1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic OPP Interface
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/clk.h>
14 #include <linux/errno.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/export.h>
19 #include <linux/pm_domain.h>
20 #include <linux/regulator/consumer.h>
21
22 #include "opp.h"
23
24 /*
25 * The root of the list of all opp-tables. All opp_table structures branch off
26 * from here, with each opp_table containing the list of opps it supports in
27 * various states of availability.
28 */
29 LIST_HEAD(opp_tables);
30 /* Lock to allow exclusive modification to the device and opp lists */
31 DEFINE_MUTEX(opp_table_lock);
32
_find_opp_dev(const struct device * dev,struct opp_table * opp_table)33 static struct opp_device *_find_opp_dev(const struct device *dev,
34 struct opp_table *opp_table)
35 {
36 struct opp_device *opp_dev;
37
38 list_for_each_entry(opp_dev, &opp_table->dev_list, node)
39 if (opp_dev->dev == dev)
40 return opp_dev;
41
42 return NULL;
43 }
44
_find_opp_table_unlocked(struct device * dev)45 static struct opp_table *_find_opp_table_unlocked(struct device *dev)
46 {
47 struct opp_table *opp_table;
48 bool found;
49
50 list_for_each_entry(opp_table, &opp_tables, node) {
51 mutex_lock(&opp_table->lock);
52 found = !!_find_opp_dev(dev, opp_table);
53 mutex_unlock(&opp_table->lock);
54
55 if (found) {
56 _get_opp_table_kref(opp_table);
57
58 return opp_table;
59 }
60 }
61
62 return ERR_PTR(-ENODEV);
63 }
64
65 /**
66 * _find_opp_table() - find opp_table struct using device pointer
67 * @dev: device pointer used to lookup OPP table
68 *
69 * Search OPP table for one containing matching device.
70 *
71 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
72 * -EINVAL based on type of error.
73 *
74 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
75 */
_find_opp_table(struct device * dev)76 struct opp_table *_find_opp_table(struct device *dev)
77 {
78 struct opp_table *opp_table;
79
80 if (IS_ERR_OR_NULL(dev)) {
81 pr_err("%s: Invalid parameters\n", __func__);
82 return ERR_PTR(-EINVAL);
83 }
84
85 mutex_lock(&opp_table_lock);
86 opp_table = _find_opp_table_unlocked(dev);
87 mutex_unlock(&opp_table_lock);
88
89 return opp_table;
90 }
91
92 /**
93 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
94 * @opp: opp for which voltage has to be returned for
95 *
96 * Return: voltage in micro volt corresponding to the opp, else
97 * return 0
98 *
99 * This is useful only for devices with single power supply.
100 */
dev_pm_opp_get_voltage(struct dev_pm_opp * opp)101 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
102 {
103 if (IS_ERR_OR_NULL(opp)) {
104 pr_err("%s: Invalid parameters\n", __func__);
105 return 0;
106 }
107
108 return opp->supplies[0].u_volt;
109 }
110 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
111
112 /**
113 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
114 * @opp: opp for which frequency has to be returned for
115 *
116 * Return: frequency in hertz corresponding to the opp, else
117 * return 0
118 */
dev_pm_opp_get_freq(struct dev_pm_opp * opp)119 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
120 {
121 if (IS_ERR_OR_NULL(opp)) {
122 pr_err("%s: Invalid parameters\n", __func__);
123 return 0;
124 }
125
126 return opp->rate;
127 }
128 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
129
130 /**
131 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
132 * @opp: opp for which level value has to be returned for
133 *
134 * Return: level read from device tree corresponding to the opp, else
135 * return 0.
136 */
dev_pm_opp_get_level(struct dev_pm_opp * opp)137 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
138 {
139 if (IS_ERR_OR_NULL(opp) || !opp->available) {
140 pr_err("%s: Invalid parameters\n", __func__);
141 return 0;
142 }
143
144 return opp->level;
145 }
146 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
147
148 /**
149 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
150 * @opp: opp for which turbo mode is being verified
151 *
152 * Turbo OPPs are not for normal use, and can be enabled (under certain
153 * conditions) for short duration of times to finish high throughput work
154 * quickly. Running on them for longer times may overheat the chip.
155 *
156 * Return: true if opp is turbo opp, else false.
157 */
dev_pm_opp_is_turbo(struct dev_pm_opp * opp)158 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
159 {
160 if (IS_ERR_OR_NULL(opp) || !opp->available) {
161 pr_err("%s: Invalid parameters\n", __func__);
162 return false;
163 }
164
165 return opp->turbo;
166 }
167 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
168
169 /**
170 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
171 * @dev: device for which we do this operation
172 *
173 * Return: This function returns the max clock latency in nanoseconds.
174 */
dev_pm_opp_get_max_clock_latency(struct device * dev)175 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
176 {
177 struct opp_table *opp_table;
178 unsigned long clock_latency_ns;
179
180 opp_table = _find_opp_table(dev);
181 if (IS_ERR(opp_table))
182 return 0;
183
184 clock_latency_ns = opp_table->clock_latency_ns_max;
185
186 dev_pm_opp_put_opp_table(opp_table);
187
188 return clock_latency_ns;
189 }
190 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
191
192 /**
193 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
194 * @dev: device for which we do this operation
195 *
196 * Return: This function returns the max voltage latency in nanoseconds.
197 */
dev_pm_opp_get_max_volt_latency(struct device * dev)198 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
199 {
200 struct opp_table *opp_table;
201 struct dev_pm_opp *opp;
202 struct regulator *reg;
203 unsigned long latency_ns = 0;
204 int ret, i, count;
205 struct {
206 unsigned long min;
207 unsigned long max;
208 } *uV;
209
210 opp_table = _find_opp_table(dev);
211 if (IS_ERR(opp_table))
212 return 0;
213
214 /* Regulator may not be required for the device */
215 if (!opp_table->regulators)
216 goto put_opp_table;
217
218 count = opp_table->regulator_count;
219
220 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
221 if (!uV)
222 goto put_opp_table;
223
224 mutex_lock(&opp_table->lock);
225
226 for (i = 0; i < count; i++) {
227 uV[i].min = ~0;
228 uV[i].max = 0;
229
230 list_for_each_entry(opp, &opp_table->opp_list, node) {
231 if (!opp->available)
232 continue;
233
234 if (opp->supplies[i].u_volt_min < uV[i].min)
235 uV[i].min = opp->supplies[i].u_volt_min;
236 if (opp->supplies[i].u_volt_max > uV[i].max)
237 uV[i].max = opp->supplies[i].u_volt_max;
238 }
239 }
240
241 mutex_unlock(&opp_table->lock);
242
243 /*
244 * The caller needs to ensure that opp_table (and hence the regulator)
245 * isn't freed, while we are executing this routine.
246 */
247 for (i = 0; i < count; i++) {
248 reg = opp_table->regulators[i];
249 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
250 if (ret > 0)
251 latency_ns += ret * 1000;
252 }
253
254 kfree(uV);
255 put_opp_table:
256 dev_pm_opp_put_opp_table(opp_table);
257
258 return latency_ns;
259 }
260 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
261
262 /**
263 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
264 * nanoseconds
265 * @dev: device for which we do this operation
266 *
267 * Return: This function returns the max transition latency, in nanoseconds, to
268 * switch from one OPP to other.
269 */
dev_pm_opp_get_max_transition_latency(struct device * dev)270 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
271 {
272 return dev_pm_opp_get_max_volt_latency(dev) +
273 dev_pm_opp_get_max_clock_latency(dev);
274 }
275 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
276
277 /**
278 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
279 * @dev: device for which we do this operation
280 *
281 * Return: This function returns the frequency of the OPP marked as suspend_opp
282 * if one is available, else returns 0;
283 */
dev_pm_opp_get_suspend_opp_freq(struct device * dev)284 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
285 {
286 struct opp_table *opp_table;
287 unsigned long freq = 0;
288
289 opp_table = _find_opp_table(dev);
290 if (IS_ERR(opp_table))
291 return 0;
292
293 if (opp_table->suspend_opp && opp_table->suspend_opp->available)
294 freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
295
296 dev_pm_opp_put_opp_table(opp_table);
297
298 return freq;
299 }
300 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
301
_get_opp_count(struct opp_table * opp_table)302 int _get_opp_count(struct opp_table *opp_table)
303 {
304 struct dev_pm_opp *opp;
305 int count = 0;
306
307 mutex_lock(&opp_table->lock);
308
309 list_for_each_entry(opp, &opp_table->opp_list, node) {
310 if (opp->available)
311 count++;
312 }
313
314 mutex_unlock(&opp_table->lock);
315
316 return count;
317 }
318
319 /**
320 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
321 * @dev: device for which we do this operation
322 *
323 * Return: This function returns the number of available opps if there are any,
324 * else returns 0 if none or the corresponding error value.
325 */
dev_pm_opp_get_opp_count(struct device * dev)326 int dev_pm_opp_get_opp_count(struct device *dev)
327 {
328 struct opp_table *opp_table;
329 int count;
330
331 opp_table = _find_opp_table(dev);
332 if (IS_ERR(opp_table)) {
333 count = PTR_ERR(opp_table);
334 dev_dbg(dev, "%s: OPP table not found (%d)\n",
335 __func__, count);
336 return count;
337 }
338
339 count = _get_opp_count(opp_table);
340 dev_pm_opp_put_opp_table(opp_table);
341
342 return count;
343 }
344 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
345
346 /**
347 * dev_pm_opp_find_freq_exact() - search for an exact frequency
348 * @dev: device for which we do this operation
349 * @freq: frequency to search for
350 * @available: true/false - match for available opp
351 *
352 * Return: Searches for exact match in the opp table and returns pointer to the
353 * matching opp if found, else returns ERR_PTR in case of error and should
354 * be handled using IS_ERR. Error return values can be:
355 * EINVAL: for bad pointer
356 * ERANGE: no match found for search
357 * ENODEV: if device not found in list of registered devices
358 *
359 * Note: available is a modifier for the search. if available=true, then the
360 * match is for exact matching frequency and is available in the stored OPP
361 * table. if false, the match is for exact frequency which is not available.
362 *
363 * This provides a mechanism to enable an opp which is not available currently
364 * or the opposite as well.
365 *
366 * The callers are required to call dev_pm_opp_put() for the returned OPP after
367 * use.
368 */
dev_pm_opp_find_freq_exact(struct device * dev,unsigned long freq,bool available)369 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
370 unsigned long freq,
371 bool available)
372 {
373 struct opp_table *opp_table;
374 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
375
376 opp_table = _find_opp_table(dev);
377 if (IS_ERR(opp_table)) {
378 int r = PTR_ERR(opp_table);
379
380 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
381 return ERR_PTR(r);
382 }
383
384 mutex_lock(&opp_table->lock);
385
386 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
387 if (temp_opp->available == available &&
388 temp_opp->rate == freq) {
389 opp = temp_opp;
390
391 /* Increment the reference count of OPP */
392 dev_pm_opp_get(opp);
393 break;
394 }
395 }
396
397 mutex_unlock(&opp_table->lock);
398 dev_pm_opp_put_opp_table(opp_table);
399
400 return opp;
401 }
402 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
403
404 /**
405 * dev_pm_opp_find_level_exact() - search for an exact level
406 * @dev: device for which we do this operation
407 * @level: level to search for
408 *
409 * Return: Searches for exact match in the opp table and returns pointer to the
410 * matching opp if found, else returns ERR_PTR in case of error and should
411 * be handled using IS_ERR. Error return values can be:
412 * EINVAL: for bad pointer
413 * ERANGE: no match found for search
414 * ENODEV: if device not found in list of registered devices
415 *
416 * The callers are required to call dev_pm_opp_put() for the returned OPP after
417 * use.
418 */
dev_pm_opp_find_level_exact(struct device * dev,unsigned int level)419 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
420 unsigned int level)
421 {
422 struct opp_table *opp_table;
423 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
424
425 opp_table = _find_opp_table(dev);
426 if (IS_ERR(opp_table)) {
427 int r = PTR_ERR(opp_table);
428
429 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
430 return ERR_PTR(r);
431 }
432
433 mutex_lock(&opp_table->lock);
434
435 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
436 if (temp_opp->level == level) {
437 opp = temp_opp;
438
439 /* Increment the reference count of OPP */
440 dev_pm_opp_get(opp);
441 break;
442 }
443 }
444
445 mutex_unlock(&opp_table->lock);
446 dev_pm_opp_put_opp_table(opp_table);
447
448 return opp;
449 }
450 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
451
_find_freq_ceil(struct opp_table * opp_table,unsigned long * freq)452 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
453 unsigned long *freq)
454 {
455 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
456
457 mutex_lock(&opp_table->lock);
458
459 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
460 if (temp_opp->available && temp_opp->rate >= *freq) {
461 opp = temp_opp;
462 *freq = opp->rate;
463
464 /* Increment the reference count of OPP */
465 dev_pm_opp_get(opp);
466 break;
467 }
468 }
469
470 mutex_unlock(&opp_table->lock);
471
472 return opp;
473 }
474
475 /**
476 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
477 * @dev: device for which we do this operation
478 * @freq: Start frequency
479 *
480 * Search for the matching ceil *available* OPP from a starting freq
481 * for a device.
482 *
483 * Return: matching *opp and refreshes *freq accordingly, else returns
484 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
485 * values can be:
486 * EINVAL: for bad pointer
487 * ERANGE: no match found for search
488 * ENODEV: if device not found in list of registered devices
489 *
490 * The callers are required to call dev_pm_opp_put() for the returned OPP after
491 * use.
492 */
dev_pm_opp_find_freq_ceil(struct device * dev,unsigned long * freq)493 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
494 unsigned long *freq)
495 {
496 struct opp_table *opp_table;
497 struct dev_pm_opp *opp;
498
499 if (!dev || !freq) {
500 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
501 return ERR_PTR(-EINVAL);
502 }
503
504 opp_table = _find_opp_table(dev);
505 if (IS_ERR(opp_table))
506 return ERR_CAST(opp_table);
507
508 opp = _find_freq_ceil(opp_table, freq);
509
510 dev_pm_opp_put_opp_table(opp_table);
511
512 return opp;
513 }
514 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
515
516 /**
517 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
518 * @dev: device for which we do this operation
519 * @freq: Start frequency
520 *
521 * Search for the matching floor *available* OPP from a starting freq
522 * for a device.
523 *
524 * Return: matching *opp and refreshes *freq accordingly, else returns
525 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
526 * values can be:
527 * EINVAL: for bad pointer
528 * ERANGE: no match found for search
529 * ENODEV: if device not found in list of registered devices
530 *
531 * The callers are required to call dev_pm_opp_put() for the returned OPP after
532 * use.
533 */
dev_pm_opp_find_freq_floor(struct device * dev,unsigned long * freq)534 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
535 unsigned long *freq)
536 {
537 struct opp_table *opp_table;
538 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
539
540 if (!dev || !freq) {
541 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
542 return ERR_PTR(-EINVAL);
543 }
544
545 opp_table = _find_opp_table(dev);
546 if (IS_ERR(opp_table))
547 return ERR_CAST(opp_table);
548
549 mutex_lock(&opp_table->lock);
550
551 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
552 if (temp_opp->available) {
553 /* go to the next node, before choosing prev */
554 if (temp_opp->rate > *freq)
555 break;
556 else
557 opp = temp_opp;
558 }
559 }
560
561 /* Increment the reference count of OPP */
562 if (!IS_ERR(opp))
563 dev_pm_opp_get(opp);
564 mutex_unlock(&opp_table->lock);
565 dev_pm_opp_put_opp_table(opp_table);
566
567 if (!IS_ERR(opp))
568 *freq = opp->rate;
569
570 return opp;
571 }
572 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
573
574 /**
575 * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for
576 * target voltage.
577 * @dev: Device for which we do this operation.
578 * @u_volt: Target voltage.
579 *
580 * Search for OPP with highest (ceil) frequency and has voltage <= u_volt.
581 *
582 * Return: matching *opp, else returns ERR_PTR in case of error which should be
583 * handled using IS_ERR.
584 *
585 * Error return values can be:
586 * EINVAL: bad parameters
587 *
588 * The callers are required to call dev_pm_opp_put() for the returned OPP after
589 * use.
590 */
dev_pm_opp_find_freq_ceil_by_volt(struct device * dev,unsigned long u_volt)591 struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev,
592 unsigned long u_volt)
593 {
594 struct opp_table *opp_table;
595 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
596
597 if (!dev || !u_volt) {
598 dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__,
599 u_volt);
600 return ERR_PTR(-EINVAL);
601 }
602
603 opp_table = _find_opp_table(dev);
604 if (IS_ERR(opp_table))
605 return ERR_CAST(opp_table);
606
607 mutex_lock(&opp_table->lock);
608
609 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
610 if (temp_opp->available) {
611 if (temp_opp->supplies[0].u_volt > u_volt)
612 break;
613 opp = temp_opp;
614 }
615 }
616
617 /* Increment the reference count of OPP */
618 if (!IS_ERR(opp))
619 dev_pm_opp_get(opp);
620
621 mutex_unlock(&opp_table->lock);
622 dev_pm_opp_put_opp_table(opp_table);
623
624 return opp;
625 }
626 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt);
627
_set_opp_voltage(struct device * dev,struct regulator * reg,struct dev_pm_opp_supply * supply)628 static int _set_opp_voltage(struct device *dev, struct regulator *reg,
629 struct dev_pm_opp_supply *supply)
630 {
631 int ret;
632
633 /* Regulator not available for device */
634 if (IS_ERR(reg)) {
635 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
636 PTR_ERR(reg));
637 return 0;
638 }
639
640 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
641 supply->u_volt_min, supply->u_volt, supply->u_volt_max);
642
643 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
644 supply->u_volt, supply->u_volt_max);
645 if (ret)
646 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
647 __func__, supply->u_volt_min, supply->u_volt,
648 supply->u_volt_max, ret);
649
650 return ret;
651 }
652
_generic_set_opp_clk_only(struct device * dev,struct clk * clk,unsigned long freq)653 static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk,
654 unsigned long freq)
655 {
656 int ret;
657
658 ret = clk_set_rate(clk, freq);
659 if (ret) {
660 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
661 ret);
662 }
663
664 return ret;
665 }
666
_generic_set_opp_regulator(struct opp_table * opp_table,struct device * dev,unsigned long old_freq,unsigned long freq,struct dev_pm_opp_supply * old_supply,struct dev_pm_opp_supply * new_supply)667 static int _generic_set_opp_regulator(struct opp_table *opp_table,
668 struct device *dev,
669 unsigned long old_freq,
670 unsigned long freq,
671 struct dev_pm_opp_supply *old_supply,
672 struct dev_pm_opp_supply *new_supply)
673 {
674 struct regulator *reg = opp_table->regulators[0];
675 int ret;
676
677 /* This function only supports single regulator per device */
678 if (WARN_ON(opp_table->regulator_count > 1)) {
679 dev_err(dev, "multiple regulators are not supported\n");
680 return -EINVAL;
681 }
682
683 /* Scaling up? Scale voltage before frequency */
684 if (freq >= old_freq) {
685 ret = _set_opp_voltage(dev, reg, new_supply);
686 if (ret)
687 goto restore_voltage;
688 }
689
690 /* Change frequency */
691 ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
692 if (ret)
693 goto restore_voltage;
694
695 /* Scaling down? Scale voltage after frequency */
696 if (freq < old_freq) {
697 ret = _set_opp_voltage(dev, reg, new_supply);
698 if (ret)
699 goto restore_freq;
700 }
701
702 /*
703 * Enable the regulator after setting its voltages, otherwise it breaks
704 * some boot-enabled regulators.
705 */
706 if (unlikely(!opp_table->enabled)) {
707 ret = regulator_enable(reg);
708 if (ret < 0)
709 dev_warn(dev, "Failed to enable regulator: %d", ret);
710 }
711
712 return 0;
713
714 restore_freq:
715 if (_generic_set_opp_clk_only(dev, opp_table->clk, old_freq))
716 dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
717 __func__, old_freq);
718 restore_voltage:
719 /* This shouldn't harm even if the voltages weren't updated earlier */
720 if (old_supply)
721 _set_opp_voltage(dev, reg, old_supply);
722
723 return ret;
724 }
725
_set_opp_bw(const struct opp_table * opp_table,struct dev_pm_opp * opp,struct device * dev,bool remove)726 static int _set_opp_bw(const struct opp_table *opp_table,
727 struct dev_pm_opp *opp, struct device *dev, bool remove)
728 {
729 u32 avg, peak;
730 int i, ret;
731
732 if (!opp_table->paths)
733 return 0;
734
735 for (i = 0; i < opp_table->path_count; i++) {
736 if (remove) {
737 avg = 0;
738 peak = 0;
739 } else {
740 avg = opp->bandwidth[i].avg;
741 peak = opp->bandwidth[i].peak;
742 }
743 ret = icc_set_bw(opp_table->paths[i], avg, peak);
744 if (ret) {
745 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
746 remove ? "remove" : "set", i, ret);
747 return ret;
748 }
749 }
750
751 return 0;
752 }
753
_set_opp_custom(const struct opp_table * opp_table,struct device * dev,unsigned long old_freq,unsigned long freq,struct dev_pm_opp_supply * old_supply,struct dev_pm_opp_supply * new_supply)754 static int _set_opp_custom(const struct opp_table *opp_table,
755 struct device *dev, unsigned long old_freq,
756 unsigned long freq,
757 struct dev_pm_opp_supply *old_supply,
758 struct dev_pm_opp_supply *new_supply)
759 {
760 struct dev_pm_set_opp_data *data;
761 int size;
762
763 data = opp_table->set_opp_data;
764 data->regulators = opp_table->regulators;
765 data->regulator_count = opp_table->regulator_count;
766 data->clk = opp_table->clk;
767 data->dev = dev;
768
769 data->old_opp.rate = old_freq;
770 size = sizeof(*old_supply) * opp_table->regulator_count;
771 if (!old_supply)
772 memset(data->old_opp.supplies, 0, size);
773 else
774 memcpy(data->old_opp.supplies, old_supply, size);
775
776 data->new_opp.rate = freq;
777 memcpy(data->new_opp.supplies, new_supply, size);
778
779 return opp_table->set_opp(data);
780 }
781
_set_required_opp(struct device * dev,struct device * pd_dev,struct dev_pm_opp * opp,int i)782 static int _set_required_opp(struct device *dev, struct device *pd_dev,
783 struct dev_pm_opp *opp, int i)
784 {
785 unsigned int pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
786 int ret;
787
788 if (!pd_dev)
789 return 0;
790
791 ret = dev_pm_genpd_set_performance_state(pd_dev, pstate);
792 if (ret) {
793 dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n",
794 dev_name(pd_dev), pstate, ret);
795 }
796
797 return ret;
798 }
799
800 /* This is only called for PM domain for now */
_set_required_opps(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,bool up)801 static int _set_required_opps(struct device *dev,
802 struct opp_table *opp_table,
803 struct dev_pm_opp *opp, bool up)
804 {
805 struct opp_table **required_opp_tables = opp_table->required_opp_tables;
806 struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
807 int i, ret = 0;
808
809 if (!required_opp_tables)
810 return 0;
811
812 /* Single genpd case */
813 if (!genpd_virt_devs)
814 return _set_required_opp(dev, dev, opp, 0);
815
816 /* Multiple genpd case */
817
818 /*
819 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
820 * after it is freed from another thread.
821 */
822 mutex_lock(&opp_table->genpd_virt_dev_lock);
823
824 /* Scaling up? Set required OPPs in normal order, else reverse */
825 if (up) {
826 for (i = 0; i < opp_table->required_opp_count; i++) {
827 ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
828 if (ret)
829 break;
830 }
831 } else {
832 for (i = opp_table->required_opp_count - 1; i >= 0; i--) {
833 ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
834 if (ret)
835 break;
836 }
837 }
838
839 mutex_unlock(&opp_table->genpd_virt_dev_lock);
840
841 return ret;
842 }
843
844 /**
845 * dev_pm_opp_set_bw() - sets bandwidth levels corresponding to an opp
846 * @dev: device for which we do this operation
847 * @opp: opp based on which the bandwidth levels are to be configured
848 *
849 * This configures the bandwidth to the levels specified by the OPP. However
850 * if the OPP specified is NULL the bandwidth levels are cleared out.
851 *
852 * Return: 0 on success or a negative error value.
853 */
dev_pm_opp_set_bw(struct device * dev,struct dev_pm_opp * opp)854 int dev_pm_opp_set_bw(struct device *dev, struct dev_pm_opp *opp)
855 {
856 struct opp_table *opp_table;
857 int ret;
858
859 opp_table = _find_opp_table(dev);
860 if (IS_ERR(opp_table)) {
861 dev_err(dev, "%s: device opp table doesn't exist\n", __func__);
862 return PTR_ERR(opp_table);
863 }
864
865 if (opp)
866 ret = _set_opp_bw(opp_table, opp, dev, false);
867 else
868 ret = _set_opp_bw(opp_table, NULL, dev, true);
869
870 dev_pm_opp_put_opp_table(opp_table);
871 return ret;
872 }
873 EXPORT_SYMBOL_GPL(dev_pm_opp_set_bw);
874
_opp_set_rate_zero(struct device * dev,struct opp_table * opp_table)875 static int _opp_set_rate_zero(struct device *dev, struct opp_table *opp_table)
876 {
877 int ret;
878
879 if (!opp_table->enabled)
880 return 0;
881
882 /*
883 * Some drivers need to support cases where some platforms may
884 * have OPP table for the device, while others don't and
885 * opp_set_rate() just needs to behave like clk_set_rate().
886 */
887 if (!_get_opp_count(opp_table))
888 return 0;
889
890 ret = _set_opp_bw(opp_table, NULL, dev, true);
891 if (ret)
892 return ret;
893
894 if (opp_table->regulators)
895 regulator_disable(opp_table->regulators[0]);
896
897 ret = _set_required_opps(dev, opp_table, NULL, false);
898
899 opp_table->enabled = false;
900 return ret;
901 }
902
903 /**
904 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
905 * @dev: device for which we do this operation
906 * @target_freq: frequency to achieve
907 *
908 * This configures the power-supplies to the levels specified by the OPP
909 * corresponding to the target_freq, and programs the clock to a value <=
910 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
911 * provided by the opp, should have already rounded to the target OPP's
912 * frequency.
913 */
dev_pm_opp_set_rate(struct device * dev,unsigned long target_freq)914 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
915 {
916 struct opp_table *opp_table;
917 unsigned long freq, old_freq, temp_freq;
918 struct dev_pm_opp *old_opp, *opp;
919 struct clk *clk;
920 int ret;
921
922 opp_table = _find_opp_table(dev);
923 if (IS_ERR(opp_table)) {
924 dev_err(dev, "%s: device opp doesn't exist\n", __func__);
925 return PTR_ERR(opp_table);
926 }
927
928 if (unlikely(!target_freq)) {
929 ret = _opp_set_rate_zero(dev, opp_table);
930 goto put_opp_table;
931 }
932
933 clk = opp_table->clk;
934 if (IS_ERR(clk)) {
935 dev_err(dev, "%s: No clock available for the device\n",
936 __func__);
937 ret = PTR_ERR(clk);
938 goto put_opp_table;
939 }
940
941 freq = clk_round_rate(clk, target_freq);
942 if ((long)freq <= 0)
943 freq = target_freq;
944
945 old_freq = clk_get_rate(clk);
946
947 /* Return early if nothing to do */
948 if (opp_table->enabled && old_freq == freq) {
949 dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n",
950 __func__, freq);
951 ret = 0;
952 goto put_opp_table;
953 }
954
955 /*
956 * For IO devices which require an OPP on some platforms/SoCs
957 * while just needing to scale the clock on some others
958 * we look for empty OPP tables with just a clock handle and
959 * scale only the clk. This makes dev_pm_opp_set_rate()
960 * equivalent to a clk_set_rate()
961 */
962 if (!_get_opp_count(opp_table)) {
963 ret = _generic_set_opp_clk_only(dev, clk, freq);
964 goto put_opp_table;
965 }
966
967 temp_freq = old_freq;
968 old_opp = _find_freq_ceil(opp_table, &temp_freq);
969 if (IS_ERR(old_opp)) {
970 dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n",
971 __func__, old_freq, PTR_ERR(old_opp));
972 }
973
974 temp_freq = freq;
975 opp = _find_freq_ceil(opp_table, &temp_freq);
976 if (IS_ERR(opp)) {
977 ret = PTR_ERR(opp);
978 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
979 __func__, freq, ret);
980 goto put_old_opp;
981 }
982
983 dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__,
984 old_freq, freq);
985
986 /* Scaling up? Configure required OPPs before frequency */
987 if (freq >= old_freq) {
988 ret = _set_required_opps(dev, opp_table, opp, true);
989 if (ret)
990 goto put_opp;
991 }
992
993 if (opp_table->set_opp) {
994 ret = _set_opp_custom(opp_table, dev, old_freq, freq,
995 IS_ERR(old_opp) ? NULL : old_opp->supplies,
996 opp->supplies);
997 } else if (opp_table->regulators) {
998 ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq,
999 IS_ERR(old_opp) ? NULL : old_opp->supplies,
1000 opp->supplies);
1001 } else {
1002 /* Only frequency scaling */
1003 ret = _generic_set_opp_clk_only(dev, clk, freq);
1004 }
1005
1006 /* Scaling down? Configure required OPPs after frequency */
1007 if (!ret && freq < old_freq) {
1008 ret = _set_required_opps(dev, opp_table, opp, false);
1009 if (ret)
1010 dev_err(dev, "Failed to set required opps: %d\n", ret);
1011 }
1012
1013 if (!ret) {
1014 ret = _set_opp_bw(opp_table, opp, dev, false);
1015 if (!ret)
1016 opp_table->enabled = true;
1017 }
1018
1019 put_opp:
1020 dev_pm_opp_put(opp);
1021 put_old_opp:
1022 if (!IS_ERR(old_opp))
1023 dev_pm_opp_put(old_opp);
1024 put_opp_table:
1025 dev_pm_opp_put_opp_table(opp_table);
1026 return ret;
1027 }
1028 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1029
1030 /* OPP-dev Helpers */
_remove_opp_dev(struct opp_device * opp_dev,struct opp_table * opp_table)1031 static void _remove_opp_dev(struct opp_device *opp_dev,
1032 struct opp_table *opp_table)
1033 {
1034 opp_debug_unregister(opp_dev, opp_table);
1035 list_del(&opp_dev->node);
1036 kfree(opp_dev);
1037 }
1038
_add_opp_dev_unlocked(const struct device * dev,struct opp_table * opp_table)1039 static struct opp_device *_add_opp_dev_unlocked(const struct device *dev,
1040 struct opp_table *opp_table)
1041 {
1042 struct opp_device *opp_dev;
1043
1044 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1045 if (!opp_dev)
1046 return NULL;
1047
1048 /* Initialize opp-dev */
1049 opp_dev->dev = dev;
1050
1051 list_add(&opp_dev->node, &opp_table->dev_list);
1052
1053 /* Create debugfs entries for the opp_table */
1054 opp_debug_register(opp_dev, opp_table);
1055
1056 return opp_dev;
1057 }
1058
_add_opp_dev(const struct device * dev,struct opp_table * opp_table)1059 struct opp_device *_add_opp_dev(const struct device *dev,
1060 struct opp_table *opp_table)
1061 {
1062 struct opp_device *opp_dev;
1063
1064 mutex_lock(&opp_table->lock);
1065 opp_dev = _add_opp_dev_unlocked(dev, opp_table);
1066 mutex_unlock(&opp_table->lock);
1067
1068 return opp_dev;
1069 }
1070
_allocate_opp_table(struct device * dev,int index)1071 static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1072 {
1073 struct opp_table *opp_table;
1074 struct opp_device *opp_dev;
1075 int ret;
1076
1077 /*
1078 * Allocate a new OPP table. In the infrequent case where a new
1079 * device is needed to be added, we pay this penalty.
1080 */
1081 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1082 if (!opp_table)
1083 return ERR_PTR(-ENOMEM);
1084
1085 mutex_init(&opp_table->lock);
1086 mutex_init(&opp_table->genpd_virt_dev_lock);
1087 INIT_LIST_HEAD(&opp_table->dev_list);
1088
1089 /* Mark regulator count uninitialized */
1090 opp_table->regulator_count = -1;
1091
1092 opp_dev = _add_opp_dev(dev, opp_table);
1093 if (!opp_dev) {
1094 ret = -ENOMEM;
1095 goto err;
1096 }
1097
1098 _of_init_opp_table(opp_table, dev, index);
1099
1100 /* Find clk for the device */
1101 opp_table->clk = clk_get(dev, NULL);
1102 if (IS_ERR(opp_table->clk)) {
1103 ret = PTR_ERR(opp_table->clk);
1104 if (ret == -EPROBE_DEFER)
1105 goto err;
1106
1107 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1108 }
1109
1110 /* Find interconnect path(s) for the device */
1111 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1112 if (ret) {
1113 if (ret == -EPROBE_DEFER)
1114 goto err;
1115
1116 dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1117 __func__, ret);
1118 }
1119
1120 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1121 INIT_LIST_HEAD(&opp_table->opp_list);
1122 kref_init(&opp_table->kref);
1123
1124 /* Secure the device table modification */
1125 list_add(&opp_table->node, &opp_tables);
1126 return opp_table;
1127
1128 err:
1129 kfree(opp_table);
1130 return ERR_PTR(ret);
1131 }
1132
_get_opp_table_kref(struct opp_table * opp_table)1133 void _get_opp_table_kref(struct opp_table *opp_table)
1134 {
1135 kref_get(&opp_table->kref);
1136 }
1137
_opp_get_opp_table(struct device * dev,int index)1138 static struct opp_table *_opp_get_opp_table(struct device *dev, int index)
1139 {
1140 struct opp_table *opp_table;
1141
1142 /* Hold our table modification lock here */
1143 mutex_lock(&opp_table_lock);
1144
1145 opp_table = _find_opp_table_unlocked(dev);
1146 if (!IS_ERR(opp_table))
1147 goto unlock;
1148
1149 opp_table = _managed_opp(dev, index);
1150 if (opp_table) {
1151 if (!_add_opp_dev_unlocked(dev, opp_table)) {
1152 dev_pm_opp_put_opp_table(opp_table);
1153 opp_table = ERR_PTR(-ENOMEM);
1154 }
1155 goto unlock;
1156 }
1157
1158 opp_table = _allocate_opp_table(dev, index);
1159
1160 unlock:
1161 mutex_unlock(&opp_table_lock);
1162
1163 return opp_table;
1164 }
1165
dev_pm_opp_get_opp_table(struct device * dev)1166 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1167 {
1168 return _opp_get_opp_table(dev, 0);
1169 }
1170 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1171
dev_pm_opp_get_opp_table_indexed(struct device * dev,int index)1172 struct opp_table *dev_pm_opp_get_opp_table_indexed(struct device *dev,
1173 int index)
1174 {
1175 return _opp_get_opp_table(dev, index);
1176 }
1177
_opp_table_kref_release(struct kref * kref)1178 static void _opp_table_kref_release(struct kref *kref)
1179 {
1180 struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1181 struct opp_device *opp_dev, *temp;
1182 int i;
1183
1184 /* Drop the lock as soon as we can */
1185 list_del(&opp_table->node);
1186 mutex_unlock(&opp_table_lock);
1187
1188 _of_clear_opp_table(opp_table);
1189
1190 /* Release clk */
1191 if (!IS_ERR(opp_table->clk))
1192 clk_put(opp_table->clk);
1193
1194 if (opp_table->paths) {
1195 for (i = 0; i < opp_table->path_count; i++)
1196 icc_put(opp_table->paths[i]);
1197 kfree(opp_table->paths);
1198 }
1199
1200 WARN_ON(!list_empty(&opp_table->opp_list));
1201
1202 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1203 /*
1204 * The OPP table is getting removed, drop the performance state
1205 * constraints.
1206 */
1207 if (opp_table->genpd_performance_state)
1208 dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1209
1210 _remove_opp_dev(opp_dev, opp_table);
1211 }
1212
1213 mutex_destroy(&opp_table->genpd_virt_dev_lock);
1214 mutex_destroy(&opp_table->lock);
1215 kfree(opp_table);
1216 }
1217
dev_pm_opp_put_opp_table(struct opp_table * opp_table)1218 void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1219 {
1220 kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1221 &opp_table_lock);
1222 }
1223 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1224
_opp_free(struct dev_pm_opp * opp)1225 void _opp_free(struct dev_pm_opp *opp)
1226 {
1227 kfree(opp);
1228 }
1229
_opp_kref_release(struct dev_pm_opp * opp,struct opp_table * opp_table)1230 static void _opp_kref_release(struct dev_pm_opp *opp,
1231 struct opp_table *opp_table)
1232 {
1233 /*
1234 * Notify the changes in the availability of the operable
1235 * frequency/voltage list.
1236 */
1237 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1238 _of_opp_free_required_opps(opp_table, opp);
1239 opp_debug_remove_one(opp);
1240 list_del(&opp->node);
1241 kfree(opp);
1242 }
1243
_opp_kref_release_unlocked(struct kref * kref)1244 static void _opp_kref_release_unlocked(struct kref *kref)
1245 {
1246 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1247 struct opp_table *opp_table = opp->opp_table;
1248
1249 _opp_kref_release(opp, opp_table);
1250 }
1251
_opp_kref_release_locked(struct kref * kref)1252 static void _opp_kref_release_locked(struct kref *kref)
1253 {
1254 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1255 struct opp_table *opp_table = opp->opp_table;
1256
1257 _opp_kref_release(opp, opp_table);
1258 mutex_unlock(&opp_table->lock);
1259 }
1260
dev_pm_opp_get(struct dev_pm_opp * opp)1261 void dev_pm_opp_get(struct dev_pm_opp *opp)
1262 {
1263 kref_get(&opp->kref);
1264 }
1265
dev_pm_opp_put(struct dev_pm_opp * opp)1266 void dev_pm_opp_put(struct dev_pm_opp *opp)
1267 {
1268 kref_put_mutex(&opp->kref, _opp_kref_release_locked,
1269 &opp->opp_table->lock);
1270 }
1271 EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1272
dev_pm_opp_put_unlocked(struct dev_pm_opp * opp)1273 static void dev_pm_opp_put_unlocked(struct dev_pm_opp *opp)
1274 {
1275 kref_put(&opp->kref, _opp_kref_release_unlocked);
1276 }
1277
1278 /**
1279 * dev_pm_opp_remove() - Remove an OPP from OPP table
1280 * @dev: device for which we do this operation
1281 * @freq: OPP to remove with matching 'freq'
1282 *
1283 * This function removes an opp from the opp table.
1284 */
dev_pm_opp_remove(struct device * dev,unsigned long freq)1285 void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1286 {
1287 struct dev_pm_opp *opp;
1288 struct opp_table *opp_table;
1289 bool found = false;
1290
1291 opp_table = _find_opp_table(dev);
1292 if (IS_ERR(opp_table))
1293 return;
1294
1295 mutex_lock(&opp_table->lock);
1296
1297 list_for_each_entry(opp, &opp_table->opp_list, node) {
1298 if (opp->rate == freq) {
1299 found = true;
1300 break;
1301 }
1302 }
1303
1304 mutex_unlock(&opp_table->lock);
1305
1306 if (found) {
1307 dev_pm_opp_put(opp);
1308
1309 /* Drop the reference taken by dev_pm_opp_add() */
1310 dev_pm_opp_put_opp_table(opp_table);
1311 } else {
1312 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1313 __func__, freq);
1314 }
1315
1316 /* Drop the reference taken by _find_opp_table() */
1317 dev_pm_opp_put_opp_table(opp_table);
1318 }
1319 EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1320
_opp_remove_all_static(struct opp_table * opp_table)1321 bool _opp_remove_all_static(struct opp_table *opp_table)
1322 {
1323 struct dev_pm_opp *opp, *tmp;
1324 bool ret = true;
1325
1326 mutex_lock(&opp_table->lock);
1327
1328 if (!opp_table->parsed_static_opps) {
1329 ret = false;
1330 goto unlock;
1331 }
1332
1333 if (--opp_table->parsed_static_opps)
1334 goto unlock;
1335
1336 list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) {
1337 if (!opp->dynamic)
1338 dev_pm_opp_put_unlocked(opp);
1339 }
1340
1341 unlock:
1342 mutex_unlock(&opp_table->lock);
1343
1344 return ret;
1345 }
1346
1347 /**
1348 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1349 * @dev: device for which we do this operation
1350 *
1351 * This function removes all dynamically created OPPs from the opp table.
1352 */
dev_pm_opp_remove_all_dynamic(struct device * dev)1353 void dev_pm_opp_remove_all_dynamic(struct device *dev)
1354 {
1355 struct opp_table *opp_table;
1356 struct dev_pm_opp *opp, *temp;
1357 int count = 0;
1358
1359 opp_table = _find_opp_table(dev);
1360 if (IS_ERR(opp_table))
1361 return;
1362
1363 mutex_lock(&opp_table->lock);
1364 list_for_each_entry_safe(opp, temp, &opp_table->opp_list, node) {
1365 if (opp->dynamic) {
1366 dev_pm_opp_put_unlocked(opp);
1367 count++;
1368 }
1369 }
1370 mutex_unlock(&opp_table->lock);
1371
1372 /* Drop the references taken by dev_pm_opp_add() */
1373 while (count--)
1374 dev_pm_opp_put_opp_table(opp_table);
1375
1376 /* Drop the reference taken by _find_opp_table() */
1377 dev_pm_opp_put_opp_table(opp_table);
1378 }
1379 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1380
_opp_allocate(struct opp_table * table)1381 struct dev_pm_opp *_opp_allocate(struct opp_table *table)
1382 {
1383 struct dev_pm_opp *opp;
1384 int supply_count, supply_size, icc_size;
1385
1386 /* Allocate space for at least one supply */
1387 supply_count = table->regulator_count > 0 ? table->regulator_count : 1;
1388 supply_size = sizeof(*opp->supplies) * supply_count;
1389 icc_size = sizeof(*opp->bandwidth) * table->path_count;
1390
1391 /* allocate new OPP node and supplies structures */
1392 opp = kzalloc(sizeof(*opp) + supply_size + icc_size, GFP_KERNEL);
1393
1394 if (!opp)
1395 return NULL;
1396
1397 /* Put the supplies at the end of the OPP structure as an empty array */
1398 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1399 if (icc_size)
1400 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->supplies + supply_count);
1401 INIT_LIST_HEAD(&opp->node);
1402
1403 return opp;
1404 }
1405
_opp_supported_by_regulators(struct dev_pm_opp * opp,struct opp_table * opp_table)1406 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1407 struct opp_table *opp_table)
1408 {
1409 struct regulator *reg;
1410 int i;
1411
1412 if (!opp_table->regulators)
1413 return true;
1414
1415 for (i = 0; i < opp_table->regulator_count; i++) {
1416 reg = opp_table->regulators[i];
1417
1418 if (!regulator_is_supported_voltage(reg,
1419 opp->supplies[i].u_volt_min,
1420 opp->supplies[i].u_volt_max)) {
1421 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1422 __func__, opp->supplies[i].u_volt_min,
1423 opp->supplies[i].u_volt_max);
1424 return false;
1425 }
1426 }
1427
1428 return true;
1429 }
1430
_opp_compare_key(struct dev_pm_opp * opp1,struct dev_pm_opp * opp2)1431 int _opp_compare_key(struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1432 {
1433 if (opp1->rate != opp2->rate)
1434 return opp1->rate < opp2->rate ? -1 : 1;
1435 if (opp1->bandwidth && opp2->bandwidth &&
1436 opp1->bandwidth[0].peak != opp2->bandwidth[0].peak)
1437 return opp1->bandwidth[0].peak < opp2->bandwidth[0].peak ? -1 : 1;
1438 if (opp1->level != opp2->level)
1439 return opp1->level < opp2->level ? -1 : 1;
1440 return 0;
1441 }
1442
_opp_is_duplicate(struct device * dev,struct dev_pm_opp * new_opp,struct opp_table * opp_table,struct list_head ** head)1443 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1444 struct opp_table *opp_table,
1445 struct list_head **head)
1446 {
1447 struct dev_pm_opp *opp;
1448 int opp_cmp;
1449
1450 /*
1451 * Insert new OPP in order of increasing frequency and discard if
1452 * already present.
1453 *
1454 * Need to use &opp_table->opp_list in the condition part of the 'for'
1455 * loop, don't replace it with head otherwise it will become an infinite
1456 * loop.
1457 */
1458 list_for_each_entry(opp, &opp_table->opp_list, node) {
1459 opp_cmp = _opp_compare_key(new_opp, opp);
1460 if (opp_cmp > 0) {
1461 *head = &opp->node;
1462 continue;
1463 }
1464
1465 if (opp_cmp < 0)
1466 return 0;
1467
1468 /* Duplicate OPPs */
1469 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1470 __func__, opp->rate, opp->supplies[0].u_volt,
1471 opp->available, new_opp->rate,
1472 new_opp->supplies[0].u_volt, new_opp->available);
1473
1474 /* Should we compare voltages for all regulators here ? */
1475 return opp->available &&
1476 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1477 }
1478
1479 return 0;
1480 }
1481
1482 /*
1483 * Returns:
1484 * 0: On success. And appropriate error message for duplicate OPPs.
1485 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1486 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1487 * sure we don't print error messages unnecessarily if different parts of
1488 * kernel try to initialize the OPP table.
1489 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1490 * should be considered an error by the callers of _opp_add().
1491 */
_opp_add(struct device * dev,struct dev_pm_opp * new_opp,struct opp_table * opp_table,bool rate_not_available)1492 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1493 struct opp_table *opp_table, bool rate_not_available)
1494 {
1495 struct list_head *head;
1496 int ret;
1497
1498 mutex_lock(&opp_table->lock);
1499 head = &opp_table->opp_list;
1500
1501 if (likely(!rate_not_available)) {
1502 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1503 if (ret) {
1504 mutex_unlock(&opp_table->lock);
1505 return ret;
1506 }
1507 }
1508
1509 list_add(&new_opp->node, head);
1510 mutex_unlock(&opp_table->lock);
1511
1512 new_opp->opp_table = opp_table;
1513 kref_init(&new_opp->kref);
1514
1515 opp_debug_create_one(new_opp, opp_table);
1516
1517 if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1518 new_opp->available = false;
1519 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1520 __func__, new_opp->rate);
1521 }
1522
1523 return 0;
1524 }
1525
1526 /**
1527 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1528 * @opp_table: OPP table
1529 * @dev: device for which we do this operation
1530 * @freq: Frequency in Hz for this OPP
1531 * @u_volt: Voltage in uVolts for this OPP
1532 * @dynamic: Dynamically added OPPs.
1533 *
1534 * This function adds an opp definition to the opp table and returns status.
1535 * The opp is made available by default and it can be controlled using
1536 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1537 *
1538 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1539 * and freed by dev_pm_opp_of_remove_table.
1540 *
1541 * Return:
1542 * 0 On success OR
1543 * Duplicate OPPs (both freq and volt are same) and opp->available
1544 * -EEXIST Freq are same and volt are different OR
1545 * Duplicate OPPs (both freq and volt are same) and !opp->available
1546 * -ENOMEM Memory allocation failure
1547 */
_opp_add_v1(struct opp_table * opp_table,struct device * dev,unsigned long freq,long u_volt,bool dynamic)1548 int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1549 unsigned long freq, long u_volt, bool dynamic)
1550 {
1551 struct dev_pm_opp *new_opp;
1552 unsigned long tol;
1553 int ret;
1554
1555 new_opp = _opp_allocate(opp_table);
1556 if (!new_opp)
1557 return -ENOMEM;
1558
1559 /* populate the opp table */
1560 new_opp->rate = freq;
1561 tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1562 new_opp->supplies[0].u_volt = u_volt;
1563 new_opp->supplies[0].u_volt_min = u_volt - tol;
1564 new_opp->supplies[0].u_volt_max = u_volt + tol;
1565 new_opp->available = true;
1566 new_opp->dynamic = dynamic;
1567
1568 ret = _opp_add(dev, new_opp, opp_table, false);
1569 if (ret) {
1570 /* Don't return error for duplicate OPPs */
1571 if (ret == -EBUSY)
1572 ret = 0;
1573 goto free_opp;
1574 }
1575
1576 /*
1577 * Notify the changes in the availability of the operable
1578 * frequency/voltage list.
1579 */
1580 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1581 return 0;
1582
1583 free_opp:
1584 _opp_free(new_opp);
1585
1586 return ret;
1587 }
1588
1589 /**
1590 * dev_pm_opp_set_supported_hw() - Set supported platforms
1591 * @dev: Device for which supported-hw has to be set.
1592 * @versions: Array of hierarchy of versions to match.
1593 * @count: Number of elements in the array.
1594 *
1595 * This is required only for the V2 bindings, and it enables a platform to
1596 * specify the hierarchy of versions it supports. OPP layer will then enable
1597 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1598 * property.
1599 */
dev_pm_opp_set_supported_hw(struct device * dev,const u32 * versions,unsigned int count)1600 struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1601 const u32 *versions, unsigned int count)
1602 {
1603 struct opp_table *opp_table;
1604
1605 opp_table = dev_pm_opp_get_opp_table(dev);
1606 if (IS_ERR(opp_table))
1607 return opp_table;
1608
1609 /* Make sure there are no concurrent readers while updating opp_table */
1610 WARN_ON(!list_empty(&opp_table->opp_list));
1611
1612 /* Another CPU that shares the OPP table has set the property ? */
1613 if (opp_table->supported_hw)
1614 return opp_table;
1615
1616 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1617 GFP_KERNEL);
1618 if (!opp_table->supported_hw) {
1619 dev_pm_opp_put_opp_table(opp_table);
1620 return ERR_PTR(-ENOMEM);
1621 }
1622
1623 opp_table->supported_hw_count = count;
1624
1625 return opp_table;
1626 }
1627 EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1628
1629 /**
1630 * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1631 * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1632 *
1633 * This is required only for the V2 bindings, and is called for a matching
1634 * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1635 * will not be freed.
1636 */
dev_pm_opp_put_supported_hw(struct opp_table * opp_table)1637 void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1638 {
1639 /* Make sure there are no concurrent readers while updating opp_table */
1640 WARN_ON(!list_empty(&opp_table->opp_list));
1641
1642 kfree(opp_table->supported_hw);
1643 opp_table->supported_hw = NULL;
1644 opp_table->supported_hw_count = 0;
1645
1646 dev_pm_opp_put_opp_table(opp_table);
1647 }
1648 EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
1649
1650 /**
1651 * dev_pm_opp_set_prop_name() - Set prop-extn name
1652 * @dev: Device for which the prop-name has to be set.
1653 * @name: name to postfix to properties.
1654 *
1655 * This is required only for the V2 bindings, and it enables a platform to
1656 * specify the extn to be used for certain property names. The properties to
1657 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
1658 * should postfix the property name with -<name> while looking for them.
1659 */
dev_pm_opp_set_prop_name(struct device * dev,const char * name)1660 struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
1661 {
1662 struct opp_table *opp_table;
1663
1664 opp_table = dev_pm_opp_get_opp_table(dev);
1665 if (IS_ERR(opp_table))
1666 return opp_table;
1667
1668 /* Make sure there are no concurrent readers while updating opp_table */
1669 WARN_ON(!list_empty(&opp_table->opp_list));
1670
1671 /* Another CPU that shares the OPP table has set the property ? */
1672 if (opp_table->prop_name)
1673 return opp_table;
1674
1675 opp_table->prop_name = kstrdup(name, GFP_KERNEL);
1676 if (!opp_table->prop_name) {
1677 dev_pm_opp_put_opp_table(opp_table);
1678 return ERR_PTR(-ENOMEM);
1679 }
1680
1681 return opp_table;
1682 }
1683 EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
1684
1685 /**
1686 * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
1687 * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
1688 *
1689 * This is required only for the V2 bindings, and is called for a matching
1690 * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
1691 * will not be freed.
1692 */
dev_pm_opp_put_prop_name(struct opp_table * opp_table)1693 void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
1694 {
1695 /* Make sure there are no concurrent readers while updating opp_table */
1696 WARN_ON(!list_empty(&opp_table->opp_list));
1697
1698 kfree(opp_table->prop_name);
1699 opp_table->prop_name = NULL;
1700
1701 dev_pm_opp_put_opp_table(opp_table);
1702 }
1703 EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
1704
_allocate_set_opp_data(struct opp_table * opp_table)1705 static int _allocate_set_opp_data(struct opp_table *opp_table)
1706 {
1707 struct dev_pm_set_opp_data *data;
1708 int len, count = opp_table->regulator_count;
1709
1710 if (WARN_ON(!opp_table->regulators))
1711 return -EINVAL;
1712
1713 /* space for set_opp_data */
1714 len = sizeof(*data);
1715
1716 /* space for old_opp.supplies and new_opp.supplies */
1717 len += 2 * sizeof(struct dev_pm_opp_supply) * count;
1718
1719 data = kzalloc(len, GFP_KERNEL);
1720 if (!data)
1721 return -ENOMEM;
1722
1723 data->old_opp.supplies = (void *)(data + 1);
1724 data->new_opp.supplies = data->old_opp.supplies + count;
1725
1726 opp_table->set_opp_data = data;
1727
1728 return 0;
1729 }
1730
_free_set_opp_data(struct opp_table * opp_table)1731 static void _free_set_opp_data(struct opp_table *opp_table)
1732 {
1733 kfree(opp_table->set_opp_data);
1734 opp_table->set_opp_data = NULL;
1735 }
1736
1737 /**
1738 * dev_pm_opp_set_regulators() - Set regulator names for the device
1739 * @dev: Device for which regulator name is being set.
1740 * @names: Array of pointers to the names of the regulator.
1741 * @count: Number of regulators.
1742 *
1743 * In order to support OPP switching, OPP layer needs to know the name of the
1744 * device's regulators, as the core would be required to switch voltages as
1745 * well.
1746 *
1747 * This must be called before any OPPs are initialized for the device.
1748 */
dev_pm_opp_set_regulators(struct device * dev,const char * const names[],unsigned int count)1749 struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
1750 const char * const names[],
1751 unsigned int count)
1752 {
1753 struct opp_table *opp_table;
1754 struct regulator *reg;
1755 int ret, i;
1756
1757 opp_table = dev_pm_opp_get_opp_table(dev);
1758 if (IS_ERR(opp_table))
1759 return opp_table;
1760
1761 /* This should be called before OPPs are initialized */
1762 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1763 ret = -EBUSY;
1764 goto err;
1765 }
1766
1767 /* Another CPU that shares the OPP table has set the regulators ? */
1768 if (opp_table->regulators)
1769 return opp_table;
1770
1771 opp_table->regulators = kmalloc_array(count,
1772 sizeof(*opp_table->regulators),
1773 GFP_KERNEL);
1774 if (!opp_table->regulators) {
1775 ret = -ENOMEM;
1776 goto err;
1777 }
1778
1779 for (i = 0; i < count; i++) {
1780 reg = regulator_get_optional(dev, names[i]);
1781 if (IS_ERR(reg)) {
1782 ret = PTR_ERR(reg);
1783 if (ret != -EPROBE_DEFER)
1784 dev_err(dev, "%s: no regulator (%s) found: %d\n",
1785 __func__, names[i], ret);
1786 goto free_regulators;
1787 }
1788
1789 opp_table->regulators[i] = reg;
1790 }
1791
1792 opp_table->regulator_count = count;
1793
1794 /* Allocate block only once to pass to set_opp() routines */
1795 ret = _allocate_set_opp_data(opp_table);
1796 if (ret)
1797 goto free_regulators;
1798
1799 return opp_table;
1800
1801 free_regulators:
1802 while (i != 0)
1803 regulator_put(opp_table->regulators[--i]);
1804
1805 kfree(opp_table->regulators);
1806 opp_table->regulators = NULL;
1807 opp_table->regulator_count = -1;
1808 err:
1809 dev_pm_opp_put_opp_table(opp_table);
1810
1811 return ERR_PTR(ret);
1812 }
1813 EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
1814
1815 /**
1816 * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
1817 * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
1818 */
dev_pm_opp_put_regulators(struct opp_table * opp_table)1819 void dev_pm_opp_put_regulators(struct opp_table *opp_table)
1820 {
1821 int i;
1822
1823 if (!opp_table->regulators)
1824 goto put_opp_table;
1825
1826 /* Make sure there are no concurrent readers while updating opp_table */
1827 WARN_ON(!list_empty(&opp_table->opp_list));
1828
1829 if (opp_table->enabled) {
1830 for (i = opp_table->regulator_count - 1; i >= 0; i--)
1831 regulator_disable(opp_table->regulators[i]);
1832 }
1833
1834 for (i = opp_table->regulator_count - 1; i >= 0; i--)
1835 regulator_put(opp_table->regulators[i]);
1836
1837 _free_set_opp_data(opp_table);
1838
1839 kfree(opp_table->regulators);
1840 opp_table->regulators = NULL;
1841 opp_table->regulator_count = -1;
1842
1843 put_opp_table:
1844 dev_pm_opp_put_opp_table(opp_table);
1845 }
1846 EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
1847
1848 /**
1849 * dev_pm_opp_set_clkname() - Set clk name for the device
1850 * @dev: Device for which clk name is being set.
1851 * @name: Clk name.
1852 *
1853 * In order to support OPP switching, OPP layer needs to get pointer to the
1854 * clock for the device. Simple cases work fine without using this routine (i.e.
1855 * by passing connection-id as NULL), but for a device with multiple clocks
1856 * available, the OPP core needs to know the exact name of the clk to use.
1857 *
1858 * This must be called before any OPPs are initialized for the device.
1859 */
dev_pm_opp_set_clkname(struct device * dev,const char * name)1860 struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
1861 {
1862 struct opp_table *opp_table;
1863 int ret;
1864
1865 opp_table = dev_pm_opp_get_opp_table(dev);
1866 if (IS_ERR(opp_table))
1867 return opp_table;
1868
1869 /* This should be called before OPPs are initialized */
1870 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1871 ret = -EBUSY;
1872 goto err;
1873 }
1874
1875 /* Already have default clk set, free it */
1876 if (!IS_ERR(opp_table->clk))
1877 clk_put(opp_table->clk);
1878
1879 /* Find clk for the device */
1880 opp_table->clk = clk_get(dev, name);
1881 if (IS_ERR(opp_table->clk)) {
1882 ret = PTR_ERR(opp_table->clk);
1883 if (ret != -EPROBE_DEFER) {
1884 dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
1885 ret);
1886 }
1887 goto err;
1888 }
1889
1890 return opp_table;
1891
1892 err:
1893 dev_pm_opp_put_opp_table(opp_table);
1894
1895 return ERR_PTR(ret);
1896 }
1897 EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
1898
1899 /**
1900 * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
1901 * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
1902 */
dev_pm_opp_put_clkname(struct opp_table * opp_table)1903 void dev_pm_opp_put_clkname(struct opp_table *opp_table)
1904 {
1905 /* Make sure there are no concurrent readers while updating opp_table */
1906 WARN_ON(!list_empty(&opp_table->opp_list));
1907
1908 clk_put(opp_table->clk);
1909 opp_table->clk = ERR_PTR(-EINVAL);
1910
1911 dev_pm_opp_put_opp_table(opp_table);
1912 }
1913 EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
1914
1915 /**
1916 * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
1917 * @dev: Device for which the helper is getting registered.
1918 * @set_opp: Custom set OPP helper.
1919 *
1920 * This is useful to support complex platforms (like platforms with multiple
1921 * regulators per device), instead of the generic OPP set rate helper.
1922 *
1923 * This must be called before any OPPs are initialized for the device.
1924 */
dev_pm_opp_register_set_opp_helper(struct device * dev,int (* set_opp)(struct dev_pm_set_opp_data * data))1925 struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
1926 int (*set_opp)(struct dev_pm_set_opp_data *data))
1927 {
1928 struct opp_table *opp_table;
1929
1930 if (!set_opp)
1931 return ERR_PTR(-EINVAL);
1932
1933 opp_table = dev_pm_opp_get_opp_table(dev);
1934 if (IS_ERR(opp_table))
1935 return opp_table;
1936
1937 /* This should be called before OPPs are initialized */
1938 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1939 dev_pm_opp_put_opp_table(opp_table);
1940 return ERR_PTR(-EBUSY);
1941 }
1942
1943 /* Another CPU that shares the OPP table has set the helper ? */
1944 if (!opp_table->set_opp)
1945 opp_table->set_opp = set_opp;
1946
1947 return opp_table;
1948 }
1949 EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
1950
1951 /**
1952 * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
1953 * set_opp helper
1954 * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
1955 *
1956 * Release resources blocked for platform specific set_opp helper.
1957 */
dev_pm_opp_unregister_set_opp_helper(struct opp_table * opp_table)1958 void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
1959 {
1960 /* Make sure there are no concurrent readers while updating opp_table */
1961 WARN_ON(!list_empty(&opp_table->opp_list));
1962
1963 opp_table->set_opp = NULL;
1964 dev_pm_opp_put_opp_table(opp_table);
1965 }
1966 EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
1967
_opp_detach_genpd(struct opp_table * opp_table)1968 static void _opp_detach_genpd(struct opp_table *opp_table)
1969 {
1970 int index;
1971
1972 if (!opp_table->genpd_virt_devs)
1973 return;
1974
1975 for (index = 0; index < opp_table->required_opp_count; index++) {
1976 if (!opp_table->genpd_virt_devs[index])
1977 continue;
1978
1979 dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
1980 opp_table->genpd_virt_devs[index] = NULL;
1981 }
1982
1983 kfree(opp_table->genpd_virt_devs);
1984 opp_table->genpd_virt_devs = NULL;
1985 }
1986
1987 /**
1988 * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
1989 * @dev: Consumer device for which the genpd is getting attached.
1990 * @names: Null terminated array of pointers containing names of genpd to attach.
1991 * @virt_devs: Pointer to return the array of virtual devices.
1992 *
1993 * Multiple generic power domains for a device are supported with the help of
1994 * virtual genpd devices, which are created for each consumer device - genpd
1995 * pair. These are the device structures which are attached to the power domain
1996 * and are required by the OPP core to set the performance state of the genpd.
1997 * The same API also works for the case where single genpd is available and so
1998 * we don't need to support that separately.
1999 *
2000 * This helper will normally be called by the consumer driver of the device
2001 * "dev", as only that has details of the genpd names.
2002 *
2003 * This helper needs to be called once with a list of all genpd to attach.
2004 * Otherwise the original device structure will be used instead by the OPP core.
2005 *
2006 * The order of entries in the names array must match the order in which
2007 * "required-opps" are added in DT.
2008 */
dev_pm_opp_attach_genpd(struct device * dev,const char ** names,struct device *** virt_devs)2009 struct opp_table *dev_pm_opp_attach_genpd(struct device *dev,
2010 const char **names, struct device ***virt_devs)
2011 {
2012 struct opp_table *opp_table;
2013 struct device *virt_dev;
2014 int index = 0, ret = -EINVAL;
2015 const char **name = names;
2016
2017 opp_table = dev_pm_opp_get_opp_table(dev);
2018 if (IS_ERR(opp_table))
2019 return opp_table;
2020
2021 if (opp_table->genpd_virt_devs)
2022 return opp_table;
2023
2024 /*
2025 * If the genpd's OPP table isn't already initialized, parsing of the
2026 * required-opps fail for dev. We should retry this after genpd's OPP
2027 * table is added.
2028 */
2029 if (!opp_table->required_opp_count) {
2030 ret = -EPROBE_DEFER;
2031 goto put_table;
2032 }
2033
2034 mutex_lock(&opp_table->genpd_virt_dev_lock);
2035
2036 opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
2037 sizeof(*opp_table->genpd_virt_devs),
2038 GFP_KERNEL);
2039 if (!opp_table->genpd_virt_devs)
2040 goto unlock;
2041
2042 while (*name) {
2043 if (index >= opp_table->required_opp_count) {
2044 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2045 *name, opp_table->required_opp_count, index);
2046 goto err;
2047 }
2048
2049 virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2050 if (IS_ERR(virt_dev)) {
2051 ret = PTR_ERR(virt_dev);
2052 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2053 goto err;
2054 }
2055
2056 opp_table->genpd_virt_devs[index] = virt_dev;
2057 index++;
2058 name++;
2059 }
2060
2061 if (virt_devs)
2062 *virt_devs = opp_table->genpd_virt_devs;
2063 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2064
2065 return opp_table;
2066
2067 err:
2068 _opp_detach_genpd(opp_table);
2069 unlock:
2070 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2071
2072 put_table:
2073 dev_pm_opp_put_opp_table(opp_table);
2074
2075 return ERR_PTR(ret);
2076 }
2077 EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd);
2078
2079 /**
2080 * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device.
2081 * @opp_table: OPP table returned by dev_pm_opp_attach_genpd().
2082 *
2083 * This detaches the genpd(s), resets the virtual device pointers, and puts the
2084 * OPP table.
2085 */
dev_pm_opp_detach_genpd(struct opp_table * opp_table)2086 void dev_pm_opp_detach_genpd(struct opp_table *opp_table)
2087 {
2088 /*
2089 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
2090 * used in parallel.
2091 */
2092 mutex_lock(&opp_table->genpd_virt_dev_lock);
2093 _opp_detach_genpd(opp_table);
2094 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2095
2096 dev_pm_opp_put_opp_table(opp_table);
2097 }
2098 EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd);
2099
2100 /**
2101 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2102 * @src_table: OPP table which has dst_table as one of its required OPP table.
2103 * @dst_table: Required OPP table of the src_table.
2104 * @pstate: Current performance state of the src_table.
2105 *
2106 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2107 * "required-opps" property of the OPP (present in @src_table) which has
2108 * performance state set to @pstate.
2109 *
2110 * Return: Zero or positive performance state on success, otherwise negative
2111 * value on errors.
2112 */
dev_pm_opp_xlate_performance_state(struct opp_table * src_table,struct opp_table * dst_table,unsigned int pstate)2113 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2114 struct opp_table *dst_table,
2115 unsigned int pstate)
2116 {
2117 struct dev_pm_opp *opp;
2118 int dest_pstate = -EINVAL;
2119 int i;
2120
2121 /*
2122 * Normally the src_table will have the "required_opps" property set to
2123 * point to one of the OPPs in the dst_table, but in some cases the
2124 * genpd and its master have one to one mapping of performance states
2125 * and so none of them have the "required-opps" property set. Return the
2126 * pstate of the src_table as it is in such cases.
2127 */
2128 if (!src_table->required_opp_count)
2129 return pstate;
2130
2131 for (i = 0; i < src_table->required_opp_count; i++) {
2132 if (src_table->required_opp_tables[i]->np == dst_table->np)
2133 break;
2134 }
2135
2136 if (unlikely(i == src_table->required_opp_count)) {
2137 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2138 __func__, src_table, dst_table);
2139 return -EINVAL;
2140 }
2141
2142 mutex_lock(&src_table->lock);
2143
2144 list_for_each_entry(opp, &src_table->opp_list, node) {
2145 if (opp->pstate == pstate) {
2146 dest_pstate = opp->required_opps[i]->pstate;
2147 goto unlock;
2148 }
2149 }
2150
2151 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2152 dst_table);
2153
2154 unlock:
2155 mutex_unlock(&src_table->lock);
2156
2157 return dest_pstate;
2158 }
2159
2160 /**
2161 * dev_pm_opp_add() - Add an OPP table from a table definitions
2162 * @dev: device for which we do this operation
2163 * @freq: Frequency in Hz for this OPP
2164 * @u_volt: Voltage in uVolts for this OPP
2165 *
2166 * This function adds an opp definition to the opp table and returns status.
2167 * The opp is made available by default and it can be controlled using
2168 * dev_pm_opp_enable/disable functions.
2169 *
2170 * Return:
2171 * 0 On success OR
2172 * Duplicate OPPs (both freq and volt are same) and opp->available
2173 * -EEXIST Freq are same and volt are different OR
2174 * Duplicate OPPs (both freq and volt are same) and !opp->available
2175 * -ENOMEM Memory allocation failure
2176 */
dev_pm_opp_add(struct device * dev,unsigned long freq,unsigned long u_volt)2177 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2178 {
2179 struct opp_table *opp_table;
2180 int ret;
2181
2182 opp_table = dev_pm_opp_get_opp_table(dev);
2183 if (IS_ERR(opp_table))
2184 return PTR_ERR(opp_table);
2185
2186 /* Fix regulator count for dynamic OPPs */
2187 opp_table->regulator_count = 1;
2188
2189 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2190 if (ret)
2191 dev_pm_opp_put_opp_table(opp_table);
2192
2193 return ret;
2194 }
2195 EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2196
2197 /**
2198 * _opp_set_availability() - helper to set the availability of an opp
2199 * @dev: device for which we do this operation
2200 * @freq: OPP frequency to modify availability
2201 * @availability_req: availability status requested for this opp
2202 *
2203 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2204 * which is isolated here.
2205 *
2206 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2207 * copy operation, returns 0 if no modification was done OR modification was
2208 * successful.
2209 */
_opp_set_availability(struct device * dev,unsigned long freq,bool availability_req)2210 static int _opp_set_availability(struct device *dev, unsigned long freq,
2211 bool availability_req)
2212 {
2213 struct opp_table *opp_table;
2214 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2215 int r = 0;
2216
2217 /* Find the opp_table */
2218 opp_table = _find_opp_table(dev);
2219 if (IS_ERR(opp_table)) {
2220 r = PTR_ERR(opp_table);
2221 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2222 return r;
2223 }
2224
2225 mutex_lock(&opp_table->lock);
2226
2227 /* Do we have the frequency? */
2228 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2229 if (tmp_opp->rate == freq) {
2230 opp = tmp_opp;
2231 break;
2232 }
2233 }
2234
2235 if (IS_ERR(opp)) {
2236 r = PTR_ERR(opp);
2237 goto unlock;
2238 }
2239
2240 /* Is update really needed? */
2241 if (opp->available == availability_req)
2242 goto unlock;
2243
2244 opp->available = availability_req;
2245
2246 dev_pm_opp_get(opp);
2247 mutex_unlock(&opp_table->lock);
2248
2249 /* Notify the change of the OPP availability */
2250 if (availability_req)
2251 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2252 opp);
2253 else
2254 blocking_notifier_call_chain(&opp_table->head,
2255 OPP_EVENT_DISABLE, opp);
2256
2257 dev_pm_opp_put(opp);
2258 goto put_table;
2259
2260 unlock:
2261 mutex_unlock(&opp_table->lock);
2262 put_table:
2263 dev_pm_opp_put_opp_table(opp_table);
2264 return r;
2265 }
2266
2267 /**
2268 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2269 * @dev: device for which we do this operation
2270 * @freq: OPP frequency to adjust voltage of
2271 * @u_volt: new OPP target voltage
2272 * @u_volt_min: new OPP min voltage
2273 * @u_volt_max: new OPP max voltage
2274 *
2275 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2276 * copy operation, returns 0 if no modifcation was done OR modification was
2277 * successful.
2278 */
dev_pm_opp_adjust_voltage(struct device * dev,unsigned long freq,unsigned long u_volt,unsigned long u_volt_min,unsigned long u_volt_max)2279 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2280 unsigned long u_volt, unsigned long u_volt_min,
2281 unsigned long u_volt_max)
2282
2283 {
2284 struct opp_table *opp_table;
2285 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2286 int r = 0;
2287
2288 /* Find the opp_table */
2289 opp_table = _find_opp_table(dev);
2290 if (IS_ERR(opp_table)) {
2291 r = PTR_ERR(opp_table);
2292 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2293 return r;
2294 }
2295
2296 mutex_lock(&opp_table->lock);
2297
2298 /* Do we have the frequency? */
2299 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2300 if (tmp_opp->rate == freq) {
2301 opp = tmp_opp;
2302 break;
2303 }
2304 }
2305
2306 if (IS_ERR(opp)) {
2307 r = PTR_ERR(opp);
2308 goto adjust_unlock;
2309 }
2310
2311 /* Is update really needed? */
2312 if (opp->supplies->u_volt == u_volt)
2313 goto adjust_unlock;
2314
2315 opp->supplies->u_volt = u_volt;
2316 opp->supplies->u_volt_min = u_volt_min;
2317 opp->supplies->u_volt_max = u_volt_max;
2318
2319 dev_pm_opp_get(opp);
2320 mutex_unlock(&opp_table->lock);
2321
2322 /* Notify the voltage change of the OPP */
2323 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2324 opp);
2325
2326 dev_pm_opp_put(opp);
2327 goto adjust_put_table;
2328
2329 adjust_unlock:
2330 mutex_unlock(&opp_table->lock);
2331 adjust_put_table:
2332 dev_pm_opp_put_opp_table(opp_table);
2333 return r;
2334 }
2335 EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2336
2337 /**
2338 * dev_pm_opp_enable() - Enable a specific OPP
2339 * @dev: device for which we do this operation
2340 * @freq: OPP frequency to enable
2341 *
2342 * Enables a provided opp. If the operation is valid, this returns 0, else the
2343 * corresponding error value. It is meant to be used for users an OPP available
2344 * after being temporarily made unavailable with dev_pm_opp_disable.
2345 *
2346 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2347 * copy operation, returns 0 if no modification was done OR modification was
2348 * successful.
2349 */
dev_pm_opp_enable(struct device * dev,unsigned long freq)2350 int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2351 {
2352 return _opp_set_availability(dev, freq, true);
2353 }
2354 EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2355
2356 /**
2357 * dev_pm_opp_disable() - Disable a specific OPP
2358 * @dev: device for which we do this operation
2359 * @freq: OPP frequency to disable
2360 *
2361 * Disables a provided opp. If the operation is valid, this returns
2362 * 0, else the corresponding error value. It is meant to be a temporary
2363 * control by users to make this OPP not available until the circumstances are
2364 * right to make it available again (with a call to dev_pm_opp_enable).
2365 *
2366 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2367 * copy operation, returns 0 if no modification was done OR modification was
2368 * successful.
2369 */
dev_pm_opp_disable(struct device * dev,unsigned long freq)2370 int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2371 {
2372 return _opp_set_availability(dev, freq, false);
2373 }
2374 EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2375
2376 /**
2377 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2378 * @dev: Device for which notifier needs to be registered
2379 * @nb: Notifier block to be registered
2380 *
2381 * Return: 0 on success or a negative error value.
2382 */
dev_pm_opp_register_notifier(struct device * dev,struct notifier_block * nb)2383 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2384 {
2385 struct opp_table *opp_table;
2386 int ret;
2387
2388 opp_table = _find_opp_table(dev);
2389 if (IS_ERR(opp_table))
2390 return PTR_ERR(opp_table);
2391
2392 ret = blocking_notifier_chain_register(&opp_table->head, nb);
2393
2394 dev_pm_opp_put_opp_table(opp_table);
2395
2396 return ret;
2397 }
2398 EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2399
2400 /**
2401 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2402 * @dev: Device for which notifier needs to be unregistered
2403 * @nb: Notifier block to be unregistered
2404 *
2405 * Return: 0 on success or a negative error value.
2406 */
dev_pm_opp_unregister_notifier(struct device * dev,struct notifier_block * nb)2407 int dev_pm_opp_unregister_notifier(struct device *dev,
2408 struct notifier_block *nb)
2409 {
2410 struct opp_table *opp_table;
2411 int ret;
2412
2413 opp_table = _find_opp_table(dev);
2414 if (IS_ERR(opp_table))
2415 return PTR_ERR(opp_table);
2416
2417 ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2418
2419 dev_pm_opp_put_opp_table(opp_table);
2420
2421 return ret;
2422 }
2423 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
2424
2425 /**
2426 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
2427 * @dev: device pointer used to lookup OPP table.
2428 *
2429 * Free both OPPs created using static entries present in DT and the
2430 * dynamically added entries.
2431 */
dev_pm_opp_remove_table(struct device * dev)2432 void dev_pm_opp_remove_table(struct device *dev)
2433 {
2434 struct opp_table *opp_table;
2435
2436 /* Check for existing table for 'dev' */
2437 opp_table = _find_opp_table(dev);
2438 if (IS_ERR(opp_table)) {
2439 int error = PTR_ERR(opp_table);
2440
2441 if (error != -ENODEV)
2442 WARN(1, "%s: opp_table: %d\n",
2443 IS_ERR_OR_NULL(dev) ?
2444 "Invalid device" : dev_name(dev),
2445 error);
2446 return;
2447 }
2448
2449 /*
2450 * Drop the extra reference only if the OPP table was successfully added
2451 * with dev_pm_opp_of_add_table() earlier.
2452 **/
2453 if (_opp_remove_all_static(opp_table))
2454 dev_pm_opp_put_opp_table(opp_table);
2455
2456 /* Drop reference taken by _find_opp_table() */
2457 dev_pm_opp_put_opp_table(opp_table);
2458 }
2459 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
2460