497 goto cc_err;
498
499 ret = abx500_set_register_interruptible(di->dev,
500 AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_CTRL, 0);
501 if (ret)
502 goto cc_err;
503
504 /* Stop the CC */
505 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
506 AB8500_RTC_CC_CONF_REG, 0);
507 if (ret)
508 goto cc_err;
509
510 di->flags.fg_enabled = false;
511
512 }
513 dev_dbg(di->dev, " CC enabled: %d Samples: %d\n",
514 enable, di->fg_samples);
515
516 mutex_unlock(&di->cc_lock);
517
518 return ret;
519 cc_err:
520 dev_err(di->dev, "%s Enabling coulomb counter failed\n", __func__);
521 mutex_unlock(&di->cc_lock);
522 return ret;
523 }
524
525 /**
526 * ab8500_fg_inst_curr_start() - start battery instantaneous current
527 * @di: pointer to the ab8500_fg structure
528 *
529 * Returns 0 or error code
530 * Note: This is part "one" and has to be called before
531 * ab8500_fg_inst_curr_finalize()
532 */
ab8500_fg_inst_curr_start(struct ab8500_fg * di)533 int ab8500_fg_inst_curr_start(struct ab8500_fg *di)
534 {
535 u8 reg_val;
536 int ret;
537
538 mutex_lock(&di->cc_lock);
539
540 di->nbr_cceoc_irq_cnt = 0;
541 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
542 AB8500_RTC_CC_CONF_REG, ®_val);
543 if (ret < 0)
544 goto fail;
545
546 if (!(reg_val & CC_PWR_UP_ENA)) {
547 dev_dbg(di->dev, "%s Enable FG\n", __func__);
548 di->turn_off_fg = true;
549
550 /* Program the samples */
551 ret = abx500_set_register_interruptible(di->dev,
552 AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
553 SEC_TO_SAMPLE(10));
554 if (ret)
555 goto fail;
556
557 /* Start the CC */
558 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
559 AB8500_RTC_CC_CONF_REG,
560 (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
561 if (ret)
562 goto fail;
563 } else {
564 di->turn_off_fg = false;
565 }
566
567 /* Return and WFI */
568 reinit_completion(&di->ab8500_fg_started);
569 reinit_completion(&di->ab8500_fg_complete);
570 enable_irq(di->irq);
571
572 /* Note: cc_lock is still locked */
573 return 0;
574 fail:
575 mutex_unlock(&di->cc_lock);
576 return ret;
577 }
578
579 /**
580 * ab8500_fg_inst_curr_started() - check if fg conversion has started
581 * @di: pointer to the ab8500_fg structure
582 *
583 * Returns 1 if conversion started, 0 if still waiting
584 */
ab8500_fg_inst_curr_started(struct ab8500_fg * di)585 int ab8500_fg_inst_curr_started(struct ab8500_fg *di)
586 {
587 return completion_done(&di->ab8500_fg_started);
588 }
589
590 /**
591 * ab8500_fg_inst_curr_done() - check if fg conversion is done
592 * @di: pointer to the ab8500_fg structure
593 *
594 * Returns 1 if conversion done, 0 if still waiting
595 */
ab8500_fg_inst_curr_done(struct ab8500_fg * di)596 int ab8500_fg_inst_curr_done(struct ab8500_fg *di)
597 {
598 return completion_done(&di->ab8500_fg_complete);
599 }
600
601 /**
602 * ab8500_fg_inst_curr_finalize() - battery instantaneous current
603 * @di: pointer to the ab8500_fg structure
604 * @res: battery instantenous current(on success)
605 *
606 * Returns 0 or an error code
607 * Note: This is part "two" and has to be called at earliest 250 ms
608 * after ab8500_fg_inst_curr_start()
609 */
ab8500_fg_inst_curr_finalize(struct ab8500_fg * di,int * res)610 int ab8500_fg_inst_curr_finalize(struct ab8500_fg *di, int *res)
611 {
612 u8 low, high;
613 int val;
614 int ret;
615 unsigned long timeout;
616
617 if (!completion_done(&di->ab8500_fg_complete)) {
618 timeout = wait_for_completion_timeout(
619 &di->ab8500_fg_complete,
620 INS_CURR_TIMEOUT);
621 dev_dbg(di->dev, "Finalize time: %d ms\n",
622 jiffies_to_msecs(INS_CURR_TIMEOUT - timeout));
623 if (!timeout) {
624 ret = -ETIME;
625 disable_irq(di->irq);
626 di->nbr_cceoc_irq_cnt = 0;
627 dev_err(di->dev, "completion timed out [%d]\n",
628 __LINE__);
629 goto fail;
630 }
631 }
632
633 disable_irq(di->irq);
634 di->nbr_cceoc_irq_cnt = 0;
635
636 ret = abx500_mask_and_set_register_interruptible(di->dev,
637 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
638 READ_REQ, READ_REQ);
639
640 /* 100uS between read request and read is needed */
641 usleep_range(100, 100);
642
643 /* Read CC Sample conversion value Low and high */
644 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
645 AB8500_GASG_CC_SMPL_CNVL_REG, &low);
646 if (ret < 0)
647 goto fail;
648
649 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
650 AB8500_GASG_CC_SMPL_CNVH_REG, &high);
651 if (ret < 0)
652 goto fail;
653
654 /*
655 * negative value for Discharging
656 * convert 2's compliment into decimal
657 */
658 if (high & 0x10)
659 val = (low | (high << 8) | 0xFFFFE000);
660 else
661 val = (low | (high << 8));
662
663 /*
664 * Convert to unit value in mA
665 * Full scale input voltage is
666 * 63.160mV => LSB = 63.160mV/(4096*res) = 1.542mA
667 * Given a 250ms conversion cycle time the LSB corresponds
668 * to 107.1 nAh. Convert to current by dividing by the conversion
669 * time in hours (250ms = 1 / (3600 * 4)h)
670 * 107.1nAh assumes 10mOhm, but fg_res is in 0.1mOhm
671 */
672 val = (val * QLSB_NANO_AMP_HOURS_X10 * 36 * 4) /
673 (1000 * di->bm->fg_res);
674
675 if (di->turn_off_fg) {
676 dev_dbg(di->dev, "%s Disable FG\n", __func__);
677
678 /* Clear any pending read requests */
679 ret = abx500_set_register_interruptible(di->dev,
680 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0);
681 if (ret)
682 goto fail;
683
684 /* Stop the CC */
685 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
686 AB8500_RTC_CC_CONF_REG, 0);
687 if (ret)
688 goto fail;
689 }
690 mutex_unlock(&di->cc_lock);
691 (*res) = val;
692
693 return 0;
694 fail:
695 mutex_unlock(&di->cc_lock);
696 return ret;
697 }
698
699 /**
700 * ab8500_fg_inst_curr_blocking() - battery instantaneous current
701 * @di: pointer to the ab8500_fg structure
702 * @res: battery instantenous current(on success)
703 *
704 * Returns 0 else error code
705 */
ab8500_fg_inst_curr_blocking(struct ab8500_fg * di)706 int ab8500_fg_inst_curr_blocking(struct ab8500_fg *di)
707 {
708 int ret;
709 unsigned long timeout;
710 int res = 0;
711
712 ret = ab8500_fg_inst_curr_start(di);
713 if (ret) {
714 dev_err(di->dev, "Failed to initialize fg_inst\n");
715 return 0;
716 }
717
718 /* Wait for CC to actually start */
719 if (!completion_done(&di->ab8500_fg_started)) {
720 timeout = wait_for_completion_timeout(
721 &di->ab8500_fg_started,
722 INS_CURR_TIMEOUT);
723 dev_dbg(di->dev, "Start time: %d ms\n",
724 jiffies_to_msecs(INS_CURR_TIMEOUT - timeout));
725 if (!timeout) {
726 ret = -ETIME;
727 dev_err(di->dev, "completion timed out [%d]\n",
728 __LINE__);
729 goto fail;
730 }
731 }
732
733 ret = ab8500_fg_inst_curr_finalize(di, &res);
734 if (ret) {
735 dev_err(di->dev, "Failed to finalize fg_inst\n");
736 return 0;
737 }
738
739 dev_dbg(di->dev, "%s instant current: %d", __func__, res);
740 return res;
741 fail:
742 disable_irq(di->irq);
743 mutex_unlock(&di->cc_lock);
744 return ret;
745 }
746
747 /**
748 * ab8500_fg_acc_cur_work() - average battery current
749 * @work: pointer to the work_struct structure
750 *
751 * Updated the average battery current obtained from the
752 * coulomb counter.
753 */
ab8500_fg_acc_cur_work(struct work_struct * work)754 static void ab8500_fg_acc_cur_work(struct work_struct *work)
755 {
756 int val;
757 int ret;
758 u8 low, med, high;
759
760 struct ab8500_fg *di = container_of(work,
761 struct ab8500_fg, fg_acc_cur_work);
762
763 mutex_lock(&di->cc_lock);
764 ret = abx500_set_register_interruptible(di->dev, AB8500_GAS_GAUGE,
765 AB8500_GASG_CC_NCOV_ACCU_CTRL, RD_NCONV_ACCU_REQ);
766 if (ret)
767 goto exit;
768
769 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
770 AB8500_GASG_CC_NCOV_ACCU_LOW, &low);
771 if (ret < 0)
772 goto exit;
773
774 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
775 AB8500_GASG_CC_NCOV_ACCU_MED, &med);
776 if (ret < 0)
777 goto exit;
778
779 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
780 AB8500_GASG_CC_NCOV_ACCU_HIGH, &high);
781 if (ret < 0)
782 goto exit;
783
784 /* Check for sign bit in case of negative value, 2's compliment */
785 if (high & 0x10)
786 val = (low | (med << 8) | (high << 16) | 0xFFE00000);
787 else
788 val = (low | (med << 8) | (high << 16));
789
790 /*
791 * Convert to uAh
792 * Given a 250ms conversion cycle time the LSB corresponds
793 * to 112.9 nAh.
794 * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
795 */
796 di->accu_charge = (val * QLSB_NANO_AMP_HOURS_X10) /
797 (100 * di->bm->fg_res);
798
799 /*
800 * Convert to unit value in mA
801 * by dividing by the conversion
802 * time in hours (= samples / (3600 * 4)h)
803 * and multiply with 1000
804 */
805 di->avg_curr = (val * QLSB_NANO_AMP_HOURS_X10 * 36) /
806 (1000 * di->bm->fg_res * (di->fg_samples / 4));
807
808 di->flags.conv_done = true;
809
810 mutex_unlock(&di->cc_lock);
811
812 queue_work(di->fg_wq, &di->fg_work);
813
814 dev_dbg(di->dev, "fg_res: %d, fg_samples: %d, gasg: %d, accu_charge: %d \n",
815 di->bm->fg_res, di->fg_samples, val, di->accu_charge);
816 return;
817 exit:
818 dev_err(di->dev,
819 "Failed to read or write gas gauge registers\n");
820 mutex_unlock(&di->cc_lock);
821 queue_work(di->fg_wq, &di->fg_work);
822 }
823
824 /**
825 * ab8500_fg_bat_voltage() - get battery voltage
826 * @di: pointer to the ab8500_fg structure
827 *
828 * Returns battery voltage(on success) else error code
829 */
ab8500_fg_bat_voltage(struct ab8500_fg * di)830 static int ab8500_fg_bat_voltage(struct ab8500_fg *di)
831 {
832 int vbat;
833 static int prev;
834
835 vbat = ab8500_gpadc_convert(di->gpadc, MAIN_BAT_V);
836 if (vbat < 0) {
837 dev_err(di->dev,
838 "%s gpadc conversion failed, using previous value\n",
839 __func__);
840 return prev;
841 }
842
843 prev = vbat;
844 return vbat;
845 }
846
847 /**
848 * ab8500_fg_volt_to_capacity() - Voltage based capacity
849 * @di: pointer to the ab8500_fg structure
850 * @voltage: The voltage to convert to a capacity
851 *
852 * Returns battery capacity in per mille based on voltage
853 */
ab8500_fg_volt_to_capacity(struct ab8500_fg * di,int voltage)854 static int ab8500_fg_volt_to_capacity(struct ab8500_fg *di, int voltage)
855 {
856 int i, tbl_size;
857 const struct abx500_v_to_cap *tbl;
858 int cap = 0;
859
860 tbl = di->bm->bat_type[di->bm->batt_id].v_to_cap_tbl,
861 tbl_size = di->bm->bat_type[di->bm->batt_id].n_v_cap_tbl_elements;
862
863 for (i = 0; i < tbl_size; ++i) {
864 if (voltage > tbl[i].voltage)
865 break;
866 }
867
868 if ((i > 0) && (i < tbl_size)) {
869 cap = interpolate(voltage,
870 tbl[i].voltage,
871 tbl[i].capacity * 10,
872 tbl[i-1].voltage,
873 tbl[i-1].capacity * 10);
874 } else if (i == 0) {
875 cap = 1000;
876 } else {
877 cap = 0;
878 }
879
880 dev_dbg(di->dev, "%s Vbat: %d, Cap: %d per mille",
881 __func__, voltage, cap);
882
883 return cap;
884 }
885
886 /**
887 * ab8500_fg_uncomp_volt_to_capacity() - Uncompensated voltage based capacity
888 * @di: pointer to the ab8500_fg structure
889 *
890 * Returns battery capacity based on battery voltage that is not compensated
891 * for the voltage drop due to the load
892 */
ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg * di)893 static int ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg *di)
894 {
895 di->vbat = ab8500_fg_bat_voltage(di);
896 return ab8500_fg_volt_to_capacity(di, di->vbat);
897 }
898
899 /**
900 * ab8500_fg_battery_resistance() - Returns the battery inner resistance
901 * @di: pointer to the ab8500_fg structure
902 *
903 * Returns battery inner resistance added with the fuel gauge resistor value
904 * to get the total resistance in the whole link from gnd to bat+ node.
905 */
ab8500_fg_battery_resistance(struct ab8500_fg * di)906 static int ab8500_fg_battery_resistance(struct ab8500_fg *di)
907 {
908 int i, tbl_size;
909 const struct batres_vs_temp *tbl;
910 int resist = 0;
911
912 tbl = di->bm->bat_type[di->bm->batt_id].batres_tbl;
913 tbl_size = di->bm->bat_type[di->bm->batt_id].n_batres_tbl_elements;
914
915 for (i = 0; i < tbl_size; ++i) {
916 if (di->bat_temp / 10 > tbl[i].temp)
917 break;
918 }
919
920 if ((i > 0) && (i < tbl_size)) {
921 resist = interpolate(di->bat_temp / 10,
922 tbl[i].temp,
923 tbl[i].resist,
924 tbl[i-1].temp,
925 tbl[i-1].resist);
926 } else if (i == 0) {
927 resist = tbl[0].resist;
928 } else {
929 resist = tbl[tbl_size - 1].resist;
930 }
931
932 dev_dbg(di->dev, "%s Temp: %d battery internal resistance: %d"
933 " fg resistance %d, total: %d (mOhm)\n",
934 __func__, di->bat_temp, resist, di->bm->fg_res / 10,
935 (di->bm->fg_res / 10) + resist);
936
937 /* fg_res variable is in 0.1mOhm */
938 resist += di->bm->fg_res / 10;
939
940 return resist;
941 }
942
943 /**
944 * ab8500_fg_load_comp_volt_to_capacity() - Load compensated voltage based capacity
945 * @di: pointer to the ab8500_fg structure
946 *
947 * Returns battery capacity based on battery voltage that is load compensated
948 * for the voltage drop
949 */
ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg * di)950 static int ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg *di)
951 {
952 int vbat_comp, res;
953 int i = 0;
954 int vbat = 0;
955
956 ab8500_fg_inst_curr_start(di);
957
958 do {
959 vbat += ab8500_fg_bat_voltage(di);
960 i++;
961 usleep_range(5000, 6000);
962 } while (!ab8500_fg_inst_curr_done(di));
963
964 ab8500_fg_inst_curr_finalize(di, &di->inst_curr);
965
966 di->vbat = vbat / i;
967 res = ab8500_fg_battery_resistance(di);
968
969 /* Use Ohms law to get the load compensated voltage */
970 vbat_comp = di->vbat - (di->inst_curr * res) / 1000;
971
972 dev_dbg(di->dev, "%s Measured Vbat: %dmV,Compensated Vbat %dmV, "
973 "R: %dmOhm, Current: %dmA Vbat Samples: %d\n",
974 __func__, di->vbat, vbat_comp, res, di->inst_curr, i);
975
976 return ab8500_fg_volt_to_capacity(di, vbat_comp);
977 }
978
979 /**
980 * ab8500_fg_convert_mah_to_permille() - Capacity in mAh to permille
981 * @di: pointer to the ab8500_fg structure
982 * @cap_mah: capacity in mAh
983 *
984 * Converts capacity in mAh to capacity in permille
985 */
ab8500_fg_convert_mah_to_permille(struct ab8500_fg * di,int cap_mah)986 static int ab8500_fg_convert_mah_to_permille(struct ab8500_fg *di, int cap_mah)
987 {
988 return (cap_mah * 1000) / di->bat_cap.max_mah_design;
989 }
990
991 /**
992 * ab8500_fg_convert_permille_to_mah() - Capacity in permille to mAh
993 * @di: pointer to the ab8500_fg structure
994 * @cap_pm: capacity in permille
995 *
996 * Converts capacity in permille to capacity in mAh
997 */
ab8500_fg_convert_permille_to_mah(struct ab8500_fg * di,int cap_pm)998 static int ab8500_fg_convert_permille_to_mah(struct ab8500_fg *di, int cap_pm)
999 {
1000 return cap_pm * di->bat_cap.max_mah_design / 1000;
1001 }
1002
1003 /**
1004 * ab8500_fg_convert_mah_to_uwh() - Capacity in mAh to uWh
1005 * @di: pointer to the ab8500_fg structure
1006 * @cap_mah: capacity in mAh
1007 *
1008 * Converts capacity in mAh to capacity in uWh
1009 */
ab8500_fg_convert_mah_to_uwh(struct ab8500_fg * di,int cap_mah)1010 static int ab8500_fg_convert_mah_to_uwh(struct ab8500_fg *di, int cap_mah)
1011 {
1012 u64 div_res;
1013 u32 div_rem;
1014
1015 div_res = ((u64) cap_mah) * ((u64) di->vbat_nom);
1016 div_rem = do_div(div_res, 1000);
1017
1018 /* Make sure to round upwards if necessary */
1019 if (div_rem >= 1000 / 2)
1020 div_res++;
1021
1022 return (int) div_res;
1023 }
1024
1025 /**
1026 * ab8500_fg_calc_cap_charging() - Calculate remaining capacity while charging
1027 * @di: pointer to the ab8500_fg structure
1028 *
1029 * Return the capacity in mAh based on previous calculated capcity and the FG
1030 * accumulator register value. The filter is filled with this capacity
1031 */
ab8500_fg_calc_cap_charging(struct ab8500_fg * di)1032 static int ab8500_fg_calc_cap_charging(struct ab8500_fg *di)
1033 {
1034 dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1035 __func__,
1036 di->bat_cap.mah,
1037 di->accu_charge);
1038
1039 /* Capacity should not be less than 0 */
1040 if (di->bat_cap.mah + di->accu_charge > 0)
1041 di->bat_cap.mah += di->accu_charge;
1042 else
1043 di->bat_cap.mah = 0;
1044 /*
1045 * We force capacity to 100% once when the algorithm
1046 * reports that it's full.
1047 */
1048 if (di->bat_cap.mah >= di->bat_cap.max_mah_design ||
1049 di->flags.force_full) {
1050 di->bat_cap.mah = di->bat_cap.max_mah_design;
1051 }
1052
1053 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1054 di->bat_cap.permille =
1055 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1056
1057 /* We need to update battery voltage and inst current when charging */
1058 di->vbat = ab8500_fg_bat_voltage(di);
1059 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1060
1061 return di->bat_cap.mah;
1062 }
1063
1064 /**
1065 * ab8500_fg_calc_cap_discharge_voltage() - Capacity in discharge with voltage
1066 * @di: pointer to the ab8500_fg structure
1067 * @comp: if voltage should be load compensated before capacity calc
1068 *
1069 * Return the capacity in mAh based on the battery voltage. The voltage can
1070 * either be load compensated or not. This value is added to the filter and a
1071 * new mean value is calculated and returned.
1072 */
ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg * di,bool comp)1073 static int ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg *di, bool comp)
1074 {
1075 int permille, mah;
1076
1077 if (comp)
1078 permille = ab8500_fg_load_comp_volt_to_capacity(di);
1079 else
1080 permille = ab8500_fg_uncomp_volt_to_capacity(di);
1081
1082 mah = ab8500_fg_convert_permille_to_mah(di, permille);
1083
1084 di->bat_cap.mah = ab8500_fg_add_cap_sample(di, mah);
1085 di->bat_cap.permille =
1086 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1087
1088 return di->bat_cap.mah;
1089 }
1090
1091 /**
1092 * ab8500_fg_calc_cap_discharge_fg() - Capacity in discharge with FG
1093 * @di: pointer to the ab8500_fg structure
1094 *
1095 * Return the capacity in mAh based on previous calculated capcity and the FG
1096 * accumulator register value. This value is added to the filter and a
1097 * new mean value is calculated and returned.
1098 */
ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg * di)1099 static int ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg *di)
1100 {
1101 int permille_volt, permille;
1102
1103 dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1104 __func__,
1105 di->bat_cap.mah,
1106 di->accu_charge);
1107
1108 /* Capacity should not be less than 0 */
1109 if (di->bat_cap.mah + di->accu_charge > 0)
1110 di->bat_cap.mah += di->accu_charge;
1111 else
1112 di->bat_cap.mah = 0;
1113
1114 if (di->bat_cap.mah >= di->bat_cap.max_mah_design)
1115 di->bat_cap.mah = di->bat_cap.max_mah_design;
1116
1117 /*
1118 * Check against voltage based capacity. It can not be lower
1119 * than what the uncompensated voltage says
1120 */
1121 permille = ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1122 permille_volt = ab8500_fg_uncomp_volt_to_capacity(di);
1123
1124 if (permille < permille_volt) {
1125 di->bat_cap.permille = permille_volt;
1126 di->bat_cap.mah = ab8500_fg_convert_permille_to_mah(di,
1127 di->bat_cap.permille);
1128
1129 dev_dbg(di->dev, "%s voltage based: perm %d perm_volt %d\n",
1130 __func__,
1131 permille,
1132 permille_volt);
1133
1134 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1135 } else {
1136 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1137 di->bat_cap.permille =
1138 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1139 }
1140
1141 return di->bat_cap.mah;
1142 }
1143
1144 /**
1145 * ab8500_fg_capacity_level() - Get the battery capacity level
1146 * @di: pointer to the ab8500_fg structure
1147 *
1148 * Get the battery capacity level based on the capacity in percent
1149 */
ab8500_fg_capacity_level(struct ab8500_fg * di)1150 static int ab8500_fg_capacity_level(struct ab8500_fg *di)
1151 {
1152 int ret, percent;
1153
1154 percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);
1155
1156 if (percent <= di->bm->cap_levels->critical ||
1157 di->flags.low_bat)
1158 ret = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1159 else if (percent <= di->bm->cap_levels->low)
1160 ret = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1161 else if (percent <= di->bm->cap_levels->normal)
1162 ret = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1163 else if (percent <= di->bm->cap_levels->high)
1164 ret = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
1165 else
1166 ret = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1167
1168 return ret;
1169 }
1170
1171 /**
1172 * ab8500_fg_calculate_scaled_capacity() - Capacity scaling
1173 * @di: pointer to the ab8500_fg structure
1174 *
1175 * Calculates the capacity to be shown to upper layers. Scales the capacity
1176 * to have 100% as a reference from the actual capacity upon removal of charger
1177 * when charging is in maintenance mode.
1178 */
ab8500_fg_calculate_scaled_capacity(struct ab8500_fg * di)1179 static int ab8500_fg_calculate_scaled_capacity(struct ab8500_fg *di)
1180 {
1181 struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1182 int capacity = di->bat_cap.prev_percent;
1183
1184 if (!cs->enable)
1185 return capacity;
1186
1187 /*
1188 * As long as we are in fully charge mode scale the capacity
1189 * to show 100%.
1190 */
1191 if (di->flags.fully_charged) {
1192 cs->cap_to_scale[0] = 100;
1193 cs->cap_to_scale[1] =
1194 max(capacity, di->bm->fg_params->maint_thres);
1195 dev_dbg(di->dev, "Scale cap with %d/%d\n",
1196 cs->cap_to_scale[0], cs->cap_to_scale[1]);
1197 }
1198
1199 /* Calculates the scaled capacity. */
1200 if ((cs->cap_to_scale[0] != cs->cap_to_scale[1])
1201 && (cs->cap_to_scale[1] > 0))
1202 capacity = min(100,
1203 DIV_ROUND_CLOSEST(di->bat_cap.prev_percent *
1204 cs->cap_to_scale[0],
1205 cs->cap_to_scale[1]));
1206
1207 if (di->flags.charging) {
1208 if (capacity < cs->disable_cap_level) {
1209 cs->disable_cap_level = capacity;
1210 dev_dbg(di->dev, "Cap to stop scale lowered %d%%\n",
1211 cs->disable_cap_level);
1212 } else if (!di->flags.fully_charged) {
1213 if (di->bat_cap.prev_percent >=
1214 cs->disable_cap_level) {
1215 dev_dbg(di->dev, "Disabling scaled capacity\n");
1216 cs->enable = false;
1217 capacity = di->bat_cap.prev_percent;
1218 } else {
1219 dev_dbg(di->dev,
1220 "Waiting in cap to level %d%%\n",
1221 cs->disable_cap_level);
1222 capacity = cs->disable_cap_level;
1223 }
1224 }
1225 }
1226
1227 return capacity;
1228 }
1229
1230 /**
1231 * ab8500_fg_update_cap_scalers() - Capacity scaling
1232 * @di: pointer to the ab8500_fg structure
1233 *
1234 * To be called when state change from charge<->discharge to update
1235 * the capacity scalers.
1236 */
ab8500_fg_update_cap_scalers(struct ab8500_fg * di)1237 static void ab8500_fg_update_cap_scalers(struct ab8500_fg *di)
1238 {
1239 struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1240
1241 if (!cs->enable)
1242 return;
1243 if (di->flags.charging) {
1244 di->bat_cap.cap_scale.disable_cap_level =
1245 di->bat_cap.cap_scale.scaled_cap;
1246 dev_dbg(di->dev, "Cap to stop scale at charge %d%%\n",
1247 di->bat_cap.cap_scale.disable_cap_level);
1248 } else {
1249 if (cs->scaled_cap != 100) {
1250 cs->cap_to_scale[0] = cs->scaled_cap;
1251 cs->cap_to_scale[1] = di->bat_cap.prev_percent;
1252 } else {
1253 cs->cap_to_scale[0] = 100;
1254 cs->cap_to_scale[1] =
1255 max(di->bat_cap.prev_percent,
1256 di->bm->fg_params->maint_thres);
1257 }
1258
1259 dev_dbg(di->dev, "Cap to scale at discharge %d/%d\n",
1260 cs->cap_to_scale[0], cs->cap_to_scale[1]);
1261 }
1262 }
1263
1264 /**
1265 * ab8500_fg_check_capacity_limits() - Check if capacity has changed
1266 * @di: pointer to the ab8500_fg structure
1267 * @init: capacity is allowed to go up in init mode
1268 *
1269 * Check if capacity or capacity limit has changed and notify the system
1270 * about it using the power_supply framework
1271 */
ab8500_fg_check_capacity_limits(struct ab8500_fg * di,bool init)1272 static void ab8500_fg_check_capacity_limits(struct ab8500_fg *di, bool init)
1273 {
1274 bool changed = false;
1275 int percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);
1276
1277 di->bat_cap.level = ab8500_fg_capacity_level(di);
1278
1279 if (di->bat_cap.level != di->bat_cap.prev_level) {
1280 /*
1281 * We do not allow reported capacity level to go up
1282 * unless we're charging or if we're in init
1283 */
1284 if (!(!di->flags.charging && di->bat_cap.level >
1285 di->bat_cap.prev_level) || init) {
1286 dev_dbg(di->dev, "level changed from %d to %d\n",
1287 di->bat_cap.prev_level,
1288 di->bat_cap.level);
1289 di->bat_cap.prev_level = di->bat_cap.level;
1290 changed = true;
1291 } else {
1292 dev_dbg(di->dev, "level not allowed to go up "
1293 "since no charger is connected: %d to %d\n",
1294 di->bat_cap.prev_level,
1295 di->bat_cap.level);
1296 }
1297 }
1298
1299 /*
1300 * If we have received the LOW_BAT IRQ, set capacity to 0 to initiate
1301 * shutdown
1302 */
1303 if (di->flags.low_bat) {
1304 dev_dbg(di->dev, "Battery low, set capacity to 0\n");
1305 di->bat_cap.prev_percent = 0;
1306 di->bat_cap.permille = 0;
1307 percent = 0;
1308 di->bat_cap.prev_mah = 0;
1309 di->bat_cap.mah = 0;
1310 changed = true;
1311 } else if (di->flags.fully_charged) {
1312 /*
1313 * We report 100% if algorithm reported fully charged
1314 * and show 100% during maintenance charging (scaling).
1315 */
1316 if (di->flags.force_full) {
1317 di->bat_cap.prev_percent = percent;
1318 di->bat_cap.prev_mah = di->bat_cap.mah;
1319
1320 changed = true;
1321
1322 if (!di->bat_cap.cap_scale.enable &&
1323 di->bm->capacity_scaling) {
1324 di->bat_cap.cap_scale.enable = true;
1325 di->bat_cap.cap_scale.cap_to_scale[0] = 100;
1326 di->bat_cap.cap_scale.cap_to_scale[1] =
1327 di->bat_cap.prev_percent;
1328 di->bat_cap.cap_scale.disable_cap_level = 100;
1329 }
1330 } else if (di->bat_cap.prev_percent != percent) {
1331 dev_dbg(di->dev,
1332 "battery reported full "
1333 "but capacity dropping: %d\n",
1334 percent);
1335 di->bat_cap.prev_percent = percent;
1336 di->bat_cap.prev_mah = di->bat_cap.mah;
1337
1338 changed = true;
1339 }
1340 } else if (di->bat_cap.prev_percent != percent) {
1341 if (percent == 0) {
1342 /*
1343 * We will not report 0% unless we've got
1344 * the LOW_BAT IRQ, no matter what the FG
1345 * algorithm says.
1346 */
1347 di->bat_cap.prev_percent = 1;
1348 percent = 1;
1349
1350 changed = true;
1351 } else if (!(!di->flags.charging &&
1352 percent > di->bat_cap.prev_percent) || init) {
1353 /*
1354 * We do not allow reported capacity to go up
1355 * unless we're charging or if we're in init
1356 */
1357 dev_dbg(di->dev,
1358 "capacity changed from %d to %d (%d)\n",
1359 di->bat_cap.prev_percent,
1360 percent,
1361 di->bat_cap.permille);
1362 di->bat_cap.prev_percent = percent;
1363 di->bat_cap.prev_mah = di->bat_cap.mah;
1364
1365 changed = true;
1366 } else {
1367 dev_dbg(di->dev, "capacity not allowed to go up since "
1368 "no charger is connected: %d to %d (%d)\n",
1369 di->bat_cap.prev_percent,
1370 percent,
1371 di->bat_cap.permille);
1372 }
1373 }
1374
1375 if (changed) {
1376 if (di->bm->capacity_scaling) {
1377 di->bat_cap.cap_scale.scaled_cap =
1378 ab8500_fg_calculate_scaled_capacity(di);
1379
1380 dev_info(di->dev, "capacity=%d (%d)\n",
1381 di->bat_cap.prev_percent,
1382 di->bat_cap.cap_scale.scaled_cap);
1383 }
1384 power_supply_changed(di->fg_psy);
1385 if (di->flags.fully_charged && di->flags.force_full) {
1386 dev_dbg(di->dev, "Battery full, notifying.\n");
1387 di->flags.force_full = false;
1388 sysfs_notify(&di->fg_kobject, NULL, "charge_full");
1389 }
1390 sysfs_notify(&di->fg_kobject, NULL, "charge_now");
1391 }
1392 }
1393
ab8500_fg_charge_state_to(struct ab8500_fg * di,enum ab8500_fg_charge_state new_state)1394 static void ab8500_fg_charge_state_to(struct ab8500_fg *di,
1395 enum ab8500_fg_charge_state new_state)
1396 {
1397 dev_dbg(di->dev, "Charge state from %d [%s] to %d [%s]\n",
1398 di->charge_state,
1399 charge_state[di->charge_state],
1400 new_state,
1401 charge_state[new_state]);
1402
1403 di->charge_state = new_state;
1404 }
1405
ab8500_fg_discharge_state_to(struct ab8500_fg * di,enum ab8500_fg_discharge_state new_state)1406 static void ab8500_fg_discharge_state_to(struct ab8500_fg *di,
1407 enum ab8500_fg_discharge_state new_state)
1408 {
1409 dev_dbg(di->dev, "Discharge state from %d [%s] to %d [%s]\n",
1410 di->discharge_state,
1411 discharge_state[di->discharge_state],
1412 new_state,
1413 discharge_state[new_state]);
1414
1415 di->discharge_state = new_state;
1416 }
1417
1418 /**
1419 * ab8500_fg_algorithm_charging() - FG algorithm for when charging
1420 * @di: pointer to the ab8500_fg structure
1421 *
1422 * Battery capacity calculation state machine for when we're charging
1423 */
ab8500_fg_algorithm_charging(struct ab8500_fg * di)1424 static void ab8500_fg_algorithm_charging(struct ab8500_fg *di)
1425 {
1426 /*
1427 * If we change to discharge mode
1428 * we should start with recovery
1429 */
1430 if (di->discharge_state != AB8500_FG_DISCHARGE_INIT_RECOVERY)
1431 ab8500_fg_discharge_state_to(di,
1432 AB8500_FG_DISCHARGE_INIT_RECOVERY);
1433
1434 switch (di->charge_state) {
1435 case AB8500_FG_CHARGE_INIT:
1436 di->fg_samples = SEC_TO_SAMPLE(
1437 di->bm->fg_params->accu_charging);
1438
1439 ab8500_fg_coulomb_counter(di, true);
1440 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_READOUT);
1441
1442 break;
1443
1444 case AB8500_FG_CHARGE_READOUT:
1445 /*
1446 * Read the FG and calculate the new capacity
1447 */
1448 mutex_lock(&di->cc_lock);
1449 if (!di->flags.conv_done && !di->flags.force_full) {
1450 /* Wasn't the CC IRQ that got us here */
1451 mutex_unlock(&di->cc_lock);
1452 dev_dbg(di->dev, "%s CC conv not done\n",
1453 __func__);
1454
1455 break;
1456 }
1457 di->flags.conv_done = false;
1458 mutex_unlock(&di->cc_lock);
1459
1460 ab8500_fg_calc_cap_charging(di);
1461
1462 break;
1463
1464 default:
1465 break;
1466 }
1467
1468 /* Check capacity limits */
1469 ab8500_fg_check_capacity_limits(di, false);
1470 }
1471
force_capacity(struct ab8500_fg * di)1472 static void force_capacity(struct ab8500_fg *di)
1473 {
1474 int cap;
1475
1476 ab8500_fg_clear_cap_samples(di);
1477 cap = di->bat_cap.user_mah;
1478 if (cap > di->bat_cap.max_mah_design) {
1479 dev_dbg(di->dev, "Remaining cap %d can't be bigger than total"
1480 " %d\n", cap, di->bat_cap.max_mah_design);
1481 cap = di->bat_cap.max_mah_design;
1482 }
1483 ab8500_fg_fill_cap_sample(di, di->bat_cap.user_mah);
1484 di->bat_cap.permille = ab8500_fg_convert_mah_to_permille(di, cap);
1485 di->bat_cap.mah = cap;
1486 ab8500_fg_check_capacity_limits(di, true);
1487 }
1488
check_sysfs_capacity(struct ab8500_fg * di)1489 static bool check_sysfs_capacity(struct ab8500_fg *di)
1490 {
1491 int cap, lower, upper;
1492 int cap_permille;
1493
1494 cap = di->bat_cap.user_mah;
1495
1496 cap_permille = ab8500_fg_convert_mah_to_permille(di,
1497 di->bat_cap.user_mah);
1498
1499 lower = di->bat_cap.permille - di->bm->fg_params->user_cap_limit * 10;
1500 upper = di->bat_cap.permille + di->bm->fg_params->user_cap_limit * 10;
1501
1502 if (lower < 0)
1503 lower = 0;
1504 /* 1000 is permille, -> 100 percent */
1505 if (upper > 1000)
1506 upper = 1000;
1507
1508 dev_dbg(di->dev, "Capacity limits:"
1509 " (Lower: %d User: %d Upper: %d) [user: %d, was: %d]\n",
1510 lower, cap_permille, upper, cap, di->bat_cap.mah);
1511
1512 /* If within limits, use the saved capacity and exit estimation...*/
1513 if (cap_permille > lower && cap_permille < upper) {
1514 dev_dbg(di->dev, "OK! Using users cap %d uAh now\n", cap);
1515 force_capacity(di);
1516 return true;
1517 }
1518 dev_dbg(di->dev, "Capacity from user out of limits, ignoring");
1519 return false;
1520 }
1521
1522 /**
1523 * ab8500_fg_algorithm_discharging() - FG algorithm for when discharging
1524 * @di: pointer to the ab8500_fg structure
1525 *
1526 * Battery capacity calculation state machine for when we're discharging
1527 */
ab8500_fg_algorithm_discharging(struct ab8500_fg * di)1528 static void ab8500_fg_algorithm_discharging(struct ab8500_fg *di)
1529 {
1530 int sleep_time;
1531
1532 /* If we change to charge mode we should start with init */
1533 if (di->charge_state != AB8500_FG_CHARGE_INIT)
1534 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
1535
1536 switch (di->discharge_state) {
1537 case AB8500_FG_DISCHARGE_INIT:
1538 /* We use the FG IRQ to work on */
1539 di->init_cnt = 0;
1540 di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
1541 ab8500_fg_coulomb_counter(di, true);
1542 ab8500_fg_discharge_state_to(di,
1543 AB8500_FG_DISCHARGE_INITMEASURING);
1544
1545 /* Intentional fallthrough */
1546 case AB8500_FG_DISCHARGE_INITMEASURING:
1547 /*
1548 * Discard a number of samples during startup.
1549 * After that, use compensated voltage for a few
1550 * samples to get an initial capacity.
1551 * Then go to READOUT
1552 */
1553 sleep_time = di->bm->fg_params->init_timer;
1554
1555 /* Discard the first [x] seconds */
1556 if (di->init_cnt > di->bm->fg_params->init_discard_time) {
1557 ab8500_fg_calc_cap_discharge_voltage(di, true);
1558
1559 ab8500_fg_check_capacity_limits(di, true);
1560 }
1561
1562 di->init_cnt += sleep_time;
1563 if (di->init_cnt > di->bm->fg_params->init_total_time)
1564 ab8500_fg_discharge_state_to(di,
1565 AB8500_FG_DISCHARGE_READOUT_INIT);
1566
1567 break;
1568
1569 case AB8500_FG_DISCHARGE_INIT_RECOVERY:
1570 di->recovery_cnt = 0;
1571 di->recovery_needed = true;
1572 ab8500_fg_discharge_state_to(di,
1573 AB8500_FG_DISCHARGE_RECOVERY);
1574
1575 /* Intentional fallthrough */
1576
1577 case AB8500_FG_DISCHARGE_RECOVERY:
1578 sleep_time = di->bm->fg_params->recovery_sleep_timer;
1579
1580 /*
1581 * We should check the power consumption
1582 * If low, go to READOUT (after x min) or
1583 * RECOVERY_SLEEP if time left.
1584 * If high, go to READOUT
1585 */
1586 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1587
1588 if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1589 if (di->recovery_cnt >
1590 di->bm->fg_params->recovery_total_time) {
1591 di->fg_samples = SEC_TO_SAMPLE(
1592 di->bm->fg_params->accu_high_curr);
1593 ab8500_fg_coulomb_counter(di, true);
1594 ab8500_fg_discharge_state_to(di,
1595 AB8500_FG_DISCHARGE_READOUT);
1596 di->recovery_needed = false;
1597 } else {
1598 queue_delayed_work(di->fg_wq,
1599 &di->fg_periodic_work,
1600 sleep_time * HZ);
1601 }
1602 di->recovery_cnt += sleep_time;
1603 } else {
1604 di->fg_samples = SEC_TO_SAMPLE(
1605 di->bm->fg_params->accu_high_curr);
1606 ab8500_fg_coulomb_counter(di, true);
1607 ab8500_fg_discharge_state_to(di,
1608 AB8500_FG_DISCHARGE_READOUT);
1609 }
1610 break;
1611
1612 case AB8500_FG_DISCHARGE_READOUT_INIT:
1613 di->fg_samples = SEC_TO_SAMPLE(
1614 di->bm->fg_params->accu_high_curr);
1615 ab8500_fg_coulomb_counter(di, true);
1616 ab8500_fg_discharge_state_to(di,
1617 AB8500_FG_DISCHARGE_READOUT);
1618 break;
1619
1620 case AB8500_FG_DISCHARGE_READOUT:
1621 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1622
1623 if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1624 /* Detect mode change */
1625 if (di->high_curr_mode) {
1626 di->high_curr_mode = false;
1627 di->high_curr_cnt = 0;
1628 }
1629
1630 if (di->recovery_needed) {
1631 ab8500_fg_discharge_state_to(di,
1632 AB8500_FG_DISCHARGE_INIT_RECOVERY);
1633
1634 queue_delayed_work(di->fg_wq,
1635 &di->fg_periodic_work, 0);
1636
1637 break;
1638 }
1639
1640 ab8500_fg_calc_cap_discharge_voltage(di, true);
1641 } else {
1642 mutex_lock(&di->cc_lock);
1643 if (!di->flags.conv_done) {
1644 /* Wasn't the CC IRQ that got us here */
1645 mutex_unlock(&di->cc_lock);
1646 dev_dbg(di->dev, "%s CC conv not done\n",
1647 __func__);
1648
1649 break;
1650 }
1651 di->flags.conv_done = false;
1652 mutex_unlock(&di->cc_lock);
1653
1654 /* Detect mode change */
1655 if (!di->high_curr_mode) {
1656 di->high_curr_mode = true;
1657 di->high_curr_cnt = 0;
1658 }
1659
1660 di->high_curr_cnt +=
1661 di->bm->fg_params->accu_high_curr;
1662 if (di->high_curr_cnt >
1663 di->bm->fg_params->high_curr_time)
1664 di->recovery_needed = true;
1665
1666 ab8500_fg_calc_cap_discharge_fg(di);
1667 }
1668
1669 ab8500_fg_check_capacity_limits(di, false);
1670
1671 break;
1672
1673 case AB8500_FG_DISCHARGE_WAKEUP:
1674 ab8500_fg_calc_cap_discharge_voltage(di, true);
1675
1676 di->fg_samples = SEC_TO_SAMPLE(
1677 di->bm->fg_params->accu_high_curr);
1678 ab8500_fg_coulomb_counter(di, true);
1679 ab8500_fg_discharge_state_to(di,
1680 AB8500_FG_DISCHARGE_READOUT);
1681
1682 ab8500_fg_check_capacity_limits(di, false);
1683
1684 break;
1685
1686 default:
1687 break;
1688 }
1689 }
1690
1691 /**
1692 * ab8500_fg_algorithm_calibrate() - Internal columb counter offset calibration
1693 * @di: pointer to the ab8500_fg structure
1694 *
1695 */
ab8500_fg_algorithm_calibrate(struct ab8500_fg * di)1696 static void ab8500_fg_algorithm_calibrate(struct ab8500_fg *di)
1697 {
1698 int ret;
1699
1700 switch (di->calib_state) {
1701 case AB8500_FG_CALIB_INIT:
1702 dev_dbg(di->dev, "Calibration ongoing...\n");
1703
1704 ret = abx500_mask_and_set_register_interruptible(di->dev,
1705 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1706 CC_INT_CAL_N_AVG_MASK, CC_INT_CAL_SAMPLES_8);
1707 if (ret < 0)
1708 goto err;
1709
1710 ret = abx500_mask_and_set_register_interruptible(di->dev,
1711 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1712 CC_INTAVGOFFSET_ENA, CC_INTAVGOFFSET_ENA);
1713 if (ret < 0)
1714 goto err;
1715 di->calib_state = AB8500_FG_CALIB_WAIT;
1716 break;
1717 case AB8500_FG_CALIB_END:
1718 ret = abx500_mask_and_set_register_interruptible(di->dev,
1719 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1720 CC_MUXOFFSET, CC_MUXOFFSET);
1721 if (ret < 0)
1722 goto err;
1723 di->flags.calibrate = false;
1724 dev_dbg(di->dev, "Calibration done...\n");
1725 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1726 break;
1727 case AB8500_FG_CALIB_WAIT:
1728 dev_dbg(di->dev, "Calibration WFI\n");
1729 default:
1730 break;
1731 }
1732 return;
1733 err:
1734 /* Something went wrong, don't calibrate then */
1735 dev_err(di->dev, "failed to calibrate the CC\n");
1736 di->flags.calibrate = false;
1737 di->calib_state = AB8500_FG_CALIB_INIT;
1738 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1739 }
1740
1741 /**
1742 * ab8500_fg_algorithm() - Entry point for the FG algorithm
1743 * @di: pointer to the ab8500_fg structure
1744 *
1745 * Entry point for the battery capacity calculation state machine
1746 */
ab8500_fg_algorithm(struct ab8500_fg * di)1747 static void ab8500_fg_algorithm(struct ab8500_fg *di)
1748 {
1749 if (di->flags.calibrate)
1750 ab8500_fg_algorithm_calibrate(di);
1751 else {
1752 if (di->flags.charging)
1753 ab8500_fg_algorithm_charging(di);
1754 else
1755 ab8500_fg_algorithm_discharging(di);
1756 }
1757
1758 dev_dbg(di->dev, "[FG_DATA] %d %d %d %d %d %d %d %d %d %d "
1759 "%d %d %d %d %d %d %d\n",
1760 di->bat_cap.max_mah_design,
1761 di->bat_cap.max_mah,
1762 di->bat_cap.mah,
1763 di->bat_cap.permille,
1764 di->bat_cap.level,
1765 di->bat_cap.prev_mah,
1766 di->bat_cap.prev_percent,
1767 di->bat_cap.prev_level,
1768 di->vbat,
1769 di->inst_curr,
1770 di->avg_curr,
1771 di->accu_charge,
1772 di->flags.charging,
1773 di->charge_state,
1774 di->discharge_state,
1775 di->high_curr_mode,
1776 di->recovery_needed);
1777 }
1778
1779 /**
1780 * ab8500_fg_periodic_work() - Run the FG state machine periodically
1781 * @work: pointer to the work_struct structure
1782 *
1783 * Work queue function for periodic work
1784 */
ab8500_fg_periodic_work(struct work_struct * work)1785 static void ab8500_fg_periodic_work(struct work_struct *work)
1786 {
1787 struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1788 fg_periodic_work.work);
1789
1790 if (di->init_capacity) {
1791 /* Get an initial capacity calculation */
1792 ab8500_fg_calc_cap_discharge_voltage(di, true);
1793 ab8500_fg_check_capacity_limits(di, true);
1794 di->init_capacity = false;
1795
1796 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1797 } else if (di->flags.user_cap) {
1798 if (check_sysfs_capacity(di)) {
1799 ab8500_fg_check_capacity_limits(di, true);
1800 if (di->flags.charging)
1801 ab8500_fg_charge_state_to(di,
1802 AB8500_FG_CHARGE_INIT);
1803 else
1804 ab8500_fg_discharge_state_to(di,
1805 AB8500_FG_DISCHARGE_READOUT_INIT);
1806 }
1807 di->flags.user_cap = false;
1808 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1809 } else
1810 ab8500_fg_algorithm(di);
1811
1812 }
1813
1814 /**
1815 * ab8500_fg_check_hw_failure_work() - Check OVV_BAT condition
1816 * @work: pointer to the work_struct structure
1817 *
1818 * Work queue function for checking the OVV_BAT condition
1819 */
ab8500_fg_check_hw_failure_work(struct work_struct * work)1820 static void ab8500_fg_check_hw_failure_work(struct work_struct *work)
1821 {
1822 int ret;
1823 u8 reg_value;
1824
1825 struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1826 fg_check_hw_failure_work.work);
1827
1828 /*
1829 * If we have had a battery over-voltage situation,
1830 * check ovv-bit to see if it should be reset.
1831 */
1832 ret = abx500_get_register_interruptible(di->dev,
1833 AB8500_CHARGER, AB8500_CH_STAT_REG,
1834 ®_value);
1835 if (ret < 0) {
1836 dev_err(di->dev, "%s ab8500 read failed\n", __func__);
1837 return;
1838 }
1839 if ((reg_value & BATT_OVV) == BATT_OVV) {
1840 if (!di->flags.bat_ovv) {
1841 dev_dbg(di->dev, "Battery OVV\n");
1842 di->flags.bat_ovv = true;
1843 power_supply_changed(di->fg_psy);
1844 }
1845 /* Not yet recovered from ovv, reschedule this test */
1846 queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work,
1847 HZ);
1848 } else {
1849 dev_dbg(di->dev, "Battery recovered from OVV\n");
1850 di->flags.bat_ovv = false;
1851 power_supply_changed(di->fg_psy);
1852 }
1853 }
1854
1855 /**
1856 * ab8500_fg_low_bat_work() - Check LOW_BAT condition
1857 * @work: pointer to the work_struct structure
1858 *
1859 * Work queue function for checking the LOW_BAT condition
1860 */
ab8500_fg_low_bat_work(struct work_struct * work)1861 static void ab8500_fg_low_bat_work(struct work_struct *work)
1862 {
1863 int vbat;
1864
1865 struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1866 fg_low_bat_work.work);
1867
1868 vbat = ab8500_fg_bat_voltage(di);
1869
1870 /* Check if LOW_BAT still fulfilled */
1871 if (vbat < di->bm->fg_params->lowbat_threshold) {
1872 /* Is it time to shut down? */
1873 if (di->low_bat_cnt < 1) {
1874 di->flags.low_bat = true;
1875 dev_warn(di->dev, "Shut down pending...\n");
1876 } else {
1877 /*
1878 * Else we need to re-schedule this check to be able to detect
1879 * if the voltage increases again during charging or
1880 * due to decreasing load.
1881 */
1882 di->low_bat_cnt--;
1883 dev_warn(di->dev, "Battery voltage still LOW\n");
1884 queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
1885 round_jiffies(LOW_BAT_CHECK_INTERVAL));
1886 }
1887 } else {
1888 di->flags.low_bat_delay = false;
1889 di->low_bat_cnt = 10;
1890 dev_warn(di->dev, "Battery voltage OK again\n");
1891 }
1892
1893 /* This is needed to dispatch LOW_BAT */
1894 ab8500_fg_check_capacity_limits(di, false);
1895 }
1896
1897 /**
1898 * ab8500_fg_battok_calc - calculate the bit pattern corresponding
1899 * to the target voltage.
1900 * @di: pointer to the ab8500_fg structure
1901 * @target: target voltage
1902 *
1903 * Returns bit pattern closest to the target voltage
1904 * valid return values are 0-14. (0-BATT_OK_MAX_NR_INCREMENTS)
1905 */
1906
ab8500_fg_battok_calc(struct ab8500_fg * di,int target)1907 static int ab8500_fg_battok_calc(struct ab8500_fg *di, int target)
1908 {
1909 if (target > BATT_OK_MIN +
1910 (BATT_OK_INCREMENT * BATT_OK_MAX_NR_INCREMENTS))
1911 return BATT_OK_MAX_NR_INCREMENTS;
1912 if (target < BATT_OK_MIN)
1913 return 0;
1914 return (target - BATT_OK_MIN) / BATT_OK_INCREMENT;
1915 }
1916
1917 /**
1918 * ab8500_fg_battok_init_hw_register - init battok levels
1919 * @di: pointer to the ab8500_fg structure
1920 *
1921 */
1922
ab8500_fg_battok_init_hw_register(struct ab8500_fg * di)1923 static int ab8500_fg_battok_init_hw_register(struct ab8500_fg *di)
1924 {
1925 int selected;
1926 int sel0;
1927 int sel1;
1928 int cbp_sel0;
1929 int cbp_sel1;
1930 int ret;
1931 int new_val;
1932
1933 sel0 = di->bm->fg_params->battok_falling_th_sel0;
1934 sel1 = di->bm->fg_params->battok_raising_th_sel1;
1935
1936 cbp_sel0 = ab8500_fg_battok_calc(di, sel0);
1937 cbp_sel1 = ab8500_fg_battok_calc(di, sel1);
1938
1939 selected = BATT_OK_MIN + cbp_sel0 * BATT_OK_INCREMENT;
1940
1941 if (selected != sel0)
1942 dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1943 sel0, selected, cbp_sel0);
1944
1945 selected = BATT_OK_MIN + cbp_sel1 * BATT_OK_INCREMENT;
1946
1947 if (selected != sel1)
1948 dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1949 sel1, selected, cbp_sel1);
1950
1951 new_val = cbp_sel0 | (cbp_sel1 << 4);
1952
1953 dev_dbg(di->dev, "using: %x %d %d\n", new_val, cbp_sel0, cbp_sel1);
1954 ret = abx500_set_register_interruptible(di->dev, AB8500_SYS_CTRL2_BLOCK,
1955 AB8500_BATT_OK_REG, new_val);
1956 return ret;
1957 }
1958
1959 /**
1960 * ab8500_fg_instant_work() - Run the FG state machine instantly
1961 * @work: pointer to the work_struct structure
1962 *
1963 * Work queue function for instant work
1964 */
ab8500_fg_instant_work(struct work_struct * work)1965 static void ab8500_fg_instant_work(struct work_struct *work)
1966 {
1967 struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_work);
1968
1969 ab8500_fg_algorithm(di);
1970 }
1971
1972 /**
1973 * ab8500_fg_cc_data_end_handler() - end of data conversion isr.
1974 * @irq: interrupt number
1975 * @_di: pointer to the ab8500_fg structure
1976 *
1977 * Returns IRQ status(IRQ_HANDLED)
1978 */
ab8500_fg_cc_data_end_handler(int irq,void * _di)1979 static irqreturn_t ab8500_fg_cc_data_end_handler(int irq, void *_di)
1980 {
1981 struct ab8500_fg *di = _di;
1982 if (!di->nbr_cceoc_irq_cnt) {
1983 di->nbr_cceoc_irq_cnt++;
1984 complete(&di->ab8500_fg_started);
1985 } else {
1986 di->nbr_cceoc_irq_cnt = 0;
1987 complete(&di->ab8500_fg_complete);
1988 }
1989 return IRQ_HANDLED;
1990 }
1991
1992 /**
1993 * ab8500_fg_cc_int_calib_handler () - end of calibration isr.
1994 * @irq: interrupt number
1995 * @_di: pointer to the ab8500_fg structure
1996 *
1997 * Returns IRQ status(IRQ_HANDLED)
1998 */
ab8500_fg_cc_int_calib_handler(int irq,void * _di)1999 static irqreturn_t ab8500_fg_cc_int_calib_handler(int irq, void *_di)
2000 {
2001 struct ab8500_fg *di = _di;
2002 di->calib_state = AB8500_FG_CALIB_END;
2003 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2004 return IRQ_HANDLED;
2005 }
2006
2007 /**
2008 * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
2009 * @irq: interrupt number
2010 * @_di: pointer to the ab8500_fg structure
2011 *
2012 * Returns IRQ status(IRQ_HANDLED)
2013 */
ab8500_fg_cc_convend_handler(int irq,void * _di)2014 static irqreturn_t ab8500_fg_cc_convend_handler(int irq, void *_di)
2015 {
2016 struct ab8500_fg *di = _di;
2017
2018 queue_work(di->fg_wq, &di->fg_acc_cur_work);
2019
2020 return IRQ_HANDLED;
2021 }
2022
2023 /**
2024 * ab8500_fg_batt_ovv_handler() - Battery OVV occured
2025 * @irq: interrupt number
2026 * @_di: pointer to the ab8500_fg structure
2027 *
2028 * Returns IRQ status(IRQ_HANDLED)
2029 */
ab8500_fg_batt_ovv_handler(int irq,void * _di)2030 static irqreturn_t ab8500_fg_batt_ovv_handler(int irq, void *_di)
2031 {
2032 struct ab8500_fg *di = _di;
2033
2034 dev_dbg(di->dev, "Battery OVV\n");
2035
2036 /* Schedule a new HW failure check */
2037 queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work, 0);
2038
2039 return IRQ_HANDLED;
2040 }
2041
2042 /**
2043 * ab8500_fg_lowbatf_handler() - Battery voltage is below LOW threshold
2044 * @irq: interrupt number
2045 * @_di: pointer to the ab8500_fg structure
2046 *
2047 * Returns IRQ status(IRQ_HANDLED)
2048 */
ab8500_fg_lowbatf_handler(int irq,void * _di)2049 static irqreturn_t ab8500_fg_lowbatf_handler(int irq, void *_di)
2050 {
2051 struct ab8500_fg *di = _di;
2052
2053 /* Initiate handling in ab8500_fg_low_bat_work() if not already initiated. */
2054 if (!di->flags.low_bat_delay) {
2055 dev_warn(di->dev, "Battery voltage is below LOW threshold\n");
2056 di->flags.low_bat_delay = true;
2057 /*
2058 * Start a timer to check LOW_BAT again after some time
2059 * This is done to avoid shutdown on single voltage dips
2060 */
2061 queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
2062 round_jiffies(LOW_BAT_CHECK_INTERVAL));
2063 }
2064 return IRQ_HANDLED;
2065 }
2066
2067 /**
2068 * ab8500_fg_get_property() - get the fg properties
2069 * @psy: pointer to the power_supply structure
2070 * @psp: pointer to the power_supply_property structure
2071 * @val: pointer to the power_supply_propval union
2072 *
2073 * This function gets called when an application tries to get the
2074 * fg properties by reading the sysfs files.
2075 * voltage_now: battery voltage
2076 * current_now: battery instant current
2077 * current_avg: battery average current
2078 * charge_full_design: capacity where battery is considered full
2079 * charge_now: battery capacity in nAh
2080 * capacity: capacity in percent
2081 * capacity_level: capacity level
2082 *
2083 * Returns error code in case of failure else 0 on success
2084 */
ab8500_fg_get_property(struct power_supply * psy,enum power_supply_property psp,union power_supply_propval * val)2085 static int ab8500_fg_get_property(struct power_supply *psy,
2086 enum power_supply_property psp,
2087 union power_supply_propval *val)
2088 {
2089 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2090
2091 /*
2092 * If battery is identified as unknown and charging of unknown
2093 * batteries is disabled, we always report 100% capacity and
2094 * capacity level UNKNOWN, since we can't calculate
2095 * remaining capacity
2096 */
2097
2098 switch (psp) {
2099 case POWER_SUPPLY_PROP_VOLTAGE_NOW:
2100 if (di->flags.bat_ovv)
2101 val->intval = BATT_OVV_VALUE * 1000;
2102 else
2103 val->intval = di->vbat * 1000;
2104 break;
2105 case POWER_SUPPLY_PROP_CURRENT_NOW:
2106 val->intval = di->inst_curr * 1000;
2107 break;
2108 case POWER_SUPPLY_PROP_CURRENT_AVG:
2109 val->intval = di->avg_curr * 1000;
2110 break;
2111 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
2112 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2113 di->bat_cap.max_mah_design);
2114 break;
2115 case POWER_SUPPLY_PROP_ENERGY_FULL:
2116 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2117 di->bat_cap.max_mah);
2118 break;
2119 case POWER_SUPPLY_PROP_ENERGY_NOW:
2120 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2121 di->flags.batt_id_received)
2122 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2123 di->bat_cap.max_mah);
2124 else
2125 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2126 di->bat_cap.prev_mah);
2127 break;
2128 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
2129 val->intval = di->bat_cap.max_mah_design;
2130 break;
2131 case POWER_SUPPLY_PROP_CHARGE_FULL:
2132 val->intval = di->bat_cap.max_mah;
2133 break;
2134 case POWER_SUPPLY_PROP_CHARGE_NOW:
2135 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2136 di->flags.batt_id_received)
2137 val->intval = di->bat_cap.max_mah;
2138 else
2139 val->intval = di->bat_cap.prev_mah;
2140 break;
2141 case POWER_SUPPLY_PROP_CAPACITY:
2142 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2143 di->flags.batt_id_received)
2144 val->intval = 100;
2145 else
2146 val->intval = di->bat_cap.prev_percent;
2147 break;
2148 case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
2149 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2150 di->flags.batt_id_received)
2151 val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
2152 else
2153 val->intval = di->bat_cap.prev_level;
2154 break;
2155 default:
2156 return -EINVAL;
2157 }
2158 return 0;
2159 }
2160
ab8500_fg_get_ext_psy_data(struct device * dev,void * data)2161 static int ab8500_fg_get_ext_psy_data(struct device *dev, void *data)
2162 {
2163 struct power_supply *psy;
2164 struct power_supply *ext = dev_get_drvdata(dev);
2165 const char **supplicants = (const char **)ext->supplied_to;
2166 struct ab8500_fg *di;
2167 union power_supply_propval ret;
2168 int j;
2169
2170 psy = (struct power_supply *)data;
2171 di = power_supply_get_drvdata(psy);
2172
2173 /*
2174 * For all psy where the name of your driver
2175 * appears in any supplied_to
2176 */
2177 j = match_string(supplicants, ext->num_supplicants, psy->desc->name);
2178 if (j < 0)
2179 return 0;
2180
2181 /* Go through all properties for the psy */
2182 for (j = 0; j < ext->desc->num_properties; j++) {
2183 enum power_supply_property prop;
2184 prop = ext->desc->properties[j];
2185
2186 if (power_supply_get_property(ext, prop, &ret))
2187 continue;
2188
2189 switch (prop) {
2190 case POWER_SUPPLY_PROP_STATUS:
2191 switch (ext->desc->type) {
2192 case POWER_SUPPLY_TYPE_BATTERY:
2193 switch (ret.intval) {
2194 case POWER_SUPPLY_STATUS_UNKNOWN:
2195 case POWER_SUPPLY_STATUS_DISCHARGING:
2196 case POWER_SUPPLY_STATUS_NOT_CHARGING:
2197 if (!di->flags.charging)
2198 break;
2199 di->flags.charging = false;
2200 di->flags.fully_charged = false;
2201 if (di->bm->capacity_scaling)
2202 ab8500_fg_update_cap_scalers(di);
2203 queue_work(di->fg_wq, &di->fg_work);
2204 break;
2205 case POWER_SUPPLY_STATUS_FULL:
2206 if (di->flags.fully_charged)
2207 break;
2208 di->flags.fully_charged = true;
2209 di->flags.force_full = true;
2210 /* Save current capacity as maximum */
2211 di->bat_cap.max_mah = di->bat_cap.mah;
2212 queue_work(di->fg_wq, &di->fg_work);
2213 break;
2214 case POWER_SUPPLY_STATUS_CHARGING:
2215 if (di->flags.charging &&
2216 !di->flags.fully_charged)
2217 break;
2218 di->flags.charging = true;
2219 di->flags.fully_charged = false;
2220 if (di->bm->capacity_scaling)
2221 ab8500_fg_update_cap_scalers(di);
2222 queue_work(di->fg_wq, &di->fg_work);
2223 break;
2224 };
2225 default:
2226 break;
2227 };
2228 break;
2229 case POWER_SUPPLY_PROP_TECHNOLOGY:
2230 switch (ext->desc->type) {
2231 case POWER_SUPPLY_TYPE_BATTERY:
2232 if (!di->flags.batt_id_received &&
2233 di->bm->batt_id != BATTERY_UNKNOWN) {
2234 const struct abx500_battery_type *b;
2235
2236 b = &(di->bm->bat_type[di->bm->batt_id]);
2237
2238 di->flags.batt_id_received = true;
2239
2240 di->bat_cap.max_mah_design =
2241 MILLI_TO_MICRO *
2242 b->charge_full_design;
2243
2244 di->bat_cap.max_mah =
2245 di->bat_cap.max_mah_design;
2246
2247 di->vbat_nom = b->nominal_voltage;
2248 }
2249
2250 if (ret.intval)
2251 di->flags.batt_unknown = false;
2252 else
2253 di->flags.batt_unknown = true;
2254 break;
2255 default:
2256 break;
2257 }
2258 break;
2259 case POWER_SUPPLY_PROP_TEMP:
2260 switch (ext->desc->type) {
2261 case POWER_SUPPLY_TYPE_BATTERY:
2262 if (di->flags.batt_id_received)
2263 di->bat_temp = ret.intval;
2264 break;
2265 default:
2266 break;
2267 }
2268 break;
2269 default:
2270 break;
2271 }
2272 }
2273 return 0;
2274 }
2275
2276 /**
2277 * ab8500_fg_init_hw_registers() - Set up FG related registers
2278 * @di: pointer to the ab8500_fg structure
2279 *
2280 * Set up battery OVV, low battery voltage registers
2281 */
ab8500_fg_init_hw_registers(struct ab8500_fg * di)2282 static int ab8500_fg_init_hw_registers(struct ab8500_fg *di)
2283 {
2284 int ret;
2285
2286 /* Set VBAT OVV threshold */
2287 ret = abx500_mask_and_set_register_interruptible(di->dev,
2288 AB8500_CHARGER,
2289 AB8500_BATT_OVV,
2290 BATT_OVV_TH_4P75,
2291 BATT_OVV_TH_4P75);
2292 if (ret) {
2293 dev_err(di->dev, "failed to set BATT_OVV\n");
2294 goto out;
2295 }
2296
2297 /* Enable VBAT OVV detection */
2298 ret = abx500_mask_and_set_register_interruptible(di->dev,
2299 AB8500_CHARGER,
2300 AB8500_BATT_OVV,
2301 BATT_OVV_ENA,
2302 BATT_OVV_ENA);
2303 if (ret) {
2304 dev_err(di->dev, "failed to enable BATT_OVV\n");
2305 goto out;
2306 }
2307
2308 /* Low Battery Voltage */
2309 ret = abx500_set_register_interruptible(di->dev,
2310 AB8500_SYS_CTRL2_BLOCK,
2311 AB8500_LOW_BAT_REG,
2312 ab8500_volt_to_regval(
2313 di->bm->fg_params->lowbat_threshold) << 1 |
2314 LOW_BAT_ENABLE);
2315 if (ret) {
2316 dev_err(di->dev, "%s write failed\n", __func__);
2317 goto out;
2318 }
2319
2320 /* Battery OK threshold */
2321 ret = ab8500_fg_battok_init_hw_register(di);
2322 if (ret) {
2323 dev_err(di->dev, "BattOk init write failed.\n");
2324 goto out;
2325 }
2326
2327 if (is_ab8505(di->parent)) {
2328 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2329 AB8505_RTC_PCUT_MAX_TIME_REG, di->bm->fg_params->pcut_max_time);
2330
2331 if (ret) {
2332 dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_MAX_TIME_REG\n", __func__);
2333 goto out;
2334 };
2335
2336 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2337 AB8505_RTC_PCUT_FLAG_TIME_REG, di->bm->fg_params->pcut_flag_time);
2338
2339 if (ret) {
2340 dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_FLAG_TIME_REG\n", __func__);
2341 goto out;
2342 };
2343
2344 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2345 AB8505_RTC_PCUT_RESTART_REG, di->bm->fg_params->pcut_max_restart);
2346
2347 if (ret) {
2348 dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_RESTART_REG\n", __func__);
2349 goto out;
2350 };
2351
2352 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2353 AB8505_RTC_PCUT_DEBOUNCE_REG, di->bm->fg_params->pcut_debounce_time);
2354
2355 if (ret) {
2356 dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_DEBOUNCE_REG\n", __func__);
2357 goto out;
2358 };
2359
2360 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2361 AB8505_RTC_PCUT_CTL_STATUS_REG, di->bm->fg_params->pcut_enable);
2362
2363 if (ret) {
2364 dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_CTL_STATUS_REG\n", __func__);
2365 goto out;
2366 };
2367 }
2368 out:
2369 return ret;
2370 }
2371
2372 /**
2373 * ab8500_fg_external_power_changed() - callback for power supply changes
2374 * @psy: pointer to the structure power_supply
2375 *
2376 * This function is the entry point of the pointer external_power_changed
2377 * of the structure power_supply.
2378 * This function gets executed when there is a change in any external power
2379 * supply that this driver needs to be notified of.
2380 */
ab8500_fg_external_power_changed(struct power_supply * psy)2381 static void ab8500_fg_external_power_changed(struct power_supply *psy)
2382 {
2383 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2384
2385 class_for_each_device(power_supply_class, NULL,
2386 di->fg_psy, ab8500_fg_get_ext_psy_data);
2387 }
2388
2389 /**
2390 * ab8500_fg_reinit_work() - work to reset the FG algorithm
2391 * @work: pointer to the work_struct structure
2392 *
2393 * Used to reset the current battery capacity to be able to
2394 * retrigger a new voltage base capacity calculation. For
2395 * test and verification purpose.
2396 */
ab8500_fg_reinit_work(struct work_struct * work)2397 static void ab8500_fg_reinit_work(struct work_struct *work)
2398 {
2399 struct ab8500_fg *di = container_of(work, struct ab8500_fg,
2400 fg_reinit_work.work);
2401
2402 if (di->flags.calibrate == false) {
2403 dev_dbg(di->dev, "Resetting FG state machine to init.\n");
2404 ab8500_fg_clear_cap_samples(di);
2405 ab8500_fg_calc_cap_discharge_voltage(di, true);
2406 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
2407 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
2408 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2409
2410 } else {
2411 dev_err(di->dev, "Residual offset calibration ongoing "
2412 "retrying..\n");
2413 /* Wait one second until next try*/
2414 queue_delayed_work(di->fg_wq, &di->fg_reinit_work,
2415 round_jiffies(1));
2416 }
2417 }
2418
2419 /* Exposure to the sysfs interface */
2420
2421 struct ab8500_fg_sysfs_entry {
2422 struct attribute attr;
2423 ssize_t (*show)(struct ab8500_fg *, char *);
2424 ssize_t (*store)(struct ab8500_fg *, const char *, size_t);
2425 };
2426
charge_full_show(struct ab8500_fg * di,char * buf)2427 static ssize_t charge_full_show(struct ab8500_fg *di, char *buf)
2428 {
2429 return sprintf(buf, "%d\n", di->bat_cap.max_mah);
2430 }
2431
charge_full_store(struct ab8500_fg * di,const char * buf,size_t count)2432 static ssize_t charge_full_store(struct ab8500_fg *di, const char *buf,
2433 size_t count)
2434 {
2435 unsigned long charge_full;
2436 ssize_t ret;
2437
2438 ret = kstrtoul(buf, 10, &charge_full);
2439
2440 dev_dbg(di->dev, "Ret %zd charge_full %lu", ret, charge_full);
2441
2442 if (!ret) {
2443 di->bat_cap.max_mah = (int) charge_full;
2444 ret = count;
2445 }
2446 return ret;
2447 }
2448
charge_now_show(struct ab8500_fg * di,char * buf)2449 static ssize_t charge_now_show(struct ab8500_fg *di, char *buf)
2450 {
2451 return sprintf(buf, "%d\n", di->bat_cap.prev_mah);
2452 }
2453
charge_now_store(struct ab8500_fg * di,const char * buf,size_t count)2454 static ssize_t charge_now_store(struct ab8500_fg *di, const char *buf,
2455 size_t count)
2456 {
2457 unsigned long charge_now;
2458 ssize_t ret;
2459
2460 ret = kstrtoul(buf, 10, &charge_now);
2461
2462 dev_dbg(di->dev, "Ret %zd charge_now %lu was %d",
2463 ret, charge_now, di->bat_cap.prev_mah);
2464
2465 if (!ret) {
2466 di->bat_cap.user_mah = (int) charge_now;
2467 di->flags.user_cap = true;
2468 ret = count;
2469 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2470 }
2471 return ret;
2472 }
2473
2474 static struct ab8500_fg_sysfs_entry charge_full_attr =
2475 __ATTR(charge_full, 0644, charge_full_show, charge_full_store);
2476
2477 static struct ab8500_fg_sysfs_entry charge_now_attr =
2478 __ATTR(charge_now, 0644, charge_now_show, charge_now_store);
2479
2480 static ssize_t
ab8500_fg_show(struct kobject * kobj,struct attribute * attr,char * buf)2481 ab8500_fg_show(struct kobject *kobj, struct attribute *attr, char *buf)
2482 {
2483 struct ab8500_fg_sysfs_entry *entry;
2484 struct ab8500_fg *di;
2485
2486 entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2487 di = container_of(kobj, struct ab8500_fg, fg_kobject);
2488
2489 if (!entry->show)
2490 return -EIO;
2491
2492 return entry->show(di, buf);
2493 }
2494 static ssize_t
ab8500_fg_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)2495 ab8500_fg_store(struct kobject *kobj, struct attribute *attr, const char *buf,
2496 size_t count)
2497 {
2498 struct ab8500_fg_sysfs_entry *entry;
2499 struct ab8500_fg *di;
2500
2501 entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2502 di = container_of(kobj, struct ab8500_fg, fg_kobject);
2503
2504 if (!entry->store)
2505 return -EIO;
2506
2507 return entry->store(di, buf, count);
2508 }
2509
2510 static const struct sysfs_ops ab8500_fg_sysfs_ops = {
2511 .show = ab8500_fg_show,
2512 .store = ab8500_fg_store,
2513 };
2514
2515 static struct attribute *ab8500_fg_attrs[] = {
2516 &charge_full_attr.attr,
2517 &charge_now_attr.attr,
2518 NULL,
2519 };
2520
2521 static struct kobj_type ab8500_fg_ktype = {
2522 .sysfs_ops = &ab8500_fg_sysfs_ops,
2523 .default_attrs = ab8500_fg_attrs,
2524 };
2525
2526 /**
2527 * ab8500_fg_sysfs_exit() - de-init of sysfs entry
2528 * @di: pointer to the struct ab8500_chargalg
2529 *
2530 * This function removes the entry in sysfs.
2531 */
ab8500_fg_sysfs_exit(struct ab8500_fg * di)2532 static void ab8500_fg_sysfs_exit(struct ab8500_fg *di)
2533 {
2534 kobject_del(&di->fg_kobject);
2535 }
2536
2537 /**
2538 * ab8500_fg_sysfs_init() - init of sysfs entry
2539 * @di: pointer to the struct ab8500_chargalg
2540 *
2541 * This function adds an entry in sysfs.
2542 * Returns error code in case of failure else 0(on success)
2543 */
ab8500_fg_sysfs_init(struct ab8500_fg * di)2544 static int ab8500_fg_sysfs_init(struct ab8500_fg *di)
2545 {
2546 int ret = 0;
2547
2548 ret = kobject_init_and_add(&di->fg_kobject,
2549 &ab8500_fg_ktype,
2550 NULL, "battery");
2551 if (ret < 0)
2552 dev_err(di->dev, "failed to create sysfs entry\n");
2553
2554 return ret;
2555 }
2556
ab8505_powercut_flagtime_read(struct device * dev,struct device_attribute * attr,char * buf)2557 static ssize_t ab8505_powercut_flagtime_read(struct device *dev,
2558 struct device_attribute *attr,
2559 char *buf)
2560 {
2561 int ret;
2562 u8 reg_value;
2563 struct power_supply *psy = dev_get_drvdata(dev);
2564 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2565
2566 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2567 AB8505_RTC_PCUT_FLAG_TIME_REG, ®_value);
2568
2569 if (ret < 0) {
2570 dev_err(dev, "Failed to read AB8505_RTC_PCUT_FLAG_TIME_REG\n");
2571 goto fail;
2572 }
2573
2574 return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2575
2576 fail:
2577 return ret;
2578 }
2579
ab8505_powercut_flagtime_write(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2580 static ssize_t ab8505_powercut_flagtime_write(struct device *dev,
2581 struct device_attribute *attr,
2582 const char *buf, size_t count)
2583 {
2584 int ret;
2585 long unsigned reg_value;
2586 struct power_supply *psy = dev_get_drvdata(dev);
2587 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2588
2589 reg_value = simple_strtoul(buf, NULL, 10);
2590
2591 if (reg_value > 0x7F) {
2592 dev_err(dev, "Incorrect parameter, echo 0 (1.98s) - 127 (15.625ms) for flagtime\n");
2593 goto fail;
2594 }
2595
2596 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2597 AB8505_RTC_PCUT_FLAG_TIME_REG, (u8)reg_value);
2598
2599 if (ret < 0)
2600 dev_err(dev, "Failed to set AB8505_RTC_PCUT_FLAG_TIME_REG\n");
2601
2602 fail:
2603 return count;
2604 }
2605
ab8505_powercut_maxtime_read(struct device * dev,struct device_attribute * attr,char * buf)2606 static ssize_t ab8505_powercut_maxtime_read(struct device *dev,
2607 struct device_attribute *attr,
2608 char *buf)
2609 {
2610 int ret;
2611 u8 reg_value;
2612 struct power_supply *psy = dev_get_drvdata(dev);
2613 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2614
2615 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2616 AB8505_RTC_PCUT_MAX_TIME_REG, ®_value);
2617
2618 if (ret < 0) {
2619 dev_err(dev, "Failed to read AB8505_RTC_PCUT_MAX_TIME_REG\n");
2620 goto fail;
2621 }
2622
2623 return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2624
2625 fail:
2626 return ret;
2627
2628 }
2629
ab8505_powercut_maxtime_write(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2630 static ssize_t ab8505_powercut_maxtime_write(struct device *dev,
2631 struct device_attribute *attr,
2632 const char *buf, size_t count)
2633 {
2634 int ret;
2635 int reg_value;
2636 struct power_supply *psy = dev_get_drvdata(dev);
2637 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2638
2639 reg_value = simple_strtoul(buf, NULL, 10);
2640 if (reg_value > 0x7F) {
2641 dev_err(dev, "Incorrect parameter, echo 0 (0.0s) - 127 (1.98s) for maxtime\n");
2642 goto fail;
2643 }
2644
2645 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2646 AB8505_RTC_PCUT_MAX_TIME_REG, (u8)reg_value);
2647
2648 if (ret < 0)
2649 dev_err(dev, "Failed to set AB8505_RTC_PCUT_MAX_TIME_REG\n");
2650
2651 fail:
2652 return count;
2653 }
2654
ab8505_powercut_restart_read(struct device * dev,struct device_attribute * attr,char * buf)2655 static ssize_t ab8505_powercut_restart_read(struct device *dev,
2656 struct device_attribute *attr,
2657 char *buf)
2658 {
2659 int ret;
2660 u8 reg_value;
2661 struct power_supply *psy = dev_get_drvdata(dev);
2662 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2663
2664 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2665 AB8505_RTC_PCUT_RESTART_REG, ®_value);
2666
2667 if (ret < 0) {
2668 dev_err(dev, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n");
2669 goto fail;
2670 }
2671
2672 return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0xF));
2673
2674 fail:
2675 return ret;
2676 }
2677
ab8505_powercut_restart_write(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2678 static ssize_t ab8505_powercut_restart_write(struct device *dev,
2679 struct device_attribute *attr,
2680 const char *buf, size_t count)
2681 {
2682 int ret;
2683 int reg_value;
2684 struct power_supply *psy = dev_get_drvdata(dev);
2685 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2686
2687 reg_value = simple_strtoul(buf, NULL, 10);
2688 if (reg_value > 0xF) {
2689 dev_err(dev, "Incorrect parameter, echo 0 - 15 for number of restart\n");
2690 goto fail;
2691 }
2692
2693 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2694 AB8505_RTC_PCUT_RESTART_REG, (u8)reg_value);
2695
2696 if (ret < 0)
2697 dev_err(dev, "Failed to set AB8505_RTC_PCUT_RESTART_REG\n");
2698
2699 fail:
2700 return count;
2701
2702 }
2703
ab8505_powercut_timer_read(struct device * dev,struct device_attribute * attr,char * buf)2704 static ssize_t ab8505_powercut_timer_read(struct device *dev,
2705 struct device_attribute *attr,
2706 char *buf)
2707 {
2708 int ret;
2709 u8 reg_value;
2710 struct power_supply *psy = dev_get_drvdata(dev);
2711 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2712
2713 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2714 AB8505_RTC_PCUT_TIME_REG, ®_value);
2715
2716 if (ret < 0) {
2717 dev_err(dev, "Failed to read AB8505_RTC_PCUT_TIME_REG\n");
2718 goto fail;
2719 }
2720
2721 return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2722
2723 fail:
2724 return ret;
2725 }
2726
ab8505_powercut_restart_counter_read(struct device * dev,struct device_attribute * attr,char * buf)2727 static ssize_t ab8505_powercut_restart_counter_read(struct device *dev,
2728 struct device_attribute *attr,
2729 char *buf)
2730 {
2731 int ret;
2732 u8 reg_value;
2733 struct power_supply *psy = dev_get_drvdata(dev);
2734 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2735
2736 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2737 AB8505_RTC_PCUT_RESTART_REG, ®_value);
2738
2739 if (ret < 0) {
2740 dev_err(dev, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n");
2741 goto fail;
2742 }
2743
2744 return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0xF0) >> 4);
2745
2746 fail:
2747 return ret;
2748 }
2749
ab8505_powercut_read(struct device * dev,struct device_attribute * attr,char * buf)2750 static ssize_t ab8505_powercut_read(struct device *dev,
2751 struct device_attribute *attr,
2752 char *buf)
2753 {
2754 int ret;
2755 u8 reg_value;
2756 struct power_supply *psy = dev_get_drvdata(dev);
2757 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2758
2759 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2760 AB8505_RTC_PCUT_CTL_STATUS_REG, ®_value);
2761
2762 if (ret < 0)
2763 goto fail;
2764
2765 return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x1));
2766
2767 fail:
2768 return ret;
2769 }
2770
ab8505_powercut_write(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2771 static ssize_t ab8505_powercut_write(struct device *dev,
2772 struct device_attribute *attr,
2773 const char *buf, size_t count)
2774 {
2775 int ret;
2776 int reg_value;
2777 struct power_supply *psy = dev_get_drvdata(dev);
2778 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2779
2780 reg_value = simple_strtoul(buf, NULL, 10);
2781 if (reg_value > 0x1) {
2782 dev_err(dev, "Incorrect parameter, echo 0/1 to disable/enable Pcut feature\n");
2783 goto fail;
2784 }
2785
2786 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2787 AB8505_RTC_PCUT_CTL_STATUS_REG, (u8)reg_value);
2788
2789 if (ret < 0)
2790 dev_err(dev, "Failed to set AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2791
2792 fail:
2793 return count;
2794 }
2795
ab8505_powercut_flag_read(struct device * dev,struct device_attribute * attr,char * buf)2796 static ssize_t ab8505_powercut_flag_read(struct device *dev,
2797 struct device_attribute *attr,
2798 char *buf)
2799 {
2800
2801 int ret;
2802 u8 reg_value;
2803 struct power_supply *psy = dev_get_drvdata(dev);
2804 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2805
2806 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2807 AB8505_RTC_PCUT_CTL_STATUS_REG, ®_value);
2808
2809 if (ret < 0) {
2810 dev_err(dev, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2811 goto fail;
2812 }
2813
2814 return scnprintf(buf, PAGE_SIZE, "%d\n", ((reg_value & 0x10) >> 4));
2815
2816 fail:
2817 return ret;
2818 }
2819
ab8505_powercut_debounce_read(struct device * dev,struct device_attribute * attr,char * buf)2820 static ssize_t ab8505_powercut_debounce_read(struct device *dev,
2821 struct device_attribute *attr,
2822 char *buf)
2823 {
2824 int ret;
2825 u8 reg_value;
2826 struct power_supply *psy = dev_get_drvdata(dev);
2827 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2828
2829 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2830 AB8505_RTC_PCUT_DEBOUNCE_REG, ®_value);
2831
2832 if (ret < 0) {
2833 dev_err(dev, "Failed to read AB8505_RTC_PCUT_DEBOUNCE_REG\n");
2834 goto fail;
2835 }
2836
2837 return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7));
2838
2839 fail:
2840 return ret;
2841 }
2842
ab8505_powercut_debounce_write(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2843 static ssize_t ab8505_powercut_debounce_write(struct device *dev,
2844 struct device_attribute *attr,
2845 const char *buf, size_t count)
2846 {
2847 int ret;
2848 int reg_value;
2849 struct power_supply *psy = dev_get_drvdata(dev);
2850 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2851
2852 reg_value = simple_strtoul(buf, NULL, 10);
2853 if (reg_value > 0x7) {
2854 dev_err(dev, "Incorrect parameter, echo 0 to 7 for debounce setting\n");
2855 goto fail;
2856 }
2857
2858 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2859 AB8505_RTC_PCUT_DEBOUNCE_REG, (u8)reg_value);
2860
2861 if (ret < 0)
2862 dev_err(dev, "Failed to set AB8505_RTC_PCUT_DEBOUNCE_REG\n");
2863
2864 fail:
2865 return count;
2866 }
2867
ab8505_powercut_enable_status_read(struct device * dev,struct device_attribute * attr,char * buf)2868 static ssize_t ab8505_powercut_enable_status_read(struct device *dev,
2869 struct device_attribute *attr,
2870 char *buf)
2871 {
2872 int ret;
2873 u8 reg_value;
2874 struct power_supply *psy = dev_get_drvdata(dev);
2875 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2876
2877 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2878 AB8505_RTC_PCUT_CTL_STATUS_REG, ®_value);
2879
2880 if (ret < 0) {
2881 dev_err(dev, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2882 goto fail;
2883 }
2884
2885 return scnprintf(buf, PAGE_SIZE, "%d\n", ((reg_value & 0x20) >> 5));
2886
2887 fail:
2888 return ret;
2889 }
2890
2891 static struct device_attribute ab8505_fg_sysfs_psy_attrs[] = {
2892 __ATTR(powercut_flagtime, (S_IRUGO | S_IWUSR | S_IWGRP),
2893 ab8505_powercut_flagtime_read, ab8505_powercut_flagtime_write),
2894 __ATTR(powercut_maxtime, (S_IRUGO | S_IWUSR | S_IWGRP),
2895 ab8505_powercut_maxtime_read, ab8505_powercut_maxtime_write),
2896 __ATTR(powercut_restart_max, (S_IRUGO | S_IWUSR | S_IWGRP),
2897 ab8505_powercut_restart_read, ab8505_powercut_restart_write),
2898 __ATTR(powercut_timer, S_IRUGO, ab8505_powercut_timer_read, NULL),
2899 __ATTR(powercut_restart_counter, S_IRUGO,
2900 ab8505_powercut_restart_counter_read, NULL),
2901 __ATTR(powercut_enable, (S_IRUGO | S_IWUSR | S_IWGRP),
2902 ab8505_powercut_read, ab8505_powercut_write),
2903 __ATTR(powercut_flag, S_IRUGO, ab8505_powercut_flag_read, NULL),
2904 __ATTR(powercut_debounce_time, (S_IRUGO | S_IWUSR | S_IWGRP),
2905 ab8505_powercut_debounce_read, ab8505_powercut_debounce_write),
2906 __ATTR(powercut_enable_status, S_IRUGO,
2907 ab8505_powercut_enable_status_read, NULL),
2908 };
2909
ab8500_fg_sysfs_psy_create_attrs(struct ab8500_fg * di)2910 static int ab8500_fg_sysfs_psy_create_attrs(struct ab8500_fg *di)
2911 {
2912 unsigned int i;
2913
2914 if (is_ab8505(di->parent)) {
2915 for (i = 0; i < ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs); i++)
2916 if (device_create_file(&di->fg_psy->dev,
2917 &ab8505_fg_sysfs_psy_attrs[i]))
2918 goto sysfs_psy_create_attrs_failed_ab8505;
2919 }
2920 return 0;
2921 sysfs_psy_create_attrs_failed_ab8505:
2922 dev_err(&di->fg_psy->dev, "Failed creating sysfs psy attrs for ab8505.\n");
2923 while (i--)
2924 device_remove_file(&di->fg_psy->dev,
2925 &ab8505_fg_sysfs_psy_attrs[i]);
2926
2927 return -EIO;
2928 }
2929
ab8500_fg_sysfs_psy_remove_attrs(struct ab8500_fg * di)2930 static void ab8500_fg_sysfs_psy_remove_attrs(struct ab8500_fg *di)
2931 {
2932 unsigned int i;
2933
2934 if (is_ab8505(di->parent)) {
2935 for (i = 0; i < ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs); i++)
2936 (void)device_remove_file(&di->fg_psy->dev,
2937 &ab8505_fg_sysfs_psy_attrs[i]);
2938 }
2939 }
2940
2941 /* Exposure to the sysfs interface <<END>> */
2942
2943 #if defined(CONFIG_PM)
ab8500_fg_resume(struct platform_device * pdev)2944 static int ab8500_fg_resume(struct platform_device *pdev)
2945 {
2946 struct ab8500_fg *di = platform_get_drvdata(pdev);
2947
2948 /*
2949 * Change state if we're not charging. If we're charging we will wake
2950 * up on the FG IRQ
2951 */
2952 if (!di->flags.charging) {
2953 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_WAKEUP);
2954 queue_work(di->fg_wq, &di->fg_work);
2955 }
2956
2957 return 0;
2958 }
2959
ab8500_fg_suspend(struct platform_device * pdev,pm_message_t state)2960 static int ab8500_fg_suspend(struct platform_device *pdev,
2961 pm_message_t state)
2962 {
2963 struct ab8500_fg *di = platform_get_drvdata(pdev);
2964
2965 flush_delayed_work(&di->fg_periodic_work);
2966 flush_work(&di->fg_work);
2967 flush_work(&di->fg_acc_cur_work);
2968 flush_delayed_work(&di->fg_reinit_work);
2969 flush_delayed_work(&di->fg_low_bat_work);
2970 flush_delayed_work(&di->fg_check_hw_failure_work);
2971
2972 /*
2973 * If the FG is enabled we will disable it before going to suspend
2974 * only if we're not charging
2975 */
2976 if (di->flags.fg_enabled && !di->flags.charging)
2977 ab8500_fg_coulomb_counter(di, false);
2978
2979 return 0;
2980 }
2981 #else
2982 #define ab8500_fg_suspend NULL
2983 #define ab8500_fg_resume NULL
2984 #endif
2985
ab8500_fg_remove(struct platform_device * pdev)2986 static int ab8500_fg_remove(struct platform_device *pdev)
2987 {
2988 int ret = 0;
2989 struct ab8500_fg *di = platform_get_drvdata(pdev);
2990
2991 list_del(&di->node);
2992
2993 /* Disable coulomb counter */
2994 ret = ab8500_fg_coulomb_counter(di, false);
2995 if (ret)
2996 dev_err(di->dev, "failed to disable coulomb counter\n");
2997
2998 destroy_workqueue(di->fg_wq);
2999 ab8500_fg_sysfs_exit(di);
3000
3001 flush_scheduled_work();
3002 ab8500_fg_sysfs_psy_remove_attrs(di);
3003 power_supply_unregister(di->fg_psy);
3004 return ret;
3005 }
3006
3007 /* ab8500 fg driver interrupts and their respective isr */
3008 static struct ab8500_fg_interrupts ab8500_fg_irq_th[] = {
3009 {"NCONV_ACCU", ab8500_fg_cc_convend_handler},
3010 {"BATT_OVV", ab8500_fg_batt_ovv_handler},
3011 {"LOW_BAT_F", ab8500_fg_lowbatf_handler},
3012 {"CC_INT_CALIB", ab8500_fg_cc_int_calib_handler},
3013 };
3014
3015 static struct ab8500_fg_interrupts ab8500_fg_irq_bh[] = {
3016 {"CCEOC", ab8500_fg_cc_data_end_handler},
3017 };
3018
3019 static char *supply_interface[] = {
3020 "ab8500_chargalg",
3021 "ab8500_usb",
3022 };
3023
3024 static const struct power_supply_desc ab8500_fg_desc = {
3025 .name = "ab8500_fg",
3026 .type = POWER_SUPPLY_TYPE_BATTERY,
3027 .properties = ab8500_fg_props,
3028 .num_properties = ARRAY_SIZE(ab8500_fg_props),
3029 .get_property = ab8500_fg_get_property,
3030 .external_power_changed = ab8500_fg_external_power_changed,
3031 };
3032
ab8500_fg_probe(struct platform_device * pdev)3033 static int ab8500_fg_probe(struct platform_device *pdev)
3034 {
3035 struct device_node *np = pdev->dev.of_node;
3036 struct abx500_bm_data *plat = pdev->dev.platform_data;
3037 struct power_supply_config psy_cfg = {};
3038 struct ab8500_fg *di;
3039 int i, irq;
3040 int ret = 0;
3041
3042 di = devm_kzalloc(&pdev->dev, sizeof(*di), GFP_KERNEL);
3043 if (!di) {
3044 dev_err(&pdev->dev, "%s no mem for ab8500_fg\n", __func__);
3045 return -ENOMEM;
3046 }
3047
3048 if (!plat) {
3049 dev_err(&pdev->dev, "no battery management data supplied\n");
3050 return -EINVAL;
3051 }
3052 di->bm = plat;
3053
3054 if (np) {
3055 ret = ab8500_bm_of_probe(&pdev->dev, np, di->bm);
3056 if (ret) {
3057 dev_err(&pdev->dev, "failed to get battery information\n");
3058 return ret;
3059 }
3060 }
3061
3062 mutex_init(&di->cc_lock);
3063
3064 /* get parent data */
3065 di->dev = &pdev->dev;
3066 di->parent = dev_get_drvdata(pdev->dev.parent);
3067 di->gpadc = ab8500_gpadc_get("ab8500-gpadc.0");
3068
3069 psy_cfg.supplied_to = supply_interface;
3070 psy_cfg.num_supplicants = ARRAY_SIZE(supply_interface);
3071 psy_cfg.drv_data = di;
3072
3073 di->bat_cap.max_mah_design = MILLI_TO_MICRO *
3074 di->bm->bat_type[di->bm->batt_id].charge_full_design;
3075
3076 di->bat_cap.max_mah = di->bat_cap.max_mah_design;
3077
3078 di->vbat_nom = di->bm->bat_type[di->bm->batt_id].nominal_voltage;
3079
3080 di->init_capacity = true;
3081
3082 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
3083 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
3084
3085 /* Create a work queue for running the FG algorithm */
3086 di->fg_wq = alloc_ordered_workqueue("ab8500_fg_wq", WQ_MEM_RECLAIM);
3087 if (di->fg_wq == NULL) {
3088 dev_err(di->dev, "failed to create work queue\n");
3089 return -ENOMEM;
3090 }
3091
3092 /* Init work for running the fg algorithm instantly */
3093 INIT_WORK(&di->fg_work, ab8500_fg_instant_work);
3094
3095 /* Init work for getting the battery accumulated current */
3096 INIT_WORK(&di->fg_acc_cur_work, ab8500_fg_acc_cur_work);
3097
3098 /* Init work for reinitialising the fg algorithm */
3099 INIT_DEFERRABLE_WORK(&di->fg_reinit_work,
3100 ab8500_fg_reinit_work);
3101
3102 /* Work delayed Queue to run the state machine */
3103 INIT_DEFERRABLE_WORK(&di->fg_periodic_work,
3104 ab8500_fg_periodic_work);
3105
3106 /* Work to check low battery condition */
3107 INIT_DEFERRABLE_WORK(&di->fg_low_bat_work,
3108 ab8500_fg_low_bat_work);
3109
3110 /* Init work for HW failure check */
3111 INIT_DEFERRABLE_WORK(&di->fg_check_hw_failure_work,
3112 ab8500_fg_check_hw_failure_work);
3113
3114 /* Reset battery low voltage flag */
3115 di->flags.low_bat = false;
3116
3117 /* Initialize low battery counter */
3118 di->low_bat_cnt = 10;
3119
3120 /* Initialize OVV, and other registers */
3121 ret = ab8500_fg_init_hw_registers(di);
3122 if (ret) {
3123 dev_err(di->dev, "failed to initialize registers\n");
3124 goto free_inst_curr_wq;
3125 }
3126
3127 /* Consider battery unknown until we're informed otherwise */
3128 di->flags.batt_unknown = true;
3129 di->flags.batt_id_received = false;
3130
3131 /* Register FG power supply class */
3132 di->fg_psy = power_supply_register(di->dev, &ab8500_fg_desc, &psy_cfg);
3133 if (IS_ERR(di->fg_psy)) {
3134 dev_err(di->dev, "failed to register FG psy\n");
3135 ret = PTR_ERR(di->fg_psy);
3136 goto free_inst_curr_wq;
3137 }
3138
3139 di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
3140 ab8500_fg_coulomb_counter(di, true);
3141
3142 /*
3143 * Initialize completion used to notify completion and start
3144 * of inst current
3145 */
3146 init_completion(&di->ab8500_fg_started);
3147 init_completion(&di->ab8500_fg_complete);
3148
3149 /* Register primary interrupt handlers */
3150 for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq_th); i++) {
3151 irq = platform_get_irq_byname(pdev, ab8500_fg_irq_th[i].name);
3152 ret = request_irq(irq, ab8500_fg_irq_th[i].isr,
3153 IRQF_SHARED | IRQF_NO_SUSPEND,
3154 ab8500_fg_irq_th[i].name, di);
3155
3156 if (ret != 0) {
3157 dev_err(di->dev, "failed to request %s IRQ %d: %d\n",
3158 ab8500_fg_irq_th[i].name, irq, ret);
3159 goto free_irq;
3160 }
3161 dev_dbg(di->dev, "Requested %s IRQ %d: %d\n",
3162 ab8500_fg_irq_th[i].name, irq, ret);
3163 }
3164
3165 /* Register threaded interrupt handler */
3166 irq = platform_get_irq_byname(pdev, ab8500_fg_irq_bh[0].name);
3167 ret = request_threaded_irq(irq, NULL, ab8500_fg_irq_bh[0].isr,
3168 IRQF_SHARED | IRQF_NO_SUSPEND | IRQF_ONESHOT,
3169 ab8500_fg_irq_bh[0].name, di);
3170
3171 if (ret != 0) {
3172 dev_err(di->dev, "failed to request %s IRQ %d: %d\n",
3173 ab8500_fg_irq_bh[0].name, irq, ret);
3174 goto free_irq;
3175 }
3176 dev_dbg(di->dev, "Requested %s IRQ %d: %d\n",
3177 ab8500_fg_irq_bh[0].name, irq, ret);
3178
3179 di->irq = platform_get_irq_byname(pdev, "CCEOC");
3180 disable_irq(di->irq);
3181 di->nbr_cceoc_irq_cnt = 0;
3182
3183 platform_set_drvdata(pdev, di);
3184
3185 ret = ab8500_fg_sysfs_init(di);
3186 if (ret) {
3187 dev_err(di->dev, "failed to create sysfs entry\n");
3188 goto free_irq;
3189 }
3190
3191 ret = ab8500_fg_sysfs_psy_create_attrs(di);
3192 if (ret) {
3193 dev_err(di->dev, "failed to create FG psy\n");
3194 ab8500_fg_sysfs_exit(di);
3195 goto free_irq;
3196 }
3197
3198 /* Calibrate the fg first time */
3199 di->flags.calibrate = true;
3200 di->calib_state = AB8500_FG_CALIB_INIT;
3201
3202 /* Use room temp as default value until we get an update from driver. */
3203 di->bat_temp = 210;
3204
3205 /* Run the FG algorithm */
3206 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
3207
3208 list_add_tail(&di->node, &ab8500_fg_list);
3209
3210 return ret;
3211
3212 free_irq:
3213 power_supply_unregister(di->fg_psy);
3214
3215 /* We also have to free all registered irqs */
3216 for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq_th); i++) {
3217 irq = platform_get_irq_byname(pdev, ab8500_fg_irq_th[i].name);
3218 free_irq(irq, di);
3219 }
3220 irq = platform_get_irq_byname(pdev, ab8500_fg_irq_bh[0].name);
3221 free_irq(irq, di);
3222 free_inst_curr_wq:
3223 destroy_workqueue(di->fg_wq);
3224 return ret;
3225 }
3226
3227 static const struct of_device_id ab8500_fg_match[] = {
3228 { .compatible = "stericsson,ab8500-fg", },
3229 { },
3230 };
3231
3232 static struct platform_driver ab8500_fg_driver = {
3233 .probe = ab8500_fg_probe,
3234 .remove = ab8500_fg_remove,
3235 .suspend = ab8500_fg_suspend,
3236 .resume = ab8500_fg_resume,
3237 .driver = {
3238 .name = "ab8500-fg",
3239 .of_match_table = ab8500_fg_match,
3240 },
3241 };
3242
ab8500_fg_init(void)3243 static int __init ab8500_fg_init(void)
3244 {
3245 return platform_driver_register(&ab8500_fg_driver);
3246 }
3247
ab8500_fg_exit(void)3248 static void __exit ab8500_fg_exit(void)
3249 {
3250 platform_driver_unregister(&ab8500_fg_driver);
3251 }
3252
3253 subsys_initcall_sync(ab8500_fg_init);
3254 module_exit(ab8500_fg_exit);
3255
3256 MODULE_LICENSE("GPL v2");
3257 MODULE_AUTHOR("Johan Palsson, Karl Komierowski");
3258 MODULE_ALIAS("platform:ab8500-fg");
3259 MODULE_DESCRIPTION("AB8500 Fuel Gauge driver");
3260