1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Adaptec AAC series RAID controller driver
4 * (c) Copyright 2001 Red Hat Inc.
5 *
6 * based on the old aacraid driver that is..
7 * Adaptec aacraid device driver for Linux.
8 *
9 * Copyright (c) 2000-2010 Adaptec, Inc.
10 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
11 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
12 *
13 * Module Name:
14 * aachba.c
15 *
16 * Abstract: Contains Interfaces to manage IOs.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/types.h>
22 #include <linux/pci.h>
23 #include <linux/spinlock.h>
24 #include <linux/slab.h>
25 #include <linux/completion.h>
26 #include <linux/blkdev.h>
27 #include <linux/uaccess.h>
28 #include <linux/highmem.h> /* For flush_kernel_dcache_page */
29 #include <linux/module.h>
30
31 #include <asm/unaligned.h>
32
33 #include <scsi/scsi.h>
34 #include <scsi/scsi_cmnd.h>
35 #include <scsi/scsi_device.h>
36 #include <scsi/scsi_host.h>
37
38 #include "aacraid.h"
39
40 /* values for inqd_pdt: Peripheral device type in plain English */
41 #define INQD_PDT_DA 0x00 /* Direct-access (DISK) device */
42 #define INQD_PDT_PROC 0x03 /* Processor device */
43 #define INQD_PDT_CHNGR 0x08 /* Changer (jukebox, scsi2) */
44 #define INQD_PDT_COMM 0x09 /* Communication device (scsi2) */
45 #define INQD_PDT_NOLUN2 0x1f /* Unknown Device (scsi2) */
46 #define INQD_PDT_NOLUN 0x7f /* Logical Unit Not Present */
47
48 #define INQD_PDT_DMASK 0x1F /* Peripheral Device Type Mask */
49 #define INQD_PDT_QMASK 0xE0 /* Peripheral Device Qualifer Mask */
50
51 /*
52 * Sense codes
53 */
54
55 #define SENCODE_NO_SENSE 0x00
56 #define SENCODE_END_OF_DATA 0x00
57 #define SENCODE_BECOMING_READY 0x04
58 #define SENCODE_INIT_CMD_REQUIRED 0x04
59 #define SENCODE_UNRECOVERED_READ_ERROR 0x11
60 #define SENCODE_PARAM_LIST_LENGTH_ERROR 0x1A
61 #define SENCODE_INVALID_COMMAND 0x20
62 #define SENCODE_LBA_OUT_OF_RANGE 0x21
63 #define SENCODE_INVALID_CDB_FIELD 0x24
64 #define SENCODE_LUN_NOT_SUPPORTED 0x25
65 #define SENCODE_INVALID_PARAM_FIELD 0x26
66 #define SENCODE_PARAM_NOT_SUPPORTED 0x26
67 #define SENCODE_PARAM_VALUE_INVALID 0x26
68 #define SENCODE_RESET_OCCURRED 0x29
69 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x3E
70 #define SENCODE_INQUIRY_DATA_CHANGED 0x3F
71 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x39
72 #define SENCODE_DIAGNOSTIC_FAILURE 0x40
73 #define SENCODE_INTERNAL_TARGET_FAILURE 0x44
74 #define SENCODE_INVALID_MESSAGE_ERROR 0x49
75 #define SENCODE_LUN_FAILED_SELF_CONFIG 0x4c
76 #define SENCODE_OVERLAPPED_COMMAND 0x4E
77
78 /*
79 * Additional sense codes
80 */
81
82 #define ASENCODE_NO_SENSE 0x00
83 #define ASENCODE_END_OF_DATA 0x05
84 #define ASENCODE_BECOMING_READY 0x01
85 #define ASENCODE_INIT_CMD_REQUIRED 0x02
86 #define ASENCODE_PARAM_LIST_LENGTH_ERROR 0x00
87 #define ASENCODE_INVALID_COMMAND 0x00
88 #define ASENCODE_LBA_OUT_OF_RANGE 0x00
89 #define ASENCODE_INVALID_CDB_FIELD 0x00
90 #define ASENCODE_LUN_NOT_SUPPORTED 0x00
91 #define ASENCODE_INVALID_PARAM_FIELD 0x00
92 #define ASENCODE_PARAM_NOT_SUPPORTED 0x01
93 #define ASENCODE_PARAM_VALUE_INVALID 0x02
94 #define ASENCODE_RESET_OCCURRED 0x00
95 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x00
96 #define ASENCODE_INQUIRY_DATA_CHANGED 0x03
97 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x00
98 #define ASENCODE_DIAGNOSTIC_FAILURE 0x80
99 #define ASENCODE_INTERNAL_TARGET_FAILURE 0x00
100 #define ASENCODE_INVALID_MESSAGE_ERROR 0x00
101 #define ASENCODE_LUN_FAILED_SELF_CONFIG 0x00
102 #define ASENCODE_OVERLAPPED_COMMAND 0x00
103
104 #define BYTE0(x) (unsigned char)(x)
105 #define BYTE1(x) (unsigned char)((x) >> 8)
106 #define BYTE2(x) (unsigned char)((x) >> 16)
107 #define BYTE3(x) (unsigned char)((x) >> 24)
108
109 /* MODE_SENSE data format */
110 typedef struct {
111 struct {
112 u8 data_length;
113 u8 med_type;
114 u8 dev_par;
115 u8 bd_length;
116 } __attribute__((packed)) hd;
117 struct {
118 u8 dens_code;
119 u8 block_count[3];
120 u8 reserved;
121 u8 block_length[3];
122 } __attribute__((packed)) bd;
123 u8 mpc_buf[3];
124 } __attribute__((packed)) aac_modep_data;
125
126 /* MODE_SENSE_10 data format */
127 typedef struct {
128 struct {
129 u8 data_length[2];
130 u8 med_type;
131 u8 dev_par;
132 u8 rsrvd[2];
133 u8 bd_length[2];
134 } __attribute__((packed)) hd;
135 struct {
136 u8 dens_code;
137 u8 block_count[3];
138 u8 reserved;
139 u8 block_length[3];
140 } __attribute__((packed)) bd;
141 u8 mpc_buf[3];
142 } __attribute__((packed)) aac_modep10_data;
143
144 /*------------------------------------------------------------------------------
145 * S T R U C T S / T Y P E D E F S
146 *----------------------------------------------------------------------------*/
147 /* SCSI inquiry data */
148 struct inquiry_data {
149 u8 inqd_pdt; /* Peripheral qualifier | Peripheral Device Type */
150 u8 inqd_dtq; /* RMB | Device Type Qualifier */
151 u8 inqd_ver; /* ISO version | ECMA version | ANSI-approved version */
152 u8 inqd_rdf; /* AENC | TrmIOP | Response data format */
153 u8 inqd_len; /* Additional length (n-4) */
154 u8 inqd_pad1[2];/* Reserved - must be zero */
155 u8 inqd_pad2; /* RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
156 u8 inqd_vid[8]; /* Vendor ID */
157 u8 inqd_pid[16];/* Product ID */
158 u8 inqd_prl[4]; /* Product Revision Level */
159 };
160
161 /* Added for VPD 0x83 */
162 struct tvpd_id_descriptor_type_1 {
163 u8 codeset:4; /* VPD_CODE_SET */
164 u8 reserved:4;
165 u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */
166 u8 reserved2:4;
167 u8 reserved3;
168 u8 identifierlength;
169 u8 venid[8];
170 u8 productid[16];
171 u8 serialnumber[8]; /* SN in ASCII */
172
173 };
174
175 struct tvpd_id_descriptor_type_2 {
176 u8 codeset:4; /* VPD_CODE_SET */
177 u8 reserved:4;
178 u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */
179 u8 reserved2:4;
180 u8 reserved3;
181 u8 identifierlength;
182 struct teu64id {
183 u32 Serial;
184 /* The serial number supposed to be 40 bits,
185 * bit we only support 32, so make the last byte zero. */
186 u8 reserved;
187 u8 venid[3];
188 } eu64id;
189
190 };
191
192 struct tvpd_id_descriptor_type_3 {
193 u8 codeset : 4; /* VPD_CODE_SET */
194 u8 reserved : 4;
195 u8 identifiertype : 4; /* VPD_IDENTIFIER_TYPE */
196 u8 reserved2 : 4;
197 u8 reserved3;
198 u8 identifierlength;
199 u8 Identifier[16];
200 };
201
202 struct tvpd_page83 {
203 u8 DeviceType:5;
204 u8 DeviceTypeQualifier:3;
205 u8 PageCode;
206 u8 reserved;
207 u8 PageLength;
208 struct tvpd_id_descriptor_type_1 type1;
209 struct tvpd_id_descriptor_type_2 type2;
210 struct tvpd_id_descriptor_type_3 type3;
211 };
212
213 /*
214 * M O D U L E G L O B A L S
215 */
216
217 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *sgmap);
218 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg);
219 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg);
220 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd,
221 struct aac_raw_io2 *rio2, int sg_max);
222 static long aac_build_sghba(struct scsi_cmnd *scsicmd,
223 struct aac_hba_cmd_req *hbacmd,
224 int sg_max, u64 sg_address);
225 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2,
226 int pages, int nseg, int nseg_new);
227 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd);
228 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd);
229 #ifdef AAC_DETAILED_STATUS_INFO
230 static char *aac_get_status_string(u32 status);
231 #endif
232
233 /*
234 * Non dasd selection is handled entirely in aachba now
235 */
236
237 static int nondasd = -1;
238 static int aac_cache = 2; /* WCE=0 to avoid performance problems */
239 static int dacmode = -1;
240 int aac_msi;
241 int aac_commit = -1;
242 int startup_timeout = 180;
243 int aif_timeout = 120;
244 int aac_sync_mode; /* Only Sync. transfer - disabled */
245 int aac_convert_sgl = 1; /* convert non-conformable s/g list - enabled */
246
247 module_param(aac_sync_mode, int, S_IRUGO|S_IWUSR);
248 MODULE_PARM_DESC(aac_sync_mode, "Force sync. transfer mode"
249 " 0=off, 1=on");
250 module_param(aac_convert_sgl, int, S_IRUGO|S_IWUSR);
251 MODULE_PARM_DESC(aac_convert_sgl, "Convert non-conformable s/g list"
252 " 0=off, 1=on");
253 module_param(nondasd, int, S_IRUGO|S_IWUSR);
254 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices."
255 " 0=off, 1=on");
256 module_param_named(cache, aac_cache, int, S_IRUGO|S_IWUSR);
257 MODULE_PARM_DESC(cache, "Disable Queue Flush commands:\n"
258 "\tbit 0 - Disable FUA in WRITE SCSI commands\n"
259 "\tbit 1 - Disable SYNCHRONIZE_CACHE SCSI command\n"
260 "\tbit 2 - Disable only if Battery is protecting Cache");
261 module_param(dacmode, int, S_IRUGO|S_IWUSR);
262 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC."
263 " 0=off, 1=on");
264 module_param_named(commit, aac_commit, int, S_IRUGO|S_IWUSR);
265 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the"
266 " adapter for foreign arrays.\n"
267 "This is typically needed in systems that do not have a BIOS."
268 " 0=off, 1=on");
269 module_param_named(msi, aac_msi, int, S_IRUGO|S_IWUSR);
270 MODULE_PARM_DESC(msi, "IRQ handling."
271 " 0=PIC(default), 1=MSI, 2=MSI-X)");
272 module_param(startup_timeout, int, S_IRUGO|S_IWUSR);
273 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for"
274 " adapter to have it's kernel up and\n"
275 "running. This is typically adjusted for large systems that do not"
276 " have a BIOS.");
277 module_param(aif_timeout, int, S_IRUGO|S_IWUSR);
278 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for"
279 " applications to pick up AIFs before\n"
280 "deregistering them. This is typically adjusted for heavily burdened"
281 " systems.");
282
283 int aac_fib_dump;
284 module_param(aac_fib_dump, int, 0644);
285 MODULE_PARM_DESC(aac_fib_dump, "Dump controller fibs prior to IOP_RESET 0=off, 1=on");
286
287 int numacb = -1;
288 module_param(numacb, int, S_IRUGO|S_IWUSR);
289 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control"
290 " blocks (FIB) allocated. Valid values are 512 and down. Default is"
291 " to use suggestion from Firmware.");
292
293 int acbsize = -1;
294 module_param(acbsize, int, S_IRUGO|S_IWUSR);
295 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB)"
296 " size. Valid values are 512, 2048, 4096 and 8192. Default is to use"
297 " suggestion from Firmware.");
298
299 int update_interval = 30 * 60;
300 module_param(update_interval, int, S_IRUGO|S_IWUSR);
301 MODULE_PARM_DESC(update_interval, "Interval in seconds between time sync"
302 " updates issued to adapter.");
303
304 int check_interval = 60;
305 module_param(check_interval, int, S_IRUGO|S_IWUSR);
306 MODULE_PARM_DESC(check_interval, "Interval in seconds between adapter health"
307 " checks.");
308
309 int aac_check_reset = 1;
310 module_param_named(check_reset, aac_check_reset, int, S_IRUGO|S_IWUSR);
311 MODULE_PARM_DESC(check_reset, "If adapter fails health check, reset the"
312 " adapter. a value of -1 forces the reset to adapters programmed to"
313 " ignore it.");
314
315 int expose_physicals = -1;
316 module_param(expose_physicals, int, S_IRUGO|S_IWUSR);
317 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays."
318 " -1=protect 0=off, 1=on");
319
320 int aac_reset_devices;
321 module_param_named(reset_devices, aac_reset_devices, int, S_IRUGO|S_IWUSR);
322 MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization.");
323
324 int aac_wwn = 1;
325 module_param_named(wwn, aac_wwn, int, S_IRUGO|S_IWUSR);
326 MODULE_PARM_DESC(wwn, "Select a WWN type for the arrays:\n"
327 "\t0 - Disable\n"
328 "\t1 - Array Meta Data Signature (default)\n"
329 "\t2 - Adapter Serial Number");
330
331
aac_valid_context(struct scsi_cmnd * scsicmd,struct fib * fibptr)332 static inline int aac_valid_context(struct scsi_cmnd *scsicmd,
333 struct fib *fibptr) {
334 struct scsi_device *device;
335
336 if (unlikely(!scsicmd || !scsicmd->scsi_done)) {
337 dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n"));
338 aac_fib_complete(fibptr);
339 return 0;
340 }
341 scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL;
342 device = scsicmd->device;
343 if (unlikely(!device)) {
344 dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n"));
345 aac_fib_complete(fibptr);
346 return 0;
347 }
348 return 1;
349 }
350
351 /**
352 * aac_get_config_status - check the adapter configuration
353 * @common: adapter to query
354 *
355 * Query config status, and commit the configuration if needed.
356 */
aac_get_config_status(struct aac_dev * dev,int commit_flag)357 int aac_get_config_status(struct aac_dev *dev, int commit_flag)
358 {
359 int status = 0;
360 struct fib * fibptr;
361
362 if (!(fibptr = aac_fib_alloc(dev)))
363 return -ENOMEM;
364
365 aac_fib_init(fibptr);
366 {
367 struct aac_get_config_status *dinfo;
368 dinfo = (struct aac_get_config_status *) fib_data(fibptr);
369
370 dinfo->command = cpu_to_le32(VM_ContainerConfig);
371 dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS);
372 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data));
373 }
374
375 status = aac_fib_send(ContainerCommand,
376 fibptr,
377 sizeof (struct aac_get_config_status),
378 FsaNormal,
379 1, 1,
380 NULL, NULL);
381 if (status < 0) {
382 printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n");
383 } else {
384 struct aac_get_config_status_resp *reply
385 = (struct aac_get_config_status_resp *) fib_data(fibptr);
386 dprintk((KERN_WARNING
387 "aac_get_config_status: response=%d status=%d action=%d\n",
388 le32_to_cpu(reply->response),
389 le32_to_cpu(reply->status),
390 le32_to_cpu(reply->data.action)));
391 if ((le32_to_cpu(reply->response) != ST_OK) ||
392 (le32_to_cpu(reply->status) != CT_OK) ||
393 (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) {
394 printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n");
395 status = -EINVAL;
396 }
397 }
398 /* Do not set XferState to zero unless receives a response from F/W */
399 if (status >= 0)
400 aac_fib_complete(fibptr);
401
402 /* Send a CT_COMMIT_CONFIG to enable discovery of devices */
403 if (status >= 0) {
404 if ((aac_commit == 1) || commit_flag) {
405 struct aac_commit_config * dinfo;
406 aac_fib_init(fibptr);
407 dinfo = (struct aac_commit_config *) fib_data(fibptr);
408
409 dinfo->command = cpu_to_le32(VM_ContainerConfig);
410 dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG);
411
412 status = aac_fib_send(ContainerCommand,
413 fibptr,
414 sizeof (struct aac_commit_config),
415 FsaNormal,
416 1, 1,
417 NULL, NULL);
418 /* Do not set XferState to zero unless
419 * receives a response from F/W */
420 if (status >= 0)
421 aac_fib_complete(fibptr);
422 } else if (aac_commit == 0) {
423 printk(KERN_WARNING
424 "aac_get_config_status: Foreign device configurations are being ignored\n");
425 }
426 }
427 /* FIB should be freed only after getting the response from the F/W */
428 if (status != -ERESTARTSYS)
429 aac_fib_free(fibptr);
430 return status;
431 }
432
aac_expose_phy_device(struct scsi_cmnd * scsicmd)433 static void aac_expose_phy_device(struct scsi_cmnd *scsicmd)
434 {
435 char inq_data;
436 scsi_sg_copy_to_buffer(scsicmd, &inq_data, sizeof(inq_data));
437 if ((inq_data & 0x20) && (inq_data & 0x1f) == TYPE_DISK) {
438 inq_data &= 0xdf;
439 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
440 }
441 }
442
443 /**
444 * aac_get_containers - list containers
445 * @common: adapter to probe
446 *
447 * Make a list of all containers on this controller
448 */
aac_get_containers(struct aac_dev * dev)449 int aac_get_containers(struct aac_dev *dev)
450 {
451 struct fsa_dev_info *fsa_dev_ptr;
452 u32 index;
453 int status = 0;
454 struct fib * fibptr;
455 struct aac_get_container_count *dinfo;
456 struct aac_get_container_count_resp *dresp;
457 int maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
458
459 if (!(fibptr = aac_fib_alloc(dev)))
460 return -ENOMEM;
461
462 aac_fib_init(fibptr);
463 dinfo = (struct aac_get_container_count *) fib_data(fibptr);
464 dinfo->command = cpu_to_le32(VM_ContainerConfig);
465 dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT);
466
467 status = aac_fib_send(ContainerCommand,
468 fibptr,
469 sizeof (struct aac_get_container_count),
470 FsaNormal,
471 1, 1,
472 NULL, NULL);
473 if (status >= 0) {
474 dresp = (struct aac_get_container_count_resp *)fib_data(fibptr);
475 maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries);
476 if (fibptr->dev->supplement_adapter_info.supported_options2 &
477 AAC_OPTION_SUPPORTED_240_VOLUMES) {
478 maximum_num_containers =
479 le32_to_cpu(dresp->MaxSimpleVolumes);
480 }
481 aac_fib_complete(fibptr);
482 }
483 /* FIB should be freed only after getting the response from the F/W */
484 if (status != -ERESTARTSYS)
485 aac_fib_free(fibptr);
486
487 if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS)
488 maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
489 if (dev->fsa_dev == NULL ||
490 dev->maximum_num_containers != maximum_num_containers) {
491
492 fsa_dev_ptr = dev->fsa_dev;
493
494 dev->fsa_dev = kcalloc(maximum_num_containers,
495 sizeof(*fsa_dev_ptr), GFP_KERNEL);
496
497 kfree(fsa_dev_ptr);
498 fsa_dev_ptr = NULL;
499
500
501 if (!dev->fsa_dev)
502 return -ENOMEM;
503
504 dev->maximum_num_containers = maximum_num_containers;
505 }
506 for (index = 0; index < dev->maximum_num_containers; index++) {
507 dev->fsa_dev[index].devname[0] = '\0';
508 dev->fsa_dev[index].valid = 0;
509
510 status = aac_probe_container(dev, index);
511
512 if (status < 0) {
513 printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n");
514 break;
515 }
516 }
517 return status;
518 }
519
get_container_name_callback(void * context,struct fib * fibptr)520 static void get_container_name_callback(void *context, struct fib * fibptr)
521 {
522 struct aac_get_name_resp * get_name_reply;
523 struct scsi_cmnd * scsicmd;
524
525 scsicmd = (struct scsi_cmnd *) context;
526
527 if (!aac_valid_context(scsicmd, fibptr))
528 return;
529
530 dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies));
531 BUG_ON(fibptr == NULL);
532
533 get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr);
534 /* Failure is irrelevant, using default value instead */
535 if ((le32_to_cpu(get_name_reply->status) == CT_OK)
536 && (get_name_reply->data[0] != '\0')) {
537 char *sp = get_name_reply->data;
538 int data_size = FIELD_SIZEOF(struct aac_get_name_resp, data);
539
540 sp[data_size - 1] = '\0';
541 while (*sp == ' ')
542 ++sp;
543 if (*sp) {
544 struct inquiry_data inq;
545 char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)];
546 int count = sizeof(d);
547 char *dp = d;
548 do {
549 *dp++ = (*sp) ? *sp++ : ' ';
550 } while (--count > 0);
551
552 scsi_sg_copy_to_buffer(scsicmd, &inq, sizeof(inq));
553 memcpy(inq.inqd_pid, d, sizeof(d));
554 scsi_sg_copy_from_buffer(scsicmd, &inq, sizeof(inq));
555 }
556 }
557
558 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
559
560 aac_fib_complete(fibptr);
561 scsicmd->scsi_done(scsicmd);
562 }
563
564 /**
565 * aac_get_container_name - get container name, none blocking.
566 */
aac_get_container_name(struct scsi_cmnd * scsicmd)567 static int aac_get_container_name(struct scsi_cmnd * scsicmd)
568 {
569 int status;
570 int data_size;
571 struct aac_get_name *dinfo;
572 struct fib * cmd_fibcontext;
573 struct aac_dev * dev;
574
575 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
576
577 data_size = FIELD_SIZEOF(struct aac_get_name_resp, data);
578
579 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
580
581 aac_fib_init(cmd_fibcontext);
582 dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext);
583 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
584
585 dinfo->command = cpu_to_le32(VM_ContainerConfig);
586 dinfo->type = cpu_to_le32(CT_READ_NAME);
587 dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
588 dinfo->count = cpu_to_le32(data_size - 1);
589
590 status = aac_fib_send(ContainerCommand,
591 cmd_fibcontext,
592 sizeof(struct aac_get_name_resp),
593 FsaNormal,
594 0, 1,
595 (fib_callback)get_container_name_callback,
596 (void *) scsicmd);
597
598 /*
599 * Check that the command queued to the controller
600 */
601 if (status == -EINPROGRESS)
602 return 0;
603
604 printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status);
605 aac_fib_complete(cmd_fibcontext);
606 return -1;
607 }
608
aac_probe_container_callback2(struct scsi_cmnd * scsicmd)609 static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd)
610 {
611 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
612
613 if ((fsa_dev_ptr[scmd_id(scsicmd)].valid & 1))
614 return aac_scsi_cmd(scsicmd);
615
616 scsicmd->result = DID_NO_CONNECT << 16;
617 scsicmd->scsi_done(scsicmd);
618 return 0;
619 }
620
_aac_probe_container2(void * context,struct fib * fibptr)621 static void _aac_probe_container2(void * context, struct fib * fibptr)
622 {
623 struct fsa_dev_info *fsa_dev_ptr;
624 int (*callback)(struct scsi_cmnd *);
625 struct scsi_cmnd * scsicmd = (struct scsi_cmnd *)context;
626 int i;
627
628
629 if (!aac_valid_context(scsicmd, fibptr))
630 return;
631
632 scsicmd->SCp.Status = 0;
633 fsa_dev_ptr = fibptr->dev->fsa_dev;
634 if (fsa_dev_ptr) {
635 struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr);
636 __le32 sup_options2;
637
638 fsa_dev_ptr += scmd_id(scsicmd);
639 sup_options2 =
640 fibptr->dev->supplement_adapter_info.supported_options2;
641
642 if ((le32_to_cpu(dresp->status) == ST_OK) &&
643 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
644 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
645 if (!(sup_options2 & AAC_OPTION_VARIABLE_BLOCK_SIZE)) {
646 dresp->mnt[0].fileinfo.bdevinfo.block_size = 0x200;
647 fsa_dev_ptr->block_size = 0x200;
648 } else {
649 fsa_dev_ptr->block_size =
650 le32_to_cpu(dresp->mnt[0].fileinfo.bdevinfo.block_size);
651 }
652 for (i = 0; i < 16; i++)
653 fsa_dev_ptr->identifier[i] =
654 dresp->mnt[0].fileinfo.bdevinfo
655 .identifier[i];
656 fsa_dev_ptr->valid = 1;
657 /* sense_key holds the current state of the spin-up */
658 if (dresp->mnt[0].state & cpu_to_le32(FSCS_NOT_READY))
659 fsa_dev_ptr->sense_data.sense_key = NOT_READY;
660 else if (fsa_dev_ptr->sense_data.sense_key == NOT_READY)
661 fsa_dev_ptr->sense_data.sense_key = NO_SENSE;
662 fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol);
663 fsa_dev_ptr->size
664 = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
665 (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
666 fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0);
667 }
668 if ((fsa_dev_ptr->valid & 1) == 0)
669 fsa_dev_ptr->valid = 0;
670 scsicmd->SCp.Status = le32_to_cpu(dresp->count);
671 }
672 aac_fib_complete(fibptr);
673 aac_fib_free(fibptr);
674 callback = (int (*)(struct scsi_cmnd *))(scsicmd->SCp.ptr);
675 scsicmd->SCp.ptr = NULL;
676 (*callback)(scsicmd);
677 return;
678 }
679
_aac_probe_container1(void * context,struct fib * fibptr)680 static void _aac_probe_container1(void * context, struct fib * fibptr)
681 {
682 struct scsi_cmnd * scsicmd;
683 struct aac_mount * dresp;
684 struct aac_query_mount *dinfo;
685 int status;
686
687 dresp = (struct aac_mount *) fib_data(fibptr);
688 if (!aac_supports_2T(fibptr->dev)) {
689 dresp->mnt[0].capacityhigh = 0;
690 if ((le32_to_cpu(dresp->status) == ST_OK) &&
691 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE)) {
692 _aac_probe_container2(context, fibptr);
693 return;
694 }
695 }
696 scsicmd = (struct scsi_cmnd *) context;
697
698 if (!aac_valid_context(scsicmd, fibptr))
699 return;
700
701 aac_fib_init(fibptr);
702
703 dinfo = (struct aac_query_mount *)fib_data(fibptr);
704
705 if (fibptr->dev->supplement_adapter_info.supported_options2 &
706 AAC_OPTION_VARIABLE_BLOCK_SIZE)
707 dinfo->command = cpu_to_le32(VM_NameServeAllBlk);
708 else
709 dinfo->command = cpu_to_le32(VM_NameServe64);
710
711 dinfo->count = cpu_to_le32(scmd_id(scsicmd));
712 dinfo->type = cpu_to_le32(FT_FILESYS);
713 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
714
715 status = aac_fib_send(ContainerCommand,
716 fibptr,
717 sizeof(struct aac_query_mount),
718 FsaNormal,
719 0, 1,
720 _aac_probe_container2,
721 (void *) scsicmd);
722 /*
723 * Check that the command queued to the controller
724 */
725 if (status < 0 && status != -EINPROGRESS) {
726 /* Inherit results from VM_NameServe, if any */
727 dresp->status = cpu_to_le32(ST_OK);
728 _aac_probe_container2(context, fibptr);
729 }
730 }
731
_aac_probe_container(struct scsi_cmnd * scsicmd,int (* callback)(struct scsi_cmnd *))732 static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *))
733 {
734 struct fib * fibptr;
735 int status = -ENOMEM;
736
737 if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) {
738 struct aac_query_mount *dinfo;
739
740 aac_fib_init(fibptr);
741
742 dinfo = (struct aac_query_mount *)fib_data(fibptr);
743
744 if (fibptr->dev->supplement_adapter_info.supported_options2 &
745 AAC_OPTION_VARIABLE_BLOCK_SIZE)
746 dinfo->command = cpu_to_le32(VM_NameServeAllBlk);
747 else
748 dinfo->command = cpu_to_le32(VM_NameServe);
749
750 dinfo->count = cpu_to_le32(scmd_id(scsicmd));
751 dinfo->type = cpu_to_le32(FT_FILESYS);
752 scsicmd->SCp.ptr = (char *)callback;
753 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
754
755 status = aac_fib_send(ContainerCommand,
756 fibptr,
757 sizeof(struct aac_query_mount),
758 FsaNormal,
759 0, 1,
760 _aac_probe_container1,
761 (void *) scsicmd);
762 /*
763 * Check that the command queued to the controller
764 */
765 if (status == -EINPROGRESS)
766 return 0;
767
768 if (status < 0) {
769 scsicmd->SCp.ptr = NULL;
770 aac_fib_complete(fibptr);
771 aac_fib_free(fibptr);
772 }
773 }
774 if (status < 0) {
775 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
776 if (fsa_dev_ptr) {
777 fsa_dev_ptr += scmd_id(scsicmd);
778 if ((fsa_dev_ptr->valid & 1) == 0) {
779 fsa_dev_ptr->valid = 0;
780 return (*callback)(scsicmd);
781 }
782 }
783 }
784 return status;
785 }
786
787 /**
788 * aac_probe_container - query a logical volume
789 * @dev: device to query
790 * @cid: container identifier
791 *
792 * Queries the controller about the given volume. The volume information
793 * is updated in the struct fsa_dev_info structure rather than returned.
794 */
aac_probe_container_callback1(struct scsi_cmnd * scsicmd)795 static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd)
796 {
797 scsicmd->device = NULL;
798 return 0;
799 }
800
aac_probe_container(struct aac_dev * dev,int cid)801 int aac_probe_container(struct aac_dev *dev, int cid)
802 {
803 struct scsi_cmnd *scsicmd = kmalloc(sizeof(*scsicmd), GFP_KERNEL);
804 struct scsi_device *scsidev = kmalloc(sizeof(*scsidev), GFP_KERNEL);
805 int status;
806
807 if (!scsicmd || !scsidev) {
808 kfree(scsicmd);
809 kfree(scsidev);
810 return -ENOMEM;
811 }
812 scsicmd->list.next = NULL;
813 scsicmd->scsi_done = (void (*)(struct scsi_cmnd*))aac_probe_container_callback1;
814
815 scsicmd->device = scsidev;
816 scsidev->sdev_state = 0;
817 scsidev->id = cid;
818 scsidev->host = dev->scsi_host_ptr;
819
820 if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0)
821 while (scsicmd->device == scsidev)
822 schedule();
823 kfree(scsidev);
824 status = scsicmd->SCp.Status;
825 kfree(scsicmd);
826 return status;
827 }
828
829 /* Local Structure to set SCSI inquiry data strings */
830 struct scsi_inq {
831 char vid[8]; /* Vendor ID */
832 char pid[16]; /* Product ID */
833 char prl[4]; /* Product Revision Level */
834 };
835
836 /**
837 * InqStrCopy - string merge
838 * @a: string to copy from
839 * @b: string to copy to
840 *
841 * Copy a String from one location to another
842 * without copying \0
843 */
844
inqstrcpy(char * a,char * b)845 static void inqstrcpy(char *a, char *b)
846 {
847
848 while (*a != (char)0)
849 *b++ = *a++;
850 }
851
852 static char *container_types[] = {
853 "None",
854 "Volume",
855 "Mirror",
856 "Stripe",
857 "RAID5",
858 "SSRW",
859 "SSRO",
860 "Morph",
861 "Legacy",
862 "RAID4",
863 "RAID10",
864 "RAID00",
865 "V-MIRRORS",
866 "PSEUDO R4",
867 "RAID50",
868 "RAID5D",
869 "RAID5D0",
870 "RAID1E",
871 "RAID6",
872 "RAID60",
873 "Unknown"
874 };
875
get_container_type(unsigned tindex)876 char * get_container_type(unsigned tindex)
877 {
878 if (tindex >= ARRAY_SIZE(container_types))
879 tindex = ARRAY_SIZE(container_types) - 1;
880 return container_types[tindex];
881 }
882
883 /* Function: setinqstr
884 *
885 * Arguments: [1] pointer to void [1] int
886 *
887 * Purpose: Sets SCSI inquiry data strings for vendor, product
888 * and revision level. Allows strings to be set in platform dependent
889 * files instead of in OS dependent driver source.
890 */
891
setinqstr(struct aac_dev * dev,void * data,int tindex)892 static void setinqstr(struct aac_dev *dev, void *data, int tindex)
893 {
894 struct scsi_inq *str;
895 struct aac_supplement_adapter_info *sup_adap_info;
896
897 sup_adap_info = &dev->supplement_adapter_info;
898 str = (struct scsi_inq *)(data); /* cast data to scsi inq block */
899 memset(str, ' ', sizeof(*str));
900
901 if (sup_adap_info->adapter_type_text[0]) {
902 int c;
903 char *cp;
904 char *cname = kmemdup(sup_adap_info->adapter_type_text,
905 sizeof(sup_adap_info->adapter_type_text),
906 GFP_ATOMIC);
907 if (!cname)
908 return;
909
910 cp = cname;
911 if ((cp[0] == 'A') && (cp[1] == 'O') && (cp[2] == 'C'))
912 inqstrcpy("SMC", str->vid);
913 else {
914 c = sizeof(str->vid);
915 while (*cp && *cp != ' ' && --c)
916 ++cp;
917 c = *cp;
918 *cp = '\0';
919 inqstrcpy(cname, str->vid);
920 *cp = c;
921 while (*cp && *cp != ' ')
922 ++cp;
923 }
924 while (*cp == ' ')
925 ++cp;
926 /* last six chars reserved for vol type */
927 if (strlen(cp) > sizeof(str->pid))
928 cp[sizeof(str->pid)] = '\0';
929 inqstrcpy (cp, str->pid);
930
931 kfree(cname);
932 } else {
933 struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype);
934
935 inqstrcpy (mp->vname, str->vid);
936 /* last six chars reserved for vol type */
937 inqstrcpy (mp->model, str->pid);
938 }
939
940 if (tindex < ARRAY_SIZE(container_types)){
941 char *findit = str->pid;
942
943 for ( ; *findit != ' '; findit++); /* walk till we find a space */
944 /* RAID is superfluous in the context of a RAID device */
945 if (memcmp(findit-4, "RAID", 4) == 0)
946 *(findit -= 4) = ' ';
947 if (((findit - str->pid) + strlen(container_types[tindex]))
948 < (sizeof(str->pid) + sizeof(str->prl)))
949 inqstrcpy (container_types[tindex], findit + 1);
950 }
951 inqstrcpy ("V1.0", str->prl);
952 }
953
build_vpd83_type3(struct tvpd_page83 * vpdpage83data,struct aac_dev * dev,struct scsi_cmnd * scsicmd)954 static void build_vpd83_type3(struct tvpd_page83 *vpdpage83data,
955 struct aac_dev *dev, struct scsi_cmnd *scsicmd)
956 {
957 int container;
958
959 vpdpage83data->type3.codeset = 1;
960 vpdpage83data->type3.identifiertype = 3;
961 vpdpage83data->type3.identifierlength = sizeof(vpdpage83data->type3)
962 - 4;
963
964 for (container = 0; container < dev->maximum_num_containers;
965 container++) {
966
967 if (scmd_id(scsicmd) == container) {
968 memcpy(vpdpage83data->type3.Identifier,
969 dev->fsa_dev[container].identifier,
970 16);
971 break;
972 }
973 }
974 }
975
get_container_serial_callback(void * context,struct fib * fibptr)976 static void get_container_serial_callback(void *context, struct fib * fibptr)
977 {
978 struct aac_get_serial_resp * get_serial_reply;
979 struct scsi_cmnd * scsicmd;
980
981 BUG_ON(fibptr == NULL);
982
983 scsicmd = (struct scsi_cmnd *) context;
984 if (!aac_valid_context(scsicmd, fibptr))
985 return;
986
987 get_serial_reply = (struct aac_get_serial_resp *) fib_data(fibptr);
988 /* Failure is irrelevant, using default value instead */
989 if (le32_to_cpu(get_serial_reply->status) == CT_OK) {
990 /*Check to see if it's for VPD 0x83 or 0x80 */
991 if (scsicmd->cmnd[2] == 0x83) {
992 /* vpd page 0x83 - Device Identification Page */
993 struct aac_dev *dev;
994 int i;
995 struct tvpd_page83 vpdpage83data;
996
997 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
998
999 memset(((u8 *)&vpdpage83data), 0,
1000 sizeof(vpdpage83data));
1001
1002 /* DIRECT_ACCESS_DEVIC */
1003 vpdpage83data.DeviceType = 0;
1004 /* DEVICE_CONNECTED */
1005 vpdpage83data.DeviceTypeQualifier = 0;
1006 /* VPD_DEVICE_IDENTIFIERS */
1007 vpdpage83data.PageCode = 0x83;
1008 vpdpage83data.reserved = 0;
1009 vpdpage83data.PageLength =
1010 sizeof(vpdpage83data.type1) +
1011 sizeof(vpdpage83data.type2);
1012
1013 /* VPD 83 Type 3 is not supported for ARC */
1014 if (dev->sa_firmware)
1015 vpdpage83data.PageLength +=
1016 sizeof(vpdpage83data.type3);
1017
1018 /* T10 Vendor Identifier Field Format */
1019 /* VpdcodesetAscii */
1020 vpdpage83data.type1.codeset = 2;
1021 /* VpdIdentifierTypeVendorId */
1022 vpdpage83data.type1.identifiertype = 1;
1023 vpdpage83data.type1.identifierlength =
1024 sizeof(vpdpage83data.type1) - 4;
1025
1026 /* "ADAPTEC " for adaptec */
1027 memcpy(vpdpage83data.type1.venid,
1028 "ADAPTEC ",
1029 sizeof(vpdpage83data.type1.venid));
1030 memcpy(vpdpage83data.type1.productid,
1031 "ARRAY ",
1032 sizeof(
1033 vpdpage83data.type1.productid));
1034
1035 /* Convert to ascii based serial number.
1036 * The LSB is the the end.
1037 */
1038 for (i = 0; i < 8; i++) {
1039 u8 temp =
1040 (u8)((get_serial_reply->uid >> ((7 - i) * 4)) & 0xF);
1041 if (temp > 0x9) {
1042 vpdpage83data.type1.serialnumber[i] =
1043 'A' + (temp - 0xA);
1044 } else {
1045 vpdpage83data.type1.serialnumber[i] =
1046 '0' + temp;
1047 }
1048 }
1049
1050 /* VpdCodeSetBinary */
1051 vpdpage83data.type2.codeset = 1;
1052 /* VpdidentifiertypeEUI64 */
1053 vpdpage83data.type2.identifiertype = 2;
1054 vpdpage83data.type2.identifierlength =
1055 sizeof(vpdpage83data.type2) - 4;
1056
1057 vpdpage83data.type2.eu64id.venid[0] = 0xD0;
1058 vpdpage83data.type2.eu64id.venid[1] = 0;
1059 vpdpage83data.type2.eu64id.venid[2] = 0;
1060
1061 vpdpage83data.type2.eu64id.Serial =
1062 get_serial_reply->uid;
1063 vpdpage83data.type2.eu64id.reserved = 0;
1064
1065 /*
1066 * VpdIdentifierTypeFCPHName
1067 * VPD 0x83 Type 3 not supported for ARC
1068 */
1069 if (dev->sa_firmware) {
1070 build_vpd83_type3(&vpdpage83data,
1071 dev, scsicmd);
1072 }
1073
1074 /* Move the inquiry data to the response buffer. */
1075 scsi_sg_copy_from_buffer(scsicmd, &vpdpage83data,
1076 sizeof(vpdpage83data));
1077 } else {
1078 /* It must be for VPD 0x80 */
1079 char sp[13];
1080 /* EVPD bit set */
1081 sp[0] = INQD_PDT_DA;
1082 sp[1] = scsicmd->cmnd[2];
1083 sp[2] = 0;
1084 sp[3] = snprintf(sp+4, sizeof(sp)-4, "%08X",
1085 le32_to_cpu(get_serial_reply->uid));
1086 scsi_sg_copy_from_buffer(scsicmd, sp,
1087 sizeof(sp));
1088 }
1089 }
1090
1091 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1092
1093 aac_fib_complete(fibptr);
1094 scsicmd->scsi_done(scsicmd);
1095 }
1096
1097 /**
1098 * aac_get_container_serial - get container serial, none blocking.
1099 */
aac_get_container_serial(struct scsi_cmnd * scsicmd)1100 static int aac_get_container_serial(struct scsi_cmnd * scsicmd)
1101 {
1102 int status;
1103 struct aac_get_serial *dinfo;
1104 struct fib * cmd_fibcontext;
1105 struct aac_dev * dev;
1106
1107 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1108
1109 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
1110
1111 aac_fib_init(cmd_fibcontext);
1112 dinfo = (struct aac_get_serial *) fib_data(cmd_fibcontext);
1113
1114 dinfo->command = cpu_to_le32(VM_ContainerConfig);
1115 dinfo->type = cpu_to_le32(CT_CID_TO_32BITS_UID);
1116 dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
1117 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1118
1119 status = aac_fib_send(ContainerCommand,
1120 cmd_fibcontext,
1121 sizeof(struct aac_get_serial_resp),
1122 FsaNormal,
1123 0, 1,
1124 (fib_callback) get_container_serial_callback,
1125 (void *) scsicmd);
1126
1127 /*
1128 * Check that the command queued to the controller
1129 */
1130 if (status == -EINPROGRESS)
1131 return 0;
1132
1133 printk(KERN_WARNING "aac_get_container_serial: aac_fib_send failed with status: %d.\n", status);
1134 aac_fib_complete(cmd_fibcontext);
1135 return -1;
1136 }
1137
1138 /* Function: setinqserial
1139 *
1140 * Arguments: [1] pointer to void [1] int
1141 *
1142 * Purpose: Sets SCSI Unit Serial number.
1143 * This is a fake. We should read a proper
1144 * serial number from the container. <SuSE>But
1145 * without docs it's quite hard to do it :-)
1146 * So this will have to do in the meantime.</SuSE>
1147 */
1148
setinqserial(struct aac_dev * dev,void * data,int cid)1149 static int setinqserial(struct aac_dev *dev, void *data, int cid)
1150 {
1151 /*
1152 * This breaks array migration.
1153 */
1154 return snprintf((char *)(data), sizeof(struct scsi_inq) - 4, "%08X%02X",
1155 le32_to_cpu(dev->adapter_info.serial[0]), cid);
1156 }
1157
set_sense(struct sense_data * sense_data,u8 sense_key,u8 sense_code,u8 a_sense_code,u8 bit_pointer,u16 field_pointer)1158 static inline void set_sense(struct sense_data *sense_data, u8 sense_key,
1159 u8 sense_code, u8 a_sense_code, u8 bit_pointer, u16 field_pointer)
1160 {
1161 u8 *sense_buf = (u8 *)sense_data;
1162 /* Sense data valid, err code 70h */
1163 sense_buf[0] = 0x70; /* No info field */
1164 sense_buf[1] = 0; /* Segment number, always zero */
1165
1166 sense_buf[2] = sense_key; /* Sense key */
1167
1168 sense_buf[12] = sense_code; /* Additional sense code */
1169 sense_buf[13] = a_sense_code; /* Additional sense code qualifier */
1170
1171 if (sense_key == ILLEGAL_REQUEST) {
1172 sense_buf[7] = 10; /* Additional sense length */
1173
1174 sense_buf[15] = bit_pointer;
1175 /* Illegal parameter is in the parameter block */
1176 if (sense_code == SENCODE_INVALID_CDB_FIELD)
1177 sense_buf[15] |= 0xc0;/* Std sense key specific field */
1178 /* Illegal parameter is in the CDB block */
1179 sense_buf[16] = field_pointer >> 8; /* MSB */
1180 sense_buf[17] = field_pointer; /* LSB */
1181 } else
1182 sense_buf[7] = 6; /* Additional sense length */
1183 }
1184
aac_bounds_32(struct aac_dev * dev,struct scsi_cmnd * cmd,u64 lba)1185 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
1186 {
1187 if (lba & 0xffffffff00000000LL) {
1188 int cid = scmd_id(cmd);
1189 dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
1190 cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1191 SAM_STAT_CHECK_CONDITION;
1192 set_sense(&dev->fsa_dev[cid].sense_data,
1193 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1194 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1195 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1196 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1197 SCSI_SENSE_BUFFERSIZE));
1198 cmd->scsi_done(cmd);
1199 return 1;
1200 }
1201 return 0;
1202 }
1203
aac_bounds_64(struct aac_dev * dev,struct scsi_cmnd * cmd,u64 lba)1204 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
1205 {
1206 return 0;
1207 }
1208
1209 static void io_callback(void *context, struct fib * fibptr);
1210
aac_read_raw_io(struct fib * fib,struct scsi_cmnd * cmd,u64 lba,u32 count)1211 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1212 {
1213 struct aac_dev *dev = fib->dev;
1214 u16 fibsize, command;
1215 long ret;
1216
1217 aac_fib_init(fib);
1218 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
1219 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) &&
1220 !dev->sync_mode) {
1221 struct aac_raw_io2 *readcmd2;
1222 readcmd2 = (struct aac_raw_io2 *) fib_data(fib);
1223 memset(readcmd2, 0, sizeof(struct aac_raw_io2));
1224 readcmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff));
1225 readcmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1226 readcmd2->byteCount = cpu_to_le32(count *
1227 dev->fsa_dev[scmd_id(cmd)].block_size);
1228 readcmd2->cid = cpu_to_le16(scmd_id(cmd));
1229 readcmd2->flags = cpu_to_le16(RIO2_IO_TYPE_READ);
1230 ret = aac_build_sgraw2(cmd, readcmd2,
1231 dev->scsi_host_ptr->sg_tablesize);
1232 if (ret < 0)
1233 return ret;
1234 command = ContainerRawIo2;
1235 fibsize = sizeof(struct aac_raw_io2) +
1236 ((le32_to_cpu(readcmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212));
1237 } else {
1238 struct aac_raw_io *readcmd;
1239 readcmd = (struct aac_raw_io *) fib_data(fib);
1240 readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1241 readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1242 readcmd->count = cpu_to_le32(count *
1243 dev->fsa_dev[scmd_id(cmd)].block_size);
1244 readcmd->cid = cpu_to_le16(scmd_id(cmd));
1245 readcmd->flags = cpu_to_le16(RIO_TYPE_READ);
1246 readcmd->bpTotal = 0;
1247 readcmd->bpComplete = 0;
1248 ret = aac_build_sgraw(cmd, &readcmd->sg);
1249 if (ret < 0)
1250 return ret;
1251 command = ContainerRawIo;
1252 fibsize = sizeof(struct aac_raw_io) +
1253 ((le32_to_cpu(readcmd->sg.count)-1) * sizeof(struct sgentryraw));
1254 }
1255
1256 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1257 /*
1258 * Now send the Fib to the adapter
1259 */
1260 return aac_fib_send(command,
1261 fib,
1262 fibsize,
1263 FsaNormal,
1264 0, 1,
1265 (fib_callback) io_callback,
1266 (void *) cmd);
1267 }
1268
aac_read_block64(struct fib * fib,struct scsi_cmnd * cmd,u64 lba,u32 count)1269 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1270 {
1271 u16 fibsize;
1272 struct aac_read64 *readcmd;
1273 long ret;
1274
1275 aac_fib_init(fib);
1276 readcmd = (struct aac_read64 *) fib_data(fib);
1277 readcmd->command = cpu_to_le32(VM_CtHostRead64);
1278 readcmd->cid = cpu_to_le16(scmd_id(cmd));
1279 readcmd->sector_count = cpu_to_le16(count);
1280 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1281 readcmd->pad = 0;
1282 readcmd->flags = 0;
1283
1284 ret = aac_build_sg64(cmd, &readcmd->sg);
1285 if (ret < 0)
1286 return ret;
1287 fibsize = sizeof(struct aac_read64) +
1288 ((le32_to_cpu(readcmd->sg.count) - 1) *
1289 sizeof (struct sgentry64));
1290 BUG_ON (fibsize > (fib->dev->max_fib_size -
1291 sizeof(struct aac_fibhdr)));
1292 /*
1293 * Now send the Fib to the adapter
1294 */
1295 return aac_fib_send(ContainerCommand64,
1296 fib,
1297 fibsize,
1298 FsaNormal,
1299 0, 1,
1300 (fib_callback) io_callback,
1301 (void *) cmd);
1302 }
1303
aac_read_block(struct fib * fib,struct scsi_cmnd * cmd,u64 lba,u32 count)1304 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1305 {
1306 u16 fibsize;
1307 struct aac_read *readcmd;
1308 struct aac_dev *dev = fib->dev;
1309 long ret;
1310
1311 aac_fib_init(fib);
1312 readcmd = (struct aac_read *) fib_data(fib);
1313 readcmd->command = cpu_to_le32(VM_CtBlockRead);
1314 readcmd->cid = cpu_to_le32(scmd_id(cmd));
1315 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1316 readcmd->count = cpu_to_le32(count *
1317 dev->fsa_dev[scmd_id(cmd)].block_size);
1318
1319 ret = aac_build_sg(cmd, &readcmd->sg);
1320 if (ret < 0)
1321 return ret;
1322 fibsize = sizeof(struct aac_read) +
1323 ((le32_to_cpu(readcmd->sg.count) - 1) *
1324 sizeof (struct sgentry));
1325 BUG_ON (fibsize > (fib->dev->max_fib_size -
1326 sizeof(struct aac_fibhdr)));
1327 /*
1328 * Now send the Fib to the adapter
1329 */
1330 return aac_fib_send(ContainerCommand,
1331 fib,
1332 fibsize,
1333 FsaNormal,
1334 0, 1,
1335 (fib_callback) io_callback,
1336 (void *) cmd);
1337 }
1338
aac_write_raw_io(struct fib * fib,struct scsi_cmnd * cmd,u64 lba,u32 count,int fua)1339 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1340 {
1341 struct aac_dev *dev = fib->dev;
1342 u16 fibsize, command;
1343 long ret;
1344
1345 aac_fib_init(fib);
1346 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
1347 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) &&
1348 !dev->sync_mode) {
1349 struct aac_raw_io2 *writecmd2;
1350 writecmd2 = (struct aac_raw_io2 *) fib_data(fib);
1351 memset(writecmd2, 0, sizeof(struct aac_raw_io2));
1352 writecmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff));
1353 writecmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1354 writecmd2->byteCount = cpu_to_le32(count *
1355 dev->fsa_dev[scmd_id(cmd)].block_size);
1356 writecmd2->cid = cpu_to_le16(scmd_id(cmd));
1357 writecmd2->flags = (fua && ((aac_cache & 5) != 1) &&
1358 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
1359 cpu_to_le16(RIO2_IO_TYPE_WRITE|RIO2_IO_SUREWRITE) :
1360 cpu_to_le16(RIO2_IO_TYPE_WRITE);
1361 ret = aac_build_sgraw2(cmd, writecmd2,
1362 dev->scsi_host_ptr->sg_tablesize);
1363 if (ret < 0)
1364 return ret;
1365 command = ContainerRawIo2;
1366 fibsize = sizeof(struct aac_raw_io2) +
1367 ((le32_to_cpu(writecmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212));
1368 } else {
1369 struct aac_raw_io *writecmd;
1370 writecmd = (struct aac_raw_io *) fib_data(fib);
1371 writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1372 writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1373 writecmd->count = cpu_to_le32(count *
1374 dev->fsa_dev[scmd_id(cmd)].block_size);
1375 writecmd->cid = cpu_to_le16(scmd_id(cmd));
1376 writecmd->flags = (fua && ((aac_cache & 5) != 1) &&
1377 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
1378 cpu_to_le16(RIO_TYPE_WRITE|RIO_SUREWRITE) :
1379 cpu_to_le16(RIO_TYPE_WRITE);
1380 writecmd->bpTotal = 0;
1381 writecmd->bpComplete = 0;
1382 ret = aac_build_sgraw(cmd, &writecmd->sg);
1383 if (ret < 0)
1384 return ret;
1385 command = ContainerRawIo;
1386 fibsize = sizeof(struct aac_raw_io) +
1387 ((le32_to_cpu(writecmd->sg.count)-1) * sizeof (struct sgentryraw));
1388 }
1389
1390 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1391 /*
1392 * Now send the Fib to the adapter
1393 */
1394 return aac_fib_send(command,
1395 fib,
1396 fibsize,
1397 FsaNormal,
1398 0, 1,
1399 (fib_callback) io_callback,
1400 (void *) cmd);
1401 }
1402
aac_write_block64(struct fib * fib,struct scsi_cmnd * cmd,u64 lba,u32 count,int fua)1403 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1404 {
1405 u16 fibsize;
1406 struct aac_write64 *writecmd;
1407 long ret;
1408
1409 aac_fib_init(fib);
1410 writecmd = (struct aac_write64 *) fib_data(fib);
1411 writecmd->command = cpu_to_le32(VM_CtHostWrite64);
1412 writecmd->cid = cpu_to_le16(scmd_id(cmd));
1413 writecmd->sector_count = cpu_to_le16(count);
1414 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1415 writecmd->pad = 0;
1416 writecmd->flags = 0;
1417
1418 ret = aac_build_sg64(cmd, &writecmd->sg);
1419 if (ret < 0)
1420 return ret;
1421 fibsize = sizeof(struct aac_write64) +
1422 ((le32_to_cpu(writecmd->sg.count) - 1) *
1423 sizeof (struct sgentry64));
1424 BUG_ON (fibsize > (fib->dev->max_fib_size -
1425 sizeof(struct aac_fibhdr)));
1426 /*
1427 * Now send the Fib to the adapter
1428 */
1429 return aac_fib_send(ContainerCommand64,
1430 fib,
1431 fibsize,
1432 FsaNormal,
1433 0, 1,
1434 (fib_callback) io_callback,
1435 (void *) cmd);
1436 }
1437
aac_write_block(struct fib * fib,struct scsi_cmnd * cmd,u64 lba,u32 count,int fua)1438 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1439 {
1440 u16 fibsize;
1441 struct aac_write *writecmd;
1442 struct aac_dev *dev = fib->dev;
1443 long ret;
1444
1445 aac_fib_init(fib);
1446 writecmd = (struct aac_write *) fib_data(fib);
1447 writecmd->command = cpu_to_le32(VM_CtBlockWrite);
1448 writecmd->cid = cpu_to_le32(scmd_id(cmd));
1449 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1450 writecmd->count = cpu_to_le32(count *
1451 dev->fsa_dev[scmd_id(cmd)].block_size);
1452 writecmd->sg.count = cpu_to_le32(1);
1453 /* ->stable is not used - it did mean which type of write */
1454
1455 ret = aac_build_sg(cmd, &writecmd->sg);
1456 if (ret < 0)
1457 return ret;
1458 fibsize = sizeof(struct aac_write) +
1459 ((le32_to_cpu(writecmd->sg.count) - 1) *
1460 sizeof (struct sgentry));
1461 BUG_ON (fibsize > (fib->dev->max_fib_size -
1462 sizeof(struct aac_fibhdr)));
1463 /*
1464 * Now send the Fib to the adapter
1465 */
1466 return aac_fib_send(ContainerCommand,
1467 fib,
1468 fibsize,
1469 FsaNormal,
1470 0, 1,
1471 (fib_callback) io_callback,
1472 (void *) cmd);
1473 }
1474
aac_scsi_common(struct fib * fib,struct scsi_cmnd * cmd)1475 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd)
1476 {
1477 struct aac_srb * srbcmd;
1478 u32 flag;
1479 u32 timeout;
1480
1481 aac_fib_init(fib);
1482 switch(cmd->sc_data_direction){
1483 case DMA_TO_DEVICE:
1484 flag = SRB_DataOut;
1485 break;
1486 case DMA_BIDIRECTIONAL:
1487 flag = SRB_DataIn | SRB_DataOut;
1488 break;
1489 case DMA_FROM_DEVICE:
1490 flag = SRB_DataIn;
1491 break;
1492 case DMA_NONE:
1493 default: /* shuts up some versions of gcc */
1494 flag = SRB_NoDataXfer;
1495 break;
1496 }
1497
1498 srbcmd = (struct aac_srb*) fib_data(fib);
1499 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
1500 srbcmd->channel = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd)));
1501 srbcmd->id = cpu_to_le32(scmd_id(cmd));
1502 srbcmd->lun = cpu_to_le32(cmd->device->lun);
1503 srbcmd->flags = cpu_to_le32(flag);
1504 timeout = cmd->request->timeout/HZ;
1505 if (timeout == 0)
1506 timeout = 1;
1507 srbcmd->timeout = cpu_to_le32(timeout); // timeout in seconds
1508 srbcmd->retry_limit = 0; /* Obsolete parameter */
1509 srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len);
1510 return srbcmd;
1511 }
1512
aac_construct_hbacmd(struct fib * fib,struct scsi_cmnd * cmd)1513 static struct aac_hba_cmd_req *aac_construct_hbacmd(struct fib *fib,
1514 struct scsi_cmnd *cmd)
1515 {
1516 struct aac_hba_cmd_req *hbacmd;
1517 struct aac_dev *dev;
1518 int bus, target;
1519 u64 address;
1520
1521 dev = (struct aac_dev *)cmd->device->host->hostdata;
1522
1523 hbacmd = (struct aac_hba_cmd_req *)fib->hw_fib_va;
1524 memset(hbacmd, 0, 96); /* sizeof(*hbacmd) is not necessary */
1525 /* iu_type is a parameter of aac_hba_send */
1526 switch (cmd->sc_data_direction) {
1527 case DMA_TO_DEVICE:
1528 hbacmd->byte1 = 2;
1529 break;
1530 case DMA_FROM_DEVICE:
1531 case DMA_BIDIRECTIONAL:
1532 hbacmd->byte1 = 1;
1533 break;
1534 case DMA_NONE:
1535 default:
1536 break;
1537 }
1538 hbacmd->lun[1] = cpu_to_le32(cmd->device->lun);
1539
1540 bus = aac_logical_to_phys(scmd_channel(cmd));
1541 target = scmd_id(cmd);
1542 hbacmd->it_nexus = dev->hba_map[bus][target].rmw_nexus;
1543
1544 /* we fill in reply_qid later in aac_src_deliver_message */
1545 /* we fill in iu_type, request_id later in aac_hba_send */
1546 /* we fill in emb_data_desc_count later in aac_build_sghba */
1547
1548 memcpy(hbacmd->cdb, cmd->cmnd, cmd->cmd_len);
1549 hbacmd->data_length = cpu_to_le32(scsi_bufflen(cmd));
1550
1551 address = (u64)fib->hw_error_pa;
1552 hbacmd->error_ptr_hi = cpu_to_le32((u32)(address >> 32));
1553 hbacmd->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff));
1554 hbacmd->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE);
1555
1556 return hbacmd;
1557 }
1558
1559 static void aac_srb_callback(void *context, struct fib * fibptr);
1560
aac_scsi_64(struct fib * fib,struct scsi_cmnd * cmd)1561 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd)
1562 {
1563 u16 fibsize;
1564 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1565 long ret;
1566
1567 ret = aac_build_sg64(cmd, (struct sgmap64 *) &srbcmd->sg);
1568 if (ret < 0)
1569 return ret;
1570 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1571
1572 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1573 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1574 /*
1575 * Build Scatter/Gather list
1576 */
1577 fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) +
1578 ((le32_to_cpu(srbcmd->sg.count) & 0xff) *
1579 sizeof (struct sgentry64));
1580 BUG_ON (fibsize > (fib->dev->max_fib_size -
1581 sizeof(struct aac_fibhdr)));
1582
1583 /*
1584 * Now send the Fib to the adapter
1585 */
1586 return aac_fib_send(ScsiPortCommand64, fib,
1587 fibsize, FsaNormal, 0, 1,
1588 (fib_callback) aac_srb_callback,
1589 (void *) cmd);
1590 }
1591
aac_scsi_32(struct fib * fib,struct scsi_cmnd * cmd)1592 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd)
1593 {
1594 u16 fibsize;
1595 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1596 long ret;
1597
1598 ret = aac_build_sg(cmd, (struct sgmap *)&srbcmd->sg);
1599 if (ret < 0)
1600 return ret;
1601 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1602
1603 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1604 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1605 /*
1606 * Build Scatter/Gather list
1607 */
1608 fibsize = sizeof (struct aac_srb) +
1609 (((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) *
1610 sizeof (struct sgentry));
1611 BUG_ON (fibsize > (fib->dev->max_fib_size -
1612 sizeof(struct aac_fibhdr)));
1613
1614 /*
1615 * Now send the Fib to the adapter
1616 */
1617 return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1,
1618 (fib_callback) aac_srb_callback, (void *) cmd);
1619 }
1620
aac_scsi_32_64(struct fib * fib,struct scsi_cmnd * cmd)1621 static int aac_scsi_32_64(struct fib * fib, struct scsi_cmnd * cmd)
1622 {
1623 if ((sizeof(dma_addr_t) > 4) && fib->dev->needs_dac &&
1624 (fib->dev->adapter_info.options & AAC_OPT_SGMAP_HOST64))
1625 return FAILED;
1626 return aac_scsi_32(fib, cmd);
1627 }
1628
aac_adapter_hba(struct fib * fib,struct scsi_cmnd * cmd)1629 static int aac_adapter_hba(struct fib *fib, struct scsi_cmnd *cmd)
1630 {
1631 struct aac_hba_cmd_req *hbacmd = aac_construct_hbacmd(fib, cmd);
1632 struct aac_dev *dev;
1633 long ret;
1634
1635 dev = (struct aac_dev *)cmd->device->host->hostdata;
1636
1637 ret = aac_build_sghba(cmd, hbacmd,
1638 dev->scsi_host_ptr->sg_tablesize, (u64)fib->hw_sgl_pa);
1639 if (ret < 0)
1640 return ret;
1641
1642 /*
1643 * Now send the HBA command to the adapter
1644 */
1645 fib->hbacmd_size = 64 + le32_to_cpu(hbacmd->emb_data_desc_count) *
1646 sizeof(struct aac_hba_sgl);
1647
1648 return aac_hba_send(HBA_IU_TYPE_SCSI_CMD_REQ, fib,
1649 (fib_callback) aac_hba_callback,
1650 (void *) cmd);
1651 }
1652
aac_send_safw_bmic_cmd(struct aac_dev * dev,struct aac_srb_unit * srbu,void * xfer_buf,int xfer_len)1653 static int aac_send_safw_bmic_cmd(struct aac_dev *dev,
1654 struct aac_srb_unit *srbu, void *xfer_buf, int xfer_len)
1655 {
1656 struct fib *fibptr;
1657 dma_addr_t addr;
1658 int rcode;
1659 int fibsize;
1660 struct aac_srb *srb;
1661 struct aac_srb_reply *srb_reply;
1662 struct sgmap64 *sg64;
1663 u32 vbus;
1664 u32 vid;
1665
1666 if (!dev->sa_firmware)
1667 return 0;
1668
1669 /* allocate FIB */
1670 fibptr = aac_fib_alloc(dev);
1671 if (!fibptr)
1672 return -ENOMEM;
1673
1674 aac_fib_init(fibptr);
1675 fibptr->hw_fib_va->header.XferState &=
1676 ~cpu_to_le32(FastResponseCapable);
1677
1678 fibsize = sizeof(struct aac_srb) - sizeof(struct sgentry) +
1679 sizeof(struct sgentry64);
1680
1681 /* allocate DMA buffer for response */
1682 addr = dma_map_single(&dev->pdev->dev, xfer_buf, xfer_len,
1683 DMA_BIDIRECTIONAL);
1684 if (dma_mapping_error(&dev->pdev->dev, addr)) {
1685 rcode = -ENOMEM;
1686 goto fib_error;
1687 }
1688
1689 srb = fib_data(fibptr);
1690 memcpy(srb, &srbu->srb, sizeof(struct aac_srb));
1691
1692 vbus = (u32)le16_to_cpu(
1693 dev->supplement_adapter_info.virt_device_bus);
1694 vid = (u32)le16_to_cpu(
1695 dev->supplement_adapter_info.virt_device_target);
1696
1697 /* set the common request fields */
1698 srb->channel = cpu_to_le32(vbus);
1699 srb->id = cpu_to_le32(vid);
1700 srb->lun = 0;
1701 srb->function = cpu_to_le32(SRBF_ExecuteScsi);
1702 srb->timeout = 0;
1703 srb->retry_limit = 0;
1704 srb->cdb_size = cpu_to_le32(16);
1705 srb->count = cpu_to_le32(xfer_len);
1706
1707 sg64 = (struct sgmap64 *)&srb->sg;
1708 sg64->count = cpu_to_le32(1);
1709 sg64->sg[0].addr[1] = cpu_to_le32(upper_32_bits(addr));
1710 sg64->sg[0].addr[0] = cpu_to_le32(lower_32_bits(addr));
1711 sg64->sg[0].count = cpu_to_le32(xfer_len);
1712
1713 /*
1714 * Copy the updated data for other dumping or other usage if needed
1715 */
1716 memcpy(&srbu->srb, srb, sizeof(struct aac_srb));
1717
1718 /* issue request to the controller */
1719 rcode = aac_fib_send(ScsiPortCommand64, fibptr, fibsize, FsaNormal,
1720 1, 1, NULL, NULL);
1721
1722 if (rcode == -ERESTARTSYS)
1723 rcode = -ERESTART;
1724
1725 if (unlikely(rcode < 0))
1726 goto bmic_error;
1727
1728 srb_reply = (struct aac_srb_reply *)fib_data(fibptr);
1729 memcpy(&srbu->srb_reply, srb_reply, sizeof(struct aac_srb_reply));
1730
1731 bmic_error:
1732 dma_unmap_single(&dev->pdev->dev, addr, xfer_len, DMA_BIDIRECTIONAL);
1733 fib_error:
1734 aac_fib_complete(fibptr);
1735 aac_fib_free(fibptr);
1736 return rcode;
1737 }
1738
aac_set_safw_target_qd(struct aac_dev * dev,int bus,int target)1739 static void aac_set_safw_target_qd(struct aac_dev *dev, int bus, int target)
1740 {
1741
1742 struct aac_ciss_identify_pd *identify_resp;
1743
1744 if (dev->hba_map[bus][target].devtype != AAC_DEVTYPE_NATIVE_RAW)
1745 return;
1746
1747 identify_resp = dev->hba_map[bus][target].safw_identify_resp;
1748 if (identify_resp == NULL) {
1749 dev->hba_map[bus][target].qd_limit = 32;
1750 return;
1751 }
1752
1753 if (identify_resp->current_queue_depth_limit <= 0 ||
1754 identify_resp->current_queue_depth_limit > 255)
1755 dev->hba_map[bus][target].qd_limit = 32;
1756 else
1757 dev->hba_map[bus][target].qd_limit =
1758 identify_resp->current_queue_depth_limit;
1759 }
1760
aac_issue_safw_bmic_identify(struct aac_dev * dev,struct aac_ciss_identify_pd ** identify_resp,u32 bus,u32 target)1761 static int aac_issue_safw_bmic_identify(struct aac_dev *dev,
1762 struct aac_ciss_identify_pd **identify_resp, u32 bus, u32 target)
1763 {
1764 int rcode = -ENOMEM;
1765 int datasize;
1766 struct aac_srb_unit srbu;
1767 struct aac_srb *srbcmd;
1768 struct aac_ciss_identify_pd *identify_reply;
1769
1770 datasize = sizeof(struct aac_ciss_identify_pd);
1771 identify_reply = kmalloc(datasize, GFP_KERNEL);
1772 if (!identify_reply)
1773 goto out;
1774
1775 memset(&srbu, 0, sizeof(struct aac_srb_unit));
1776
1777 srbcmd = &srbu.srb;
1778 srbcmd->flags = cpu_to_le32(SRB_DataIn);
1779 srbcmd->cdb[0] = 0x26;
1780 srbcmd->cdb[2] = (u8)((AAC_MAX_LUN + target) & 0x00FF);
1781 srbcmd->cdb[6] = CISS_IDENTIFY_PHYSICAL_DEVICE;
1782
1783 rcode = aac_send_safw_bmic_cmd(dev, &srbu, identify_reply, datasize);
1784 if (unlikely(rcode < 0))
1785 goto mem_free_all;
1786
1787 *identify_resp = identify_reply;
1788
1789 out:
1790 return rcode;
1791 mem_free_all:
1792 kfree(identify_reply);
1793 goto out;
1794 }
1795
aac_free_safw_ciss_luns(struct aac_dev * dev)1796 static inline void aac_free_safw_ciss_luns(struct aac_dev *dev)
1797 {
1798 kfree(dev->safw_phys_luns);
1799 dev->safw_phys_luns = NULL;
1800 }
1801
1802 /**
1803 * aac_get_safw_ciss_luns() Process topology change
1804 * @dev: aac_dev structure
1805 *
1806 * Execute a CISS REPORT PHYS LUNS and process the results into
1807 * the current hba_map.
1808 */
aac_get_safw_ciss_luns(struct aac_dev * dev)1809 static int aac_get_safw_ciss_luns(struct aac_dev *dev)
1810 {
1811 int rcode = -ENOMEM;
1812 int datasize;
1813 struct aac_srb *srbcmd;
1814 struct aac_srb_unit srbu;
1815 struct aac_ciss_phys_luns_resp *phys_luns;
1816
1817 datasize = sizeof(struct aac_ciss_phys_luns_resp) +
1818 (AAC_MAX_TARGETS - 1) * sizeof(struct _ciss_lun);
1819 phys_luns = kmalloc(datasize, GFP_KERNEL);
1820 if (phys_luns == NULL)
1821 goto out;
1822
1823 memset(&srbu, 0, sizeof(struct aac_srb_unit));
1824
1825 srbcmd = &srbu.srb;
1826 srbcmd->flags = cpu_to_le32(SRB_DataIn);
1827 srbcmd->cdb[0] = CISS_REPORT_PHYSICAL_LUNS;
1828 srbcmd->cdb[1] = 2; /* extended reporting */
1829 srbcmd->cdb[8] = (u8)(datasize >> 8);
1830 srbcmd->cdb[9] = (u8)(datasize);
1831
1832 rcode = aac_send_safw_bmic_cmd(dev, &srbu, phys_luns, datasize);
1833 if (unlikely(rcode < 0))
1834 goto mem_free_all;
1835
1836 if (phys_luns->resp_flag != 2) {
1837 rcode = -ENOMSG;
1838 goto mem_free_all;
1839 }
1840
1841 dev->safw_phys_luns = phys_luns;
1842
1843 out:
1844 return rcode;
1845 mem_free_all:
1846 kfree(phys_luns);
1847 goto out;
1848 }
1849
aac_get_safw_phys_lun_count(struct aac_dev * dev)1850 static inline u32 aac_get_safw_phys_lun_count(struct aac_dev *dev)
1851 {
1852 return get_unaligned_be32(&dev->safw_phys_luns->list_length[0])/24;
1853 }
1854
aac_get_safw_phys_bus(struct aac_dev * dev,int lun)1855 static inline u32 aac_get_safw_phys_bus(struct aac_dev *dev, int lun)
1856 {
1857 return dev->safw_phys_luns->lun[lun].level2[1] & 0x3f;
1858 }
1859
aac_get_safw_phys_target(struct aac_dev * dev,int lun)1860 static inline u32 aac_get_safw_phys_target(struct aac_dev *dev, int lun)
1861 {
1862 return dev->safw_phys_luns->lun[lun].level2[0];
1863 }
1864
aac_get_safw_phys_expose_flag(struct aac_dev * dev,int lun)1865 static inline u32 aac_get_safw_phys_expose_flag(struct aac_dev *dev, int lun)
1866 {
1867 return dev->safw_phys_luns->lun[lun].bus >> 6;
1868 }
1869
aac_get_safw_phys_attribs(struct aac_dev * dev,int lun)1870 static inline u32 aac_get_safw_phys_attribs(struct aac_dev *dev, int lun)
1871 {
1872 return dev->safw_phys_luns->lun[lun].node_ident[9];
1873 }
1874
aac_get_safw_phys_nexus(struct aac_dev * dev,int lun)1875 static inline u32 aac_get_safw_phys_nexus(struct aac_dev *dev, int lun)
1876 {
1877 return *((u32 *)&dev->safw_phys_luns->lun[lun].node_ident[12]);
1878 }
1879
aac_get_safw_phys_device_type(struct aac_dev * dev,int lun)1880 static inline u32 aac_get_safw_phys_device_type(struct aac_dev *dev, int lun)
1881 {
1882 return dev->safw_phys_luns->lun[lun].node_ident[8];
1883 }
1884
aac_free_safw_identify_resp(struct aac_dev * dev,int bus,int target)1885 static inline void aac_free_safw_identify_resp(struct aac_dev *dev,
1886 int bus, int target)
1887 {
1888 kfree(dev->hba_map[bus][target].safw_identify_resp);
1889 dev->hba_map[bus][target].safw_identify_resp = NULL;
1890 }
1891
aac_free_safw_all_identify_resp(struct aac_dev * dev,int lun_count)1892 static inline void aac_free_safw_all_identify_resp(struct aac_dev *dev,
1893 int lun_count)
1894 {
1895 int luns;
1896 int i;
1897 u32 bus;
1898 u32 target;
1899
1900 luns = aac_get_safw_phys_lun_count(dev);
1901
1902 if (luns < lun_count)
1903 lun_count = luns;
1904 else if (lun_count < 0)
1905 lun_count = luns;
1906
1907 for (i = 0; i < lun_count; i++) {
1908 bus = aac_get_safw_phys_bus(dev, i);
1909 target = aac_get_safw_phys_target(dev, i);
1910
1911 aac_free_safw_identify_resp(dev, bus, target);
1912 }
1913 }
1914
aac_get_safw_attr_all_targets(struct aac_dev * dev)1915 static int aac_get_safw_attr_all_targets(struct aac_dev *dev)
1916 {
1917 int i;
1918 int rcode = 0;
1919 u32 lun_count;
1920 u32 bus;
1921 u32 target;
1922 struct aac_ciss_identify_pd *identify_resp = NULL;
1923
1924 lun_count = aac_get_safw_phys_lun_count(dev);
1925
1926 for (i = 0; i < lun_count; ++i) {
1927
1928 bus = aac_get_safw_phys_bus(dev, i);
1929 target = aac_get_safw_phys_target(dev, i);
1930
1931 rcode = aac_issue_safw_bmic_identify(dev,
1932 &identify_resp, bus, target);
1933
1934 if (unlikely(rcode < 0))
1935 goto free_identify_resp;
1936
1937 dev->hba_map[bus][target].safw_identify_resp = identify_resp;
1938 }
1939
1940 out:
1941 return rcode;
1942 free_identify_resp:
1943 aac_free_safw_all_identify_resp(dev, i);
1944 goto out;
1945 }
1946
1947 /**
1948 * aac_set_safw_attr_all_targets- update current hba map with data from FW
1949 * @dev: aac_dev structure
1950 * @phys_luns: FW information from report phys luns
1951 * @rescan: Indicates scan type
1952 *
1953 * Update our hba map with the information gathered from the FW
1954 */
aac_set_safw_attr_all_targets(struct aac_dev * dev)1955 static void aac_set_safw_attr_all_targets(struct aac_dev *dev)
1956 {
1957 /* ok and extended reporting */
1958 u32 lun_count, nexus;
1959 u32 i, bus, target;
1960 u8 expose_flag, attribs;
1961
1962 lun_count = aac_get_safw_phys_lun_count(dev);
1963
1964 dev->scan_counter++;
1965
1966 for (i = 0; i < lun_count; ++i) {
1967
1968 bus = aac_get_safw_phys_bus(dev, i);
1969 target = aac_get_safw_phys_target(dev, i);
1970 expose_flag = aac_get_safw_phys_expose_flag(dev, i);
1971 attribs = aac_get_safw_phys_attribs(dev, i);
1972 nexus = aac_get_safw_phys_nexus(dev, i);
1973
1974 if (bus >= AAC_MAX_BUSES || target >= AAC_MAX_TARGETS)
1975 continue;
1976
1977 if (expose_flag != 0) {
1978 dev->hba_map[bus][target].devtype =
1979 AAC_DEVTYPE_RAID_MEMBER;
1980 continue;
1981 }
1982
1983 if (nexus != 0 && (attribs & 8)) {
1984 dev->hba_map[bus][target].devtype =
1985 AAC_DEVTYPE_NATIVE_RAW;
1986 dev->hba_map[bus][target].rmw_nexus =
1987 nexus;
1988 } else
1989 dev->hba_map[bus][target].devtype =
1990 AAC_DEVTYPE_ARC_RAW;
1991
1992 dev->hba_map[bus][target].scan_counter = dev->scan_counter;
1993
1994 aac_set_safw_target_qd(dev, bus, target);
1995 }
1996 }
1997
aac_setup_safw_targets(struct aac_dev * dev)1998 static int aac_setup_safw_targets(struct aac_dev *dev)
1999 {
2000 int rcode = 0;
2001
2002 rcode = aac_get_containers(dev);
2003 if (unlikely(rcode < 0))
2004 goto out;
2005
2006 rcode = aac_get_safw_ciss_luns(dev);
2007 if (unlikely(rcode < 0))
2008 goto out;
2009
2010 rcode = aac_get_safw_attr_all_targets(dev);
2011 if (unlikely(rcode < 0))
2012 goto free_ciss_luns;
2013
2014 aac_set_safw_attr_all_targets(dev);
2015
2016 aac_free_safw_all_identify_resp(dev, -1);
2017 free_ciss_luns:
2018 aac_free_safw_ciss_luns(dev);
2019 out:
2020 return rcode;
2021 }
2022
aac_setup_safw_adapter(struct aac_dev * dev)2023 int aac_setup_safw_adapter(struct aac_dev *dev)
2024 {
2025 return aac_setup_safw_targets(dev);
2026 }
2027
aac_get_adapter_info(struct aac_dev * dev)2028 int aac_get_adapter_info(struct aac_dev* dev)
2029 {
2030 struct fib* fibptr;
2031 int rcode;
2032 u32 tmp, bus, target;
2033 struct aac_adapter_info *info;
2034 struct aac_bus_info *command;
2035 struct aac_bus_info_response *bus_info;
2036
2037 if (!(fibptr = aac_fib_alloc(dev)))
2038 return -ENOMEM;
2039
2040 aac_fib_init(fibptr);
2041 info = (struct aac_adapter_info *) fib_data(fibptr);
2042 memset(info,0,sizeof(*info));
2043
2044 rcode = aac_fib_send(RequestAdapterInfo,
2045 fibptr,
2046 sizeof(*info),
2047 FsaNormal,
2048 -1, 1, /* First `interrupt' command uses special wait */
2049 NULL,
2050 NULL);
2051
2052 if (rcode < 0) {
2053 /* FIB should be freed only after
2054 * getting the response from the F/W */
2055 if (rcode != -ERESTARTSYS) {
2056 aac_fib_complete(fibptr);
2057 aac_fib_free(fibptr);
2058 }
2059 return rcode;
2060 }
2061 memcpy(&dev->adapter_info, info, sizeof(*info));
2062
2063 dev->supplement_adapter_info.virt_device_bus = 0xffff;
2064 if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) {
2065 struct aac_supplement_adapter_info * sinfo;
2066
2067 aac_fib_init(fibptr);
2068
2069 sinfo = (struct aac_supplement_adapter_info *) fib_data(fibptr);
2070
2071 memset(sinfo,0,sizeof(*sinfo));
2072
2073 rcode = aac_fib_send(RequestSupplementAdapterInfo,
2074 fibptr,
2075 sizeof(*sinfo),
2076 FsaNormal,
2077 1, 1,
2078 NULL,
2079 NULL);
2080
2081 if (rcode >= 0)
2082 memcpy(&dev->supplement_adapter_info, sinfo, sizeof(*sinfo));
2083 if (rcode == -ERESTARTSYS) {
2084 fibptr = aac_fib_alloc(dev);
2085 if (!fibptr)
2086 return -ENOMEM;
2087 }
2088
2089 }
2090
2091 /* reset all previous mapped devices (i.e. for init. after IOP_RESET) */
2092 for (bus = 0; bus < AAC_MAX_BUSES; bus++) {
2093 for (target = 0; target < AAC_MAX_TARGETS; target++) {
2094 dev->hba_map[bus][target].devtype = 0;
2095 dev->hba_map[bus][target].qd_limit = 0;
2096 }
2097 }
2098
2099 /*
2100 * GetBusInfo
2101 */
2102
2103 aac_fib_init(fibptr);
2104
2105 bus_info = (struct aac_bus_info_response *) fib_data(fibptr);
2106
2107 memset(bus_info, 0, sizeof(*bus_info));
2108
2109 command = (struct aac_bus_info *)bus_info;
2110
2111 command->Command = cpu_to_le32(VM_Ioctl);
2112 command->ObjType = cpu_to_le32(FT_DRIVE);
2113 command->MethodId = cpu_to_le32(1);
2114 command->CtlCmd = cpu_to_le32(GetBusInfo);
2115
2116 rcode = aac_fib_send(ContainerCommand,
2117 fibptr,
2118 sizeof (*bus_info),
2119 FsaNormal,
2120 1, 1,
2121 NULL, NULL);
2122
2123 /* reasoned default */
2124 dev->maximum_num_physicals = 16;
2125 if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) {
2126 dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus);
2127 dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount);
2128 }
2129
2130 if (!dev->in_reset) {
2131 char buffer[16];
2132 tmp = le32_to_cpu(dev->adapter_info.kernelrev);
2133 printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n",
2134 dev->name,
2135 dev->id,
2136 tmp>>24,
2137 (tmp>>16)&0xff,
2138 tmp&0xff,
2139 le32_to_cpu(dev->adapter_info.kernelbuild),
2140 (int)sizeof(dev->supplement_adapter_info.build_date),
2141 dev->supplement_adapter_info.build_date);
2142 tmp = le32_to_cpu(dev->adapter_info.monitorrev);
2143 printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n",
2144 dev->name, dev->id,
2145 tmp>>24,(tmp>>16)&0xff,tmp&0xff,
2146 le32_to_cpu(dev->adapter_info.monitorbuild));
2147 tmp = le32_to_cpu(dev->adapter_info.biosrev);
2148 printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n",
2149 dev->name, dev->id,
2150 tmp>>24,(tmp>>16)&0xff,tmp&0xff,
2151 le32_to_cpu(dev->adapter_info.biosbuild));
2152 buffer[0] = '\0';
2153 if (aac_get_serial_number(
2154 shost_to_class(dev->scsi_host_ptr), buffer))
2155 printk(KERN_INFO "%s%d: serial %s",
2156 dev->name, dev->id, buffer);
2157 if (dev->supplement_adapter_info.vpd_info.tsid[0]) {
2158 printk(KERN_INFO "%s%d: TSID %.*s\n",
2159 dev->name, dev->id,
2160 (int)sizeof(dev->supplement_adapter_info
2161 .vpd_info.tsid),
2162 dev->supplement_adapter_info.vpd_info.tsid);
2163 }
2164 if (!aac_check_reset || ((aac_check_reset == 1) &&
2165 (dev->supplement_adapter_info.supported_options2 &
2166 AAC_OPTION_IGNORE_RESET))) {
2167 printk(KERN_INFO "%s%d: Reset Adapter Ignored\n",
2168 dev->name, dev->id);
2169 }
2170 }
2171
2172 dev->cache_protected = 0;
2173 dev->jbod = ((dev->supplement_adapter_info.feature_bits &
2174 AAC_FEATURE_JBOD) != 0);
2175 dev->nondasd_support = 0;
2176 dev->raid_scsi_mode = 0;
2177 if(dev->adapter_info.options & AAC_OPT_NONDASD)
2178 dev->nondasd_support = 1;
2179
2180 /*
2181 * If the firmware supports ROMB RAID/SCSI mode and we are currently
2182 * in RAID/SCSI mode, set the flag. For now if in this mode we will
2183 * force nondasd support on. If we decide to allow the non-dasd flag
2184 * additional changes changes will have to be made to support
2185 * RAID/SCSI. the function aac_scsi_cmd in this module will have to be
2186 * changed to support the new dev->raid_scsi_mode flag instead of
2187 * leaching off of the dev->nondasd_support flag. Also in linit.c the
2188 * function aac_detect will have to be modified where it sets up the
2189 * max number of channels based on the aac->nondasd_support flag only.
2190 */
2191 if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) &&
2192 (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) {
2193 dev->nondasd_support = 1;
2194 dev->raid_scsi_mode = 1;
2195 }
2196 if (dev->raid_scsi_mode != 0)
2197 printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n",
2198 dev->name, dev->id);
2199
2200 if (nondasd != -1)
2201 dev->nondasd_support = (nondasd!=0);
2202 if (dev->nondasd_support && !dev->in_reset)
2203 printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id);
2204
2205 if (dma_get_required_mask(&dev->pdev->dev) > DMA_BIT_MASK(32))
2206 dev->needs_dac = 1;
2207 dev->dac_support = 0;
2208 if ((sizeof(dma_addr_t) > 4) && dev->needs_dac &&
2209 (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) {
2210 if (!dev->in_reset)
2211 printk(KERN_INFO "%s%d: 64bit support enabled.\n",
2212 dev->name, dev->id);
2213 dev->dac_support = 1;
2214 }
2215
2216 if(dacmode != -1) {
2217 dev->dac_support = (dacmode!=0);
2218 }
2219
2220 /* avoid problems with AAC_QUIRK_SCSI_32 controllers */
2221 if (dev->dac_support && (aac_get_driver_ident(dev->cardtype)->quirks
2222 & AAC_QUIRK_SCSI_32)) {
2223 dev->nondasd_support = 0;
2224 dev->jbod = 0;
2225 expose_physicals = 0;
2226 }
2227
2228 if (dev->dac_support) {
2229 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(64))) {
2230 if (!dev->in_reset)
2231 dev_info(&dev->pdev->dev, "64 Bit DAC enabled\n");
2232 } else if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(32))) {
2233 dev_info(&dev->pdev->dev, "DMA mask set failed, 64 Bit DAC disabled\n");
2234 dev->dac_support = 0;
2235 } else {
2236 dev_info(&dev->pdev->dev, "No suitable DMA available\n");
2237 rcode = -ENOMEM;
2238 }
2239 }
2240 /*
2241 * Deal with configuring for the individualized limits of each packet
2242 * interface.
2243 */
2244 dev->a_ops.adapter_scsi = (dev->dac_support)
2245 ? ((aac_get_driver_ident(dev->cardtype)->quirks & AAC_QUIRK_SCSI_32)
2246 ? aac_scsi_32_64
2247 : aac_scsi_64)
2248 : aac_scsi_32;
2249 if (dev->raw_io_interface) {
2250 dev->a_ops.adapter_bounds = (dev->raw_io_64)
2251 ? aac_bounds_64
2252 : aac_bounds_32;
2253 dev->a_ops.adapter_read = aac_read_raw_io;
2254 dev->a_ops.adapter_write = aac_write_raw_io;
2255 } else {
2256 dev->a_ops.adapter_bounds = aac_bounds_32;
2257 dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size -
2258 sizeof(struct aac_fibhdr) -
2259 sizeof(struct aac_write) + sizeof(struct sgentry)) /
2260 sizeof(struct sgentry);
2261 if (dev->dac_support) {
2262 dev->a_ops.adapter_read = aac_read_block64;
2263 dev->a_ops.adapter_write = aac_write_block64;
2264 /*
2265 * 38 scatter gather elements
2266 */
2267 dev->scsi_host_ptr->sg_tablesize =
2268 (dev->max_fib_size -
2269 sizeof(struct aac_fibhdr) -
2270 sizeof(struct aac_write64) +
2271 sizeof(struct sgentry64)) /
2272 sizeof(struct sgentry64);
2273 } else {
2274 dev->a_ops.adapter_read = aac_read_block;
2275 dev->a_ops.adapter_write = aac_write_block;
2276 }
2277 dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
2278 if (!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) {
2279 /*
2280 * Worst case size that could cause sg overflow when
2281 * we break up SG elements that are larger than 64KB.
2282 * Would be nice if we could tell the SCSI layer what
2283 * the maximum SG element size can be. Worst case is
2284 * (sg_tablesize-1) 4KB elements with one 64KB
2285 * element.
2286 * 32bit -> 468 or 238KB 64bit -> 424 or 212KB
2287 */
2288 dev->scsi_host_ptr->max_sectors =
2289 (dev->scsi_host_ptr->sg_tablesize * 8) + 112;
2290 }
2291 }
2292 if (!dev->sync_mode && dev->sa_firmware &&
2293 dev->scsi_host_ptr->sg_tablesize > HBA_MAX_SG_SEPARATE)
2294 dev->scsi_host_ptr->sg_tablesize = dev->sg_tablesize =
2295 HBA_MAX_SG_SEPARATE;
2296
2297 /* FIB should be freed only after getting the response from the F/W */
2298 if (rcode != -ERESTARTSYS) {
2299 aac_fib_complete(fibptr);
2300 aac_fib_free(fibptr);
2301 }
2302
2303 return rcode;
2304 }
2305
2306
io_callback(void * context,struct fib * fibptr)2307 static void io_callback(void *context, struct fib * fibptr)
2308 {
2309 struct aac_dev *dev;
2310 struct aac_read_reply *readreply;
2311 struct scsi_cmnd *scsicmd;
2312 u32 cid;
2313
2314 scsicmd = (struct scsi_cmnd *) context;
2315
2316 if (!aac_valid_context(scsicmd, fibptr))
2317 return;
2318
2319 dev = fibptr->dev;
2320 cid = scmd_id(scsicmd);
2321
2322 if (nblank(dprintk(x))) {
2323 u64 lba;
2324 switch (scsicmd->cmnd[0]) {
2325 case WRITE_6:
2326 case READ_6:
2327 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
2328 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
2329 break;
2330 case WRITE_16:
2331 case READ_16:
2332 lba = ((u64)scsicmd->cmnd[2] << 56) |
2333 ((u64)scsicmd->cmnd[3] << 48) |
2334 ((u64)scsicmd->cmnd[4] << 40) |
2335 ((u64)scsicmd->cmnd[5] << 32) |
2336 ((u64)scsicmd->cmnd[6] << 24) |
2337 (scsicmd->cmnd[7] << 16) |
2338 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2339 break;
2340 case WRITE_12:
2341 case READ_12:
2342 lba = ((u64)scsicmd->cmnd[2] << 24) |
2343 (scsicmd->cmnd[3] << 16) |
2344 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2345 break;
2346 default:
2347 lba = ((u64)scsicmd->cmnd[2] << 24) |
2348 (scsicmd->cmnd[3] << 16) |
2349 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2350 break;
2351 }
2352 printk(KERN_DEBUG
2353 "io_callback[cpu %d]: lba = %llu, t = %ld.\n",
2354 smp_processor_id(), (unsigned long long)lba, jiffies);
2355 }
2356
2357 BUG_ON(fibptr == NULL);
2358
2359 scsi_dma_unmap(scsicmd);
2360
2361 readreply = (struct aac_read_reply *)fib_data(fibptr);
2362 switch (le32_to_cpu(readreply->status)) {
2363 case ST_OK:
2364 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2365 SAM_STAT_GOOD;
2366 dev->fsa_dev[cid].sense_data.sense_key = NO_SENSE;
2367 break;
2368 case ST_NOT_READY:
2369 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2370 SAM_STAT_CHECK_CONDITION;
2371 set_sense(&dev->fsa_dev[cid].sense_data, NOT_READY,
2372 SENCODE_BECOMING_READY, ASENCODE_BECOMING_READY, 0, 0);
2373 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2374 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2375 SCSI_SENSE_BUFFERSIZE));
2376 break;
2377 case ST_MEDERR:
2378 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2379 SAM_STAT_CHECK_CONDITION;
2380 set_sense(&dev->fsa_dev[cid].sense_data, MEDIUM_ERROR,
2381 SENCODE_UNRECOVERED_READ_ERROR, ASENCODE_NO_SENSE, 0, 0);
2382 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2383 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2384 SCSI_SENSE_BUFFERSIZE));
2385 break;
2386 default:
2387 #ifdef AAC_DETAILED_STATUS_INFO
2388 printk(KERN_WARNING "io_callback: io failed, status = %d\n",
2389 le32_to_cpu(readreply->status));
2390 #endif
2391 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2392 SAM_STAT_CHECK_CONDITION;
2393 set_sense(&dev->fsa_dev[cid].sense_data,
2394 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2395 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2396 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2397 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2398 SCSI_SENSE_BUFFERSIZE));
2399 break;
2400 }
2401 aac_fib_complete(fibptr);
2402
2403 scsicmd->scsi_done(scsicmd);
2404 }
2405
aac_read(struct scsi_cmnd * scsicmd)2406 static int aac_read(struct scsi_cmnd * scsicmd)
2407 {
2408 u64 lba;
2409 u32 count;
2410 int status;
2411 struct aac_dev *dev;
2412 struct fib * cmd_fibcontext;
2413 int cid;
2414
2415 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2416 /*
2417 * Get block address and transfer length
2418 */
2419 switch (scsicmd->cmnd[0]) {
2420 case READ_6:
2421 dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd)));
2422
2423 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
2424 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
2425 count = scsicmd->cmnd[4];
2426
2427 if (count == 0)
2428 count = 256;
2429 break;
2430 case READ_16:
2431 dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd)));
2432
2433 lba = ((u64)scsicmd->cmnd[2] << 56) |
2434 ((u64)scsicmd->cmnd[3] << 48) |
2435 ((u64)scsicmd->cmnd[4] << 40) |
2436 ((u64)scsicmd->cmnd[5] << 32) |
2437 ((u64)scsicmd->cmnd[6] << 24) |
2438 (scsicmd->cmnd[7] << 16) |
2439 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2440 count = (scsicmd->cmnd[10] << 24) |
2441 (scsicmd->cmnd[11] << 16) |
2442 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
2443 break;
2444 case READ_12:
2445 dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd)));
2446
2447 lba = ((u64)scsicmd->cmnd[2] << 24) |
2448 (scsicmd->cmnd[3] << 16) |
2449 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2450 count = (scsicmd->cmnd[6] << 24) |
2451 (scsicmd->cmnd[7] << 16) |
2452 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2453 break;
2454 default:
2455 dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd)));
2456
2457 lba = ((u64)scsicmd->cmnd[2] << 24) |
2458 (scsicmd->cmnd[3] << 16) |
2459 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2460 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
2461 break;
2462 }
2463
2464 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) {
2465 cid = scmd_id(scsicmd);
2466 dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
2467 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2468 SAM_STAT_CHECK_CONDITION;
2469 set_sense(&dev->fsa_dev[cid].sense_data,
2470 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2471 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2472 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2473 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2474 SCSI_SENSE_BUFFERSIZE));
2475 scsicmd->scsi_done(scsicmd);
2476 return 1;
2477 }
2478
2479 dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n",
2480 smp_processor_id(), (unsigned long long)lba, jiffies));
2481 if (aac_adapter_bounds(dev,scsicmd,lba))
2482 return 0;
2483 /*
2484 * Alocate and initialize a Fib
2485 */
2486 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
2487 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2488 status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count);
2489
2490 /*
2491 * Check that the command queued to the controller
2492 */
2493 if (status == -EINPROGRESS)
2494 return 0;
2495
2496 printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status);
2497 /*
2498 * For some reason, the Fib didn't queue, return QUEUE_FULL
2499 */
2500 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
2501 scsicmd->scsi_done(scsicmd);
2502 aac_fib_complete(cmd_fibcontext);
2503 aac_fib_free(cmd_fibcontext);
2504 return 0;
2505 }
2506
aac_write(struct scsi_cmnd * scsicmd)2507 static int aac_write(struct scsi_cmnd * scsicmd)
2508 {
2509 u64 lba;
2510 u32 count;
2511 int fua;
2512 int status;
2513 struct aac_dev *dev;
2514 struct fib * cmd_fibcontext;
2515 int cid;
2516
2517 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2518 /*
2519 * Get block address and transfer length
2520 */
2521 if (scsicmd->cmnd[0] == WRITE_6) /* 6 byte command */
2522 {
2523 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
2524 count = scsicmd->cmnd[4];
2525 if (count == 0)
2526 count = 256;
2527 fua = 0;
2528 } else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */
2529 dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd)));
2530
2531 lba = ((u64)scsicmd->cmnd[2] << 56) |
2532 ((u64)scsicmd->cmnd[3] << 48) |
2533 ((u64)scsicmd->cmnd[4] << 40) |
2534 ((u64)scsicmd->cmnd[5] << 32) |
2535 ((u64)scsicmd->cmnd[6] << 24) |
2536 (scsicmd->cmnd[7] << 16) |
2537 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2538 count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) |
2539 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
2540 fua = scsicmd->cmnd[1] & 0x8;
2541 } else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */
2542 dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd)));
2543
2544 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16)
2545 | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2546 count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16)
2547 | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2548 fua = scsicmd->cmnd[1] & 0x8;
2549 } else {
2550 dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd)));
2551 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2552 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
2553 fua = scsicmd->cmnd[1] & 0x8;
2554 }
2555
2556 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) {
2557 cid = scmd_id(scsicmd);
2558 dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
2559 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2560 SAM_STAT_CHECK_CONDITION;
2561 set_sense(&dev->fsa_dev[cid].sense_data,
2562 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2563 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2564 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2565 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2566 SCSI_SENSE_BUFFERSIZE));
2567 scsicmd->scsi_done(scsicmd);
2568 return 1;
2569 }
2570
2571 dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n",
2572 smp_processor_id(), (unsigned long long)lba, jiffies));
2573 if (aac_adapter_bounds(dev,scsicmd,lba))
2574 return 0;
2575 /*
2576 * Allocate and initialize a Fib then setup a BlockWrite command
2577 */
2578 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
2579 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2580 status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count, fua);
2581
2582 /*
2583 * Check that the command queued to the controller
2584 */
2585 if (status == -EINPROGRESS)
2586 return 0;
2587
2588 printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status);
2589 /*
2590 * For some reason, the Fib didn't queue, return QUEUE_FULL
2591 */
2592 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
2593 scsicmd->scsi_done(scsicmd);
2594
2595 aac_fib_complete(cmd_fibcontext);
2596 aac_fib_free(cmd_fibcontext);
2597 return 0;
2598 }
2599
synchronize_callback(void * context,struct fib * fibptr)2600 static void synchronize_callback(void *context, struct fib *fibptr)
2601 {
2602 struct aac_synchronize_reply *synchronizereply;
2603 struct scsi_cmnd *cmd;
2604
2605 cmd = context;
2606
2607 if (!aac_valid_context(cmd, fibptr))
2608 return;
2609
2610 dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n",
2611 smp_processor_id(), jiffies));
2612 BUG_ON(fibptr == NULL);
2613
2614
2615 synchronizereply = fib_data(fibptr);
2616 if (le32_to_cpu(synchronizereply->status) == CT_OK)
2617 cmd->result = DID_OK << 16 |
2618 COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2619 else {
2620 struct scsi_device *sdev = cmd->device;
2621 struct aac_dev *dev = fibptr->dev;
2622 u32 cid = sdev_id(sdev);
2623 printk(KERN_WARNING
2624 "synchronize_callback: synchronize failed, status = %d\n",
2625 le32_to_cpu(synchronizereply->status));
2626 cmd->result = DID_OK << 16 |
2627 COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2628 set_sense(&dev->fsa_dev[cid].sense_data,
2629 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2630 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2631 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2632 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2633 SCSI_SENSE_BUFFERSIZE));
2634 }
2635
2636 aac_fib_complete(fibptr);
2637 aac_fib_free(fibptr);
2638 cmd->scsi_done(cmd);
2639 }
2640
aac_synchronize(struct scsi_cmnd * scsicmd)2641 static int aac_synchronize(struct scsi_cmnd *scsicmd)
2642 {
2643 int status;
2644 struct fib *cmd_fibcontext;
2645 struct aac_synchronize *synchronizecmd;
2646 struct scsi_cmnd *cmd;
2647 struct scsi_device *sdev = scsicmd->device;
2648 int active = 0;
2649 struct aac_dev *aac;
2650 u64 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) |
2651 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2652 u32 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
2653 unsigned long flags;
2654
2655 /*
2656 * Wait for all outstanding queued commands to complete to this
2657 * specific target (block).
2658 */
2659 spin_lock_irqsave(&sdev->list_lock, flags);
2660 list_for_each_entry(cmd, &sdev->cmd_list, list)
2661 if (cmd->SCp.phase == AAC_OWNER_FIRMWARE) {
2662 u64 cmnd_lba;
2663 u32 cmnd_count;
2664
2665 if (cmd->cmnd[0] == WRITE_6) {
2666 cmnd_lba = ((cmd->cmnd[1] & 0x1F) << 16) |
2667 (cmd->cmnd[2] << 8) |
2668 cmd->cmnd[3];
2669 cmnd_count = cmd->cmnd[4];
2670 if (cmnd_count == 0)
2671 cmnd_count = 256;
2672 } else if (cmd->cmnd[0] == WRITE_16) {
2673 cmnd_lba = ((u64)cmd->cmnd[2] << 56) |
2674 ((u64)cmd->cmnd[3] << 48) |
2675 ((u64)cmd->cmnd[4] << 40) |
2676 ((u64)cmd->cmnd[5] << 32) |
2677 ((u64)cmd->cmnd[6] << 24) |
2678 (cmd->cmnd[7] << 16) |
2679 (cmd->cmnd[8] << 8) |
2680 cmd->cmnd[9];
2681 cmnd_count = (cmd->cmnd[10] << 24) |
2682 (cmd->cmnd[11] << 16) |
2683 (cmd->cmnd[12] << 8) |
2684 cmd->cmnd[13];
2685 } else if (cmd->cmnd[0] == WRITE_12) {
2686 cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
2687 (cmd->cmnd[3] << 16) |
2688 (cmd->cmnd[4] << 8) |
2689 cmd->cmnd[5];
2690 cmnd_count = (cmd->cmnd[6] << 24) |
2691 (cmd->cmnd[7] << 16) |
2692 (cmd->cmnd[8] << 8) |
2693 cmd->cmnd[9];
2694 } else if (cmd->cmnd[0] == WRITE_10) {
2695 cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
2696 (cmd->cmnd[3] << 16) |
2697 (cmd->cmnd[4] << 8) |
2698 cmd->cmnd[5];
2699 cmnd_count = (cmd->cmnd[7] << 8) |
2700 cmd->cmnd[8];
2701 } else
2702 continue;
2703 if (((cmnd_lba + cmnd_count) < lba) ||
2704 (count && ((lba + count) < cmnd_lba)))
2705 continue;
2706 ++active;
2707 break;
2708 }
2709
2710 spin_unlock_irqrestore(&sdev->list_lock, flags);
2711
2712 /*
2713 * Yield the processor (requeue for later)
2714 */
2715 if (active)
2716 return SCSI_MLQUEUE_DEVICE_BUSY;
2717
2718 aac = (struct aac_dev *)sdev->host->hostdata;
2719 if (aac->in_reset)
2720 return SCSI_MLQUEUE_HOST_BUSY;
2721
2722 /*
2723 * Allocate and initialize a Fib
2724 */
2725 if (!(cmd_fibcontext = aac_fib_alloc(aac)))
2726 return SCSI_MLQUEUE_HOST_BUSY;
2727
2728 aac_fib_init(cmd_fibcontext);
2729
2730 synchronizecmd = fib_data(cmd_fibcontext);
2731 synchronizecmd->command = cpu_to_le32(VM_ContainerConfig);
2732 synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE);
2733 synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd));
2734 synchronizecmd->count =
2735 cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data));
2736 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2737
2738 /*
2739 * Now send the Fib to the adapter
2740 */
2741 status = aac_fib_send(ContainerCommand,
2742 cmd_fibcontext,
2743 sizeof(struct aac_synchronize),
2744 FsaNormal,
2745 0, 1,
2746 (fib_callback)synchronize_callback,
2747 (void *)scsicmd);
2748
2749 /*
2750 * Check that the command queued to the controller
2751 */
2752 if (status == -EINPROGRESS)
2753 return 0;
2754
2755 printk(KERN_WARNING
2756 "aac_synchronize: aac_fib_send failed with status: %d.\n", status);
2757 aac_fib_complete(cmd_fibcontext);
2758 aac_fib_free(cmd_fibcontext);
2759 return SCSI_MLQUEUE_HOST_BUSY;
2760 }
2761
aac_start_stop_callback(void * context,struct fib * fibptr)2762 static void aac_start_stop_callback(void *context, struct fib *fibptr)
2763 {
2764 struct scsi_cmnd *scsicmd = context;
2765
2766 if (!aac_valid_context(scsicmd, fibptr))
2767 return;
2768
2769 BUG_ON(fibptr == NULL);
2770
2771 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2772
2773 aac_fib_complete(fibptr);
2774 aac_fib_free(fibptr);
2775 scsicmd->scsi_done(scsicmd);
2776 }
2777
aac_start_stop(struct scsi_cmnd * scsicmd)2778 static int aac_start_stop(struct scsi_cmnd *scsicmd)
2779 {
2780 int status;
2781 struct fib *cmd_fibcontext;
2782 struct aac_power_management *pmcmd;
2783 struct scsi_device *sdev = scsicmd->device;
2784 struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata;
2785
2786 if (!(aac->supplement_adapter_info.supported_options2 &
2787 AAC_OPTION_POWER_MANAGEMENT)) {
2788 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2789 SAM_STAT_GOOD;
2790 scsicmd->scsi_done(scsicmd);
2791 return 0;
2792 }
2793
2794 if (aac->in_reset)
2795 return SCSI_MLQUEUE_HOST_BUSY;
2796
2797 /*
2798 * Allocate and initialize a Fib
2799 */
2800 cmd_fibcontext = aac_fib_alloc_tag(aac, scsicmd);
2801
2802 aac_fib_init(cmd_fibcontext);
2803
2804 pmcmd = fib_data(cmd_fibcontext);
2805 pmcmd->command = cpu_to_le32(VM_ContainerConfig);
2806 pmcmd->type = cpu_to_le32(CT_POWER_MANAGEMENT);
2807 /* Eject bit ignored, not relevant */
2808 pmcmd->sub = (scsicmd->cmnd[4] & 1) ?
2809 cpu_to_le32(CT_PM_START_UNIT) : cpu_to_le32(CT_PM_STOP_UNIT);
2810 pmcmd->cid = cpu_to_le32(sdev_id(sdev));
2811 pmcmd->parm = (scsicmd->cmnd[1] & 1) ?
2812 cpu_to_le32(CT_PM_UNIT_IMMEDIATE) : 0;
2813 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2814
2815 /*
2816 * Now send the Fib to the adapter
2817 */
2818 status = aac_fib_send(ContainerCommand,
2819 cmd_fibcontext,
2820 sizeof(struct aac_power_management),
2821 FsaNormal,
2822 0, 1,
2823 (fib_callback)aac_start_stop_callback,
2824 (void *)scsicmd);
2825
2826 /*
2827 * Check that the command queued to the controller
2828 */
2829 if (status == -EINPROGRESS)
2830 return 0;
2831
2832 aac_fib_complete(cmd_fibcontext);
2833 aac_fib_free(cmd_fibcontext);
2834 return SCSI_MLQUEUE_HOST_BUSY;
2835 }
2836
2837 /**
2838 * aac_scsi_cmd() - Process SCSI command
2839 * @scsicmd: SCSI command block
2840 *
2841 * Emulate a SCSI command and queue the required request for the
2842 * aacraid firmware.
2843 */
2844
aac_scsi_cmd(struct scsi_cmnd * scsicmd)2845 int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
2846 {
2847 u32 cid, bus;
2848 struct Scsi_Host *host = scsicmd->device->host;
2849 struct aac_dev *dev = (struct aac_dev *)host->hostdata;
2850 struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev;
2851
2852 if (fsa_dev_ptr == NULL)
2853 return -1;
2854 /*
2855 * If the bus, id or lun is out of range, return fail
2856 * Test does not apply to ID 16, the pseudo id for the controller
2857 * itself.
2858 */
2859 cid = scmd_id(scsicmd);
2860 if (cid != host->this_id) {
2861 if (scmd_channel(scsicmd) == CONTAINER_CHANNEL) {
2862 if((cid >= dev->maximum_num_containers) ||
2863 (scsicmd->device->lun != 0)) {
2864 scsicmd->result = DID_NO_CONNECT << 16;
2865 goto scsi_done_ret;
2866 }
2867
2868 /*
2869 * If the target container doesn't exist, it may have
2870 * been newly created
2871 */
2872 if (((fsa_dev_ptr[cid].valid & 1) == 0) ||
2873 (fsa_dev_ptr[cid].sense_data.sense_key ==
2874 NOT_READY)) {
2875 switch (scsicmd->cmnd[0]) {
2876 case SERVICE_ACTION_IN_16:
2877 if (!(dev->raw_io_interface) ||
2878 !(dev->raw_io_64) ||
2879 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2880 break;
2881 /* fall through */
2882 case INQUIRY:
2883 case READ_CAPACITY:
2884 case TEST_UNIT_READY:
2885 if (dev->in_reset)
2886 return -1;
2887 return _aac_probe_container(scsicmd,
2888 aac_probe_container_callback2);
2889 default:
2890 break;
2891 }
2892 }
2893 } else { /* check for physical non-dasd devices */
2894 bus = aac_logical_to_phys(scmd_channel(scsicmd));
2895
2896 if (bus < AAC_MAX_BUSES && cid < AAC_MAX_TARGETS &&
2897 dev->hba_map[bus][cid].devtype
2898 == AAC_DEVTYPE_NATIVE_RAW) {
2899 if (dev->in_reset)
2900 return -1;
2901 return aac_send_hba_fib(scsicmd);
2902 } else if (dev->nondasd_support || expose_physicals ||
2903 dev->jbod) {
2904 if (dev->in_reset)
2905 return -1;
2906 return aac_send_srb_fib(scsicmd);
2907 } else {
2908 scsicmd->result = DID_NO_CONNECT << 16;
2909 goto scsi_done_ret;
2910 }
2911 }
2912 }
2913 /*
2914 * else Command for the controller itself
2915 */
2916 else if ((scsicmd->cmnd[0] != INQUIRY) && /* only INQUIRY & TUR cmnd supported for controller */
2917 (scsicmd->cmnd[0] != TEST_UNIT_READY))
2918 {
2919 dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0]));
2920 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2921 set_sense(&dev->fsa_dev[cid].sense_data,
2922 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
2923 ASENCODE_INVALID_COMMAND, 0, 0);
2924 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2925 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2926 SCSI_SENSE_BUFFERSIZE));
2927 goto scsi_done_ret;
2928 }
2929
2930 switch (scsicmd->cmnd[0]) {
2931 case READ_6:
2932 case READ_10:
2933 case READ_12:
2934 case READ_16:
2935 if (dev->in_reset)
2936 return -1;
2937 return aac_read(scsicmd);
2938
2939 case WRITE_6:
2940 case WRITE_10:
2941 case WRITE_12:
2942 case WRITE_16:
2943 if (dev->in_reset)
2944 return -1;
2945 return aac_write(scsicmd);
2946
2947 case SYNCHRONIZE_CACHE:
2948 if (((aac_cache & 6) == 6) && dev->cache_protected) {
2949 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2950 SAM_STAT_GOOD;
2951 break;
2952 }
2953 /* Issue FIB to tell Firmware to flush it's cache */
2954 if ((aac_cache & 6) != 2)
2955 return aac_synchronize(scsicmd);
2956 /* fall through */
2957 case INQUIRY:
2958 {
2959 struct inquiry_data inq_data;
2960
2961 dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", cid));
2962 memset(&inq_data, 0, sizeof (struct inquiry_data));
2963
2964 if ((scsicmd->cmnd[1] & 0x1) && aac_wwn) {
2965 char *arr = (char *)&inq_data;
2966
2967 /* EVPD bit set */
2968 arr[0] = (scmd_id(scsicmd) == host->this_id) ?
2969 INQD_PDT_PROC : INQD_PDT_DA;
2970 if (scsicmd->cmnd[2] == 0) {
2971 /* supported vital product data pages */
2972 arr[3] = 3;
2973 arr[4] = 0x0;
2974 arr[5] = 0x80;
2975 arr[6] = 0x83;
2976 arr[1] = scsicmd->cmnd[2];
2977 scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2978 sizeof(inq_data));
2979 scsicmd->result = DID_OK << 16 |
2980 COMMAND_COMPLETE << 8 |
2981 SAM_STAT_GOOD;
2982 } else if (scsicmd->cmnd[2] == 0x80) {
2983 /* unit serial number page */
2984 arr[3] = setinqserial(dev, &arr[4],
2985 scmd_id(scsicmd));
2986 arr[1] = scsicmd->cmnd[2];
2987 scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2988 sizeof(inq_data));
2989 if (aac_wwn != 2)
2990 return aac_get_container_serial(
2991 scsicmd);
2992 scsicmd->result = DID_OK << 16 |
2993 COMMAND_COMPLETE << 8 |
2994 SAM_STAT_GOOD;
2995 } else if (scsicmd->cmnd[2] == 0x83) {
2996 /* vpd page 0x83 - Device Identification Page */
2997 char *sno = (char *)&inq_data;
2998 sno[3] = setinqserial(dev, &sno[4],
2999 scmd_id(scsicmd));
3000 if (aac_wwn != 2)
3001 return aac_get_container_serial(
3002 scsicmd);
3003 scsicmd->result = DID_OK << 16 |
3004 COMMAND_COMPLETE << 8 |
3005 SAM_STAT_GOOD;
3006 } else {
3007 /* vpd page not implemented */
3008 scsicmd->result = DID_OK << 16 |
3009 COMMAND_COMPLETE << 8 |
3010 SAM_STAT_CHECK_CONDITION;
3011 set_sense(&dev->fsa_dev[cid].sense_data,
3012 ILLEGAL_REQUEST, SENCODE_INVALID_CDB_FIELD,
3013 ASENCODE_NO_SENSE, 7, 2);
3014 memcpy(scsicmd->sense_buffer,
3015 &dev->fsa_dev[cid].sense_data,
3016 min_t(size_t,
3017 sizeof(dev->fsa_dev[cid].sense_data),
3018 SCSI_SENSE_BUFFERSIZE));
3019 }
3020 break;
3021 }
3022 inq_data.inqd_ver = 2; /* claim compliance to SCSI-2 */
3023 inq_data.inqd_rdf = 2; /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */
3024 inq_data.inqd_len = 31;
3025 /*Format for "pad2" is RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
3026 inq_data.inqd_pad2= 0x32 ; /*WBus16|Sync|CmdQue */
3027 /*
3028 * Set the Vendor, Product, and Revision Level
3029 * see: <vendor>.c i.e. aac.c
3030 */
3031 if (cid == host->this_id) {
3032 setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types));
3033 inq_data.inqd_pdt = INQD_PDT_PROC; /* Processor device */
3034 scsi_sg_copy_from_buffer(scsicmd, &inq_data,
3035 sizeof(inq_data));
3036 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3037 SAM_STAT_GOOD;
3038 break;
3039 }
3040 if (dev->in_reset)
3041 return -1;
3042 setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type);
3043 inq_data.inqd_pdt = INQD_PDT_DA; /* Direct/random access device */
3044 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
3045 return aac_get_container_name(scsicmd);
3046 }
3047 case SERVICE_ACTION_IN_16:
3048 if (!(dev->raw_io_interface) ||
3049 !(dev->raw_io_64) ||
3050 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
3051 break;
3052 {
3053 u64 capacity;
3054 char cp[13];
3055 unsigned int alloc_len;
3056
3057 dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n"));
3058 capacity = fsa_dev_ptr[cid].size - 1;
3059 cp[0] = (capacity >> 56) & 0xff;
3060 cp[1] = (capacity >> 48) & 0xff;
3061 cp[2] = (capacity >> 40) & 0xff;
3062 cp[3] = (capacity >> 32) & 0xff;
3063 cp[4] = (capacity >> 24) & 0xff;
3064 cp[5] = (capacity >> 16) & 0xff;
3065 cp[6] = (capacity >> 8) & 0xff;
3066 cp[7] = (capacity >> 0) & 0xff;
3067 cp[8] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff;
3068 cp[9] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
3069 cp[10] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
3070 cp[11] = (fsa_dev_ptr[cid].block_size) & 0xff;
3071 cp[12] = 0;
3072
3073 alloc_len = ((scsicmd->cmnd[10] << 24)
3074 + (scsicmd->cmnd[11] << 16)
3075 + (scsicmd->cmnd[12] << 8) + scsicmd->cmnd[13]);
3076
3077 alloc_len = min_t(size_t, alloc_len, sizeof(cp));
3078 scsi_sg_copy_from_buffer(scsicmd, cp, alloc_len);
3079 if (alloc_len < scsi_bufflen(scsicmd))
3080 scsi_set_resid(scsicmd,
3081 scsi_bufflen(scsicmd) - alloc_len);
3082
3083 /* Do not cache partition table for arrays */
3084 scsicmd->device->removable = 1;
3085
3086 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3087 SAM_STAT_GOOD;
3088 break;
3089 }
3090
3091 case READ_CAPACITY:
3092 {
3093 u32 capacity;
3094 char cp[8];
3095
3096 dprintk((KERN_DEBUG "READ CAPACITY command.\n"));
3097 if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
3098 capacity = fsa_dev_ptr[cid].size - 1;
3099 else
3100 capacity = (u32)-1;
3101
3102 cp[0] = (capacity >> 24) & 0xff;
3103 cp[1] = (capacity >> 16) & 0xff;
3104 cp[2] = (capacity >> 8) & 0xff;
3105 cp[3] = (capacity >> 0) & 0xff;
3106 cp[4] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff;
3107 cp[5] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
3108 cp[6] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
3109 cp[7] = (fsa_dev_ptr[cid].block_size) & 0xff;
3110 scsi_sg_copy_from_buffer(scsicmd, cp, sizeof(cp));
3111 /* Do not cache partition table for arrays */
3112 scsicmd->device->removable = 1;
3113 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3114 SAM_STAT_GOOD;
3115 break;
3116 }
3117
3118 case MODE_SENSE:
3119 {
3120 int mode_buf_length = 4;
3121 u32 capacity;
3122 aac_modep_data mpd;
3123
3124 if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
3125 capacity = fsa_dev_ptr[cid].size - 1;
3126 else
3127 capacity = (u32)-1;
3128
3129 dprintk((KERN_DEBUG "MODE SENSE command.\n"));
3130 memset((char *)&mpd, 0, sizeof(aac_modep_data));
3131
3132 /* Mode data length */
3133 mpd.hd.data_length = sizeof(mpd.hd) - 1;
3134 /* Medium type - default */
3135 mpd.hd.med_type = 0;
3136 /* Device-specific param,
3137 bit 8: 0/1 = write enabled/protected
3138 bit 4: 0/1 = FUA enabled */
3139 mpd.hd.dev_par = 0;
3140
3141 if (dev->raw_io_interface && ((aac_cache & 5) != 1))
3142 mpd.hd.dev_par = 0x10;
3143 if (scsicmd->cmnd[1] & 0x8)
3144 mpd.hd.bd_length = 0; /* Block descriptor length */
3145 else {
3146 mpd.hd.bd_length = sizeof(mpd.bd);
3147 mpd.hd.data_length += mpd.hd.bd_length;
3148 mpd.bd.block_length[0] =
3149 (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
3150 mpd.bd.block_length[1] =
3151 (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
3152 mpd.bd.block_length[2] =
3153 fsa_dev_ptr[cid].block_size & 0xff;
3154
3155 mpd.mpc_buf[0] = scsicmd->cmnd[2];
3156 if (scsicmd->cmnd[2] == 0x1C) {
3157 /* page length */
3158 mpd.mpc_buf[1] = 0xa;
3159 /* Mode data length */
3160 mpd.hd.data_length = 23;
3161 } else {
3162 /* Mode data length */
3163 mpd.hd.data_length = 15;
3164 }
3165
3166 if (capacity > 0xffffff) {
3167 mpd.bd.block_count[0] = 0xff;
3168 mpd.bd.block_count[1] = 0xff;
3169 mpd.bd.block_count[2] = 0xff;
3170 } else {
3171 mpd.bd.block_count[0] = (capacity >> 16) & 0xff;
3172 mpd.bd.block_count[1] = (capacity >> 8) & 0xff;
3173 mpd.bd.block_count[2] = capacity & 0xff;
3174 }
3175 }
3176 if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
3177 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
3178 mpd.hd.data_length += 3;
3179 mpd.mpc_buf[0] = 8;
3180 mpd.mpc_buf[1] = 1;
3181 mpd.mpc_buf[2] = ((aac_cache & 6) == 2)
3182 ? 0 : 0x04; /* WCE */
3183 mode_buf_length = sizeof(mpd);
3184 }
3185
3186 if (mode_buf_length > scsicmd->cmnd[4])
3187 mode_buf_length = scsicmd->cmnd[4];
3188 else
3189 mode_buf_length = sizeof(mpd);
3190 scsi_sg_copy_from_buffer(scsicmd,
3191 (char *)&mpd,
3192 mode_buf_length);
3193 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3194 SAM_STAT_GOOD;
3195 break;
3196 }
3197 case MODE_SENSE_10:
3198 {
3199 u32 capacity;
3200 int mode_buf_length = 8;
3201 aac_modep10_data mpd10;
3202
3203 if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
3204 capacity = fsa_dev_ptr[cid].size - 1;
3205 else
3206 capacity = (u32)-1;
3207
3208 dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n"));
3209 memset((char *)&mpd10, 0, sizeof(aac_modep10_data));
3210 /* Mode data length (MSB) */
3211 mpd10.hd.data_length[0] = 0;
3212 /* Mode data length (LSB) */
3213 mpd10.hd.data_length[1] = sizeof(mpd10.hd) - 1;
3214 /* Medium type - default */
3215 mpd10.hd.med_type = 0;
3216 /* Device-specific param,
3217 bit 8: 0/1 = write enabled/protected
3218 bit 4: 0/1 = FUA enabled */
3219 mpd10.hd.dev_par = 0;
3220
3221 if (dev->raw_io_interface && ((aac_cache & 5) != 1))
3222 mpd10.hd.dev_par = 0x10;
3223 mpd10.hd.rsrvd[0] = 0; /* reserved */
3224 mpd10.hd.rsrvd[1] = 0; /* reserved */
3225 if (scsicmd->cmnd[1] & 0x8) {
3226 /* Block descriptor length (MSB) */
3227 mpd10.hd.bd_length[0] = 0;
3228 /* Block descriptor length (LSB) */
3229 mpd10.hd.bd_length[1] = 0;
3230 } else {
3231 mpd10.hd.bd_length[0] = 0;
3232 mpd10.hd.bd_length[1] = sizeof(mpd10.bd);
3233
3234 mpd10.hd.data_length[1] += mpd10.hd.bd_length[1];
3235
3236 mpd10.bd.block_length[0] =
3237 (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
3238 mpd10.bd.block_length[1] =
3239 (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
3240 mpd10.bd.block_length[2] =
3241 fsa_dev_ptr[cid].block_size & 0xff;
3242
3243 if (capacity > 0xffffff) {
3244 mpd10.bd.block_count[0] = 0xff;
3245 mpd10.bd.block_count[1] = 0xff;
3246 mpd10.bd.block_count[2] = 0xff;
3247 } else {
3248 mpd10.bd.block_count[0] =
3249 (capacity >> 16) & 0xff;
3250 mpd10.bd.block_count[1] =
3251 (capacity >> 8) & 0xff;
3252 mpd10.bd.block_count[2] =
3253 capacity & 0xff;
3254 }
3255 }
3256 if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
3257 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
3258 mpd10.hd.data_length[1] += 3;
3259 mpd10.mpc_buf[0] = 8;
3260 mpd10.mpc_buf[1] = 1;
3261 mpd10.mpc_buf[2] = ((aac_cache & 6) == 2)
3262 ? 0 : 0x04; /* WCE */
3263 mode_buf_length = sizeof(mpd10);
3264 if (mode_buf_length > scsicmd->cmnd[8])
3265 mode_buf_length = scsicmd->cmnd[8];
3266 }
3267 scsi_sg_copy_from_buffer(scsicmd,
3268 (char *)&mpd10,
3269 mode_buf_length);
3270
3271 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3272 SAM_STAT_GOOD;
3273 break;
3274 }
3275 case REQUEST_SENSE:
3276 dprintk((KERN_DEBUG "REQUEST SENSE command.\n"));
3277 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
3278 sizeof(struct sense_data));
3279 memset(&dev->fsa_dev[cid].sense_data, 0,
3280 sizeof(struct sense_data));
3281 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3282 SAM_STAT_GOOD;
3283 break;
3284
3285 case ALLOW_MEDIUM_REMOVAL:
3286 dprintk((KERN_DEBUG "LOCK command.\n"));
3287 if (scsicmd->cmnd[4])
3288 fsa_dev_ptr[cid].locked = 1;
3289 else
3290 fsa_dev_ptr[cid].locked = 0;
3291
3292 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3293 SAM_STAT_GOOD;
3294 break;
3295 /*
3296 * These commands are all No-Ops
3297 */
3298 case TEST_UNIT_READY:
3299 if (fsa_dev_ptr[cid].sense_data.sense_key == NOT_READY) {
3300 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3301 SAM_STAT_CHECK_CONDITION;
3302 set_sense(&dev->fsa_dev[cid].sense_data,
3303 NOT_READY, SENCODE_BECOMING_READY,
3304 ASENCODE_BECOMING_READY, 0, 0);
3305 memcpy(scsicmd->sense_buffer,
3306 &dev->fsa_dev[cid].sense_data,
3307 min_t(size_t,
3308 sizeof(dev->fsa_dev[cid].sense_data),
3309 SCSI_SENSE_BUFFERSIZE));
3310 break;
3311 }
3312 /* fall through */
3313 case RESERVE:
3314 case RELEASE:
3315 case REZERO_UNIT:
3316 case REASSIGN_BLOCKS:
3317 case SEEK_10:
3318 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3319 SAM_STAT_GOOD;
3320 break;
3321
3322 case START_STOP:
3323 return aac_start_stop(scsicmd);
3324
3325 /* FALLTHRU */
3326 default:
3327 /*
3328 * Unhandled commands
3329 */
3330 dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n",
3331 scsicmd->cmnd[0]));
3332 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3333 SAM_STAT_CHECK_CONDITION;
3334 set_sense(&dev->fsa_dev[cid].sense_data,
3335 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
3336 ASENCODE_INVALID_COMMAND, 0, 0);
3337 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
3338 min_t(size_t,
3339 sizeof(dev->fsa_dev[cid].sense_data),
3340 SCSI_SENSE_BUFFERSIZE));
3341 }
3342
3343 scsi_done_ret:
3344
3345 scsicmd->scsi_done(scsicmd);
3346 return 0;
3347 }
3348
query_disk(struct aac_dev * dev,void __user * arg)3349 static int query_disk(struct aac_dev *dev, void __user *arg)
3350 {
3351 struct aac_query_disk qd;
3352 struct fsa_dev_info *fsa_dev_ptr;
3353
3354 fsa_dev_ptr = dev->fsa_dev;
3355 if (!fsa_dev_ptr)
3356 return -EBUSY;
3357 if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk)))
3358 return -EFAULT;
3359 if (qd.cnum == -1) {
3360 if (qd.id < 0 || qd.id >= dev->maximum_num_containers)
3361 return -EINVAL;
3362 qd.cnum = qd.id;
3363 } else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1)) {
3364 if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers)
3365 return -EINVAL;
3366 qd.instance = dev->scsi_host_ptr->host_no;
3367 qd.bus = 0;
3368 qd.id = CONTAINER_TO_ID(qd.cnum);
3369 qd.lun = CONTAINER_TO_LUN(qd.cnum);
3370 }
3371 else return -EINVAL;
3372
3373 qd.valid = fsa_dev_ptr[qd.cnum].valid != 0;
3374 qd.locked = fsa_dev_ptr[qd.cnum].locked;
3375 qd.deleted = fsa_dev_ptr[qd.cnum].deleted;
3376
3377 if (fsa_dev_ptr[qd.cnum].devname[0] == '\0')
3378 qd.unmapped = 1;
3379 else
3380 qd.unmapped = 0;
3381
3382 strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname,
3383 min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1));
3384
3385 if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk)))
3386 return -EFAULT;
3387 return 0;
3388 }
3389
force_delete_disk(struct aac_dev * dev,void __user * arg)3390 static int force_delete_disk(struct aac_dev *dev, void __user *arg)
3391 {
3392 struct aac_delete_disk dd;
3393 struct fsa_dev_info *fsa_dev_ptr;
3394
3395 fsa_dev_ptr = dev->fsa_dev;
3396 if (!fsa_dev_ptr)
3397 return -EBUSY;
3398
3399 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
3400 return -EFAULT;
3401
3402 if (dd.cnum >= dev->maximum_num_containers)
3403 return -EINVAL;
3404 /*
3405 * Mark this container as being deleted.
3406 */
3407 fsa_dev_ptr[dd.cnum].deleted = 1;
3408 /*
3409 * Mark the container as no longer valid
3410 */
3411 fsa_dev_ptr[dd.cnum].valid = 0;
3412 return 0;
3413 }
3414
delete_disk(struct aac_dev * dev,void __user * arg)3415 static int delete_disk(struct aac_dev *dev, void __user *arg)
3416 {
3417 struct aac_delete_disk dd;
3418 struct fsa_dev_info *fsa_dev_ptr;
3419
3420 fsa_dev_ptr = dev->fsa_dev;
3421 if (!fsa_dev_ptr)
3422 return -EBUSY;
3423
3424 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
3425 return -EFAULT;
3426
3427 if (dd.cnum >= dev->maximum_num_containers)
3428 return -EINVAL;
3429 /*
3430 * If the container is locked, it can not be deleted by the API.
3431 */
3432 if (fsa_dev_ptr[dd.cnum].locked)
3433 return -EBUSY;
3434 else {
3435 /*
3436 * Mark the container as no longer being valid.
3437 */
3438 fsa_dev_ptr[dd.cnum].valid = 0;
3439 fsa_dev_ptr[dd.cnum].devname[0] = '\0';
3440 return 0;
3441 }
3442 }
3443
aac_dev_ioctl(struct aac_dev * dev,unsigned int cmd,void __user * arg)3444 int aac_dev_ioctl(struct aac_dev *dev, unsigned int cmd, void __user *arg)
3445 {
3446 switch (cmd) {
3447 case FSACTL_QUERY_DISK:
3448 return query_disk(dev, arg);
3449 case FSACTL_DELETE_DISK:
3450 return delete_disk(dev, arg);
3451 case FSACTL_FORCE_DELETE_DISK:
3452 return force_delete_disk(dev, arg);
3453 case FSACTL_GET_CONTAINERS:
3454 return aac_get_containers(dev);
3455 default:
3456 return -ENOTTY;
3457 }
3458 }
3459
3460 /**
3461 *
3462 * aac_srb_callback
3463 * @context: the context set in the fib - here it is scsi cmd
3464 * @fibptr: pointer to the fib
3465 *
3466 * Handles the completion of a scsi command to a non dasd device
3467 *
3468 */
3469
aac_srb_callback(void * context,struct fib * fibptr)3470 static void aac_srb_callback(void *context, struct fib * fibptr)
3471 {
3472 struct aac_srb_reply *srbreply;
3473 struct scsi_cmnd *scsicmd;
3474
3475 scsicmd = (struct scsi_cmnd *) context;
3476
3477 if (!aac_valid_context(scsicmd, fibptr))
3478 return;
3479
3480 BUG_ON(fibptr == NULL);
3481
3482 srbreply = (struct aac_srb_reply *) fib_data(fibptr);
3483
3484 scsicmd->sense_buffer[0] = '\0'; /* Initialize sense valid flag to false */
3485
3486 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) {
3487 /* fast response */
3488 srbreply->srb_status = cpu_to_le32(SRB_STATUS_SUCCESS);
3489 srbreply->scsi_status = cpu_to_le32(SAM_STAT_GOOD);
3490 } else {
3491 /*
3492 * Calculate resid for sg
3493 */
3494 scsi_set_resid(scsicmd, scsi_bufflen(scsicmd)
3495 - le32_to_cpu(srbreply->data_xfer_length));
3496 }
3497
3498
3499 scsi_dma_unmap(scsicmd);
3500
3501 /* expose physical device if expose_physicald flag is on */
3502 if (scsicmd->cmnd[0] == INQUIRY && !(scsicmd->cmnd[1] & 0x01)
3503 && expose_physicals > 0)
3504 aac_expose_phy_device(scsicmd);
3505
3506 /*
3507 * First check the fib status
3508 */
3509
3510 if (le32_to_cpu(srbreply->status) != ST_OK) {
3511 int len;
3512
3513 pr_warn("aac_srb_callback: srb failed, status = %d\n",
3514 le32_to_cpu(srbreply->status));
3515 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
3516 SCSI_SENSE_BUFFERSIZE);
3517 scsicmd->result = DID_ERROR << 16
3518 | COMMAND_COMPLETE << 8
3519 | SAM_STAT_CHECK_CONDITION;
3520 memcpy(scsicmd->sense_buffer,
3521 srbreply->sense_data, len);
3522 }
3523
3524 /*
3525 * Next check the srb status
3526 */
3527 switch ((le32_to_cpu(srbreply->srb_status))&0x3f) {
3528 case SRB_STATUS_ERROR_RECOVERY:
3529 case SRB_STATUS_PENDING:
3530 case SRB_STATUS_SUCCESS:
3531 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3532 break;
3533 case SRB_STATUS_DATA_OVERRUN:
3534 switch (scsicmd->cmnd[0]) {
3535 case READ_6:
3536 case WRITE_6:
3537 case READ_10:
3538 case WRITE_10:
3539 case READ_12:
3540 case WRITE_12:
3541 case READ_16:
3542 case WRITE_16:
3543 if (le32_to_cpu(srbreply->data_xfer_length)
3544 < scsicmd->underflow)
3545 pr_warn("aacraid: SCSI CMD underflow\n");
3546 else
3547 pr_warn("aacraid: SCSI CMD Data Overrun\n");
3548 scsicmd->result = DID_ERROR << 16
3549 | COMMAND_COMPLETE << 8;
3550 break;
3551 case INQUIRY:
3552 scsicmd->result = DID_OK << 16
3553 | COMMAND_COMPLETE << 8;
3554 break;
3555 default:
3556 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3557 break;
3558 }
3559 break;
3560 case SRB_STATUS_ABORTED:
3561 scsicmd->result = DID_ABORT << 16 | ABORT << 8;
3562 break;
3563 case SRB_STATUS_ABORT_FAILED:
3564 /*
3565 * Not sure about this one - but assuming the
3566 * hba was trying to abort for some reason
3567 */
3568 scsicmd->result = DID_ERROR << 16 | ABORT << 8;
3569 break;
3570 case SRB_STATUS_PARITY_ERROR:
3571 scsicmd->result = DID_PARITY << 16
3572 | MSG_PARITY_ERROR << 8;
3573 break;
3574 case SRB_STATUS_NO_DEVICE:
3575 case SRB_STATUS_INVALID_PATH_ID:
3576 case SRB_STATUS_INVALID_TARGET_ID:
3577 case SRB_STATUS_INVALID_LUN:
3578 case SRB_STATUS_SELECTION_TIMEOUT:
3579 scsicmd->result = DID_NO_CONNECT << 16
3580 | COMMAND_COMPLETE << 8;
3581 break;
3582
3583 case SRB_STATUS_COMMAND_TIMEOUT:
3584 case SRB_STATUS_TIMEOUT:
3585 scsicmd->result = DID_TIME_OUT << 16
3586 | COMMAND_COMPLETE << 8;
3587 break;
3588
3589 case SRB_STATUS_BUSY:
3590 scsicmd->result = DID_BUS_BUSY << 16
3591 | COMMAND_COMPLETE << 8;
3592 break;
3593
3594 case SRB_STATUS_BUS_RESET:
3595 scsicmd->result = DID_RESET << 16
3596 | COMMAND_COMPLETE << 8;
3597 break;
3598
3599 case SRB_STATUS_MESSAGE_REJECTED:
3600 scsicmd->result = DID_ERROR << 16
3601 | MESSAGE_REJECT << 8;
3602 break;
3603 case SRB_STATUS_REQUEST_FLUSHED:
3604 case SRB_STATUS_ERROR:
3605 case SRB_STATUS_INVALID_REQUEST:
3606 case SRB_STATUS_REQUEST_SENSE_FAILED:
3607 case SRB_STATUS_NO_HBA:
3608 case SRB_STATUS_UNEXPECTED_BUS_FREE:
3609 case SRB_STATUS_PHASE_SEQUENCE_FAILURE:
3610 case SRB_STATUS_BAD_SRB_BLOCK_LENGTH:
3611 case SRB_STATUS_DELAYED_RETRY:
3612 case SRB_STATUS_BAD_FUNCTION:
3613 case SRB_STATUS_NOT_STARTED:
3614 case SRB_STATUS_NOT_IN_USE:
3615 case SRB_STATUS_FORCE_ABORT:
3616 case SRB_STATUS_DOMAIN_VALIDATION_FAIL:
3617 default:
3618 #ifdef AAC_DETAILED_STATUS_INFO
3619 pr_info("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x -scsi status 0x%x\n",
3620 le32_to_cpu(srbreply->srb_status) & 0x3F,
3621 aac_get_status_string(
3622 le32_to_cpu(srbreply->srb_status) & 0x3F),
3623 scsicmd->cmnd[0],
3624 le32_to_cpu(srbreply->scsi_status));
3625 #endif
3626 /*
3627 * When the CC bit is SET by the host in ATA pass thru CDB,
3628 * driver is supposed to return DID_OK
3629 *
3630 * When the CC bit is RESET by the host, driver should
3631 * return DID_ERROR
3632 */
3633 if ((scsicmd->cmnd[0] == ATA_12)
3634 || (scsicmd->cmnd[0] == ATA_16)) {
3635
3636 if (scsicmd->cmnd[2] & (0x01 << 5)) {
3637 scsicmd->result = DID_OK << 16
3638 | COMMAND_COMPLETE << 8;
3639 break;
3640 } else {
3641 scsicmd->result = DID_ERROR << 16
3642 | COMMAND_COMPLETE << 8;
3643 break;
3644 }
3645 } else {
3646 scsicmd->result = DID_ERROR << 16
3647 | COMMAND_COMPLETE << 8;
3648 break;
3649 }
3650 }
3651 if (le32_to_cpu(srbreply->scsi_status)
3652 == SAM_STAT_CHECK_CONDITION) {
3653 int len;
3654
3655 scsicmd->result |= SAM_STAT_CHECK_CONDITION;
3656 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
3657 SCSI_SENSE_BUFFERSIZE);
3658 #ifdef AAC_DETAILED_STATUS_INFO
3659 pr_warn("aac_srb_callback: check condition, status = %d len=%d\n",
3660 le32_to_cpu(srbreply->status), len);
3661 #endif
3662 memcpy(scsicmd->sense_buffer,
3663 srbreply->sense_data, len);
3664 }
3665
3666 /*
3667 * OR in the scsi status (already shifted up a bit)
3668 */
3669 scsicmd->result |= le32_to_cpu(srbreply->scsi_status);
3670
3671 aac_fib_complete(fibptr);
3672 scsicmd->scsi_done(scsicmd);
3673 }
3674
hba_resp_task_complete(struct aac_dev * dev,struct scsi_cmnd * scsicmd,struct aac_hba_resp * err)3675 static void hba_resp_task_complete(struct aac_dev *dev,
3676 struct scsi_cmnd *scsicmd,
3677 struct aac_hba_resp *err) {
3678
3679 scsicmd->result = err->status;
3680 /* set residual count */
3681 scsi_set_resid(scsicmd, le32_to_cpu(err->residual_count));
3682
3683 switch (err->status) {
3684 case SAM_STAT_GOOD:
3685 scsicmd->result |= DID_OK << 16 | COMMAND_COMPLETE << 8;
3686 break;
3687 case SAM_STAT_CHECK_CONDITION:
3688 {
3689 int len;
3690
3691 len = min_t(u8, err->sense_response_data_len,
3692 SCSI_SENSE_BUFFERSIZE);
3693 if (len)
3694 memcpy(scsicmd->sense_buffer,
3695 err->sense_response_buf, len);
3696 scsicmd->result |= DID_OK << 16 | COMMAND_COMPLETE << 8;
3697 break;
3698 }
3699 case SAM_STAT_BUSY:
3700 scsicmd->result |= DID_BUS_BUSY << 16 | COMMAND_COMPLETE << 8;
3701 break;
3702 case SAM_STAT_TASK_ABORTED:
3703 scsicmd->result |= DID_ABORT << 16 | ABORT << 8;
3704 break;
3705 case SAM_STAT_RESERVATION_CONFLICT:
3706 case SAM_STAT_TASK_SET_FULL:
3707 default:
3708 scsicmd->result |= DID_ERROR << 16 | COMMAND_COMPLETE << 8;
3709 break;
3710 }
3711 }
3712
hba_resp_task_failure(struct aac_dev * dev,struct scsi_cmnd * scsicmd,struct aac_hba_resp * err)3713 static void hba_resp_task_failure(struct aac_dev *dev,
3714 struct scsi_cmnd *scsicmd,
3715 struct aac_hba_resp *err)
3716 {
3717 switch (err->status) {
3718 case HBA_RESP_STAT_HBAMODE_DISABLED:
3719 {
3720 u32 bus, cid;
3721
3722 bus = aac_logical_to_phys(scmd_channel(scsicmd));
3723 cid = scmd_id(scsicmd);
3724 if (dev->hba_map[bus][cid].devtype == AAC_DEVTYPE_NATIVE_RAW) {
3725 dev->hba_map[bus][cid].devtype = AAC_DEVTYPE_ARC_RAW;
3726 dev->hba_map[bus][cid].rmw_nexus = 0xffffffff;
3727 }
3728 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
3729 break;
3730 }
3731 case HBA_RESP_STAT_IO_ERROR:
3732 case HBA_RESP_STAT_NO_PATH_TO_DEVICE:
3733 scsicmd->result = DID_OK << 16 |
3734 COMMAND_COMPLETE << 8 | SAM_STAT_BUSY;
3735 break;
3736 case HBA_RESP_STAT_IO_ABORTED:
3737 scsicmd->result = DID_ABORT << 16 | ABORT << 8;
3738 break;
3739 case HBA_RESP_STAT_INVALID_DEVICE:
3740 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
3741 break;
3742 case HBA_RESP_STAT_UNDERRUN:
3743 /* UNDERRUN is OK */
3744 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3745 break;
3746 case HBA_RESP_STAT_OVERRUN:
3747 default:
3748 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
3749 break;
3750 }
3751 }
3752
3753 /**
3754 *
3755 * aac_hba_callback
3756 * @context: the context set in the fib - here it is scsi cmd
3757 * @fibptr: pointer to the fib
3758 *
3759 * Handles the completion of a native HBA scsi command
3760 *
3761 */
aac_hba_callback(void * context,struct fib * fibptr)3762 void aac_hba_callback(void *context, struct fib *fibptr)
3763 {
3764 struct aac_dev *dev;
3765 struct scsi_cmnd *scsicmd;
3766
3767 struct aac_hba_resp *err =
3768 &((struct aac_native_hba *)fibptr->hw_fib_va)->resp.err;
3769
3770 scsicmd = (struct scsi_cmnd *) context;
3771
3772 if (!aac_valid_context(scsicmd, fibptr))
3773 return;
3774
3775 WARN_ON(fibptr == NULL);
3776 dev = fibptr->dev;
3777
3778 if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF))
3779 scsi_dma_unmap(scsicmd);
3780
3781 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) {
3782 /* fast response */
3783 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3784 goto out;
3785 }
3786
3787 switch (err->service_response) {
3788 case HBA_RESP_SVCRES_TASK_COMPLETE:
3789 hba_resp_task_complete(dev, scsicmd, err);
3790 break;
3791 case HBA_RESP_SVCRES_FAILURE:
3792 hba_resp_task_failure(dev, scsicmd, err);
3793 break;
3794 case HBA_RESP_SVCRES_TMF_REJECTED:
3795 scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8;
3796 break;
3797 case HBA_RESP_SVCRES_TMF_LUN_INVALID:
3798 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
3799 break;
3800 case HBA_RESP_SVCRES_TMF_COMPLETE:
3801 case HBA_RESP_SVCRES_TMF_SUCCEEDED:
3802 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3803 break;
3804 default:
3805 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
3806 break;
3807 }
3808
3809 out:
3810 aac_fib_complete(fibptr);
3811
3812 if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF)
3813 scsicmd->SCp.sent_command = 1;
3814 else
3815 scsicmd->scsi_done(scsicmd);
3816 }
3817
3818 /**
3819 *
3820 * aac_send_srb_fib
3821 * @scsicmd: the scsi command block
3822 *
3823 * This routine will form a FIB and fill in the aac_srb from the
3824 * scsicmd passed in.
3825 */
3826
aac_send_srb_fib(struct scsi_cmnd * scsicmd)3827 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd)
3828 {
3829 struct fib* cmd_fibcontext;
3830 struct aac_dev* dev;
3831 int status;
3832
3833 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
3834 if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
3835 scsicmd->device->lun > 7) {
3836 scsicmd->result = DID_NO_CONNECT << 16;
3837 scsicmd->scsi_done(scsicmd);
3838 return 0;
3839 }
3840
3841 /*
3842 * Allocate and initialize a Fib then setup a BlockWrite command
3843 */
3844 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
3845 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
3846 status = aac_adapter_scsi(cmd_fibcontext, scsicmd);
3847
3848 /*
3849 * Check that the command queued to the controller
3850 */
3851 if (status == -EINPROGRESS)
3852 return 0;
3853
3854 printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status);
3855 aac_fib_complete(cmd_fibcontext);
3856 aac_fib_free(cmd_fibcontext);
3857
3858 return -1;
3859 }
3860
3861 /**
3862 *
3863 * aac_send_hba_fib
3864 * @scsicmd: the scsi command block
3865 *
3866 * This routine will form a FIB and fill in the aac_hba_cmd_req from the
3867 * scsicmd passed in.
3868 */
aac_send_hba_fib(struct scsi_cmnd * scsicmd)3869 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd)
3870 {
3871 struct fib *cmd_fibcontext;
3872 struct aac_dev *dev;
3873 int status;
3874
3875 dev = shost_priv(scsicmd->device->host);
3876 if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
3877 scsicmd->device->lun > AAC_MAX_LUN - 1) {
3878 scsicmd->result = DID_NO_CONNECT << 16;
3879 scsicmd->scsi_done(scsicmd);
3880 return 0;
3881 }
3882
3883 /*
3884 * Allocate and initialize a Fib then setup a BlockWrite command
3885 */
3886 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
3887 if (!cmd_fibcontext)
3888 return -1;
3889
3890 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
3891 status = aac_adapter_hba(cmd_fibcontext, scsicmd);
3892
3893 /*
3894 * Check that the command queued to the controller
3895 */
3896 if (status == -EINPROGRESS)
3897 return 0;
3898
3899 pr_warn("aac_hba_cmd_req: aac_fib_send failed with status: %d\n",
3900 status);
3901 aac_fib_complete(cmd_fibcontext);
3902 aac_fib_free(cmd_fibcontext);
3903
3904 return -1;
3905 }
3906
3907
aac_build_sg(struct scsi_cmnd * scsicmd,struct sgmap * psg)3908 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *psg)
3909 {
3910 unsigned long byte_count = 0;
3911 int nseg;
3912 struct scatterlist *sg;
3913 int i;
3914
3915 // Get rid of old data
3916 psg->count = 0;
3917 psg->sg[0].addr = 0;
3918 psg->sg[0].count = 0;
3919
3920 nseg = scsi_dma_map(scsicmd);
3921 if (nseg <= 0)
3922 return nseg;
3923
3924 psg->count = cpu_to_le32(nseg);
3925
3926 scsi_for_each_sg(scsicmd, sg, nseg, i) {
3927 psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg));
3928 psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
3929 byte_count += sg_dma_len(sg);
3930 }
3931 /* hba wants the size to be exact */
3932 if (byte_count > scsi_bufflen(scsicmd)) {
3933 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
3934 (byte_count - scsi_bufflen(scsicmd));
3935 psg->sg[i-1].count = cpu_to_le32(temp);
3936 byte_count = scsi_bufflen(scsicmd);
3937 }
3938 /* Check for command underflow */
3939 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
3940 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3941 byte_count, scsicmd->underflow);
3942 }
3943
3944 return byte_count;
3945 }
3946
3947
aac_build_sg64(struct scsi_cmnd * scsicmd,struct sgmap64 * psg)3948 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg)
3949 {
3950 unsigned long byte_count = 0;
3951 u64 addr;
3952 int nseg;
3953 struct scatterlist *sg;
3954 int i;
3955
3956 // Get rid of old data
3957 psg->count = 0;
3958 psg->sg[0].addr[0] = 0;
3959 psg->sg[0].addr[1] = 0;
3960 psg->sg[0].count = 0;
3961
3962 nseg = scsi_dma_map(scsicmd);
3963 if (nseg <= 0)
3964 return nseg;
3965
3966 scsi_for_each_sg(scsicmd, sg, nseg, i) {
3967 int count = sg_dma_len(sg);
3968 addr = sg_dma_address(sg);
3969 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
3970 psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
3971 psg->sg[i].count = cpu_to_le32(count);
3972 byte_count += count;
3973 }
3974 psg->count = cpu_to_le32(nseg);
3975 /* hba wants the size to be exact */
3976 if (byte_count > scsi_bufflen(scsicmd)) {
3977 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
3978 (byte_count - scsi_bufflen(scsicmd));
3979 psg->sg[i-1].count = cpu_to_le32(temp);
3980 byte_count = scsi_bufflen(scsicmd);
3981 }
3982 /* Check for command underflow */
3983 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
3984 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3985 byte_count, scsicmd->underflow);
3986 }
3987
3988 return byte_count;
3989 }
3990
aac_build_sgraw(struct scsi_cmnd * scsicmd,struct sgmapraw * psg)3991 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg)
3992 {
3993 unsigned long byte_count = 0;
3994 int nseg;
3995 struct scatterlist *sg;
3996 int i;
3997
3998 // Get rid of old data
3999 psg->count = 0;
4000 psg->sg[0].next = 0;
4001 psg->sg[0].prev = 0;
4002 psg->sg[0].addr[0] = 0;
4003 psg->sg[0].addr[1] = 0;
4004 psg->sg[0].count = 0;
4005 psg->sg[0].flags = 0;
4006
4007 nseg = scsi_dma_map(scsicmd);
4008 if (nseg <= 0)
4009 return nseg;
4010
4011 scsi_for_each_sg(scsicmd, sg, nseg, i) {
4012 int count = sg_dma_len(sg);
4013 u64 addr = sg_dma_address(sg);
4014 psg->sg[i].next = 0;
4015 psg->sg[i].prev = 0;
4016 psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32));
4017 psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
4018 psg->sg[i].count = cpu_to_le32(count);
4019 psg->sg[i].flags = 0;
4020 byte_count += count;
4021 }
4022 psg->count = cpu_to_le32(nseg);
4023 /* hba wants the size to be exact */
4024 if (byte_count > scsi_bufflen(scsicmd)) {
4025 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
4026 (byte_count - scsi_bufflen(scsicmd));
4027 psg->sg[i-1].count = cpu_to_le32(temp);
4028 byte_count = scsi_bufflen(scsicmd);
4029 }
4030 /* Check for command underflow */
4031 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
4032 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
4033 byte_count, scsicmd->underflow);
4034 }
4035
4036 return byte_count;
4037 }
4038
aac_build_sgraw2(struct scsi_cmnd * scsicmd,struct aac_raw_io2 * rio2,int sg_max)4039 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd,
4040 struct aac_raw_io2 *rio2, int sg_max)
4041 {
4042 unsigned long byte_count = 0;
4043 int nseg;
4044 struct scatterlist *sg;
4045 int i, conformable = 0;
4046 u32 min_size = PAGE_SIZE, cur_size;
4047
4048 nseg = scsi_dma_map(scsicmd);
4049 if (nseg <= 0)
4050 return nseg;
4051
4052 scsi_for_each_sg(scsicmd, sg, nseg, i) {
4053 int count = sg_dma_len(sg);
4054 u64 addr = sg_dma_address(sg);
4055
4056 BUG_ON(i >= sg_max);
4057 rio2->sge[i].addrHigh = cpu_to_le32((u32)(addr>>32));
4058 rio2->sge[i].addrLow = cpu_to_le32((u32)(addr & 0xffffffff));
4059 cur_size = cpu_to_le32(count);
4060 rio2->sge[i].length = cur_size;
4061 rio2->sge[i].flags = 0;
4062 if (i == 0) {
4063 conformable = 1;
4064 rio2->sgeFirstSize = cur_size;
4065 } else if (i == 1) {
4066 rio2->sgeNominalSize = cur_size;
4067 min_size = cur_size;
4068 } else if ((i+1) < nseg && cur_size != rio2->sgeNominalSize) {
4069 conformable = 0;
4070 if (cur_size < min_size)
4071 min_size = cur_size;
4072 }
4073 byte_count += count;
4074 }
4075
4076 /* hba wants the size to be exact */
4077 if (byte_count > scsi_bufflen(scsicmd)) {
4078 u32 temp = le32_to_cpu(rio2->sge[i-1].length) -
4079 (byte_count - scsi_bufflen(scsicmd));
4080 rio2->sge[i-1].length = cpu_to_le32(temp);
4081 byte_count = scsi_bufflen(scsicmd);
4082 }
4083
4084 rio2->sgeCnt = cpu_to_le32(nseg);
4085 rio2->flags |= cpu_to_le16(RIO2_SG_FORMAT_IEEE1212);
4086 /* not conformable: evaluate required sg elements */
4087 if (!conformable) {
4088 int j, nseg_new = nseg, err_found;
4089 for (i = min_size / PAGE_SIZE; i >= 1; --i) {
4090 err_found = 0;
4091 nseg_new = 2;
4092 for (j = 1; j < nseg - 1; ++j) {
4093 if (rio2->sge[j].length % (i*PAGE_SIZE)) {
4094 err_found = 1;
4095 break;
4096 }
4097 nseg_new += (rio2->sge[j].length / (i*PAGE_SIZE));
4098 }
4099 if (!err_found)
4100 break;
4101 }
4102 if (i > 0 && nseg_new <= sg_max) {
4103 int ret = aac_convert_sgraw2(rio2, i, nseg, nseg_new);
4104
4105 if (ret < 0)
4106 return ret;
4107 }
4108 } else
4109 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT);
4110
4111 /* Check for command underflow */
4112 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
4113 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
4114 byte_count, scsicmd->underflow);
4115 }
4116
4117 return byte_count;
4118 }
4119
aac_convert_sgraw2(struct aac_raw_io2 * rio2,int pages,int nseg,int nseg_new)4120 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, int pages, int nseg, int nseg_new)
4121 {
4122 struct sge_ieee1212 *sge;
4123 int i, j, pos;
4124 u32 addr_low;
4125
4126 if (aac_convert_sgl == 0)
4127 return 0;
4128
4129 sge = kmalloc_array(nseg_new, sizeof(struct sge_ieee1212), GFP_ATOMIC);
4130 if (sge == NULL)
4131 return -ENOMEM;
4132
4133 for (i = 1, pos = 1; i < nseg-1; ++i) {
4134 for (j = 0; j < rio2->sge[i].length / (pages * PAGE_SIZE); ++j) {
4135 addr_low = rio2->sge[i].addrLow + j * pages * PAGE_SIZE;
4136 sge[pos].addrLow = addr_low;
4137 sge[pos].addrHigh = rio2->sge[i].addrHigh;
4138 if (addr_low < rio2->sge[i].addrLow)
4139 sge[pos].addrHigh++;
4140 sge[pos].length = pages * PAGE_SIZE;
4141 sge[pos].flags = 0;
4142 pos++;
4143 }
4144 }
4145 sge[pos] = rio2->sge[nseg-1];
4146 memcpy(&rio2->sge[1], &sge[1], (nseg_new-1)*sizeof(struct sge_ieee1212));
4147
4148 kfree(sge);
4149 rio2->sgeCnt = cpu_to_le32(nseg_new);
4150 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT);
4151 rio2->sgeNominalSize = pages * PAGE_SIZE;
4152 return 0;
4153 }
4154
aac_build_sghba(struct scsi_cmnd * scsicmd,struct aac_hba_cmd_req * hbacmd,int sg_max,u64 sg_address)4155 static long aac_build_sghba(struct scsi_cmnd *scsicmd,
4156 struct aac_hba_cmd_req *hbacmd,
4157 int sg_max,
4158 u64 sg_address)
4159 {
4160 unsigned long byte_count = 0;
4161 int nseg;
4162 struct scatterlist *sg;
4163 int i;
4164 u32 cur_size;
4165 struct aac_hba_sgl *sge;
4166
4167 nseg = scsi_dma_map(scsicmd);
4168 if (nseg <= 0) {
4169 byte_count = nseg;
4170 goto out;
4171 }
4172
4173 if (nseg > HBA_MAX_SG_EMBEDDED)
4174 sge = &hbacmd->sge[2];
4175 else
4176 sge = &hbacmd->sge[0];
4177
4178 scsi_for_each_sg(scsicmd, sg, nseg, i) {
4179 int count = sg_dma_len(sg);
4180 u64 addr = sg_dma_address(sg);
4181
4182 WARN_ON(i >= sg_max);
4183 sge->addr_hi = cpu_to_le32((u32)(addr>>32));
4184 sge->addr_lo = cpu_to_le32((u32)(addr & 0xffffffff));
4185 cur_size = cpu_to_le32(count);
4186 sge->len = cur_size;
4187 sge->flags = 0;
4188 byte_count += count;
4189 sge++;
4190 }
4191
4192 sge--;
4193 /* hba wants the size to be exact */
4194 if (byte_count > scsi_bufflen(scsicmd)) {
4195 u32 temp;
4196
4197 temp = le32_to_cpu(sge->len) - byte_count
4198 - scsi_bufflen(scsicmd);
4199 sge->len = cpu_to_le32(temp);
4200 byte_count = scsi_bufflen(scsicmd);
4201 }
4202
4203 if (nseg <= HBA_MAX_SG_EMBEDDED) {
4204 hbacmd->emb_data_desc_count = cpu_to_le32(nseg);
4205 sge->flags = cpu_to_le32(0x40000000);
4206 } else {
4207 /* not embedded */
4208 hbacmd->sge[0].flags = cpu_to_le32(0x80000000);
4209 hbacmd->emb_data_desc_count = (u8)cpu_to_le32(1);
4210 hbacmd->sge[0].addr_hi = (u32)cpu_to_le32(sg_address >> 32);
4211 hbacmd->sge[0].addr_lo =
4212 cpu_to_le32((u32)(sg_address & 0xffffffff));
4213 }
4214
4215 /* Check for command underflow */
4216 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
4217 pr_warn("aacraid: cmd len %08lX cmd underflow %08X\n",
4218 byte_count, scsicmd->underflow);
4219 }
4220 out:
4221 return byte_count;
4222 }
4223
4224 #ifdef AAC_DETAILED_STATUS_INFO
4225
4226 struct aac_srb_status_info {
4227 u32 status;
4228 char *str;
4229 };
4230
4231
4232 static struct aac_srb_status_info srb_status_info[] = {
4233 { SRB_STATUS_PENDING, "Pending Status"},
4234 { SRB_STATUS_SUCCESS, "Success"},
4235 { SRB_STATUS_ABORTED, "Aborted Command"},
4236 { SRB_STATUS_ABORT_FAILED, "Abort Failed"},
4237 { SRB_STATUS_ERROR, "Error Event"},
4238 { SRB_STATUS_BUSY, "Device Busy"},
4239 { SRB_STATUS_INVALID_REQUEST, "Invalid Request"},
4240 { SRB_STATUS_INVALID_PATH_ID, "Invalid Path ID"},
4241 { SRB_STATUS_NO_DEVICE, "No Device"},
4242 { SRB_STATUS_TIMEOUT, "Timeout"},
4243 { SRB_STATUS_SELECTION_TIMEOUT, "Selection Timeout"},
4244 { SRB_STATUS_COMMAND_TIMEOUT, "Command Timeout"},
4245 { SRB_STATUS_MESSAGE_REJECTED, "Message Rejected"},
4246 { SRB_STATUS_BUS_RESET, "Bus Reset"},
4247 { SRB_STATUS_PARITY_ERROR, "Parity Error"},
4248 { SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"},
4249 { SRB_STATUS_NO_HBA, "No HBA"},
4250 { SRB_STATUS_DATA_OVERRUN, "Data Overrun/Data Underrun"},
4251 { SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"},
4252 { SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"},
4253 { SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"},
4254 { SRB_STATUS_REQUEST_FLUSHED, "Request Flushed"},
4255 { SRB_STATUS_DELAYED_RETRY, "Delayed Retry"},
4256 { SRB_STATUS_INVALID_LUN, "Invalid LUN"},
4257 { SRB_STATUS_INVALID_TARGET_ID, "Invalid TARGET ID"},
4258 { SRB_STATUS_BAD_FUNCTION, "Bad Function"},
4259 { SRB_STATUS_ERROR_RECOVERY, "Error Recovery"},
4260 { SRB_STATUS_NOT_STARTED, "Not Started"},
4261 { SRB_STATUS_NOT_IN_USE, "Not In Use"},
4262 { SRB_STATUS_FORCE_ABORT, "Force Abort"},
4263 { SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"},
4264 { 0xff, "Unknown Error"}
4265 };
4266
aac_get_status_string(u32 status)4267 char *aac_get_status_string(u32 status)
4268 {
4269 int i;
4270
4271 for (i = 0; i < ARRAY_SIZE(srb_status_info); i++)
4272 if (srb_status_info[i].status == status)
4273 return srb_status_info[i].str;
4274
4275 return "Bad Status Code";
4276 }
4277
4278 #endif
4279