1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2017-2019 The Linux Foundation. All rights reserved. */
3
4
5 #include "msm_gem.h"
6 #include "msm_mmu.h"
7 #include "msm_gpu_trace.h"
8 #include "a6xx_gpu.h"
9 #include "a6xx_gmu.xml.h"
10
11 #include <linux/devfreq.h>
12
13 #define GPU_PAS_ID 13
14
_a6xx_check_idle(struct msm_gpu * gpu)15 static inline bool _a6xx_check_idle(struct msm_gpu *gpu)
16 {
17 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
18 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
19
20 /* Check that the GMU is idle */
21 if (!a6xx_gmu_isidle(&a6xx_gpu->gmu))
22 return false;
23
24 /* Check tha the CX master is idle */
25 if (gpu_read(gpu, REG_A6XX_RBBM_STATUS) &
26 ~A6XX_RBBM_STATUS_CP_AHB_BUSY_CX_MASTER)
27 return false;
28
29 return !(gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS) &
30 A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT);
31 }
32
a6xx_idle(struct msm_gpu * gpu,struct msm_ringbuffer * ring)33 bool a6xx_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
34 {
35 /* wait for CP to drain ringbuffer: */
36 if (!adreno_idle(gpu, ring))
37 return false;
38
39 if (spin_until(_a6xx_check_idle(gpu))) {
40 DRM_ERROR("%s: %ps: timeout waiting for GPU to idle: status %8.8X irq %8.8X rptr/wptr %d/%d\n",
41 gpu->name, __builtin_return_address(0),
42 gpu_read(gpu, REG_A6XX_RBBM_STATUS),
43 gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS),
44 gpu_read(gpu, REG_A6XX_CP_RB_RPTR),
45 gpu_read(gpu, REG_A6XX_CP_RB_WPTR));
46 return false;
47 }
48
49 return true;
50 }
51
a6xx_flush(struct msm_gpu * gpu,struct msm_ringbuffer * ring)52 static void a6xx_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
53 {
54 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
55 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
56 uint32_t wptr;
57 unsigned long flags;
58
59 /* Expanded APRIV doesn't need to issue the WHERE_AM_I opcode */
60 if (a6xx_gpu->has_whereami && !adreno_gpu->base.hw_apriv) {
61 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
62
63 OUT_PKT7(ring, CP_WHERE_AM_I, 2);
64 OUT_RING(ring, lower_32_bits(shadowptr(a6xx_gpu, ring)));
65 OUT_RING(ring, upper_32_bits(shadowptr(a6xx_gpu, ring)));
66 }
67
68 spin_lock_irqsave(&ring->lock, flags);
69
70 /* Copy the shadow to the actual register */
71 ring->cur = ring->next;
72
73 /* Make sure to wrap wptr if we need to */
74 wptr = get_wptr(ring);
75
76 spin_unlock_irqrestore(&ring->lock, flags);
77
78 /* Make sure everything is posted before making a decision */
79 mb();
80
81 gpu_write(gpu, REG_A6XX_CP_RB_WPTR, wptr);
82 }
83
get_stats_counter(struct msm_ringbuffer * ring,u32 counter,u64 iova)84 static void get_stats_counter(struct msm_ringbuffer *ring, u32 counter,
85 u64 iova)
86 {
87 OUT_PKT7(ring, CP_REG_TO_MEM, 3);
88 OUT_RING(ring, CP_REG_TO_MEM_0_REG(counter) |
89 CP_REG_TO_MEM_0_CNT(2) |
90 CP_REG_TO_MEM_0_64B);
91 OUT_RING(ring, lower_32_bits(iova));
92 OUT_RING(ring, upper_32_bits(iova));
93 }
94
a6xx_set_pagetable(struct a6xx_gpu * a6xx_gpu,struct msm_ringbuffer * ring,struct msm_file_private * ctx)95 static void a6xx_set_pagetable(struct a6xx_gpu *a6xx_gpu,
96 struct msm_ringbuffer *ring, struct msm_file_private *ctx)
97 {
98 phys_addr_t ttbr;
99 u32 asid;
100 u64 memptr = rbmemptr(ring, ttbr0);
101
102 if (ctx == a6xx_gpu->cur_ctx)
103 return;
104
105 if (msm_iommu_pagetable_params(ctx->aspace->mmu, &ttbr, &asid))
106 return;
107
108 /* Execute the table update */
109 OUT_PKT7(ring, CP_SMMU_TABLE_UPDATE, 4);
110 OUT_RING(ring, CP_SMMU_TABLE_UPDATE_0_TTBR0_LO(lower_32_bits(ttbr)));
111
112 OUT_RING(ring,
113 CP_SMMU_TABLE_UPDATE_1_TTBR0_HI(upper_32_bits(ttbr)) |
114 CP_SMMU_TABLE_UPDATE_1_ASID(asid));
115 OUT_RING(ring, CP_SMMU_TABLE_UPDATE_2_CONTEXTIDR(0));
116 OUT_RING(ring, CP_SMMU_TABLE_UPDATE_3_CONTEXTBANK(0));
117
118 /*
119 * Write the new TTBR0 to the memstore. This is good for debugging.
120 */
121 OUT_PKT7(ring, CP_MEM_WRITE, 4);
122 OUT_RING(ring, CP_MEM_WRITE_0_ADDR_LO(lower_32_bits(memptr)));
123 OUT_RING(ring, CP_MEM_WRITE_1_ADDR_HI(upper_32_bits(memptr)));
124 OUT_RING(ring, lower_32_bits(ttbr));
125 OUT_RING(ring, (asid << 16) | upper_32_bits(ttbr));
126
127 /*
128 * And finally, trigger a uche flush to be sure there isn't anything
129 * lingering in that part of the GPU
130 */
131
132 OUT_PKT7(ring, CP_EVENT_WRITE, 1);
133 OUT_RING(ring, 0x31);
134
135 a6xx_gpu->cur_ctx = ctx;
136 }
137
a6xx_submit(struct msm_gpu * gpu,struct msm_gem_submit * submit)138 static void a6xx_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit)
139 {
140 unsigned int index = submit->seqno % MSM_GPU_SUBMIT_STATS_COUNT;
141 struct msm_drm_private *priv = gpu->dev->dev_private;
142 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
143 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
144 struct msm_ringbuffer *ring = submit->ring;
145 unsigned int i;
146
147 a6xx_set_pagetable(a6xx_gpu, ring, submit->queue->ctx);
148
149 get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP_0_LO,
150 rbmemptr_stats(ring, index, cpcycles_start));
151
152 /*
153 * For PM4 the GMU register offsets are calculated from the base of the
154 * GPU registers so we need to add 0x1a800 to the register value on A630
155 * to get the right value from PM4.
156 */
157 get_stats_counter(ring, REG_A6XX_GMU_ALWAYS_ON_COUNTER_L + 0x1a800,
158 rbmemptr_stats(ring, index, alwayson_start));
159
160 /* Invalidate CCU depth and color */
161 OUT_PKT7(ring, CP_EVENT_WRITE, 1);
162 OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_DEPTH));
163
164 OUT_PKT7(ring, CP_EVENT_WRITE, 1);
165 OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_COLOR));
166
167 /* Submit the commands */
168 for (i = 0; i < submit->nr_cmds; i++) {
169 switch (submit->cmd[i].type) {
170 case MSM_SUBMIT_CMD_IB_TARGET_BUF:
171 break;
172 case MSM_SUBMIT_CMD_CTX_RESTORE_BUF:
173 if (priv->lastctx == submit->queue->ctx)
174 break;
175 fallthrough;
176 case MSM_SUBMIT_CMD_BUF:
177 OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3);
178 OUT_RING(ring, lower_32_bits(submit->cmd[i].iova));
179 OUT_RING(ring, upper_32_bits(submit->cmd[i].iova));
180 OUT_RING(ring, submit->cmd[i].size);
181 break;
182 }
183 }
184
185 get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP_0_LO,
186 rbmemptr_stats(ring, index, cpcycles_end));
187 get_stats_counter(ring, REG_A6XX_GMU_ALWAYS_ON_COUNTER_L + 0x1a800,
188 rbmemptr_stats(ring, index, alwayson_end));
189
190 /* Write the fence to the scratch register */
191 OUT_PKT4(ring, REG_A6XX_CP_SCRATCH_REG(2), 1);
192 OUT_RING(ring, submit->seqno);
193
194 /*
195 * Execute a CACHE_FLUSH_TS event. This will ensure that the
196 * timestamp is written to the memory and then triggers the interrupt
197 */
198 OUT_PKT7(ring, CP_EVENT_WRITE, 4);
199 OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(CACHE_FLUSH_TS) |
200 CP_EVENT_WRITE_0_IRQ);
201 OUT_RING(ring, lower_32_bits(rbmemptr(ring, fence)));
202 OUT_RING(ring, upper_32_bits(rbmemptr(ring, fence)));
203 OUT_RING(ring, submit->seqno);
204
205 trace_msm_gpu_submit_flush(submit,
206 gmu_read64(&a6xx_gpu->gmu, REG_A6XX_GMU_ALWAYS_ON_COUNTER_L,
207 REG_A6XX_GMU_ALWAYS_ON_COUNTER_H));
208
209 a6xx_flush(gpu, ring);
210 }
211
212 const struct adreno_reglist a630_hwcg[] = {
213 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x22222222},
214 {REG_A6XX_RBBM_CLOCK_CNTL_SP1, 0x22222222},
215 {REG_A6XX_RBBM_CLOCK_CNTL_SP2, 0x22222222},
216 {REG_A6XX_RBBM_CLOCK_CNTL_SP3, 0x22222222},
217 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02022220},
218 {REG_A6XX_RBBM_CLOCK_CNTL2_SP1, 0x02022220},
219 {REG_A6XX_RBBM_CLOCK_CNTL2_SP2, 0x02022220},
220 {REG_A6XX_RBBM_CLOCK_CNTL2_SP3, 0x02022220},
221 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
222 {REG_A6XX_RBBM_CLOCK_DELAY_SP1, 0x00000080},
223 {REG_A6XX_RBBM_CLOCK_DELAY_SP2, 0x00000080},
224 {REG_A6XX_RBBM_CLOCK_DELAY_SP3, 0x00000080},
225 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000f3cf},
226 {REG_A6XX_RBBM_CLOCK_HYST_SP1, 0x0000f3cf},
227 {REG_A6XX_RBBM_CLOCK_HYST_SP2, 0x0000f3cf},
228 {REG_A6XX_RBBM_CLOCK_HYST_SP3, 0x0000f3cf},
229 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
230 {REG_A6XX_RBBM_CLOCK_CNTL_TP1, 0x02222222},
231 {REG_A6XX_RBBM_CLOCK_CNTL_TP2, 0x02222222},
232 {REG_A6XX_RBBM_CLOCK_CNTL_TP3, 0x02222222},
233 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
234 {REG_A6XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222},
235 {REG_A6XX_RBBM_CLOCK_CNTL2_TP2, 0x22222222},
236 {REG_A6XX_RBBM_CLOCK_CNTL2_TP3, 0x22222222},
237 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
238 {REG_A6XX_RBBM_CLOCK_CNTL3_TP1, 0x22222222},
239 {REG_A6XX_RBBM_CLOCK_CNTL3_TP2, 0x22222222},
240 {REG_A6XX_RBBM_CLOCK_CNTL3_TP3, 0x22222222},
241 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
242 {REG_A6XX_RBBM_CLOCK_CNTL4_TP1, 0x00022222},
243 {REG_A6XX_RBBM_CLOCK_CNTL4_TP2, 0x00022222},
244 {REG_A6XX_RBBM_CLOCK_CNTL4_TP3, 0x00022222},
245 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
246 {REG_A6XX_RBBM_CLOCK_HYST_TP1, 0x77777777},
247 {REG_A6XX_RBBM_CLOCK_HYST_TP2, 0x77777777},
248 {REG_A6XX_RBBM_CLOCK_HYST_TP3, 0x77777777},
249 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
250 {REG_A6XX_RBBM_CLOCK_HYST2_TP1, 0x77777777},
251 {REG_A6XX_RBBM_CLOCK_HYST2_TP2, 0x77777777},
252 {REG_A6XX_RBBM_CLOCK_HYST2_TP3, 0x77777777},
253 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
254 {REG_A6XX_RBBM_CLOCK_HYST3_TP1, 0x77777777},
255 {REG_A6XX_RBBM_CLOCK_HYST3_TP2, 0x77777777},
256 {REG_A6XX_RBBM_CLOCK_HYST3_TP3, 0x77777777},
257 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
258 {REG_A6XX_RBBM_CLOCK_HYST4_TP1, 0x00077777},
259 {REG_A6XX_RBBM_CLOCK_HYST4_TP2, 0x00077777},
260 {REG_A6XX_RBBM_CLOCK_HYST4_TP3, 0x00077777},
261 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
262 {REG_A6XX_RBBM_CLOCK_DELAY_TP1, 0x11111111},
263 {REG_A6XX_RBBM_CLOCK_DELAY_TP2, 0x11111111},
264 {REG_A6XX_RBBM_CLOCK_DELAY_TP3, 0x11111111},
265 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
266 {REG_A6XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111},
267 {REG_A6XX_RBBM_CLOCK_DELAY2_TP2, 0x11111111},
268 {REG_A6XX_RBBM_CLOCK_DELAY2_TP3, 0x11111111},
269 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
270 {REG_A6XX_RBBM_CLOCK_DELAY3_TP1, 0x11111111},
271 {REG_A6XX_RBBM_CLOCK_DELAY3_TP2, 0x11111111},
272 {REG_A6XX_RBBM_CLOCK_DELAY3_TP3, 0x11111111},
273 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
274 {REG_A6XX_RBBM_CLOCK_DELAY4_TP1, 0x00011111},
275 {REG_A6XX_RBBM_CLOCK_DELAY4_TP2, 0x00011111},
276 {REG_A6XX_RBBM_CLOCK_DELAY4_TP3, 0x00011111},
277 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
278 {REG_A6XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222},
279 {REG_A6XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222},
280 {REG_A6XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222},
281 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
282 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
283 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
284 {REG_A6XX_RBBM_CLOCK_CNTL_RB1, 0x22222222},
285 {REG_A6XX_RBBM_CLOCK_CNTL_RB2, 0x22222222},
286 {REG_A6XX_RBBM_CLOCK_CNTL_RB3, 0x22222222},
287 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x00002222},
288 {REG_A6XX_RBBM_CLOCK_CNTL2_RB1, 0x00002222},
289 {REG_A6XX_RBBM_CLOCK_CNTL2_RB2, 0x00002222},
290 {REG_A6XX_RBBM_CLOCK_CNTL2_RB3, 0x00002222},
291 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
292 {REG_A6XX_RBBM_CLOCK_CNTL_CCU1, 0x00002220},
293 {REG_A6XX_RBBM_CLOCK_CNTL_CCU2, 0x00002220},
294 {REG_A6XX_RBBM_CLOCK_CNTL_CCU3, 0x00002220},
295 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040f00},
296 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU1, 0x00040f00},
297 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU2, 0x00040f00},
298 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU3, 0x00040f00},
299 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05022022},
300 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
301 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
302 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
303 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
304 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
305 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
306 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
307 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
308 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
309 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
310 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
311 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
312 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
313 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
314 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
315 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
316 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
317 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
318 {},
319 };
320
321 const struct adreno_reglist a640_hwcg[] = {
322 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
323 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
324 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
325 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
326 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
327 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
328 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
329 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
330 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
331 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
332 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
333 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
334 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
335 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
336 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
337 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
338 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
339 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
340 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
341 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
342 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05222022},
343 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
344 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
345 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
346 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
347 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
348 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
349 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
350 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
351 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
352 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
353 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
354 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
355 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
356 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
357 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
358 {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
359 {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
360 {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
361 {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000},
362 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
363 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
364 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
365 {REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
366 {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
367 {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
368 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
369 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
370 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
371 {},
372 };
373
374 const struct adreno_reglist a650_hwcg[] = {
375 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
376 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
377 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
378 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
379 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
380 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
381 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
382 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
383 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
384 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
385 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
386 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
387 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
388 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
389 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
390 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
391 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
392 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
393 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
394 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
395 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022},
396 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
397 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
398 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
399 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
400 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
401 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
402 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
403 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
404 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
405 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
406 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
407 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
408 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
409 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
410 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
411 {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
412 {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
413 {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
414 {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000777},
415 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
416 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
417 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
418 {REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
419 {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
420 {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
421 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
422 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
423 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
424 {},
425 };
426
a6xx_set_hwcg(struct msm_gpu * gpu,bool state)427 static void a6xx_set_hwcg(struct msm_gpu *gpu, bool state)
428 {
429 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
430 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
431 struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
432 const struct adreno_reglist *reg;
433 unsigned int i;
434 u32 val, clock_cntl_on;
435
436 if (!adreno_gpu->info->hwcg)
437 return;
438
439 if (adreno_is_a630(adreno_gpu))
440 clock_cntl_on = 0x8aa8aa02;
441 else
442 clock_cntl_on = 0x8aa8aa82;
443
444 val = gpu_read(gpu, REG_A6XX_RBBM_CLOCK_CNTL);
445
446 /* Don't re-program the registers if they are already correct */
447 if ((!state && !val) || (state && (val == clock_cntl_on)))
448 return;
449
450 /* Disable SP clock before programming HWCG registers */
451 gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 1, 0);
452
453 for (i = 0; (reg = &adreno_gpu->info->hwcg[i], reg->offset); i++)
454 gpu_write(gpu, reg->offset, state ? reg->value : 0);
455
456 /* Enable SP clock */
457 gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 0, 1);
458
459 gpu_write(gpu, REG_A6XX_RBBM_CLOCK_CNTL, state ? clock_cntl_on : 0);
460 }
461
a6xx_set_ubwc_config(struct msm_gpu * gpu)462 static void a6xx_set_ubwc_config(struct msm_gpu *gpu)
463 {
464 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
465 u32 lower_bit = 2;
466 u32 amsbc = 0;
467 u32 rgb565_predicator = 0;
468 u32 uavflagprd_inv = 0;
469
470 /* a618 is using the hw default values */
471 if (adreno_is_a618(adreno_gpu))
472 return;
473
474 if (adreno_is_a640(adreno_gpu))
475 amsbc = 1;
476
477 if (adreno_is_a650(adreno_gpu)) {
478 /* TODO: get ddr type from bootloader and use 2 for LPDDR4 */
479 lower_bit = 3;
480 amsbc = 1;
481 rgb565_predicator = 1;
482 uavflagprd_inv = 2;
483 }
484
485 gpu_write(gpu, REG_A6XX_RB_NC_MODE_CNTL,
486 rgb565_predicator << 11 | amsbc << 4 | lower_bit << 1);
487 gpu_write(gpu, REG_A6XX_TPL1_NC_MODE_CNTL, lower_bit << 1);
488 gpu_write(gpu, REG_A6XX_SP_NC_MODE_CNTL,
489 uavflagprd_inv >> 4 | lower_bit << 1);
490 gpu_write(gpu, REG_A6XX_UCHE_MODE_CNTL, lower_bit << 21);
491 }
492
a6xx_cp_init(struct msm_gpu * gpu)493 static int a6xx_cp_init(struct msm_gpu *gpu)
494 {
495 struct msm_ringbuffer *ring = gpu->rb[0];
496
497 OUT_PKT7(ring, CP_ME_INIT, 8);
498
499 OUT_RING(ring, 0x0000002f);
500
501 /* Enable multiple hardware contexts */
502 OUT_RING(ring, 0x00000003);
503
504 /* Enable error detection */
505 OUT_RING(ring, 0x20000000);
506
507 /* Don't enable header dump */
508 OUT_RING(ring, 0x00000000);
509 OUT_RING(ring, 0x00000000);
510
511 /* No workarounds enabled */
512 OUT_RING(ring, 0x00000000);
513
514 /* Pad rest of the cmds with 0's */
515 OUT_RING(ring, 0x00000000);
516 OUT_RING(ring, 0x00000000);
517
518 a6xx_flush(gpu, ring);
519 return a6xx_idle(gpu, ring) ? 0 : -EINVAL;
520 }
521
a6xx_ucode_check_version(struct a6xx_gpu * a6xx_gpu,struct drm_gem_object * obj)522 static void a6xx_ucode_check_version(struct a6xx_gpu *a6xx_gpu,
523 struct drm_gem_object *obj)
524 {
525 u32 *buf = msm_gem_get_vaddr_active(obj);
526
527 if (IS_ERR(buf))
528 return;
529
530 /*
531 * If the lowest nibble is 0xa that is an indication that this microcode
532 * has been patched. The actual version is in dword [3] but we only care
533 * about the patchlevel which is the lowest nibble of dword [3]
534 *
535 * Otherwise check that the firmware is greater than or equal to 1.90
536 * which was the first version that had this fix built in
537 */
538 if (((buf[0] & 0xf) == 0xa) && (buf[2] & 0xf) >= 1)
539 a6xx_gpu->has_whereami = true;
540 else if ((buf[0] & 0xfff) > 0x190)
541 a6xx_gpu->has_whereami = true;
542
543 msm_gem_put_vaddr(obj);
544 }
545
a6xx_ucode_init(struct msm_gpu * gpu)546 static int a6xx_ucode_init(struct msm_gpu *gpu)
547 {
548 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
549 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
550
551 if (!a6xx_gpu->sqe_bo) {
552 a6xx_gpu->sqe_bo = adreno_fw_create_bo(gpu,
553 adreno_gpu->fw[ADRENO_FW_SQE], &a6xx_gpu->sqe_iova);
554
555 if (IS_ERR(a6xx_gpu->sqe_bo)) {
556 int ret = PTR_ERR(a6xx_gpu->sqe_bo);
557
558 a6xx_gpu->sqe_bo = NULL;
559 DRM_DEV_ERROR(&gpu->pdev->dev,
560 "Could not allocate SQE ucode: %d\n", ret);
561
562 return ret;
563 }
564
565 msm_gem_object_set_name(a6xx_gpu->sqe_bo, "sqefw");
566 a6xx_ucode_check_version(a6xx_gpu, a6xx_gpu->sqe_bo);
567 }
568
569 gpu_write64(gpu, REG_A6XX_CP_SQE_INSTR_BASE_LO,
570 REG_A6XX_CP_SQE_INSTR_BASE_HI, a6xx_gpu->sqe_iova);
571
572 return 0;
573 }
574
a6xx_zap_shader_init(struct msm_gpu * gpu)575 static int a6xx_zap_shader_init(struct msm_gpu *gpu)
576 {
577 static bool loaded;
578 int ret;
579
580 if (loaded)
581 return 0;
582
583 ret = adreno_zap_shader_load(gpu, GPU_PAS_ID);
584
585 loaded = !ret;
586 return ret;
587 }
588
589 #define A6XX_INT_MASK (A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR | \
590 A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW | \
591 A6XX_RBBM_INT_0_MASK_CP_HW_ERROR | \
592 A6XX_RBBM_INT_0_MASK_CP_IB2 | \
593 A6XX_RBBM_INT_0_MASK_CP_IB1 | \
594 A6XX_RBBM_INT_0_MASK_CP_RB | \
595 A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS | \
596 A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW | \
597 A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT | \
598 A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS | \
599 A6XX_RBBM_INT_0_MASK_UCHE_TRAP_INTR)
600
a6xx_hw_init(struct msm_gpu * gpu)601 static int a6xx_hw_init(struct msm_gpu *gpu)
602 {
603 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
604 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
605 int ret;
606
607 /* Make sure the GMU keeps the GPU on while we set it up */
608 a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET);
609
610 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_CNTL, 0);
611
612 /*
613 * Disable the trusted memory range - we don't actually supported secure
614 * memory rendering at this point in time and we don't want to block off
615 * part of the virtual memory space.
616 */
617 gpu_write64(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE_LO,
618 REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE_HI, 0x00000000);
619 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_SIZE, 0x00000000);
620
621 /* Turn on 64 bit addressing for all blocks */
622 gpu_write(gpu, REG_A6XX_CP_ADDR_MODE_CNTL, 0x1);
623 gpu_write(gpu, REG_A6XX_VSC_ADDR_MODE_CNTL, 0x1);
624 gpu_write(gpu, REG_A6XX_GRAS_ADDR_MODE_CNTL, 0x1);
625 gpu_write(gpu, REG_A6XX_RB_ADDR_MODE_CNTL, 0x1);
626 gpu_write(gpu, REG_A6XX_PC_ADDR_MODE_CNTL, 0x1);
627 gpu_write(gpu, REG_A6XX_HLSQ_ADDR_MODE_CNTL, 0x1);
628 gpu_write(gpu, REG_A6XX_VFD_ADDR_MODE_CNTL, 0x1);
629 gpu_write(gpu, REG_A6XX_VPC_ADDR_MODE_CNTL, 0x1);
630 gpu_write(gpu, REG_A6XX_UCHE_ADDR_MODE_CNTL, 0x1);
631 gpu_write(gpu, REG_A6XX_SP_ADDR_MODE_CNTL, 0x1);
632 gpu_write(gpu, REG_A6XX_TPL1_ADDR_MODE_CNTL, 0x1);
633 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_ADDR_MODE_CNTL, 0x1);
634
635 /* enable hardware clockgating */
636 a6xx_set_hwcg(gpu, true);
637
638 /* VBIF/GBIF start*/
639 if (adreno_is_a640(adreno_gpu) || adreno_is_a650(adreno_gpu)) {
640 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE0, 0x00071620);
641 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE1, 0x00071620);
642 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE2, 0x00071620);
643 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE3, 0x00071620);
644 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE3, 0x00071620);
645 gpu_write(gpu, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 0x3);
646 } else {
647 gpu_write(gpu, REG_A6XX_RBBM_VBIF_CLIENT_QOS_CNTL, 0x3);
648 }
649
650 if (adreno_is_a630(adreno_gpu))
651 gpu_write(gpu, REG_A6XX_VBIF_GATE_OFF_WRREQ_EN, 0x00000009);
652
653 /* Make all blocks contribute to the GPU BUSY perf counter */
654 gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_GPU_BUSY_MASKED, 0xffffffff);
655
656 /* Disable L2 bypass in the UCHE */
657 gpu_write(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX_LO, 0xffffffc0);
658 gpu_write(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX_HI, 0x0001ffff);
659 gpu_write(gpu, REG_A6XX_UCHE_TRAP_BASE_LO, 0xfffff000);
660 gpu_write(gpu, REG_A6XX_UCHE_TRAP_BASE_HI, 0x0001ffff);
661 gpu_write(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE_LO, 0xfffff000);
662 gpu_write(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE_HI, 0x0001ffff);
663
664 if (!adreno_is_a650(adreno_gpu)) {
665 /* Set the GMEM VA range [0x100000:0x100000 + gpu->gmem - 1] */
666 gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MIN_LO,
667 REG_A6XX_UCHE_GMEM_RANGE_MIN_HI, 0x00100000);
668
669 gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MAX_LO,
670 REG_A6XX_UCHE_GMEM_RANGE_MAX_HI,
671 0x00100000 + adreno_gpu->gmem - 1);
672 }
673
674 gpu_write(gpu, REG_A6XX_UCHE_FILTER_CNTL, 0x804);
675 gpu_write(gpu, REG_A6XX_UCHE_CACHE_WAYS, 0x4);
676
677 if (adreno_is_a640(adreno_gpu) || adreno_is_a650(adreno_gpu))
678 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x02000140);
679 else
680 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x010000c0);
681 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_1, 0x8040362c);
682
683 /* Setting the mem pool size */
684 gpu_write(gpu, REG_A6XX_CP_MEM_POOL_SIZE, 128);
685
686 /* Setting the primFifo thresholds default values */
687 if (adreno_is_a650(adreno_gpu))
688 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00300000);
689 else if (adreno_is_a640(adreno_gpu))
690 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00200000);
691 else
692 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, (0x300 << 11));
693
694 /* Set the AHB default slave response to "ERROR" */
695 gpu_write(gpu, REG_A6XX_CP_AHB_CNTL, 0x1);
696
697 /* Turn on performance counters */
698 gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_CNTL, 0x1);
699
700 /* Select CP0 to always count cycles */
701 gpu_write(gpu, REG_A6XX_CP_PERFCTR_CP_SEL_0, PERF_CP_ALWAYS_COUNT);
702
703 a6xx_set_ubwc_config(gpu);
704
705 /* Enable fault detection */
706 gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL,
707 (1 << 30) | 0x1fffff);
708
709 gpu_write(gpu, REG_A6XX_UCHE_CLIENT_PF, 1);
710
711 /* Set weights for bicubic filtering */
712 if (adreno_is_a650(adreno_gpu)) {
713 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_0, 0);
714 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_1,
715 0x3fe05ff4);
716 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_2,
717 0x3fa0ebee);
718 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_3,
719 0x3f5193ed);
720 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_4,
721 0x3f0243f0);
722 }
723
724 /* Protect registers from the CP */
725 gpu_write(gpu, REG_A6XX_CP_PROTECT_CNTL, 0x00000003);
726
727 gpu_write(gpu, REG_A6XX_CP_PROTECT(0),
728 A6XX_PROTECT_RDONLY(0x600, 0x51));
729 gpu_write(gpu, REG_A6XX_CP_PROTECT(1), A6XX_PROTECT_RW(0xae50, 0x2));
730 gpu_write(gpu, REG_A6XX_CP_PROTECT(2), A6XX_PROTECT_RW(0x9624, 0x13));
731 gpu_write(gpu, REG_A6XX_CP_PROTECT(3), A6XX_PROTECT_RW(0x8630, 0x8));
732 gpu_write(gpu, REG_A6XX_CP_PROTECT(4), A6XX_PROTECT_RW(0x9e70, 0x1));
733 gpu_write(gpu, REG_A6XX_CP_PROTECT(5), A6XX_PROTECT_RW(0x9e78, 0x187));
734 gpu_write(gpu, REG_A6XX_CP_PROTECT(6), A6XX_PROTECT_RW(0xf000, 0x810));
735 gpu_write(gpu, REG_A6XX_CP_PROTECT(7),
736 A6XX_PROTECT_RDONLY(0xfc00, 0x3));
737 gpu_write(gpu, REG_A6XX_CP_PROTECT(8), A6XX_PROTECT_RW(0x50e, 0x0));
738 gpu_write(gpu, REG_A6XX_CP_PROTECT(9), A6XX_PROTECT_RDONLY(0x50f, 0x0));
739 gpu_write(gpu, REG_A6XX_CP_PROTECT(10), A6XX_PROTECT_RW(0x510, 0x0));
740 gpu_write(gpu, REG_A6XX_CP_PROTECT(11),
741 A6XX_PROTECT_RDONLY(0x0, 0x4f9));
742 gpu_write(gpu, REG_A6XX_CP_PROTECT(12),
743 A6XX_PROTECT_RDONLY(0x501, 0xa));
744 gpu_write(gpu, REG_A6XX_CP_PROTECT(13),
745 A6XX_PROTECT_RDONLY(0x511, 0x44));
746 gpu_write(gpu, REG_A6XX_CP_PROTECT(14), A6XX_PROTECT_RW(0xe00, 0xe));
747 gpu_write(gpu, REG_A6XX_CP_PROTECT(15), A6XX_PROTECT_RW(0x8e00, 0x0));
748 gpu_write(gpu, REG_A6XX_CP_PROTECT(16), A6XX_PROTECT_RW(0x8e50, 0xf));
749 gpu_write(gpu, REG_A6XX_CP_PROTECT(17), A6XX_PROTECT_RW(0xbe02, 0x0));
750 gpu_write(gpu, REG_A6XX_CP_PROTECT(18),
751 A6XX_PROTECT_RW(0xbe20, 0x11f3));
752 gpu_write(gpu, REG_A6XX_CP_PROTECT(19), A6XX_PROTECT_RW(0x800, 0x82));
753 gpu_write(gpu, REG_A6XX_CP_PROTECT(20), A6XX_PROTECT_RW(0x8a0, 0x8));
754 gpu_write(gpu, REG_A6XX_CP_PROTECT(21), A6XX_PROTECT_RW(0x8ab, 0x19));
755 gpu_write(gpu, REG_A6XX_CP_PROTECT(22), A6XX_PROTECT_RW(0x900, 0x4d));
756 gpu_write(gpu, REG_A6XX_CP_PROTECT(23), A6XX_PROTECT_RW(0x98d, 0x76));
757 gpu_write(gpu, REG_A6XX_CP_PROTECT(24),
758 A6XX_PROTECT_RDONLY(0x980, 0x4));
759 gpu_write(gpu, REG_A6XX_CP_PROTECT(25), A6XX_PROTECT_RW(0xa630, 0x0));
760
761 /* Enable expanded apriv for targets that support it */
762 if (gpu->hw_apriv) {
763 gpu_write(gpu, REG_A6XX_CP_APRIV_CNTL,
764 (1 << 6) | (1 << 5) | (1 << 3) | (1 << 2) | (1 << 1));
765 }
766
767 /* Enable interrupts */
768 gpu_write(gpu, REG_A6XX_RBBM_INT_0_MASK, A6XX_INT_MASK);
769
770 ret = adreno_hw_init(gpu);
771 if (ret)
772 goto out;
773
774 ret = a6xx_ucode_init(gpu);
775 if (ret)
776 goto out;
777
778 /* Set the ringbuffer address */
779 gpu_write64(gpu, REG_A6XX_CP_RB_BASE, REG_A6XX_CP_RB_BASE_HI,
780 gpu->rb[0]->iova);
781
782 /* Targets that support extended APRIV can use the RPTR shadow from
783 * hardware but all the other ones need to disable the feature. Targets
784 * that support the WHERE_AM_I opcode can use that instead
785 */
786 if (adreno_gpu->base.hw_apriv)
787 gpu_write(gpu, REG_A6XX_CP_RB_CNTL, MSM_GPU_RB_CNTL_DEFAULT);
788 else
789 gpu_write(gpu, REG_A6XX_CP_RB_CNTL,
790 MSM_GPU_RB_CNTL_DEFAULT | AXXX_CP_RB_CNTL_NO_UPDATE);
791
792 /*
793 * Expanded APRIV and targets that support WHERE_AM_I both need a
794 * privileged buffer to store the RPTR shadow
795 */
796
797 if (adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami) {
798 if (!a6xx_gpu->shadow_bo) {
799 a6xx_gpu->shadow = msm_gem_kernel_new_locked(gpu->dev,
800 sizeof(u32) * gpu->nr_rings,
801 MSM_BO_UNCACHED | MSM_BO_MAP_PRIV,
802 gpu->aspace, &a6xx_gpu->shadow_bo,
803 &a6xx_gpu->shadow_iova);
804
805 if (IS_ERR(a6xx_gpu->shadow))
806 return PTR_ERR(a6xx_gpu->shadow);
807 }
808
809 gpu_write64(gpu, REG_A6XX_CP_RB_RPTR_ADDR_LO,
810 REG_A6XX_CP_RB_RPTR_ADDR_HI,
811 shadowptr(a6xx_gpu, gpu->rb[0]));
812 }
813
814 /* Always come up on rb 0 */
815 a6xx_gpu->cur_ring = gpu->rb[0];
816
817 a6xx_gpu->cur_ctx = NULL;
818
819 /* Enable the SQE_to start the CP engine */
820 gpu_write(gpu, REG_A6XX_CP_SQE_CNTL, 1);
821
822 ret = a6xx_cp_init(gpu);
823 if (ret)
824 goto out;
825
826 /*
827 * Try to load a zap shader into the secure world. If successful
828 * we can use the CP to switch out of secure mode. If not then we
829 * have no resource but to try to switch ourselves out manually. If we
830 * guessed wrong then access to the RBBM_SECVID_TRUST_CNTL register will
831 * be blocked and a permissions violation will soon follow.
832 */
833 ret = a6xx_zap_shader_init(gpu);
834 if (!ret) {
835 OUT_PKT7(gpu->rb[0], CP_SET_SECURE_MODE, 1);
836 OUT_RING(gpu->rb[0], 0x00000000);
837
838 a6xx_flush(gpu, gpu->rb[0]);
839 if (!a6xx_idle(gpu, gpu->rb[0]))
840 return -EINVAL;
841 } else if (ret == -ENODEV) {
842 /*
843 * This device does not use zap shader (but print a warning
844 * just in case someone got their dt wrong.. hopefully they
845 * have a debug UART to realize the error of their ways...
846 * if you mess this up you are about to crash horribly)
847 */
848 dev_warn_once(gpu->dev->dev,
849 "Zap shader not enabled - using SECVID_TRUST_CNTL instead\n");
850 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TRUST_CNTL, 0x0);
851 ret = 0;
852 } else {
853 return ret;
854 }
855
856 out:
857 /*
858 * Tell the GMU that we are done touching the GPU and it can start power
859 * management
860 */
861 a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET);
862
863 if (a6xx_gpu->gmu.legacy) {
864 /* Take the GMU out of its special boot mode */
865 a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_BOOT_SLUMBER);
866 }
867
868 return ret;
869 }
870
a6xx_dump(struct msm_gpu * gpu)871 static void a6xx_dump(struct msm_gpu *gpu)
872 {
873 DRM_DEV_INFO(&gpu->pdev->dev, "status: %08x\n",
874 gpu_read(gpu, REG_A6XX_RBBM_STATUS));
875 adreno_dump(gpu);
876 }
877
878 #define VBIF_RESET_ACK_TIMEOUT 100
879 #define VBIF_RESET_ACK_MASK 0x00f0
880
a6xx_recover(struct msm_gpu * gpu)881 static void a6xx_recover(struct msm_gpu *gpu)
882 {
883 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
884 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
885 int i;
886
887 adreno_dump_info(gpu);
888
889 for (i = 0; i < 8; i++)
890 DRM_DEV_INFO(&gpu->pdev->dev, "CP_SCRATCH_REG%d: %u\n", i,
891 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(i)));
892
893 if (hang_debug)
894 a6xx_dump(gpu);
895
896 /*
897 * Turn off keep alive that might have been enabled by the hang
898 * interrupt
899 */
900 gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 0);
901
902 gpu->funcs->pm_suspend(gpu);
903 gpu->funcs->pm_resume(gpu);
904
905 msm_gpu_hw_init(gpu);
906 }
907
a6xx_fault_handler(void * arg,unsigned long iova,int flags)908 static int a6xx_fault_handler(void *arg, unsigned long iova, int flags)
909 {
910 struct msm_gpu *gpu = arg;
911
912 pr_warn_ratelimited("*** gpu fault: iova=%08lx, flags=%d (%u,%u,%u,%u)\n",
913 iova, flags,
914 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(4)),
915 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(5)),
916 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(6)),
917 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(7)));
918
919 return -EFAULT;
920 }
921
a6xx_cp_hw_err_irq(struct msm_gpu * gpu)922 static void a6xx_cp_hw_err_irq(struct msm_gpu *gpu)
923 {
924 u32 status = gpu_read(gpu, REG_A6XX_CP_INTERRUPT_STATUS);
925
926 if (status & A6XX_CP_INT_CP_OPCODE_ERROR) {
927 u32 val;
928
929 gpu_write(gpu, REG_A6XX_CP_SQE_STAT_ADDR, 1);
930 val = gpu_read(gpu, REG_A6XX_CP_SQE_STAT_DATA);
931 dev_err_ratelimited(&gpu->pdev->dev,
932 "CP | opcode error | possible opcode=0x%8.8X\n",
933 val);
934 }
935
936 if (status & A6XX_CP_INT_CP_UCODE_ERROR)
937 dev_err_ratelimited(&gpu->pdev->dev,
938 "CP ucode error interrupt\n");
939
940 if (status & A6XX_CP_INT_CP_HW_FAULT_ERROR)
941 dev_err_ratelimited(&gpu->pdev->dev, "CP | HW fault | status=0x%8.8X\n",
942 gpu_read(gpu, REG_A6XX_CP_HW_FAULT));
943
944 if (status & A6XX_CP_INT_CP_REGISTER_PROTECTION_ERROR) {
945 u32 val = gpu_read(gpu, REG_A6XX_CP_PROTECT_STATUS);
946
947 dev_err_ratelimited(&gpu->pdev->dev,
948 "CP | protected mode error | %s | addr=0x%8.8X | status=0x%8.8X\n",
949 val & (1 << 20) ? "READ" : "WRITE",
950 (val & 0x3ffff), val);
951 }
952
953 if (status & A6XX_CP_INT_CP_AHB_ERROR)
954 dev_err_ratelimited(&gpu->pdev->dev, "CP AHB error interrupt\n");
955
956 if (status & A6XX_CP_INT_CP_VSD_PARITY_ERROR)
957 dev_err_ratelimited(&gpu->pdev->dev, "CP VSD decoder parity error\n");
958
959 if (status & A6XX_CP_INT_CP_ILLEGAL_INSTR_ERROR)
960 dev_err_ratelimited(&gpu->pdev->dev, "CP illegal instruction error\n");
961
962 }
963
a6xx_fault_detect_irq(struct msm_gpu * gpu)964 static void a6xx_fault_detect_irq(struct msm_gpu *gpu)
965 {
966 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
967 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
968 struct drm_device *dev = gpu->dev;
969 struct msm_drm_private *priv = dev->dev_private;
970 struct msm_ringbuffer *ring = gpu->funcs->active_ring(gpu);
971
972 /*
973 * Force the GPU to stay on until after we finish
974 * collecting information
975 */
976 gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 1);
977
978 DRM_DEV_ERROR(&gpu->pdev->dev,
979 "gpu fault ring %d fence %x status %8.8X rb %4.4x/%4.4x ib1 %16.16llX/%4.4x ib2 %16.16llX/%4.4x\n",
980 ring ? ring->id : -1, ring ? ring->seqno : 0,
981 gpu_read(gpu, REG_A6XX_RBBM_STATUS),
982 gpu_read(gpu, REG_A6XX_CP_RB_RPTR),
983 gpu_read(gpu, REG_A6XX_CP_RB_WPTR),
984 gpu_read64(gpu, REG_A6XX_CP_IB1_BASE, REG_A6XX_CP_IB1_BASE_HI),
985 gpu_read(gpu, REG_A6XX_CP_IB1_REM_SIZE),
986 gpu_read64(gpu, REG_A6XX_CP_IB2_BASE, REG_A6XX_CP_IB2_BASE_HI),
987 gpu_read(gpu, REG_A6XX_CP_IB2_REM_SIZE));
988
989 /* Turn off the hangcheck timer to keep it from bothering us */
990 del_timer(&gpu->hangcheck_timer);
991
992 queue_work(priv->wq, &gpu->recover_work);
993 }
994
a6xx_irq(struct msm_gpu * gpu)995 static irqreturn_t a6xx_irq(struct msm_gpu *gpu)
996 {
997 u32 status = gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS);
998
999 gpu_write(gpu, REG_A6XX_RBBM_INT_CLEAR_CMD, status);
1000
1001 if (status & A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT)
1002 a6xx_fault_detect_irq(gpu);
1003
1004 if (status & A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR)
1005 dev_err_ratelimited(&gpu->pdev->dev, "CP | AHB bus error\n");
1006
1007 if (status & A6XX_RBBM_INT_0_MASK_CP_HW_ERROR)
1008 a6xx_cp_hw_err_irq(gpu);
1009
1010 if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW)
1011 dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB ASYNC overflow\n");
1012
1013 if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW)
1014 dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB bus overflow\n");
1015
1016 if (status & A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS)
1017 dev_err_ratelimited(&gpu->pdev->dev, "UCHE | Out of bounds access\n");
1018
1019 if (status & A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS)
1020 msm_gpu_retire(gpu);
1021
1022 return IRQ_HANDLED;
1023 }
1024
a6xx_pm_resume(struct msm_gpu * gpu)1025 static int a6xx_pm_resume(struct msm_gpu *gpu)
1026 {
1027 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1028 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1029 int ret;
1030
1031 gpu->needs_hw_init = true;
1032
1033 trace_msm_gpu_resume(0);
1034
1035 ret = a6xx_gmu_resume(a6xx_gpu);
1036 if (ret)
1037 return ret;
1038
1039 msm_gpu_resume_devfreq(gpu);
1040
1041 return 0;
1042 }
1043
a6xx_pm_suspend(struct msm_gpu * gpu)1044 static int a6xx_pm_suspend(struct msm_gpu *gpu)
1045 {
1046 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1047 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1048
1049 trace_msm_gpu_suspend(0);
1050
1051 devfreq_suspend_device(gpu->devfreq.devfreq);
1052
1053 return a6xx_gmu_stop(a6xx_gpu);
1054 }
1055
a6xx_get_timestamp(struct msm_gpu * gpu,uint64_t * value)1056 static int a6xx_get_timestamp(struct msm_gpu *gpu, uint64_t *value)
1057 {
1058 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1059 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1060
1061 /* Force the GPU power on so we can read this register */
1062 a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET);
1063
1064 *value = gpu_read64(gpu, REG_A6XX_RBBM_PERFCTR_CP_0_LO,
1065 REG_A6XX_RBBM_PERFCTR_CP_0_HI);
1066
1067 a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET);
1068 return 0;
1069 }
1070
a6xx_active_ring(struct msm_gpu * gpu)1071 static struct msm_ringbuffer *a6xx_active_ring(struct msm_gpu *gpu)
1072 {
1073 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1074 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1075
1076 return a6xx_gpu->cur_ring;
1077 }
1078
a6xx_destroy(struct msm_gpu * gpu)1079 static void a6xx_destroy(struct msm_gpu *gpu)
1080 {
1081 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1082 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1083
1084 if (a6xx_gpu->sqe_bo) {
1085 msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace);
1086 drm_gem_object_put(a6xx_gpu->sqe_bo);
1087 }
1088
1089 if (a6xx_gpu->shadow_bo) {
1090 msm_gem_unpin_iova(a6xx_gpu->shadow_bo, gpu->aspace);
1091 drm_gem_object_put(a6xx_gpu->shadow_bo);
1092 }
1093
1094 a6xx_gmu_remove(a6xx_gpu);
1095
1096 adreno_gpu_cleanup(adreno_gpu);
1097 kfree(a6xx_gpu);
1098 }
1099
a6xx_gpu_busy(struct msm_gpu * gpu)1100 static unsigned long a6xx_gpu_busy(struct msm_gpu *gpu)
1101 {
1102 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1103 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1104 u64 busy_cycles, busy_time;
1105
1106
1107 /* Only read the gpu busy if the hardware is already active */
1108 if (pm_runtime_get_if_in_use(a6xx_gpu->gmu.dev) == 0)
1109 return 0;
1110
1111 busy_cycles = gmu_read64(&a6xx_gpu->gmu,
1112 REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_L,
1113 REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_H);
1114
1115 busy_time = (busy_cycles - gpu->devfreq.busy_cycles) * 10;
1116 do_div(busy_time, 192);
1117
1118 gpu->devfreq.busy_cycles = busy_cycles;
1119
1120 pm_runtime_put(a6xx_gpu->gmu.dev);
1121
1122 if (WARN_ON(busy_time > ~0LU))
1123 return ~0LU;
1124
1125 return (unsigned long)busy_time;
1126 }
1127
1128 static struct msm_gem_address_space *
a6xx_create_private_address_space(struct msm_gpu * gpu)1129 a6xx_create_private_address_space(struct msm_gpu *gpu)
1130 {
1131 struct msm_mmu *mmu;
1132
1133 mmu = msm_iommu_pagetable_create(gpu->aspace->mmu);
1134
1135 if (IS_ERR(mmu))
1136 return ERR_CAST(mmu);
1137
1138 return msm_gem_address_space_create(mmu,
1139 "gpu", 0x100000000ULL, 0x1ffffffffULL);
1140 }
1141
a6xx_get_rptr(struct msm_gpu * gpu,struct msm_ringbuffer * ring)1142 static uint32_t a6xx_get_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
1143 {
1144 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1145 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1146
1147 if (adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami)
1148 return a6xx_gpu->shadow[ring->id];
1149
1150 return ring->memptrs->rptr = gpu_read(gpu, REG_A6XX_CP_RB_RPTR);
1151 }
1152
1153 static const struct adreno_gpu_funcs funcs = {
1154 .base = {
1155 .get_param = adreno_get_param,
1156 .hw_init = a6xx_hw_init,
1157 .pm_suspend = a6xx_pm_suspend,
1158 .pm_resume = a6xx_pm_resume,
1159 .recover = a6xx_recover,
1160 .submit = a6xx_submit,
1161 .active_ring = a6xx_active_ring,
1162 .irq = a6xx_irq,
1163 .destroy = a6xx_destroy,
1164 #if defined(CONFIG_DRM_MSM_GPU_STATE)
1165 .show = a6xx_show,
1166 #endif
1167 .gpu_busy = a6xx_gpu_busy,
1168 .gpu_get_freq = a6xx_gmu_get_freq,
1169 .gpu_set_freq = a6xx_gmu_set_freq,
1170 #if defined(CONFIG_DRM_MSM_GPU_STATE)
1171 .gpu_state_get = a6xx_gpu_state_get,
1172 .gpu_state_put = a6xx_gpu_state_put,
1173 #endif
1174 .create_address_space = adreno_iommu_create_address_space,
1175 .create_private_address_space = a6xx_create_private_address_space,
1176 .get_rptr = a6xx_get_rptr,
1177 },
1178 .get_timestamp = a6xx_get_timestamp,
1179 };
1180
a6xx_gpu_init(struct drm_device * dev)1181 struct msm_gpu *a6xx_gpu_init(struct drm_device *dev)
1182 {
1183 struct msm_drm_private *priv = dev->dev_private;
1184 struct platform_device *pdev = priv->gpu_pdev;
1185 struct adreno_platform_config *config = pdev->dev.platform_data;
1186 const struct adreno_info *info;
1187 struct device_node *node;
1188 struct a6xx_gpu *a6xx_gpu;
1189 struct adreno_gpu *adreno_gpu;
1190 struct msm_gpu *gpu;
1191 int ret;
1192
1193 a6xx_gpu = kzalloc(sizeof(*a6xx_gpu), GFP_KERNEL);
1194 if (!a6xx_gpu)
1195 return ERR_PTR(-ENOMEM);
1196
1197 adreno_gpu = &a6xx_gpu->base;
1198 gpu = &adreno_gpu->base;
1199
1200 adreno_gpu->registers = NULL;
1201
1202 /*
1203 * We need to know the platform type before calling into adreno_gpu_init
1204 * so that the hw_apriv flag can be correctly set. Snoop into the info
1205 * and grab the revision number
1206 */
1207 info = adreno_info(config->rev);
1208
1209 if (info && info->revn == 650)
1210 adreno_gpu->base.hw_apriv = true;
1211
1212 ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs, 1);
1213 if (ret) {
1214 a6xx_destroy(&(a6xx_gpu->base.base));
1215 return ERR_PTR(ret);
1216 }
1217
1218 /* Check if there is a GMU phandle and set it up */
1219 node = of_parse_phandle(pdev->dev.of_node, "qcom,gmu", 0);
1220
1221 /* FIXME: How do we gracefully handle this? */
1222 BUG_ON(!node);
1223
1224 ret = a6xx_gmu_init(a6xx_gpu, node);
1225 if (ret) {
1226 a6xx_destroy(&(a6xx_gpu->base.base));
1227 return ERR_PTR(ret);
1228 }
1229
1230 if (gpu->aspace)
1231 msm_mmu_set_fault_handler(gpu->aspace->mmu, gpu,
1232 a6xx_fault_handler);
1233
1234 return gpu;
1235 }
1236