1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2017-2018 The Linux Foundation. All rights reserved. */
3
4 #include <linux/completion.h>
5 #include <linux/circ_buf.h>
6 #include <linux/list.h>
7
8 #include "a6xx_gmu.h"
9 #include "a6xx_gmu.xml.h"
10
11 #define HFI_MSG_ID(val) [val] = #val
12
13 static const char * const a6xx_hfi_msg_id[] = {
14 HFI_MSG_ID(HFI_H2F_MSG_INIT),
15 HFI_MSG_ID(HFI_H2F_MSG_FW_VERSION),
16 HFI_MSG_ID(HFI_H2F_MSG_BW_TABLE),
17 HFI_MSG_ID(HFI_H2F_MSG_PERF_TABLE),
18 HFI_MSG_ID(HFI_H2F_MSG_TEST),
19 };
20
a6xx_hfi_queue_read(struct a6xx_hfi_queue * queue,u32 * data,u32 dwords)21 static int a6xx_hfi_queue_read(struct a6xx_hfi_queue *queue, u32 *data,
22 u32 dwords)
23 {
24 struct a6xx_hfi_queue_header *header = queue->header;
25 u32 i, hdr, index = header->read_index;
26
27 if (header->read_index == header->write_index) {
28 header->rx_request = 1;
29 return 0;
30 }
31
32 hdr = queue->data[index];
33
34 /*
35 * If we are to assume that the GMU firmware is in fact a rational actor
36 * and is programmed to not send us a larger response than we expect
37 * then we can also assume that if the header size is unexpectedly large
38 * that it is due to memory corruption and/or hardware failure. In this
39 * case the only reasonable course of action is to BUG() to help harden
40 * the failure.
41 */
42
43 BUG_ON(HFI_HEADER_SIZE(hdr) > dwords);
44
45 for (i = 0; i < HFI_HEADER_SIZE(hdr); i++) {
46 data[i] = queue->data[index];
47 index = (index + 1) % header->size;
48 }
49
50 header->read_index = index;
51 return HFI_HEADER_SIZE(hdr);
52 }
53
a6xx_hfi_queue_write(struct a6xx_gmu * gmu,struct a6xx_hfi_queue * queue,u32 * data,u32 dwords)54 static int a6xx_hfi_queue_write(struct a6xx_gmu *gmu,
55 struct a6xx_hfi_queue *queue, u32 *data, u32 dwords)
56 {
57 struct a6xx_hfi_queue_header *header = queue->header;
58 u32 i, space, index = header->write_index;
59
60 spin_lock(&queue->lock);
61
62 space = CIRC_SPACE(header->write_index, header->read_index,
63 header->size);
64 if (space < dwords) {
65 header->dropped++;
66 spin_unlock(&queue->lock);
67 return -ENOSPC;
68 }
69
70 for (i = 0; i < dwords; i++) {
71 queue->data[index] = data[i];
72 index = (index + 1) % header->size;
73 }
74
75 header->write_index = index;
76 spin_unlock(&queue->lock);
77
78 gmu_write(gmu, REG_A6XX_GMU_HOST2GMU_INTR_SET, 0x01);
79 return 0;
80 }
81
a6xx_hfi_wait_for_ack(struct a6xx_gmu * gmu,u32 id,u32 seqnum,u32 * payload,u32 payload_size)82 static int a6xx_hfi_wait_for_ack(struct a6xx_gmu *gmu, u32 id, u32 seqnum,
83 u32 *payload, u32 payload_size)
84 {
85 struct a6xx_hfi_queue *queue = &gmu->queues[HFI_RESPONSE_QUEUE];
86 u32 val;
87 int ret;
88
89 /* Wait for a response */
90 ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_GMU2HOST_INTR_INFO, val,
91 val & A6XX_GMU_GMU2HOST_INTR_INFO_MSGQ, 100, 5000);
92
93 if (ret) {
94 DRM_DEV_ERROR(gmu->dev,
95 "Message %s id %d timed out waiting for response\n",
96 a6xx_hfi_msg_id[id], seqnum);
97 return -ETIMEDOUT;
98 }
99
100 /* Clear the interrupt */
101 gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_CLR,
102 A6XX_GMU_GMU2HOST_INTR_INFO_MSGQ);
103
104 for (;;) {
105 struct a6xx_hfi_msg_response resp;
106
107 /* Get the next packet */
108 ret = a6xx_hfi_queue_read(queue, (u32 *) &resp,
109 sizeof(resp) >> 2);
110
111 /* If the queue is empty our response never made it */
112 if (!ret) {
113 DRM_DEV_ERROR(gmu->dev,
114 "The HFI response queue is unexpectedly empty\n");
115
116 return -ENOENT;
117 }
118
119 if (HFI_HEADER_ID(resp.header) == HFI_F2H_MSG_ERROR) {
120 struct a6xx_hfi_msg_error *error =
121 (struct a6xx_hfi_msg_error *) &resp;
122
123 DRM_DEV_ERROR(gmu->dev, "GMU firmware error %d\n",
124 error->code);
125 continue;
126 }
127
128 if (seqnum != HFI_HEADER_SEQNUM(resp.ret_header)) {
129 DRM_DEV_ERROR(gmu->dev,
130 "Unexpected message id %d on the response queue\n",
131 HFI_HEADER_SEQNUM(resp.ret_header));
132 continue;
133 }
134
135 if (resp.error) {
136 DRM_DEV_ERROR(gmu->dev,
137 "Message %s id %d returned error %d\n",
138 a6xx_hfi_msg_id[id], seqnum, resp.error);
139 return -EINVAL;
140 }
141
142 /* All is well, copy over the buffer */
143 if (payload && payload_size)
144 memcpy(payload, resp.payload,
145 min_t(u32, payload_size, sizeof(resp.payload)));
146
147 return 0;
148 }
149 }
150
a6xx_hfi_send_msg(struct a6xx_gmu * gmu,int id,void * data,u32 size,u32 * payload,u32 payload_size)151 static int a6xx_hfi_send_msg(struct a6xx_gmu *gmu, int id,
152 void *data, u32 size, u32 *payload, u32 payload_size)
153 {
154 struct a6xx_hfi_queue *queue = &gmu->queues[HFI_COMMAND_QUEUE];
155 int ret, dwords = size >> 2;
156 u32 seqnum;
157
158 seqnum = atomic_inc_return(&queue->seqnum) % 0xfff;
159
160 /* First dword of the message is the message header - fill it in */
161 *((u32 *) data) = (seqnum << 20) | (HFI_MSG_CMD << 16) |
162 (dwords << 8) | id;
163
164 ret = a6xx_hfi_queue_write(gmu, queue, data, dwords);
165 if (ret) {
166 DRM_DEV_ERROR(gmu->dev, "Unable to send message %s id %d\n",
167 a6xx_hfi_msg_id[id], seqnum);
168 return ret;
169 }
170
171 return a6xx_hfi_wait_for_ack(gmu, id, seqnum, payload, payload_size);
172 }
173
a6xx_hfi_send_gmu_init(struct a6xx_gmu * gmu,int boot_state)174 static int a6xx_hfi_send_gmu_init(struct a6xx_gmu *gmu, int boot_state)
175 {
176 struct a6xx_hfi_msg_gmu_init_cmd msg = { 0 };
177
178 msg.dbg_buffer_addr = (u32) gmu->debug->iova;
179 msg.dbg_buffer_size = (u32) gmu->debug->size;
180 msg.boot_state = boot_state;
181
182 return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_INIT, &msg, sizeof(msg),
183 NULL, 0);
184 }
185
a6xx_hfi_get_fw_version(struct a6xx_gmu * gmu,u32 * version)186 static int a6xx_hfi_get_fw_version(struct a6xx_gmu *gmu, u32 *version)
187 {
188 struct a6xx_hfi_msg_fw_version msg = { 0 };
189
190 /* Currently supporting version 1.1 */
191 msg.supported_version = (1 << 28) | (1 << 16);
192
193 return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_FW_VERSION, &msg, sizeof(msg),
194 version, sizeof(*version));
195 }
196
a6xx_hfi_send_perf_table(struct a6xx_gmu * gmu)197 static int a6xx_hfi_send_perf_table(struct a6xx_gmu *gmu)
198 {
199 struct a6xx_hfi_msg_perf_table msg = { 0 };
200 int i;
201
202 msg.num_gpu_levels = gmu->nr_gpu_freqs;
203 msg.num_gmu_levels = gmu->nr_gmu_freqs;
204
205 for (i = 0; i < gmu->nr_gpu_freqs; i++) {
206 msg.gx_votes[i].vote = gmu->gx_arc_votes[i];
207 msg.gx_votes[i].freq = gmu->gpu_freqs[i] / 1000;
208 }
209
210 for (i = 0; i < gmu->nr_gmu_freqs; i++) {
211 msg.cx_votes[i].vote = gmu->cx_arc_votes[i];
212 msg.cx_votes[i].freq = gmu->gmu_freqs[i] / 1000;
213 }
214
215 return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_PERF_TABLE, &msg, sizeof(msg),
216 NULL, 0);
217 }
218
a6xx_hfi_send_bw_table(struct a6xx_gmu * gmu)219 static int a6xx_hfi_send_bw_table(struct a6xx_gmu *gmu)
220 {
221 struct a6xx_hfi_msg_bw_table msg = { 0 };
222
223 /*
224 * The sdm845 GMU doesn't do bus frequency scaling on its own but it
225 * does need at least one entry in the list because it might be accessed
226 * when the GMU is shutting down. Send a single "off" entry.
227 */
228
229 msg.bw_level_num = 1;
230
231 msg.ddr_cmds_num = 3;
232 msg.ddr_wait_bitmask = 0x07;
233
234 msg.ddr_cmds_addrs[0] = 0x50000;
235 msg.ddr_cmds_addrs[1] = 0x5005c;
236 msg.ddr_cmds_addrs[2] = 0x5000c;
237
238 msg.ddr_cmds_data[0][0] = 0x40000000;
239 msg.ddr_cmds_data[0][1] = 0x40000000;
240 msg.ddr_cmds_data[0][2] = 0x40000000;
241
242 /*
243 * These are the CX (CNOC) votes. This is used but the values for the
244 * sdm845 GMU are known and fixed so we can hard code them.
245 */
246
247 msg.cnoc_cmds_num = 3;
248 msg.cnoc_wait_bitmask = 0x05;
249
250 msg.cnoc_cmds_addrs[0] = 0x50034;
251 msg.cnoc_cmds_addrs[1] = 0x5007c;
252 msg.cnoc_cmds_addrs[2] = 0x5004c;
253
254 msg.cnoc_cmds_data[0][0] = 0x40000000;
255 msg.cnoc_cmds_data[0][1] = 0x00000000;
256 msg.cnoc_cmds_data[0][2] = 0x40000000;
257
258 msg.cnoc_cmds_data[1][0] = 0x60000001;
259 msg.cnoc_cmds_data[1][1] = 0x20000001;
260 msg.cnoc_cmds_data[1][2] = 0x60000001;
261
262 return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_BW_TABLE, &msg, sizeof(msg),
263 NULL, 0);
264 }
265
a6xx_hfi_send_test(struct a6xx_gmu * gmu)266 static int a6xx_hfi_send_test(struct a6xx_gmu *gmu)
267 {
268 struct a6xx_hfi_msg_test msg = { 0 };
269
270 return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_TEST, &msg, sizeof(msg),
271 NULL, 0);
272 }
273
a6xx_hfi_start(struct a6xx_gmu * gmu,int boot_state)274 int a6xx_hfi_start(struct a6xx_gmu *gmu, int boot_state)
275 {
276 int ret;
277
278 ret = a6xx_hfi_send_gmu_init(gmu, boot_state);
279 if (ret)
280 return ret;
281
282 ret = a6xx_hfi_get_fw_version(gmu, NULL);
283 if (ret)
284 return ret;
285
286 /*
287 * We have to get exchange version numbers per the sequence but at this
288 * point th kernel driver doesn't need to know the exact version of
289 * the GMU firmware
290 */
291
292 ret = a6xx_hfi_send_perf_table(gmu);
293 if (ret)
294 return ret;
295
296 ret = a6xx_hfi_send_bw_table(gmu);
297 if (ret)
298 return ret;
299
300 /*
301 * Let the GMU know that there won't be any more HFI messages until next
302 * boot
303 */
304 a6xx_hfi_send_test(gmu);
305
306 return 0;
307 }
308
a6xx_hfi_stop(struct a6xx_gmu * gmu)309 void a6xx_hfi_stop(struct a6xx_gmu *gmu)
310 {
311 int i;
312
313 for (i = 0; i < ARRAY_SIZE(gmu->queues); i++) {
314 struct a6xx_hfi_queue *queue = &gmu->queues[i];
315
316 if (!queue->header)
317 continue;
318
319 if (queue->header->read_index != queue->header->write_index)
320 DRM_DEV_ERROR(gmu->dev, "HFI queue %d is not empty\n", i);
321
322 queue->header->read_index = 0;
323 queue->header->write_index = 0;
324 }
325 }
326
a6xx_hfi_queue_init(struct a6xx_hfi_queue * queue,struct a6xx_hfi_queue_header * header,void * virt,u64 iova,u32 id)327 static void a6xx_hfi_queue_init(struct a6xx_hfi_queue *queue,
328 struct a6xx_hfi_queue_header *header, void *virt, u64 iova,
329 u32 id)
330 {
331 spin_lock_init(&queue->lock);
332 queue->header = header;
333 queue->data = virt;
334 atomic_set(&queue->seqnum, 0);
335
336 /* Set up the shared memory header */
337 header->iova = iova;
338 header->type = 10 << 8 | id;
339 header->status = 1;
340 header->size = SZ_4K >> 2;
341 header->msg_size = 0;
342 header->dropped = 0;
343 header->rx_watermark = 1;
344 header->tx_watermark = 1;
345 header->rx_request = 1;
346 header->tx_request = 0;
347 header->read_index = 0;
348 header->write_index = 0;
349 }
350
a6xx_hfi_init(struct a6xx_gmu * gmu)351 void a6xx_hfi_init(struct a6xx_gmu *gmu)
352 {
353 struct a6xx_gmu_bo *hfi = gmu->hfi;
354 struct a6xx_hfi_queue_table_header *table = hfi->virt;
355 struct a6xx_hfi_queue_header *headers = hfi->virt + sizeof(*table);
356 u64 offset;
357 int table_size;
358
359 /*
360 * The table size is the size of the table header plus all of the queue
361 * headers
362 */
363 table_size = sizeof(*table);
364 table_size += (ARRAY_SIZE(gmu->queues) *
365 sizeof(struct a6xx_hfi_queue_header));
366
367 table->version = 0;
368 table->size = table_size;
369 /* First queue header is located immediately after the table header */
370 table->qhdr0_offset = sizeof(*table) >> 2;
371 table->qhdr_size = sizeof(struct a6xx_hfi_queue_header) >> 2;
372 table->num_queues = ARRAY_SIZE(gmu->queues);
373 table->active_queues = ARRAY_SIZE(gmu->queues);
374
375 /* Command queue */
376 offset = SZ_4K;
377 a6xx_hfi_queue_init(&gmu->queues[0], &headers[0], hfi->virt + offset,
378 hfi->iova + offset, 0);
379
380 /* GMU response queue */
381 offset += SZ_4K;
382 a6xx_hfi_queue_init(&gmu->queues[1], &headers[1], hfi->virt + offset,
383 hfi->iova + offset, 4);
384 }
385