1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2011 Realtek Corporation. */
3 
4 #define _HCI_HAL_INIT_C_
5 
6 #include "../include/osdep_service.h"
7 #include "../include/drv_types.h"
8 #include "../include/rtw_efuse.h"
9 
10 #include "../include/rtl8188e_hal.h"
11 #include "../include/rtl8188e_led.h"
12 #include "../include/rtw_iol.h"
13 #include "../include/usb_ops.h"
14 #include "../include/usb_osintf.h"
15 
16 #define		HAL_MAC_ENABLE	1
17 #define		HAL_BB_ENABLE		1
18 #define		HAL_RF_ENABLE		1
19 
_ConfigNormalChipOutEP_8188E(struct adapter * adapt,u8 NumOutPipe)20 static void _ConfigNormalChipOutEP_8188E(struct adapter *adapt, u8 NumOutPipe)
21 {
22 	struct hal_data_8188e	*haldata	= GET_HAL_DATA(adapt);
23 
24 	switch (NumOutPipe) {
25 	case	3:
26 		haldata->OutEpQueueSel = TX_SELE_HQ | TX_SELE_LQ | TX_SELE_NQ;
27 		haldata->OutEpNumber = 3;
28 		break;
29 	case	2:
30 		haldata->OutEpQueueSel = TX_SELE_HQ | TX_SELE_NQ;
31 		haldata->OutEpNumber = 2;
32 		break;
33 	case	1:
34 		haldata->OutEpQueueSel = TX_SELE_HQ;
35 		haldata->OutEpNumber = 1;
36 		break;
37 	default:
38 		break;
39 	}
40 	DBG_88E("%s OutEpQueueSel(0x%02x), OutEpNumber(%d)\n", __func__, haldata->OutEpQueueSel, haldata->OutEpNumber);
41 }
42 
HalUsbSetQueuePipeMapping8188EUsb(struct adapter * adapt,u8 NumInPipe,u8 NumOutPipe)43 static bool HalUsbSetQueuePipeMapping8188EUsb(struct adapter *adapt, u8 NumInPipe, u8 NumOutPipe)
44 {
45 	struct hal_data_8188e	*haldata	= GET_HAL_DATA(adapt);
46 	bool			result		= false;
47 
48 	_ConfigNormalChipOutEP_8188E(adapt, NumOutPipe);
49 
50 	/*  Normal chip with one IN and one OUT doesn't have interrupt IN EP. */
51 	if (1 == haldata->OutEpNumber) {
52 		if (1 != NumInPipe)
53 			return result;
54 	}
55 
56 	/*  All config other than above support one Bulk IN and one Interrupt IN. */
57 
58 	result = Hal_MappingOutPipe(adapt, NumOutPipe);
59 
60 	return result;
61 }
62 
rtl8188eu_interface_configure(struct adapter * adapt)63 static void rtl8188eu_interface_configure(struct adapter *adapt)
64 {
65 	struct hal_data_8188e	*haldata	= GET_HAL_DATA(adapt);
66 	struct dvobj_priv	*pdvobjpriv = adapter_to_dvobj(adapt);
67 
68 	if (pdvobjpriv->ishighspeed)
69 		haldata->UsbBulkOutSize = USB_HIGH_SPEED_BULK_SIZE;/* 512 bytes */
70 	else
71 		haldata->UsbBulkOutSize = USB_FULL_SPEED_BULK_SIZE;/* 64 bytes */
72 
73 	haldata->interfaceIndex = pdvobjpriv->InterfaceNumber;
74 
75 	haldata->UsbTxAggMode		= 1;
76 	haldata->UsbTxAggDescNum	= 0x6;	/*  only 4 bits */
77 
78 	haldata->UsbRxAggMode		= USB_RX_AGG_DMA;/*  USB_RX_AGG_DMA; */
79 	haldata->UsbRxAggBlockCount	= 8; /* unit : 512b */
80 	haldata->UsbRxAggBlockTimeout	= 0x6;
81 	haldata->UsbRxAggPageCount	= 48; /* uint :128 b 0x0A;	10 = MAX_RX_DMA_BUFFER_SIZE/2/haldata->UsbBulkOutSize */
82 	haldata->UsbRxAggPageTimeout	= 0x4; /* 6, absolute time = 34ms/(2^6) */
83 
84 	HalUsbSetQueuePipeMapping8188EUsb(adapt,
85 				pdvobjpriv->RtNumInPipes, pdvobjpriv->RtNumOutPipes);
86 }
87 
rtl8188eu_InitPowerOn(struct adapter * adapt)88 static u32 rtl8188eu_InitPowerOn(struct adapter *adapt)
89 {
90 	u16 value16;
91 	/*  HW Power on sequence */
92 	struct hal_data_8188e	*haldata	= GET_HAL_DATA(adapt);
93 	if (haldata->bMacPwrCtrlOn)
94 		return _SUCCESS;
95 
96 	if (!HalPwrSeqCmdParsing(adapt, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK, PWR_INTF_USB_MSK, Rtl8188E_NIC_PWR_ON_FLOW)) {
97 		DBG_88E(KERN_ERR "%s: run power on flow fail\n", __func__);
98 		return _FAIL;
99 	}
100 
101 	/*  Enable MAC DMA/WMAC/SCHEDULE/SEC block */
102 	/*  Set CR bit10 to enable 32k calibration. Suggested by SD1 Gimmy. Added by tynli. 2011.08.31. */
103 	rtw_write16(adapt, REG_CR, 0x00);  /* suggseted by zhouzhou, by page, 20111230 */
104 
105 		/*  Enable MAC DMA/WMAC/SCHEDULE/SEC block */
106 	value16 = rtw_read16(adapt, REG_CR);
107 	value16 |= (HCI_TXDMA_EN | HCI_RXDMA_EN | TXDMA_EN | RXDMA_EN
108 				| PROTOCOL_EN | SCHEDULE_EN | ENSEC | CALTMR_EN);
109 	/*  for SDIO - Set CR bit10 to enable 32k calibration. Suggested by SD1 Gimmy. Added by tynli. 2011.08.31. */
110 
111 	rtw_write16(adapt, REG_CR, value16);
112 	haldata->bMacPwrCtrlOn = true;
113 
114 	return _SUCCESS;
115 }
116 
117 /*  Shall USB interface init this? */
_InitInterrupt(struct adapter * Adapter)118 static void _InitInterrupt(struct adapter *Adapter)
119 {
120 	u32 imr, imr_ex;
121 	u8  usb_opt;
122 	struct hal_data_8188e	*haldata = GET_HAL_DATA(Adapter);
123 
124 	/* HISR write one to clear */
125 	rtw_write32(Adapter, REG_HISR_88E, 0xFFFFFFFF);
126 	/*  HIMR - */
127 	imr = IMR_PSTIMEOUT_88E | IMR_TBDER_88E | IMR_CPWM_88E | IMR_CPWM2_88E;
128 	rtw_write32(Adapter, REG_HIMR_88E, imr);
129 	haldata->IntrMask[0] = imr;
130 
131 	imr_ex = IMR_TXERR_88E | IMR_RXERR_88E | IMR_TXFOVW_88E | IMR_RXFOVW_88E;
132 	rtw_write32(Adapter, REG_HIMRE_88E, imr_ex);
133 	haldata->IntrMask[1] = imr_ex;
134 
135 	/*  REG_USB_SPECIAL_OPTION - BIT(4) */
136 	/*  0; Use interrupt endpoint to upload interrupt pkt */
137 	/*  1; Use bulk endpoint to upload interrupt pkt, */
138 	usb_opt = rtw_read8(Adapter, REG_USB_SPECIAL_OPTION);
139 
140 	if (!adapter_to_dvobj(Adapter)->ishighspeed)
141 		usb_opt = usb_opt & (~INT_BULK_SEL);
142 	else
143 		usb_opt = usb_opt | (INT_BULK_SEL);
144 
145 	rtw_write8(Adapter, REG_USB_SPECIAL_OPTION, usb_opt);
146 }
147 
_InitQueueReservedPage(struct adapter * Adapter)148 static void _InitQueueReservedPage(struct adapter *Adapter)
149 {
150 	struct hal_data_8188e		*haldata = GET_HAL_DATA(Adapter);
151 	struct registry_priv	*pregistrypriv = &Adapter->registrypriv;
152 	u32 numHQ	= 0;
153 	u32 numLQ	= 0;
154 	u32 numNQ	= 0;
155 	u32 numPubQ;
156 	u32 value32;
157 	u8 value8;
158 	bool bWiFiConfig = pregistrypriv->wifi_spec;
159 
160 	if (bWiFiConfig) {
161 		if (haldata->OutEpQueueSel & TX_SELE_HQ)
162 			numHQ =  0x29;
163 
164 		if (haldata->OutEpQueueSel & TX_SELE_LQ)
165 			numLQ = 0x1C;
166 
167 		/*  NOTE: This step shall be proceed before writting REG_RQPN. */
168 		if (haldata->OutEpQueueSel & TX_SELE_NQ)
169 			numNQ = 0x1C;
170 		value8 = (u8)_NPQ(numNQ);
171 		rtw_write8(Adapter, REG_RQPN_NPQ, value8);
172 
173 		numPubQ = 0xA8 - numHQ - numLQ - numNQ;
174 
175 		/*  TX DMA */
176 		value32 = _HPQ(numHQ) | _LPQ(numLQ) | _PUBQ(numPubQ) | LD_RQPN;
177 		rtw_write32(Adapter, REG_RQPN, value32);
178 	} else {
179 		rtw_write16(Adapter, REG_RQPN_NPQ, 0x0000);/* Just follow MP Team,??? Georgia 03/28 */
180 		rtw_write16(Adapter, REG_RQPN_NPQ, 0x0d);
181 		rtw_write32(Adapter, REG_RQPN, 0x808E000d);/* reserve 7 page for LPS */
182 	}
183 }
184 
_InitTxBufferBoundary(struct adapter * Adapter,u8 txpktbuf_bndy)185 static void _InitTxBufferBoundary(struct adapter *Adapter, u8 txpktbuf_bndy)
186 {
187 	rtw_write8(Adapter, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy);
188 	rtw_write8(Adapter, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy);
189 	rtw_write8(Adapter, REG_TXPKTBUF_WMAC_LBK_BF_HD, txpktbuf_bndy);
190 	rtw_write8(Adapter, REG_TRXFF_BNDY, txpktbuf_bndy);
191 	rtw_write8(Adapter, REG_TDECTRL + 1, txpktbuf_bndy);
192 }
193 
_InitPageBoundary(struct adapter * Adapter)194 static void _InitPageBoundary(struct adapter *Adapter)
195 {
196 	/*  RX Page Boundary */
197 	/*  */
198 	u16 rxff_bndy = MAX_RX_DMA_BUFFER_SIZE_88E - 1;
199 
200 	rtw_write16(Adapter, (REG_TRXFF_BNDY + 2), rxff_bndy);
201 }
202 
_InitNormalChipRegPriority(struct adapter * Adapter,u16 beQ,u16 bkQ,u16 viQ,u16 voQ,u16 mgtQ,u16 hiQ)203 static void _InitNormalChipRegPriority(struct adapter *Adapter, u16 beQ,
204 				       u16 bkQ, u16 viQ, u16 voQ, u16 mgtQ,
205 				       u16 hiQ)
206 {
207 	u16 value16	= (rtw_read16(Adapter, REG_TRXDMA_CTRL) & 0x7);
208 
209 	value16 |= _TXDMA_BEQ_MAP(beQ)	| _TXDMA_BKQ_MAP(bkQ) |
210 		   _TXDMA_VIQ_MAP(viQ)	| _TXDMA_VOQ_MAP(voQ) |
211 		   _TXDMA_MGQ_MAP(mgtQ) | _TXDMA_HIQ_MAP(hiQ);
212 
213 	rtw_write16(Adapter, REG_TRXDMA_CTRL, value16);
214 }
215 
_InitNormalChipOneOutEpPriority(struct adapter * Adapter)216 static void _InitNormalChipOneOutEpPriority(struct adapter *Adapter)
217 {
218 	struct hal_data_8188e	*haldata	= GET_HAL_DATA(Adapter);
219 
220 	u16 value = 0;
221 	switch (haldata->OutEpQueueSel) {
222 	case TX_SELE_HQ:
223 		value = QUEUE_HIGH;
224 		break;
225 	case TX_SELE_LQ:
226 		value = QUEUE_LOW;
227 		break;
228 	case TX_SELE_NQ:
229 		value = QUEUE_NORMAL;
230 		break;
231 	default:
232 		break;
233 	}
234 	_InitNormalChipRegPriority(Adapter, value, value, value, value,
235 				   value, value);
236 }
237 
_InitNormalChipTwoOutEpPriority(struct adapter * Adapter)238 static void _InitNormalChipTwoOutEpPriority(struct adapter *Adapter)
239 {
240 	struct hal_data_8188e	*haldata	= GET_HAL_DATA(Adapter);
241 	struct registry_priv *pregistrypriv = &Adapter->registrypriv;
242 	u16 beQ, bkQ, viQ, voQ, mgtQ, hiQ;
243 	u16 valueHi = 0;
244 	u16 valueLow = 0;
245 
246 	switch (haldata->OutEpQueueSel) {
247 	case (TX_SELE_HQ | TX_SELE_LQ):
248 		valueHi = QUEUE_HIGH;
249 		valueLow = QUEUE_LOW;
250 		break;
251 	case (TX_SELE_NQ | TX_SELE_LQ):
252 		valueHi = QUEUE_NORMAL;
253 		valueLow = QUEUE_LOW;
254 		break;
255 	case (TX_SELE_HQ | TX_SELE_NQ):
256 		valueHi = QUEUE_HIGH;
257 		valueLow = QUEUE_NORMAL;
258 		break;
259 	default:
260 		break;
261 	}
262 
263 	if (!pregistrypriv->wifi_spec) {
264 		beQ	= valueLow;
265 		bkQ	= valueLow;
266 		viQ	= valueHi;
267 		voQ	= valueHi;
268 		mgtQ	= valueHi;
269 		hiQ	= valueHi;
270 	} else {/* for WMM ,CONFIG_OUT_EP_WIFI_MODE */
271 		beQ	= valueLow;
272 		bkQ	= valueHi;
273 		viQ	= valueHi;
274 		voQ	= valueLow;
275 		mgtQ	= valueHi;
276 		hiQ	= valueHi;
277 	}
278 	_InitNormalChipRegPriority(Adapter, beQ, bkQ, viQ, voQ, mgtQ, hiQ);
279 }
280 
_InitNormalChipThreeOutEpPriority(struct adapter * Adapter)281 static void _InitNormalChipThreeOutEpPriority(struct adapter *Adapter)
282 {
283 	struct registry_priv *pregistrypriv = &Adapter->registrypriv;
284 	u16 beQ, bkQ, viQ, voQ, mgtQ, hiQ;
285 
286 	if (!pregistrypriv->wifi_spec) {/*  typical setting */
287 		beQ	= QUEUE_LOW;
288 		bkQ	= QUEUE_LOW;
289 		viQ	= QUEUE_NORMAL;
290 		voQ	= QUEUE_HIGH;
291 		mgtQ	= QUEUE_HIGH;
292 		hiQ	= QUEUE_HIGH;
293 	} else {/*  for WMM */
294 		beQ	= QUEUE_LOW;
295 		bkQ	= QUEUE_NORMAL;
296 		viQ	= QUEUE_NORMAL;
297 		voQ	= QUEUE_HIGH;
298 		mgtQ	= QUEUE_HIGH;
299 		hiQ	= QUEUE_HIGH;
300 	}
301 	_InitNormalChipRegPriority(Adapter, beQ, bkQ, viQ, voQ, mgtQ, hiQ);
302 }
303 
_InitQueuePriority(struct adapter * Adapter)304 static void _InitQueuePriority(struct adapter *Adapter)
305 {
306 	struct hal_data_8188e	*haldata = GET_HAL_DATA(Adapter);
307 
308 	switch (haldata->OutEpNumber) {
309 	case 1:
310 		_InitNormalChipOneOutEpPriority(Adapter);
311 		break;
312 	case 2:
313 		_InitNormalChipTwoOutEpPriority(Adapter);
314 		break;
315 	case 3:
316 		_InitNormalChipThreeOutEpPriority(Adapter);
317 		break;
318 	default:
319 		break;
320 	}
321 }
322 
_InitNetworkType(struct adapter * Adapter)323 static void _InitNetworkType(struct adapter *Adapter)
324 {
325 	u32 value32;
326 
327 	value32 = rtw_read32(Adapter, REG_CR);
328 	/*  TODO: use the other function to set network type */
329 	value32 = (value32 & ~MASK_NETTYPE) | _NETTYPE(NT_LINK_AP);
330 
331 	rtw_write32(Adapter, REG_CR, value32);
332 }
333 
_InitTransferPageSize(struct adapter * Adapter)334 static void _InitTransferPageSize(struct adapter *Adapter)
335 {
336 	/*  Tx page size is always 128. */
337 
338 	u8 value8;
339 	value8 = _PSRX(PBP_128) | _PSTX(PBP_128);
340 	rtw_write8(Adapter, REG_PBP, value8);
341 }
342 
_InitDriverInfoSize(struct adapter * Adapter,u8 drvInfoSize)343 static void _InitDriverInfoSize(struct adapter *Adapter, u8 drvInfoSize)
344 {
345 	rtw_write8(Adapter, REG_RX_DRVINFO_SZ, drvInfoSize);
346 }
347 
_InitWMACSetting(struct adapter * Adapter)348 static void _InitWMACSetting(struct adapter *Adapter)
349 {
350 	struct hal_data_8188e	*haldata = GET_HAL_DATA(Adapter);
351 
352 	haldata->ReceiveConfig = RCR_AAP | RCR_APM | RCR_AM | RCR_AB |
353 				  RCR_CBSSID_DATA | RCR_CBSSID_BCN |
354 				  RCR_APP_ICV | RCR_AMF | RCR_HTC_LOC_CTRL |
355 				  RCR_APP_MIC | RCR_APP_PHYSTS;
356 
357 	/*  some REG_RCR will be modified later by phy_ConfigMACWithHeaderFile() */
358 	rtw_write32(Adapter, REG_RCR, haldata->ReceiveConfig);
359 
360 	/*  Accept all multicast address */
361 	rtw_write32(Adapter, REG_MAR, 0xFFFFFFFF);
362 	rtw_write32(Adapter, REG_MAR + 4, 0xFFFFFFFF);
363 }
364 
_InitAdaptiveCtrl(struct adapter * Adapter)365 static void _InitAdaptiveCtrl(struct adapter *Adapter)
366 {
367 	u16 value16;
368 	u32 value32;
369 
370 	/*  Response Rate Set */
371 	value32 = rtw_read32(Adapter, REG_RRSR);
372 	value32 &= ~RATE_BITMAP_ALL;
373 	value32 |= RATE_RRSR_CCK_ONLY_1M;
374 	rtw_write32(Adapter, REG_RRSR, value32);
375 
376 	/*  CF-END Threshold */
377 
378 	/*  SIFS (used in NAV) */
379 	value16 = _SPEC_SIFS_CCK(0x10) | _SPEC_SIFS_OFDM(0x10);
380 	rtw_write16(Adapter, REG_SPEC_SIFS, value16);
381 
382 	/*  Retry Limit */
383 	value16 = _LRL(0x30) | _SRL(0x30);
384 	rtw_write16(Adapter, REG_RL, value16);
385 }
386 
_InitEDCA(struct adapter * Adapter)387 static void _InitEDCA(struct adapter *Adapter)
388 {
389 	/*  Set Spec SIFS (used in NAV) */
390 	rtw_write16(Adapter, REG_SPEC_SIFS, 0x100a);
391 	rtw_write16(Adapter, REG_MAC_SPEC_SIFS, 0x100a);
392 
393 	/*  Set SIFS for CCK */
394 	rtw_write16(Adapter, REG_SIFS_CTX, 0x100a);
395 
396 	/*  Set SIFS for OFDM */
397 	rtw_write16(Adapter, REG_SIFS_TRX, 0x100a);
398 
399 	/*  TXOP */
400 	rtw_write32(Adapter, REG_EDCA_BE_PARAM, 0x005EA42B);
401 	rtw_write32(Adapter, REG_EDCA_BK_PARAM, 0x0000A44F);
402 	rtw_write32(Adapter, REG_EDCA_VI_PARAM, 0x005EA324);
403 	rtw_write32(Adapter, REG_EDCA_VO_PARAM, 0x002FA226);
404 }
405 
_InitBeaconMaxError(struct adapter * Adapter,bool InfraMode)406 static void _InitBeaconMaxError(struct adapter *Adapter, bool		InfraMode)
407 {
408 }
409 
_InitHWLed(struct adapter * Adapter)410 static void _InitHWLed(struct adapter *Adapter)
411 {
412 	struct led_priv *pledpriv = &Adapter->ledpriv;
413 
414 	if (pledpriv->LedStrategy != HW_LED)
415 		return;
416 
417 /*  HW led control */
418 /*  to do .... */
419 /* must consider cases of antenna diversity/ commbo card/solo card/mini card */
420 }
421 
_InitRDGSetting(struct adapter * Adapter)422 static void _InitRDGSetting(struct adapter *Adapter)
423 {
424 	rtw_write8(Adapter, REG_RD_CTRL, 0xFF);
425 	rtw_write16(Adapter, REG_RD_NAV_NXT, 0x200);
426 	rtw_write8(Adapter, REG_RD_RESP_PKT_TH, 0x05);
427 }
428 
_InitRxSetting(struct adapter * Adapter)429 static void _InitRxSetting(struct adapter *Adapter)
430 {
431 	rtw_write32(Adapter, REG_MACID, 0x87654321);
432 	rtw_write32(Adapter, 0x0700, 0x87654321);
433 }
434 
_InitRetryFunction(struct adapter * Adapter)435 static void _InitRetryFunction(struct adapter *Adapter)
436 {
437 	u8 value8;
438 
439 	value8 = rtw_read8(Adapter, REG_FWHW_TXQ_CTRL);
440 	value8 |= EN_AMPDU_RTY_NEW;
441 	rtw_write8(Adapter, REG_FWHW_TXQ_CTRL, value8);
442 
443 	/*  Set ACK timeout */
444 	rtw_write8(Adapter, REG_ACKTO, 0x40);
445 }
446 
447 /*-----------------------------------------------------------------------------
448  * Function:	usb_AggSettingTxUpdate()
449  *
450  * Overview:	Separate TX/RX parameters update independent for TP detection and
451  *			dynamic TX/RX aggreagtion parameters update.
452  *
453  * Input:			struct adapter *
454  *
455  * Output/Return:	NONE
456  *
457  * Revised History:
458  *	When		Who		Remark
459  *	12/10/2010	MHC		Separate to smaller function.
460  *
461  *---------------------------------------------------------------------------*/
usb_AggSettingTxUpdate(struct adapter * Adapter)462 static void usb_AggSettingTxUpdate(struct adapter *Adapter)
463 {
464 	struct hal_data_8188e	*haldata = GET_HAL_DATA(Adapter);
465 	u32 value32;
466 
467 	if (Adapter->registrypriv.wifi_spec)
468 		haldata->UsbTxAggMode = false;
469 
470 	if (haldata->UsbTxAggMode) {
471 		value32 = rtw_read32(Adapter, REG_TDECTRL);
472 		value32 = value32 & ~(BLK_DESC_NUM_MASK << BLK_DESC_NUM_SHIFT);
473 		value32 |= ((haldata->UsbTxAggDescNum & BLK_DESC_NUM_MASK) << BLK_DESC_NUM_SHIFT);
474 
475 		rtw_write32(Adapter, REG_TDECTRL, value32);
476 	}
477 }	/*  usb_AggSettingTxUpdate */
478 
479 /*-----------------------------------------------------------------------------
480  * Function:	usb_AggSettingRxUpdate()
481  *
482  * Overview:	Separate TX/RX parameters update independent for TP detection and
483  *			dynamic TX/RX aggreagtion parameters update.
484  *
485  * Input:			struct adapter *
486  *
487  * Output/Return:	NONE
488  *
489  * Revised History:
490  *	When		Who		Remark
491  *	12/10/2010	MHC		Separate to smaller function.
492  *
493  *---------------------------------------------------------------------------*/
494 static void
usb_AggSettingRxUpdate(struct adapter * Adapter)495 usb_AggSettingRxUpdate(
496 		struct adapter *Adapter
497 	)
498 {
499 	struct hal_data_8188e	*haldata = GET_HAL_DATA(Adapter);
500 	u8 valueDMA;
501 	u8 valueUSB;
502 
503 	valueDMA = rtw_read8(Adapter, REG_TRXDMA_CTRL);
504 	valueUSB = rtw_read8(Adapter, REG_USB_SPECIAL_OPTION);
505 
506 	switch (haldata->UsbRxAggMode) {
507 	case USB_RX_AGG_DMA:
508 		valueDMA |= RXDMA_AGG_EN;
509 		valueUSB &= ~USB_AGG_EN;
510 		break;
511 	case USB_RX_AGG_USB:
512 		valueDMA &= ~RXDMA_AGG_EN;
513 		valueUSB |= USB_AGG_EN;
514 		break;
515 	case USB_RX_AGG_MIX:
516 		valueDMA |= RXDMA_AGG_EN;
517 		valueUSB |= USB_AGG_EN;
518 		break;
519 	case USB_RX_AGG_DISABLE:
520 	default:
521 		valueDMA &= ~RXDMA_AGG_EN;
522 		valueUSB &= ~USB_AGG_EN;
523 		break;
524 	}
525 
526 	rtw_write8(Adapter, REG_TRXDMA_CTRL, valueDMA);
527 	rtw_write8(Adapter, REG_USB_SPECIAL_OPTION, valueUSB);
528 
529 	switch (haldata->UsbRxAggMode) {
530 	case USB_RX_AGG_DMA:
531 		rtw_write8(Adapter, REG_RXDMA_AGG_PG_TH, haldata->UsbRxAggPageCount);
532 		rtw_write8(Adapter, REG_RXDMA_AGG_PG_TH + 1, haldata->UsbRxAggPageTimeout);
533 		break;
534 	case USB_RX_AGG_USB:
535 		rtw_write8(Adapter, REG_USB_AGG_TH, haldata->UsbRxAggBlockCount);
536 		rtw_write8(Adapter, REG_USB_AGG_TO, haldata->UsbRxAggBlockTimeout);
537 		break;
538 	case USB_RX_AGG_MIX:
539 		rtw_write8(Adapter, REG_RXDMA_AGG_PG_TH, haldata->UsbRxAggPageCount);
540 		rtw_write8(Adapter, REG_RXDMA_AGG_PG_TH + 1, (haldata->UsbRxAggPageTimeout & 0x1F));/* 0x280[12:8] */
541 		rtw_write8(Adapter, REG_USB_AGG_TH, haldata->UsbRxAggBlockCount);
542 		rtw_write8(Adapter, REG_USB_AGG_TO, haldata->UsbRxAggBlockTimeout);
543 		break;
544 	case USB_RX_AGG_DISABLE:
545 	default:
546 		/*  TODO: */
547 		break;
548 	}
549 
550 	switch (PBP_128) {
551 	case PBP_128:
552 		haldata->HwRxPageSize = 128;
553 		break;
554 	case PBP_64:
555 		haldata->HwRxPageSize = 64;
556 		break;
557 	case PBP_256:
558 		haldata->HwRxPageSize = 256;
559 		break;
560 	case PBP_512:
561 		haldata->HwRxPageSize = 512;
562 		break;
563 	case PBP_1024:
564 		haldata->HwRxPageSize = 1024;
565 		break;
566 	default:
567 		break;
568 	}
569 }	/*  usb_AggSettingRxUpdate */
570 
InitUsbAggregationSetting(struct adapter * Adapter)571 static void InitUsbAggregationSetting(struct adapter *Adapter)
572 {
573 	struct hal_data_8188e	*haldata = GET_HAL_DATA(Adapter);
574 
575 	/*  Tx aggregation setting */
576 	usb_AggSettingTxUpdate(Adapter);
577 
578 	/*  Rx aggregation setting */
579 	usb_AggSettingRxUpdate(Adapter);
580 
581 	/*  201/12/10 MH Add for USB agg mode dynamic switch. */
582 	haldata->UsbRxHighSpeedMode = false;
583 }
584 
_InitOperationMode(struct adapter * Adapter)585 static void _InitOperationMode(struct adapter *Adapter)
586 {
587 }
588 
_InitBeaconParameters(struct adapter * Adapter)589 static void _InitBeaconParameters(struct adapter *Adapter)
590 {
591 	struct hal_data_8188e	*haldata = GET_HAL_DATA(Adapter);
592 
593 	rtw_write16(Adapter, REG_BCN_CTRL, 0x1010);
594 
595 	/*  TODO: Remove these magic number */
596 	rtw_write16(Adapter, REG_TBTT_PROHIBIT, 0x6404);/*  ms */
597 	rtw_write8(Adapter, REG_DRVERLYINT, DRIVER_EARLY_INT_TIME);/*  5ms */
598 	rtw_write8(Adapter, REG_BCNDMATIM, BCN_DMA_ATIME_INT_TIME); /*  2ms */
599 
600 	/*  Suggested by designer timchen. Change beacon AIFS to the largest number */
601 	/*  beacause test chip does not contension before sending beacon. by tynli. 2009.11.03 */
602 	rtw_write16(Adapter, REG_BCNTCFG, 0x660F);
603 
604 	haldata->RegBcnCtrlVal = rtw_read8(Adapter, REG_BCN_CTRL);
605 	haldata->RegTxPause = rtw_read8(Adapter, REG_TXPAUSE);
606 	haldata->RegFwHwTxQCtrl = rtw_read8(Adapter, REG_FWHW_TXQ_CTRL + 2);
607 	haldata->RegReg542 = rtw_read8(Adapter, REG_TBTT_PROHIBIT + 2);
608 	haldata->RegCR_1 = rtw_read8(Adapter, REG_CR + 1);
609 }
610 
_BeaconFunctionEnable(struct adapter * Adapter,bool Enable,bool Linked)611 static void _BeaconFunctionEnable(struct adapter *Adapter,
612 				  bool Enable, bool Linked)
613 {
614 	rtw_write8(Adapter, REG_BCN_CTRL, (BIT(4) | BIT(3) | BIT(1)));
615 
616 	rtw_write8(Adapter, REG_RD_CTRL + 1, 0x6F);
617 }
618 
619 /*  Set CCK and OFDM Block "ON" */
_BBTurnOnBlock(struct adapter * Adapter)620 static void _BBTurnOnBlock(struct adapter *Adapter)
621 {
622 	PHY_SetBBReg(Adapter, rFPGA0_RFMOD, bCCKEn, 0x1);
623 	PHY_SetBBReg(Adapter, rFPGA0_RFMOD, bOFDMEn, 0x1);
624 }
625 
626 enum {
627 	Antenna_Lfet = 1,
628 	Antenna_Right = 2,
629 };
630 
_InitAntenna_Selection(struct adapter * Adapter)631 static void _InitAntenna_Selection(struct adapter *Adapter)
632 {
633 	struct hal_data_8188e	*haldata	= GET_HAL_DATA(Adapter);
634 
635 	if (haldata->AntDivCfg == 0)
636 		return;
637 	DBG_88E("==>  %s ....\n", __func__);
638 
639 	rtw_write32(Adapter, REG_LEDCFG0, rtw_read32(Adapter, REG_LEDCFG0) | BIT(23));
640 	PHY_SetBBReg(Adapter, rFPGA0_XAB_RFParameter, BIT(13), 0x01);
641 
642 	if (PHY_QueryBBReg(Adapter, rFPGA0_XA_RFInterfaceOE, 0x300) == Antenna_A)
643 		haldata->CurAntenna = Antenna_A;
644 	else
645 		haldata->CurAntenna = Antenna_B;
646 	DBG_88E("%s,Cur_ant:(%x)%s\n", __func__, haldata->CurAntenna, (haldata->CurAntenna == Antenna_A) ? "Antenna_A" : "Antenna_B");
647 }
648 
649 /*-----------------------------------------------------------------------------
650  * Function:	HwSuspendModeEnable92Cu()
651  *
652  * Overview:	HW suspend mode switch.
653  *
654  * Input:		NONE
655  *
656  * Output:	NONE
657  *
658  * Return:	NONE
659  *
660  * Revised History:
661  *	When		Who		Remark
662  *	08/23/2010	MHC		HW suspend mode switch test..
663  *---------------------------------------------------------------------------*/
RfOnOffDetect(struct adapter * adapt)664 enum rt_rf_power_state RfOnOffDetect(struct adapter *adapt)
665 {
666 	u8 val8;
667 	enum rt_rf_power_state rfpowerstate = rf_off;
668 
669 	if (adapt->pwrctrlpriv.bHWPowerdown) {
670 		val8 = rtw_read8(adapt, REG_HSISR);
671 		DBG_88E("pwrdown, 0x5c(BIT(7))=%02x\n", val8);
672 		rfpowerstate = (val8 & BIT(7)) ? rf_off : rf_on;
673 	} else { /*  rf on/off */
674 		rtw_write8(adapt, REG_MAC_PINMUX_CFG, rtw_read8(adapt, REG_MAC_PINMUX_CFG) & ~(BIT(3)));
675 		val8 = rtw_read8(adapt, REG_GPIO_IO_SEL);
676 		DBG_88E("GPIO_IN=%02x\n", val8);
677 		rfpowerstate = (val8 & BIT(3)) ? rf_on : rf_off;
678 	}
679 	return rfpowerstate;
680 }	/*  HalDetectPwrDownMode */
681 
rtl8188eu_hal_init(struct adapter * Adapter)682 static u32 rtl8188eu_hal_init(struct adapter *Adapter)
683 {
684 	u8 value8 = 0;
685 	u16  value16;
686 	u8 txpktbuf_bndy;
687 	u32 status = _SUCCESS;
688 	struct hal_data_8188e		*haldata = GET_HAL_DATA(Adapter);
689 	struct pwrctrl_priv		*pwrctrlpriv = &Adapter->pwrctrlpriv;
690 	struct registry_priv	*pregistrypriv = &Adapter->registrypriv;
691 	u32 init_start_time = jiffies;
692 
693 	#define HAL_INIT_PROFILE_TAG(stage) do {} while (0)
694 
695 	HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_BEGIN);
696 
697 	if (Adapter->pwrctrlpriv.bkeepfwalive) {
698 		_ps_open_RF(Adapter);
699 
700 		if (haldata->odmpriv.RFCalibrateInfo.bIQKInitialized) {
701 			PHY_IQCalibrate_8188E(Adapter, true);
702 		} else {
703 			PHY_IQCalibrate_8188E(Adapter, false);
704 			haldata->odmpriv.RFCalibrateInfo.bIQKInitialized = true;
705 		}
706 
707 		ODM_TXPowerTrackingCheck(&haldata->odmpriv);
708 		PHY_LCCalibrate_8188E(Adapter);
709 
710 		goto exit;
711 	}
712 
713 	HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_INIT_PW_ON);
714 	status = rtl8188eu_InitPowerOn(Adapter);
715 	if (status == _FAIL)
716 		goto exit;
717 
718 	/*  Save target channel */
719 	haldata->CurrentChannel = 6;/* default set to 6 */
720 
721 	if (pwrctrlpriv->reg_rfoff) {
722 		pwrctrlpriv->rf_pwrstate = rf_off;
723 	}
724 
725 	/*  2010/08/09 MH We need to check if we need to turnon or off RF after detecting */
726 	/*  HW GPIO pin. Before PHY_RFConfig8192C. */
727 	/*  2010/08/26 MH If Efuse does not support sective suspend then disable the function. */
728 
729 	if (!pregistrypriv->wifi_spec) {
730 		txpktbuf_bndy = TX_PAGE_BOUNDARY_88E;
731 	} else {
732 		/*  for WMM */
733 		txpktbuf_bndy = WMM_NORMAL_TX_PAGE_BOUNDARY_88E;
734 	}
735 
736 	HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_MISC01);
737 	_InitQueueReservedPage(Adapter);
738 	_InitQueuePriority(Adapter);
739 	_InitPageBoundary(Adapter);
740 	_InitTransferPageSize(Adapter);
741 
742 	_InitTxBufferBoundary(Adapter, 0);
743 
744 	HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_DOWNLOAD_FW);
745 	if (Adapter->registrypriv.mp_mode == 1) {
746 		_InitRxSetting(Adapter);
747 		Adapter->bFWReady = false;
748 		haldata->fw_ractrl = false;
749 	} else {
750 		status = rtl8188e_FirmwareDownload(Adapter);
751 
752 		if (status != _SUCCESS) {
753 			DBG_88E("%s: Download Firmware failed!!\n", __func__);
754 			Adapter->bFWReady = false;
755 			haldata->fw_ractrl = false;
756 			return status;
757 		} else {
758 			Adapter->bFWReady = true;
759 			haldata->fw_ractrl = false;
760 		}
761 	}
762 	rtl8188e_InitializeFirmwareVars(Adapter);
763 
764 	HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_MAC);
765 #if (HAL_MAC_ENABLE == 1)
766 	status = PHY_MACConfig8188E(Adapter);
767 	if (status == _FAIL) {
768 		DBG_88E(" ### Failed to init MAC ......\n ");
769 		goto exit;
770 	}
771 #endif
772 
773 	/*  */
774 	/* d. Initialize BB related configurations. */
775 	/*  */
776 	HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_BB);
777 #if (HAL_BB_ENABLE == 1)
778 	status = PHY_BBConfig8188E(Adapter);
779 	if (status == _FAIL) {
780 		DBG_88E(" ### Failed to init BB ......\n ");
781 		goto exit;
782 	}
783 #endif
784 
785 	HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_RF);
786 #if (HAL_RF_ENABLE == 1)
787 	status = PHY_RFConfig8188E(Adapter);
788 	if (status == _FAIL) {
789 		DBG_88E(" ### Failed to init RF ......\n ");
790 		goto exit;
791 	}
792 #endif
793 
794 	HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_EFUSE_PATCH);
795 	status = rtl8188e_iol_efuse_patch(Adapter);
796 	if (status == _FAIL) {
797 		DBG_88E("%s  rtl8188e_iol_efuse_patch failed\n", __func__);
798 		goto exit;
799 	}
800 
801 	_InitTxBufferBoundary(Adapter, txpktbuf_bndy);
802 
803 	HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_INIT_LLTT);
804 	status =  InitLLTTable(Adapter, txpktbuf_bndy);
805 	if (status == _FAIL)
806 		goto exit;
807 
808 	HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_MISC02);
809 	/*  Get Rx PHY status in order to report RSSI and others. */
810 	_InitDriverInfoSize(Adapter, DRVINFO_SZ);
811 
812 	_InitInterrupt(Adapter);
813 	hal_init_macaddr(Adapter);/* set mac_address */
814 	_InitNetworkType(Adapter);/* set msr */
815 	_InitWMACSetting(Adapter);
816 	_InitAdaptiveCtrl(Adapter);
817 	_InitEDCA(Adapter);
818 	_InitRetryFunction(Adapter);
819 	InitUsbAggregationSetting(Adapter);
820 	_InitOperationMode(Adapter);/* todo */
821 	_InitBeaconParameters(Adapter);
822 	_InitBeaconMaxError(Adapter, true);
823 
824 	/*  */
825 	/*  Init CR MACTXEN, MACRXEN after setting RxFF boundary REG_TRXFF_BNDY to patch */
826 	/*  Hw bug which Hw initials RxFF boundary size to a value which is larger than the real Rx buffer size in 88E. */
827 	/*  */
828 	/*  Enable MACTXEN/MACRXEN block */
829 	value16 = rtw_read16(Adapter, REG_CR);
830 	value16 |= (MACTXEN | MACRXEN);
831 	rtw_write8(Adapter, REG_CR, value16);
832 
833 	if (haldata->bRDGEnable)
834 		_InitRDGSetting(Adapter);
835 
836 	/* Enable TX Report */
837 	/* Enable Tx Report Timer */
838 	value8 = rtw_read8(Adapter, REG_TX_RPT_CTRL);
839 	rtw_write8(Adapter,  REG_TX_RPT_CTRL, (value8 | BIT(1) | BIT(0)));
840 	/* Set MAX RPT MACID */
841 	rtw_write8(Adapter,  REG_TX_RPT_CTRL + 1, 2);/* FOR sta mode ,0: bc/mc ,1:AP */
842 	/* Tx RPT Timer. Unit: 32us */
843 	rtw_write16(Adapter, REG_TX_RPT_TIME, 0xCdf0);
844 
845 	rtw_write8(Adapter, REG_EARLY_MODE_CONTROL, 0);
846 
847 	rtw_write16(Adapter, REG_PKT_VO_VI_LIFE_TIME, 0x0400);	/*  unit: 256us. 256ms */
848 	rtw_write16(Adapter, REG_PKT_BE_BK_LIFE_TIME, 0x0400);	/*  unit: 256us. 256ms */
849 
850 	_InitHWLed(Adapter);
851 
852 	/* Keep RfRegChnlVal for later use. */
853 	haldata->RfRegChnlVal[0] = PHY_QueryRFReg(Adapter, (enum rf_radio_path)0, RF_CHNLBW, bRFRegOffsetMask);
854 	haldata->RfRegChnlVal[1] = PHY_QueryRFReg(Adapter, (enum rf_radio_path)1, RF_CHNLBW, bRFRegOffsetMask);
855 
856 	HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_TURN_ON_BLOCK);
857 	_BBTurnOnBlock(Adapter);
858 
859 	HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_INIT_SECURITY);
860 	invalidate_cam_all(Adapter);
861 
862 	HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_MISC11);
863 	/*  2010/12/17 MH We need to set TX power according to EFUSE content at first. */
864 	PHY_SetTxPowerLevel8188E(Adapter, haldata->CurrentChannel);
865 
866 /*  Move by Neo for USB SS to below setp */
867 /* _RfPowerSave(Adapter); */
868 
869 	_InitAntenna_Selection(Adapter);
870 
871 	/*  */
872 	/*  Disable BAR, suggested by Scott */
873 	/*  2010.04.09 add by hpfan */
874 	/*  */
875 	rtw_write32(Adapter, REG_BAR_MODE_CTRL, 0x0201ffff);
876 
877 	/*  HW SEQ CTRL */
878 	/* set 0x0 to 0xFF by tynli. Default enable HW SEQ NUM. */
879 	rtw_write8(Adapter, REG_HWSEQ_CTRL, 0xFF);
880 
881 	if (pregistrypriv->wifi_spec)
882 		rtw_write16(Adapter, REG_FAST_EDCA_CTRL, 0);
883 
884 	/* Nav limit , suggest by scott */
885 	rtw_write8(Adapter, 0x652, 0x0);
886 
887 	HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_INIT_HAL_DM);
888 	rtl8188e_InitHalDm(Adapter);
889 
890 	if (Adapter->registrypriv.mp_mode == 1) {
891 		Adapter->mppriv.channel = haldata->CurrentChannel;
892 		MPT_InitializeAdapter(Adapter, Adapter->mppriv.channel);
893 	} else {
894 		/*  2010/08/11 MH Merge from 8192SE for Minicard init. We need to confirm current radio status */
895 		/*  and then decide to enable RF or not.!!!??? For Selective suspend mode. We may not */
896 		/*  call initstruct adapter. May cause some problem?? */
897 		/*  Fix the bug that Hw/Sw radio off before S3/S4, the RF off action will not be executed */
898 		/*  in MgntActSet_RF_State() after wake up, because the value of haldata->eRFPowerState */
899 		/*  is the same as eRfOff, we should change it to eRfOn after we config RF parameters. */
900 		/*  Added by tynli. 2010.03.30. */
901 		pwrctrlpriv->rf_pwrstate = rf_on;
902 
903 		/*  enable Tx report. */
904 		rtw_write8(Adapter,  REG_FWHW_TXQ_CTRL + 1, 0x0F);
905 
906 		/*  Suggested by SD1 pisa. Added by tynli. 2011.10.21. */
907 		rtw_write8(Adapter, REG_EARLY_MODE_CONTROL + 3, 0x01);/* Pretx_en, for WEP/TKIP SEC */
908 
909 		/* tynli_test_tx_report. */
910 		rtw_write16(Adapter, REG_TX_RPT_TIME, 0x3DF0);
911 
912 		/* enable tx DMA to drop the redundate data of packet */
913 		rtw_write16(Adapter, REG_TXDMA_OFFSET_CHK, (rtw_read16(Adapter, REG_TXDMA_OFFSET_CHK) | DROP_DATA_EN));
914 
915 		HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_IQK);
916 		/*  2010/08/26 MH Merge from 8192CE. */
917 		if (pwrctrlpriv->rf_pwrstate == rf_on) {
918 			if (haldata->odmpriv.RFCalibrateInfo.bIQKInitialized) {
919 				PHY_IQCalibrate_8188E(Adapter, true);
920 			} else {
921 				PHY_IQCalibrate_8188E(Adapter, false);
922 				haldata->odmpriv.RFCalibrateInfo.bIQKInitialized = true;
923 			}
924 
925 			HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_PW_TRACK);
926 
927 			ODM_TXPowerTrackingCheck(&haldata->odmpriv);
928 
929 			HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_LCK);
930 			PHY_LCCalibrate_8188E(Adapter);
931 		}
932 	}
933 
934 /* HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_INIT_PABIAS); */
935 /*	_InitPABias(Adapter); */
936 	rtw_write8(Adapter, REG_USB_HRPWM, 0);
937 
938 	/* ack for xmit mgmt frames. */
939 	rtw_write32(Adapter, REG_FWHW_TXQ_CTRL, rtw_read32(Adapter, REG_FWHW_TXQ_CTRL) | BIT(12));
940 
941 exit:
942 	HAL_INIT_PROFILE_TAG(HAL_INIT_STAGES_END);
943 
944 	DBG_88E("%s in %dms\n", __func__, rtw_get_passing_time_ms(init_start_time));
945 
946 	return status;
947 }
948 
_ps_open_RF(struct adapter * adapt)949 void _ps_open_RF(struct adapter *adapt)
950 {
951 	/* here call with bRegSSPwrLvl 1, bRegSSPwrLvl 2 needs to be verified */
952 	/* phy_SsPwrSwitch92CU(adapt, rf_on, 1); */
953 }
954 
_ps_close_RF(struct adapter * adapt)955 static void _ps_close_RF(struct adapter *adapt)
956 {
957 	/* here call with bRegSSPwrLvl 1, bRegSSPwrLvl 2 needs to be verified */
958 	/* phy_SsPwrSwitch92CU(adapt, rf_off, 1); */
959 }
960 
CardDisableRTL8188EU(struct adapter * Adapter)961 static void CardDisableRTL8188EU(struct adapter *Adapter)
962 {
963 	u8 val8;
964 	struct hal_data_8188e	*haldata	= GET_HAL_DATA(Adapter);
965 
966 	/* Stop Tx Report Timer. 0x4EC[Bit1]=b'0 */
967 	val8 = rtw_read8(Adapter, REG_TX_RPT_CTRL);
968 	rtw_write8(Adapter, REG_TX_RPT_CTRL, val8 & (~BIT(1)));
969 
970 	/*  stop rx */
971 	rtw_write8(Adapter, REG_CR, 0x0);
972 
973 	/*  Run LPS WL RFOFF flow */
974 	HalPwrSeqCmdParsing(Adapter, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK, PWR_INTF_USB_MSK, Rtl8188E_NIC_LPS_ENTER_FLOW);
975 
976 	/*  2. 0x1F[7:0] = 0		turn off RF */
977 
978 	val8 = rtw_read8(Adapter, REG_MCUFWDL);
979 	if ((val8 & RAM_DL_SEL) && Adapter->bFWReady) { /* 8051 RAM code */
980 		/*  Reset MCU 0x2[10]=0. */
981 		val8 = rtw_read8(Adapter, REG_SYS_FUNC_EN + 1);
982 		val8 &= ~BIT(2);	/*  0x2[10], FEN_CPUEN */
983 		rtw_write8(Adapter, REG_SYS_FUNC_EN + 1, val8);
984 	}
985 
986 	/*  reset MCU ready status */
987 	rtw_write8(Adapter, REG_MCUFWDL, 0);
988 
989 	/* YJ,add,111212 */
990 	/* Disable 32k */
991 	val8 = rtw_read8(Adapter, REG_32K_CTRL);
992 	rtw_write8(Adapter, REG_32K_CTRL, val8 & (~BIT(0)));
993 
994 	/*  Card disable power action flow */
995 	HalPwrSeqCmdParsing(Adapter, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK, PWR_INTF_USB_MSK, Rtl8188E_NIC_DISABLE_FLOW);
996 
997 	/*  Reset MCU IO Wrapper */
998 	val8 = rtw_read8(Adapter, REG_RSV_CTRL + 1);
999 	rtw_write8(Adapter, REG_RSV_CTRL + 1, (val8 & (~BIT(3))));
1000 	val8 = rtw_read8(Adapter, REG_RSV_CTRL + 1);
1001 	rtw_write8(Adapter, REG_RSV_CTRL + 1, val8 | BIT(3));
1002 
1003 	/* YJ,test add, 111207. For Power Consumption. */
1004 	val8 = rtw_read8(Adapter, GPIO_IN);
1005 	rtw_write8(Adapter, GPIO_OUT, val8);
1006 	rtw_write8(Adapter, GPIO_IO_SEL, 0xFF);/* Reg0x46 */
1007 
1008 	val8 = rtw_read8(Adapter, REG_GPIO_IO_SEL);
1009 	rtw_write8(Adapter, REG_GPIO_IO_SEL, (val8 << 4));
1010 	val8 = rtw_read8(Adapter, REG_GPIO_IO_SEL + 1);
1011 	rtw_write8(Adapter, REG_GPIO_IO_SEL + 1, val8 | 0x0F);/* Reg0x43 */
1012 	rtw_write32(Adapter, REG_BB_PAD_CTRL, 0x00080808);/* set LNA ,TRSW,EX_PA Pin to output mode */
1013 	haldata->bMacPwrCtrlOn = false;
1014 	Adapter->bFWReady = false;
1015 }
rtl8192cu_hw_power_down(struct adapter * adapt)1016 static void rtl8192cu_hw_power_down(struct adapter *adapt)
1017 {
1018 	/*  2010/-8/09 MH For power down module, we need to enable register block contrl reg at 0x1c. */
1019 	/*  Then enable power down control bit of register 0x04 BIT(4) and BIT(15) as 1. */
1020 
1021 	/*  Enable register area 0x0-0xc. */
1022 	rtw_write8(adapt, REG_RSV_CTRL, 0x0);
1023 	rtw_write16(adapt, REG_APS_FSMCO, 0x8812);
1024 }
1025 
rtl8188eu_hal_deinit(struct adapter * Adapter)1026 static u32 rtl8188eu_hal_deinit(struct adapter *Adapter)
1027 {
1028 
1029 	DBG_88E("==> %s\n", __func__);
1030 
1031 	rtw_write32(Adapter, REG_HIMR_88E, IMR_DISABLED_88E);
1032 	rtw_write32(Adapter, REG_HIMRE_88E, IMR_DISABLED_88E);
1033 
1034 	DBG_88E("bkeepfwalive(%x)\n", Adapter->pwrctrlpriv.bkeepfwalive);
1035 	if (Adapter->pwrctrlpriv.bkeepfwalive) {
1036 		_ps_close_RF(Adapter);
1037 		if ((Adapter->pwrctrlpriv.bHWPwrPindetect) && (Adapter->pwrctrlpriv.bHWPowerdown))
1038 			rtl8192cu_hw_power_down(Adapter);
1039 	} else {
1040 		if (Adapter->hw_init_completed) {
1041 			CardDisableRTL8188EU(Adapter);
1042 
1043 			if ((Adapter->pwrctrlpriv.bHWPwrPindetect) && (Adapter->pwrctrlpriv.bHWPowerdown))
1044 				rtl8192cu_hw_power_down(Adapter);
1045 		}
1046 	}
1047 	return _SUCCESS;
1048  }
1049 
rtl8188eu_inirp_init(struct adapter * Adapter)1050 static unsigned int rtl8188eu_inirp_init(struct adapter *Adapter)
1051 {
1052 	u8 i;
1053 	struct recv_buf *precvbuf;
1054 	uint	status;
1055 	struct intf_hdl *pintfhdl = &Adapter->iopriv.intf;
1056 	struct recv_priv *precvpriv = &Adapter->recvpriv;
1057 	u32 (*_read_port)(struct intf_hdl *pintfhdl, u32 addr, u32 cnt, u8 *pmem);
1058 
1059 	_read_port = pintfhdl->io_ops._read_port;
1060 
1061 	status = _SUCCESS;
1062 
1063 	precvpriv->ff_hwaddr = RECV_BULK_IN_ADDR;
1064 
1065 	/* issue Rx irp to receive data */
1066 	precvbuf = (struct recv_buf *)precvpriv->precv_buf;
1067 	for (i = 0; i < NR_RECVBUFF; i++) {
1068 		if (!_read_port(pintfhdl, precvpriv->ff_hwaddr, 0, (unsigned char *)precvbuf)) {
1069 			status = _FAIL;
1070 			goto exit;
1071 		}
1072 
1073 		precvbuf++;
1074 		precvpriv->free_recv_buf_queue_cnt--;
1075 	}
1076 
1077 exit:
1078 	return status;
1079 }
1080 
rtl8188eu_inirp_deinit(struct adapter * Adapter)1081 static unsigned int rtl8188eu_inirp_deinit(struct adapter *Adapter)
1082 {
1083 	rtw_read_port_cancel(Adapter);
1084 
1085 	return _SUCCESS;
1086 }
1087 
1088 /*  */
1089 /*  */
1090 /*	EEPROM/EFUSE Content Parsing */
1091 /*  */
1092 /*  */
_ReadLEDSetting(struct adapter * Adapter,u8 * PROMContent,bool AutoloadFail)1093 static void _ReadLEDSetting(struct adapter *Adapter, u8 *PROMContent, bool AutoloadFail)
1094 {
1095 	struct led_priv *pledpriv = &Adapter->ledpriv;
1096 	struct hal_data_8188e	*haldata = GET_HAL_DATA(Adapter);
1097 
1098 	pledpriv->bRegUseLed = true;
1099 	pledpriv->LedStrategy = SW_LED_MODE1;
1100 	haldata->bLedOpenDrain = true;/*  Support Open-drain arrangement for controlling the LED. */
1101 }
1102 
Hal_EfuseParsePIDVID_8188EU(struct adapter * adapt,u8 * hwinfo,bool AutoLoadFail)1103 static void Hal_EfuseParsePIDVID_8188EU(struct adapter *adapt, u8 *hwinfo, bool AutoLoadFail)
1104 {
1105 	struct hal_data_8188e	*haldata = GET_HAL_DATA(adapt);
1106 
1107 	if (!AutoLoadFail) {
1108 		/*  VID, PID */
1109 		haldata->EEPROMVID = EF2BYTE(*(__le16 *)&hwinfo[EEPROM_VID_88EU]);
1110 		haldata->EEPROMPID = EF2BYTE(*(__le16 *)&hwinfo[EEPROM_PID_88EU]);
1111 
1112 		/*  Customer ID, 0x00 and 0xff are reserved for Realtek. */
1113 		haldata->EEPROMCustomerID = *(u8 *)&hwinfo[EEPROM_CUSTOMERID_88E];
1114 		haldata->EEPROMSubCustomerID = EEPROM_Default_SubCustomerID;
1115 	} else {
1116 		haldata->EEPROMVID			= EEPROM_Default_VID;
1117 		haldata->EEPROMPID			= EEPROM_Default_PID;
1118 
1119 		/*  Customer ID, 0x00 and 0xff are reserved for Realtek. */
1120 		haldata->EEPROMCustomerID		= EEPROM_Default_CustomerID;
1121 		haldata->EEPROMSubCustomerID	= EEPROM_Default_SubCustomerID;
1122 	}
1123 
1124 	DBG_88E("VID = 0x%04X, PID = 0x%04X\n", haldata->EEPROMVID, haldata->EEPROMPID);
1125 	DBG_88E("Customer ID: 0x%02X, SubCustomer ID: 0x%02X\n", haldata->EEPROMCustomerID, haldata->EEPROMSubCustomerID);
1126 }
1127 
Hal_EfuseParseMACAddr_8188EU(struct adapter * adapt,u8 * hwinfo,bool AutoLoadFail)1128 static void Hal_EfuseParseMACAddr_8188EU(struct adapter *adapt, u8 *hwinfo, bool AutoLoadFail)
1129 {
1130 	u16 i;
1131 	u8 sMacAddr[6] = {0x00, 0xE0, 0x4C, 0x81, 0x88, 0x02};
1132 	struct eeprom_priv *eeprom = GET_EEPROM_EFUSE_PRIV(adapt);
1133 
1134 	if (AutoLoadFail) {
1135 		for (i = 0; i < 6; i++)
1136 			eeprom->mac_addr[i] = sMacAddr[i];
1137 	} else {
1138 		/* Read Permanent MAC address */
1139 		memcpy(eeprom->mac_addr, &hwinfo[EEPROM_MAC_ADDR_88EU], ETH_ALEN);
1140 	}
1141 }
1142 
Hal_CustomizeByCustomerID_8188EU(struct adapter * adapt)1143 static void Hal_CustomizeByCustomerID_8188EU(struct adapter *adapt)
1144 {
1145 }
1146 
1147 static void
readAdapterInfo_8188EU(struct adapter * adapt)1148 readAdapterInfo_8188EU(
1149 		struct adapter *adapt
1150 	)
1151 {
1152 	struct eeprom_priv *eeprom = GET_EEPROM_EFUSE_PRIV(adapt);
1153 
1154 	/* parse the eeprom/efuse content */
1155 	Hal_EfuseParseIDCode88E(adapt, eeprom->efuse_eeprom_data);
1156 	Hal_EfuseParsePIDVID_8188EU(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
1157 	Hal_EfuseParseMACAddr_8188EU(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
1158 
1159 	Hal_ReadPowerSavingMode88E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
1160 	Hal_ReadTxPowerInfo88E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
1161 	Hal_EfuseParseEEPROMVer88E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
1162 	rtl8188e_EfuseParseChnlPlan(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
1163 	Hal_EfuseParseXtal_8188E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
1164 	Hal_EfuseParseCustomerID88E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
1165 	Hal_ReadAntennaDiversity88E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
1166 	Hal_EfuseParseBoardType88E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
1167 	Hal_ReadThermalMeter_88E(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
1168 
1169 	/*  */
1170 	/*  The following part initialize some vars by PG info. */
1171 	/*  */
1172 	Hal_InitChannelPlan(adapt);
1173 	Hal_CustomizeByCustomerID_8188EU(adapt);
1174 
1175 	_ReadLEDSetting(adapt, eeprom->efuse_eeprom_data, eeprom->bautoload_fail_flag);
1176 }
1177 
_ReadPROMContent(struct adapter * Adapter)1178 static void _ReadPROMContent(
1179 	struct adapter *Adapter
1180 	)
1181 {
1182 	struct eeprom_priv *eeprom = GET_EEPROM_EFUSE_PRIV(Adapter);
1183 	u8 eeValue;
1184 
1185 	/* check system boot selection */
1186 	eeValue = rtw_read8(Adapter, REG_9346CR);
1187 	eeprom->EepromOrEfuse		= (eeValue & BOOT_FROM_EEPROM) ? true : false;
1188 	eeprom->bautoload_fail_flag	= (eeValue & EEPROM_EN) ? false : true;
1189 
1190 	DBG_88E("Boot from %s, Autoload %s !\n", (eeprom->EepromOrEfuse ? "EEPROM" : "EFUSE"),
1191 		(eeprom->bautoload_fail_flag ? "Fail" : "OK"));
1192 
1193 	Hal_InitPGData88E(Adapter);
1194 	readAdapterInfo_8188EU(Adapter);
1195 }
1196 
_ReadRFType(struct adapter * Adapter)1197 static void _ReadRFType(struct adapter *Adapter)
1198 {
1199 	struct hal_data_8188e	*haldata = GET_HAL_DATA(Adapter);
1200 
1201 	haldata->rf_chip = RF_6052;
1202 }
1203 
_ReadAdapterInfo8188EU(struct adapter * Adapter)1204 static int _ReadAdapterInfo8188EU(struct adapter *Adapter)
1205 {
1206 	u32 start = jiffies;
1207 
1208 	MSG_88E("====> %s\n", __func__);
1209 
1210 	_ReadRFType(Adapter);/* rf_chip -> _InitRFType() */
1211 	_ReadPROMContent(Adapter);
1212 
1213 	MSG_88E("<==== %s in %d ms\n", __func__, rtw_get_passing_time_ms(start));
1214 
1215 	return _SUCCESS;
1216 }
1217 
ReadAdapterInfo8188EU(struct adapter * Adapter)1218 static void ReadAdapterInfo8188EU(struct adapter *Adapter)
1219 {
1220 	/*  Read EEPROM size before call any EEPROM function */
1221 	Adapter->EepromAddressSize = GetEEPROMSize8188E(Adapter);
1222 
1223 	_ReadAdapterInfo8188EU(Adapter);
1224 }
1225 
1226 #define GPIO_DEBUG_PORT_NUM 0
rtl8192cu_trigger_gpio_0(struct adapter * adapt)1227 static void rtl8192cu_trigger_gpio_0(struct adapter *adapt)
1228 {
1229 }
1230 
ResumeTxBeacon(struct adapter * adapt)1231 static void ResumeTxBeacon(struct adapter *adapt)
1232 {
1233 	struct hal_data_8188e *haldata = GET_HAL_DATA(adapt);
1234 
1235 	/*  2010.03.01. Marked by tynli. No need to call workitem beacause we record the value */
1236 	/*  which should be read from register to a global variable. */
1237 
1238 	rtw_write8(adapt, REG_FWHW_TXQ_CTRL + 2, (haldata->RegFwHwTxQCtrl) | BIT(6));
1239 	haldata->RegFwHwTxQCtrl |= BIT(6);
1240 	rtw_write8(adapt, REG_TBTT_PROHIBIT + 1, 0xff);
1241 	haldata->RegReg542 |= BIT(0);
1242 	rtw_write8(adapt, REG_TBTT_PROHIBIT + 2, haldata->RegReg542);
1243 }
1244 
StopTxBeacon(struct adapter * adapt)1245 static void StopTxBeacon(struct adapter *adapt)
1246 {
1247 	struct hal_data_8188e *haldata = GET_HAL_DATA(adapt);
1248 
1249 	/*  2010.03.01. Marked by tynli. No need to call workitem beacause we record the value */
1250 	/*  which should be read from register to a global variable. */
1251 
1252 	rtw_write8(adapt, REG_FWHW_TXQ_CTRL + 2, (haldata->RegFwHwTxQCtrl) & (~BIT(6)));
1253 	haldata->RegFwHwTxQCtrl &= (~BIT(6));
1254 	rtw_write8(adapt, REG_TBTT_PROHIBIT + 1, 0x64);
1255 	haldata->RegReg542 &= ~(BIT(0));
1256 	rtw_write8(adapt, REG_TBTT_PROHIBIT + 2, haldata->RegReg542);
1257 
1258 	 /* todo: CheckFwRsvdPageContent(Adapter);  2010.06.23. Added by tynli. */
1259 }
1260 
hw_var_set_opmode(struct adapter * Adapter,u8 variable,u8 * val)1261 static void hw_var_set_opmode(struct adapter *Adapter, u8 variable, u8 *val)
1262 {
1263 	u8 val8;
1264 	u8 mode = *((u8 *)val);
1265 
1266 	/*  disable Port0 TSF update */
1267 	rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL) | BIT(4));
1268 
1269 	/*  set net_type */
1270 	val8 = rtw_read8(Adapter, MSR) & 0x0c;
1271 	val8 |= mode;
1272 	rtw_write8(Adapter, MSR, val8);
1273 
1274 	DBG_88E("%s()-%d mode = %d\n", __func__, __LINE__, mode);
1275 
1276 	if ((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_)) {
1277 		StopTxBeacon(Adapter);
1278 
1279 		rtw_write8(Adapter, REG_BCN_CTRL, 0x19);/* disable atim wnd */
1280 	} else if (mode == _HW_STATE_ADHOC_) {
1281 		ResumeTxBeacon(Adapter);
1282 		rtw_write8(Adapter, REG_BCN_CTRL, 0x1a);
1283 	} else if (mode == _HW_STATE_AP_) {
1284 		ResumeTxBeacon(Adapter);
1285 
1286 		rtw_write8(Adapter, REG_BCN_CTRL, 0x12);
1287 
1288 		/* Set RCR */
1289 		rtw_write32(Adapter, REG_RCR, 0x7000208e);/* CBSSID_DATA must set to 0,reject ICV_ERR packet */
1290 		/* enable to rx data frame */
1291 		rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);
1292 		/* enable to rx ps-poll */
1293 		rtw_write16(Adapter, REG_RXFLTMAP1, 0x0400);
1294 
1295 		/* Beacon Control related register for first time */
1296 		rtw_write8(Adapter, REG_BCNDMATIM, 0x02); /*  2ms */
1297 
1298 		rtw_write8(Adapter, REG_ATIMWND, 0x0a); /*  10ms */
1299 		rtw_write16(Adapter, REG_BCNTCFG, 0x00);
1300 		rtw_write16(Adapter, REG_TBTT_PROHIBIT, 0xff04);
1301 		rtw_write16(Adapter, REG_TSFTR_SYN_OFFSET, 0x7fff);/*  +32767 (~32ms) */
1302 
1303 		/* reset TSF */
1304 		rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(0));
1305 
1306 		/* BIT(3) - If set 0, hw will clr bcnq when tx becon ok/fail or port 0 */
1307 		rtw_write8(Adapter, REG_MBID_NUM, rtw_read8(Adapter, REG_MBID_NUM) | BIT(3) | BIT(4));
1308 
1309 		/* enable BCN0 Function for if1 */
1310 		/* don't enable update TSF0 for if1 (due to TSF update when beacon/probe rsp are received) */
1311 		rtw_write8(Adapter, REG_BCN_CTRL, (DIS_TSF_UDT0_NORMAL_CHIP | EN_BCN_FUNCTION | BIT(1)));
1312 
1313 		/* dis BCN1 ATIM  WND if if2 is station */
1314 		rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1) | BIT(0));
1315 	}
1316 }
1317 
hw_var_set_macaddr(struct adapter * Adapter,u8 variable,u8 * val)1318 static void hw_var_set_macaddr(struct adapter *Adapter, u8 variable, u8 *val)
1319 {
1320 	u8 idx = 0;
1321 	u32 reg_macid;
1322 
1323 	reg_macid = REG_MACID;
1324 
1325 	for (idx = 0; idx < 6; idx++)
1326 		rtw_write8(Adapter, (reg_macid + idx), val[idx]);
1327 }
1328 
hw_var_set_bssid(struct adapter * Adapter,u8 variable,u8 * val)1329 static void hw_var_set_bssid(struct adapter *Adapter, u8 variable, u8 *val)
1330 {
1331 	u8 idx = 0;
1332 	u32 reg_bssid;
1333 
1334 	reg_bssid = REG_BSSID;
1335 
1336 	for (idx = 0; idx < 6; idx++)
1337 		rtw_write8(Adapter, (reg_bssid + idx), val[idx]);
1338 }
1339 
hw_var_set_bcn_func(struct adapter * Adapter,u8 variable,u8 * val)1340 static void hw_var_set_bcn_func(struct adapter *Adapter, u8 variable, u8 *val)
1341 {
1342 	u32 bcn_ctrl_reg;
1343 
1344 	bcn_ctrl_reg = REG_BCN_CTRL;
1345 
1346 	if (*((u8 *)val))
1347 		rtw_write8(Adapter, bcn_ctrl_reg, (EN_BCN_FUNCTION | EN_TXBCN_RPT));
1348 	else
1349 		rtw_write8(Adapter, bcn_ctrl_reg, rtw_read8(Adapter, bcn_ctrl_reg) & (~(EN_BCN_FUNCTION | EN_TXBCN_RPT)));
1350 }
1351 
SetHwReg8188EU(struct adapter * Adapter,u8 variable,u8 * val)1352 static void SetHwReg8188EU(struct adapter *Adapter, u8 variable, u8 *val)
1353 {
1354 	struct hal_data_8188e	*haldata = GET_HAL_DATA(Adapter);
1355 	struct dm_priv	*pdmpriv = &haldata->dmpriv;
1356 	struct odm_dm_struct *podmpriv = &haldata->odmpriv;
1357 
1358 	switch (variable) {
1359 	case HW_VAR_MEDIA_STATUS:
1360 		{
1361 			u8 val8;
1362 
1363 			val8 = rtw_read8(Adapter, MSR) & 0x0c;
1364 			val8 |= *((u8 *)val);
1365 			rtw_write8(Adapter, MSR, val8);
1366 		}
1367 		break;
1368 	case HW_VAR_MEDIA_STATUS1:
1369 		{
1370 			u8 val8;
1371 
1372 			val8 = rtw_read8(Adapter, MSR) & 0x03;
1373 			val8 |= *((u8 *)val) << 2;
1374 			rtw_write8(Adapter, MSR, val8);
1375 		}
1376 		break;
1377 	case HW_VAR_SET_OPMODE:
1378 		hw_var_set_opmode(Adapter, variable, val);
1379 		break;
1380 	case HW_VAR_MAC_ADDR:
1381 		hw_var_set_macaddr(Adapter, variable, val);
1382 		break;
1383 	case HW_VAR_BSSID:
1384 		hw_var_set_bssid(Adapter, variable, val);
1385 		break;
1386 	case HW_VAR_BASIC_RATE:
1387 		{
1388 			u16 BrateCfg = 0;
1389 			u8 RateIndex = 0;
1390 
1391 			/*  2007.01.16, by Emily */
1392 			/*  Select RRSR (in Legacy-OFDM and CCK) */
1393 			/*  For 8190, we select only 24M, 12M, 6M, 11M, 5.5M, 2M, and 1M from the Basic rate. */
1394 			/*  We do not use other rates. */
1395 			HalSetBrateCfg(Adapter, val, &BrateCfg);
1396 			DBG_88E("HW_VAR_BASIC_RATE: BrateCfg(%#x)\n", BrateCfg);
1397 
1398 			/* 2011.03.30 add by Luke Lee */
1399 			/* CCK 2M ACK should be disabled for some BCM and Atheros AP IOT */
1400 			/* because CCK 2M has poor TXEVM */
1401 			/* CCK 5.5M & 11M ACK should be enabled for better performance */
1402 
1403 			BrateCfg = (BrateCfg | 0xd) & 0x15d;
1404 			haldata->BasicRateSet = BrateCfg;
1405 
1406 			BrateCfg |= 0x01; /*  default enable 1M ACK rate */
1407 			/*  Set RRSR rate table. */
1408 			rtw_write8(Adapter, REG_RRSR, BrateCfg & 0xff);
1409 			rtw_write8(Adapter, REG_RRSR + 1, (BrateCfg >> 8) & 0xff);
1410 			rtw_write8(Adapter, REG_RRSR + 2, rtw_read8(Adapter, REG_RRSR + 2) & 0xf0);
1411 
1412 			/*  Set RTS initial rate */
1413 			while (BrateCfg > 0x1) {
1414 				BrateCfg = (BrateCfg >> 1);
1415 				RateIndex++;
1416 			}
1417 			/*  Ziv - Check */
1418 			rtw_write8(Adapter, REG_INIRTS_RATE_SEL, RateIndex);
1419 		}
1420 		break;
1421 	case HW_VAR_TXPAUSE:
1422 		rtw_write8(Adapter, REG_TXPAUSE, *((u8 *)val));
1423 		break;
1424 	case HW_VAR_BCN_FUNC:
1425 		hw_var_set_bcn_func(Adapter, variable, val);
1426 		break;
1427 	case HW_VAR_CORRECT_TSF:
1428 		{
1429 			u64	tsf;
1430 			struct mlme_ext_priv	*pmlmeext = &Adapter->mlmeextpriv;
1431 			struct mlme_ext_info	*pmlmeinfo = &pmlmeext->mlmext_info;
1432 
1433 			tsf = pmlmeext->TSFValue - do_div(pmlmeext->TSFValue,
1434 							  pmlmeinfo->bcn_interval * 1024) - 1024; /* us */
1435 
1436 			if (((pmlmeinfo->state & 0x03) == WIFI_FW_ADHOC_STATE) || ((pmlmeinfo->state & 0x03) == WIFI_FW_AP_STATE))
1437 				StopTxBeacon(Adapter);
1438 
1439 			/* disable related TSF function */
1440 			rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL) & (~BIT(3)));
1441 
1442 			rtw_write32(Adapter, REG_TSFTR, tsf);
1443 			rtw_write32(Adapter, REG_TSFTR + 4, tsf >> 32);
1444 
1445 			/* enable related TSF function */
1446 			rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL) | BIT(3));
1447 
1448 			if (((pmlmeinfo->state & 0x03) == WIFI_FW_ADHOC_STATE) || ((pmlmeinfo->state & 0x03) == WIFI_FW_AP_STATE))
1449 				ResumeTxBeacon(Adapter);
1450 		}
1451 		break;
1452 	case HW_VAR_CHECK_BSSID:
1453 		if (*((u8 *)val)) {
1454 			rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR) | RCR_CBSSID_DATA | RCR_CBSSID_BCN);
1455 		} else {
1456 			u32 val32;
1457 
1458 			val32 = rtw_read32(Adapter, REG_RCR);
1459 
1460 			val32 &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN);
1461 
1462 			rtw_write32(Adapter, REG_RCR, val32);
1463 		}
1464 		break;
1465 	case HW_VAR_MLME_DISCONNECT:
1466 		/* Set RCR to not to receive data frame when NO LINK state */
1467 		/* reject all data frames */
1468 		rtw_write16(Adapter, REG_RXFLTMAP2, 0x00);
1469 
1470 		/* reset TSF */
1471 		rtw_write8(Adapter, REG_DUAL_TSF_RST, (BIT(0) | BIT(1)));
1472 
1473 		/* disable update TSF */
1474 		rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL) | BIT(4));
1475 		break;
1476 	case HW_VAR_MLME_SITESURVEY:
1477 		if (*((u8 *)val)) { /* under sitesurvey */
1478 			/* config RCR to receive different BSSID & not to receive data frame */
1479 			u32 v = rtw_read32(Adapter, REG_RCR);
1480 			v &= ~(RCR_CBSSID_BCN);
1481 			rtw_write32(Adapter, REG_RCR, v);
1482 			/* reject all data frame */
1483 			rtw_write16(Adapter, REG_RXFLTMAP2, 0x00);
1484 
1485 			/* disable update TSF */
1486 			rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL) | BIT(4));
1487 		} else { /* sitesurvey done */
1488 			struct mlme_ext_priv	*pmlmeext = &Adapter->mlmeextpriv;
1489 			struct mlme_ext_info	*pmlmeinfo = &pmlmeext->mlmext_info;
1490 
1491 			if ((is_client_associated_to_ap(Adapter)) ||
1492 			    ((pmlmeinfo->state & 0x03) == WIFI_FW_ADHOC_STATE)) {
1493 				/* enable to rx data frame */
1494 				rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);
1495 
1496 				/* enable update TSF */
1497 				rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL) & (~BIT(4)));
1498 			} else if ((pmlmeinfo->state & 0x03) == WIFI_FW_AP_STATE) {
1499 				rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);
1500 				/* enable update TSF */
1501 				rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL) & (~BIT(4)));
1502 			}
1503 			if ((pmlmeinfo->state & 0x03) == WIFI_FW_AP_STATE) {
1504 				rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR) | RCR_CBSSID_BCN);
1505 			} else {
1506 				if (Adapter->in_cta_test) {
1507 					u32 v = rtw_read32(Adapter, REG_RCR);
1508 					v &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN);/*  RCR_ADF */
1509 					rtw_write32(Adapter, REG_RCR, v);
1510 				} else {
1511 					rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR) | RCR_CBSSID_BCN);
1512 				}
1513 			}
1514 		}
1515 		break;
1516 	case HW_VAR_MLME_JOIN:
1517 		{
1518 			u8 RetryLimit = 0x30;
1519 			u8 type = *((u8 *)val);
1520 			struct mlme_priv	*pmlmepriv = &Adapter->mlmepriv;
1521 
1522 			if (type == 0) { /*  prepare to join */
1523 				/* enable to rx data frame.Accept all data frame */
1524 				rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);
1525 
1526 				if (Adapter->in_cta_test) {
1527 					u32 v = rtw_read32(Adapter, REG_RCR);
1528 					v &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN);/*  RCR_ADF */
1529 					rtw_write32(Adapter, REG_RCR, v);
1530 				} else {
1531 					rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR) | RCR_CBSSID_DATA | RCR_CBSSID_BCN);
1532 				}
1533 
1534 				if (check_fwstate(pmlmepriv, WIFI_STATION_STATE))
1535 					RetryLimit = (haldata->CustomerID == RT_CID_CCX) ? 7 : 48;
1536 				else /*  Ad-hoc Mode */
1537 					RetryLimit = 0x7;
1538 			} else if (type == 1) {
1539 				/* joinbss_event call back when join res < 0 */
1540 				rtw_write16(Adapter, REG_RXFLTMAP2, 0x00);
1541 			} else if (type == 2) {
1542 				/* sta add event call back */
1543 				/* enable update TSF */
1544 				rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL) & (~BIT(4)));
1545 
1546 				if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE))
1547 					RetryLimit = 0x7;
1548 			}
1549 			rtw_write16(Adapter, REG_RL, RetryLimit << RETRY_LIMIT_SHORT_SHIFT | RetryLimit << RETRY_LIMIT_LONG_SHIFT);
1550 		}
1551 		break;
1552 	case HW_VAR_BEACON_INTERVAL:
1553 		rtw_write16(Adapter, REG_BCN_INTERVAL, *((u16 *)val));
1554 		break;
1555 	case HW_VAR_SLOT_TIME:
1556 		{
1557 			u8 u1bAIFS, aSifsTime;
1558 			struct mlme_ext_priv	*pmlmeext = &Adapter->mlmeextpriv;
1559 			struct mlme_ext_info	*pmlmeinfo = &pmlmeext->mlmext_info;
1560 
1561 			rtw_write8(Adapter, REG_SLOT, val[0]);
1562 
1563 			if (pmlmeinfo->WMM_enable == 0) {
1564 				if (pmlmeext->cur_wireless_mode == WIRELESS_11B)
1565 					aSifsTime = 10;
1566 				else
1567 					aSifsTime = 16;
1568 
1569 				u1bAIFS = aSifsTime + (2 * pmlmeinfo->slotTime);
1570 
1571 				/*  <Roger_EXP> Temporary removed, 2008.06.20. */
1572 				rtw_write8(Adapter, REG_EDCA_VO_PARAM, u1bAIFS);
1573 				rtw_write8(Adapter, REG_EDCA_VI_PARAM, u1bAIFS);
1574 				rtw_write8(Adapter, REG_EDCA_BE_PARAM, u1bAIFS);
1575 				rtw_write8(Adapter, REG_EDCA_BK_PARAM, u1bAIFS);
1576 			}
1577 		}
1578 		break;
1579 	case HW_VAR_RESP_SIFS:
1580 		/* RESP_SIFS for CCK */
1581 		rtw_write8(Adapter, REG_R2T_SIFS, val[0]); /*  SIFS_T2T_CCK (0x08) */
1582 		rtw_write8(Adapter, REG_R2T_SIFS + 1, val[1]); /* SIFS_R2T_CCK(0x08) */
1583 		/* RESP_SIFS for OFDM */
1584 		rtw_write8(Adapter, REG_T2T_SIFS, val[2]); /* SIFS_T2T_OFDM (0x0a) */
1585 		rtw_write8(Adapter, REG_T2T_SIFS + 1, val[3]); /* SIFS_R2T_OFDM(0x0a) */
1586 		break;
1587 	case HW_VAR_ACK_PREAMBLE:
1588 		{
1589 			u8 regTmp;
1590 			u8 bShortPreamble = *((bool *)val);
1591 			/*  Joseph marked out for Netgear 3500 TKIP channel 7 issue.(Temporarily) */
1592 			regTmp = (haldata->nCur40MhzPrimeSC) << 5;
1593 			if (bShortPreamble)
1594 				regTmp |= 0x80;
1595 
1596 			rtw_write8(Adapter, REG_RRSR + 2, regTmp);
1597 		}
1598 		break;
1599 	case HW_VAR_SEC_CFG:
1600 		rtw_write8(Adapter, REG_SECCFG, *((u8 *)val));
1601 		break;
1602 	case HW_VAR_DM_FLAG:
1603 		podmpriv->SupportAbility = *((u8 *)val);
1604 		break;
1605 	case HW_VAR_DM_FUNC_OP:
1606 		if (val[0])
1607 			podmpriv->BK_SupportAbility = podmpriv->SupportAbility;
1608 		else
1609 			podmpriv->SupportAbility = podmpriv->BK_SupportAbility;
1610 		break;
1611 	case HW_VAR_DM_FUNC_SET:
1612 		if (*((u32 *)val) == DYNAMIC_ALL_FUNC_ENABLE) {
1613 			pdmpriv->DMFlag = pdmpriv->InitDMFlag;
1614 			podmpriv->SupportAbility =	pdmpriv->InitODMFlag;
1615 		} else {
1616 			podmpriv->SupportAbility |= *((u32 *)val);
1617 		}
1618 		break;
1619 	case HW_VAR_DM_FUNC_CLR:
1620 		podmpriv->SupportAbility &= *((u32 *)val);
1621 		break;
1622 	case HW_VAR_CAM_EMPTY_ENTRY:
1623 		{
1624 			u8 ucIndex = *((u8 *)val);
1625 			u8 i;
1626 			u32 ulCommand = 0;
1627 			u32 ulContent = 0;
1628 			u32 ulEncAlgo = CAM_AES;
1629 
1630 			for (i = 0; i < CAM_CONTENT_COUNT; i++) {
1631 				/*  filled id in CAM config 2 byte */
1632 				if (i == 0)
1633 					ulContent |= (ucIndex & 0x03) | ((u16)(ulEncAlgo) << 2);
1634 				else
1635 					ulContent = 0;
1636 				/*  polling bit, and No Write enable, and address */
1637 				ulCommand = CAM_CONTENT_COUNT * ucIndex + i;
1638 				ulCommand = ulCommand | CAM_POLLINIG | CAM_WRITE;
1639 				/*  write content 0 is equall to mark invalid */
1640 				rtw_write32(Adapter, WCAMI, ulContent);  /* delay_ms(40); */
1641 				rtw_write32(Adapter, RWCAM, ulCommand);  /* delay_ms(40); */
1642 			}
1643 		}
1644 		break;
1645 	case HW_VAR_CAM_INVALID_ALL:
1646 		rtw_write32(Adapter, RWCAM, BIT(31) | BIT(30));
1647 		break;
1648 	case HW_VAR_CAM_WRITE:
1649 		{
1650 			u32 cmd;
1651 			u32 *cam_val = (u32 *)val;
1652 			rtw_write32(Adapter, WCAMI, cam_val[0]);
1653 
1654 			cmd = CAM_POLLINIG | CAM_WRITE | cam_val[1];
1655 			rtw_write32(Adapter, RWCAM, cmd);
1656 		}
1657 		break;
1658 	case HW_VAR_AC_PARAM_VO:
1659 		rtw_write32(Adapter, REG_EDCA_VO_PARAM, ((u32 *)(val))[0]);
1660 		break;
1661 	case HW_VAR_AC_PARAM_VI:
1662 		rtw_write32(Adapter, REG_EDCA_VI_PARAM, ((u32 *)(val))[0]);
1663 		break;
1664 	case HW_VAR_AC_PARAM_BE:
1665 		haldata->AcParam_BE = ((u32 *)(val))[0];
1666 		rtw_write32(Adapter, REG_EDCA_BE_PARAM, ((u32 *)(val))[0]);
1667 		break;
1668 	case HW_VAR_AC_PARAM_BK:
1669 		rtw_write32(Adapter, REG_EDCA_BK_PARAM, ((u32 *)(val))[0]);
1670 		break;
1671 	case HW_VAR_ACM_CTRL:
1672 		{
1673 			u8 acm_ctrl = *((u8 *)val);
1674 			u8 AcmCtrl = rtw_read8(Adapter, REG_ACMHWCTRL);
1675 
1676 			if (acm_ctrl > 1)
1677 				AcmCtrl = AcmCtrl | 0x1;
1678 
1679 			if (acm_ctrl & BIT(3))
1680 				AcmCtrl |= AcmHw_VoqEn;
1681 			else
1682 				AcmCtrl &= (~AcmHw_VoqEn);
1683 
1684 			if (acm_ctrl & BIT(2))
1685 				AcmCtrl |= AcmHw_ViqEn;
1686 			else
1687 				AcmCtrl &= (~AcmHw_ViqEn);
1688 
1689 			if (acm_ctrl & BIT(1))
1690 				AcmCtrl |= AcmHw_BeqEn;
1691 			else
1692 				AcmCtrl &= (~AcmHw_BeqEn);
1693 
1694 			DBG_88E("[HW_VAR_ACM_CTRL] Write 0x%X\n", AcmCtrl);
1695 			rtw_write8(Adapter, REG_ACMHWCTRL, AcmCtrl);
1696 		}
1697 		break;
1698 	case HW_VAR_AMPDU_MIN_SPACE:
1699 		{
1700 			u8 MinSpacingToSet;
1701 			u8 SecMinSpace;
1702 
1703 			MinSpacingToSet = *((u8 *)val);
1704 			if (MinSpacingToSet <= 7) {
1705 				switch (Adapter->securitypriv.dot11PrivacyAlgrthm) {
1706 				case _NO_PRIVACY_:
1707 				case _AES_:
1708 					SecMinSpace = 0;
1709 					break;
1710 				case _WEP40_:
1711 				case _WEP104_:
1712 				case _TKIP_:
1713 				case _TKIP_WTMIC_:
1714 					SecMinSpace = 6;
1715 					break;
1716 				default:
1717 					SecMinSpace = 7;
1718 					break;
1719 				}
1720 				if (MinSpacingToSet < SecMinSpace)
1721 					MinSpacingToSet = SecMinSpace;
1722 				rtw_write8(Adapter, REG_AMPDU_MIN_SPACE, (rtw_read8(Adapter, REG_AMPDU_MIN_SPACE) & 0xf8) | MinSpacingToSet);
1723 			}
1724 		}
1725 		break;
1726 	case HW_VAR_AMPDU_FACTOR:
1727 		{
1728 			u8 RegToSet_Normal[4] = {0x41, 0xa8, 0x72, 0xb9};
1729 			u8 FactorToSet;
1730 			u8 *pRegToSet;
1731 			u8 index = 0;
1732 
1733 			pRegToSet = RegToSet_Normal; /*  0xb972a841; */
1734 			FactorToSet = *((u8 *)val);
1735 			if (FactorToSet <= 3) {
1736 				FactorToSet = (1 << (FactorToSet + 2));
1737 				if (FactorToSet > 0xf)
1738 					FactorToSet = 0xf;
1739 
1740 				for (index = 0; index < 4; index++) {
1741 					if ((pRegToSet[index] & 0xf0) > (FactorToSet << 4))
1742 						pRegToSet[index] = (pRegToSet[index] & 0x0f) | (FactorToSet << 4);
1743 
1744 					if ((pRegToSet[index] & 0x0f) > FactorToSet)
1745 						pRegToSet[index] = (pRegToSet[index] & 0xf0) | (FactorToSet);
1746 
1747 					rtw_write8(Adapter, (REG_AGGLEN_LMT + index), pRegToSet[index]);
1748 				}
1749 			}
1750 		}
1751 		break;
1752 	case HW_VAR_RXDMA_AGG_PG_TH:
1753 		{
1754 			u8 threshold = *((u8 *)val);
1755 			if (threshold == 0)
1756 				threshold = haldata->UsbRxAggPageCount;
1757 			rtw_write8(Adapter, REG_RXDMA_AGG_PG_TH, threshold);
1758 		}
1759 		break;
1760 	case HW_VAR_SET_RPWM:
1761 		break;
1762 	case HW_VAR_H2C_FW_PWRMODE:
1763 		{
1764 			u8 psmode = (*(u8 *)val);
1765 
1766 			/*  Forece leave RF low power mode for 1T1R to prevent conficting setting in Fw power */
1767 			/*  saving sequence. 2010.06.07. Added by tynli. Suggested by SD3 yschang. */
1768 			if ((psmode != PS_MODE_ACTIVE) && (!IS_92C_SERIAL(haldata->VersionID)))
1769 				ODM_RF_Saving(podmpriv, true);
1770 			rtl8188e_set_FwPwrMode_cmd(Adapter, psmode);
1771 		}
1772 		break;
1773 	case HW_VAR_H2C_FW_JOINBSSRPT:
1774 		{
1775 			u8 mstatus = (*(u8 *)val);
1776 			rtl8188e_set_FwJoinBssReport_cmd(Adapter, mstatus);
1777 		}
1778 		break;
1779 #ifdef CONFIG_88EU_P2P
1780 	case HW_VAR_H2C_FW_P2P_PS_OFFLOAD:
1781 		{
1782 			u8 p2p_ps_state = (*(u8 *)val);
1783 			rtl8188e_set_p2p_ps_offload_cmd(Adapter, p2p_ps_state);
1784 		}
1785 		break;
1786 #endif
1787 	case HW_VAR_INITIAL_GAIN:
1788 		{
1789 			struct rtw_dig *pDigTable = &podmpriv->DM_DigTable;
1790 			u32 rx_gain = ((u32 *)(val))[0];
1791 
1792 			if (rx_gain == 0xff) {/* restore rx gain */
1793 				ODM_Write_DIG(podmpriv, pDigTable->BackupIGValue);
1794 			} else {
1795 				pDigTable->BackupIGValue = pDigTable->CurIGValue;
1796 				ODM_Write_DIG(podmpriv, rx_gain);
1797 			}
1798 		}
1799 		break;
1800 	case HW_VAR_TRIGGER_GPIO_0:
1801 		rtl8192cu_trigger_gpio_0(Adapter);
1802 		break;
1803 	case HW_VAR_RPT_TIMER_SETTING:
1804 		{
1805 			u16 min_rpt_time = (*(u16 *)val);
1806 			ODM_RA_Set_TxRPT_Time(podmpriv, min_rpt_time);
1807 		}
1808 		break;
1809 	case HW_VAR_ANTENNA_DIVERSITY_SELECT:
1810 		{
1811 			u8 Optimum_antenna = (*(u8 *)val);
1812 			u8 Ant;
1813 			/* switch antenna to Optimum_antenna */
1814 			if (haldata->CurAntenna !=  Optimum_antenna) {
1815 				Ant = (Optimum_antenna == 2) ? MAIN_ANT : AUX_ANT;
1816 				ODM_UpdateRxIdleAnt_88E(&haldata->odmpriv, Ant);
1817 
1818 				haldata->CurAntenna = Optimum_antenna;
1819 			}
1820 		}
1821 		break;
1822 	case HW_VAR_EFUSE_BYTES: /*  To set EFUE total used bytes, added by Roger, 2008.12.22. */
1823 		haldata->EfuseUsedBytes = *((u16 *)val);
1824 		break;
1825 	case HW_VAR_FIFO_CLEARN_UP:
1826 		{
1827 			struct pwrctrl_priv *pwrpriv = &Adapter->pwrctrlpriv;
1828 			u8 trycnt = 100;
1829 
1830 			/* pause tx */
1831 			rtw_write8(Adapter, REG_TXPAUSE, 0xff);
1832 
1833 			/* keep sn */
1834 			Adapter->xmitpriv.nqos_ssn = rtw_read16(Adapter, REG_NQOS_SEQ);
1835 
1836 			if (!pwrpriv->bkeepfwalive) {
1837 				/* RX DMA stop */
1838 				rtw_write32(Adapter, REG_RXPKT_NUM, (rtw_read32(Adapter, REG_RXPKT_NUM) | RW_RELEASE_EN));
1839 				do {
1840 					if (!(rtw_read32(Adapter, REG_RXPKT_NUM) & RXDMA_IDLE))
1841 						break;
1842 				} while (trycnt--);
1843 				if (trycnt == 0)
1844 					DBG_88E("Stop RX DMA failed......\n");
1845 
1846 				/* RQPN Load 0 */
1847 				rtw_write16(Adapter, REG_RQPN_NPQ, 0x0);
1848 				rtw_write32(Adapter, REG_RQPN, 0x80000000);
1849 				mdelay(10);
1850 			}
1851 		}
1852 		break;
1853 	case HW_VAR_CHECK_TXBUF:
1854 		break;
1855 	case HW_VAR_APFM_ON_MAC:
1856 		haldata->bMacPwrCtrlOn = *val;
1857 		DBG_88E("%s: bMacPwrCtrlOn=%d\n", __func__, haldata->bMacPwrCtrlOn);
1858 		break;
1859 	case HW_VAR_TX_RPT_MAX_MACID:
1860 		{
1861 			u8 maxMacid = *val;
1862 			DBG_88E("### MacID(%d),Set Max Tx RPT MID(%d)\n", maxMacid, maxMacid + 1);
1863 			rtw_write8(Adapter, REG_TX_RPT_CTRL + 1, maxMacid + 1);
1864 		}
1865 		break;
1866 	case HW_VAR_H2C_MEDIA_STATUS_RPT:
1867 		rtl8188e_set_FwMediaStatus_cmd(Adapter, (*(__le16 *)val));
1868 		break;
1869 	case HW_VAR_BCN_VALID:
1870 		/* BCN_VALID, BIT(16) of REG_TDECTRL = BIT(0) of REG_TDECTRL+2, write 1 to clear, Clear by sw */
1871 		rtw_write8(Adapter, REG_TDECTRL + 2, rtw_read8(Adapter, REG_TDECTRL + 2) | BIT(0));
1872 		break;
1873 	default:
1874 		break;
1875 	}
1876 
1877 }
1878 
GetHwReg8188EU(struct adapter * Adapter,u8 variable,u8 * val)1879 static void GetHwReg8188EU(struct adapter *Adapter, u8 variable, u8 *val)
1880 {
1881 	struct hal_data_8188e	*haldata = GET_HAL_DATA(Adapter);
1882 	struct odm_dm_struct *podmpriv = &haldata->odmpriv;
1883 
1884 	switch (variable) {
1885 	case HW_VAR_BASIC_RATE:
1886 		*((u16 *)(val)) = haldata->BasicRateSet;
1887 		fallthrough;
1888 	case HW_VAR_TXPAUSE:
1889 		val[0] = rtw_read8(Adapter, REG_TXPAUSE);
1890 		break;
1891 	case HW_VAR_BCN_VALID:
1892 		/* BCN_VALID, BIT(16) of REG_TDECTRL = BIT(0) of REG_TDECTRL+2 */
1893 		val[0] = (BIT(0) & rtw_read8(Adapter, REG_TDECTRL + 2)) ? true : false;
1894 		break;
1895 	case HW_VAR_DM_FLAG:
1896 		val[0] = podmpriv->SupportAbility;
1897 		break;
1898 	case HW_VAR_RF_TYPE:
1899 		val[0] = haldata->rf_type;
1900 		break;
1901 	case HW_VAR_FWLPS_RF_ON:
1902 		{
1903 			/* When we halt NIC, we should check if FW LPS is leave. */
1904 			if (Adapter->pwrctrlpriv.rf_pwrstate == rf_off) {
1905 				/*  If it is in HW/SW Radio OFF or IPS state, we do not check Fw LPS Leave, */
1906 				/*  because Fw is unload. */
1907 				val[0] = true;
1908 			} else {
1909 				u32 valRCR;
1910 				valRCR = rtw_read32(Adapter, REG_RCR);
1911 				valRCR &= 0x00070000;
1912 				if (valRCR)
1913 					val[0] = false;
1914 				else
1915 					val[0] = true;
1916 			}
1917 		}
1918 		break;
1919 	case HW_VAR_CURRENT_ANTENNA:
1920 		val[0] = haldata->CurAntenna;
1921 		break;
1922 	case HW_VAR_EFUSE_BYTES: /*  To get EFUE total used bytes, added by Roger, 2008.12.22. */
1923 		*((u16 *)(val)) = haldata->EfuseUsedBytes;
1924 		break;
1925 	case HW_VAR_APFM_ON_MAC:
1926 		*val = haldata->bMacPwrCtrlOn;
1927 		break;
1928 	case HW_VAR_CHK_HI_QUEUE_EMPTY:
1929 		*val = ((rtw_read32(Adapter, REG_HGQ_INFORMATION) & 0x0000ff00) == 0) ? true : false;
1930 		break;
1931 	default:
1932 		break;
1933 	}
1934 
1935 }
1936 
1937 /*  */
1938 /*	Description: */
1939 /*		Query setting of specified variable. */
1940 /*  */
1941 static u8
GetHalDefVar8188EUsb(struct adapter * Adapter,enum hal_def_variable eVariable,void * pValue)1942 GetHalDefVar8188EUsb(
1943 		struct adapter *Adapter,
1944 		enum hal_def_variable eVariable,
1945 		void *pValue
1946 	)
1947 {
1948 	struct hal_data_8188e	*haldata = GET_HAL_DATA(Adapter);
1949 	u8 bResult = _SUCCESS;
1950 
1951 	switch (eVariable) {
1952 	case HAL_DEF_UNDERCORATEDSMOOTHEDPWDB:
1953 		{
1954 			struct mlme_priv *pmlmepriv = &Adapter->mlmepriv;
1955 			struct sta_priv *pstapriv = &Adapter->stapriv;
1956 			struct sta_info *psta;
1957 			psta = rtw_get_stainfo(pstapriv, pmlmepriv->cur_network.network.MacAddress);
1958 			if (psta)
1959 				*((int *)pValue) = psta->rssi_stat.UndecoratedSmoothedPWDB;
1960 		}
1961 		break;
1962 	case HAL_DEF_IS_SUPPORT_ANT_DIV:
1963 		*((u8 *)pValue) = (haldata->AntDivCfg == 0) ? false : true;
1964 		break;
1965 	case HAL_DEF_CURRENT_ANTENNA:
1966 		*((u8 *)pValue) = haldata->CurAntenna;
1967 		break;
1968 	case HAL_DEF_DRVINFO_SZ:
1969 		*((u32 *)pValue) = DRVINFO_SZ;
1970 		break;
1971 	case HAL_DEF_MAX_RECVBUF_SZ:
1972 		*((u32 *)pValue) = MAX_RECVBUF_SZ;
1973 		break;
1974 	case HAL_DEF_RX_PACKET_OFFSET:
1975 		*((u32 *)pValue) = RXDESC_SIZE + DRVINFO_SZ;
1976 		break;
1977 	case HAL_DEF_DBG_DM_FUNC:
1978 		*((u32 *)pValue) = haldata->odmpriv.SupportAbility;
1979 		break;
1980 	case HAL_DEF_RA_DECISION_RATE:
1981 		{
1982 			u8 MacID = *((u8 *)pValue);
1983 			*((u8 *)pValue) = ODM_RA_GetDecisionRate_8188E(&haldata->odmpriv, MacID);
1984 		}
1985 		break;
1986 	case HAL_DEF_RA_SGI:
1987 		{
1988 			u8 MacID = *((u8 *)pValue);
1989 			*((u8 *)pValue) = ODM_RA_GetShortGI_8188E(&haldata->odmpriv, MacID);
1990 		}
1991 		break;
1992 	case HAL_DEF_PT_PWR_STATUS:
1993 		{
1994 			u8 MacID = *((u8 *)pValue);
1995 			*((u8 *)pValue) = ODM_RA_GetHwPwrStatus_8188E(&haldata->odmpriv, MacID);
1996 		}
1997 		break;
1998 	case HW_VAR_MAX_RX_AMPDU_FACTOR:
1999 		*((u32 *)pValue) = MAX_AMPDU_FACTOR_64K;
2000 		break;
2001 	case HW_DEF_RA_INFO_DUMP:
2002 		{
2003 			u8 entry_id = *((u8 *)pValue);
2004 			if (check_fwstate(&Adapter->mlmepriv, _FW_LINKED)) {
2005 				DBG_88E("============ RA status check ===================\n");
2006 				DBG_88E("Mac_id:%d , RateID = %d, RAUseRate = 0x%08x, RateSGI = %d, DecisionRate = 0x%02x ,PTStage = %d\n",
2007 					entry_id,
2008 					haldata->odmpriv.RAInfo[entry_id].RateID,
2009 					haldata->odmpriv.RAInfo[entry_id].RAUseRate,
2010 					haldata->odmpriv.RAInfo[entry_id].RateSGI,
2011 					haldata->odmpriv.RAInfo[entry_id].DecisionRate,
2012 					haldata->odmpriv.RAInfo[entry_id].PTStage);
2013 			}
2014 		}
2015 		break;
2016 	case HAL_DEF_DBG_DUMP_RXPKT:
2017 		*((u8 *)pValue) = haldata->bDumpRxPkt;
2018 		break;
2019 	case HAL_DEF_DBG_DUMP_TXPKT:
2020 		*((u8 *)pValue) = haldata->bDumpTxPkt;
2021 		break;
2022 	default:
2023 		bResult = _FAIL;
2024 		break;
2025 	}
2026 
2027 	return bResult;
2028 }
2029 
2030 /*  */
2031 /*	Description: */
2032 /*		Change default setting of specified variable. */
2033 /*  */
SetHalDefVar8188EUsb(struct adapter * Adapter,enum hal_def_variable eVariable,void * pValue)2034 static u8 SetHalDefVar8188EUsb(struct adapter *Adapter, enum hal_def_variable eVariable, void *pValue)
2035 {
2036 	struct hal_data_8188e	*haldata = GET_HAL_DATA(Adapter);
2037 	u8 bResult = _SUCCESS;
2038 
2039 	switch (eVariable) {
2040 	case HAL_DEF_DBG_DM_FUNC:
2041 		{
2042 			u8 dm_func = *((u8 *)pValue);
2043 			struct odm_dm_struct *podmpriv = &haldata->odmpriv;
2044 
2045 			if (dm_func == 0) { /* disable all dynamic func */
2046 				podmpriv->SupportAbility = DYNAMIC_FUNC_DISABLE;
2047 				DBG_88E("==> Disable all dynamic function...\n");
2048 			} else if (dm_func == 1) {/* disable DIG */
2049 				podmpriv->SupportAbility  &= (~DYNAMIC_BB_DIG);
2050 				DBG_88E("==> Disable DIG...\n");
2051 			} else if (dm_func == 2) {/* disable High power */
2052 				podmpriv->SupportAbility  &= (~DYNAMIC_BB_DYNAMIC_TXPWR);
2053 			} else if (dm_func == 3) {/* disable tx power tracking */
2054 				podmpriv->SupportAbility  &= (~DYNAMIC_RF_CALIBRATION);
2055 				DBG_88E("==> Disable tx power tracking...\n");
2056 			} else if (dm_func == 5) {/* disable antenna diversity */
2057 				podmpriv->SupportAbility  &= (~DYNAMIC_BB_ANT_DIV);
2058 			} else if (dm_func == 6) {/* turn on all dynamic func */
2059 				if (!(podmpriv->SupportAbility  & DYNAMIC_BB_DIG)) {
2060 					struct rtw_dig *pDigTable = &podmpriv->DM_DigTable;
2061 					pDigTable->CurIGValue = rtw_read8(Adapter, 0xc50);
2062 				}
2063 				podmpriv->SupportAbility = DYNAMIC_ALL_FUNC_ENABLE;
2064 				DBG_88E("==> Turn on all dynamic function...\n");
2065 			}
2066 		}
2067 		break;
2068 	case HAL_DEF_DBG_DUMP_RXPKT:
2069 		haldata->bDumpRxPkt = *((u8 *)pValue);
2070 		break;
2071 	case HAL_DEF_DBG_DUMP_TXPKT:
2072 		haldata->bDumpTxPkt = *((u8 *)pValue);
2073 		break;
2074 	default:
2075 		bResult = _FAIL;
2076 		break;
2077 	}
2078 
2079 	return bResult;
2080 }
2081 
UpdateHalRAMask8188EUsb(struct adapter * adapt,u32 mac_id,u8 rssi_level)2082 static void UpdateHalRAMask8188EUsb(struct adapter *adapt, u32 mac_id, u8 rssi_level)
2083 {
2084 	u8 init_rate = 0;
2085 	u8 networkType, raid;
2086 	u32 mask, rate_bitmap;
2087 	u8 shortGIrate = false;
2088 	int	supportRateNum = 0;
2089 	struct sta_info	*psta;
2090 	struct hal_data_8188e	*haldata = GET_HAL_DATA(adapt);
2091 	struct mlme_ext_priv	*pmlmeext = &adapt->mlmeextpriv;
2092 	struct mlme_ext_info	*pmlmeinfo = &pmlmeext->mlmext_info;
2093 	struct wlan_bssid_ex	*cur_network = &pmlmeinfo->network;
2094 
2095 	if (mac_id >= NUM_STA) /* CAM_SIZE */
2096 		return;
2097 	psta = pmlmeinfo->FW_sta_info[mac_id].psta;
2098 	if (!psta)
2099 		return;
2100 	switch (mac_id) {
2101 	case 0:/*  for infra mode */
2102 		supportRateNum = rtw_get_rateset_len(cur_network->SupportedRates);
2103 		networkType = judge_network_type(adapt, cur_network->SupportedRates, supportRateNum) & 0xf;
2104 		raid = networktype_to_raid(networkType);
2105 		mask = update_supported_rate(cur_network->SupportedRates, supportRateNum);
2106 		mask |= (pmlmeinfo->HT_enable) ? update_MSC_rate(&pmlmeinfo->HT_caps) : 0;
2107 		if (support_short_GI(adapt, &pmlmeinfo->HT_caps))
2108 			shortGIrate = true;
2109 		break;
2110 	case 1:/* for broadcast/multicast */
2111 		supportRateNum = rtw_get_rateset_len(pmlmeinfo->FW_sta_info[mac_id].SupportedRates);
2112 		if (pmlmeext->cur_wireless_mode & WIRELESS_11B)
2113 			networkType = WIRELESS_11B;
2114 		else
2115 			networkType = WIRELESS_11G;
2116 		raid = networktype_to_raid(networkType);
2117 		mask = update_basic_rate(cur_network->SupportedRates, supportRateNum);
2118 		break;
2119 	default: /* for each sta in IBSS */
2120 		supportRateNum = rtw_get_rateset_len(pmlmeinfo->FW_sta_info[mac_id].SupportedRates);
2121 		networkType = judge_network_type(adapt, pmlmeinfo->FW_sta_info[mac_id].SupportedRates, supportRateNum) & 0xf;
2122 		raid = networktype_to_raid(networkType);
2123 		mask = update_supported_rate(cur_network->SupportedRates, supportRateNum);
2124 
2125 		/* todo: support HT in IBSS */
2126 		break;
2127 	}
2128 
2129 	rate_bitmap = 0x0fffffff;
2130 	rate_bitmap = ODM_Get_Rate_Bitmap(&haldata->odmpriv, mac_id, mask, rssi_level);
2131 	DBG_88E("%s => mac_id:%d, networkType:0x%02x, mask:0x%08x\n\t ==> rssi_level:%d, rate_bitmap:0x%08x\n",
2132 		__func__, mac_id, networkType, mask, rssi_level, rate_bitmap);
2133 
2134 	mask &= rate_bitmap;
2135 
2136 	init_rate = get_highest_rate_idx(mask) & 0x3f;
2137 
2138 	if (haldata->fw_ractrl) {
2139 		u8 arg;
2140 
2141 		arg = mac_id & 0x1f;/* MACID */
2142 		arg |= BIT(7);
2143 		if (shortGIrate)
2144 			arg |= BIT(5);
2145 		mask |= ((raid << 28) & 0xf0000000);
2146 		DBG_88E("update raid entry, mask=0x%x, arg=0x%x\n", mask, arg);
2147 		psta->ra_mask = mask;
2148 		mask |= ((raid << 28) & 0xf0000000);
2149 
2150 		/* to do ,for 8188E-SMIC */
2151 		rtl8188e_set_raid_cmd(adapt, mask);
2152 	} else {
2153 		ODM_RA_UpdateRateInfo_8188E(&haldata->odmpriv,
2154 				mac_id,
2155 				raid,
2156 				mask,
2157 				shortGIrate
2158 				);
2159 	}
2160 	/* set ra_id */
2161 	psta->raid = raid;
2162 	psta->init_rate = init_rate;
2163 }
2164 
SetBeaconRelatedRegisters8188EUsb(struct adapter * adapt)2165 static void SetBeaconRelatedRegisters8188EUsb(struct adapter *adapt)
2166 {
2167 	u32 value32;
2168 	struct mlme_ext_priv	*pmlmeext = &adapt->mlmeextpriv;
2169 	struct mlme_ext_info	*pmlmeinfo = &pmlmeext->mlmext_info;
2170 	u32 bcn_ctrl_reg			= REG_BCN_CTRL;
2171 	/* reset TSF, enable update TSF, correcting TSF On Beacon */
2172 
2173 	/* BCN interval */
2174 	rtw_write16(adapt, REG_BCN_INTERVAL, pmlmeinfo->bcn_interval);
2175 	rtw_write8(adapt, REG_ATIMWND, 0x02);/*  2ms */
2176 
2177 	_InitBeaconParameters(adapt);
2178 
2179 	rtw_write8(adapt, REG_SLOT, 0x09);
2180 
2181 	value32 = rtw_read32(adapt, REG_TCR);
2182 	value32 &= ~TSFRST;
2183 	rtw_write32(adapt,  REG_TCR, value32);
2184 
2185 	value32 |= TSFRST;
2186 	rtw_write32(adapt, REG_TCR, value32);
2187 
2188 	/*  NOTE: Fix test chip's bug (about contention windows's randomness) */
2189 	rtw_write8(adapt,  REG_RXTSF_OFFSET_CCK, 0x50);
2190 	rtw_write8(adapt, REG_RXTSF_OFFSET_OFDM, 0x50);
2191 
2192 	_BeaconFunctionEnable(adapt, true, true);
2193 
2194 	ResumeTxBeacon(adapt);
2195 
2196 	rtw_write8(adapt, bcn_ctrl_reg, rtw_read8(adapt, bcn_ctrl_reg) | BIT(1));
2197 }
2198 
rtl8188eu_init_default_value(struct adapter * adapt)2199 static void rtl8188eu_init_default_value(struct adapter *adapt)
2200 {
2201 	struct hal_data_8188e *haldata;
2202 	struct pwrctrl_priv *pwrctrlpriv;
2203 	u8 i;
2204 
2205 	haldata = GET_HAL_DATA(adapt);
2206 	pwrctrlpriv = &adapt->pwrctrlpriv;
2207 
2208 	/* init default value */
2209 	haldata->fw_ractrl = false;
2210 	if (!pwrctrlpriv->bkeepfwalive)
2211 		haldata->LastHMEBoxNum = 0;
2212 
2213 	/* init dm default value */
2214 	haldata->odmpriv.RFCalibrateInfo.bIQKInitialized = false;
2215 	haldata->odmpriv.RFCalibrateInfo.TM_Trigger = 0;/* for IQK */
2216 	haldata->pwrGroupCnt = 0;
2217 	haldata->PGMaxGroup = 13;
2218 	haldata->odmpriv.RFCalibrateInfo.ThermalValue_HP_index = 0;
2219 	for (i = 0; i < HP_THERMAL_NUM; i++)
2220 		haldata->odmpriv.RFCalibrateInfo.ThermalValue_HP[i] = 0;
2221 }
2222 
rtl8188eu_ps_func(struct adapter * Adapter,enum hal_intf_ps_func efunc_id,u8 * val)2223 static u8 rtl8188eu_ps_func(struct adapter *Adapter, enum hal_intf_ps_func efunc_id, u8 *val)
2224 {
2225 	u8 bResult = true;
2226 	return bResult;
2227 }
2228 
rtl8188eu_set_hal_ops(struct adapter * adapt)2229 void rtl8188eu_set_hal_ops(struct adapter *adapt)
2230 {
2231 	struct hal_ops	*halfunc = &adapt->HalFunc;
2232 
2233 	adapt->HalData = kzalloc(sizeof(struct hal_data_8188e), GFP_KERNEL);
2234 	if (!adapt->HalData)
2235 		DBG_88E("cant not alloc memory for HAL DATA\n");
2236 	adapt->hal_data_sz = sizeof(struct hal_data_8188e);
2237 
2238 	halfunc->hal_power_on = rtl8188eu_InitPowerOn;
2239 	halfunc->hal_init = &rtl8188eu_hal_init;
2240 	halfunc->hal_deinit = &rtl8188eu_hal_deinit;
2241 
2242 	halfunc->inirp_init = &rtl8188eu_inirp_init;
2243 	halfunc->inirp_deinit = &rtl8188eu_inirp_deinit;
2244 
2245 	halfunc->init_xmit_priv = &rtl8188eu_init_xmit_priv;
2246 
2247 	halfunc->init_recv_priv = &rtl8188eu_init_recv_priv;
2248 	halfunc->free_recv_priv = &rtl8188eu_free_recv_priv;
2249 	halfunc->InitSwLeds = &rtl8188eu_InitSwLeds;
2250 	halfunc->DeInitSwLeds = &rtl8188eu_DeInitSwLeds;
2251 
2252 	halfunc->init_default_value = &rtl8188eu_init_default_value;
2253 	halfunc->intf_chip_configure = &rtl8188eu_interface_configure;
2254 	halfunc->read_adapter_info = &ReadAdapterInfo8188EU;
2255 
2256 	halfunc->SetHwRegHandler = &SetHwReg8188EU;
2257 	halfunc->GetHwRegHandler = &GetHwReg8188EU;
2258 	halfunc->GetHalDefVarHandler = &GetHalDefVar8188EUsb;
2259 	halfunc->SetHalDefVarHandler = &SetHalDefVar8188EUsb;
2260 
2261 	halfunc->UpdateRAMaskHandler = &UpdateHalRAMask8188EUsb;
2262 	halfunc->SetBeaconRelatedRegistersHandler = &SetBeaconRelatedRegisters8188EUsb;
2263 
2264 	halfunc->hal_xmit = &rtl8188eu_hal_xmit;
2265 	halfunc->mgnt_xmit = &rtl8188eu_mgnt_xmit;
2266 
2267 	halfunc->interface_ps_func = &rtl8188eu_ps_func;
2268 
2269 	rtl8188e_set_hal_ops(halfunc);
2270 
2271 }
2272