1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2017-2018 The Linux Foundation. All rights reserved. */
3
4 #include <linux/completion.h>
5 #include <linux/circ_buf.h>
6 #include <linux/list.h>
7
8 #include "a6xx_gmu.h"
9 #include "a6xx_gmu.xml.h"
10
11 #define HFI_MSG_ID(val) [val] = #val
12
13 static const char * const a6xx_hfi_msg_id[] = {
14 HFI_MSG_ID(HFI_H2F_MSG_INIT),
15 HFI_MSG_ID(HFI_H2F_MSG_FW_VERSION),
16 HFI_MSG_ID(HFI_H2F_MSG_BW_TABLE),
17 HFI_MSG_ID(HFI_H2F_MSG_PERF_TABLE),
18 HFI_MSG_ID(HFI_H2F_MSG_TEST),
19 };
20
a6xx_hfi_queue_read(struct a6xx_hfi_queue * queue,u32 * data,u32 dwords)21 static int a6xx_hfi_queue_read(struct a6xx_hfi_queue *queue, u32 *data,
22 u32 dwords)
23 {
24 struct a6xx_hfi_queue_header *header = queue->header;
25 u32 i, hdr, index = header->read_index;
26
27 if (header->read_index == header->write_index) {
28 header->rx_request = 1;
29 return 0;
30 }
31
32 hdr = queue->data[index];
33
34 /*
35 * If we are to assume that the GMU firmware is in fact a rational actor
36 * and is programmed to not send us a larger response than we expect
37 * then we can also assume that if the header size is unexpectedly large
38 * that it is due to memory corruption and/or hardware failure. In this
39 * case the only reasonable course of action is to BUG() to help harden
40 * the failure.
41 */
42
43 BUG_ON(HFI_HEADER_SIZE(hdr) > dwords);
44
45 for (i = 0; i < HFI_HEADER_SIZE(hdr); i++) {
46 data[i] = queue->data[index];
47 index = (index + 1) % header->size;
48 }
49
50 header->read_index = index;
51 return HFI_HEADER_SIZE(hdr);
52 }
53
a6xx_hfi_queue_write(struct a6xx_gmu * gmu,struct a6xx_hfi_queue * queue,u32 * data,u32 dwords)54 static int a6xx_hfi_queue_write(struct a6xx_gmu *gmu,
55 struct a6xx_hfi_queue *queue, u32 *data, u32 dwords)
56 {
57 struct a6xx_hfi_queue_header *header = queue->header;
58 u32 i, space, index = header->write_index;
59
60 spin_lock(&queue->lock);
61
62 space = CIRC_SPACE(header->write_index, header->read_index,
63 header->size);
64 if (space < dwords) {
65 header->dropped++;
66 spin_unlock(&queue->lock);
67 return -ENOSPC;
68 }
69
70 for (i = 0; i < dwords; i++) {
71 queue->data[index] = data[i];
72 index = (index + 1) % header->size;
73 }
74
75 header->write_index = index;
76 spin_unlock(&queue->lock);
77
78 gmu_write(gmu, REG_A6XX_GMU_HOST2GMU_INTR_SET, 0x01);
79 return 0;
80 }
81
82 struct a6xx_hfi_response {
83 u32 id;
84 u32 seqnum;
85 struct list_head node;
86 struct completion complete;
87
88 u32 error;
89 u32 payload[16];
90 };
91
92 /*
93 * Incoming HFI ack messages can come in out of order so we need to store all
94 * the pending messages on a list until they are handled.
95 */
96 static spinlock_t hfi_ack_lock = __SPIN_LOCK_UNLOCKED(message_lock);
97 static LIST_HEAD(hfi_ack_list);
98
a6xx_hfi_handle_ack(struct a6xx_gmu * gmu,struct a6xx_hfi_msg_response * msg)99 static void a6xx_hfi_handle_ack(struct a6xx_gmu *gmu,
100 struct a6xx_hfi_msg_response *msg)
101 {
102 struct a6xx_hfi_response *resp;
103 u32 id, seqnum;
104
105 /* msg->ret_header contains the header of the message being acked */
106 id = HFI_HEADER_ID(msg->ret_header);
107 seqnum = HFI_HEADER_SEQNUM(msg->ret_header);
108
109 spin_lock(&hfi_ack_lock);
110 list_for_each_entry(resp, &hfi_ack_list, node) {
111 if (resp->id == id && resp->seqnum == seqnum) {
112 resp->error = msg->error;
113 memcpy(resp->payload, msg->payload,
114 sizeof(resp->payload));
115
116 complete(&resp->complete);
117 spin_unlock(&hfi_ack_lock);
118 return;
119 }
120 }
121 spin_unlock(&hfi_ack_lock);
122
123 dev_err(gmu->dev, "Nobody was waiting for HFI message %d\n", seqnum);
124 }
125
a6xx_hfi_handle_error(struct a6xx_gmu * gmu,struct a6xx_hfi_msg_response * msg)126 static void a6xx_hfi_handle_error(struct a6xx_gmu *gmu,
127 struct a6xx_hfi_msg_response *msg)
128 {
129 struct a6xx_hfi_msg_error *error = (struct a6xx_hfi_msg_error *) msg;
130
131 dev_err(gmu->dev, "GMU firmware error %d\n", error->code);
132 }
133
a6xx_hfi_task(unsigned long data)134 void a6xx_hfi_task(unsigned long data)
135 {
136 struct a6xx_gmu *gmu = (struct a6xx_gmu *) data;
137 struct a6xx_hfi_queue *queue = &gmu->queues[HFI_RESPONSE_QUEUE];
138 struct a6xx_hfi_msg_response resp;
139
140 for (;;) {
141 u32 id;
142 int ret = a6xx_hfi_queue_read(queue, (u32 *) &resp,
143 sizeof(resp) >> 2);
144
145 /* Returns the number of bytes copied or negative on error */
146 if (ret <= 0) {
147 if (ret < 0)
148 dev_err(gmu->dev,
149 "Unable to read the HFI message queue\n");
150 break;
151 }
152
153 id = HFI_HEADER_ID(resp.header);
154
155 if (id == HFI_F2H_MSG_ACK)
156 a6xx_hfi_handle_ack(gmu, &resp);
157 else if (id == HFI_F2H_MSG_ERROR)
158 a6xx_hfi_handle_error(gmu, &resp);
159 }
160 }
161
a6xx_hfi_send_msg(struct a6xx_gmu * gmu,int id,void * data,u32 size,u32 * payload,u32 payload_size)162 static int a6xx_hfi_send_msg(struct a6xx_gmu *gmu, int id,
163 void *data, u32 size, u32 *payload, u32 payload_size)
164 {
165 struct a6xx_hfi_queue *queue = &gmu->queues[HFI_COMMAND_QUEUE];
166 struct a6xx_hfi_response resp = { 0 };
167 int ret, dwords = size >> 2;
168 u32 seqnum;
169
170 seqnum = atomic_inc_return(&queue->seqnum) % 0xfff;
171
172 /* First dword of the message is the message header - fill it in */
173 *((u32 *) data) = (seqnum << 20) | (HFI_MSG_CMD << 16) |
174 (dwords << 8) | id;
175
176 init_completion(&resp.complete);
177 resp.id = id;
178 resp.seqnum = seqnum;
179
180 spin_lock_bh(&hfi_ack_lock);
181 list_add_tail(&resp.node, &hfi_ack_list);
182 spin_unlock_bh(&hfi_ack_lock);
183
184 ret = a6xx_hfi_queue_write(gmu, queue, data, dwords);
185 if (ret) {
186 dev_err(gmu->dev, "Unable to send message %s id %d\n",
187 a6xx_hfi_msg_id[id], seqnum);
188 goto out;
189 }
190
191 /* Wait up to 5 seconds for the response */
192 ret = wait_for_completion_timeout(&resp.complete,
193 msecs_to_jiffies(5000));
194 if (!ret) {
195 dev_err(gmu->dev,
196 "Message %s id %d timed out waiting for response\n",
197 a6xx_hfi_msg_id[id], seqnum);
198 ret = -ETIMEDOUT;
199 } else
200 ret = 0;
201
202 out:
203 spin_lock_bh(&hfi_ack_lock);
204 list_del(&resp.node);
205 spin_unlock_bh(&hfi_ack_lock);
206
207 if (ret)
208 return ret;
209
210 if (resp.error) {
211 dev_err(gmu->dev, "Message %s id %d returned error %d\n",
212 a6xx_hfi_msg_id[id], seqnum, resp.error);
213 return -EINVAL;
214 }
215
216 if (payload && payload_size) {
217 int copy = min_t(u32, payload_size, sizeof(resp.payload));
218
219 memcpy(payload, resp.payload, copy);
220 }
221
222 return 0;
223 }
224
a6xx_hfi_send_gmu_init(struct a6xx_gmu * gmu,int boot_state)225 static int a6xx_hfi_send_gmu_init(struct a6xx_gmu *gmu, int boot_state)
226 {
227 struct a6xx_hfi_msg_gmu_init_cmd msg = { 0 };
228
229 msg.dbg_buffer_addr = (u32) gmu->debug->iova;
230 msg.dbg_buffer_size = (u32) gmu->debug->size;
231 msg.boot_state = boot_state;
232
233 return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_INIT, &msg, sizeof(msg),
234 NULL, 0);
235 }
236
a6xx_hfi_get_fw_version(struct a6xx_gmu * gmu,u32 * version)237 static int a6xx_hfi_get_fw_version(struct a6xx_gmu *gmu, u32 *version)
238 {
239 struct a6xx_hfi_msg_fw_version msg = { 0 };
240
241 /* Currently supporting version 1.1 */
242 msg.supported_version = (1 << 28) | (1 << 16);
243
244 return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_FW_VERSION, &msg, sizeof(msg),
245 version, sizeof(*version));
246 }
247
a6xx_hfi_send_perf_table(struct a6xx_gmu * gmu)248 static int a6xx_hfi_send_perf_table(struct a6xx_gmu *gmu)
249 {
250 struct a6xx_hfi_msg_perf_table msg = { 0 };
251 int i;
252
253 msg.num_gpu_levels = gmu->nr_gpu_freqs;
254 msg.num_gmu_levels = gmu->nr_gmu_freqs;
255
256 for (i = 0; i < gmu->nr_gpu_freqs; i++) {
257 msg.gx_votes[i].vote = gmu->gx_arc_votes[i];
258 msg.gx_votes[i].freq = gmu->gpu_freqs[i] / 1000;
259 }
260
261 for (i = 0; i < gmu->nr_gmu_freqs; i++) {
262 msg.cx_votes[i].vote = gmu->cx_arc_votes[i];
263 msg.cx_votes[i].freq = gmu->gmu_freqs[i] / 1000;
264 }
265
266 return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_PERF_TABLE, &msg, sizeof(msg),
267 NULL, 0);
268 }
269
a6xx_hfi_send_bw_table(struct a6xx_gmu * gmu)270 static int a6xx_hfi_send_bw_table(struct a6xx_gmu *gmu)
271 {
272 struct a6xx_hfi_msg_bw_table msg = { 0 };
273
274 /*
275 * The sdm845 GMU doesn't do bus frequency scaling on its own but it
276 * does need at least one entry in the list because it might be accessed
277 * when the GMU is shutting down. Send a single "off" entry.
278 */
279
280 msg.bw_level_num = 1;
281
282 msg.ddr_cmds_num = 3;
283 msg.ddr_wait_bitmask = 0x07;
284
285 msg.ddr_cmds_addrs[0] = 0x50000;
286 msg.ddr_cmds_addrs[1] = 0x5005c;
287 msg.ddr_cmds_addrs[2] = 0x5000c;
288
289 msg.ddr_cmds_data[0][0] = 0x40000000;
290 msg.ddr_cmds_data[0][1] = 0x40000000;
291 msg.ddr_cmds_data[0][2] = 0x40000000;
292
293 /*
294 * These are the CX (CNOC) votes. This is used but the values for the
295 * sdm845 GMU are known and fixed so we can hard code them.
296 */
297
298 msg.cnoc_cmds_num = 3;
299 msg.cnoc_wait_bitmask = 0x05;
300
301 msg.cnoc_cmds_addrs[0] = 0x50034;
302 msg.cnoc_cmds_addrs[1] = 0x5007c;
303 msg.cnoc_cmds_addrs[2] = 0x5004c;
304
305 msg.cnoc_cmds_data[0][0] = 0x40000000;
306 msg.cnoc_cmds_data[0][1] = 0x00000000;
307 msg.cnoc_cmds_data[0][2] = 0x40000000;
308
309 msg.cnoc_cmds_data[1][0] = 0x60000001;
310 msg.cnoc_cmds_data[1][1] = 0x20000001;
311 msg.cnoc_cmds_data[1][2] = 0x60000001;
312
313 return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_BW_TABLE, &msg, sizeof(msg),
314 NULL, 0);
315 }
316
a6xx_hfi_send_test(struct a6xx_gmu * gmu)317 static int a6xx_hfi_send_test(struct a6xx_gmu *gmu)
318 {
319 struct a6xx_hfi_msg_test msg = { 0 };
320
321 return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_TEST, &msg, sizeof(msg),
322 NULL, 0);
323 }
324
a6xx_hfi_start(struct a6xx_gmu * gmu,int boot_state)325 int a6xx_hfi_start(struct a6xx_gmu *gmu, int boot_state)
326 {
327 int ret;
328
329 ret = a6xx_hfi_send_gmu_init(gmu, boot_state);
330 if (ret)
331 return ret;
332
333 ret = a6xx_hfi_get_fw_version(gmu, NULL);
334 if (ret)
335 return ret;
336
337 /*
338 * We have to get exchange version numbers per the sequence but at this
339 * point th kernel driver doesn't need to know the exact version of
340 * the GMU firmware
341 */
342
343 ret = a6xx_hfi_send_perf_table(gmu);
344 if (ret)
345 return ret;
346
347 ret = a6xx_hfi_send_bw_table(gmu);
348 if (ret)
349 return ret;
350
351 /*
352 * Let the GMU know that there won't be any more HFI messages until next
353 * boot
354 */
355 a6xx_hfi_send_test(gmu);
356
357 return 0;
358 }
359
a6xx_hfi_stop(struct a6xx_gmu * gmu)360 void a6xx_hfi_stop(struct a6xx_gmu *gmu)
361 {
362 int i;
363
364 for (i = 0; i < ARRAY_SIZE(gmu->queues); i++) {
365 struct a6xx_hfi_queue *queue = &gmu->queues[i];
366
367 if (!queue->header)
368 continue;
369
370 if (queue->header->read_index != queue->header->write_index)
371 dev_err(gmu->dev, "HFI queue %d is not empty\n", i);
372
373 queue->header->read_index = 0;
374 queue->header->write_index = 0;
375 }
376 }
377
a6xx_hfi_queue_init(struct a6xx_hfi_queue * queue,struct a6xx_hfi_queue_header * header,void * virt,u64 iova,u32 id)378 static void a6xx_hfi_queue_init(struct a6xx_hfi_queue *queue,
379 struct a6xx_hfi_queue_header *header, void *virt, u64 iova,
380 u32 id)
381 {
382 spin_lock_init(&queue->lock);
383 queue->header = header;
384 queue->data = virt;
385 atomic_set(&queue->seqnum, 0);
386
387 /* Set up the shared memory header */
388 header->iova = iova;
389 header->type = 10 << 8 | id;
390 header->status = 1;
391 header->size = SZ_4K >> 2;
392 header->msg_size = 0;
393 header->dropped = 0;
394 header->rx_watermark = 1;
395 header->tx_watermark = 1;
396 header->rx_request = 1;
397 header->tx_request = 0;
398 header->read_index = 0;
399 header->write_index = 0;
400 }
401
a6xx_hfi_init(struct a6xx_gmu * gmu)402 void a6xx_hfi_init(struct a6xx_gmu *gmu)
403 {
404 struct a6xx_gmu_bo *hfi = gmu->hfi;
405 struct a6xx_hfi_queue_table_header *table = hfi->virt;
406 struct a6xx_hfi_queue_header *headers = hfi->virt + sizeof(*table);
407 u64 offset;
408 int table_size;
409
410 /*
411 * The table size is the size of the table header plus all of the queue
412 * headers
413 */
414 table_size = sizeof(*table);
415 table_size += (ARRAY_SIZE(gmu->queues) *
416 sizeof(struct a6xx_hfi_queue_header));
417
418 table->version = 0;
419 table->size = table_size;
420 /* First queue header is located immediately after the table header */
421 table->qhdr0_offset = sizeof(*table) >> 2;
422 table->qhdr_size = sizeof(struct a6xx_hfi_queue_header) >> 2;
423 table->num_queues = ARRAY_SIZE(gmu->queues);
424 table->active_queues = ARRAY_SIZE(gmu->queues);
425
426 /* Command queue */
427 offset = SZ_4K;
428 a6xx_hfi_queue_init(&gmu->queues[0], &headers[0], hfi->virt + offset,
429 hfi->iova + offset, 0);
430
431 /* GMU response queue */
432 offset += SZ_4K;
433 a6xx_hfi_queue_init(&gmu->queues[1], &headers[1], hfi->virt + offset,
434 hfi->iova + offset, 4);
435 }
436