1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2016 The Linux Foundation. All rights reserved.
3 */
4
5 #include <linux/pm_opp.h>
6 #include "a5xx_gpu.h"
7
8 /*
9 * The GPMU data block is a block of shared registers that can be used to
10 * communicate back and forth. These "registers" are by convention with the GPMU
11 * firwmare and not bound to any specific hardware design
12 */
13
14 #define AGC_INIT_BASE REG_A5XX_GPMU_DATA_RAM_BASE
15 #define AGC_INIT_MSG_MAGIC (AGC_INIT_BASE + 5)
16 #define AGC_MSG_BASE (AGC_INIT_BASE + 7)
17
18 #define AGC_MSG_STATE (AGC_MSG_BASE + 0)
19 #define AGC_MSG_COMMAND (AGC_MSG_BASE + 1)
20 #define AGC_MSG_PAYLOAD_SIZE (AGC_MSG_BASE + 3)
21 #define AGC_MSG_PAYLOAD(_o) ((AGC_MSG_BASE + 5) + (_o))
22
23 #define AGC_POWER_CONFIG_PRODUCTION_ID 1
24 #define AGC_INIT_MSG_VALUE 0xBABEFACE
25
26 /* AGC_LM_CONFIG (A540+) */
27 #define AGC_LM_CONFIG (136/4)
28 #define AGC_LM_CONFIG_GPU_VERSION_SHIFT 17
29 #define AGC_LM_CONFIG_ENABLE_GPMU_ADAPTIVE 1
30 #define AGC_LM_CONFIG_THROTTLE_DISABLE (2 << 8)
31 #define AGC_LM_CONFIG_ISENSE_ENABLE (1 << 4)
32 #define AGC_LM_CONFIG_ENABLE_ERROR (3 << 4)
33 #define AGC_LM_CONFIG_LLM_ENABLED (1 << 16)
34 #define AGC_LM_CONFIG_BCL_DISABLED (1 << 24)
35
36 #define AGC_LEVEL_CONFIG (140/4)
37
38 static struct {
39 uint32_t reg;
40 uint32_t value;
41 } a5xx_sequence_regs[] = {
42 { 0xB9A1, 0x00010303 },
43 { 0xB9A2, 0x13000000 },
44 { 0xB9A3, 0x00460020 },
45 { 0xB9A4, 0x10000000 },
46 { 0xB9A5, 0x040A1707 },
47 { 0xB9A6, 0x00010000 },
48 { 0xB9A7, 0x0E000904 },
49 { 0xB9A8, 0x10000000 },
50 { 0xB9A9, 0x01165000 },
51 { 0xB9AA, 0x000E0002 },
52 { 0xB9AB, 0x03884141 },
53 { 0xB9AC, 0x10000840 },
54 { 0xB9AD, 0x572A5000 },
55 { 0xB9AE, 0x00000003 },
56 { 0xB9AF, 0x00000000 },
57 { 0xB9B0, 0x10000000 },
58 { 0xB828, 0x6C204010 },
59 { 0xB829, 0x6C204011 },
60 { 0xB82A, 0x6C204012 },
61 { 0xB82B, 0x6C204013 },
62 { 0xB82C, 0x6C204014 },
63 { 0xB90F, 0x00000004 },
64 { 0xB910, 0x00000002 },
65 { 0xB911, 0x00000002 },
66 { 0xB912, 0x00000002 },
67 { 0xB913, 0x00000002 },
68 { 0xB92F, 0x00000004 },
69 { 0xB930, 0x00000005 },
70 { 0xB931, 0x00000005 },
71 { 0xB932, 0x00000005 },
72 { 0xB933, 0x00000005 },
73 { 0xB96F, 0x00000001 },
74 { 0xB970, 0x00000003 },
75 { 0xB94F, 0x00000004 },
76 { 0xB950, 0x0000000B },
77 { 0xB951, 0x0000000B },
78 { 0xB952, 0x0000000B },
79 { 0xB953, 0x0000000B },
80 { 0xB907, 0x00000019 },
81 { 0xB927, 0x00000019 },
82 { 0xB947, 0x00000019 },
83 { 0xB967, 0x00000019 },
84 { 0xB987, 0x00000019 },
85 { 0xB906, 0x00220001 },
86 { 0xB926, 0x00220001 },
87 { 0xB946, 0x00220001 },
88 { 0xB966, 0x00220001 },
89 { 0xB986, 0x00300000 },
90 { 0xAC40, 0x0340FF41 },
91 { 0xAC41, 0x03BEFED0 },
92 { 0xAC42, 0x00331FED },
93 { 0xAC43, 0x021FFDD3 },
94 { 0xAC44, 0x5555AAAA },
95 { 0xAC45, 0x5555AAAA },
96 { 0xB9BA, 0x00000008 },
97 };
98
99 /*
100 * Get the actual voltage value for the operating point at the specified
101 * frequency
102 */
_get_mvolts(struct msm_gpu * gpu,uint32_t freq)103 static inline uint32_t _get_mvolts(struct msm_gpu *gpu, uint32_t freq)
104 {
105 struct drm_device *dev = gpu->dev;
106 struct msm_drm_private *priv = dev->dev_private;
107 struct platform_device *pdev = priv->gpu_pdev;
108 struct dev_pm_opp *opp;
109 u32 ret = 0;
110
111 opp = dev_pm_opp_find_freq_exact(&pdev->dev, freq, true);
112
113 if (!IS_ERR(opp)) {
114 ret = dev_pm_opp_get_voltage(opp) / 1000;
115 dev_pm_opp_put(opp);
116 }
117
118 return ret;
119 }
120
121 /* Setup thermal limit management */
a530_lm_setup(struct msm_gpu * gpu)122 static void a530_lm_setup(struct msm_gpu *gpu)
123 {
124 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
125 struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
126 unsigned int i;
127
128 /* Write the block of sequence registers */
129 for (i = 0; i < ARRAY_SIZE(a5xx_sequence_regs); i++)
130 gpu_write(gpu, a5xx_sequence_regs[i].reg,
131 a5xx_sequence_regs[i].value);
132
133 /* Hard code the A530 GPU thermal sensor ID for the GPMU */
134 gpu_write(gpu, REG_A5XX_GPMU_TEMP_SENSOR_ID, 0x60007);
135 gpu_write(gpu, REG_A5XX_GPMU_DELTA_TEMP_THRESHOLD, 0x01);
136 gpu_write(gpu, REG_A5XX_GPMU_TEMP_SENSOR_CONFIG, 0x01);
137
138 /* Until we get clock scaling 0 is always the active power level */
139 gpu_write(gpu, REG_A5XX_GPMU_GPMU_VOLTAGE, 0x80000000 | 0);
140
141 gpu_write(gpu, REG_A5XX_GPMU_BASE_LEAKAGE, a5xx_gpu->lm_leakage);
142
143 /* The threshold is fixed at 6000 for A530 */
144 gpu_write(gpu, REG_A5XX_GPMU_GPMU_PWR_THRESHOLD, 0x80000000 | 6000);
145
146 gpu_write(gpu, REG_A5XX_GPMU_BEC_ENABLE, 0x10001FFF);
147 gpu_write(gpu, REG_A5XX_GDPM_CONFIG1, 0x00201FF1);
148
149 /* Write the voltage table */
150 gpu_write(gpu, REG_A5XX_GPMU_BEC_ENABLE, 0x10001FFF);
151 gpu_write(gpu, REG_A5XX_GDPM_CONFIG1, 0x201FF1);
152
153 gpu_write(gpu, AGC_MSG_STATE, 1);
154 gpu_write(gpu, AGC_MSG_COMMAND, AGC_POWER_CONFIG_PRODUCTION_ID);
155
156 /* Write the max power - hard coded to 5448 for A530 */
157 gpu_write(gpu, AGC_MSG_PAYLOAD(0), 5448);
158 gpu_write(gpu, AGC_MSG_PAYLOAD(1), 1);
159
160 /*
161 * For now just write the one voltage level - we will do more when we
162 * can do scaling
163 */
164 gpu_write(gpu, AGC_MSG_PAYLOAD(2), _get_mvolts(gpu, gpu->fast_rate));
165 gpu_write(gpu, AGC_MSG_PAYLOAD(3), gpu->fast_rate / 1000000);
166
167 gpu_write(gpu, AGC_MSG_PAYLOAD_SIZE, 4 * sizeof(uint32_t));
168 gpu_write(gpu, AGC_INIT_MSG_MAGIC, AGC_INIT_MSG_VALUE);
169 }
170
171 #define PAYLOAD_SIZE(_size) ((_size) * sizeof(u32))
172 #define LM_DCVS_LIMIT 1
173 #define LEVEL_CONFIG ~(0x303)
174
a540_lm_setup(struct msm_gpu * gpu)175 static void a540_lm_setup(struct msm_gpu *gpu)
176 {
177 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
178 u32 config;
179
180 /* The battery current limiter isn't enabled for A540 */
181 config = AGC_LM_CONFIG_BCL_DISABLED;
182 config |= adreno_gpu->rev.patchid << AGC_LM_CONFIG_GPU_VERSION_SHIFT;
183
184 /* For now disable GPMU side throttling */
185 config |= AGC_LM_CONFIG_THROTTLE_DISABLE;
186
187 /* Until we get clock scaling 0 is always the active power level */
188 gpu_write(gpu, REG_A5XX_GPMU_GPMU_VOLTAGE, 0x80000000 | 0);
189
190 /* Fixed at 6000 for now */
191 gpu_write(gpu, REG_A5XX_GPMU_GPMU_PWR_THRESHOLD, 0x80000000 | 6000);
192
193 gpu_write(gpu, AGC_MSG_STATE, 0x80000001);
194 gpu_write(gpu, AGC_MSG_COMMAND, AGC_POWER_CONFIG_PRODUCTION_ID);
195
196 gpu_write(gpu, AGC_MSG_PAYLOAD(0), 5448);
197 gpu_write(gpu, AGC_MSG_PAYLOAD(1), 1);
198
199 gpu_write(gpu, AGC_MSG_PAYLOAD(2), _get_mvolts(gpu, gpu->fast_rate));
200 gpu_write(gpu, AGC_MSG_PAYLOAD(3), gpu->fast_rate / 1000000);
201
202 gpu_write(gpu, AGC_MSG_PAYLOAD(AGC_LM_CONFIG), config);
203 gpu_write(gpu, AGC_MSG_PAYLOAD(AGC_LEVEL_CONFIG), LEVEL_CONFIG);
204 gpu_write(gpu, AGC_MSG_PAYLOAD_SIZE,
205 PAYLOAD_SIZE(AGC_LEVEL_CONFIG + 1));
206
207 gpu_write(gpu, AGC_INIT_MSG_MAGIC, AGC_INIT_MSG_VALUE);
208 }
209
210 /* Enable SP/TP cpower collapse */
a5xx_pc_init(struct msm_gpu * gpu)211 static void a5xx_pc_init(struct msm_gpu *gpu)
212 {
213 gpu_write(gpu, REG_A5XX_GPMU_PWR_COL_INTER_FRAME_CTRL, 0x7F);
214 gpu_write(gpu, REG_A5XX_GPMU_PWR_COL_BINNING_CTRL, 0);
215 gpu_write(gpu, REG_A5XX_GPMU_PWR_COL_INTER_FRAME_HYST, 0xA0080);
216 gpu_write(gpu, REG_A5XX_GPMU_PWR_COL_STAGGER_DELAY, 0x600040);
217 }
218
219 /* Enable the GPMU microcontroller */
a5xx_gpmu_init(struct msm_gpu * gpu)220 static int a5xx_gpmu_init(struct msm_gpu *gpu)
221 {
222 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
223 struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
224 struct msm_ringbuffer *ring = gpu->rb[0];
225
226 if (!a5xx_gpu->gpmu_dwords)
227 return 0;
228
229 /* Turn off protected mode for this operation */
230 OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
231 OUT_RING(ring, 0);
232
233 /* Kick off the IB to load the GPMU microcode */
234 OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3);
235 OUT_RING(ring, lower_32_bits(a5xx_gpu->gpmu_iova));
236 OUT_RING(ring, upper_32_bits(a5xx_gpu->gpmu_iova));
237 OUT_RING(ring, a5xx_gpu->gpmu_dwords);
238
239 /* Turn back on protected mode */
240 OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
241 OUT_RING(ring, 1);
242
243 gpu->funcs->flush(gpu, ring);
244
245 if (!a5xx_idle(gpu, ring)) {
246 DRM_ERROR("%s: Unable to load GPMU firmware. GPMU will not be active\n",
247 gpu->name);
248 return -EINVAL;
249 }
250
251 if (adreno_is_a530(adreno_gpu))
252 gpu_write(gpu, REG_A5XX_GPMU_WFI_CONFIG, 0x4014);
253
254 /* Kick off the GPMU */
255 gpu_write(gpu, REG_A5XX_GPMU_CM3_SYSRESET, 0x0);
256
257 /*
258 * Wait for the GPMU to respond. It isn't fatal if it doesn't, we just
259 * won't have advanced power collapse.
260 */
261 if (spin_usecs(gpu, 25, REG_A5XX_GPMU_GENERAL_0, 0xFFFFFFFF,
262 0xBABEFACE))
263 DRM_ERROR("%s: GPMU firmware initialization timed out\n",
264 gpu->name);
265
266 if (!adreno_is_a530(adreno_gpu)) {
267 u32 val = gpu_read(gpu, REG_A5XX_GPMU_GENERAL_1);
268
269 if (val)
270 DRM_ERROR("%s: GPMU firmware initialization failed: %d\n",
271 gpu->name, val);
272 }
273
274 return 0;
275 }
276
277 /* Enable limits management */
a5xx_lm_enable(struct msm_gpu * gpu)278 static void a5xx_lm_enable(struct msm_gpu *gpu)
279 {
280 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
281
282 /* This init sequence only applies to A530 */
283 if (!adreno_is_a530(adreno_gpu))
284 return;
285
286 gpu_write(gpu, REG_A5XX_GDPM_INT_MASK, 0x0);
287 gpu_write(gpu, REG_A5XX_GDPM_INT_EN, 0x0A);
288 gpu_write(gpu, REG_A5XX_GPMU_GPMU_VOLTAGE_INTR_EN_MASK, 0x01);
289 gpu_write(gpu, REG_A5XX_GPMU_TEMP_THRESHOLD_INTR_EN_MASK, 0x50000);
290 gpu_write(gpu, REG_A5XX_GPMU_THROTTLE_UNMASK_FORCE_CTRL, 0x30000);
291
292 gpu_write(gpu, REG_A5XX_GPMU_CLOCK_THROTTLE_CTRL, 0x011);
293 }
294
a5xx_power_init(struct msm_gpu * gpu)295 int a5xx_power_init(struct msm_gpu *gpu)
296 {
297 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
298 int ret;
299
300 /* Set up the limits management */
301 if (adreno_is_a530(adreno_gpu))
302 a530_lm_setup(gpu);
303 else
304 a540_lm_setup(gpu);
305
306 /* Set up SP/TP power collpase */
307 a5xx_pc_init(gpu);
308
309 /* Start the GPMU */
310 ret = a5xx_gpmu_init(gpu);
311 if (ret)
312 return ret;
313
314 /* Start the limits management */
315 a5xx_lm_enable(gpu);
316
317 return 0;
318 }
319
a5xx_gpmu_ucode_init(struct msm_gpu * gpu)320 void a5xx_gpmu_ucode_init(struct msm_gpu *gpu)
321 {
322 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
323 struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
324 struct drm_device *drm = gpu->dev;
325 uint32_t dwords = 0, offset = 0, bosize;
326 unsigned int *data, *ptr, *cmds;
327 unsigned int cmds_size;
328
329 if (a5xx_gpu->gpmu_bo)
330 return;
331
332 data = (unsigned int *) adreno_gpu->fw[ADRENO_FW_GPMU]->data;
333
334 /*
335 * The first dword is the size of the remaining data in dwords. Use it
336 * as a checksum of sorts and make sure it matches the actual size of
337 * the firmware that we read
338 */
339
340 if (adreno_gpu->fw[ADRENO_FW_GPMU]->size < 8 ||
341 (data[0] < 2) || (data[0] >=
342 (adreno_gpu->fw[ADRENO_FW_GPMU]->size >> 2)))
343 return;
344
345 /* The second dword is an ID - look for 2 (GPMU_FIRMWARE_ID) */
346 if (data[1] != 2)
347 return;
348
349 cmds = data + data[2] + 3;
350 cmds_size = data[0] - data[2] - 2;
351
352 /*
353 * A single type4 opcode can only have so many values attached so
354 * add enough opcodes to load the all the commands
355 */
356 bosize = (cmds_size + (cmds_size / TYPE4_MAX_PAYLOAD) + 1) << 2;
357
358 ptr = msm_gem_kernel_new_locked(drm, bosize,
359 MSM_BO_UNCACHED | MSM_BO_GPU_READONLY, gpu->aspace,
360 &a5xx_gpu->gpmu_bo, &a5xx_gpu->gpmu_iova);
361 if (IS_ERR(ptr))
362 return;
363
364 msm_gem_object_set_name(a5xx_gpu->gpmu_bo, "gpmufw");
365
366 while (cmds_size > 0) {
367 int i;
368 uint32_t _size = cmds_size > TYPE4_MAX_PAYLOAD ?
369 TYPE4_MAX_PAYLOAD : cmds_size;
370
371 ptr[dwords++] = PKT4(REG_A5XX_GPMU_INST_RAM_BASE + offset,
372 _size);
373
374 for (i = 0; i < _size; i++)
375 ptr[dwords++] = *cmds++;
376
377 offset += _size;
378 cmds_size -= _size;
379 }
380
381 msm_gem_put_vaddr(a5xx_gpu->gpmu_bo);
382 a5xx_gpu->gpmu_dwords = dwords;
383 }
384