1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Adaptec AAC series RAID controller driver
4 * (c) Copyright 2001 Red Hat Inc.
5 *
6 * based on the old aacraid driver that is..
7 * Adaptec aacraid device driver for Linux.
8 *
9 * Copyright (c) 2000-2010 Adaptec, Inc.
10 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
11 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
12 *
13 * Module Name:
14 * src.c
15 *
16 * Abstract: Hardware Device Interface for PMC SRC based controllers
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/types.h>
22 #include <linux/pci.h>
23 #include <linux/spinlock.h>
24 #include <linux/slab.h>
25 #include <linux/blkdev.h>
26 #include <linux/delay.h>
27 #include <linux/completion.h>
28 #include <linux/time.h>
29 #include <linux/interrupt.h>
30 #include <scsi/scsi_host.h>
31
32 #include "aacraid.h"
33
34 static int aac_src_get_sync_status(struct aac_dev *dev);
35
aac_src_intr_message(int irq,void * dev_id)36 static irqreturn_t aac_src_intr_message(int irq, void *dev_id)
37 {
38 struct aac_msix_ctx *ctx;
39 struct aac_dev *dev;
40 unsigned long bellbits, bellbits_shifted;
41 int vector_no;
42 int isFastResponse, mode;
43 u32 index, handle;
44
45 ctx = (struct aac_msix_ctx *)dev_id;
46 dev = ctx->dev;
47 vector_no = ctx->vector_no;
48
49 if (dev->msi_enabled) {
50 mode = AAC_INT_MODE_MSI;
51 if (vector_no == 0) {
52 bellbits = src_readl(dev, MUnit.ODR_MSI);
53 if (bellbits & 0x40000)
54 mode |= AAC_INT_MODE_AIF;
55 if (bellbits & 0x1000)
56 mode |= AAC_INT_MODE_SYNC;
57 }
58 } else {
59 mode = AAC_INT_MODE_INTX;
60 bellbits = src_readl(dev, MUnit.ODR_R);
61 if (bellbits & PmDoorBellResponseSent) {
62 bellbits = PmDoorBellResponseSent;
63 src_writel(dev, MUnit.ODR_C, bellbits);
64 src_readl(dev, MUnit.ODR_C);
65 } else {
66 bellbits_shifted = (bellbits >> SRC_ODR_SHIFT);
67 src_writel(dev, MUnit.ODR_C, bellbits);
68 src_readl(dev, MUnit.ODR_C);
69
70 if (bellbits_shifted & DoorBellAifPending)
71 mode |= AAC_INT_MODE_AIF;
72 else if (bellbits_shifted & OUTBOUNDDOORBELL_0)
73 mode |= AAC_INT_MODE_SYNC;
74 }
75 }
76
77 if (mode & AAC_INT_MODE_SYNC) {
78 unsigned long sflags;
79 struct list_head *entry;
80 int send_it = 0;
81 extern int aac_sync_mode;
82
83 if (!aac_sync_mode && !dev->msi_enabled) {
84 src_writel(dev, MUnit.ODR_C, bellbits);
85 src_readl(dev, MUnit.ODR_C);
86 }
87
88 if (dev->sync_fib) {
89 if (dev->sync_fib->callback)
90 dev->sync_fib->callback(dev->sync_fib->callback_data,
91 dev->sync_fib);
92 spin_lock_irqsave(&dev->sync_fib->event_lock, sflags);
93 if (dev->sync_fib->flags & FIB_CONTEXT_FLAG_WAIT) {
94 dev->management_fib_count--;
95 complete(&dev->sync_fib->event_wait);
96 }
97 spin_unlock_irqrestore(&dev->sync_fib->event_lock,
98 sflags);
99 spin_lock_irqsave(&dev->sync_lock, sflags);
100 if (!list_empty(&dev->sync_fib_list)) {
101 entry = dev->sync_fib_list.next;
102 dev->sync_fib = list_entry(entry,
103 struct fib,
104 fiblink);
105 list_del(entry);
106 send_it = 1;
107 } else {
108 dev->sync_fib = NULL;
109 }
110 spin_unlock_irqrestore(&dev->sync_lock, sflags);
111 if (send_it) {
112 aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
113 (u32)dev->sync_fib->hw_fib_pa,
114 0, 0, 0, 0, 0,
115 NULL, NULL, NULL, NULL, NULL);
116 }
117 }
118 if (!dev->msi_enabled)
119 mode = 0;
120
121 }
122
123 if (mode & AAC_INT_MODE_AIF) {
124 /* handle AIF */
125 if (dev->sa_firmware) {
126 u32 events = src_readl(dev, MUnit.SCR0);
127
128 aac_intr_normal(dev, events, 1, 0, NULL);
129 writel(events, &dev->IndexRegs->Mailbox[0]);
130 src_writel(dev, MUnit.IDR, 1 << 23);
131 } else {
132 if (dev->aif_thread && dev->fsa_dev)
133 aac_intr_normal(dev, 0, 2, 0, NULL);
134 }
135 if (dev->msi_enabled)
136 aac_src_access_devreg(dev, AAC_CLEAR_AIF_BIT);
137 mode = 0;
138 }
139
140 if (mode) {
141 index = dev->host_rrq_idx[vector_no];
142
143 for (;;) {
144 isFastResponse = 0;
145 /* remove toggle bit (31) */
146 handle = le32_to_cpu((dev->host_rrq[index])
147 & 0x7fffffff);
148 /* check fast response bits (30, 1) */
149 if (handle & 0x40000000)
150 isFastResponse = 1;
151 handle &= 0x0000ffff;
152 if (handle == 0)
153 break;
154 handle >>= 2;
155 if (dev->msi_enabled && dev->max_msix > 1)
156 atomic_dec(&dev->rrq_outstanding[vector_no]);
157 aac_intr_normal(dev, handle, 0, isFastResponse, NULL);
158 dev->host_rrq[index++] = 0;
159 if (index == (vector_no + 1) * dev->vector_cap)
160 index = vector_no * dev->vector_cap;
161 dev->host_rrq_idx[vector_no] = index;
162 }
163 mode = 0;
164 }
165
166 return IRQ_HANDLED;
167 }
168
169 /**
170 * aac_src_disable_interrupt - Disable interrupts
171 * @dev: Adapter
172 */
173
aac_src_disable_interrupt(struct aac_dev * dev)174 static void aac_src_disable_interrupt(struct aac_dev *dev)
175 {
176 src_writel(dev, MUnit.OIMR, dev->OIMR = 0xffffffff);
177 }
178
179 /**
180 * aac_src_enable_interrupt_message - Enable interrupts
181 * @dev: Adapter
182 */
183
aac_src_enable_interrupt_message(struct aac_dev * dev)184 static void aac_src_enable_interrupt_message(struct aac_dev *dev)
185 {
186 aac_src_access_devreg(dev, AAC_ENABLE_INTERRUPT);
187 }
188
189 /**
190 * src_sync_cmd - send a command and wait
191 * @dev: Adapter
192 * @command: Command to execute
193 * @p1: first parameter
194 * @ret: adapter status
195 *
196 * This routine will send a synchronous command to the adapter and wait
197 * for its completion.
198 */
199
src_sync_cmd(struct aac_dev * dev,u32 command,u32 p1,u32 p2,u32 p3,u32 p4,u32 p5,u32 p6,u32 * status,u32 * r1,u32 * r2,u32 * r3,u32 * r4)200 static int src_sync_cmd(struct aac_dev *dev, u32 command,
201 u32 p1, u32 p2, u32 p3, u32 p4, u32 p5, u32 p6,
202 u32 *status, u32 * r1, u32 * r2, u32 * r3, u32 * r4)
203 {
204 unsigned long start;
205 unsigned long delay;
206 int ok;
207
208 /*
209 * Write the command into Mailbox 0
210 */
211 writel(command, &dev->IndexRegs->Mailbox[0]);
212 /*
213 * Write the parameters into Mailboxes 1 - 6
214 */
215 writel(p1, &dev->IndexRegs->Mailbox[1]);
216 writel(p2, &dev->IndexRegs->Mailbox[2]);
217 writel(p3, &dev->IndexRegs->Mailbox[3]);
218 writel(p4, &dev->IndexRegs->Mailbox[4]);
219
220 /*
221 * Clear the synch command doorbell to start on a clean slate.
222 */
223 if (!dev->msi_enabled)
224 src_writel(dev,
225 MUnit.ODR_C,
226 OUTBOUNDDOORBELL_0 << SRC_ODR_SHIFT);
227
228 /*
229 * Disable doorbell interrupts
230 */
231 src_writel(dev, MUnit.OIMR, dev->OIMR = 0xffffffff);
232
233 /*
234 * Force the completion of the mask register write before issuing
235 * the interrupt.
236 */
237 src_readl(dev, MUnit.OIMR);
238
239 /*
240 * Signal that there is a new synch command
241 */
242 src_writel(dev, MUnit.IDR, INBOUNDDOORBELL_0 << SRC_IDR_SHIFT);
243
244 if ((!dev->sync_mode || command != SEND_SYNCHRONOUS_FIB) &&
245 !dev->in_soft_reset) {
246 ok = 0;
247 start = jiffies;
248
249 if (command == IOP_RESET_ALWAYS) {
250 /* Wait up to 10 sec */
251 delay = 10*HZ;
252 } else {
253 /* Wait up to 5 minutes */
254 delay = 300*HZ;
255 }
256 while (time_before(jiffies, start+delay)) {
257 udelay(5); /* Delay 5 microseconds to let Mon960 get info. */
258 /*
259 * Mon960 will set doorbell0 bit when it has completed the command.
260 */
261 if (aac_src_get_sync_status(dev) & OUTBOUNDDOORBELL_0) {
262 /*
263 * Clear the doorbell.
264 */
265 if (dev->msi_enabled)
266 aac_src_access_devreg(dev,
267 AAC_CLEAR_SYNC_BIT);
268 else
269 src_writel(dev,
270 MUnit.ODR_C,
271 OUTBOUNDDOORBELL_0 << SRC_ODR_SHIFT);
272 ok = 1;
273 break;
274 }
275 /*
276 * Yield the processor in case we are slow
277 */
278 msleep(1);
279 }
280 if (unlikely(ok != 1)) {
281 /*
282 * Restore interrupt mask even though we timed out
283 */
284 aac_adapter_enable_int(dev);
285 return -ETIMEDOUT;
286 }
287 /*
288 * Pull the synch status from Mailbox 0.
289 */
290 if (status)
291 *status = readl(&dev->IndexRegs->Mailbox[0]);
292 if (r1)
293 *r1 = readl(&dev->IndexRegs->Mailbox[1]);
294 if (r2)
295 *r2 = readl(&dev->IndexRegs->Mailbox[2]);
296 if (r3)
297 *r3 = readl(&dev->IndexRegs->Mailbox[3]);
298 if (r4)
299 *r4 = readl(&dev->IndexRegs->Mailbox[4]);
300 if (command == GET_COMM_PREFERRED_SETTINGS)
301 dev->max_msix =
302 readl(&dev->IndexRegs->Mailbox[5]) & 0xFFFF;
303 /*
304 * Clear the synch command doorbell.
305 */
306 if (!dev->msi_enabled)
307 src_writel(dev,
308 MUnit.ODR_C,
309 OUTBOUNDDOORBELL_0 << SRC_ODR_SHIFT);
310 }
311
312 /*
313 * Restore interrupt mask
314 */
315 aac_adapter_enable_int(dev);
316 return 0;
317 }
318
319 /**
320 * aac_src_interrupt_adapter - interrupt adapter
321 * @dev: Adapter
322 *
323 * Send an interrupt to the i960 and breakpoint it.
324 */
325
aac_src_interrupt_adapter(struct aac_dev * dev)326 static void aac_src_interrupt_adapter(struct aac_dev *dev)
327 {
328 src_sync_cmd(dev, BREAKPOINT_REQUEST,
329 0, 0, 0, 0, 0, 0,
330 NULL, NULL, NULL, NULL, NULL);
331 }
332
333 /**
334 * aac_src_notify_adapter - send an event to the adapter
335 * @dev: Adapter
336 * @event: Event to send
337 *
338 * Notify the i960 that something it probably cares about has
339 * happened.
340 */
341
aac_src_notify_adapter(struct aac_dev * dev,u32 event)342 static void aac_src_notify_adapter(struct aac_dev *dev, u32 event)
343 {
344 switch (event) {
345
346 case AdapNormCmdQue:
347 src_writel(dev, MUnit.ODR_C,
348 INBOUNDDOORBELL_1 << SRC_ODR_SHIFT);
349 break;
350 case HostNormRespNotFull:
351 src_writel(dev, MUnit.ODR_C,
352 INBOUNDDOORBELL_4 << SRC_ODR_SHIFT);
353 break;
354 case AdapNormRespQue:
355 src_writel(dev, MUnit.ODR_C,
356 INBOUNDDOORBELL_2 << SRC_ODR_SHIFT);
357 break;
358 case HostNormCmdNotFull:
359 src_writel(dev, MUnit.ODR_C,
360 INBOUNDDOORBELL_3 << SRC_ODR_SHIFT);
361 break;
362 case FastIo:
363 src_writel(dev, MUnit.ODR_C,
364 INBOUNDDOORBELL_6 << SRC_ODR_SHIFT);
365 break;
366 case AdapPrintfDone:
367 src_writel(dev, MUnit.ODR_C,
368 INBOUNDDOORBELL_5 << SRC_ODR_SHIFT);
369 break;
370 default:
371 BUG();
372 break;
373 }
374 }
375
376 /**
377 * aac_src_start_adapter - activate adapter
378 * @dev: Adapter
379 *
380 * Start up processing on an i960 based AAC adapter
381 */
382
aac_src_start_adapter(struct aac_dev * dev)383 static void aac_src_start_adapter(struct aac_dev *dev)
384 {
385 union aac_init *init;
386 int i;
387
388 /* reset host_rrq_idx first */
389 for (i = 0; i < dev->max_msix; i++) {
390 dev->host_rrq_idx[i] = i * dev->vector_cap;
391 atomic_set(&dev->rrq_outstanding[i], 0);
392 }
393 atomic_set(&dev->msix_counter, 0);
394 dev->fibs_pushed_no = 0;
395
396 init = dev->init;
397 if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) {
398 init->r8.host_elapsed_seconds =
399 cpu_to_le32(ktime_get_real_seconds());
400 src_sync_cmd(dev, INIT_STRUCT_BASE_ADDRESS,
401 lower_32_bits(dev->init_pa),
402 upper_32_bits(dev->init_pa),
403 sizeof(struct _r8) +
404 (AAC_MAX_HRRQ - 1) * sizeof(struct _rrq),
405 0, 0, 0, NULL, NULL, NULL, NULL, NULL);
406 } else {
407 init->r7.host_elapsed_seconds =
408 cpu_to_le32(ktime_get_real_seconds());
409 // We can only use a 32 bit address here
410 src_sync_cmd(dev, INIT_STRUCT_BASE_ADDRESS,
411 (u32)(ulong)dev->init_pa, 0, 0, 0, 0, 0,
412 NULL, NULL, NULL, NULL, NULL);
413 }
414
415 }
416
417 /**
418 * aac_src_check_health
419 * @dev: device to check if healthy
420 *
421 * Will attempt to determine if the specified adapter is alive and
422 * capable of handling requests, returning 0 if alive.
423 */
aac_src_check_health(struct aac_dev * dev)424 static int aac_src_check_health(struct aac_dev *dev)
425 {
426 u32 status = src_readl(dev, MUnit.OMR);
427
428 /*
429 * Check to see if the board panic'd.
430 */
431 if (unlikely(status & KERNEL_PANIC))
432 goto err_blink;
433
434 /*
435 * Check to see if the board failed any self tests.
436 */
437 if (unlikely(status & SELF_TEST_FAILED))
438 goto err_out;
439
440 /*
441 * Check to see if the board failed any self tests.
442 */
443 if (unlikely(status & MONITOR_PANIC))
444 goto err_out;
445
446 /*
447 * Wait for the adapter to be up and running.
448 */
449 if (unlikely(!(status & KERNEL_UP_AND_RUNNING)))
450 return -3;
451 /*
452 * Everything is OK
453 */
454 return 0;
455
456 err_out:
457 return -1;
458
459 err_blink:
460 return (status >> 16) & 0xFF;
461 }
462
aac_get_vector(struct aac_dev * dev)463 static inline u32 aac_get_vector(struct aac_dev *dev)
464 {
465 return atomic_inc_return(&dev->msix_counter)%dev->max_msix;
466 }
467
468 /**
469 * aac_src_deliver_message
470 * @fib: fib to issue
471 *
472 * Will send a fib, returning 0 if successful.
473 */
aac_src_deliver_message(struct fib * fib)474 static int aac_src_deliver_message(struct fib *fib)
475 {
476 struct aac_dev *dev = fib->dev;
477 struct aac_queue *q = &dev->queues->queue[AdapNormCmdQueue];
478 u32 fibsize;
479 dma_addr_t address;
480 struct aac_fib_xporthdr *pFibX;
481 int native_hba;
482 #if !defined(writeq)
483 unsigned long flags;
484 #endif
485
486 u16 vector_no;
487
488 atomic_inc(&q->numpending);
489
490 native_hba = (fib->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) ? 1 : 0;
491
492
493 if (dev->msi_enabled && dev->max_msix > 1 &&
494 (native_hba || fib->hw_fib_va->header.Command != AifRequest)) {
495
496 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE3)
497 && dev->sa_firmware)
498 vector_no = aac_get_vector(dev);
499 else
500 vector_no = fib->vector_no;
501
502 if (native_hba) {
503 if (fib->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF) {
504 struct aac_hba_tm_req *tm_req;
505
506 tm_req = (struct aac_hba_tm_req *)
507 fib->hw_fib_va;
508 if (tm_req->iu_type ==
509 HBA_IU_TYPE_SCSI_TM_REQ) {
510 ((struct aac_hba_tm_req *)
511 fib->hw_fib_va)->reply_qid
512 = vector_no;
513 ((struct aac_hba_tm_req *)
514 fib->hw_fib_va)->request_id
515 += (vector_no << 16);
516 } else {
517 ((struct aac_hba_reset_req *)
518 fib->hw_fib_va)->reply_qid
519 = vector_no;
520 ((struct aac_hba_reset_req *)
521 fib->hw_fib_va)->request_id
522 += (vector_no << 16);
523 }
524 } else {
525 ((struct aac_hba_cmd_req *)
526 fib->hw_fib_va)->reply_qid
527 = vector_no;
528 ((struct aac_hba_cmd_req *)
529 fib->hw_fib_va)->request_id
530 += (vector_no << 16);
531 }
532 } else {
533 fib->hw_fib_va->header.Handle += (vector_no << 16);
534 }
535 } else {
536 vector_no = 0;
537 }
538
539 atomic_inc(&dev->rrq_outstanding[vector_no]);
540
541 if (native_hba) {
542 address = fib->hw_fib_pa;
543 fibsize = (fib->hbacmd_size + 127) / 128 - 1;
544 if (fibsize > 31)
545 fibsize = 31;
546 address |= fibsize;
547 #if defined(writeq)
548 src_writeq(dev, MUnit.IQN_L, (u64)address);
549 #else
550 spin_lock_irqsave(&fib->dev->iq_lock, flags);
551 src_writel(dev, MUnit.IQN_H,
552 upper_32_bits(address) & 0xffffffff);
553 src_writel(dev, MUnit.IQN_L, address & 0xffffffff);
554 spin_unlock_irqrestore(&fib->dev->iq_lock, flags);
555 #endif
556 } else {
557 if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
558 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) {
559 /* Calculate the amount to the fibsize bits */
560 fibsize = (le16_to_cpu(fib->hw_fib_va->header.Size)
561 + 127) / 128 - 1;
562 /* New FIB header, 32-bit */
563 address = fib->hw_fib_pa;
564 fib->hw_fib_va->header.StructType = FIB_MAGIC2;
565 fib->hw_fib_va->header.SenderFibAddress =
566 cpu_to_le32((u32)address);
567 fib->hw_fib_va->header.u.TimeStamp = 0;
568 WARN_ON(upper_32_bits(address) != 0L);
569 } else {
570 /* Calculate the amount to the fibsize bits */
571 fibsize = (sizeof(struct aac_fib_xporthdr) +
572 le16_to_cpu(fib->hw_fib_va->header.Size)
573 + 127) / 128 - 1;
574 /* Fill XPORT header */
575 pFibX = (struct aac_fib_xporthdr *)
576 ((unsigned char *)fib->hw_fib_va -
577 sizeof(struct aac_fib_xporthdr));
578 pFibX->Handle = fib->hw_fib_va->header.Handle;
579 pFibX->HostAddress =
580 cpu_to_le64((u64)fib->hw_fib_pa);
581 pFibX->Size = cpu_to_le32(
582 le16_to_cpu(fib->hw_fib_va->header.Size));
583 address = fib->hw_fib_pa -
584 (u64)sizeof(struct aac_fib_xporthdr);
585 }
586 if (fibsize > 31)
587 fibsize = 31;
588 address |= fibsize;
589
590 #if defined(writeq)
591 src_writeq(dev, MUnit.IQ_L, (u64)address);
592 #else
593 spin_lock_irqsave(&fib->dev->iq_lock, flags);
594 src_writel(dev, MUnit.IQ_H,
595 upper_32_bits(address) & 0xffffffff);
596 src_writel(dev, MUnit.IQ_L, address & 0xffffffff);
597 spin_unlock_irqrestore(&fib->dev->iq_lock, flags);
598 #endif
599 }
600 return 0;
601 }
602
603 /**
604 * aac_src_ioremap
605 * @size: mapping resize request
606 *
607 */
aac_src_ioremap(struct aac_dev * dev,u32 size)608 static int aac_src_ioremap(struct aac_dev *dev, u32 size)
609 {
610 if (!size) {
611 iounmap(dev->regs.src.bar1);
612 dev->regs.src.bar1 = NULL;
613 iounmap(dev->regs.src.bar0);
614 dev->base = dev->regs.src.bar0 = NULL;
615 return 0;
616 }
617 dev->regs.src.bar1 = ioremap(pci_resource_start(dev->pdev, 2),
618 AAC_MIN_SRC_BAR1_SIZE);
619 dev->base = NULL;
620 if (dev->regs.src.bar1 == NULL)
621 return -1;
622 dev->base = dev->regs.src.bar0 = ioremap(dev->base_start, size);
623 if (dev->base == NULL) {
624 iounmap(dev->regs.src.bar1);
625 dev->regs.src.bar1 = NULL;
626 return -1;
627 }
628 dev->IndexRegs = &((struct src_registers __iomem *)
629 dev->base)->u.tupelo.IndexRegs;
630 return 0;
631 }
632
633 /**
634 * aac_srcv_ioremap
635 * @size: mapping resize request
636 *
637 */
aac_srcv_ioremap(struct aac_dev * dev,u32 size)638 static int aac_srcv_ioremap(struct aac_dev *dev, u32 size)
639 {
640 if (!size) {
641 iounmap(dev->regs.src.bar0);
642 dev->base = dev->regs.src.bar0 = NULL;
643 return 0;
644 }
645
646 dev->regs.src.bar1 =
647 ioremap(pci_resource_start(dev->pdev, 2), AAC_MIN_SRCV_BAR1_SIZE);
648 dev->base = NULL;
649 if (dev->regs.src.bar1 == NULL)
650 return -1;
651 dev->base = dev->regs.src.bar0 = ioremap(dev->base_start, size);
652 if (dev->base == NULL) {
653 iounmap(dev->regs.src.bar1);
654 dev->regs.src.bar1 = NULL;
655 return -1;
656 }
657 dev->IndexRegs = &((struct src_registers __iomem *)
658 dev->base)->u.denali.IndexRegs;
659 return 0;
660 }
661
aac_set_intx_mode(struct aac_dev * dev)662 void aac_set_intx_mode(struct aac_dev *dev)
663 {
664 if (dev->msi_enabled) {
665 aac_src_access_devreg(dev, AAC_ENABLE_INTX);
666 dev->msi_enabled = 0;
667 msleep(5000); /* Delay 5 seconds */
668 }
669 }
670
aac_clear_omr(struct aac_dev * dev)671 static void aac_clear_omr(struct aac_dev *dev)
672 {
673 u32 omr_value = 0;
674
675 omr_value = src_readl(dev, MUnit.OMR);
676
677 /*
678 * Check for PCI Errors or Kernel Panic
679 */
680 if ((omr_value == INVALID_OMR) || (omr_value & KERNEL_PANIC))
681 omr_value = 0;
682
683 /*
684 * Preserve MSIX Value if any
685 */
686 src_writel(dev, MUnit.OMR, omr_value & AAC_INT_MODE_MSIX);
687 src_readl(dev, MUnit.OMR);
688 }
689
aac_dump_fw_fib_iop_reset(struct aac_dev * dev)690 static void aac_dump_fw_fib_iop_reset(struct aac_dev *dev)
691 {
692 __le32 supported_options3;
693
694 if (!aac_fib_dump)
695 return;
696
697 supported_options3 = dev->supplement_adapter_info.supported_options3;
698 if (!(supported_options3 & AAC_OPTION_SUPPORTED3_IOP_RESET_FIB_DUMP))
699 return;
700
701 aac_adapter_sync_cmd(dev, IOP_RESET_FW_FIB_DUMP,
702 0, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, NULL);
703 }
704
aac_is_ctrl_up_and_running(struct aac_dev * dev)705 static bool aac_is_ctrl_up_and_running(struct aac_dev *dev)
706 {
707 bool ctrl_up = true;
708 unsigned long status, start;
709 bool is_up = false;
710
711 start = jiffies;
712 do {
713 schedule();
714 status = src_readl(dev, MUnit.OMR);
715
716 if (status == 0xffffffff)
717 status = 0;
718
719 if (status & KERNEL_BOOTING) {
720 start = jiffies;
721 continue;
722 }
723
724 if (time_after(jiffies, start+HZ*SOFT_RESET_TIME)) {
725 ctrl_up = false;
726 break;
727 }
728
729 is_up = status & KERNEL_UP_AND_RUNNING;
730
731 } while (!is_up);
732
733 return ctrl_up;
734 }
735
aac_notify_fw_of_iop_reset(struct aac_dev * dev)736 static void aac_notify_fw_of_iop_reset(struct aac_dev *dev)
737 {
738 aac_adapter_sync_cmd(dev, IOP_RESET_ALWAYS, 0, 0, 0, 0, 0, 0, NULL,
739 NULL, NULL, NULL, NULL);
740 }
741
aac_send_iop_reset(struct aac_dev * dev)742 static void aac_send_iop_reset(struct aac_dev *dev)
743 {
744 aac_dump_fw_fib_iop_reset(dev);
745
746 aac_notify_fw_of_iop_reset(dev);
747
748 aac_set_intx_mode(dev);
749
750 aac_clear_omr(dev);
751
752 src_writel(dev, MUnit.IDR, IOP_SRC_RESET_MASK);
753
754 msleep(5000);
755 }
756
aac_send_hardware_soft_reset(struct aac_dev * dev)757 static void aac_send_hardware_soft_reset(struct aac_dev *dev)
758 {
759 u_int32_t val;
760
761 aac_clear_omr(dev);
762 val = readl(((char *)(dev->base) + IBW_SWR_OFFSET));
763 val |= 0x01;
764 writel(val, ((char *)(dev->base) + IBW_SWR_OFFSET));
765 msleep_interruptible(20000);
766 }
767
aac_src_restart_adapter(struct aac_dev * dev,int bled,u8 reset_type)768 static int aac_src_restart_adapter(struct aac_dev *dev, int bled, u8 reset_type)
769 {
770 bool is_ctrl_up;
771 int ret = 0;
772
773 if (bled < 0)
774 goto invalid_out;
775
776 if (bled)
777 dev_err(&dev->pdev->dev, "adapter kernel panic'd %x.\n", bled);
778
779 /*
780 * When there is a BlinkLED, IOP_RESET has not effect
781 */
782 if (bled >= 2 && dev->sa_firmware && reset_type & HW_IOP_RESET)
783 reset_type &= ~HW_IOP_RESET;
784
785 dev->a_ops.adapter_enable_int = aac_src_disable_interrupt;
786
787 dev_err(&dev->pdev->dev, "Controller reset type is %d\n", reset_type);
788
789 if (reset_type & HW_IOP_RESET) {
790 dev_info(&dev->pdev->dev, "Issuing IOP reset\n");
791 aac_send_iop_reset(dev);
792
793 /*
794 * Creates a delay or wait till up and running comes thru
795 */
796 is_ctrl_up = aac_is_ctrl_up_and_running(dev);
797 if (!is_ctrl_up)
798 dev_err(&dev->pdev->dev, "IOP reset failed\n");
799 else {
800 dev_info(&dev->pdev->dev, "IOP reset succeeded\n");
801 goto set_startup;
802 }
803 }
804
805 if (!dev->sa_firmware) {
806 dev_err(&dev->pdev->dev, "ARC Reset attempt failed\n");
807 ret = -ENODEV;
808 goto out;
809 }
810
811 if (reset_type & HW_SOFT_RESET) {
812 dev_info(&dev->pdev->dev, "Issuing SOFT reset\n");
813 aac_send_hardware_soft_reset(dev);
814 dev->msi_enabled = 0;
815
816 is_ctrl_up = aac_is_ctrl_up_and_running(dev);
817 if (!is_ctrl_up) {
818 dev_err(&dev->pdev->dev, "SOFT reset failed\n");
819 ret = -ENODEV;
820 goto out;
821 } else
822 dev_info(&dev->pdev->dev, "SOFT reset succeeded\n");
823 }
824
825 set_startup:
826 if (startup_timeout < 300)
827 startup_timeout = 300;
828
829 out:
830 return ret;
831
832 invalid_out:
833 if (src_readl(dev, MUnit.OMR) & KERNEL_PANIC)
834 ret = -ENODEV;
835 goto out;
836 }
837
838 /**
839 * aac_src_select_comm - Select communications method
840 * @dev: Adapter
841 * @comm: communications method
842 */
aac_src_select_comm(struct aac_dev * dev,int comm)843 static int aac_src_select_comm(struct aac_dev *dev, int comm)
844 {
845 switch (comm) {
846 case AAC_COMM_MESSAGE:
847 dev->a_ops.adapter_intr = aac_src_intr_message;
848 dev->a_ops.adapter_deliver = aac_src_deliver_message;
849 break;
850 default:
851 return 1;
852 }
853 return 0;
854 }
855
856 /**
857 * aac_src_init - initialize an Cardinal Frey Bar card
858 * @dev: device to configure
859 *
860 */
861
aac_src_init(struct aac_dev * dev)862 int aac_src_init(struct aac_dev *dev)
863 {
864 unsigned long start;
865 unsigned long status;
866 int restart = 0;
867 int instance = dev->id;
868 const char *name = dev->name;
869
870 dev->a_ops.adapter_ioremap = aac_src_ioremap;
871 dev->a_ops.adapter_comm = aac_src_select_comm;
872
873 dev->base_size = AAC_MIN_SRC_BAR0_SIZE;
874 if (aac_adapter_ioremap(dev, dev->base_size)) {
875 printk(KERN_WARNING "%s: unable to map adapter.\n", name);
876 goto error_iounmap;
877 }
878
879 /* Failure to reset here is an option ... */
880 dev->a_ops.adapter_sync_cmd = src_sync_cmd;
881 dev->a_ops.adapter_enable_int = aac_src_disable_interrupt;
882
883 if (dev->init_reset) {
884 dev->init_reset = false;
885 if (!aac_src_restart_adapter(dev, 0, IOP_HWSOFT_RESET))
886 ++restart;
887 }
888
889 /*
890 * Check to see if the board panic'd while booting.
891 */
892 status = src_readl(dev, MUnit.OMR);
893 if (status & KERNEL_PANIC) {
894 if (aac_src_restart_adapter(dev,
895 aac_src_check_health(dev), IOP_HWSOFT_RESET))
896 goto error_iounmap;
897 ++restart;
898 }
899 /*
900 * Check to see if the board failed any self tests.
901 */
902 status = src_readl(dev, MUnit.OMR);
903 if (status & SELF_TEST_FAILED) {
904 printk(KERN_ERR "%s%d: adapter self-test failed.\n",
905 dev->name, instance);
906 goto error_iounmap;
907 }
908 /*
909 * Check to see if the monitor panic'd while booting.
910 */
911 if (status & MONITOR_PANIC) {
912 printk(KERN_ERR "%s%d: adapter monitor panic.\n",
913 dev->name, instance);
914 goto error_iounmap;
915 }
916 start = jiffies;
917 /*
918 * Wait for the adapter to be up and running. Wait up to 3 minutes
919 */
920 while (!((status = src_readl(dev, MUnit.OMR)) &
921 KERNEL_UP_AND_RUNNING)) {
922 if ((restart &&
923 (status & (KERNEL_PANIC|SELF_TEST_FAILED|MONITOR_PANIC))) ||
924 time_after(jiffies, start+HZ*startup_timeout)) {
925 printk(KERN_ERR "%s%d: adapter kernel failed to start, init status = %lx.\n",
926 dev->name, instance, status);
927 goto error_iounmap;
928 }
929 if (!restart &&
930 ((status & (KERNEL_PANIC|SELF_TEST_FAILED|MONITOR_PANIC)) ||
931 time_after(jiffies, start + HZ *
932 ((startup_timeout > 60)
933 ? (startup_timeout - 60)
934 : (startup_timeout / 2))))) {
935 if (likely(!aac_src_restart_adapter(dev,
936 aac_src_check_health(dev), IOP_HWSOFT_RESET)))
937 start = jiffies;
938 ++restart;
939 }
940 msleep(1);
941 }
942 if (restart && aac_commit)
943 aac_commit = 1;
944 /*
945 * Fill in the common function dispatch table.
946 */
947 dev->a_ops.adapter_interrupt = aac_src_interrupt_adapter;
948 dev->a_ops.adapter_disable_int = aac_src_disable_interrupt;
949 dev->a_ops.adapter_enable_int = aac_src_disable_interrupt;
950 dev->a_ops.adapter_notify = aac_src_notify_adapter;
951 dev->a_ops.adapter_sync_cmd = src_sync_cmd;
952 dev->a_ops.adapter_check_health = aac_src_check_health;
953 dev->a_ops.adapter_restart = aac_src_restart_adapter;
954 dev->a_ops.adapter_start = aac_src_start_adapter;
955
956 /*
957 * First clear out all interrupts. Then enable the one's that we
958 * can handle.
959 */
960 aac_adapter_comm(dev, AAC_COMM_MESSAGE);
961 aac_adapter_disable_int(dev);
962 src_writel(dev, MUnit.ODR_C, 0xffffffff);
963 aac_adapter_enable_int(dev);
964
965 if (aac_init_adapter(dev) == NULL)
966 goto error_iounmap;
967 if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE1)
968 goto error_iounmap;
969
970 dev->msi = !pci_enable_msi(dev->pdev);
971
972 dev->aac_msix[0].vector_no = 0;
973 dev->aac_msix[0].dev = dev;
974
975 if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr,
976 IRQF_SHARED, "aacraid", &(dev->aac_msix[0])) < 0) {
977
978 if (dev->msi)
979 pci_disable_msi(dev->pdev);
980
981 printk(KERN_ERR "%s%d: Interrupt unavailable.\n",
982 name, instance);
983 goto error_iounmap;
984 }
985 dev->dbg_base = pci_resource_start(dev->pdev, 2);
986 dev->dbg_base_mapped = dev->regs.src.bar1;
987 dev->dbg_size = AAC_MIN_SRC_BAR1_SIZE;
988 dev->a_ops.adapter_enable_int = aac_src_enable_interrupt_message;
989
990 aac_adapter_enable_int(dev);
991
992 if (!dev->sync_mode) {
993 /*
994 * Tell the adapter that all is configured, and it can
995 * start accepting requests
996 */
997 aac_src_start_adapter(dev);
998 }
999 return 0;
1000
1001 error_iounmap:
1002
1003 return -1;
1004 }
1005
aac_src_wait_sync(struct aac_dev * dev,int * status)1006 static int aac_src_wait_sync(struct aac_dev *dev, int *status)
1007 {
1008 unsigned long start = jiffies;
1009 unsigned long usecs = 0;
1010 int delay = 5 * HZ;
1011 int rc = 1;
1012
1013 while (time_before(jiffies, start+delay)) {
1014 /*
1015 * Delay 5 microseconds to let Mon960 get info.
1016 */
1017 udelay(5);
1018
1019 /*
1020 * Mon960 will set doorbell0 bit when it has completed the
1021 * command.
1022 */
1023 if (aac_src_get_sync_status(dev) & OUTBOUNDDOORBELL_0) {
1024 /*
1025 * Clear: the doorbell.
1026 */
1027 if (dev->msi_enabled)
1028 aac_src_access_devreg(dev, AAC_CLEAR_SYNC_BIT);
1029 else
1030 src_writel(dev, MUnit.ODR_C,
1031 OUTBOUNDDOORBELL_0 << SRC_ODR_SHIFT);
1032 rc = 0;
1033
1034 break;
1035 }
1036
1037 /*
1038 * Yield the processor in case we are slow
1039 */
1040 usecs = 1 * USEC_PER_MSEC;
1041 usleep_range(usecs, usecs + 50);
1042 }
1043 /*
1044 * Pull the synch status from Mailbox 0.
1045 */
1046 if (status && !rc) {
1047 status[0] = readl(&dev->IndexRegs->Mailbox[0]);
1048 status[1] = readl(&dev->IndexRegs->Mailbox[1]);
1049 status[2] = readl(&dev->IndexRegs->Mailbox[2]);
1050 status[3] = readl(&dev->IndexRegs->Mailbox[3]);
1051 status[4] = readl(&dev->IndexRegs->Mailbox[4]);
1052 }
1053
1054 return rc;
1055 }
1056
1057 /**
1058 * aac_src_soft_reset - perform soft reset to speed up
1059 * access
1060 *
1061 * Assumptions: That the controller is in a state where we can
1062 * bring it back to life with an init struct. We can only use
1063 * fast sync commands, as the timeout is 5 seconds.
1064 *
1065 * @dev: device to configure
1066 *
1067 */
1068
aac_src_soft_reset(struct aac_dev * dev)1069 static int aac_src_soft_reset(struct aac_dev *dev)
1070 {
1071 u32 status_omr = src_readl(dev, MUnit.OMR);
1072 u32 status[5];
1073 int rc = 1;
1074 int state = 0;
1075 char *state_str[7] = {
1076 "GET_ADAPTER_PROPERTIES Failed",
1077 "GET_ADAPTER_PROPERTIES timeout",
1078 "SOFT_RESET not supported",
1079 "DROP_IO Failed",
1080 "DROP_IO timeout",
1081 "Check Health failed"
1082 };
1083
1084 if (status_omr == INVALID_OMR)
1085 return 1; // pcie hosed
1086
1087 if (!(status_omr & KERNEL_UP_AND_RUNNING))
1088 return 1; // not up and running
1089
1090 /*
1091 * We go into soft reset mode to allow us to handle response
1092 */
1093 dev->in_soft_reset = 1;
1094 dev->msi_enabled = status_omr & AAC_INT_MODE_MSIX;
1095
1096 /* Get adapter properties */
1097 rc = aac_adapter_sync_cmd(dev, GET_ADAPTER_PROPERTIES, 0, 0, 0,
1098 0, 0, 0, status+0, status+1, status+2, status+3, status+4);
1099 if (rc)
1100 goto out;
1101
1102 state++;
1103 if (aac_src_wait_sync(dev, status)) {
1104 rc = 1;
1105 goto out;
1106 }
1107
1108 state++;
1109 if (!(status[1] & le32_to_cpu(AAC_OPT_EXTENDED) &&
1110 (status[4] & le32_to_cpu(AAC_EXTOPT_SOFT_RESET)))) {
1111 rc = 2;
1112 goto out;
1113 }
1114
1115 if ((status[1] & le32_to_cpu(AAC_OPT_EXTENDED)) &&
1116 (status[4] & le32_to_cpu(AAC_EXTOPT_SA_FIRMWARE)))
1117 dev->sa_firmware = 1;
1118
1119 state++;
1120 rc = aac_adapter_sync_cmd(dev, DROP_IO, 0, 0, 0, 0, 0, 0,
1121 status+0, status+1, status+2, status+3, status+4);
1122
1123 if (rc)
1124 goto out;
1125
1126 state++;
1127 if (aac_src_wait_sync(dev, status)) {
1128 rc = 3;
1129 goto out;
1130 }
1131
1132 if (status[1])
1133 dev_err(&dev->pdev->dev, "%s: %d outstanding I/O pending\n",
1134 __func__, status[1]);
1135
1136 state++;
1137 rc = aac_src_check_health(dev);
1138
1139 out:
1140 dev->in_soft_reset = 0;
1141 dev->msi_enabled = 0;
1142 if (rc)
1143 dev_err(&dev->pdev->dev, "%s: %s status = %d", __func__,
1144 state_str[state], rc);
1145
1146 return rc;
1147 }
1148 /**
1149 * aac_srcv_init - initialize an SRCv card
1150 * @dev: device to configure
1151 *
1152 */
1153
aac_srcv_init(struct aac_dev * dev)1154 int aac_srcv_init(struct aac_dev *dev)
1155 {
1156 unsigned long start;
1157 unsigned long status;
1158 int restart = 0;
1159 int instance = dev->id;
1160 const char *name = dev->name;
1161
1162 dev->a_ops.adapter_ioremap = aac_srcv_ioremap;
1163 dev->a_ops.adapter_comm = aac_src_select_comm;
1164
1165 dev->base_size = AAC_MIN_SRCV_BAR0_SIZE;
1166 if (aac_adapter_ioremap(dev, dev->base_size)) {
1167 printk(KERN_WARNING "%s: unable to map adapter.\n", name);
1168 goto error_iounmap;
1169 }
1170
1171 /* Failure to reset here is an option ... */
1172 dev->a_ops.adapter_sync_cmd = src_sync_cmd;
1173 dev->a_ops.adapter_enable_int = aac_src_disable_interrupt;
1174
1175 if (dev->init_reset) {
1176 dev->init_reset = false;
1177 if (aac_src_soft_reset(dev)) {
1178 aac_src_restart_adapter(dev, 0, IOP_HWSOFT_RESET);
1179 ++restart;
1180 }
1181 }
1182
1183 /*
1184 * Check to see if flash update is running.
1185 * Wait for the adapter to be up and running. Wait up to 5 minutes
1186 */
1187 status = src_readl(dev, MUnit.OMR);
1188 if (status & FLASH_UPD_PENDING) {
1189 start = jiffies;
1190 do {
1191 status = src_readl(dev, MUnit.OMR);
1192 if (time_after(jiffies, start+HZ*FWUPD_TIMEOUT)) {
1193 printk(KERN_ERR "%s%d: adapter flash update failed.\n",
1194 dev->name, instance);
1195 goto error_iounmap;
1196 }
1197 } while (!(status & FLASH_UPD_SUCCESS) &&
1198 !(status & FLASH_UPD_FAILED));
1199 /* Delay 10 seconds.
1200 * Because right now FW is doing a soft reset,
1201 * do not read scratch pad register at this time
1202 */
1203 ssleep(10);
1204 }
1205 /*
1206 * Check to see if the board panic'd while booting.
1207 */
1208 status = src_readl(dev, MUnit.OMR);
1209 if (status & KERNEL_PANIC) {
1210 if (aac_src_restart_adapter(dev,
1211 aac_src_check_health(dev), IOP_HWSOFT_RESET))
1212 goto error_iounmap;
1213 ++restart;
1214 }
1215 /*
1216 * Check to see if the board failed any self tests.
1217 */
1218 status = src_readl(dev, MUnit.OMR);
1219 if (status & SELF_TEST_FAILED) {
1220 printk(KERN_ERR "%s%d: adapter self-test failed.\n", dev->name, instance);
1221 goto error_iounmap;
1222 }
1223 /*
1224 * Check to see if the monitor panic'd while booting.
1225 */
1226 if (status & MONITOR_PANIC) {
1227 printk(KERN_ERR "%s%d: adapter monitor panic.\n", dev->name, instance);
1228 goto error_iounmap;
1229 }
1230
1231 start = jiffies;
1232 /*
1233 * Wait for the adapter to be up and running. Wait up to 3 minutes
1234 */
1235 do {
1236 status = src_readl(dev, MUnit.OMR);
1237 if (status == INVALID_OMR)
1238 status = 0;
1239
1240 if ((restart &&
1241 (status & (KERNEL_PANIC|SELF_TEST_FAILED|MONITOR_PANIC))) ||
1242 time_after(jiffies, start+HZ*startup_timeout)) {
1243 printk(KERN_ERR "%s%d: adapter kernel failed to start, init status = %lx.\n",
1244 dev->name, instance, status);
1245 goto error_iounmap;
1246 }
1247 if (!restart &&
1248 ((status & (KERNEL_PANIC|SELF_TEST_FAILED|MONITOR_PANIC)) ||
1249 time_after(jiffies, start + HZ *
1250 ((startup_timeout > 60)
1251 ? (startup_timeout - 60)
1252 : (startup_timeout / 2))))) {
1253 if (likely(!aac_src_restart_adapter(dev,
1254 aac_src_check_health(dev), IOP_HWSOFT_RESET)))
1255 start = jiffies;
1256 ++restart;
1257 }
1258 msleep(1);
1259 } while (!(status & KERNEL_UP_AND_RUNNING));
1260
1261 if (restart && aac_commit)
1262 aac_commit = 1;
1263 /*
1264 * Fill in the common function dispatch table.
1265 */
1266 dev->a_ops.adapter_interrupt = aac_src_interrupt_adapter;
1267 dev->a_ops.adapter_disable_int = aac_src_disable_interrupt;
1268 dev->a_ops.adapter_enable_int = aac_src_disable_interrupt;
1269 dev->a_ops.adapter_notify = aac_src_notify_adapter;
1270 dev->a_ops.adapter_sync_cmd = src_sync_cmd;
1271 dev->a_ops.adapter_check_health = aac_src_check_health;
1272 dev->a_ops.adapter_restart = aac_src_restart_adapter;
1273 dev->a_ops.adapter_start = aac_src_start_adapter;
1274
1275 /*
1276 * First clear out all interrupts. Then enable the one's that we
1277 * can handle.
1278 */
1279 aac_adapter_comm(dev, AAC_COMM_MESSAGE);
1280 aac_adapter_disable_int(dev);
1281 src_writel(dev, MUnit.ODR_C, 0xffffffff);
1282 aac_adapter_enable_int(dev);
1283
1284 if (aac_init_adapter(dev) == NULL)
1285 goto error_iounmap;
1286 if ((dev->comm_interface != AAC_COMM_MESSAGE_TYPE2) &&
1287 (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3))
1288 goto error_iounmap;
1289 if (dev->msi_enabled)
1290 aac_src_access_devreg(dev, AAC_ENABLE_MSIX);
1291
1292 if (aac_acquire_irq(dev))
1293 goto error_iounmap;
1294
1295 dev->dbg_base = pci_resource_start(dev->pdev, 2);
1296 dev->dbg_base_mapped = dev->regs.src.bar1;
1297 dev->dbg_size = AAC_MIN_SRCV_BAR1_SIZE;
1298 dev->a_ops.adapter_enable_int = aac_src_enable_interrupt_message;
1299
1300 aac_adapter_enable_int(dev);
1301
1302 if (!dev->sync_mode) {
1303 /*
1304 * Tell the adapter that all is configured, and it can
1305 * start accepting requests
1306 */
1307 aac_src_start_adapter(dev);
1308 }
1309 return 0;
1310
1311 error_iounmap:
1312
1313 return -1;
1314 }
1315
aac_src_access_devreg(struct aac_dev * dev,int mode)1316 void aac_src_access_devreg(struct aac_dev *dev, int mode)
1317 {
1318 u_int32_t val;
1319
1320 switch (mode) {
1321 case AAC_ENABLE_INTERRUPT:
1322 src_writel(dev,
1323 MUnit.OIMR,
1324 dev->OIMR = (dev->msi_enabled ?
1325 AAC_INT_ENABLE_TYPE1_MSIX :
1326 AAC_INT_ENABLE_TYPE1_INTX));
1327 break;
1328
1329 case AAC_DISABLE_INTERRUPT:
1330 src_writel(dev,
1331 MUnit.OIMR,
1332 dev->OIMR = AAC_INT_DISABLE_ALL);
1333 break;
1334
1335 case AAC_ENABLE_MSIX:
1336 /* set bit 6 */
1337 val = src_readl(dev, MUnit.IDR);
1338 val |= 0x40;
1339 src_writel(dev, MUnit.IDR, val);
1340 src_readl(dev, MUnit.IDR);
1341 /* unmask int. */
1342 val = PMC_ALL_INTERRUPT_BITS;
1343 src_writel(dev, MUnit.IOAR, val);
1344 val = src_readl(dev, MUnit.OIMR);
1345 src_writel(dev,
1346 MUnit.OIMR,
1347 val & (~(PMC_GLOBAL_INT_BIT2 | PMC_GLOBAL_INT_BIT0)));
1348 break;
1349
1350 case AAC_DISABLE_MSIX:
1351 /* reset bit 6 */
1352 val = src_readl(dev, MUnit.IDR);
1353 val &= ~0x40;
1354 src_writel(dev, MUnit.IDR, val);
1355 src_readl(dev, MUnit.IDR);
1356 break;
1357
1358 case AAC_CLEAR_AIF_BIT:
1359 /* set bit 5 */
1360 val = src_readl(dev, MUnit.IDR);
1361 val |= 0x20;
1362 src_writel(dev, MUnit.IDR, val);
1363 src_readl(dev, MUnit.IDR);
1364 break;
1365
1366 case AAC_CLEAR_SYNC_BIT:
1367 /* set bit 4 */
1368 val = src_readl(dev, MUnit.IDR);
1369 val |= 0x10;
1370 src_writel(dev, MUnit.IDR, val);
1371 src_readl(dev, MUnit.IDR);
1372 break;
1373
1374 case AAC_ENABLE_INTX:
1375 /* set bit 7 */
1376 val = src_readl(dev, MUnit.IDR);
1377 val |= 0x80;
1378 src_writel(dev, MUnit.IDR, val);
1379 src_readl(dev, MUnit.IDR);
1380 /* unmask int. */
1381 val = PMC_ALL_INTERRUPT_BITS;
1382 src_writel(dev, MUnit.IOAR, val);
1383 src_readl(dev, MUnit.IOAR);
1384 val = src_readl(dev, MUnit.OIMR);
1385 src_writel(dev, MUnit.OIMR,
1386 val & (~(PMC_GLOBAL_INT_BIT2)));
1387 break;
1388
1389 default:
1390 break;
1391 }
1392 }
1393
aac_src_get_sync_status(struct aac_dev * dev)1394 static int aac_src_get_sync_status(struct aac_dev *dev)
1395 {
1396 int msix_val = 0;
1397 int legacy_val = 0;
1398
1399 msix_val = src_readl(dev, MUnit.ODR_MSI) & SRC_MSI_READ_MASK ? 1 : 0;
1400
1401 if (!dev->msi_enabled) {
1402 /*
1403 * if Legacy int status indicates cmd is not complete
1404 * sample MSIx register to see if it indiactes cmd complete,
1405 * if yes set the controller in MSIx mode and consider cmd
1406 * completed
1407 */
1408 legacy_val = src_readl(dev, MUnit.ODR_R) >> SRC_ODR_SHIFT;
1409 if (!(legacy_val & 1) && msix_val)
1410 dev->msi_enabled = 1;
1411 return legacy_val;
1412 }
1413
1414 return msix_val;
1415 }
1416