1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * Universal Flash Storage Host controller driver Core
4   * Copyright (C) 2011-2013 Samsung India Software Operations
5   * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6   *
7   * Authors:
8   *	Santosh Yaraganavi <santosh.sy@samsung.com>
9   *	Vinayak Holikatti <h.vinayak@samsung.com>
10   */
11  
12  #include <linux/async.h>
13  #include <linux/devfreq.h>
14  #include <linux/nls.h>
15  #include <linux/of.h>
16  #include <linux/bitfield.h>
17  #include <linux/blk-pm.h>
18  #include <linux/blkdev.h>
19  #include "ufshcd.h"
20  #include "ufs_quirks.h"
21  #include "unipro.h"
22  #include "ufs-sysfs.h"
23  #include "ufs_bsg.h"
24  #include "ufshcd-crypto.h"
25  #include <asm/unaligned.h>
26  #include <linux/blkdev.h>
27  
28  #define CREATE_TRACE_POINTS
29  #include <trace/events/ufs.h>
30  
31  #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
32  				 UTP_TASK_REQ_COMPL |\
33  				 UFSHCD_ERROR_MASK)
34  /* UIC command timeout, unit: ms */
35  #define UIC_CMD_TIMEOUT	500
36  
37  /* NOP OUT retries waiting for NOP IN response */
38  #define NOP_OUT_RETRIES    10
39  /* Timeout after 50 msecs if NOP OUT hangs without response */
40  #define NOP_OUT_TIMEOUT    50 /* msecs */
41  
42  /* Query request retries */
43  #define QUERY_REQ_RETRIES 3
44  /* Query request timeout */
45  #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
46  
47  /* Task management command timeout */
48  #define TM_CMD_TIMEOUT	100 /* msecs */
49  
50  /* maximum number of retries for a general UIC command  */
51  #define UFS_UIC_COMMAND_RETRIES 3
52  
53  /* maximum number of link-startup retries */
54  #define DME_LINKSTARTUP_RETRIES 3
55  
56  /* Maximum retries for Hibern8 enter */
57  #define UIC_HIBERN8_ENTER_RETRIES 3
58  
59  /* maximum number of reset retries before giving up */
60  #define MAX_HOST_RESET_RETRIES 5
61  
62  /* Expose the flag value from utp_upiu_query.value */
63  #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
64  
65  /* Interrupt aggregation default timeout, unit: 40us */
66  #define INT_AGGR_DEF_TO	0x02
67  
68  /* default delay of autosuspend: 2000 ms */
69  #define RPM_AUTOSUSPEND_DELAY_MS 2000
70  
71  /* Default delay of RPM device flush delayed work */
72  #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
73  
74  /* Default value of wait time before gating device ref clock */
75  #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
76  
77  /* Polling time to wait for fDeviceInit */
78  #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
79  
80  #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
81  	({                                                              \
82  		int _ret;                                               \
83  		if (_on)                                                \
84  			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
85  		else                                                    \
86  			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
87  		_ret;                                                   \
88  	})
89  
90  #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
91  	size_t __len = (len);                                            \
92  	print_hex_dump(KERN_ERR, prefix_str,                             \
93  		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
94  		       16, 4, buf, __len, false);                        \
95  } while (0)
96  
ufshcd_dump_regs(struct ufs_hba * hba,size_t offset,size_t len,const char * prefix)97  int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
98  		     const char *prefix)
99  {
100  	u32 *regs;
101  	size_t pos;
102  
103  	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
104  		return -EINVAL;
105  
106  	regs = kzalloc(len, GFP_ATOMIC);
107  	if (!regs)
108  		return -ENOMEM;
109  
110  	for (pos = 0; pos < len; pos += 4)
111  		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
112  
113  	ufshcd_hex_dump(prefix, regs, len);
114  	kfree(regs);
115  
116  	return 0;
117  }
118  EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
119  
120  enum {
121  	UFSHCD_MAX_CHANNEL	= 0,
122  	UFSHCD_MAX_ID		= 1,
123  	UFSHCD_CMD_PER_LUN	= 32,
124  	UFSHCD_CAN_QUEUE	= 32,
125  };
126  
127  /* UFSHCD states */
128  enum {
129  	UFSHCD_STATE_RESET,
130  	UFSHCD_STATE_ERROR,
131  	UFSHCD_STATE_OPERATIONAL,
132  	UFSHCD_STATE_EH_SCHEDULED_FATAL,
133  	UFSHCD_STATE_EH_SCHEDULED_NON_FATAL,
134  };
135  
136  /* UFSHCD error handling flags */
137  enum {
138  	UFSHCD_EH_IN_PROGRESS = (1 << 0),
139  };
140  
141  /* UFSHCD UIC layer error flags */
142  enum {
143  	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
144  	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
145  	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
146  	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
147  	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
148  	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
149  	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
150  };
151  
152  #define ufshcd_set_eh_in_progress(h) \
153  	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
154  #define ufshcd_eh_in_progress(h) \
155  	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
156  #define ufshcd_clear_eh_in_progress(h) \
157  	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
158  
159  struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
160  	{UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
161  	{UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
162  	{UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
163  	{UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
164  	{UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
165  	{UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
166  };
167  
168  static inline enum ufs_dev_pwr_mode
ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)169  ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
170  {
171  	return ufs_pm_lvl_states[lvl].dev_state;
172  }
173  
174  static inline enum uic_link_state
ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)175  ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
176  {
177  	return ufs_pm_lvl_states[lvl].link_state;
178  }
179  
180  static inline enum ufs_pm_level
ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,enum uic_link_state link_state)181  ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
182  					enum uic_link_state link_state)
183  {
184  	enum ufs_pm_level lvl;
185  
186  	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
187  		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
188  			(ufs_pm_lvl_states[lvl].link_state == link_state))
189  			return lvl;
190  	}
191  
192  	/* if no match found, return the level 0 */
193  	return UFS_PM_LVL_0;
194  }
195  
196  static struct ufs_dev_fix ufs_fixups[] = {
197  	/* UFS cards deviations table */
198  	UFS_FIX(UFS_VENDOR_MICRON, UFS_ANY_MODEL,
199  		UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM),
200  	UFS_FIX(UFS_VENDOR_SAMSUNG, UFS_ANY_MODEL,
201  		UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
202  		UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
203  		UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS),
204  	UFS_FIX(UFS_VENDOR_SKHYNIX, UFS_ANY_MODEL,
205  		UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME),
206  	UFS_FIX(UFS_VENDOR_SKHYNIX, "hB8aL1" /*H28U62301AMR*/,
207  		UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME),
208  	UFS_FIX(UFS_VENDOR_TOSHIBA, UFS_ANY_MODEL,
209  		UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM),
210  	UFS_FIX(UFS_VENDOR_TOSHIBA, "THGLF2G9C8KBADG",
211  		UFS_DEVICE_QUIRK_PA_TACTIVATE),
212  	UFS_FIX(UFS_VENDOR_TOSHIBA, "THGLF2G9D8KBADG",
213  		UFS_DEVICE_QUIRK_PA_TACTIVATE),
214  	END_FIX
215  };
216  
217  static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
218  static void ufshcd_async_scan(void *data, async_cookie_t cookie);
219  static int ufshcd_reset_and_restore(struct ufs_hba *hba);
220  static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
221  static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
222  static void ufshcd_hba_exit(struct ufs_hba *hba);
223  static int ufshcd_probe_hba(struct ufs_hba *hba, bool async);
224  static int __ufshcd_setup_clocks(struct ufs_hba *hba, bool on,
225  				 bool skip_ref_clk);
226  static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
227  static int ufshcd_uic_hibern8_enter(struct ufs_hba *hba);
228  static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
229  static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
230  static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
231  static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
232  static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba);
233  static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up);
234  static irqreturn_t ufshcd_intr(int irq, void *__hba);
235  static int ufshcd_change_power_mode(struct ufs_hba *hba,
236  			     struct ufs_pa_layer_attr *pwr_mode);
237  static void ufshcd_schedule_eh_work(struct ufs_hba *hba);
238  static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
239  static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
240  static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
241  					 struct ufs_vreg *vreg);
242  static int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag);
243  static int ufshcd_wb_buf_flush_enable(struct ufs_hba *hba);
244  static int ufshcd_wb_buf_flush_disable(struct ufs_hba *hba);
245  static int ufshcd_wb_ctrl(struct ufs_hba *hba, bool enable);
246  static int ufshcd_wb_toggle_flush_during_h8(struct ufs_hba *hba, bool set);
247  static inline void ufshcd_wb_toggle_flush(struct ufs_hba *hba, bool enable);
248  
ufshcd_valid_tag(struct ufs_hba * hba,int tag)249  static inline bool ufshcd_valid_tag(struct ufs_hba *hba, int tag)
250  {
251  	return tag >= 0 && tag < hba->nutrs;
252  }
253  
ufshcd_enable_irq(struct ufs_hba * hba)254  static inline void ufshcd_enable_irq(struct ufs_hba *hba)
255  {
256  	if (!hba->is_irq_enabled) {
257  		enable_irq(hba->irq);
258  		hba->is_irq_enabled = true;
259  	}
260  }
261  
ufshcd_disable_irq(struct ufs_hba * hba)262  static inline void ufshcd_disable_irq(struct ufs_hba *hba)
263  {
264  	if (hba->is_irq_enabled) {
265  		disable_irq(hba->irq);
266  		hba->is_irq_enabled = false;
267  	}
268  }
269  
ufshcd_wb_config(struct ufs_hba * hba)270  static inline void ufshcd_wb_config(struct ufs_hba *hba)
271  {
272  	int ret;
273  
274  	if (!ufshcd_is_wb_allowed(hba))
275  		return;
276  
277  	ret = ufshcd_wb_ctrl(hba, true);
278  	if (ret)
279  		dev_err(hba->dev, "%s: Enable WB failed: %d\n", __func__, ret);
280  	else
281  		dev_info(hba->dev, "%s: Write Booster Configured\n", __func__);
282  	ret = ufshcd_wb_toggle_flush_during_h8(hba, true);
283  	if (ret)
284  		dev_err(hba->dev, "%s: En WB flush during H8: failed: %d\n",
285  			__func__, ret);
286  	ufshcd_wb_toggle_flush(hba, true);
287  }
288  
ufshcd_scsi_unblock_requests(struct ufs_hba * hba)289  static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
290  {
291  	if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
292  		scsi_unblock_requests(hba->host);
293  }
294  
ufshcd_scsi_block_requests(struct ufs_hba * hba)295  static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
296  {
297  	if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
298  		scsi_block_requests(hba->host);
299  }
300  
ufshcd_add_cmd_upiu_trace(struct ufs_hba * hba,unsigned int tag,const char * str)301  static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
302  		const char *str)
303  {
304  	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
305  
306  	trace_ufshcd_upiu(dev_name(hba->dev), str, &rq->header, &rq->sc.cdb);
307  }
308  
ufshcd_add_query_upiu_trace(struct ufs_hba * hba,unsigned int tag,const char * str)309  static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba, unsigned int tag,
310  		const char *str)
311  {
312  	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
313  
314  	trace_ufshcd_upiu(dev_name(hba->dev), str, &rq->header, &rq->qr);
315  }
316  
ufshcd_add_tm_upiu_trace(struct ufs_hba * hba,unsigned int tag,const char * str)317  static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
318  		const char *str)
319  {
320  	int off = (int)tag - hba->nutrs;
321  	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[off];
322  
323  	trace_ufshcd_upiu(dev_name(hba->dev), str, &descp->req_header,
324  			&descp->input_param1);
325  }
326  
ufshcd_add_uic_command_trace(struct ufs_hba * hba,struct uic_command * ucmd,const char * str)327  static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
328  					 struct uic_command *ucmd,
329  					 const char *str)
330  {
331  	u32 cmd;
332  
333  	if (!trace_ufshcd_uic_command_enabled())
334  		return;
335  
336  	if (!strcmp(str, "send"))
337  		cmd = ucmd->command;
338  	else
339  		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
340  
341  	trace_ufshcd_uic_command(dev_name(hba->dev), str, cmd,
342  				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
343  				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
344  				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
345  }
346  
ufshcd_add_command_trace(struct ufs_hba * hba,unsigned int tag,const char * str)347  static void ufshcd_add_command_trace(struct ufs_hba *hba,
348  		unsigned int tag, const char *str)
349  {
350  	sector_t lba = -1;
351  	u8 opcode = 0;
352  	u32 intr, doorbell;
353  	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
354  	struct scsi_cmnd *cmd = lrbp->cmd;
355  	int transfer_len = -1;
356  
357  	if (!trace_ufshcd_command_enabled()) {
358  		/* trace UPIU W/O tracing command */
359  		if (cmd)
360  			ufshcd_add_cmd_upiu_trace(hba, tag, str);
361  		return;
362  	}
363  
364  	if (cmd) { /* data phase exists */
365  		/* trace UPIU also */
366  		ufshcd_add_cmd_upiu_trace(hba, tag, str);
367  		opcode = cmd->cmnd[0];
368  		if ((opcode == READ_10) || (opcode == WRITE_10)) {
369  			/*
370  			 * Currently we only fully trace read(10) and write(10)
371  			 * commands
372  			 */
373  			if (cmd->request && cmd->request->bio)
374  				lba = cmd->request->bio->bi_iter.bi_sector;
375  			transfer_len = be32_to_cpu(
376  				lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
377  		}
378  	}
379  
380  	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
381  	doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
382  	trace_ufshcd_command(dev_name(hba->dev), str, tag,
383  				doorbell, transfer_len, intr, lba, opcode);
384  }
385  
ufshcd_print_clk_freqs(struct ufs_hba * hba)386  static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
387  {
388  	struct ufs_clk_info *clki;
389  	struct list_head *head = &hba->clk_list_head;
390  
391  	if (list_empty(head))
392  		return;
393  
394  	list_for_each_entry(clki, head, list) {
395  		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
396  				clki->max_freq)
397  			dev_err(hba->dev, "clk: %s, rate: %u\n",
398  					clki->name, clki->curr_freq);
399  	}
400  }
401  
ufshcd_print_err_hist(struct ufs_hba * hba,struct ufs_err_reg_hist * err_hist,char * err_name)402  static void ufshcd_print_err_hist(struct ufs_hba *hba,
403  				  struct ufs_err_reg_hist *err_hist,
404  				  char *err_name)
405  {
406  	int i;
407  	bool found = false;
408  
409  	for (i = 0; i < UFS_ERR_REG_HIST_LENGTH; i++) {
410  		int p = (i + err_hist->pos) % UFS_ERR_REG_HIST_LENGTH;
411  
412  		if (err_hist->tstamp[p] == 0)
413  			continue;
414  		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
415  			err_hist->reg[p], ktime_to_us(err_hist->tstamp[p]));
416  		found = true;
417  	}
418  
419  	if (!found)
420  		dev_err(hba->dev, "No record of %s\n", err_name);
421  }
422  
ufshcd_print_host_regs(struct ufs_hba * hba)423  static void ufshcd_print_host_regs(struct ufs_hba *hba)
424  {
425  	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
426  
427  	ufshcd_print_err_hist(hba, &hba->ufs_stats.pa_err, "pa_err");
428  	ufshcd_print_err_hist(hba, &hba->ufs_stats.dl_err, "dl_err");
429  	ufshcd_print_err_hist(hba, &hba->ufs_stats.nl_err, "nl_err");
430  	ufshcd_print_err_hist(hba, &hba->ufs_stats.tl_err, "tl_err");
431  	ufshcd_print_err_hist(hba, &hba->ufs_stats.dme_err, "dme_err");
432  	ufshcd_print_err_hist(hba, &hba->ufs_stats.auto_hibern8_err,
433  			      "auto_hibern8_err");
434  	ufshcd_print_err_hist(hba, &hba->ufs_stats.fatal_err, "fatal_err");
435  	ufshcd_print_err_hist(hba, &hba->ufs_stats.link_startup_err,
436  			      "link_startup_fail");
437  	ufshcd_print_err_hist(hba, &hba->ufs_stats.resume_err, "resume_fail");
438  	ufshcd_print_err_hist(hba, &hba->ufs_stats.suspend_err,
439  			      "suspend_fail");
440  	ufshcd_print_err_hist(hba, &hba->ufs_stats.dev_reset, "dev_reset");
441  	ufshcd_print_err_hist(hba, &hba->ufs_stats.host_reset, "host_reset");
442  	ufshcd_print_err_hist(hba, &hba->ufs_stats.task_abort, "task_abort");
443  
444  	ufshcd_vops_dbg_register_dump(hba);
445  }
446  
447  static
ufshcd_print_trs(struct ufs_hba * hba,unsigned long bitmap,bool pr_prdt)448  void ufshcd_print_trs(struct ufs_hba *hba, unsigned long bitmap, bool pr_prdt)
449  {
450  	struct ufshcd_lrb *lrbp;
451  	int prdt_length;
452  	int tag;
453  
454  	for_each_set_bit(tag, &bitmap, hba->nutrs) {
455  		lrbp = &hba->lrb[tag];
456  
457  		dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
458  				tag, ktime_to_us(lrbp->issue_time_stamp));
459  		dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
460  				tag, ktime_to_us(lrbp->compl_time_stamp));
461  		dev_err(hba->dev,
462  			"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
463  			tag, (u64)lrbp->utrd_dma_addr);
464  
465  		ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
466  				sizeof(struct utp_transfer_req_desc));
467  		dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
468  			(u64)lrbp->ucd_req_dma_addr);
469  		ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
470  				sizeof(struct utp_upiu_req));
471  		dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
472  			(u64)lrbp->ucd_rsp_dma_addr);
473  		ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
474  				sizeof(struct utp_upiu_rsp));
475  
476  		prdt_length = le16_to_cpu(
477  			lrbp->utr_descriptor_ptr->prd_table_length);
478  		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
479  			prdt_length /= sizeof(struct ufshcd_sg_entry);
480  
481  		dev_err(hba->dev,
482  			"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
483  			tag, prdt_length,
484  			(u64)lrbp->ucd_prdt_dma_addr);
485  
486  		if (pr_prdt)
487  			ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
488  				sizeof(struct ufshcd_sg_entry) * prdt_length);
489  	}
490  }
491  
ufshcd_print_tmrs(struct ufs_hba * hba,unsigned long bitmap)492  static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
493  {
494  	int tag;
495  
496  	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
497  		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
498  
499  		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
500  		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
501  	}
502  }
503  
ufshcd_print_host_state(struct ufs_hba * hba)504  static void ufshcd_print_host_state(struct ufs_hba *hba)
505  {
506  	struct scsi_device *sdev_ufs = hba->sdev_ufs_device;
507  
508  	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
509  	dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
510  		hba->outstanding_reqs, hba->outstanding_tasks);
511  	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
512  		hba->saved_err, hba->saved_uic_err);
513  	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
514  		hba->curr_dev_pwr_mode, hba->uic_link_state);
515  	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
516  		hba->pm_op_in_progress, hba->is_sys_suspended);
517  	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
518  		hba->auto_bkops_enabled, hba->host->host_self_blocked);
519  	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
520  	dev_err(hba->dev,
521  		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
522  		ktime_to_us(hba->ufs_stats.last_hibern8_exit_tstamp),
523  		hba->ufs_stats.hibern8_exit_cnt);
524  	dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
525  		ktime_to_us(hba->ufs_stats.last_intr_ts),
526  		hba->ufs_stats.last_intr_status);
527  	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
528  		hba->eh_flags, hba->req_abort_count);
529  	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
530  		hba->ufs_version, hba->capabilities, hba->caps);
531  	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
532  		hba->dev_quirks);
533  	if (sdev_ufs)
534  		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
535  			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
536  
537  	ufshcd_print_clk_freqs(hba);
538  }
539  
540  /**
541   * ufshcd_print_pwr_info - print power params as saved in hba
542   * power info
543   * @hba: per-adapter instance
544   */
ufshcd_print_pwr_info(struct ufs_hba * hba)545  static void ufshcd_print_pwr_info(struct ufs_hba *hba)
546  {
547  	static const char * const names[] = {
548  		"INVALID MODE",
549  		"FAST MODE",
550  		"SLOW_MODE",
551  		"INVALID MODE",
552  		"FASTAUTO_MODE",
553  		"SLOWAUTO_MODE",
554  		"INVALID MODE",
555  	};
556  
557  	dev_err(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
558  		 __func__,
559  		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
560  		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
561  		 names[hba->pwr_info.pwr_rx],
562  		 names[hba->pwr_info.pwr_tx],
563  		 hba->pwr_info.hs_rate);
564  }
565  
ufshcd_delay_us(unsigned long us,unsigned long tolerance)566  void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
567  {
568  	if (!us)
569  		return;
570  
571  	if (us < 10)
572  		udelay(us);
573  	else
574  		usleep_range(us, us + tolerance);
575  }
576  EXPORT_SYMBOL_GPL(ufshcd_delay_us);
577  
578  /**
579   * ufshcd_wait_for_register - wait for register value to change
580   * @hba: per-adapter interface
581   * @reg: mmio register offset
582   * @mask: mask to apply to the read register value
583   * @val: value to wait for
584   * @interval_us: polling interval in microseconds
585   * @timeout_ms: timeout in milliseconds
586   *
587   * Return:
588   * -ETIMEDOUT on error, zero on success.
589   */
ufshcd_wait_for_register(struct ufs_hba * hba,u32 reg,u32 mask,u32 val,unsigned long interval_us,unsigned long timeout_ms)590  int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
591  				u32 val, unsigned long interval_us,
592  				unsigned long timeout_ms)
593  {
594  	int err = 0;
595  	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
596  
597  	/* ignore bits that we don't intend to wait on */
598  	val = val & mask;
599  
600  	while ((ufshcd_readl(hba, reg) & mask) != val) {
601  		usleep_range(interval_us, interval_us + 50);
602  		if (time_after(jiffies, timeout)) {
603  			if ((ufshcd_readl(hba, reg) & mask) != val)
604  				err = -ETIMEDOUT;
605  			break;
606  		}
607  	}
608  
609  	return err;
610  }
611  
612  /**
613   * ufshcd_get_intr_mask - Get the interrupt bit mask
614   * @hba: Pointer to adapter instance
615   *
616   * Returns interrupt bit mask per version
617   */
ufshcd_get_intr_mask(struct ufs_hba * hba)618  static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
619  {
620  	u32 intr_mask = 0;
621  
622  	switch (hba->ufs_version) {
623  	case UFSHCI_VERSION_10:
624  		intr_mask = INTERRUPT_MASK_ALL_VER_10;
625  		break;
626  	case UFSHCI_VERSION_11:
627  	case UFSHCI_VERSION_20:
628  		intr_mask = INTERRUPT_MASK_ALL_VER_11;
629  		break;
630  	case UFSHCI_VERSION_21:
631  	default:
632  		intr_mask = INTERRUPT_MASK_ALL_VER_21;
633  		break;
634  	}
635  
636  	return intr_mask;
637  }
638  
639  /**
640   * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
641   * @hba: Pointer to adapter instance
642   *
643   * Returns UFSHCI version supported by the controller
644   */
ufshcd_get_ufs_version(struct ufs_hba * hba)645  static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
646  {
647  	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
648  		return ufshcd_vops_get_ufs_hci_version(hba);
649  
650  	return ufshcd_readl(hba, REG_UFS_VERSION);
651  }
652  
653  /**
654   * ufshcd_is_device_present - Check if any device connected to
655   *			      the host controller
656   * @hba: pointer to adapter instance
657   *
658   * Returns true if device present, false if no device detected
659   */
ufshcd_is_device_present(struct ufs_hba * hba)660  static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
661  {
662  	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) &
663  						DEVICE_PRESENT) ? true : false;
664  }
665  
666  /**
667   * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
668   * @lrbp: pointer to local command reference block
669   *
670   * This function is used to get the OCS field from UTRD
671   * Returns the OCS field in the UTRD
672   */
ufshcd_get_tr_ocs(struct ufshcd_lrb * lrbp)673  static inline int ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp)
674  {
675  	return le32_to_cpu(lrbp->utr_descriptor_ptr->header.dword_2) & MASK_OCS;
676  }
677  
678  /**
679   * ufshcd_utrl_clear - Clear a bit in UTRLCLR register
680   * @hba: per adapter instance
681   * @pos: position of the bit to be cleared
682   */
ufshcd_utrl_clear(struct ufs_hba * hba,u32 pos)683  static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 pos)
684  {
685  	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
686  		ufshcd_writel(hba, (1 << pos), REG_UTP_TRANSFER_REQ_LIST_CLEAR);
687  	else
688  		ufshcd_writel(hba, ~(1 << pos),
689  				REG_UTP_TRANSFER_REQ_LIST_CLEAR);
690  }
691  
692  /**
693   * ufshcd_utmrl_clear - Clear a bit in UTRMLCLR register
694   * @hba: per adapter instance
695   * @pos: position of the bit to be cleared
696   */
ufshcd_utmrl_clear(struct ufs_hba * hba,u32 pos)697  static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
698  {
699  	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
700  		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
701  	else
702  		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
703  }
704  
705  /**
706   * ufshcd_outstanding_req_clear - Clear a bit in outstanding request field
707   * @hba: per adapter instance
708   * @tag: position of the bit to be cleared
709   */
ufshcd_outstanding_req_clear(struct ufs_hba * hba,int tag)710  static inline void ufshcd_outstanding_req_clear(struct ufs_hba *hba, int tag)
711  {
712  	__clear_bit(tag, &hba->outstanding_reqs);
713  }
714  
715  /**
716   * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
717   * @reg: Register value of host controller status
718   *
719   * Returns integer, 0 on Success and positive value if failed
720   */
ufshcd_get_lists_status(u32 reg)721  static inline int ufshcd_get_lists_status(u32 reg)
722  {
723  	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
724  }
725  
726  /**
727   * ufshcd_get_uic_cmd_result - Get the UIC command result
728   * @hba: Pointer to adapter instance
729   *
730   * This function gets the result of UIC command completion
731   * Returns 0 on success, non zero value on error
732   */
ufshcd_get_uic_cmd_result(struct ufs_hba * hba)733  static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
734  {
735  	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
736  	       MASK_UIC_COMMAND_RESULT;
737  }
738  
739  /**
740   * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
741   * @hba: Pointer to adapter instance
742   *
743   * This function gets UIC command argument3
744   * Returns 0 on success, non zero value on error
745   */
ufshcd_get_dme_attr_val(struct ufs_hba * hba)746  static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
747  {
748  	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
749  }
750  
751  /**
752   * ufshcd_get_req_rsp - returns the TR response transaction type
753   * @ucd_rsp_ptr: pointer to response UPIU
754   */
755  static inline int
ufshcd_get_req_rsp(struct utp_upiu_rsp * ucd_rsp_ptr)756  ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
757  {
758  	return be32_to_cpu(ucd_rsp_ptr->header.dword_0) >> 24;
759  }
760  
761  /**
762   * ufshcd_get_rsp_upiu_result - Get the result from response UPIU
763   * @ucd_rsp_ptr: pointer to response UPIU
764   *
765   * This function gets the response status and scsi_status from response UPIU
766   * Returns the response result code.
767   */
768  static inline int
ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp * ucd_rsp_ptr)769  ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp *ucd_rsp_ptr)
770  {
771  	return be32_to_cpu(ucd_rsp_ptr->header.dword_1) & MASK_RSP_UPIU_RESULT;
772  }
773  
774  /*
775   * ufshcd_get_rsp_upiu_data_seg_len - Get the data segment length
776   *				from response UPIU
777   * @ucd_rsp_ptr: pointer to response UPIU
778   *
779   * Return the data segment length.
780   */
781  static inline unsigned int
ufshcd_get_rsp_upiu_data_seg_len(struct utp_upiu_rsp * ucd_rsp_ptr)782  ufshcd_get_rsp_upiu_data_seg_len(struct utp_upiu_rsp *ucd_rsp_ptr)
783  {
784  	return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
785  		MASK_RSP_UPIU_DATA_SEG_LEN;
786  }
787  
788  /**
789   * ufshcd_is_exception_event - Check if the device raised an exception event
790   * @ucd_rsp_ptr: pointer to response UPIU
791   *
792   * The function checks if the device raised an exception event indicated in
793   * the Device Information field of response UPIU.
794   *
795   * Returns true if exception is raised, false otherwise.
796   */
ufshcd_is_exception_event(struct utp_upiu_rsp * ucd_rsp_ptr)797  static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
798  {
799  	return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
800  			MASK_RSP_EXCEPTION_EVENT ? true : false;
801  }
802  
803  /**
804   * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
805   * @hba: per adapter instance
806   */
807  static inline void
ufshcd_reset_intr_aggr(struct ufs_hba * hba)808  ufshcd_reset_intr_aggr(struct ufs_hba *hba)
809  {
810  	ufshcd_writel(hba, INT_AGGR_ENABLE |
811  		      INT_AGGR_COUNTER_AND_TIMER_RESET,
812  		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
813  }
814  
815  /**
816   * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
817   * @hba: per adapter instance
818   * @cnt: Interrupt aggregation counter threshold
819   * @tmout: Interrupt aggregation timeout value
820   */
821  static inline void
ufshcd_config_intr_aggr(struct ufs_hba * hba,u8 cnt,u8 tmout)822  ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
823  {
824  	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
825  		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
826  		      INT_AGGR_TIMEOUT_VAL(tmout),
827  		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
828  }
829  
830  /**
831   * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
832   * @hba: per adapter instance
833   */
ufshcd_disable_intr_aggr(struct ufs_hba * hba)834  static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
835  {
836  	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
837  }
838  
839  /**
840   * ufshcd_enable_run_stop_reg - Enable run-stop registers,
841   *			When run-stop registers are set to 1, it indicates the
842   *			host controller that it can process the requests
843   * @hba: per adapter instance
844   */
ufshcd_enable_run_stop_reg(struct ufs_hba * hba)845  static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
846  {
847  	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
848  		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
849  	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
850  		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
851  }
852  
853  /**
854   * ufshcd_hba_start - Start controller initialization sequence
855   * @hba: per adapter instance
856   */
ufshcd_hba_start(struct ufs_hba * hba)857  static inline void ufshcd_hba_start(struct ufs_hba *hba)
858  {
859  	u32 val = CONTROLLER_ENABLE;
860  
861  	if (ufshcd_crypto_enable(hba))
862  		val |= CRYPTO_GENERAL_ENABLE;
863  
864  	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
865  }
866  
867  /**
868   * ufshcd_is_hba_active - Get controller state
869   * @hba: per adapter instance
870   *
871   * Returns false if controller is active, true otherwise
872   */
ufshcd_is_hba_active(struct ufs_hba * hba)873  static inline bool ufshcd_is_hba_active(struct ufs_hba *hba)
874  {
875  	return (ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE)
876  		? false : true;
877  }
878  
ufshcd_get_local_unipro_ver(struct ufs_hba * hba)879  u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
880  {
881  	/* HCI version 1.0 and 1.1 supports UniPro 1.41 */
882  	if ((hba->ufs_version == UFSHCI_VERSION_10) ||
883  	    (hba->ufs_version == UFSHCI_VERSION_11))
884  		return UFS_UNIPRO_VER_1_41;
885  	else
886  		return UFS_UNIPRO_VER_1_6;
887  }
888  EXPORT_SYMBOL(ufshcd_get_local_unipro_ver);
889  
ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba * hba)890  static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba)
891  {
892  	/*
893  	 * If both host and device support UniPro ver1.6 or later, PA layer
894  	 * parameters tuning happens during link startup itself.
895  	 *
896  	 * We can manually tune PA layer parameters if either host or device
897  	 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning
898  	 * logic simple, we will only do manual tuning if local unipro version
899  	 * doesn't support ver1.6 or later.
900  	 */
901  	if (ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6)
902  		return true;
903  	else
904  		return false;
905  }
906  
907  /**
908   * ufshcd_set_clk_freq - set UFS controller clock frequencies
909   * @hba: per adapter instance
910   * @scale_up: If True, set max possible frequency othewise set low frequency
911   *
912   * Returns 0 if successful
913   * Returns < 0 for any other errors
914   */
ufshcd_set_clk_freq(struct ufs_hba * hba,bool scale_up)915  static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
916  {
917  	int ret = 0;
918  	struct ufs_clk_info *clki;
919  	struct list_head *head = &hba->clk_list_head;
920  
921  	if (list_empty(head))
922  		goto out;
923  
924  	list_for_each_entry(clki, head, list) {
925  		if (!IS_ERR_OR_NULL(clki->clk)) {
926  			if (scale_up && clki->max_freq) {
927  				if (clki->curr_freq == clki->max_freq)
928  					continue;
929  
930  				ret = clk_set_rate(clki->clk, clki->max_freq);
931  				if (ret) {
932  					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
933  						__func__, clki->name,
934  						clki->max_freq, ret);
935  					break;
936  				}
937  				trace_ufshcd_clk_scaling(dev_name(hba->dev),
938  						"scaled up", clki->name,
939  						clki->curr_freq,
940  						clki->max_freq);
941  
942  				clki->curr_freq = clki->max_freq;
943  
944  			} else if (!scale_up && clki->min_freq) {
945  				if (clki->curr_freq == clki->min_freq)
946  					continue;
947  
948  				ret = clk_set_rate(clki->clk, clki->min_freq);
949  				if (ret) {
950  					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
951  						__func__, clki->name,
952  						clki->min_freq, ret);
953  					break;
954  				}
955  				trace_ufshcd_clk_scaling(dev_name(hba->dev),
956  						"scaled down", clki->name,
957  						clki->curr_freq,
958  						clki->min_freq);
959  				clki->curr_freq = clki->min_freq;
960  			}
961  		}
962  		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
963  				clki->name, clk_get_rate(clki->clk));
964  	}
965  
966  out:
967  	return ret;
968  }
969  
970  /**
971   * ufshcd_scale_clks - scale up or scale down UFS controller clocks
972   * @hba: per adapter instance
973   * @scale_up: True if scaling up and false if scaling down
974   *
975   * Returns 0 if successful
976   * Returns < 0 for any other errors
977   */
ufshcd_scale_clks(struct ufs_hba * hba,bool scale_up)978  static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up)
979  {
980  	int ret = 0;
981  	ktime_t start = ktime_get();
982  
983  	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
984  	if (ret)
985  		goto out;
986  
987  	ret = ufshcd_set_clk_freq(hba, scale_up);
988  	if (ret)
989  		goto out;
990  
991  	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
992  	if (ret)
993  		ufshcd_set_clk_freq(hba, !scale_up);
994  
995  out:
996  	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
997  			(scale_up ? "up" : "down"),
998  			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
999  	return ret;
1000  }
1001  
1002  /**
1003   * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1004   * @hba: per adapter instance
1005   * @scale_up: True if scaling up and false if scaling down
1006   *
1007   * Returns true if scaling is required, false otherwise.
1008   */
ufshcd_is_devfreq_scaling_required(struct ufs_hba * hba,bool scale_up)1009  static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1010  					       bool scale_up)
1011  {
1012  	struct ufs_clk_info *clki;
1013  	struct list_head *head = &hba->clk_list_head;
1014  
1015  	if (list_empty(head))
1016  		return false;
1017  
1018  	list_for_each_entry(clki, head, list) {
1019  		if (!IS_ERR_OR_NULL(clki->clk)) {
1020  			if (scale_up && clki->max_freq) {
1021  				if (clki->curr_freq == clki->max_freq)
1022  					continue;
1023  				return true;
1024  			} else if (!scale_up && clki->min_freq) {
1025  				if (clki->curr_freq == clki->min_freq)
1026  					continue;
1027  				return true;
1028  			}
1029  		}
1030  	}
1031  
1032  	return false;
1033  }
1034  
ufshcd_wait_for_doorbell_clr(struct ufs_hba * hba,u64 wait_timeout_us)1035  static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1036  					u64 wait_timeout_us)
1037  {
1038  	unsigned long flags;
1039  	int ret = 0;
1040  	u32 tm_doorbell;
1041  	u32 tr_doorbell;
1042  	bool timeout = false, do_last_check = false;
1043  	ktime_t start;
1044  
1045  	ufshcd_hold(hba, false);
1046  	spin_lock_irqsave(hba->host->host_lock, flags);
1047  	/*
1048  	 * Wait for all the outstanding tasks/transfer requests.
1049  	 * Verify by checking the doorbell registers are clear.
1050  	 */
1051  	start = ktime_get();
1052  	do {
1053  		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1054  			ret = -EBUSY;
1055  			goto out;
1056  		}
1057  
1058  		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1059  		tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
1060  		if (!tm_doorbell && !tr_doorbell) {
1061  			timeout = false;
1062  			break;
1063  		} else if (do_last_check) {
1064  			break;
1065  		}
1066  
1067  		spin_unlock_irqrestore(hba->host->host_lock, flags);
1068  		schedule();
1069  		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1070  		    wait_timeout_us) {
1071  			timeout = true;
1072  			/*
1073  			 * We might have scheduled out for long time so make
1074  			 * sure to check if doorbells are cleared by this time
1075  			 * or not.
1076  			 */
1077  			do_last_check = true;
1078  		}
1079  		spin_lock_irqsave(hba->host->host_lock, flags);
1080  	} while (tm_doorbell || tr_doorbell);
1081  
1082  	if (timeout) {
1083  		dev_err(hba->dev,
1084  			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1085  			__func__, tm_doorbell, tr_doorbell);
1086  		ret = -EBUSY;
1087  	}
1088  out:
1089  	spin_unlock_irqrestore(hba->host->host_lock, flags);
1090  	ufshcd_release(hba);
1091  	return ret;
1092  }
1093  
1094  /**
1095   * ufshcd_scale_gear - scale up/down UFS gear
1096   * @hba: per adapter instance
1097   * @scale_up: True for scaling up gear and false for scaling down
1098   *
1099   * Returns 0 for success,
1100   * Returns -EBUSY if scaling can't happen at this time
1101   * Returns non-zero for any other errors
1102   */
ufshcd_scale_gear(struct ufs_hba * hba,bool scale_up)1103  static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1104  {
1105  	#define UFS_MIN_GEAR_TO_SCALE_DOWN	UFS_HS_G1
1106  	int ret = 0;
1107  	struct ufs_pa_layer_attr new_pwr_info;
1108  
1109  	if (scale_up) {
1110  		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info.info,
1111  		       sizeof(struct ufs_pa_layer_attr));
1112  	} else {
1113  		memcpy(&new_pwr_info, &hba->pwr_info,
1114  		       sizeof(struct ufs_pa_layer_attr));
1115  
1116  		if (hba->pwr_info.gear_tx > UFS_MIN_GEAR_TO_SCALE_DOWN
1117  		    || hba->pwr_info.gear_rx > UFS_MIN_GEAR_TO_SCALE_DOWN) {
1118  			/* save the current power mode */
1119  			memcpy(&hba->clk_scaling.saved_pwr_info.info,
1120  				&hba->pwr_info,
1121  				sizeof(struct ufs_pa_layer_attr));
1122  
1123  			/* scale down gear */
1124  			new_pwr_info.gear_tx = UFS_MIN_GEAR_TO_SCALE_DOWN;
1125  			new_pwr_info.gear_rx = UFS_MIN_GEAR_TO_SCALE_DOWN;
1126  		}
1127  	}
1128  
1129  	/* check if the power mode needs to be changed or not? */
1130  	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1131  	if (ret)
1132  		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1133  			__func__, ret,
1134  			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1135  			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1136  
1137  	return ret;
1138  }
1139  
ufshcd_clock_scaling_prepare(struct ufs_hba * hba)1140  static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba)
1141  {
1142  	#define DOORBELL_CLR_TOUT_US		(1000 * 1000) /* 1 sec */
1143  	int ret = 0;
1144  	/*
1145  	 * make sure that there are no outstanding requests when
1146  	 * clock scaling is in progress
1147  	 */
1148  	ufshcd_scsi_block_requests(hba);
1149  	down_write(&hba->clk_scaling_lock);
1150  	if (ufshcd_wait_for_doorbell_clr(hba, DOORBELL_CLR_TOUT_US)) {
1151  		ret = -EBUSY;
1152  		up_write(&hba->clk_scaling_lock);
1153  		ufshcd_scsi_unblock_requests(hba);
1154  	}
1155  
1156  	return ret;
1157  }
1158  
ufshcd_clock_scaling_unprepare(struct ufs_hba * hba)1159  static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba)
1160  {
1161  	up_write(&hba->clk_scaling_lock);
1162  	ufshcd_scsi_unblock_requests(hba);
1163  }
1164  
1165  /**
1166   * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1167   * @hba: per adapter instance
1168   * @scale_up: True for scaling up and false for scalin down
1169   *
1170   * Returns 0 for success,
1171   * Returns -EBUSY if scaling can't happen at this time
1172   * Returns non-zero for any other errors
1173   */
ufshcd_devfreq_scale(struct ufs_hba * hba,bool scale_up)1174  static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up)
1175  {
1176  	int ret = 0;
1177  
1178  	/* let's not get into low power until clock scaling is completed */
1179  	ufshcd_hold(hba, false);
1180  
1181  	ret = ufshcd_clock_scaling_prepare(hba);
1182  	if (ret)
1183  		goto out;
1184  
1185  	/* scale down the gear before scaling down clocks */
1186  	if (!scale_up) {
1187  		ret = ufshcd_scale_gear(hba, false);
1188  		if (ret)
1189  			goto out_unprepare;
1190  	}
1191  
1192  	ret = ufshcd_scale_clks(hba, scale_up);
1193  	if (ret) {
1194  		if (!scale_up)
1195  			ufshcd_scale_gear(hba, true);
1196  		goto out_unprepare;
1197  	}
1198  
1199  	/* scale up the gear after scaling up clocks */
1200  	if (scale_up) {
1201  		ret = ufshcd_scale_gear(hba, true);
1202  		if (ret) {
1203  			ufshcd_scale_clks(hba, false);
1204  			goto out_unprepare;
1205  		}
1206  	}
1207  
1208  	/* Enable Write Booster if we have scaled up else disable it */
1209  	up_write(&hba->clk_scaling_lock);
1210  	ufshcd_wb_ctrl(hba, scale_up);
1211  	down_write(&hba->clk_scaling_lock);
1212  
1213  out_unprepare:
1214  	ufshcd_clock_scaling_unprepare(hba);
1215  out:
1216  	ufshcd_release(hba);
1217  	return ret;
1218  }
1219  
ufshcd_clk_scaling_suspend_work(struct work_struct * work)1220  static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1221  {
1222  	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1223  					   clk_scaling.suspend_work);
1224  	unsigned long irq_flags;
1225  
1226  	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1227  	if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1228  		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1229  		return;
1230  	}
1231  	hba->clk_scaling.is_suspended = true;
1232  	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1233  
1234  	__ufshcd_suspend_clkscaling(hba);
1235  }
1236  
ufshcd_clk_scaling_resume_work(struct work_struct * work)1237  static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1238  {
1239  	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1240  					   clk_scaling.resume_work);
1241  	unsigned long irq_flags;
1242  
1243  	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1244  	if (!hba->clk_scaling.is_suspended) {
1245  		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1246  		return;
1247  	}
1248  	hba->clk_scaling.is_suspended = false;
1249  	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1250  
1251  	devfreq_resume_device(hba->devfreq);
1252  }
1253  
ufshcd_devfreq_target(struct device * dev,unsigned long * freq,u32 flags)1254  static int ufshcd_devfreq_target(struct device *dev,
1255  				unsigned long *freq, u32 flags)
1256  {
1257  	int ret = 0;
1258  	struct ufs_hba *hba = dev_get_drvdata(dev);
1259  	ktime_t start;
1260  	bool scale_up, sched_clk_scaling_suspend_work = false;
1261  	struct list_head *clk_list = &hba->clk_list_head;
1262  	struct ufs_clk_info *clki;
1263  	unsigned long irq_flags;
1264  
1265  	if (!ufshcd_is_clkscaling_supported(hba))
1266  		return -EINVAL;
1267  
1268  	clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1269  	/* Override with the closest supported frequency */
1270  	*freq = (unsigned long) clk_round_rate(clki->clk, *freq);
1271  	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1272  	if (ufshcd_eh_in_progress(hba)) {
1273  		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1274  		return 0;
1275  	}
1276  
1277  	if (!hba->clk_scaling.active_reqs)
1278  		sched_clk_scaling_suspend_work = true;
1279  
1280  	if (list_empty(clk_list)) {
1281  		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1282  		goto out;
1283  	}
1284  
1285  	/* Decide based on the rounded-off frequency and update */
1286  	scale_up = (*freq == clki->max_freq) ? true : false;
1287  	if (!scale_up)
1288  		*freq = clki->min_freq;
1289  	/* Update the frequency */
1290  	if (!ufshcd_is_devfreq_scaling_required(hba, scale_up)) {
1291  		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1292  		ret = 0;
1293  		goto out; /* no state change required */
1294  	}
1295  	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1296  
1297  	pm_runtime_get_noresume(hba->dev);
1298  	if (!pm_runtime_active(hba->dev)) {
1299  		pm_runtime_put_noidle(hba->dev);
1300  		ret = -EAGAIN;
1301  		goto out;
1302  	}
1303  	start = ktime_get();
1304  	ret = ufshcd_devfreq_scale(hba, scale_up);
1305  	pm_runtime_put(hba->dev);
1306  
1307  	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1308  		(scale_up ? "up" : "down"),
1309  		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1310  
1311  out:
1312  	if (sched_clk_scaling_suspend_work)
1313  		queue_work(hba->clk_scaling.workq,
1314  			   &hba->clk_scaling.suspend_work);
1315  
1316  	return ret;
1317  }
1318  
ufshcd_is_busy(struct request * req,void * priv,bool reserved)1319  static bool ufshcd_is_busy(struct request *req, void *priv, bool reserved)
1320  {
1321  	int *busy = priv;
1322  
1323  	WARN_ON_ONCE(reserved);
1324  	(*busy)++;
1325  	return false;
1326  }
1327  
1328  /* Whether or not any tag is in use by a request that is in progress. */
ufshcd_any_tag_in_use(struct ufs_hba * hba)1329  static bool ufshcd_any_tag_in_use(struct ufs_hba *hba)
1330  {
1331  	struct request_queue *q = hba->cmd_queue;
1332  	int busy = 0;
1333  
1334  	blk_mq_tagset_busy_iter(q->tag_set, ufshcd_is_busy, &busy);
1335  	return busy;
1336  }
1337  
ufshcd_devfreq_get_dev_status(struct device * dev,struct devfreq_dev_status * stat)1338  static int ufshcd_devfreq_get_dev_status(struct device *dev,
1339  		struct devfreq_dev_status *stat)
1340  {
1341  	struct ufs_hba *hba = dev_get_drvdata(dev);
1342  	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1343  	unsigned long flags;
1344  	struct list_head *clk_list = &hba->clk_list_head;
1345  	struct ufs_clk_info *clki;
1346  	ktime_t curr_t;
1347  
1348  	if (!ufshcd_is_clkscaling_supported(hba))
1349  		return -EINVAL;
1350  
1351  	memset(stat, 0, sizeof(*stat));
1352  
1353  	spin_lock_irqsave(hba->host->host_lock, flags);
1354  	curr_t = ktime_get();
1355  	if (!scaling->window_start_t)
1356  		goto start_window;
1357  
1358  	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1359  	/*
1360  	 * If current frequency is 0, then the ondemand governor considers
1361  	 * there's no initial frequency set. And it always requests to set
1362  	 * to max. frequency.
1363  	 */
1364  	stat->current_frequency = clki->curr_freq;
1365  	if (scaling->is_busy_started)
1366  		scaling->tot_busy_t += ktime_us_delta(curr_t,
1367  				scaling->busy_start_t);
1368  
1369  	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1370  	stat->busy_time = scaling->tot_busy_t;
1371  start_window:
1372  	scaling->window_start_t = curr_t;
1373  	scaling->tot_busy_t = 0;
1374  
1375  	if (hba->outstanding_reqs) {
1376  		scaling->busy_start_t = curr_t;
1377  		scaling->is_busy_started = true;
1378  	} else {
1379  		scaling->busy_start_t = 0;
1380  		scaling->is_busy_started = false;
1381  	}
1382  	spin_unlock_irqrestore(hba->host->host_lock, flags);
1383  	return 0;
1384  }
1385  
ufshcd_devfreq_init(struct ufs_hba * hba)1386  static int ufshcd_devfreq_init(struct ufs_hba *hba)
1387  {
1388  	struct list_head *clk_list = &hba->clk_list_head;
1389  	struct ufs_clk_info *clki;
1390  	struct devfreq *devfreq;
1391  	int ret;
1392  
1393  	/* Skip devfreq if we don't have any clocks in the list */
1394  	if (list_empty(clk_list))
1395  		return 0;
1396  
1397  	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1398  	dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1399  	dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1400  
1401  	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1402  					 &hba->vps->ondemand_data);
1403  	devfreq = devfreq_add_device(hba->dev,
1404  			&hba->vps->devfreq_profile,
1405  			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1406  			&hba->vps->ondemand_data);
1407  	if (IS_ERR(devfreq)) {
1408  		ret = PTR_ERR(devfreq);
1409  		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1410  
1411  		dev_pm_opp_remove(hba->dev, clki->min_freq);
1412  		dev_pm_opp_remove(hba->dev, clki->max_freq);
1413  		return ret;
1414  	}
1415  
1416  	hba->devfreq = devfreq;
1417  
1418  	return 0;
1419  }
1420  
ufshcd_devfreq_remove(struct ufs_hba * hba)1421  static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1422  {
1423  	struct list_head *clk_list = &hba->clk_list_head;
1424  	struct ufs_clk_info *clki;
1425  
1426  	if (!hba->devfreq)
1427  		return;
1428  
1429  	devfreq_remove_device(hba->devfreq);
1430  	hba->devfreq = NULL;
1431  
1432  	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1433  	dev_pm_opp_remove(hba->dev, clki->min_freq);
1434  	dev_pm_opp_remove(hba->dev, clki->max_freq);
1435  }
1436  
__ufshcd_suspend_clkscaling(struct ufs_hba * hba)1437  static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1438  {
1439  	unsigned long flags;
1440  
1441  	devfreq_suspend_device(hba->devfreq);
1442  	spin_lock_irqsave(hba->host->host_lock, flags);
1443  	hba->clk_scaling.window_start_t = 0;
1444  	spin_unlock_irqrestore(hba->host->host_lock, flags);
1445  }
1446  
ufshcd_suspend_clkscaling(struct ufs_hba * hba)1447  static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1448  {
1449  	unsigned long flags;
1450  	bool suspend = false;
1451  
1452  	if (!ufshcd_is_clkscaling_supported(hba))
1453  		return;
1454  
1455  	spin_lock_irqsave(hba->host->host_lock, flags);
1456  	if (!hba->clk_scaling.is_suspended) {
1457  		suspend = true;
1458  		hba->clk_scaling.is_suspended = true;
1459  	}
1460  	spin_unlock_irqrestore(hba->host->host_lock, flags);
1461  
1462  	if (suspend)
1463  		__ufshcd_suspend_clkscaling(hba);
1464  }
1465  
ufshcd_resume_clkscaling(struct ufs_hba * hba)1466  static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1467  {
1468  	unsigned long flags;
1469  	bool resume = false;
1470  
1471  	if (!ufshcd_is_clkscaling_supported(hba))
1472  		return;
1473  
1474  	spin_lock_irqsave(hba->host->host_lock, flags);
1475  	if (hba->clk_scaling.is_suspended) {
1476  		resume = true;
1477  		hba->clk_scaling.is_suspended = false;
1478  	}
1479  	spin_unlock_irqrestore(hba->host->host_lock, flags);
1480  
1481  	if (resume)
1482  		devfreq_resume_device(hba->devfreq);
1483  }
1484  
ufshcd_clkscale_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1485  static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1486  		struct device_attribute *attr, char *buf)
1487  {
1488  	struct ufs_hba *hba = dev_get_drvdata(dev);
1489  
1490  	return snprintf(buf, PAGE_SIZE, "%d\n", hba->clk_scaling.is_allowed);
1491  }
1492  
ufshcd_clkscale_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1493  static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1494  		struct device_attribute *attr, const char *buf, size_t count)
1495  {
1496  	struct ufs_hba *hba = dev_get_drvdata(dev);
1497  	u32 value;
1498  	int err;
1499  
1500  	if (kstrtou32(buf, 0, &value))
1501  		return -EINVAL;
1502  
1503  	value = !!value;
1504  	if (value == hba->clk_scaling.is_allowed)
1505  		goto out;
1506  
1507  	pm_runtime_get_sync(hba->dev);
1508  	ufshcd_hold(hba, false);
1509  
1510  	cancel_work_sync(&hba->clk_scaling.suspend_work);
1511  	cancel_work_sync(&hba->clk_scaling.resume_work);
1512  
1513  	hba->clk_scaling.is_allowed = value;
1514  
1515  	if (value) {
1516  		ufshcd_resume_clkscaling(hba);
1517  	} else {
1518  		ufshcd_suspend_clkscaling(hba);
1519  		err = ufshcd_devfreq_scale(hba, true);
1520  		if (err)
1521  			dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1522  					__func__, err);
1523  	}
1524  
1525  	ufshcd_release(hba);
1526  	pm_runtime_put_sync(hba->dev);
1527  out:
1528  	return count;
1529  }
1530  
ufshcd_clkscaling_init_sysfs(struct ufs_hba * hba)1531  static void ufshcd_clkscaling_init_sysfs(struct ufs_hba *hba)
1532  {
1533  	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1534  	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1535  	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1536  	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1537  	hba->clk_scaling.enable_attr.attr.mode = 0644;
1538  	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1539  		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1540  }
1541  
ufshcd_ungate_work(struct work_struct * work)1542  static void ufshcd_ungate_work(struct work_struct *work)
1543  {
1544  	int ret;
1545  	unsigned long flags;
1546  	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1547  			clk_gating.ungate_work);
1548  
1549  	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1550  
1551  	spin_lock_irqsave(hba->host->host_lock, flags);
1552  	if (hba->clk_gating.state == CLKS_ON) {
1553  		spin_unlock_irqrestore(hba->host->host_lock, flags);
1554  		goto unblock_reqs;
1555  	}
1556  
1557  	spin_unlock_irqrestore(hba->host->host_lock, flags);
1558  	ufshcd_setup_clocks(hba, true);
1559  
1560  	ufshcd_enable_irq(hba);
1561  
1562  	/* Exit from hibern8 */
1563  	if (ufshcd_can_hibern8_during_gating(hba)) {
1564  		/* Prevent gating in this path */
1565  		hba->clk_gating.is_suspended = true;
1566  		if (ufshcd_is_link_hibern8(hba)) {
1567  			ret = ufshcd_uic_hibern8_exit(hba);
1568  			if (ret)
1569  				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1570  					__func__, ret);
1571  			else
1572  				ufshcd_set_link_active(hba);
1573  		}
1574  		hba->clk_gating.is_suspended = false;
1575  	}
1576  unblock_reqs:
1577  	ufshcd_scsi_unblock_requests(hba);
1578  }
1579  
1580  /**
1581   * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1582   * Also, exit from hibern8 mode and set the link as active.
1583   * @hba: per adapter instance
1584   * @async: This indicates whether caller should ungate clocks asynchronously.
1585   */
ufshcd_hold(struct ufs_hba * hba,bool async)1586  int ufshcd_hold(struct ufs_hba *hba, bool async)
1587  {
1588  	int rc = 0;
1589  	bool flush_result;
1590  	unsigned long flags;
1591  
1592  	if (!ufshcd_is_clkgating_allowed(hba))
1593  		goto out;
1594  	spin_lock_irqsave(hba->host->host_lock, flags);
1595  	hba->clk_gating.active_reqs++;
1596  
1597  start:
1598  	switch (hba->clk_gating.state) {
1599  	case CLKS_ON:
1600  		/*
1601  		 * Wait for the ungate work to complete if in progress.
1602  		 * Though the clocks may be in ON state, the link could
1603  		 * still be in hibner8 state if hibern8 is allowed
1604  		 * during clock gating.
1605  		 * Make sure we exit hibern8 state also in addition to
1606  		 * clocks being ON.
1607  		 */
1608  		if (ufshcd_can_hibern8_during_gating(hba) &&
1609  		    ufshcd_is_link_hibern8(hba)) {
1610  			if (async) {
1611  				rc = -EAGAIN;
1612  				hba->clk_gating.active_reqs--;
1613  				break;
1614  			}
1615  			spin_unlock_irqrestore(hba->host->host_lock, flags);
1616  			flush_result = flush_work(&hba->clk_gating.ungate_work);
1617  			if (hba->clk_gating.is_suspended && !flush_result)
1618  				goto out;
1619  			spin_lock_irqsave(hba->host->host_lock, flags);
1620  			goto start;
1621  		}
1622  		break;
1623  	case REQ_CLKS_OFF:
1624  		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1625  			hba->clk_gating.state = CLKS_ON;
1626  			trace_ufshcd_clk_gating(dev_name(hba->dev),
1627  						hba->clk_gating.state);
1628  			break;
1629  		}
1630  		/*
1631  		 * If we are here, it means gating work is either done or
1632  		 * currently running. Hence, fall through to cancel gating
1633  		 * work and to enable clocks.
1634  		 */
1635  		fallthrough;
1636  	case CLKS_OFF:
1637  		hba->clk_gating.state = REQ_CLKS_ON;
1638  		trace_ufshcd_clk_gating(dev_name(hba->dev),
1639  					hba->clk_gating.state);
1640  		if (queue_work(hba->clk_gating.clk_gating_workq,
1641  			       &hba->clk_gating.ungate_work))
1642  			ufshcd_scsi_block_requests(hba);
1643  		/*
1644  		 * fall through to check if we should wait for this
1645  		 * work to be done or not.
1646  		 */
1647  		fallthrough;
1648  	case REQ_CLKS_ON:
1649  		if (async) {
1650  			rc = -EAGAIN;
1651  			hba->clk_gating.active_reqs--;
1652  			break;
1653  		}
1654  
1655  		spin_unlock_irqrestore(hba->host->host_lock, flags);
1656  		flush_work(&hba->clk_gating.ungate_work);
1657  		/* Make sure state is CLKS_ON before returning */
1658  		spin_lock_irqsave(hba->host->host_lock, flags);
1659  		goto start;
1660  	default:
1661  		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1662  				__func__, hba->clk_gating.state);
1663  		break;
1664  	}
1665  	spin_unlock_irqrestore(hba->host->host_lock, flags);
1666  out:
1667  	return rc;
1668  }
1669  EXPORT_SYMBOL_GPL(ufshcd_hold);
1670  
ufshcd_gate_work(struct work_struct * work)1671  static void ufshcd_gate_work(struct work_struct *work)
1672  {
1673  	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1674  			clk_gating.gate_work.work);
1675  	unsigned long flags;
1676  	int ret;
1677  
1678  	spin_lock_irqsave(hba->host->host_lock, flags);
1679  	/*
1680  	 * In case you are here to cancel this work the gating state
1681  	 * would be marked as REQ_CLKS_ON. In this case save time by
1682  	 * skipping the gating work and exit after changing the clock
1683  	 * state to CLKS_ON.
1684  	 */
1685  	if (hba->clk_gating.is_suspended ||
1686  		(hba->clk_gating.state != REQ_CLKS_OFF)) {
1687  		hba->clk_gating.state = CLKS_ON;
1688  		trace_ufshcd_clk_gating(dev_name(hba->dev),
1689  					hba->clk_gating.state);
1690  		goto rel_lock;
1691  	}
1692  
1693  	if (hba->clk_gating.active_reqs
1694  		|| hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL
1695  		|| ufshcd_any_tag_in_use(hba) || hba->outstanding_tasks
1696  		|| hba->active_uic_cmd || hba->uic_async_done)
1697  		goto rel_lock;
1698  
1699  	spin_unlock_irqrestore(hba->host->host_lock, flags);
1700  
1701  	/* put the link into hibern8 mode before turning off clocks */
1702  	if (ufshcd_can_hibern8_during_gating(hba)) {
1703  		ret = ufshcd_uic_hibern8_enter(hba);
1704  		if (ret) {
1705  			hba->clk_gating.state = CLKS_ON;
1706  			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1707  					__func__, ret);
1708  			trace_ufshcd_clk_gating(dev_name(hba->dev),
1709  						hba->clk_gating.state);
1710  			goto out;
1711  		}
1712  		ufshcd_set_link_hibern8(hba);
1713  	}
1714  
1715  	ufshcd_disable_irq(hba);
1716  
1717  	if (!ufshcd_is_link_active(hba))
1718  		ufshcd_setup_clocks(hba, false);
1719  	else
1720  		/* If link is active, device ref_clk can't be switched off */
1721  		__ufshcd_setup_clocks(hba, false, true);
1722  
1723  	/*
1724  	 * In case you are here to cancel this work the gating state
1725  	 * would be marked as REQ_CLKS_ON. In this case keep the state
1726  	 * as REQ_CLKS_ON which would anyway imply that clocks are off
1727  	 * and a request to turn them on is pending. By doing this way,
1728  	 * we keep the state machine in tact and this would ultimately
1729  	 * prevent from doing cancel work multiple times when there are
1730  	 * new requests arriving before the current cancel work is done.
1731  	 */
1732  	spin_lock_irqsave(hba->host->host_lock, flags);
1733  	if (hba->clk_gating.state == REQ_CLKS_OFF) {
1734  		hba->clk_gating.state = CLKS_OFF;
1735  		trace_ufshcd_clk_gating(dev_name(hba->dev),
1736  					hba->clk_gating.state);
1737  	}
1738  rel_lock:
1739  	spin_unlock_irqrestore(hba->host->host_lock, flags);
1740  out:
1741  	return;
1742  }
1743  
1744  /* host lock must be held before calling this variant */
__ufshcd_release(struct ufs_hba * hba)1745  static void __ufshcd_release(struct ufs_hba *hba)
1746  {
1747  	if (!ufshcd_is_clkgating_allowed(hba))
1748  		return;
1749  
1750  	hba->clk_gating.active_reqs--;
1751  
1752  	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
1753  	    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
1754  	    ufshcd_any_tag_in_use(hba) || hba->outstanding_tasks ||
1755  	    hba->active_uic_cmd || hba->uic_async_done)
1756  		return;
1757  
1758  	hba->clk_gating.state = REQ_CLKS_OFF;
1759  	trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
1760  	queue_delayed_work(hba->clk_gating.clk_gating_workq,
1761  			   &hba->clk_gating.gate_work,
1762  			   msecs_to_jiffies(hba->clk_gating.delay_ms));
1763  }
1764  
ufshcd_release(struct ufs_hba * hba)1765  void ufshcd_release(struct ufs_hba *hba)
1766  {
1767  	unsigned long flags;
1768  
1769  	spin_lock_irqsave(hba->host->host_lock, flags);
1770  	__ufshcd_release(hba);
1771  	spin_unlock_irqrestore(hba->host->host_lock, flags);
1772  }
1773  EXPORT_SYMBOL_GPL(ufshcd_release);
1774  
ufshcd_clkgate_delay_show(struct device * dev,struct device_attribute * attr,char * buf)1775  static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
1776  		struct device_attribute *attr, char *buf)
1777  {
1778  	struct ufs_hba *hba = dev_get_drvdata(dev);
1779  
1780  	return snprintf(buf, PAGE_SIZE, "%lu\n", hba->clk_gating.delay_ms);
1781  }
1782  
ufshcd_clkgate_delay_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1783  static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
1784  		struct device_attribute *attr, const char *buf, size_t count)
1785  {
1786  	struct ufs_hba *hba = dev_get_drvdata(dev);
1787  	unsigned long flags, value;
1788  
1789  	if (kstrtoul(buf, 0, &value))
1790  		return -EINVAL;
1791  
1792  	spin_lock_irqsave(hba->host->host_lock, flags);
1793  	hba->clk_gating.delay_ms = value;
1794  	spin_unlock_irqrestore(hba->host->host_lock, flags);
1795  	return count;
1796  }
1797  
ufshcd_clkgate_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1798  static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
1799  		struct device_attribute *attr, char *buf)
1800  {
1801  	struct ufs_hba *hba = dev_get_drvdata(dev);
1802  
1803  	return snprintf(buf, PAGE_SIZE, "%d\n", hba->clk_gating.is_enabled);
1804  }
1805  
ufshcd_clkgate_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1806  static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
1807  		struct device_attribute *attr, const char *buf, size_t count)
1808  {
1809  	struct ufs_hba *hba = dev_get_drvdata(dev);
1810  	unsigned long flags;
1811  	u32 value;
1812  
1813  	if (kstrtou32(buf, 0, &value))
1814  		return -EINVAL;
1815  
1816  	value = !!value;
1817  	if (value == hba->clk_gating.is_enabled)
1818  		goto out;
1819  
1820  	if (value) {
1821  		ufshcd_release(hba);
1822  	} else {
1823  		spin_lock_irqsave(hba->host->host_lock, flags);
1824  		hba->clk_gating.active_reqs++;
1825  		spin_unlock_irqrestore(hba->host->host_lock, flags);
1826  	}
1827  
1828  	hba->clk_gating.is_enabled = value;
1829  out:
1830  	return count;
1831  }
1832  
ufshcd_init_clk_scaling(struct ufs_hba * hba)1833  static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1834  {
1835  	char wq_name[sizeof("ufs_clkscaling_00")];
1836  
1837  	if (!ufshcd_is_clkscaling_supported(hba))
1838  		return;
1839  
1840  	INIT_WORK(&hba->clk_scaling.suspend_work,
1841  		  ufshcd_clk_scaling_suspend_work);
1842  	INIT_WORK(&hba->clk_scaling.resume_work,
1843  		  ufshcd_clk_scaling_resume_work);
1844  
1845  	snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1846  		 hba->host->host_no);
1847  	hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1848  
1849  	ufshcd_clkscaling_init_sysfs(hba);
1850  }
1851  
ufshcd_exit_clk_scaling(struct ufs_hba * hba)1852  static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1853  {
1854  	if (!ufshcd_is_clkscaling_supported(hba))
1855  		return;
1856  
1857  	destroy_workqueue(hba->clk_scaling.workq);
1858  	ufshcd_devfreq_remove(hba);
1859  }
1860  
ufshcd_init_clk_gating(struct ufs_hba * hba)1861  static void ufshcd_init_clk_gating(struct ufs_hba *hba)
1862  {
1863  	char wq_name[sizeof("ufs_clk_gating_00")];
1864  
1865  	if (!ufshcd_is_clkgating_allowed(hba))
1866  		return;
1867  
1868  	hba->clk_gating.state = CLKS_ON;
1869  
1870  	hba->clk_gating.delay_ms = 150;
1871  	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
1872  	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
1873  
1874  	snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
1875  		 hba->host->host_no);
1876  	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
1877  							   WQ_MEM_RECLAIM);
1878  
1879  	hba->clk_gating.is_enabled = true;
1880  
1881  	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
1882  	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
1883  	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
1884  	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
1885  	hba->clk_gating.delay_attr.attr.mode = 0644;
1886  	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
1887  		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
1888  
1889  	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
1890  	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
1891  	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
1892  	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
1893  	hba->clk_gating.enable_attr.attr.mode = 0644;
1894  	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
1895  		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
1896  }
1897  
ufshcd_exit_clk_gating(struct ufs_hba * hba)1898  static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
1899  {
1900  	if (!ufshcd_is_clkgating_allowed(hba))
1901  		return;
1902  	device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
1903  	device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
1904  	cancel_work_sync(&hba->clk_gating.ungate_work);
1905  	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1906  	destroy_workqueue(hba->clk_gating.clk_gating_workq);
1907  }
1908  
1909  /* Must be called with host lock acquired */
ufshcd_clk_scaling_start_busy(struct ufs_hba * hba)1910  static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
1911  {
1912  	bool queue_resume_work = false;
1913  	ktime_t curr_t = ktime_get();
1914  
1915  	if (!ufshcd_is_clkscaling_supported(hba))
1916  		return;
1917  
1918  	if (!hba->clk_scaling.active_reqs++)
1919  		queue_resume_work = true;
1920  
1921  	if (!hba->clk_scaling.is_allowed || hba->pm_op_in_progress)
1922  		return;
1923  
1924  	if (queue_resume_work)
1925  		queue_work(hba->clk_scaling.workq,
1926  			   &hba->clk_scaling.resume_work);
1927  
1928  	if (!hba->clk_scaling.window_start_t) {
1929  		hba->clk_scaling.window_start_t = curr_t;
1930  		hba->clk_scaling.tot_busy_t = 0;
1931  		hba->clk_scaling.is_busy_started = false;
1932  	}
1933  
1934  	if (!hba->clk_scaling.is_busy_started) {
1935  		hba->clk_scaling.busy_start_t = curr_t;
1936  		hba->clk_scaling.is_busy_started = true;
1937  	}
1938  }
1939  
ufshcd_clk_scaling_update_busy(struct ufs_hba * hba)1940  static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
1941  {
1942  	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1943  
1944  	if (!ufshcd_is_clkscaling_supported(hba))
1945  		return;
1946  
1947  	if (!hba->outstanding_reqs && scaling->is_busy_started) {
1948  		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
1949  					scaling->busy_start_t));
1950  		scaling->busy_start_t = 0;
1951  		scaling->is_busy_started = false;
1952  	}
1953  }
1954  /**
1955   * ufshcd_send_command - Send SCSI or device management commands
1956   * @hba: per adapter instance
1957   * @task_tag: Task tag of the command
1958   */
1959  static inline
ufshcd_send_command(struct ufs_hba * hba,unsigned int task_tag)1960  void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag)
1961  {
1962  	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
1963  
1964  	lrbp->issue_time_stamp = ktime_get();
1965  	lrbp->compl_time_stamp = ktime_set(0, 0);
1966  	ufshcd_vops_setup_xfer_req(hba, task_tag, (lrbp->cmd ? true : false));
1967  	ufshcd_add_command_trace(hba, task_tag, "send");
1968  	ufshcd_clk_scaling_start_busy(hba);
1969  	__set_bit(task_tag, &hba->outstanding_reqs);
1970  	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TRANSFER_REQ_DOOR_BELL);
1971  	/* Make sure that doorbell is committed immediately */
1972  	wmb();
1973  }
1974  
1975  /**
1976   * ufshcd_copy_sense_data - Copy sense data in case of check condition
1977   * @lrbp: pointer to local reference block
1978   */
ufshcd_copy_sense_data(struct ufshcd_lrb * lrbp)1979  static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
1980  {
1981  	int len;
1982  	if (lrbp->sense_buffer &&
1983  	    ufshcd_get_rsp_upiu_data_seg_len(lrbp->ucd_rsp_ptr)) {
1984  		int len_to_copy;
1985  
1986  		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
1987  		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
1988  
1989  		memcpy(lrbp->sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
1990  		       len_to_copy);
1991  	}
1992  }
1993  
1994  /**
1995   * ufshcd_copy_query_response() - Copy the Query Response and the data
1996   * descriptor
1997   * @hba: per adapter instance
1998   * @lrbp: pointer to local reference block
1999   */
2000  static
ufshcd_copy_query_response(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2001  int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2002  {
2003  	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2004  
2005  	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2006  
2007  	/* Get the descriptor */
2008  	if (hba->dev_cmd.query.descriptor &&
2009  	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2010  		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2011  				GENERAL_UPIU_REQUEST_SIZE;
2012  		u16 resp_len;
2013  		u16 buf_len;
2014  
2015  		/* data segment length */
2016  		resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) &
2017  						MASK_QUERY_DATA_SEG_LEN;
2018  		buf_len = be16_to_cpu(
2019  				hba->dev_cmd.query.request.upiu_req.length);
2020  		if (likely(buf_len >= resp_len)) {
2021  			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2022  		} else {
2023  			dev_warn(hba->dev,
2024  				 "%s: rsp size %d is bigger than buffer size %d",
2025  				 __func__, resp_len, buf_len);
2026  			return -EINVAL;
2027  		}
2028  	}
2029  
2030  	return 0;
2031  }
2032  
2033  /**
2034   * ufshcd_hba_capabilities - Read controller capabilities
2035   * @hba: per adapter instance
2036   *
2037   * Return: 0 on success, negative on error.
2038   */
ufshcd_hba_capabilities(struct ufs_hba * hba)2039  static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2040  {
2041  	int err;
2042  
2043  	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2044  
2045  	/* nutrs and nutmrs are 0 based values */
2046  	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
2047  	hba->nutmrs =
2048  	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2049  
2050  	/* Read crypto capabilities */
2051  	err = ufshcd_hba_init_crypto_capabilities(hba);
2052  	if (err)
2053  		dev_err(hba->dev, "crypto setup failed\n");
2054  
2055  	return err;
2056  }
2057  
2058  /**
2059   * ufshcd_ready_for_uic_cmd - Check if controller is ready
2060   *                            to accept UIC commands
2061   * @hba: per adapter instance
2062   * Return true on success, else false
2063   */
ufshcd_ready_for_uic_cmd(struct ufs_hba * hba)2064  static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2065  {
2066  	if (ufshcd_readl(hba, REG_CONTROLLER_STATUS) & UIC_COMMAND_READY)
2067  		return true;
2068  	else
2069  		return false;
2070  }
2071  
2072  /**
2073   * ufshcd_get_upmcrs - Get the power mode change request status
2074   * @hba: Pointer to adapter instance
2075   *
2076   * This function gets the UPMCRS field of HCS register
2077   * Returns value of UPMCRS field
2078   */
ufshcd_get_upmcrs(struct ufs_hba * hba)2079  static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2080  {
2081  	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2082  }
2083  
2084  /**
2085   * ufshcd_dispatch_uic_cmd - Dispatch UIC commands to unipro layers
2086   * @hba: per adapter instance
2087   * @uic_cmd: UIC command
2088   *
2089   * Mutex must be held.
2090   */
2091  static inline void
ufshcd_dispatch_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2092  ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2093  {
2094  	WARN_ON(hba->active_uic_cmd);
2095  
2096  	hba->active_uic_cmd = uic_cmd;
2097  
2098  	/* Write Args */
2099  	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2100  	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2101  	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2102  
2103  	ufshcd_add_uic_command_trace(hba, uic_cmd, "send");
2104  
2105  	/* Write UIC Cmd */
2106  	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2107  		      REG_UIC_COMMAND);
2108  }
2109  
2110  /**
2111   * ufshcd_wait_for_uic_cmd - Wait complectioin of UIC command
2112   * @hba: per adapter instance
2113   * @uic_cmd: UIC command
2114   *
2115   * Must be called with mutex held.
2116   * Returns 0 only if success.
2117   */
2118  static int
ufshcd_wait_for_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2119  ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2120  {
2121  	int ret;
2122  	unsigned long flags;
2123  
2124  	if (wait_for_completion_timeout(&uic_cmd->done,
2125  					msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
2126  		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2127  	} else {
2128  		ret = -ETIMEDOUT;
2129  		dev_err(hba->dev,
2130  			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2131  			uic_cmd->command, uic_cmd->argument3);
2132  
2133  		if (!uic_cmd->cmd_active) {
2134  			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2135  				__func__);
2136  			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2137  		}
2138  	}
2139  
2140  	spin_lock_irqsave(hba->host->host_lock, flags);
2141  	hba->active_uic_cmd = NULL;
2142  	spin_unlock_irqrestore(hba->host->host_lock, flags);
2143  
2144  	return ret;
2145  }
2146  
2147  /**
2148   * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2149   * @hba: per adapter instance
2150   * @uic_cmd: UIC command
2151   * @completion: initialize the completion only if this is set to true
2152   *
2153   * Identical to ufshcd_send_uic_cmd() expect mutex. Must be called
2154   * with mutex held and host_lock locked.
2155   * Returns 0 only if success.
2156   */
2157  static int
__ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd,bool completion)2158  __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
2159  		      bool completion)
2160  {
2161  	if (!ufshcd_ready_for_uic_cmd(hba)) {
2162  		dev_err(hba->dev,
2163  			"Controller not ready to accept UIC commands\n");
2164  		return -EIO;
2165  	}
2166  
2167  	if (completion)
2168  		init_completion(&uic_cmd->done);
2169  
2170  	uic_cmd->cmd_active = 1;
2171  	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2172  
2173  	return 0;
2174  }
2175  
2176  /**
2177   * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2178   * @hba: per adapter instance
2179   * @uic_cmd: UIC command
2180   *
2181   * Returns 0 only if success.
2182   */
ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2183  int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2184  {
2185  	int ret;
2186  	unsigned long flags;
2187  
2188  	ufshcd_hold(hba, false);
2189  	mutex_lock(&hba->uic_cmd_mutex);
2190  	ufshcd_add_delay_before_dme_cmd(hba);
2191  
2192  	spin_lock_irqsave(hba->host->host_lock, flags);
2193  	ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
2194  	spin_unlock_irqrestore(hba->host->host_lock, flags);
2195  	if (!ret)
2196  		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2197  
2198  	mutex_unlock(&hba->uic_cmd_mutex);
2199  
2200  	ufshcd_release(hba);
2201  	return ret;
2202  }
2203  
2204  /**
2205   * ufshcd_map_sg - Map scatter-gather list to prdt
2206   * @hba: per adapter instance
2207   * @lrbp: pointer to local reference block
2208   *
2209   * Returns 0 in case of success, non-zero value in case of failure
2210   */
ufshcd_map_sg(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2211  static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2212  {
2213  	struct ufshcd_sg_entry *prd_table;
2214  	struct scatterlist *sg;
2215  	struct scsi_cmnd *cmd;
2216  	int sg_segments;
2217  	int i;
2218  
2219  	cmd = lrbp->cmd;
2220  	sg_segments = scsi_dma_map(cmd);
2221  	if (sg_segments < 0)
2222  		return sg_segments;
2223  
2224  	if (sg_segments) {
2225  
2226  		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2227  			lrbp->utr_descriptor_ptr->prd_table_length =
2228  				cpu_to_le16((sg_segments *
2229  					sizeof(struct ufshcd_sg_entry)));
2230  		else
2231  			lrbp->utr_descriptor_ptr->prd_table_length =
2232  				cpu_to_le16((u16) (sg_segments));
2233  
2234  		prd_table = (struct ufshcd_sg_entry *)lrbp->ucd_prdt_ptr;
2235  
2236  		scsi_for_each_sg(cmd, sg, sg_segments, i) {
2237  			prd_table[i].size  =
2238  				cpu_to_le32(((u32) sg_dma_len(sg))-1);
2239  			prd_table[i].base_addr =
2240  				cpu_to_le32(lower_32_bits(sg->dma_address));
2241  			prd_table[i].upper_addr =
2242  				cpu_to_le32(upper_32_bits(sg->dma_address));
2243  			prd_table[i].reserved = 0;
2244  		}
2245  	} else {
2246  		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2247  	}
2248  
2249  	return 0;
2250  }
2251  
2252  /**
2253   * ufshcd_enable_intr - enable interrupts
2254   * @hba: per adapter instance
2255   * @intrs: interrupt bits
2256   */
ufshcd_enable_intr(struct ufs_hba * hba,u32 intrs)2257  static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2258  {
2259  	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2260  
2261  	if (hba->ufs_version == UFSHCI_VERSION_10) {
2262  		u32 rw;
2263  		rw = set & INTERRUPT_MASK_RW_VER_10;
2264  		set = rw | ((set ^ intrs) & intrs);
2265  	} else {
2266  		set |= intrs;
2267  	}
2268  
2269  	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2270  }
2271  
2272  /**
2273   * ufshcd_disable_intr - disable interrupts
2274   * @hba: per adapter instance
2275   * @intrs: interrupt bits
2276   */
ufshcd_disable_intr(struct ufs_hba * hba,u32 intrs)2277  static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2278  {
2279  	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2280  
2281  	if (hba->ufs_version == UFSHCI_VERSION_10) {
2282  		u32 rw;
2283  		rw = (set & INTERRUPT_MASK_RW_VER_10) &
2284  			~(intrs & INTERRUPT_MASK_RW_VER_10);
2285  		set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10);
2286  
2287  	} else {
2288  		set &= ~intrs;
2289  	}
2290  
2291  	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2292  }
2293  
2294  /**
2295   * ufshcd_prepare_req_desc_hdr() - Fills the requests header
2296   * descriptor according to request
2297   * @lrbp: pointer to local reference block
2298   * @upiu_flags: flags required in the header
2299   * @cmd_dir: requests data direction
2300   */
ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb * lrbp,u8 * upiu_flags,enum dma_data_direction cmd_dir)2301  static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp,
2302  			u8 *upiu_flags, enum dma_data_direction cmd_dir)
2303  {
2304  	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2305  	u32 data_direction;
2306  	u32 dword_0;
2307  	u32 dword_1 = 0;
2308  	u32 dword_3 = 0;
2309  
2310  	if (cmd_dir == DMA_FROM_DEVICE) {
2311  		data_direction = UTP_DEVICE_TO_HOST;
2312  		*upiu_flags = UPIU_CMD_FLAGS_READ;
2313  	} else if (cmd_dir == DMA_TO_DEVICE) {
2314  		data_direction = UTP_HOST_TO_DEVICE;
2315  		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2316  	} else {
2317  		data_direction = UTP_NO_DATA_TRANSFER;
2318  		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2319  	}
2320  
2321  	dword_0 = data_direction | (lrbp->command_type
2322  				<< UPIU_COMMAND_TYPE_OFFSET);
2323  	if (lrbp->intr_cmd)
2324  		dword_0 |= UTP_REQ_DESC_INT_CMD;
2325  
2326  	/* Prepare crypto related dwords */
2327  	ufshcd_prepare_req_desc_hdr_crypto(lrbp, &dword_0, &dword_1, &dword_3);
2328  
2329  	/* Transfer request descriptor header fields */
2330  	req_desc->header.dword_0 = cpu_to_le32(dword_0);
2331  	req_desc->header.dword_1 = cpu_to_le32(dword_1);
2332  	/*
2333  	 * assigning invalid value for command status. Controller
2334  	 * updates OCS on command completion, with the command
2335  	 * status
2336  	 */
2337  	req_desc->header.dword_2 =
2338  		cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
2339  	req_desc->header.dword_3 = cpu_to_le32(dword_3);
2340  
2341  	req_desc->prd_table_length = 0;
2342  }
2343  
2344  /**
2345   * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2346   * for scsi commands
2347   * @lrbp: local reference block pointer
2348   * @upiu_flags: flags
2349   */
2350  static
ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb * lrbp,u8 upiu_flags)2351  void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2352  {
2353  	struct scsi_cmnd *cmd = lrbp->cmd;
2354  	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2355  	unsigned short cdb_len;
2356  
2357  	/* command descriptor fields */
2358  	ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
2359  				UPIU_TRANSACTION_COMMAND, upiu_flags,
2360  				lrbp->lun, lrbp->task_tag);
2361  	ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
2362  				UPIU_COMMAND_SET_TYPE_SCSI, 0, 0, 0);
2363  
2364  	/* Total EHS length and Data segment length will be zero */
2365  	ucd_req_ptr->header.dword_2 = 0;
2366  
2367  	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2368  
2369  	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2370  	memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2371  	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2372  
2373  	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2374  }
2375  
2376  /**
2377   * ufshcd_prepare_utp_query_req_upiu() - fills the utp_transfer_req_desc,
2378   * for query requsts
2379   * @hba: UFS hba
2380   * @lrbp: local reference block pointer
2381   * @upiu_flags: flags
2382   */
ufshcd_prepare_utp_query_req_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,u8 upiu_flags)2383  static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2384  				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2385  {
2386  	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2387  	struct ufs_query *query = &hba->dev_cmd.query;
2388  	u16 len = be16_to_cpu(query->request.upiu_req.length);
2389  
2390  	/* Query request header */
2391  	ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
2392  			UPIU_TRANSACTION_QUERY_REQ, upiu_flags,
2393  			lrbp->lun, lrbp->task_tag);
2394  	ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
2395  			0, query->request.query_func, 0, 0);
2396  
2397  	/* Data segment length only need for WRITE_DESC */
2398  	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2399  		ucd_req_ptr->header.dword_2 =
2400  			UPIU_HEADER_DWORD(0, 0, (len >> 8), (u8)len);
2401  	else
2402  		ucd_req_ptr->header.dword_2 = 0;
2403  
2404  	/* Copy the Query Request buffer as is */
2405  	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2406  			QUERY_OSF_SIZE);
2407  
2408  	/* Copy the Descriptor */
2409  	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2410  		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2411  
2412  	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2413  }
2414  
ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb * lrbp)2415  static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2416  {
2417  	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2418  
2419  	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2420  
2421  	/* command descriptor fields */
2422  	ucd_req_ptr->header.dword_0 =
2423  		UPIU_HEADER_DWORD(
2424  			UPIU_TRANSACTION_NOP_OUT, 0, 0, lrbp->task_tag);
2425  	/* clear rest of the fields of basic header */
2426  	ucd_req_ptr->header.dword_1 = 0;
2427  	ucd_req_ptr->header.dword_2 = 0;
2428  
2429  	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2430  }
2431  
2432  /**
2433   * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2434   *			     for Device Management Purposes
2435   * @hba: per adapter instance
2436   * @lrbp: pointer to local reference block
2437   */
ufshcd_compose_devman_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2438  static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2439  				      struct ufshcd_lrb *lrbp)
2440  {
2441  	u8 upiu_flags;
2442  	int ret = 0;
2443  
2444  	if ((hba->ufs_version == UFSHCI_VERSION_10) ||
2445  	    (hba->ufs_version == UFSHCI_VERSION_11))
2446  		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
2447  	else
2448  		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2449  
2450  	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE);
2451  	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2452  		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2453  	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2454  		ufshcd_prepare_utp_nop_upiu(lrbp);
2455  	else
2456  		ret = -EINVAL;
2457  
2458  	return ret;
2459  }
2460  
2461  /**
2462   * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2463   *			   for SCSI Purposes
2464   * @hba: per adapter instance
2465   * @lrbp: pointer to local reference block
2466   */
ufshcd_comp_scsi_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2467  static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2468  {
2469  	u8 upiu_flags;
2470  	int ret = 0;
2471  
2472  	if ((hba->ufs_version == UFSHCI_VERSION_10) ||
2473  	    (hba->ufs_version == UFSHCI_VERSION_11))
2474  		lrbp->command_type = UTP_CMD_TYPE_SCSI;
2475  	else
2476  		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2477  
2478  	if (likely(lrbp->cmd)) {
2479  		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags,
2480  						lrbp->cmd->sc_data_direction);
2481  		ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2482  	} else {
2483  		ret = -EINVAL;
2484  	}
2485  
2486  	return ret;
2487  }
2488  
2489  /**
2490   * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2491   * @upiu_wlun_id: UPIU W-LUN id
2492   *
2493   * Returns SCSI W-LUN id
2494   */
ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)2495  static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2496  {
2497  	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2498  }
2499  
ufshcd_init_lrb(struct ufs_hba * hba,struct ufshcd_lrb * lrb,int i)2500  static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2501  {
2502  	struct utp_transfer_cmd_desc *cmd_descp = hba->ucdl_base_addr;
2503  	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2504  	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2505  		i * sizeof(struct utp_transfer_cmd_desc);
2506  	u16 response_offset = offsetof(struct utp_transfer_cmd_desc,
2507  				       response_upiu);
2508  	u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table);
2509  
2510  	lrb->utr_descriptor_ptr = utrdlp + i;
2511  	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2512  		i * sizeof(struct utp_transfer_req_desc);
2513  	lrb->ucd_req_ptr = (struct utp_upiu_req *)(cmd_descp + i);
2514  	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2515  	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp[i].response_upiu;
2516  	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2517  	lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp[i].prd_table;
2518  	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2519  }
2520  
2521  /**
2522   * ufshcd_queuecommand - main entry point for SCSI requests
2523   * @host: SCSI host pointer
2524   * @cmd: command from SCSI Midlayer
2525   *
2526   * Returns 0 for success, non-zero in case of failure
2527   */
ufshcd_queuecommand(struct Scsi_Host * host,struct scsi_cmnd * cmd)2528  static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2529  {
2530  	struct ufshcd_lrb *lrbp;
2531  	struct ufs_hba *hba;
2532  	unsigned long flags;
2533  	int tag;
2534  	int err = 0;
2535  
2536  	hba = shost_priv(host);
2537  
2538  	tag = cmd->request->tag;
2539  	if (!ufshcd_valid_tag(hba, tag)) {
2540  		dev_err(hba->dev,
2541  			"%s: invalid command tag %d: cmd=0x%p, cmd->request=0x%p",
2542  			__func__, tag, cmd, cmd->request);
2543  		BUG();
2544  	}
2545  
2546  	if (!down_read_trylock(&hba->clk_scaling_lock))
2547  		return SCSI_MLQUEUE_HOST_BUSY;
2548  
2549  	hba->req_abort_count = 0;
2550  
2551  	err = ufshcd_hold(hba, true);
2552  	if (err) {
2553  		err = SCSI_MLQUEUE_HOST_BUSY;
2554  		goto out;
2555  	}
2556  	WARN_ON(ufshcd_is_clkgating_allowed(hba) &&
2557  		(hba->clk_gating.state != CLKS_ON));
2558  
2559  	lrbp = &hba->lrb[tag];
2560  
2561  	WARN_ON(lrbp->cmd);
2562  	lrbp->cmd = cmd;
2563  	lrbp->sense_bufflen = UFS_SENSE_SIZE;
2564  	lrbp->sense_buffer = cmd->sense_buffer;
2565  	lrbp->task_tag = tag;
2566  	lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
2567  	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba) ? true : false;
2568  
2569  	ufshcd_prepare_lrbp_crypto(cmd->request, lrbp);
2570  
2571  	lrbp->req_abort_skip = false;
2572  
2573  	ufshcd_comp_scsi_upiu(hba, lrbp);
2574  
2575  	err = ufshcd_map_sg(hba, lrbp);
2576  	if (err) {
2577  		lrbp->cmd = NULL;
2578  		ufshcd_release(hba);
2579  		goto out;
2580  	}
2581  	/* Make sure descriptors are ready before ringing the doorbell */
2582  	wmb();
2583  
2584  	spin_lock_irqsave(hba->host->host_lock, flags);
2585  	switch (hba->ufshcd_state) {
2586  	case UFSHCD_STATE_OPERATIONAL:
2587  	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2588  		break;
2589  	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2590  		/*
2591  		 * pm_runtime_get_sync() is used at error handling preparation
2592  		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2593  		 * PM ops, it can never be finished if we let SCSI layer keep
2594  		 * retrying it, which gets err handler stuck forever. Neither
2595  		 * can we let the scsi cmd pass through, because UFS is in bad
2596  		 * state, the scsi cmd may eventually time out, which will get
2597  		 * err handler blocked for too long. So, just fail the scsi cmd
2598  		 * sent from PM ops, err handler can recover PM error anyways.
2599  		 */
2600  		if (hba->pm_op_in_progress) {
2601  			hba->force_reset = true;
2602  			set_host_byte(cmd, DID_BAD_TARGET);
2603  			goto out_compl_cmd;
2604  		}
2605  		fallthrough;
2606  	case UFSHCD_STATE_RESET:
2607  		err = SCSI_MLQUEUE_HOST_BUSY;
2608  		goto out_compl_cmd;
2609  	case UFSHCD_STATE_ERROR:
2610  		set_host_byte(cmd, DID_ERROR);
2611  		goto out_compl_cmd;
2612  	default:
2613  		dev_WARN_ONCE(hba->dev, 1, "%s: invalid state %d\n",
2614  				__func__, hba->ufshcd_state);
2615  		set_host_byte(cmd, DID_BAD_TARGET);
2616  		goto out_compl_cmd;
2617  	}
2618  	ufshcd_send_command(hba, tag);
2619  	spin_unlock_irqrestore(hba->host->host_lock, flags);
2620  	goto out;
2621  
2622  out_compl_cmd:
2623  	scsi_dma_unmap(lrbp->cmd);
2624  	lrbp->cmd = NULL;
2625  	spin_unlock_irqrestore(hba->host->host_lock, flags);
2626  	ufshcd_release(hba);
2627  	if (!err)
2628  		cmd->scsi_done(cmd);
2629  out:
2630  	up_read(&hba->clk_scaling_lock);
2631  	return err;
2632  }
2633  
ufshcd_compose_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,enum dev_cmd_type cmd_type,int tag)2634  static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
2635  		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
2636  {
2637  	lrbp->cmd = NULL;
2638  	lrbp->sense_bufflen = 0;
2639  	lrbp->sense_buffer = NULL;
2640  	lrbp->task_tag = tag;
2641  	lrbp->lun = 0; /* device management cmd is not specific to any LUN */
2642  	lrbp->intr_cmd = true; /* No interrupt aggregation */
2643  	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
2644  	hba->dev_cmd.type = cmd_type;
2645  
2646  	return ufshcd_compose_devman_upiu(hba, lrbp);
2647  }
2648  
2649  static int
ufshcd_clear_cmd(struct ufs_hba * hba,int tag)2650  ufshcd_clear_cmd(struct ufs_hba *hba, int tag)
2651  {
2652  	int err = 0;
2653  	unsigned long flags;
2654  	u32 mask = 1 << tag;
2655  
2656  	/* clear outstanding transaction before retry */
2657  	spin_lock_irqsave(hba->host->host_lock, flags);
2658  	ufshcd_utrl_clear(hba, tag);
2659  	spin_unlock_irqrestore(hba->host->host_lock, flags);
2660  
2661  	/*
2662  	 * wait for for h/w to clear corresponding bit in door-bell.
2663  	 * max. wait is 1 sec.
2664  	 */
2665  	err = ufshcd_wait_for_register(hba,
2666  			REG_UTP_TRANSFER_REQ_DOOR_BELL,
2667  			mask, ~mask, 1000, 1000);
2668  
2669  	return err;
2670  }
2671  
2672  static int
ufshcd_check_query_response(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2673  ufshcd_check_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2674  {
2675  	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2676  
2677  	/* Get the UPIU response */
2678  	query_res->response = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr) >>
2679  				UPIU_RSP_CODE_OFFSET;
2680  	return query_res->response;
2681  }
2682  
2683  /**
2684   * ufshcd_dev_cmd_completion() - handles device management command responses
2685   * @hba: per adapter instance
2686   * @lrbp: pointer to local reference block
2687   */
2688  static int
ufshcd_dev_cmd_completion(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2689  ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2690  {
2691  	int resp;
2692  	int err = 0;
2693  
2694  	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
2695  	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
2696  
2697  	switch (resp) {
2698  	case UPIU_TRANSACTION_NOP_IN:
2699  		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
2700  			err = -EINVAL;
2701  			dev_err(hba->dev, "%s: unexpected response %x\n",
2702  					__func__, resp);
2703  		}
2704  		break;
2705  	case UPIU_TRANSACTION_QUERY_RSP:
2706  		err = ufshcd_check_query_response(hba, lrbp);
2707  		if (!err)
2708  			err = ufshcd_copy_query_response(hba, lrbp);
2709  		break;
2710  	case UPIU_TRANSACTION_REJECT_UPIU:
2711  		/* TODO: handle Reject UPIU Response */
2712  		err = -EPERM;
2713  		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
2714  				__func__);
2715  		break;
2716  	default:
2717  		err = -EINVAL;
2718  		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
2719  				__func__, resp);
2720  		break;
2721  	}
2722  
2723  	return err;
2724  }
2725  
ufshcd_wait_for_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int max_timeout)2726  static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
2727  		struct ufshcd_lrb *lrbp, int max_timeout)
2728  {
2729  	int err = 0;
2730  	unsigned long time_left;
2731  	unsigned long flags;
2732  
2733  	time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
2734  			msecs_to_jiffies(max_timeout));
2735  
2736  	/* Make sure descriptors are ready before ringing the doorbell */
2737  	wmb();
2738  	spin_lock_irqsave(hba->host->host_lock, flags);
2739  	hba->dev_cmd.complete = NULL;
2740  	if (likely(time_left)) {
2741  		err = ufshcd_get_tr_ocs(lrbp);
2742  		if (!err)
2743  			err = ufshcd_dev_cmd_completion(hba, lrbp);
2744  	}
2745  	spin_unlock_irqrestore(hba->host->host_lock, flags);
2746  
2747  	if (!time_left) {
2748  		err = -ETIMEDOUT;
2749  		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
2750  			__func__, lrbp->task_tag);
2751  		if (!ufshcd_clear_cmd(hba, lrbp->task_tag))
2752  			/* successfully cleared the command, retry if needed */
2753  			err = -EAGAIN;
2754  		/*
2755  		 * in case of an error, after clearing the doorbell,
2756  		 * we also need to clear the outstanding_request
2757  		 * field in hba
2758  		 */
2759  		ufshcd_outstanding_req_clear(hba, lrbp->task_tag);
2760  	}
2761  
2762  	return err;
2763  }
2764  
2765  /**
2766   * ufshcd_exec_dev_cmd - API for sending device management requests
2767   * @hba: UFS hba
2768   * @cmd_type: specifies the type (NOP, Query...)
2769   * @timeout: time in seconds
2770   *
2771   * NOTE: Since there is only one available tag for device management commands,
2772   * it is expected you hold the hba->dev_cmd.lock mutex.
2773   */
ufshcd_exec_dev_cmd(struct ufs_hba * hba,enum dev_cmd_type cmd_type,int timeout)2774  static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
2775  		enum dev_cmd_type cmd_type, int timeout)
2776  {
2777  	struct request_queue *q = hba->cmd_queue;
2778  	struct request *req;
2779  	struct ufshcd_lrb *lrbp;
2780  	int err;
2781  	int tag;
2782  	struct completion wait;
2783  	unsigned long flags;
2784  
2785  	down_read(&hba->clk_scaling_lock);
2786  
2787  	/*
2788  	 * Get free slot, sleep if slots are unavailable.
2789  	 * Even though we use wait_event() which sleeps indefinitely,
2790  	 * the maximum wait time is bounded by SCSI request timeout.
2791  	 */
2792  	req = blk_get_request(q, REQ_OP_DRV_OUT, 0);
2793  	if (IS_ERR(req)) {
2794  		err = PTR_ERR(req);
2795  		goto out_unlock;
2796  	}
2797  	tag = req->tag;
2798  	WARN_ON_ONCE(!ufshcd_valid_tag(hba, tag));
2799  
2800  	init_completion(&wait);
2801  	lrbp = &hba->lrb[tag];
2802  	WARN_ON(lrbp->cmd);
2803  	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
2804  	if (unlikely(err))
2805  		goto out_put_tag;
2806  
2807  	hba->dev_cmd.complete = &wait;
2808  
2809  	ufshcd_add_query_upiu_trace(hba, tag, "query_send");
2810  	/* Make sure descriptors are ready before ringing the doorbell */
2811  	wmb();
2812  	spin_lock_irqsave(hba->host->host_lock, flags);
2813  	ufshcd_send_command(hba, tag);
2814  	spin_unlock_irqrestore(hba->host->host_lock, flags);
2815  
2816  	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
2817  
2818  	ufshcd_add_query_upiu_trace(hba, tag,
2819  			err ? "query_complete_err" : "query_complete");
2820  
2821  out_put_tag:
2822  	blk_put_request(req);
2823  out_unlock:
2824  	up_read(&hba->clk_scaling_lock);
2825  	return err;
2826  }
2827  
2828  /**
2829   * ufshcd_init_query() - init the query response and request parameters
2830   * @hba: per-adapter instance
2831   * @request: address of the request pointer to be initialized
2832   * @response: address of the response pointer to be initialized
2833   * @opcode: operation to perform
2834   * @idn: flag idn to access
2835   * @index: LU number to access
2836   * @selector: query/flag/descriptor further identification
2837   */
ufshcd_init_query(struct ufs_hba * hba,struct ufs_query_req ** request,struct ufs_query_res ** response,enum query_opcode opcode,u8 idn,u8 index,u8 selector)2838  static inline void ufshcd_init_query(struct ufs_hba *hba,
2839  		struct ufs_query_req **request, struct ufs_query_res **response,
2840  		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
2841  {
2842  	*request = &hba->dev_cmd.query.request;
2843  	*response = &hba->dev_cmd.query.response;
2844  	memset(*request, 0, sizeof(struct ufs_query_req));
2845  	memset(*response, 0, sizeof(struct ufs_query_res));
2846  	(*request)->upiu_req.opcode = opcode;
2847  	(*request)->upiu_req.idn = idn;
2848  	(*request)->upiu_req.index = index;
2849  	(*request)->upiu_req.selector = selector;
2850  }
2851  
ufshcd_query_flag_retry(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)2852  static int ufshcd_query_flag_retry(struct ufs_hba *hba,
2853  	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
2854  {
2855  	int ret;
2856  	int retries;
2857  
2858  	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
2859  		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
2860  		if (ret)
2861  			dev_dbg(hba->dev,
2862  				"%s: failed with error %d, retries %d\n",
2863  				__func__, ret, retries);
2864  		else
2865  			break;
2866  	}
2867  
2868  	if (ret)
2869  		dev_err(hba->dev,
2870  			"%s: query attribute, opcode %d, idn %d, failed with error %d after %d retires\n",
2871  			__func__, opcode, idn, ret, retries);
2872  	return ret;
2873  }
2874  
2875  /**
2876   * ufshcd_query_flag() - API function for sending flag query requests
2877   * @hba: per-adapter instance
2878   * @opcode: flag query to perform
2879   * @idn: flag idn to access
2880   * @index: flag index to access
2881   * @flag_res: the flag value after the query request completes
2882   *
2883   * Returns 0 for success, non-zero in case of failure
2884   */
ufshcd_query_flag(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)2885  int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
2886  			enum flag_idn idn, u8 index, bool *flag_res)
2887  {
2888  	struct ufs_query_req *request = NULL;
2889  	struct ufs_query_res *response = NULL;
2890  	int err, selector = 0;
2891  	int timeout = QUERY_REQ_TIMEOUT;
2892  
2893  	BUG_ON(!hba);
2894  
2895  	ufshcd_hold(hba, false);
2896  	mutex_lock(&hba->dev_cmd.lock);
2897  	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
2898  			selector);
2899  
2900  	switch (opcode) {
2901  	case UPIU_QUERY_OPCODE_SET_FLAG:
2902  	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
2903  	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
2904  		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
2905  		break;
2906  	case UPIU_QUERY_OPCODE_READ_FLAG:
2907  		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
2908  		if (!flag_res) {
2909  			/* No dummy reads */
2910  			dev_err(hba->dev, "%s: Invalid argument for read request\n",
2911  					__func__);
2912  			err = -EINVAL;
2913  			goto out_unlock;
2914  		}
2915  		break;
2916  	default:
2917  		dev_err(hba->dev,
2918  			"%s: Expected query flag opcode but got = %d\n",
2919  			__func__, opcode);
2920  		err = -EINVAL;
2921  		goto out_unlock;
2922  	}
2923  
2924  	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
2925  
2926  	if (err) {
2927  		dev_err(hba->dev,
2928  			"%s: Sending flag query for idn %d failed, err = %d\n",
2929  			__func__, idn, err);
2930  		goto out_unlock;
2931  	}
2932  
2933  	if (flag_res)
2934  		*flag_res = (be32_to_cpu(response->upiu_res.value) &
2935  				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
2936  
2937  out_unlock:
2938  	mutex_unlock(&hba->dev_cmd.lock);
2939  	ufshcd_release(hba);
2940  	return err;
2941  }
2942  
2943  /**
2944   * ufshcd_query_attr - API function for sending attribute requests
2945   * @hba: per-adapter instance
2946   * @opcode: attribute opcode
2947   * @idn: attribute idn to access
2948   * @index: index field
2949   * @selector: selector field
2950   * @attr_val: the attribute value after the query request completes
2951   *
2952   * Returns 0 for success, non-zero in case of failure
2953  */
ufshcd_query_attr(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)2954  int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
2955  		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
2956  {
2957  	struct ufs_query_req *request = NULL;
2958  	struct ufs_query_res *response = NULL;
2959  	int err;
2960  
2961  	BUG_ON(!hba);
2962  
2963  	ufshcd_hold(hba, false);
2964  	if (!attr_val) {
2965  		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
2966  				__func__, opcode);
2967  		err = -EINVAL;
2968  		goto out;
2969  	}
2970  
2971  	mutex_lock(&hba->dev_cmd.lock);
2972  	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
2973  			selector);
2974  
2975  	switch (opcode) {
2976  	case UPIU_QUERY_OPCODE_WRITE_ATTR:
2977  		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
2978  		request->upiu_req.value = cpu_to_be32(*attr_val);
2979  		break;
2980  	case UPIU_QUERY_OPCODE_READ_ATTR:
2981  		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
2982  		break;
2983  	default:
2984  		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
2985  				__func__, opcode);
2986  		err = -EINVAL;
2987  		goto out_unlock;
2988  	}
2989  
2990  	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
2991  
2992  	if (err) {
2993  		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
2994  				__func__, opcode, idn, index, err);
2995  		goto out_unlock;
2996  	}
2997  
2998  	*attr_val = be32_to_cpu(response->upiu_res.value);
2999  
3000  out_unlock:
3001  	mutex_unlock(&hba->dev_cmd.lock);
3002  out:
3003  	ufshcd_release(hba);
3004  	return err;
3005  }
3006  
3007  /**
3008   * ufshcd_query_attr_retry() - API function for sending query
3009   * attribute with retries
3010   * @hba: per-adapter instance
3011   * @opcode: attribute opcode
3012   * @idn: attribute idn to access
3013   * @index: index field
3014   * @selector: selector field
3015   * @attr_val: the attribute value after the query request
3016   * completes
3017   *
3018   * Returns 0 for success, non-zero in case of failure
3019  */
ufshcd_query_attr_retry(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3020  static int ufshcd_query_attr_retry(struct ufs_hba *hba,
3021  	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3022  	u32 *attr_val)
3023  {
3024  	int ret = 0;
3025  	u32 retries;
3026  
3027  	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3028  		ret = ufshcd_query_attr(hba, opcode, idn, index,
3029  						selector, attr_val);
3030  		if (ret)
3031  			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3032  				__func__, ret, retries);
3033  		else
3034  			break;
3035  	}
3036  
3037  	if (ret)
3038  		dev_err(hba->dev,
3039  			"%s: query attribute, idn %d, failed with error %d after %d retires\n",
3040  			__func__, idn, ret, QUERY_REQ_RETRIES);
3041  	return ret;
3042  }
3043  
__ufshcd_query_descriptor(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3044  static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3045  			enum query_opcode opcode, enum desc_idn idn, u8 index,
3046  			u8 selector, u8 *desc_buf, int *buf_len)
3047  {
3048  	struct ufs_query_req *request = NULL;
3049  	struct ufs_query_res *response = NULL;
3050  	int err;
3051  
3052  	BUG_ON(!hba);
3053  
3054  	ufshcd_hold(hba, false);
3055  	if (!desc_buf) {
3056  		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3057  				__func__, opcode);
3058  		err = -EINVAL;
3059  		goto out;
3060  	}
3061  
3062  	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3063  		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3064  				__func__, *buf_len);
3065  		err = -EINVAL;
3066  		goto out;
3067  	}
3068  
3069  	mutex_lock(&hba->dev_cmd.lock);
3070  	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3071  			selector);
3072  	hba->dev_cmd.query.descriptor = desc_buf;
3073  	request->upiu_req.length = cpu_to_be16(*buf_len);
3074  
3075  	switch (opcode) {
3076  	case UPIU_QUERY_OPCODE_WRITE_DESC:
3077  		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3078  		break;
3079  	case UPIU_QUERY_OPCODE_READ_DESC:
3080  		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3081  		break;
3082  	default:
3083  		dev_err(hba->dev,
3084  				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3085  				__func__, opcode);
3086  		err = -EINVAL;
3087  		goto out_unlock;
3088  	}
3089  
3090  	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3091  
3092  	if (err) {
3093  		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3094  				__func__, opcode, idn, index, err);
3095  		goto out_unlock;
3096  	}
3097  
3098  	*buf_len = be16_to_cpu(response->upiu_res.length);
3099  
3100  out_unlock:
3101  	hba->dev_cmd.query.descriptor = NULL;
3102  	mutex_unlock(&hba->dev_cmd.lock);
3103  out:
3104  	ufshcd_release(hba);
3105  	return err;
3106  }
3107  
3108  /**
3109   * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3110   * @hba: per-adapter instance
3111   * @opcode: attribute opcode
3112   * @idn: attribute idn to access
3113   * @index: index field
3114   * @selector: selector field
3115   * @desc_buf: the buffer that contains the descriptor
3116   * @buf_len: length parameter passed to the device
3117   *
3118   * Returns 0 for success, non-zero in case of failure.
3119   * The buf_len parameter will contain, on return, the length parameter
3120   * received on the response.
3121   */
ufshcd_query_descriptor_retry(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3122  int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3123  				  enum query_opcode opcode,
3124  				  enum desc_idn idn, u8 index,
3125  				  u8 selector,
3126  				  u8 *desc_buf, int *buf_len)
3127  {
3128  	int err;
3129  	int retries;
3130  
3131  	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3132  		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3133  						selector, desc_buf, buf_len);
3134  		if (!err || err == -EINVAL)
3135  			break;
3136  	}
3137  
3138  	return err;
3139  }
3140  
3141  /**
3142   * ufshcd_map_desc_id_to_length - map descriptor IDN to its length
3143   * @hba: Pointer to adapter instance
3144   * @desc_id: descriptor idn value
3145   * @desc_len: mapped desc length (out)
3146   */
ufshcd_map_desc_id_to_length(struct ufs_hba * hba,enum desc_idn desc_id,int * desc_len)3147  void ufshcd_map_desc_id_to_length(struct ufs_hba *hba, enum desc_idn desc_id,
3148  				  int *desc_len)
3149  {
3150  	if (desc_id >= QUERY_DESC_IDN_MAX || desc_id == QUERY_DESC_IDN_RFU_0 ||
3151  	    desc_id == QUERY_DESC_IDN_RFU_1)
3152  		*desc_len = 0;
3153  	else
3154  		*desc_len = hba->desc_size[desc_id];
3155  }
3156  EXPORT_SYMBOL(ufshcd_map_desc_id_to_length);
3157  
ufshcd_update_desc_length(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,unsigned char desc_len)3158  static void ufshcd_update_desc_length(struct ufs_hba *hba,
3159  				      enum desc_idn desc_id, int desc_index,
3160  				      unsigned char desc_len)
3161  {
3162  	if (hba->desc_size[desc_id] == QUERY_DESC_MAX_SIZE &&
3163  	    desc_id != QUERY_DESC_IDN_STRING && desc_index != UFS_RPMB_UNIT)
3164  		/* For UFS 3.1, the normal unit descriptor is 10 bytes larger
3165  		 * than the RPMB unit, however, both descriptors share the same
3166  		 * desc_idn, to cover both unit descriptors with one length, we
3167  		 * choose the normal unit descriptor length by desc_index.
3168  		 */
3169  		hba->desc_size[desc_id] = desc_len;
3170  }
3171  
3172  /**
3173   * ufshcd_read_desc_param - read the specified descriptor parameter
3174   * @hba: Pointer to adapter instance
3175   * @desc_id: descriptor idn value
3176   * @desc_index: descriptor index
3177   * @param_offset: offset of the parameter to read
3178   * @param_read_buf: pointer to buffer where parameter would be read
3179   * @param_size: sizeof(param_read_buf)
3180   *
3181   * Return 0 in case of success, non-zero otherwise
3182   */
ufshcd_read_desc_param(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,u8 param_offset,u8 * param_read_buf,u8 param_size)3183  int ufshcd_read_desc_param(struct ufs_hba *hba,
3184  			   enum desc_idn desc_id,
3185  			   int desc_index,
3186  			   u8 param_offset,
3187  			   u8 *param_read_buf,
3188  			   u8 param_size)
3189  {
3190  	int ret;
3191  	u8 *desc_buf;
3192  	int buff_len;
3193  	bool is_kmalloc = true;
3194  
3195  	/* Safety check */
3196  	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3197  		return -EINVAL;
3198  
3199  	/* Get the length of descriptor */
3200  	ufshcd_map_desc_id_to_length(hba, desc_id, &buff_len);
3201  	if (!buff_len) {
3202  		dev_err(hba->dev, "%s: Failed to get desc length\n", __func__);
3203  		return -EINVAL;
3204  	}
3205  
3206  	if (param_offset >= buff_len) {
3207  		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3208  			__func__, param_offset, desc_id, buff_len);
3209  		return -EINVAL;
3210  	}
3211  
3212  	/* Check whether we need temp memory */
3213  	if (param_offset != 0 || param_size < buff_len) {
3214  		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3215  		if (!desc_buf)
3216  			return -ENOMEM;
3217  	} else {
3218  		desc_buf = param_read_buf;
3219  		is_kmalloc = false;
3220  	}
3221  
3222  	/* Request for full descriptor */
3223  	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3224  					desc_id, desc_index, 0,
3225  					desc_buf, &buff_len);
3226  
3227  	if (ret) {
3228  		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3229  			__func__, desc_id, desc_index, param_offset, ret);
3230  		goto out;
3231  	}
3232  
3233  	/* Sanity check */
3234  	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3235  		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3236  			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3237  		ret = -EINVAL;
3238  		goto out;
3239  	}
3240  
3241  	/* Update descriptor length */
3242  	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3243  	ufshcd_update_desc_length(hba, desc_id, desc_index, buff_len);
3244  
3245  	if (is_kmalloc) {
3246  		/* Make sure we don't copy more data than available */
3247  		if (param_offset + param_size > buff_len)
3248  			param_size = buff_len - param_offset;
3249  		memcpy(param_read_buf, &desc_buf[param_offset], param_size);
3250  	}
3251  out:
3252  	if (is_kmalloc)
3253  		kfree(desc_buf);
3254  	return ret;
3255  }
3256  
3257  /**
3258   * struct uc_string_id - unicode string
3259   *
3260   * @len: size of this descriptor inclusive
3261   * @type: descriptor type
3262   * @uc: unicode string character
3263   */
3264  struct uc_string_id {
3265  	u8 len;
3266  	u8 type;
3267  	wchar_t uc[];
3268  } __packed;
3269  
3270  /* replace non-printable or non-ASCII characters with spaces */
ufshcd_remove_non_printable(u8 ch)3271  static inline char ufshcd_remove_non_printable(u8 ch)
3272  {
3273  	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3274  }
3275  
3276  /**
3277   * ufshcd_read_string_desc - read string descriptor
3278   * @hba: pointer to adapter instance
3279   * @desc_index: descriptor index
3280   * @buf: pointer to buffer where descriptor would be read,
3281   *       the caller should free the memory.
3282   * @ascii: if true convert from unicode to ascii characters
3283   *         null terminated string.
3284   *
3285   * Return:
3286   * *      string size on success.
3287   * *      -ENOMEM: on allocation failure
3288   * *      -EINVAL: on a wrong parameter
3289   */
ufshcd_read_string_desc(struct ufs_hba * hba,u8 desc_index,u8 ** buf,bool ascii)3290  int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3291  			    u8 **buf, bool ascii)
3292  {
3293  	struct uc_string_id *uc_str;
3294  	u8 *str;
3295  	int ret;
3296  
3297  	if (!buf)
3298  		return -EINVAL;
3299  
3300  	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3301  	if (!uc_str)
3302  		return -ENOMEM;
3303  
3304  	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3305  				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3306  	if (ret < 0) {
3307  		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3308  			QUERY_REQ_RETRIES, ret);
3309  		str = NULL;
3310  		goto out;
3311  	}
3312  
3313  	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3314  		dev_dbg(hba->dev, "String Desc is of zero length\n");
3315  		str = NULL;
3316  		ret = 0;
3317  		goto out;
3318  	}
3319  
3320  	if (ascii) {
3321  		ssize_t ascii_len;
3322  		int i;
3323  		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3324  		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3325  		str = kzalloc(ascii_len, GFP_KERNEL);
3326  		if (!str) {
3327  			ret = -ENOMEM;
3328  			goto out;
3329  		}
3330  
3331  		/*
3332  		 * the descriptor contains string in UTF16 format
3333  		 * we need to convert to utf-8 so it can be displayed
3334  		 */
3335  		ret = utf16s_to_utf8s(uc_str->uc,
3336  				      uc_str->len - QUERY_DESC_HDR_SIZE,
3337  				      UTF16_BIG_ENDIAN, str, ascii_len);
3338  
3339  		/* replace non-printable or non-ASCII characters with spaces */
3340  		for (i = 0; i < ret; i++)
3341  			str[i] = ufshcd_remove_non_printable(str[i]);
3342  
3343  		str[ret++] = '\0';
3344  
3345  	} else {
3346  		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3347  		if (!str) {
3348  			ret = -ENOMEM;
3349  			goto out;
3350  		}
3351  		ret = uc_str->len;
3352  	}
3353  out:
3354  	*buf = str;
3355  	kfree(uc_str);
3356  	return ret;
3357  }
3358  
3359  /**
3360   * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3361   * @hba: Pointer to adapter instance
3362   * @lun: lun id
3363   * @param_offset: offset of the parameter to read
3364   * @param_read_buf: pointer to buffer where parameter would be read
3365   * @param_size: sizeof(param_read_buf)
3366   *
3367   * Return 0 in case of success, non-zero otherwise
3368   */
ufshcd_read_unit_desc_param(struct ufs_hba * hba,int lun,enum unit_desc_param param_offset,u8 * param_read_buf,u32 param_size)3369  static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3370  					      int lun,
3371  					      enum unit_desc_param param_offset,
3372  					      u8 *param_read_buf,
3373  					      u32 param_size)
3374  {
3375  	/*
3376  	 * Unit descriptors are only available for general purpose LUs (LUN id
3377  	 * from 0 to 7) and RPMB Well known LU.
3378  	 */
3379  	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3380  		return -EOPNOTSUPP;
3381  
3382  	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3383  				      param_offset, param_read_buf, param_size);
3384  }
3385  
ufshcd_get_ref_clk_gating_wait(struct ufs_hba * hba)3386  static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3387  {
3388  	int err = 0;
3389  	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3390  
3391  	if (hba->dev_info.wspecversion >= 0x300) {
3392  		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3393  				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3394  				&gating_wait);
3395  		if (err)
3396  			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3397  					 err, gating_wait);
3398  
3399  		if (gating_wait == 0) {
3400  			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3401  			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3402  					 gating_wait);
3403  		}
3404  
3405  		hba->dev_info.clk_gating_wait_us = gating_wait;
3406  	}
3407  
3408  	return err;
3409  }
3410  
3411  /**
3412   * ufshcd_memory_alloc - allocate memory for host memory space data structures
3413   * @hba: per adapter instance
3414   *
3415   * 1. Allocate DMA memory for Command Descriptor array
3416   *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3417   * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3418   * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3419   *	(UTMRDL)
3420   * 4. Allocate memory for local reference block(lrb).
3421   *
3422   * Returns 0 for success, non-zero in case of failure
3423   */
ufshcd_memory_alloc(struct ufs_hba * hba)3424  static int ufshcd_memory_alloc(struct ufs_hba *hba)
3425  {
3426  	size_t utmrdl_size, utrdl_size, ucdl_size;
3427  
3428  	/* Allocate memory for UTP command descriptors */
3429  	ucdl_size = (sizeof(struct utp_transfer_cmd_desc) * hba->nutrs);
3430  	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3431  						  ucdl_size,
3432  						  &hba->ucdl_dma_addr,
3433  						  GFP_KERNEL);
3434  
3435  	/*
3436  	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3437  	 * make sure hba->ucdl_dma_addr is aligned to PAGE_SIZE
3438  	 * if hba->ucdl_dma_addr is aligned to PAGE_SIZE, then it will
3439  	 * be aligned to 128 bytes as well
3440  	 */
3441  	if (!hba->ucdl_base_addr ||
3442  	    WARN_ON(hba->ucdl_dma_addr & (PAGE_SIZE - 1))) {
3443  		dev_err(hba->dev,
3444  			"Command Descriptor Memory allocation failed\n");
3445  		goto out;
3446  	}
3447  
3448  	/*
3449  	 * Allocate memory for UTP Transfer descriptors
3450  	 * UFSHCI requires 1024 byte alignment of UTRD
3451  	 */
3452  	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3453  	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3454  						   utrdl_size,
3455  						   &hba->utrdl_dma_addr,
3456  						   GFP_KERNEL);
3457  	if (!hba->utrdl_base_addr ||
3458  	    WARN_ON(hba->utrdl_dma_addr & (PAGE_SIZE - 1))) {
3459  		dev_err(hba->dev,
3460  			"Transfer Descriptor Memory allocation failed\n");
3461  		goto out;
3462  	}
3463  
3464  	/*
3465  	 * Allocate memory for UTP Task Management descriptors
3466  	 * UFSHCI requires 1024 byte alignment of UTMRD
3467  	 */
3468  	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3469  	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3470  						    utmrdl_size,
3471  						    &hba->utmrdl_dma_addr,
3472  						    GFP_KERNEL);
3473  	if (!hba->utmrdl_base_addr ||
3474  	    WARN_ON(hba->utmrdl_dma_addr & (PAGE_SIZE - 1))) {
3475  		dev_err(hba->dev,
3476  		"Task Management Descriptor Memory allocation failed\n");
3477  		goto out;
3478  	}
3479  
3480  	/* Allocate memory for local reference block */
3481  	hba->lrb = devm_kcalloc(hba->dev,
3482  				hba->nutrs, sizeof(struct ufshcd_lrb),
3483  				GFP_KERNEL);
3484  	if (!hba->lrb) {
3485  		dev_err(hba->dev, "LRB Memory allocation failed\n");
3486  		goto out;
3487  	}
3488  	return 0;
3489  out:
3490  	return -ENOMEM;
3491  }
3492  
3493  /**
3494   * ufshcd_host_memory_configure - configure local reference block with
3495   *				memory offsets
3496   * @hba: per adapter instance
3497   *
3498   * Configure Host memory space
3499   * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3500   * address.
3501   * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3502   * and PRDT offset.
3503   * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3504   * into local reference block.
3505   */
ufshcd_host_memory_configure(struct ufs_hba * hba)3506  static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3507  {
3508  	struct utp_transfer_req_desc *utrdlp;
3509  	dma_addr_t cmd_desc_dma_addr;
3510  	dma_addr_t cmd_desc_element_addr;
3511  	u16 response_offset;
3512  	u16 prdt_offset;
3513  	int cmd_desc_size;
3514  	int i;
3515  
3516  	utrdlp = hba->utrdl_base_addr;
3517  
3518  	response_offset =
3519  		offsetof(struct utp_transfer_cmd_desc, response_upiu);
3520  	prdt_offset =
3521  		offsetof(struct utp_transfer_cmd_desc, prd_table);
3522  
3523  	cmd_desc_size = sizeof(struct utp_transfer_cmd_desc);
3524  	cmd_desc_dma_addr = hba->ucdl_dma_addr;
3525  
3526  	for (i = 0; i < hba->nutrs; i++) {
3527  		/* Configure UTRD with command descriptor base address */
3528  		cmd_desc_element_addr =
3529  				(cmd_desc_dma_addr + (cmd_desc_size * i));
3530  		utrdlp[i].command_desc_base_addr_lo =
3531  				cpu_to_le32(lower_32_bits(cmd_desc_element_addr));
3532  		utrdlp[i].command_desc_base_addr_hi =
3533  				cpu_to_le32(upper_32_bits(cmd_desc_element_addr));
3534  
3535  		/* Response upiu and prdt offset should be in double words */
3536  		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3537  			utrdlp[i].response_upiu_offset =
3538  				cpu_to_le16(response_offset);
3539  			utrdlp[i].prd_table_offset =
3540  				cpu_to_le16(prdt_offset);
3541  			utrdlp[i].response_upiu_length =
3542  				cpu_to_le16(ALIGNED_UPIU_SIZE);
3543  		} else {
3544  			utrdlp[i].response_upiu_offset =
3545  				cpu_to_le16(response_offset >> 2);
3546  			utrdlp[i].prd_table_offset =
3547  				cpu_to_le16(prdt_offset >> 2);
3548  			utrdlp[i].response_upiu_length =
3549  				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3550  		}
3551  
3552  		ufshcd_init_lrb(hba, &hba->lrb[i], i);
3553  	}
3554  }
3555  
3556  /**
3557   * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3558   * @hba: per adapter instance
3559   *
3560   * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3561   * in order to initialize the Unipro link startup procedure.
3562   * Once the Unipro links are up, the device connected to the controller
3563   * is detected.
3564   *
3565   * Returns 0 on success, non-zero value on failure
3566   */
ufshcd_dme_link_startup(struct ufs_hba * hba)3567  static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3568  {
3569  	struct uic_command uic_cmd = {0};
3570  	int ret;
3571  
3572  	uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
3573  
3574  	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3575  	if (ret)
3576  		dev_dbg(hba->dev,
3577  			"dme-link-startup: error code %d\n", ret);
3578  	return ret;
3579  }
3580  /**
3581   * ufshcd_dme_reset - UIC command for DME_RESET
3582   * @hba: per adapter instance
3583   *
3584   * DME_RESET command is issued in order to reset UniPro stack.
3585   * This function now deals with cold reset.
3586   *
3587   * Returns 0 on success, non-zero value on failure
3588   */
ufshcd_dme_reset(struct ufs_hba * hba)3589  static int ufshcd_dme_reset(struct ufs_hba *hba)
3590  {
3591  	struct uic_command uic_cmd = {0};
3592  	int ret;
3593  
3594  	uic_cmd.command = UIC_CMD_DME_RESET;
3595  
3596  	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3597  	if (ret)
3598  		dev_err(hba->dev,
3599  			"dme-reset: error code %d\n", ret);
3600  
3601  	return ret;
3602  }
3603  
3604  /**
3605   * ufshcd_dme_enable - UIC command for DME_ENABLE
3606   * @hba: per adapter instance
3607   *
3608   * DME_ENABLE command is issued in order to enable UniPro stack.
3609   *
3610   * Returns 0 on success, non-zero value on failure
3611   */
ufshcd_dme_enable(struct ufs_hba * hba)3612  static int ufshcd_dme_enable(struct ufs_hba *hba)
3613  {
3614  	struct uic_command uic_cmd = {0};
3615  	int ret;
3616  
3617  	uic_cmd.command = UIC_CMD_DME_ENABLE;
3618  
3619  	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3620  	if (ret)
3621  		dev_err(hba->dev,
3622  			"dme-reset: error code %d\n", ret);
3623  
3624  	return ret;
3625  }
3626  
ufshcd_add_delay_before_dme_cmd(struct ufs_hba * hba)3627  static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
3628  {
3629  	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
3630  	unsigned long min_sleep_time_us;
3631  
3632  	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
3633  		return;
3634  
3635  	/*
3636  	 * last_dme_cmd_tstamp will be 0 only for 1st call to
3637  	 * this function
3638  	 */
3639  	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
3640  		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
3641  	} else {
3642  		unsigned long delta =
3643  			(unsigned long) ktime_to_us(
3644  				ktime_sub(ktime_get(),
3645  				hba->last_dme_cmd_tstamp));
3646  
3647  		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
3648  			min_sleep_time_us =
3649  				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
3650  		else
3651  			return; /* no more delay required */
3652  	}
3653  
3654  	/* allow sleep for extra 50us if needed */
3655  	usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
3656  }
3657  
3658  /**
3659   * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
3660   * @hba: per adapter instance
3661   * @attr_sel: uic command argument1
3662   * @attr_set: attribute set type as uic command argument2
3663   * @mib_val: setting value as uic command argument3
3664   * @peer: indicate whether peer or local
3665   *
3666   * Returns 0 on success, non-zero value on failure
3667   */
ufshcd_dme_set_attr(struct ufs_hba * hba,u32 attr_sel,u8 attr_set,u32 mib_val,u8 peer)3668  int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
3669  			u8 attr_set, u32 mib_val, u8 peer)
3670  {
3671  	struct uic_command uic_cmd = {0};
3672  	static const char *const action[] = {
3673  		"dme-set",
3674  		"dme-peer-set"
3675  	};
3676  	const char *set = action[!!peer];
3677  	int ret;
3678  	int retries = UFS_UIC_COMMAND_RETRIES;
3679  
3680  	uic_cmd.command = peer ?
3681  		UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
3682  	uic_cmd.argument1 = attr_sel;
3683  	uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
3684  	uic_cmd.argument3 = mib_val;
3685  
3686  	do {
3687  		/* for peer attributes we retry upon failure */
3688  		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3689  		if (ret)
3690  			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
3691  				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
3692  	} while (ret && peer && --retries);
3693  
3694  	if (ret)
3695  		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
3696  			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
3697  			UFS_UIC_COMMAND_RETRIES - retries);
3698  
3699  	return ret;
3700  }
3701  EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
3702  
3703  /**
3704   * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
3705   * @hba: per adapter instance
3706   * @attr_sel: uic command argument1
3707   * @mib_val: the value of the attribute as returned by the UIC command
3708   * @peer: indicate whether peer or local
3709   *
3710   * Returns 0 on success, non-zero value on failure
3711   */
ufshcd_dme_get_attr(struct ufs_hba * hba,u32 attr_sel,u32 * mib_val,u8 peer)3712  int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
3713  			u32 *mib_val, u8 peer)
3714  {
3715  	struct uic_command uic_cmd = {0};
3716  	static const char *const action[] = {
3717  		"dme-get",
3718  		"dme-peer-get"
3719  	};
3720  	const char *get = action[!!peer];
3721  	int ret;
3722  	int retries = UFS_UIC_COMMAND_RETRIES;
3723  	struct ufs_pa_layer_attr orig_pwr_info;
3724  	struct ufs_pa_layer_attr temp_pwr_info;
3725  	bool pwr_mode_change = false;
3726  
3727  	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
3728  		orig_pwr_info = hba->pwr_info;
3729  		temp_pwr_info = orig_pwr_info;
3730  
3731  		if (orig_pwr_info.pwr_tx == FAST_MODE ||
3732  		    orig_pwr_info.pwr_rx == FAST_MODE) {
3733  			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
3734  			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
3735  			pwr_mode_change = true;
3736  		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
3737  		    orig_pwr_info.pwr_rx == SLOW_MODE) {
3738  			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
3739  			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
3740  			pwr_mode_change = true;
3741  		}
3742  		if (pwr_mode_change) {
3743  			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
3744  			if (ret)
3745  				goto out;
3746  		}
3747  	}
3748  
3749  	uic_cmd.command = peer ?
3750  		UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
3751  	uic_cmd.argument1 = attr_sel;
3752  
3753  	do {
3754  		/* for peer attributes we retry upon failure */
3755  		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3756  		if (ret)
3757  			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
3758  				get, UIC_GET_ATTR_ID(attr_sel), ret);
3759  	} while (ret && peer && --retries);
3760  
3761  	if (ret)
3762  		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
3763  			get, UIC_GET_ATTR_ID(attr_sel),
3764  			UFS_UIC_COMMAND_RETRIES - retries);
3765  
3766  	if (mib_val && !ret)
3767  		*mib_val = uic_cmd.argument3;
3768  
3769  	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
3770  	    && pwr_mode_change)
3771  		ufshcd_change_power_mode(hba, &orig_pwr_info);
3772  out:
3773  	return ret;
3774  }
3775  EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
3776  
3777  /**
3778   * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
3779   * state) and waits for it to take effect.
3780   *
3781   * @hba: per adapter instance
3782   * @cmd: UIC command to execute
3783   *
3784   * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
3785   * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
3786   * and device UniPro link and hence it's final completion would be indicated by
3787   * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
3788   * addition to normal UIC command completion Status (UCCS). This function only
3789   * returns after the relevant status bits indicate the completion.
3790   *
3791   * Returns 0 on success, non-zero value on failure
3792   */
ufshcd_uic_pwr_ctrl(struct ufs_hba * hba,struct uic_command * cmd)3793  static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
3794  {
3795  	struct completion uic_async_done;
3796  	unsigned long flags;
3797  	u8 status;
3798  	int ret;
3799  	bool reenable_intr = false;
3800  
3801  	mutex_lock(&hba->uic_cmd_mutex);
3802  	init_completion(&uic_async_done);
3803  	ufshcd_add_delay_before_dme_cmd(hba);
3804  
3805  	spin_lock_irqsave(hba->host->host_lock, flags);
3806  	if (ufshcd_is_link_broken(hba)) {
3807  		ret = -ENOLINK;
3808  		goto out_unlock;
3809  	}
3810  	hba->uic_async_done = &uic_async_done;
3811  	if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
3812  		ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
3813  		/*
3814  		 * Make sure UIC command completion interrupt is disabled before
3815  		 * issuing UIC command.
3816  		 */
3817  		wmb();
3818  		reenable_intr = true;
3819  	}
3820  	ret = __ufshcd_send_uic_cmd(hba, cmd, false);
3821  	spin_unlock_irqrestore(hba->host->host_lock, flags);
3822  	if (ret) {
3823  		dev_err(hba->dev,
3824  			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
3825  			cmd->command, cmd->argument3, ret);
3826  		goto out;
3827  	}
3828  
3829  	if (!wait_for_completion_timeout(hba->uic_async_done,
3830  					 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
3831  		dev_err(hba->dev,
3832  			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
3833  			cmd->command, cmd->argument3);
3834  
3835  		if (!cmd->cmd_active) {
3836  			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
3837  				__func__);
3838  			goto check_upmcrs;
3839  		}
3840  
3841  		ret = -ETIMEDOUT;
3842  		goto out;
3843  	}
3844  
3845  check_upmcrs:
3846  	status = ufshcd_get_upmcrs(hba);
3847  	if (status != PWR_LOCAL) {
3848  		dev_err(hba->dev,
3849  			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
3850  			cmd->command, status);
3851  		ret = (status != PWR_OK) ? status : -1;
3852  	}
3853  out:
3854  	if (ret) {
3855  		ufshcd_print_host_state(hba);
3856  		ufshcd_print_pwr_info(hba);
3857  		ufshcd_print_host_regs(hba);
3858  	}
3859  
3860  	spin_lock_irqsave(hba->host->host_lock, flags);
3861  	hba->active_uic_cmd = NULL;
3862  	hba->uic_async_done = NULL;
3863  	if (reenable_intr)
3864  		ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
3865  	if (ret) {
3866  		ufshcd_set_link_broken(hba);
3867  		ufshcd_schedule_eh_work(hba);
3868  	}
3869  out_unlock:
3870  	spin_unlock_irqrestore(hba->host->host_lock, flags);
3871  	mutex_unlock(&hba->uic_cmd_mutex);
3872  
3873  	return ret;
3874  }
3875  
3876  /**
3877   * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
3878   *				using DME_SET primitives.
3879   * @hba: per adapter instance
3880   * @mode: powr mode value
3881   *
3882   * Returns 0 on success, non-zero value on failure
3883   */
ufshcd_uic_change_pwr_mode(struct ufs_hba * hba,u8 mode)3884  static int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
3885  {
3886  	struct uic_command uic_cmd = {0};
3887  	int ret;
3888  
3889  	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
3890  		ret = ufshcd_dme_set(hba,
3891  				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
3892  		if (ret) {
3893  			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
3894  						__func__, ret);
3895  			goto out;
3896  		}
3897  	}
3898  
3899  	uic_cmd.command = UIC_CMD_DME_SET;
3900  	uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
3901  	uic_cmd.argument3 = mode;
3902  	ufshcd_hold(hba, false);
3903  	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
3904  	ufshcd_release(hba);
3905  
3906  out:
3907  	return ret;
3908  }
3909  
ufshcd_link_recovery(struct ufs_hba * hba)3910  int ufshcd_link_recovery(struct ufs_hba *hba)
3911  {
3912  	int ret;
3913  	unsigned long flags;
3914  
3915  	spin_lock_irqsave(hba->host->host_lock, flags);
3916  	hba->ufshcd_state = UFSHCD_STATE_RESET;
3917  	ufshcd_set_eh_in_progress(hba);
3918  	spin_unlock_irqrestore(hba->host->host_lock, flags);
3919  
3920  	/* Reset the attached device */
3921  	ufshcd_vops_device_reset(hba);
3922  
3923  	ret = ufshcd_host_reset_and_restore(hba);
3924  
3925  	spin_lock_irqsave(hba->host->host_lock, flags);
3926  	if (ret)
3927  		hba->ufshcd_state = UFSHCD_STATE_ERROR;
3928  	ufshcd_clear_eh_in_progress(hba);
3929  	spin_unlock_irqrestore(hba->host->host_lock, flags);
3930  
3931  	if (ret)
3932  		dev_err(hba->dev, "%s: link recovery failed, err %d",
3933  			__func__, ret);
3934  
3935  	return ret;
3936  }
3937  EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
3938  
ufshcd_uic_hibern8_enter(struct ufs_hba * hba)3939  static int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
3940  {
3941  	int ret;
3942  	struct uic_command uic_cmd = {0};
3943  	ktime_t start = ktime_get();
3944  
3945  	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
3946  
3947  	uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
3948  	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
3949  	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
3950  			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
3951  
3952  	if (ret)
3953  		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
3954  			__func__, ret);
3955  	else
3956  		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
3957  								POST_CHANGE);
3958  
3959  	return ret;
3960  }
3961  
ufshcd_uic_hibern8_exit(struct ufs_hba * hba)3962  int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
3963  {
3964  	struct uic_command uic_cmd = {0};
3965  	int ret;
3966  	ktime_t start = ktime_get();
3967  
3968  	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
3969  
3970  	uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
3971  	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
3972  	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
3973  			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
3974  
3975  	if (ret) {
3976  		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
3977  			__func__, ret);
3978  	} else {
3979  		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
3980  								POST_CHANGE);
3981  		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_get();
3982  		hba->ufs_stats.hibern8_exit_cnt++;
3983  	}
3984  
3985  	return ret;
3986  }
3987  EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
3988  
ufshcd_auto_hibern8_update(struct ufs_hba * hba,u32 ahit)3989  void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
3990  {
3991  	unsigned long flags;
3992  	bool update = false;
3993  
3994  	if (!ufshcd_is_auto_hibern8_supported(hba))
3995  		return;
3996  
3997  	spin_lock_irqsave(hba->host->host_lock, flags);
3998  	if (hba->ahit != ahit) {
3999  		hba->ahit = ahit;
4000  		update = true;
4001  	}
4002  	spin_unlock_irqrestore(hba->host->host_lock, flags);
4003  
4004  	if (update && !pm_runtime_suspended(hba->dev)) {
4005  		pm_runtime_get_sync(hba->dev);
4006  		ufshcd_hold(hba, false);
4007  		ufshcd_auto_hibern8_enable(hba);
4008  		ufshcd_release(hba);
4009  		pm_runtime_put(hba->dev);
4010  	}
4011  }
4012  EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4013  
ufshcd_auto_hibern8_enable(struct ufs_hba * hba)4014  void ufshcd_auto_hibern8_enable(struct ufs_hba *hba)
4015  {
4016  	unsigned long flags;
4017  
4018  	if (!ufshcd_is_auto_hibern8_supported(hba))
4019  		return;
4020  
4021  	spin_lock_irqsave(hba->host->host_lock, flags);
4022  	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4023  	spin_unlock_irqrestore(hba->host->host_lock, flags);
4024  }
4025  
4026   /**
4027   * ufshcd_init_pwr_info - setting the POR (power on reset)
4028   * values in hba power info
4029   * @hba: per-adapter instance
4030   */
ufshcd_init_pwr_info(struct ufs_hba * hba)4031  static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4032  {
4033  	hba->pwr_info.gear_rx = UFS_PWM_G1;
4034  	hba->pwr_info.gear_tx = UFS_PWM_G1;
4035  	hba->pwr_info.lane_rx = 1;
4036  	hba->pwr_info.lane_tx = 1;
4037  	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4038  	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4039  	hba->pwr_info.hs_rate = 0;
4040  }
4041  
4042  /**
4043   * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4044   * @hba: per-adapter instance
4045   */
ufshcd_get_max_pwr_mode(struct ufs_hba * hba)4046  static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4047  {
4048  	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4049  
4050  	if (hba->max_pwr_info.is_valid)
4051  		return 0;
4052  
4053  	pwr_info->pwr_tx = FAST_MODE;
4054  	pwr_info->pwr_rx = FAST_MODE;
4055  	pwr_info->hs_rate = PA_HS_MODE_B;
4056  
4057  	/* Get the connected lane count */
4058  	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4059  			&pwr_info->lane_rx);
4060  	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4061  			&pwr_info->lane_tx);
4062  
4063  	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4064  		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4065  				__func__,
4066  				pwr_info->lane_rx,
4067  				pwr_info->lane_tx);
4068  		return -EINVAL;
4069  	}
4070  
4071  	/*
4072  	 * First, get the maximum gears of HS speed.
4073  	 * If a zero value, it means there is no HSGEAR capability.
4074  	 * Then, get the maximum gears of PWM speed.
4075  	 */
4076  	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4077  	if (!pwr_info->gear_rx) {
4078  		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4079  				&pwr_info->gear_rx);
4080  		if (!pwr_info->gear_rx) {
4081  			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4082  				__func__, pwr_info->gear_rx);
4083  			return -EINVAL;
4084  		}
4085  		pwr_info->pwr_rx = SLOW_MODE;
4086  	}
4087  
4088  	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4089  			&pwr_info->gear_tx);
4090  	if (!pwr_info->gear_tx) {
4091  		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4092  				&pwr_info->gear_tx);
4093  		if (!pwr_info->gear_tx) {
4094  			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4095  				__func__, pwr_info->gear_tx);
4096  			return -EINVAL;
4097  		}
4098  		pwr_info->pwr_tx = SLOW_MODE;
4099  	}
4100  
4101  	hba->max_pwr_info.is_valid = true;
4102  	return 0;
4103  }
4104  
ufshcd_change_power_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * pwr_mode)4105  static int ufshcd_change_power_mode(struct ufs_hba *hba,
4106  			     struct ufs_pa_layer_attr *pwr_mode)
4107  {
4108  	int ret;
4109  
4110  	/* if already configured to the requested pwr_mode */
4111  	if (!hba->force_pmc &&
4112  	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4113  	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4114  	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4115  	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4116  	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4117  	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4118  	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4119  		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4120  		return 0;
4121  	}
4122  
4123  	/*
4124  	 * Configure attributes for power mode change with below.
4125  	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4126  	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4127  	 * - PA_HSSERIES
4128  	 */
4129  	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4130  	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4131  			pwr_mode->lane_rx);
4132  	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4133  			pwr_mode->pwr_rx == FAST_MODE)
4134  		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), TRUE);
4135  	else
4136  		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), FALSE);
4137  
4138  	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4139  	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4140  			pwr_mode->lane_tx);
4141  	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4142  			pwr_mode->pwr_tx == FAST_MODE)
4143  		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), TRUE);
4144  	else
4145  		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), FALSE);
4146  
4147  	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4148  	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4149  	    pwr_mode->pwr_rx == FAST_MODE ||
4150  	    pwr_mode->pwr_tx == FAST_MODE)
4151  		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4152  						pwr_mode->hs_rate);
4153  
4154  	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4155  			DL_FC0ProtectionTimeOutVal_Default);
4156  	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4157  			DL_TC0ReplayTimeOutVal_Default);
4158  	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4159  			DL_AFC0ReqTimeOutVal_Default);
4160  	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4161  			DL_FC1ProtectionTimeOutVal_Default);
4162  	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4163  			DL_TC1ReplayTimeOutVal_Default);
4164  	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4165  			DL_AFC1ReqTimeOutVal_Default);
4166  
4167  	ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4168  			DL_FC0ProtectionTimeOutVal_Default);
4169  	ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4170  			DL_TC0ReplayTimeOutVal_Default);
4171  	ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4172  			DL_AFC0ReqTimeOutVal_Default);
4173  
4174  	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4175  			| pwr_mode->pwr_tx);
4176  
4177  	if (ret) {
4178  		dev_err(hba->dev,
4179  			"%s: power mode change failed %d\n", __func__, ret);
4180  	} else {
4181  		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4182  								pwr_mode);
4183  
4184  		memcpy(&hba->pwr_info, pwr_mode,
4185  			sizeof(struct ufs_pa_layer_attr));
4186  	}
4187  
4188  	return ret;
4189  }
4190  
4191  /**
4192   * ufshcd_config_pwr_mode - configure a new power mode
4193   * @hba: per-adapter instance
4194   * @desired_pwr_mode: desired power configuration
4195   */
ufshcd_config_pwr_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * desired_pwr_mode)4196  int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4197  		struct ufs_pa_layer_attr *desired_pwr_mode)
4198  {
4199  	struct ufs_pa_layer_attr final_params = { 0 };
4200  	int ret;
4201  
4202  	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4203  					desired_pwr_mode, &final_params);
4204  
4205  	if (ret)
4206  		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4207  
4208  	ret = ufshcd_change_power_mode(hba, &final_params);
4209  
4210  	return ret;
4211  }
4212  EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4213  
4214  /**
4215   * ufshcd_complete_dev_init() - checks device readiness
4216   * @hba: per-adapter instance
4217   *
4218   * Set fDeviceInit flag and poll until device toggles it.
4219   */
ufshcd_complete_dev_init(struct ufs_hba * hba)4220  static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4221  {
4222  	int err;
4223  	bool flag_res = true;
4224  	ktime_t timeout;
4225  
4226  	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4227  		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4228  	if (err) {
4229  		dev_err(hba->dev,
4230  			"%s setting fDeviceInit flag failed with error %d\n",
4231  			__func__, err);
4232  		goto out;
4233  	}
4234  
4235  	/* Poll fDeviceInit flag to be cleared */
4236  	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4237  	do {
4238  		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4239  					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4240  		if (!flag_res)
4241  			break;
4242  		usleep_range(5000, 10000);
4243  	} while (ktime_before(ktime_get(), timeout));
4244  
4245  	if (err) {
4246  		dev_err(hba->dev,
4247  				"%s reading fDeviceInit flag failed with error %d\n",
4248  				__func__, err);
4249  	} else if (flag_res) {
4250  		dev_err(hba->dev,
4251  				"%s fDeviceInit was not cleared by the device\n",
4252  				__func__);
4253  		err = -EBUSY;
4254  	}
4255  out:
4256  	return err;
4257  }
4258  
4259  /**
4260   * ufshcd_make_hba_operational - Make UFS controller operational
4261   * @hba: per adapter instance
4262   *
4263   * To bring UFS host controller to operational state,
4264   * 1. Enable required interrupts
4265   * 2. Configure interrupt aggregation
4266   * 3. Program UTRL and UTMRL base address
4267   * 4. Configure run-stop-registers
4268   *
4269   * Returns 0 on success, non-zero value on failure
4270   */
ufshcd_make_hba_operational(struct ufs_hba * hba)4271  int ufshcd_make_hba_operational(struct ufs_hba *hba)
4272  {
4273  	int err = 0;
4274  	u32 reg;
4275  
4276  	/* Enable required interrupts */
4277  	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4278  
4279  	/* Configure interrupt aggregation */
4280  	if (ufshcd_is_intr_aggr_allowed(hba))
4281  		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4282  	else
4283  		ufshcd_disable_intr_aggr(hba);
4284  
4285  	/* Configure UTRL and UTMRL base address registers */
4286  	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4287  			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4288  	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4289  			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4290  	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4291  			REG_UTP_TASK_REQ_LIST_BASE_L);
4292  	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4293  			REG_UTP_TASK_REQ_LIST_BASE_H);
4294  
4295  	/*
4296  	 * Make sure base address and interrupt setup are updated before
4297  	 * enabling the run/stop registers below.
4298  	 */
4299  	wmb();
4300  
4301  	/*
4302  	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4303  	 */
4304  	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4305  	if (!(ufshcd_get_lists_status(reg))) {
4306  		ufshcd_enable_run_stop_reg(hba);
4307  	} else {
4308  		dev_err(hba->dev,
4309  			"Host controller not ready to process requests");
4310  		err = -EIO;
4311  	}
4312  
4313  	return err;
4314  }
4315  EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4316  
4317  /**
4318   * ufshcd_hba_stop - Send controller to reset state
4319   * @hba: per adapter instance
4320   */
ufshcd_hba_stop(struct ufs_hba * hba)4321  static inline void ufshcd_hba_stop(struct ufs_hba *hba)
4322  {
4323  	unsigned long flags;
4324  	int err;
4325  
4326  	/*
4327  	 * Obtain the host lock to prevent that the controller is disabled
4328  	 * while the UFS interrupt handler is active on another CPU.
4329  	 */
4330  	spin_lock_irqsave(hba->host->host_lock, flags);
4331  	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4332  	spin_unlock_irqrestore(hba->host->host_lock, flags);
4333  
4334  	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4335  					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4336  					10, 1);
4337  	if (err)
4338  		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4339  }
4340  
4341  /**
4342   * ufshcd_hba_execute_hce - initialize the controller
4343   * @hba: per adapter instance
4344   *
4345   * The controller resets itself and controller firmware initialization
4346   * sequence kicks off. When controller is ready it will set
4347   * the Host Controller Enable bit to 1.
4348   *
4349   * Returns 0 on success, non-zero value on failure
4350   */
ufshcd_hba_execute_hce(struct ufs_hba * hba)4351  static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4352  {
4353  	int retry;
4354  
4355  	if (!ufshcd_is_hba_active(hba))
4356  		/* change controller state to "reset state" */
4357  		ufshcd_hba_stop(hba);
4358  
4359  	/* UniPro link is disabled at this point */
4360  	ufshcd_set_link_off(hba);
4361  
4362  	ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4363  
4364  	/* start controller initialization sequence */
4365  	ufshcd_hba_start(hba);
4366  
4367  	/*
4368  	 * To initialize a UFS host controller HCE bit must be set to 1.
4369  	 * During initialization the HCE bit value changes from 1->0->1.
4370  	 * When the host controller completes initialization sequence
4371  	 * it sets the value of HCE bit to 1. The same HCE bit is read back
4372  	 * to check if the controller has completed initialization sequence.
4373  	 * So without this delay the value HCE = 1, set in the previous
4374  	 * instruction might be read back.
4375  	 * This delay can be changed based on the controller.
4376  	 */
4377  	ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4378  
4379  	/* wait for the host controller to complete initialization */
4380  	retry = 50;
4381  	while (ufshcd_is_hba_active(hba)) {
4382  		if (retry) {
4383  			retry--;
4384  		} else {
4385  			dev_err(hba->dev,
4386  				"Controller enable failed\n");
4387  			return -EIO;
4388  		}
4389  		usleep_range(1000, 1100);
4390  	}
4391  
4392  	/* enable UIC related interrupts */
4393  	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4394  
4395  	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4396  
4397  	return 0;
4398  }
4399  
ufshcd_hba_enable(struct ufs_hba * hba)4400  int ufshcd_hba_enable(struct ufs_hba *hba)
4401  {
4402  	int ret;
4403  
4404  	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4405  		ufshcd_set_link_off(hba);
4406  		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4407  
4408  		/* enable UIC related interrupts */
4409  		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4410  		ret = ufshcd_dme_reset(hba);
4411  		if (!ret) {
4412  			ret = ufshcd_dme_enable(hba);
4413  			if (!ret)
4414  				ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4415  			if (ret)
4416  				dev_err(hba->dev,
4417  					"Host controller enable failed with non-hce\n");
4418  		}
4419  	} else {
4420  		ret = ufshcd_hba_execute_hce(hba);
4421  	}
4422  
4423  	return ret;
4424  }
4425  EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4426  
ufshcd_disable_tx_lcc(struct ufs_hba * hba,bool peer)4427  static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4428  {
4429  	int tx_lanes = 0, i, err = 0;
4430  
4431  	if (!peer)
4432  		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4433  			       &tx_lanes);
4434  	else
4435  		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4436  				    &tx_lanes);
4437  	for (i = 0; i < tx_lanes; i++) {
4438  		if (!peer)
4439  			err = ufshcd_dme_set(hba,
4440  				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4441  					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4442  					0);
4443  		else
4444  			err = ufshcd_dme_peer_set(hba,
4445  				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4446  					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4447  					0);
4448  		if (err) {
4449  			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4450  				__func__, peer, i, err);
4451  			break;
4452  		}
4453  	}
4454  
4455  	return err;
4456  }
4457  
ufshcd_disable_device_tx_lcc(struct ufs_hba * hba)4458  static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4459  {
4460  	return ufshcd_disable_tx_lcc(hba, true);
4461  }
4462  
ufshcd_update_reg_hist(struct ufs_err_reg_hist * reg_hist,u32 reg)4463  void ufshcd_update_reg_hist(struct ufs_err_reg_hist *reg_hist,
4464  			    u32 reg)
4465  {
4466  	reg_hist->reg[reg_hist->pos] = reg;
4467  	reg_hist->tstamp[reg_hist->pos] = ktime_get();
4468  	reg_hist->pos = (reg_hist->pos + 1) % UFS_ERR_REG_HIST_LENGTH;
4469  }
4470  EXPORT_SYMBOL_GPL(ufshcd_update_reg_hist);
4471  
4472  /**
4473   * ufshcd_link_startup - Initialize unipro link startup
4474   * @hba: per adapter instance
4475   *
4476   * Returns 0 for success, non-zero in case of failure
4477   */
ufshcd_link_startup(struct ufs_hba * hba)4478  static int ufshcd_link_startup(struct ufs_hba *hba)
4479  {
4480  	int ret;
4481  	int retries = DME_LINKSTARTUP_RETRIES;
4482  	bool link_startup_again = false;
4483  
4484  	/*
4485  	 * If UFS device isn't active then we will have to issue link startup
4486  	 * 2 times to make sure the device state move to active.
4487  	 */
4488  	if (!ufshcd_is_ufs_dev_active(hba))
4489  		link_startup_again = true;
4490  
4491  link_startup:
4492  	do {
4493  		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4494  
4495  		ret = ufshcd_dme_link_startup(hba);
4496  
4497  		/* check if device is detected by inter-connect layer */
4498  		if (!ret && !ufshcd_is_device_present(hba)) {
4499  			ufshcd_update_reg_hist(&hba->ufs_stats.link_startup_err,
4500  					       0);
4501  			dev_err(hba->dev, "%s: Device not present\n", __func__);
4502  			ret = -ENXIO;
4503  			goto out;
4504  		}
4505  
4506  		/*
4507  		 * DME link lost indication is only received when link is up,
4508  		 * but we can't be sure if the link is up until link startup
4509  		 * succeeds. So reset the local Uni-Pro and try again.
4510  		 */
4511  		if (ret && ufshcd_hba_enable(hba)) {
4512  			ufshcd_update_reg_hist(&hba->ufs_stats.link_startup_err,
4513  					       (u32)ret);
4514  			goto out;
4515  		}
4516  	} while (ret && retries--);
4517  
4518  	if (ret) {
4519  		/* failed to get the link up... retire */
4520  		ufshcd_update_reg_hist(&hba->ufs_stats.link_startup_err,
4521  				       (u32)ret);
4522  		goto out;
4523  	}
4524  
4525  	if (link_startup_again) {
4526  		link_startup_again = false;
4527  		retries = DME_LINKSTARTUP_RETRIES;
4528  		goto link_startup;
4529  	}
4530  
4531  	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
4532  	ufshcd_init_pwr_info(hba);
4533  	ufshcd_print_pwr_info(hba);
4534  
4535  	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
4536  		ret = ufshcd_disable_device_tx_lcc(hba);
4537  		if (ret)
4538  			goto out;
4539  	}
4540  
4541  	/* Include any host controller configuration via UIC commands */
4542  	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
4543  	if (ret)
4544  		goto out;
4545  
4546  	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
4547  	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
4548  	ret = ufshcd_make_hba_operational(hba);
4549  out:
4550  	if (ret) {
4551  		dev_err(hba->dev, "link startup failed %d\n", ret);
4552  		ufshcd_print_host_state(hba);
4553  		ufshcd_print_pwr_info(hba);
4554  		ufshcd_print_host_regs(hba);
4555  	}
4556  	return ret;
4557  }
4558  
4559  /**
4560   * ufshcd_verify_dev_init() - Verify device initialization
4561   * @hba: per-adapter instance
4562   *
4563   * Send NOP OUT UPIU and wait for NOP IN response to check whether the
4564   * device Transport Protocol (UTP) layer is ready after a reset.
4565   * If the UTP layer at the device side is not initialized, it may
4566   * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
4567   * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
4568   */
ufshcd_verify_dev_init(struct ufs_hba * hba)4569  static int ufshcd_verify_dev_init(struct ufs_hba *hba)
4570  {
4571  	int err = 0;
4572  	int retries;
4573  
4574  	ufshcd_hold(hba, false);
4575  	mutex_lock(&hba->dev_cmd.lock);
4576  	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
4577  		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
4578  					       NOP_OUT_TIMEOUT);
4579  
4580  		if (!err || err == -ETIMEDOUT)
4581  			break;
4582  
4583  		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
4584  	}
4585  	mutex_unlock(&hba->dev_cmd.lock);
4586  	ufshcd_release(hba);
4587  
4588  	if (err)
4589  		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
4590  	return err;
4591  }
4592  
4593  /**
4594   * ufshcd_set_queue_depth - set lun queue depth
4595   * @sdev: pointer to SCSI device
4596   *
4597   * Read bLUQueueDepth value and activate scsi tagged command
4598   * queueing. For WLUN, queue depth is set to 1. For best-effort
4599   * cases (bLUQueueDepth = 0) the queue depth is set to a maximum
4600   * value that host can queue.
4601   */
ufshcd_set_queue_depth(struct scsi_device * sdev)4602  static void ufshcd_set_queue_depth(struct scsi_device *sdev)
4603  {
4604  	int ret = 0;
4605  	u8 lun_qdepth;
4606  	struct ufs_hba *hba;
4607  
4608  	hba = shost_priv(sdev->host);
4609  
4610  	lun_qdepth = hba->nutrs;
4611  	ret = ufshcd_read_unit_desc_param(hba,
4612  					  ufshcd_scsi_to_upiu_lun(sdev->lun),
4613  					  UNIT_DESC_PARAM_LU_Q_DEPTH,
4614  					  &lun_qdepth,
4615  					  sizeof(lun_qdepth));
4616  
4617  	/* Some WLUN doesn't support unit descriptor */
4618  	if (ret == -EOPNOTSUPP)
4619  		lun_qdepth = 1;
4620  	else if (!lun_qdepth)
4621  		/* eventually, we can figure out the real queue depth */
4622  		lun_qdepth = hba->nutrs;
4623  	else
4624  		lun_qdepth = min_t(int, lun_qdepth, hba->nutrs);
4625  
4626  	dev_dbg(hba->dev, "%s: activate tcq with queue depth %d\n",
4627  			__func__, lun_qdepth);
4628  	scsi_change_queue_depth(sdev, lun_qdepth);
4629  }
4630  
4631  /*
4632   * ufshcd_get_lu_wp - returns the "b_lu_write_protect" from UNIT DESCRIPTOR
4633   * @hba: per-adapter instance
4634   * @lun: UFS device lun id
4635   * @b_lu_write_protect: pointer to buffer to hold the LU's write protect info
4636   *
4637   * Returns 0 in case of success and b_lu_write_protect status would be returned
4638   * @b_lu_write_protect parameter.
4639   * Returns -ENOTSUPP if reading b_lu_write_protect is not supported.
4640   * Returns -EINVAL in case of invalid parameters passed to this function.
4641   */
ufshcd_get_lu_wp(struct ufs_hba * hba,u8 lun,u8 * b_lu_write_protect)4642  static int ufshcd_get_lu_wp(struct ufs_hba *hba,
4643  			    u8 lun,
4644  			    u8 *b_lu_write_protect)
4645  {
4646  	int ret;
4647  
4648  	if (!b_lu_write_protect)
4649  		ret = -EINVAL;
4650  	/*
4651  	 * According to UFS device spec, RPMB LU can't be write
4652  	 * protected so skip reading bLUWriteProtect parameter for
4653  	 * it. For other W-LUs, UNIT DESCRIPTOR is not available.
4654  	 */
4655  	else if (lun >= hba->dev_info.max_lu_supported)
4656  		ret = -ENOTSUPP;
4657  	else
4658  		ret = ufshcd_read_unit_desc_param(hba,
4659  					  lun,
4660  					  UNIT_DESC_PARAM_LU_WR_PROTECT,
4661  					  b_lu_write_protect,
4662  					  sizeof(*b_lu_write_protect));
4663  	return ret;
4664  }
4665  
4666  /**
4667   * ufshcd_get_lu_power_on_wp_status - get LU's power on write protect
4668   * status
4669   * @hba: per-adapter instance
4670   * @sdev: pointer to SCSI device
4671   *
4672   */
ufshcd_get_lu_power_on_wp_status(struct ufs_hba * hba,struct scsi_device * sdev)4673  static inline void ufshcd_get_lu_power_on_wp_status(struct ufs_hba *hba,
4674  						    struct scsi_device *sdev)
4675  {
4676  	if (hba->dev_info.f_power_on_wp_en &&
4677  	    !hba->dev_info.is_lu_power_on_wp) {
4678  		u8 b_lu_write_protect;
4679  
4680  		if (!ufshcd_get_lu_wp(hba, ufshcd_scsi_to_upiu_lun(sdev->lun),
4681  				      &b_lu_write_protect) &&
4682  		    (b_lu_write_protect == UFS_LU_POWER_ON_WP))
4683  			hba->dev_info.is_lu_power_on_wp = true;
4684  	}
4685  }
4686  
4687  /**
4688   * ufshcd_slave_alloc - handle initial SCSI device configurations
4689   * @sdev: pointer to SCSI device
4690   *
4691   * Returns success
4692   */
ufshcd_slave_alloc(struct scsi_device * sdev)4693  static int ufshcd_slave_alloc(struct scsi_device *sdev)
4694  {
4695  	struct ufs_hba *hba;
4696  
4697  	hba = shost_priv(sdev->host);
4698  
4699  	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
4700  	sdev->use_10_for_ms = 1;
4701  
4702  	/* DBD field should be set to 1 in mode sense(10) */
4703  	sdev->set_dbd_for_ms = 1;
4704  
4705  	/* allow SCSI layer to restart the device in case of errors */
4706  	sdev->allow_restart = 1;
4707  
4708  	/* REPORT SUPPORTED OPERATION CODES is not supported */
4709  	sdev->no_report_opcodes = 1;
4710  
4711  	/* WRITE_SAME command is not supported */
4712  	sdev->no_write_same = 1;
4713  
4714  	ufshcd_set_queue_depth(sdev);
4715  
4716  	ufshcd_get_lu_power_on_wp_status(hba, sdev);
4717  
4718  	return 0;
4719  }
4720  
4721  /**
4722   * ufshcd_change_queue_depth - change queue depth
4723   * @sdev: pointer to SCSI device
4724   * @depth: required depth to set
4725   *
4726   * Change queue depth and make sure the max. limits are not crossed.
4727   */
ufshcd_change_queue_depth(struct scsi_device * sdev,int depth)4728  static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
4729  {
4730  	struct ufs_hba *hba = shost_priv(sdev->host);
4731  
4732  	if (depth > hba->nutrs)
4733  		depth = hba->nutrs;
4734  	return scsi_change_queue_depth(sdev, depth);
4735  }
4736  
4737  /**
4738   * ufshcd_slave_configure - adjust SCSI device configurations
4739   * @sdev: pointer to SCSI device
4740   */
ufshcd_slave_configure(struct scsi_device * sdev)4741  static int ufshcd_slave_configure(struct scsi_device *sdev)
4742  {
4743  	struct ufs_hba *hba = shost_priv(sdev->host);
4744  	struct request_queue *q = sdev->request_queue;
4745  
4746  	blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
4747  
4748  	if (ufshcd_is_rpm_autosuspend_allowed(hba))
4749  		sdev->rpm_autosuspend = 1;
4750  
4751  	ufshcd_crypto_setup_rq_keyslot_manager(hba, q);
4752  
4753  	return 0;
4754  }
4755  
4756  /**
4757   * ufshcd_slave_destroy - remove SCSI device configurations
4758   * @sdev: pointer to SCSI device
4759   */
ufshcd_slave_destroy(struct scsi_device * sdev)4760  static void ufshcd_slave_destroy(struct scsi_device *sdev)
4761  {
4762  	struct ufs_hba *hba;
4763  
4764  	hba = shost_priv(sdev->host);
4765  	/* Drop the reference as it won't be needed anymore */
4766  	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
4767  		unsigned long flags;
4768  
4769  		spin_lock_irqsave(hba->host->host_lock, flags);
4770  		hba->sdev_ufs_device = NULL;
4771  		spin_unlock_irqrestore(hba->host->host_lock, flags);
4772  	}
4773  }
4774  
4775  /**
4776   * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
4777   * @lrbp: pointer to local reference block of completed command
4778   * @scsi_status: SCSI command status
4779   *
4780   * Returns value base on SCSI command status
4781   */
4782  static inline int
ufshcd_scsi_cmd_status(struct ufshcd_lrb * lrbp,int scsi_status)4783  ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
4784  {
4785  	int result = 0;
4786  
4787  	switch (scsi_status) {
4788  	case SAM_STAT_CHECK_CONDITION:
4789  		ufshcd_copy_sense_data(lrbp);
4790  		fallthrough;
4791  	case SAM_STAT_GOOD:
4792  		result |= DID_OK << 16 |
4793  			  COMMAND_COMPLETE << 8 |
4794  			  scsi_status;
4795  		break;
4796  	case SAM_STAT_TASK_SET_FULL:
4797  	case SAM_STAT_BUSY:
4798  	case SAM_STAT_TASK_ABORTED:
4799  		ufshcd_copy_sense_data(lrbp);
4800  		result |= scsi_status;
4801  		break;
4802  	default:
4803  		result |= DID_ERROR << 16;
4804  		break;
4805  	} /* end of switch */
4806  
4807  	return result;
4808  }
4809  
4810  /**
4811   * ufshcd_transfer_rsp_status - Get overall status of the response
4812   * @hba: per adapter instance
4813   * @lrbp: pointer to local reference block of completed command
4814   *
4815   * Returns result of the command to notify SCSI midlayer
4816   */
4817  static inline int
ufshcd_transfer_rsp_status(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)4818  ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
4819  {
4820  	int result = 0;
4821  	int scsi_status;
4822  	int ocs;
4823  
4824  	/* overall command status of utrd */
4825  	ocs = ufshcd_get_tr_ocs(lrbp);
4826  
4827  	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
4828  		if (be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_1) &
4829  					MASK_RSP_UPIU_RESULT)
4830  			ocs = OCS_SUCCESS;
4831  	}
4832  
4833  	switch (ocs) {
4834  	case OCS_SUCCESS:
4835  		result = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
4836  		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
4837  		switch (result) {
4838  		case UPIU_TRANSACTION_RESPONSE:
4839  			/*
4840  			 * get the response UPIU result to extract
4841  			 * the SCSI command status
4842  			 */
4843  			result = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr);
4844  
4845  			/*
4846  			 * get the result based on SCSI status response
4847  			 * to notify the SCSI midlayer of the command status
4848  			 */
4849  			scsi_status = result & MASK_SCSI_STATUS;
4850  			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
4851  
4852  			/*
4853  			 * Currently we are only supporting BKOPs exception
4854  			 * events hence we can ignore BKOPs exception event
4855  			 * during power management callbacks. BKOPs exception
4856  			 * event is not expected to be raised in runtime suspend
4857  			 * callback as it allows the urgent bkops.
4858  			 * During system suspend, we are anyway forcefully
4859  			 * disabling the bkops and if urgent bkops is needed
4860  			 * it will be enabled on system resume. Long term
4861  			 * solution could be to abort the system suspend if
4862  			 * UFS device needs urgent BKOPs.
4863  			 */
4864  			if (!hba->pm_op_in_progress &&
4865  			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr) &&
4866  			    schedule_work(&hba->eeh_work)) {
4867  				/*
4868  				 * Prevent suspend once eeh_work is scheduled
4869  				 * to avoid deadlock between ufshcd_suspend
4870  				 * and exception event handler.
4871  				 */
4872  				pm_runtime_get_noresume(hba->dev);
4873  			}
4874  			break;
4875  		case UPIU_TRANSACTION_REJECT_UPIU:
4876  			/* TODO: handle Reject UPIU Response */
4877  			result = DID_ERROR << 16;
4878  			dev_err(hba->dev,
4879  				"Reject UPIU not fully implemented\n");
4880  			break;
4881  		default:
4882  			dev_err(hba->dev,
4883  				"Unexpected request response code = %x\n",
4884  				result);
4885  			result = DID_ERROR << 16;
4886  			break;
4887  		}
4888  		break;
4889  	case OCS_ABORTED:
4890  		result |= DID_ABORT << 16;
4891  		break;
4892  	case OCS_INVALID_COMMAND_STATUS:
4893  		result |= DID_REQUEUE << 16;
4894  		break;
4895  	case OCS_INVALID_CMD_TABLE_ATTR:
4896  	case OCS_INVALID_PRDT_ATTR:
4897  	case OCS_MISMATCH_DATA_BUF_SIZE:
4898  	case OCS_MISMATCH_RESP_UPIU_SIZE:
4899  	case OCS_PEER_COMM_FAILURE:
4900  	case OCS_FATAL_ERROR:
4901  	case OCS_DEVICE_FATAL_ERROR:
4902  	case OCS_INVALID_CRYPTO_CONFIG:
4903  	case OCS_GENERAL_CRYPTO_ERROR:
4904  	default:
4905  		result |= DID_ERROR << 16;
4906  		dev_err(hba->dev,
4907  				"OCS error from controller = %x for tag %d\n",
4908  				ocs, lrbp->task_tag);
4909  		ufshcd_print_host_regs(hba);
4910  		ufshcd_print_host_state(hba);
4911  		break;
4912  	} /* end of switch */
4913  
4914  	if ((host_byte(result) != DID_OK) && !hba->silence_err_logs)
4915  		ufshcd_print_trs(hba, 1 << lrbp->task_tag, true);
4916  	return result;
4917  }
4918  
4919  /**
4920   * ufshcd_uic_cmd_compl - handle completion of uic command
4921   * @hba: per adapter instance
4922   * @intr_status: interrupt status generated by the controller
4923   *
4924   * Returns
4925   *  IRQ_HANDLED - If interrupt is valid
4926   *  IRQ_NONE    - If invalid interrupt
4927   */
ufshcd_uic_cmd_compl(struct ufs_hba * hba,u32 intr_status)4928  static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
4929  {
4930  	irqreturn_t retval = IRQ_NONE;
4931  
4932  	if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
4933  		hba->active_uic_cmd->argument2 |=
4934  			ufshcd_get_uic_cmd_result(hba);
4935  		hba->active_uic_cmd->argument3 =
4936  			ufshcd_get_dme_attr_val(hba);
4937  		if (!hba->uic_async_done)
4938  			hba->active_uic_cmd->cmd_active = 0;
4939  		complete(&hba->active_uic_cmd->done);
4940  		retval = IRQ_HANDLED;
4941  	}
4942  
4943  	if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) {
4944  		hba->active_uic_cmd->cmd_active = 0;
4945  		complete(hba->uic_async_done);
4946  		retval = IRQ_HANDLED;
4947  	}
4948  
4949  	if (retval == IRQ_HANDLED)
4950  		ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd,
4951  					     "complete");
4952  	return retval;
4953  }
4954  
4955  /**
4956   * __ufshcd_transfer_req_compl - handle SCSI and query command completion
4957   * @hba: per adapter instance
4958   * @completed_reqs: requests to complete
4959   */
__ufshcd_transfer_req_compl(struct ufs_hba * hba,unsigned long completed_reqs)4960  static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
4961  					unsigned long completed_reqs)
4962  {
4963  	struct ufshcd_lrb *lrbp;
4964  	struct scsi_cmnd *cmd;
4965  	int result;
4966  	int index;
4967  
4968  	for_each_set_bit(index, &completed_reqs, hba->nutrs) {
4969  		lrbp = &hba->lrb[index];
4970  		lrbp->compl_time_stamp = ktime_get();
4971  		cmd = lrbp->cmd;
4972  		if (cmd) {
4973  			ufshcd_add_command_trace(hba, index, "complete");
4974  			result = ufshcd_transfer_rsp_status(hba, lrbp);
4975  			scsi_dma_unmap(cmd);
4976  			cmd->result = result;
4977  			/* Mark completed command as NULL in LRB */
4978  			lrbp->cmd = NULL;
4979  			/* Do not touch lrbp after scsi done */
4980  			cmd->scsi_done(cmd);
4981  			__ufshcd_release(hba);
4982  		} else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE ||
4983  			lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) {
4984  			if (hba->dev_cmd.complete) {
4985  				ufshcd_add_command_trace(hba, index,
4986  						"dev_complete");
4987  				complete(hba->dev_cmd.complete);
4988  			}
4989  		}
4990  		if (ufshcd_is_clkscaling_supported(hba))
4991  			hba->clk_scaling.active_reqs--;
4992  	}
4993  
4994  	/* clear corresponding bits of completed commands */
4995  	hba->outstanding_reqs ^= completed_reqs;
4996  
4997  	ufshcd_clk_scaling_update_busy(hba);
4998  }
4999  
5000  /**
5001   * ufshcd_transfer_req_compl - handle SCSI and query command completion
5002   * @hba: per adapter instance
5003   *
5004   * Returns
5005   *  IRQ_HANDLED - If interrupt is valid
5006   *  IRQ_NONE    - If invalid interrupt
5007   */
ufshcd_transfer_req_compl(struct ufs_hba * hba)5008  static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5009  {
5010  	unsigned long completed_reqs;
5011  	u32 tr_doorbell;
5012  
5013  	/* Resetting interrupt aggregation counters first and reading the
5014  	 * DOOR_BELL afterward allows us to handle all the completed requests.
5015  	 * In order to prevent other interrupts starvation the DB is read once
5016  	 * after reset. The down side of this solution is the possibility of
5017  	 * false interrupt if device completes another request after resetting
5018  	 * aggregation and before reading the DB.
5019  	 */
5020  	if (ufshcd_is_intr_aggr_allowed(hba) &&
5021  	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5022  		ufshcd_reset_intr_aggr(hba);
5023  
5024  	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5025  	completed_reqs = tr_doorbell ^ hba->outstanding_reqs;
5026  
5027  	if (completed_reqs) {
5028  		__ufshcd_transfer_req_compl(hba, completed_reqs);
5029  		return IRQ_HANDLED;
5030  	} else {
5031  		return IRQ_NONE;
5032  	}
5033  }
5034  
5035  /**
5036   * ufshcd_disable_ee - disable exception event
5037   * @hba: per-adapter instance
5038   * @mask: exception event to disable
5039   *
5040   * Disables exception event in the device so that the EVENT_ALERT
5041   * bit is not set.
5042   *
5043   * Returns zero on success, non-zero error value on failure.
5044   */
ufshcd_disable_ee(struct ufs_hba * hba,u16 mask)5045  static int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5046  {
5047  	int err = 0;
5048  	u32 val;
5049  
5050  	if (!(hba->ee_ctrl_mask & mask))
5051  		goto out;
5052  
5053  	val = hba->ee_ctrl_mask & ~mask;
5054  	val &= MASK_EE_STATUS;
5055  	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5056  			QUERY_ATTR_IDN_EE_CONTROL, 0, 0, &val);
5057  	if (!err)
5058  		hba->ee_ctrl_mask &= ~mask;
5059  out:
5060  	return err;
5061  }
5062  
5063  /**
5064   * ufshcd_enable_ee - enable exception event
5065   * @hba: per-adapter instance
5066   * @mask: exception event to enable
5067   *
5068   * Enable corresponding exception event in the device to allow
5069   * device to alert host in critical scenarios.
5070   *
5071   * Returns zero on success, non-zero error value on failure.
5072   */
ufshcd_enable_ee(struct ufs_hba * hba,u16 mask)5073  static int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5074  {
5075  	int err = 0;
5076  	u32 val;
5077  
5078  	if (hba->ee_ctrl_mask & mask)
5079  		goto out;
5080  
5081  	val = hba->ee_ctrl_mask | mask;
5082  	val &= MASK_EE_STATUS;
5083  	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5084  			QUERY_ATTR_IDN_EE_CONTROL, 0, 0, &val);
5085  	if (!err)
5086  		hba->ee_ctrl_mask |= mask;
5087  out:
5088  	return err;
5089  }
5090  
5091  /**
5092   * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5093   * @hba: per-adapter instance
5094   *
5095   * Allow device to manage background operations on its own. Enabling
5096   * this might lead to inconsistent latencies during normal data transfers
5097   * as the device is allowed to manage its own way of handling background
5098   * operations.
5099   *
5100   * Returns zero on success, non-zero on failure.
5101   */
ufshcd_enable_auto_bkops(struct ufs_hba * hba)5102  static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5103  {
5104  	int err = 0;
5105  
5106  	if (hba->auto_bkops_enabled)
5107  		goto out;
5108  
5109  	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5110  			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5111  	if (err) {
5112  		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5113  				__func__, err);
5114  		goto out;
5115  	}
5116  
5117  	hba->auto_bkops_enabled = true;
5118  	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5119  
5120  	/* No need of URGENT_BKOPS exception from the device */
5121  	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5122  	if (err)
5123  		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5124  				__func__, err);
5125  out:
5126  	return err;
5127  }
5128  
5129  /**
5130   * ufshcd_disable_auto_bkops - block device in doing background operations
5131   * @hba: per-adapter instance
5132   *
5133   * Disabling background operations improves command response latency but
5134   * has drawback of device moving into critical state where the device is
5135   * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5136   * host is idle so that BKOPS are managed effectively without any negative
5137   * impacts.
5138   *
5139   * Returns zero on success, non-zero on failure.
5140   */
ufshcd_disable_auto_bkops(struct ufs_hba * hba)5141  static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5142  {
5143  	int err = 0;
5144  
5145  	if (!hba->auto_bkops_enabled)
5146  		goto out;
5147  
5148  	/*
5149  	 * If host assisted BKOPs is to be enabled, make sure
5150  	 * urgent bkops exception is allowed.
5151  	 */
5152  	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5153  	if (err) {
5154  		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5155  				__func__, err);
5156  		goto out;
5157  	}
5158  
5159  	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5160  			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5161  	if (err) {
5162  		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5163  				__func__, err);
5164  		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5165  		goto out;
5166  	}
5167  
5168  	hba->auto_bkops_enabled = false;
5169  	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5170  	hba->is_urgent_bkops_lvl_checked = false;
5171  out:
5172  	return err;
5173  }
5174  
5175  /**
5176   * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5177   * @hba: per adapter instance
5178   *
5179   * After a device reset the device may toggle the BKOPS_EN flag
5180   * to default value. The s/w tracking variables should be updated
5181   * as well. This function would change the auto-bkops state based on
5182   * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5183   */
ufshcd_force_reset_auto_bkops(struct ufs_hba * hba)5184  static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5185  {
5186  	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5187  		hba->auto_bkops_enabled = false;
5188  		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5189  		ufshcd_enable_auto_bkops(hba);
5190  	} else {
5191  		hba->auto_bkops_enabled = true;
5192  		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5193  		ufshcd_disable_auto_bkops(hba);
5194  	}
5195  	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5196  	hba->is_urgent_bkops_lvl_checked = false;
5197  }
5198  
ufshcd_get_bkops_status(struct ufs_hba * hba,u32 * status)5199  static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5200  {
5201  	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5202  			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5203  }
5204  
5205  /**
5206   * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5207   * @hba: per-adapter instance
5208   * @status: bkops_status value
5209   *
5210   * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5211   * flag in the device to permit background operations if the device
5212   * bkops_status is greater than or equal to "status" argument passed to
5213   * this function, disable otherwise.
5214   *
5215   * Returns 0 for success, non-zero in case of failure.
5216   *
5217   * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5218   * to know whether auto bkops is enabled or disabled after this function
5219   * returns control to it.
5220   */
ufshcd_bkops_ctrl(struct ufs_hba * hba,enum bkops_status status)5221  static int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5222  			     enum bkops_status status)
5223  {
5224  	int err;
5225  	u32 curr_status = 0;
5226  
5227  	err = ufshcd_get_bkops_status(hba, &curr_status);
5228  	if (err) {
5229  		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5230  				__func__, err);
5231  		goto out;
5232  	} else if (curr_status > BKOPS_STATUS_MAX) {
5233  		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5234  				__func__, curr_status);
5235  		err = -EINVAL;
5236  		goto out;
5237  	}
5238  
5239  	if (curr_status >= status)
5240  		err = ufshcd_enable_auto_bkops(hba);
5241  	else
5242  		err = ufshcd_disable_auto_bkops(hba);
5243  out:
5244  	return err;
5245  }
5246  
5247  /**
5248   * ufshcd_urgent_bkops - handle urgent bkops exception event
5249   * @hba: per-adapter instance
5250   *
5251   * Enable fBackgroundOpsEn flag in the device to permit background
5252   * operations.
5253   *
5254   * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5255   * and negative error value for any other failure.
5256   */
ufshcd_urgent_bkops(struct ufs_hba * hba)5257  static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5258  {
5259  	return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5260  }
5261  
ufshcd_get_ee_status(struct ufs_hba * hba,u32 * status)5262  static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5263  {
5264  	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5265  			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5266  }
5267  
ufshcd_bkops_exception_event_handler(struct ufs_hba * hba)5268  static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5269  {
5270  	int err;
5271  	u32 curr_status = 0;
5272  
5273  	if (hba->is_urgent_bkops_lvl_checked)
5274  		goto enable_auto_bkops;
5275  
5276  	err = ufshcd_get_bkops_status(hba, &curr_status);
5277  	if (err) {
5278  		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5279  				__func__, err);
5280  		goto out;
5281  	}
5282  
5283  	/*
5284  	 * We are seeing that some devices are raising the urgent bkops
5285  	 * exception events even when BKOPS status doesn't indicate performace
5286  	 * impacted or critical. Handle these device by determining their urgent
5287  	 * bkops status at runtime.
5288  	 */
5289  	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5290  		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5291  				__func__, curr_status);
5292  		/* update the current status as the urgent bkops level */
5293  		hba->urgent_bkops_lvl = curr_status;
5294  		hba->is_urgent_bkops_lvl_checked = true;
5295  	}
5296  
5297  enable_auto_bkops:
5298  	err = ufshcd_enable_auto_bkops(hba);
5299  out:
5300  	if (err < 0)
5301  		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5302  				__func__, err);
5303  }
5304  
ufshcd_wb_ctrl(struct ufs_hba * hba,bool enable)5305  static int ufshcd_wb_ctrl(struct ufs_hba *hba, bool enable)
5306  {
5307  	int ret;
5308  	u8 index;
5309  	enum query_opcode opcode;
5310  
5311  	if (!ufshcd_is_wb_allowed(hba))
5312  		return 0;
5313  
5314  	if (!(enable ^ hba->wb_enabled))
5315  		return 0;
5316  	if (enable)
5317  		opcode = UPIU_QUERY_OPCODE_SET_FLAG;
5318  	else
5319  		opcode = UPIU_QUERY_OPCODE_CLEAR_FLAG;
5320  
5321  	index = ufshcd_wb_get_query_index(hba);
5322  	ret = ufshcd_query_flag_retry(hba, opcode,
5323  				      QUERY_FLAG_IDN_WB_EN, index, NULL);
5324  	if (ret) {
5325  		dev_err(hba->dev, "%s write booster %s failed %d\n",
5326  			__func__, enable ? "enable" : "disable", ret);
5327  		return ret;
5328  	}
5329  
5330  	hba->wb_enabled = enable;
5331  	dev_dbg(hba->dev, "%s write booster %s %d\n",
5332  			__func__, enable ? "enable" : "disable", ret);
5333  
5334  	return ret;
5335  }
5336  
ufshcd_wb_toggle_flush_during_h8(struct ufs_hba * hba,bool set)5337  static int ufshcd_wb_toggle_flush_during_h8(struct ufs_hba *hba, bool set)
5338  {
5339  	int val;
5340  	u8 index;
5341  
5342  	if (set)
5343  		val =  UPIU_QUERY_OPCODE_SET_FLAG;
5344  	else
5345  		val = UPIU_QUERY_OPCODE_CLEAR_FLAG;
5346  
5347  	index = ufshcd_wb_get_query_index(hba);
5348  	return ufshcd_query_flag_retry(hba, val,
5349  				QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8,
5350  				index, NULL);
5351  }
5352  
ufshcd_wb_toggle_flush(struct ufs_hba * hba,bool enable)5353  static inline void ufshcd_wb_toggle_flush(struct ufs_hba *hba, bool enable)
5354  {
5355  	if (hba->quirks & UFSHCI_QUIRK_SKIP_MANUAL_WB_FLUSH_CTRL)
5356  		return;
5357  
5358  	if (enable)
5359  		ufshcd_wb_buf_flush_enable(hba);
5360  	else
5361  		ufshcd_wb_buf_flush_disable(hba);
5362  
5363  }
5364  
ufshcd_wb_buf_flush_enable(struct ufs_hba * hba)5365  static int ufshcd_wb_buf_flush_enable(struct ufs_hba *hba)
5366  {
5367  	int ret;
5368  	u8 index;
5369  
5370  	if (!ufshcd_is_wb_allowed(hba) || hba->wb_buf_flush_enabled)
5371  		return 0;
5372  
5373  	index = ufshcd_wb_get_query_index(hba);
5374  	ret = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5375  				      QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN,
5376  				      index, NULL);
5377  	if (ret)
5378  		dev_err(hba->dev, "%s WB - buf flush enable failed %d\n",
5379  			__func__, ret);
5380  	else
5381  		hba->wb_buf_flush_enabled = true;
5382  
5383  	dev_dbg(hba->dev, "WB - Flush enabled: %d\n", ret);
5384  	return ret;
5385  }
5386  
ufshcd_wb_buf_flush_disable(struct ufs_hba * hba)5387  static int ufshcd_wb_buf_flush_disable(struct ufs_hba *hba)
5388  {
5389  	int ret;
5390  	u8 index;
5391  
5392  	if (!ufshcd_is_wb_allowed(hba) || !hba->wb_buf_flush_enabled)
5393  		return 0;
5394  
5395  	index = ufshcd_wb_get_query_index(hba);
5396  	ret = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5397  				      QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN,
5398  				      index, NULL);
5399  	if (ret) {
5400  		dev_warn(hba->dev, "%s: WB - buf flush disable failed %d\n",
5401  			 __func__, ret);
5402  	} else {
5403  		hba->wb_buf_flush_enabled = false;
5404  		dev_dbg(hba->dev, "WB - Flush disabled: %d\n", ret);
5405  	}
5406  
5407  	return ret;
5408  }
5409  
ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba * hba,u32 avail_buf)5410  static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
5411  						u32 avail_buf)
5412  {
5413  	u32 cur_buf;
5414  	int ret;
5415  	u8 index;
5416  
5417  	index = ufshcd_wb_get_query_index(hba);
5418  	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5419  					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
5420  					      index, 0, &cur_buf);
5421  	if (ret) {
5422  		dev_err(hba->dev, "%s dCurWriteBoosterBufferSize read failed %d\n",
5423  			__func__, ret);
5424  		return false;
5425  	}
5426  
5427  	if (!cur_buf) {
5428  		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
5429  			 cur_buf);
5430  		return false;
5431  	}
5432  	/* Let it continue to flush when available buffer exceeds threshold */
5433  	if (avail_buf < hba->vps->wb_flush_threshold)
5434  		return true;
5435  
5436  	return false;
5437  }
5438  
ufshcd_wb_need_flush(struct ufs_hba * hba)5439  static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
5440  {
5441  	int ret;
5442  	u32 avail_buf;
5443  	u8 index;
5444  
5445  	if (!ufshcd_is_wb_allowed(hba))
5446  		return false;
5447  	/*
5448  	 * The ufs device needs the vcc to be ON to flush.
5449  	 * With user-space reduction enabled, it's enough to enable flush
5450  	 * by checking only the available buffer. The threshold
5451  	 * defined here is > 90% full.
5452  	 * With user-space preserved enabled, the current-buffer
5453  	 * should be checked too because the wb buffer size can reduce
5454  	 * when disk tends to be full. This info is provided by current
5455  	 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
5456  	 * keeping vcc on when current buffer is empty.
5457  	 */
5458  	index = ufshcd_wb_get_query_index(hba);
5459  	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5460  				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
5461  				      index, 0, &avail_buf);
5462  	if (ret) {
5463  		dev_warn(hba->dev, "%s dAvailableWriteBoosterBufferSize read failed %d\n",
5464  			 __func__, ret);
5465  		return false;
5466  	}
5467  
5468  	if (!hba->dev_info.b_presrv_uspc_en) {
5469  		if (avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10))
5470  			return true;
5471  		return false;
5472  	}
5473  
5474  	return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
5475  }
5476  
ufshcd_rpm_dev_flush_recheck_work(struct work_struct * work)5477  static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
5478  {
5479  	struct ufs_hba *hba = container_of(to_delayed_work(work),
5480  					   struct ufs_hba,
5481  					   rpm_dev_flush_recheck_work);
5482  	/*
5483  	 * To prevent unnecessary VCC power drain after device finishes
5484  	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
5485  	 * after a certain delay to recheck the threshold by next runtime
5486  	 * suspend.
5487  	 */
5488  	pm_runtime_get_sync(hba->dev);
5489  	pm_runtime_put_sync(hba->dev);
5490  }
5491  
5492  /**
5493   * ufshcd_exception_event_handler - handle exceptions raised by device
5494   * @work: pointer to work data
5495   *
5496   * Read bExceptionEventStatus attribute from the device and handle the
5497   * exception event accordingly.
5498   */
ufshcd_exception_event_handler(struct work_struct * work)5499  static void ufshcd_exception_event_handler(struct work_struct *work)
5500  {
5501  	struct ufs_hba *hba;
5502  	int err;
5503  	u32 status = 0;
5504  	hba = container_of(work, struct ufs_hba, eeh_work);
5505  
5506  	pm_runtime_get_sync(hba->dev);
5507  	ufshcd_scsi_block_requests(hba);
5508  	err = ufshcd_get_ee_status(hba, &status);
5509  	if (err) {
5510  		dev_err(hba->dev, "%s: failed to get exception status %d\n",
5511  				__func__, err);
5512  		goto out;
5513  	}
5514  
5515  	status &= hba->ee_ctrl_mask;
5516  
5517  	if (status & MASK_EE_URGENT_BKOPS)
5518  		ufshcd_bkops_exception_event_handler(hba);
5519  
5520  out:
5521  	ufshcd_scsi_unblock_requests(hba);
5522  	/*
5523  	 * pm_runtime_get_noresume is called while scheduling
5524  	 * eeh_work to avoid suspend racing with exception work.
5525  	 * Hence decrement usage counter using pm_runtime_put_noidle
5526  	 * to allow suspend on completion of exception event handler.
5527  	 */
5528  	pm_runtime_put_noidle(hba->dev);
5529  	pm_runtime_put(hba->dev);
5530  	return;
5531  }
5532  
5533  /* Complete requests that have door-bell cleared */
ufshcd_complete_requests(struct ufs_hba * hba)5534  static void ufshcd_complete_requests(struct ufs_hba *hba)
5535  {
5536  	ufshcd_transfer_req_compl(hba);
5537  	ufshcd_tmc_handler(hba);
5538  }
5539  
5540  /**
5541   * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
5542   *				to recover from the DL NAC errors or not.
5543   * @hba: per-adapter instance
5544   *
5545   * Returns true if error handling is required, false otherwise
5546   */
ufshcd_quirk_dl_nac_errors(struct ufs_hba * hba)5547  static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
5548  {
5549  	unsigned long flags;
5550  	bool err_handling = true;
5551  
5552  	spin_lock_irqsave(hba->host->host_lock, flags);
5553  	/*
5554  	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
5555  	 * device fatal error and/or DL NAC & REPLAY timeout errors.
5556  	 */
5557  	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
5558  		goto out;
5559  
5560  	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
5561  	    ((hba->saved_err & UIC_ERROR) &&
5562  	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
5563  		goto out;
5564  
5565  	if ((hba->saved_err & UIC_ERROR) &&
5566  	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
5567  		int err;
5568  		/*
5569  		 * wait for 50ms to see if we can get any other errors or not.
5570  		 */
5571  		spin_unlock_irqrestore(hba->host->host_lock, flags);
5572  		msleep(50);
5573  		spin_lock_irqsave(hba->host->host_lock, flags);
5574  
5575  		/*
5576  		 * now check if we have got any other severe errors other than
5577  		 * DL NAC error?
5578  		 */
5579  		if ((hba->saved_err & INT_FATAL_ERRORS) ||
5580  		    ((hba->saved_err & UIC_ERROR) &&
5581  		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
5582  			goto out;
5583  
5584  		/*
5585  		 * As DL NAC is the only error received so far, send out NOP
5586  		 * command to confirm if link is still active or not.
5587  		 *   - If we don't get any response then do error recovery.
5588  		 *   - If we get response then clear the DL NAC error bit.
5589  		 */
5590  
5591  		spin_unlock_irqrestore(hba->host->host_lock, flags);
5592  		err = ufshcd_verify_dev_init(hba);
5593  		spin_lock_irqsave(hba->host->host_lock, flags);
5594  
5595  		if (err)
5596  			goto out;
5597  
5598  		/* Link seems to be alive hence ignore the DL NAC errors */
5599  		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
5600  			hba->saved_err &= ~UIC_ERROR;
5601  		/* clear NAC error */
5602  		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
5603  		if (!hba->saved_uic_err)
5604  			err_handling = false;
5605  	}
5606  out:
5607  	spin_unlock_irqrestore(hba->host->host_lock, flags);
5608  	return err_handling;
5609  }
5610  
5611  /* host lock must be held before calling this func */
ufshcd_is_saved_err_fatal(struct ufs_hba * hba)5612  static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
5613  {
5614  	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
5615  	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
5616  }
5617  
5618  /* host lock must be held before calling this func */
ufshcd_schedule_eh_work(struct ufs_hba * hba)5619  static inline void ufshcd_schedule_eh_work(struct ufs_hba *hba)
5620  {
5621  	/* handle fatal errors only when link is not in error state */
5622  	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
5623  		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
5624  		    ufshcd_is_saved_err_fatal(hba))
5625  			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
5626  		else
5627  			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
5628  		queue_work(hba->eh_wq, &hba->eh_work);
5629  	}
5630  }
5631  
ufshcd_err_handling_prepare(struct ufs_hba * hba)5632  static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
5633  {
5634  	pm_runtime_get_sync(hba->dev);
5635  	if (pm_runtime_suspended(hba->dev)) {
5636  		/*
5637  		 * Don't assume anything of pm_runtime_get_sync(), if
5638  		 * resume fails, irq and clocks can be OFF, and powers
5639  		 * can be OFF or in LPM.
5640  		 */
5641  		ufshcd_setup_hba_vreg(hba, true);
5642  		ufshcd_enable_irq(hba);
5643  		ufshcd_setup_vreg(hba, true);
5644  		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
5645  		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
5646  		ufshcd_hold(hba, false);
5647  		if (!ufshcd_is_clkgating_allowed(hba))
5648  			ufshcd_setup_clocks(hba, true);
5649  		ufshcd_release(hba);
5650  		ufshcd_vops_resume(hba, UFS_RUNTIME_PM);
5651  	} else {
5652  		ufshcd_hold(hba, false);
5653  		if (hba->clk_scaling.is_allowed) {
5654  			cancel_work_sync(&hba->clk_scaling.suspend_work);
5655  			cancel_work_sync(&hba->clk_scaling.resume_work);
5656  			ufshcd_suspend_clkscaling(hba);
5657  		}
5658  	}
5659  }
5660  
ufshcd_err_handling_unprepare(struct ufs_hba * hba)5661  static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
5662  {
5663  	ufshcd_release(hba);
5664  	if (hba->clk_scaling.is_allowed)
5665  		ufshcd_resume_clkscaling(hba);
5666  	pm_runtime_put(hba->dev);
5667  }
5668  
ufshcd_err_handling_should_stop(struct ufs_hba * hba)5669  static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
5670  {
5671  	return (hba->ufshcd_state == UFSHCD_STATE_ERROR ||
5672  		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
5673  			ufshcd_is_link_broken(hba))));
5674  }
5675  
5676  #ifdef CONFIG_PM
ufshcd_recover_pm_error(struct ufs_hba * hba)5677  static void ufshcd_recover_pm_error(struct ufs_hba *hba)
5678  {
5679  	struct Scsi_Host *shost = hba->host;
5680  	struct scsi_device *sdev;
5681  	struct request_queue *q;
5682  	int ret;
5683  
5684  	/*
5685  	 * Set RPM status of hba device to RPM_ACTIVE,
5686  	 * this also clears its runtime error.
5687  	 */
5688  	ret = pm_runtime_set_active(hba->dev);
5689  	/*
5690  	 * If hba device had runtime error, we also need to resume those
5691  	 * scsi devices under hba in case any of them has failed to be
5692  	 * resumed due to hba runtime resume failure. This is to unblock
5693  	 * blk_queue_enter in case there are bios waiting inside it.
5694  	 */
5695  	if (!ret) {
5696  		shost_for_each_device(sdev, shost) {
5697  			q = sdev->request_queue;
5698  			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
5699  				       q->rpm_status == RPM_SUSPENDING))
5700  				pm_request_resume(q->dev);
5701  		}
5702  	}
5703  }
5704  #else
ufshcd_recover_pm_error(struct ufs_hba * hba)5705  static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
5706  {
5707  }
5708  #endif
5709  
ufshcd_is_pwr_mode_restore_needed(struct ufs_hba * hba)5710  static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
5711  {
5712  	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
5713  	u32 mode;
5714  
5715  	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
5716  
5717  	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
5718  		return true;
5719  
5720  	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
5721  		return true;
5722  
5723  	return false;
5724  }
5725  
5726  /**
5727   * ufshcd_err_handler - handle UFS errors that require s/w attention
5728   * @work: pointer to work structure
5729   */
ufshcd_err_handler(struct work_struct * work)5730  static void ufshcd_err_handler(struct work_struct *work)
5731  {
5732  	struct ufs_hba *hba;
5733  	unsigned long flags;
5734  	bool err_xfer = false;
5735  	bool err_tm = false;
5736  	int err = 0, pmc_err;
5737  	int tag;
5738  	bool needs_reset = false, needs_restore = false;
5739  
5740  	hba = container_of(work, struct ufs_hba, eh_work);
5741  
5742  	spin_lock_irqsave(hba->host->host_lock, flags);
5743  	if (ufshcd_err_handling_should_stop(hba)) {
5744  		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
5745  			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
5746  		spin_unlock_irqrestore(hba->host->host_lock, flags);
5747  		return;
5748  	}
5749  	ufshcd_set_eh_in_progress(hba);
5750  	spin_unlock_irqrestore(hba->host->host_lock, flags);
5751  	ufshcd_err_handling_prepare(hba);
5752  	spin_lock_irqsave(hba->host->host_lock, flags);
5753  	ufshcd_scsi_block_requests(hba);
5754  	/*
5755  	 * A full reset and restore might have happened after preparation
5756  	 * is finished, double check whether we should stop.
5757  	 */
5758  	if (ufshcd_err_handling_should_stop(hba)) {
5759  		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
5760  			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
5761  		goto out;
5762  	}
5763  	hba->ufshcd_state = UFSHCD_STATE_RESET;
5764  
5765  	/* Complete requests that have door-bell cleared by h/w */
5766  	ufshcd_complete_requests(hba);
5767  
5768  	if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
5769  		bool ret;
5770  
5771  		spin_unlock_irqrestore(hba->host->host_lock, flags);
5772  		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
5773  		ret = ufshcd_quirk_dl_nac_errors(hba);
5774  		spin_lock_irqsave(hba->host->host_lock, flags);
5775  		if (!ret && !hba->force_reset && ufshcd_is_link_active(hba))
5776  			goto skip_err_handling;
5777  	}
5778  
5779  	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
5780  	    ufshcd_is_saved_err_fatal(hba) ||
5781  	    ((hba->saved_err & UIC_ERROR) &&
5782  	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
5783  				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR))))
5784  		needs_reset = true;
5785  
5786  	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
5787  	    (hba->saved_uic_err &&
5788  	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
5789  		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
5790  
5791  		spin_unlock_irqrestore(hba->host->host_lock, flags);
5792  		ufshcd_print_host_state(hba);
5793  		ufshcd_print_pwr_info(hba);
5794  		ufshcd_print_host_regs(hba);
5795  		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
5796  		ufshcd_print_trs(hba, hba->outstanding_reqs, pr_prdt);
5797  		spin_lock_irqsave(hba->host->host_lock, flags);
5798  	}
5799  
5800  	/*
5801  	 * if host reset is required then skip clearing the pending
5802  	 * transfers forcefully because they will get cleared during
5803  	 * host reset and restore
5804  	 */
5805  	if (needs_reset)
5806  		goto do_reset;
5807  
5808  	/*
5809  	 * If LINERESET was caught, UFS might have been put to PWM mode,
5810  	 * check if power mode restore is needed.
5811  	 */
5812  	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
5813  		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
5814  		if (!hba->saved_uic_err)
5815  			hba->saved_err &= ~UIC_ERROR;
5816  		spin_unlock_irqrestore(hba->host->host_lock, flags);
5817  		if (ufshcd_is_pwr_mode_restore_needed(hba))
5818  			needs_restore = true;
5819  		spin_lock_irqsave(hba->host->host_lock, flags);
5820  		if (!hba->saved_err && !needs_restore)
5821  			goto skip_err_handling;
5822  	}
5823  
5824  	hba->silence_err_logs = true;
5825  	/* release lock as clear command might sleep */
5826  	spin_unlock_irqrestore(hba->host->host_lock, flags);
5827  	/* Clear pending transfer requests */
5828  	for_each_set_bit(tag, &hba->outstanding_reqs, hba->nutrs) {
5829  		if (ufshcd_try_to_abort_task(hba, tag)) {
5830  			err_xfer = true;
5831  			goto lock_skip_pending_xfer_clear;
5832  		}
5833  	}
5834  
5835  	/* Clear pending task management requests */
5836  	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
5837  		if (ufshcd_clear_tm_cmd(hba, tag)) {
5838  			err_tm = true;
5839  			goto lock_skip_pending_xfer_clear;
5840  		}
5841  	}
5842  
5843  lock_skip_pending_xfer_clear:
5844  	spin_lock_irqsave(hba->host->host_lock, flags);
5845  
5846  	/* Complete the requests that are cleared by s/w */
5847  	ufshcd_complete_requests(hba);
5848  	hba->silence_err_logs = false;
5849  
5850  	if (err_xfer || err_tm) {
5851  		needs_reset = true;
5852  		goto do_reset;
5853  	}
5854  
5855  	/*
5856  	 * After all reqs and tasks are cleared from doorbell,
5857  	 * now it is safe to retore power mode.
5858  	 */
5859  	if (needs_restore) {
5860  		spin_unlock_irqrestore(hba->host->host_lock, flags);
5861  		/*
5862  		 * Hold the scaling lock just in case dev cmds
5863  		 * are sent via bsg and/or sysfs.
5864  		 */
5865  		down_write(&hba->clk_scaling_lock);
5866  		hba->force_pmc = true;
5867  		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
5868  		if (pmc_err) {
5869  			needs_reset = true;
5870  			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
5871  					__func__, pmc_err);
5872  		}
5873  		hba->force_pmc = false;
5874  		ufshcd_print_pwr_info(hba);
5875  		up_write(&hba->clk_scaling_lock);
5876  		spin_lock_irqsave(hba->host->host_lock, flags);
5877  	}
5878  
5879  do_reset:
5880  	/* Fatal errors need reset */
5881  	if (needs_reset) {
5882  		unsigned long max_doorbells = (1UL << hba->nutrs) - 1;
5883  
5884  		/*
5885  		 * ufshcd_reset_and_restore() does the link reinitialization
5886  		 * which will need atleast one empty doorbell slot to send the
5887  		 * device management commands (NOP and query commands).
5888  		 * If there is no slot empty at this moment then free up last
5889  		 * slot forcefully.
5890  		 */
5891  		if (hba->outstanding_reqs == max_doorbells)
5892  			__ufshcd_transfer_req_compl(hba,
5893  						    (1UL << (hba->nutrs - 1)));
5894  
5895  		hba->force_reset = false;
5896  		spin_unlock_irqrestore(hba->host->host_lock, flags);
5897  		err = ufshcd_reset_and_restore(hba);
5898  		if (err)
5899  			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
5900  					__func__, err);
5901  		else
5902  			ufshcd_recover_pm_error(hba);
5903  		spin_lock_irqsave(hba->host->host_lock, flags);
5904  	}
5905  
5906  skip_err_handling:
5907  	if (!needs_reset) {
5908  		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
5909  			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
5910  		if (hba->saved_err || hba->saved_uic_err)
5911  			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
5912  			    __func__, hba->saved_err, hba->saved_uic_err);
5913  	}
5914  
5915  out:
5916  	ufshcd_clear_eh_in_progress(hba);
5917  	spin_unlock_irqrestore(hba->host->host_lock, flags);
5918  	ufshcd_scsi_unblock_requests(hba);
5919  	ufshcd_err_handling_unprepare(hba);
5920  }
5921  
5922  /**
5923   * ufshcd_update_uic_error - check and set fatal UIC error flags.
5924   * @hba: per-adapter instance
5925   *
5926   * Returns
5927   *  IRQ_HANDLED - If interrupt is valid
5928   *  IRQ_NONE    - If invalid interrupt
5929   */
ufshcd_update_uic_error(struct ufs_hba * hba)5930  static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
5931  {
5932  	u32 reg;
5933  	irqreturn_t retval = IRQ_NONE;
5934  
5935  	/* PHY layer error */
5936  	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
5937  	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
5938  	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
5939  		ufshcd_update_reg_hist(&hba->ufs_stats.pa_err, reg);
5940  		/*
5941  		 * To know whether this error is fatal or not, DB timeout
5942  		 * must be checked but this error is handled separately.
5943  		 */
5944  		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
5945  			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
5946  					__func__);
5947  
5948  		/* Got a LINERESET indication. */
5949  		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
5950  			struct uic_command *cmd = NULL;
5951  
5952  			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
5953  			if (hba->uic_async_done && hba->active_uic_cmd)
5954  				cmd = hba->active_uic_cmd;
5955  			/*
5956  			 * Ignore the LINERESET during power mode change
5957  			 * operation via DME_SET command.
5958  			 */
5959  			if (cmd && (cmd->command == UIC_CMD_DME_SET))
5960  				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
5961  		}
5962  		retval |= IRQ_HANDLED;
5963  	}
5964  
5965  	/* PA_INIT_ERROR is fatal and needs UIC reset */
5966  	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
5967  	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
5968  	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
5969  		ufshcd_update_reg_hist(&hba->ufs_stats.dl_err, reg);
5970  
5971  		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
5972  			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
5973  		else if (hba->dev_quirks &
5974  				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
5975  			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
5976  				hba->uic_error |=
5977  					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
5978  			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
5979  				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
5980  		}
5981  		retval |= IRQ_HANDLED;
5982  	}
5983  
5984  	/* UIC NL/TL/DME errors needs software retry */
5985  	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
5986  	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
5987  	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
5988  		ufshcd_update_reg_hist(&hba->ufs_stats.nl_err, reg);
5989  		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
5990  		retval |= IRQ_HANDLED;
5991  	}
5992  
5993  	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
5994  	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
5995  	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
5996  		ufshcd_update_reg_hist(&hba->ufs_stats.tl_err, reg);
5997  		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
5998  		retval |= IRQ_HANDLED;
5999  	}
6000  
6001  	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6002  	if ((reg & UIC_DME_ERROR) &&
6003  	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6004  		ufshcd_update_reg_hist(&hba->ufs_stats.dme_err, reg);
6005  		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6006  		retval |= IRQ_HANDLED;
6007  	}
6008  
6009  	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6010  			__func__, hba->uic_error);
6011  	return retval;
6012  }
6013  
ufshcd_is_auto_hibern8_error(struct ufs_hba * hba,u32 intr_mask)6014  static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
6015  					 u32 intr_mask)
6016  {
6017  	if (!ufshcd_is_auto_hibern8_supported(hba) ||
6018  	    !ufshcd_is_auto_hibern8_enabled(hba))
6019  		return false;
6020  
6021  	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
6022  		return false;
6023  
6024  	if (hba->active_uic_cmd &&
6025  	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
6026  	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
6027  		return false;
6028  
6029  	return true;
6030  }
6031  
6032  /**
6033   * ufshcd_check_errors - Check for errors that need s/w attention
6034   * @hba: per-adapter instance
6035   *
6036   * Returns
6037   *  IRQ_HANDLED - If interrupt is valid
6038   *  IRQ_NONE    - If invalid interrupt
6039   */
ufshcd_check_errors(struct ufs_hba * hba)6040  static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba)
6041  {
6042  	bool queue_eh_work = false;
6043  	irqreturn_t retval = IRQ_NONE;
6044  
6045  	if (hba->errors & INT_FATAL_ERRORS) {
6046  		ufshcd_update_reg_hist(&hba->ufs_stats.fatal_err, hba->errors);
6047  		queue_eh_work = true;
6048  	}
6049  
6050  	if (hba->errors & UIC_ERROR) {
6051  		hba->uic_error = 0;
6052  		retval = ufshcd_update_uic_error(hba);
6053  		if (hba->uic_error)
6054  			queue_eh_work = true;
6055  	}
6056  
6057  	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6058  		dev_err(hba->dev,
6059  			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6060  			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6061  			"Enter" : "Exit",
6062  			hba->errors, ufshcd_get_upmcrs(hba));
6063  		ufshcd_update_reg_hist(&hba->ufs_stats.auto_hibern8_err,
6064  				       hba->errors);
6065  		ufshcd_set_link_broken(hba);
6066  		queue_eh_work = true;
6067  	}
6068  
6069  	if (queue_eh_work) {
6070  		/*
6071  		 * update the transfer error masks to sticky bits, let's do this
6072  		 * irrespective of current ufshcd_state.
6073  		 */
6074  		hba->saved_err |= hba->errors;
6075  		hba->saved_uic_err |= hba->uic_error;
6076  
6077  		/* dump controller state before resetting */
6078  		if ((hba->saved_err & (INT_FATAL_ERRORS)) ||
6079  		    (hba->saved_uic_err &&
6080  		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6081  			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6082  					__func__, hba->saved_err,
6083  					hba->saved_uic_err);
6084  			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6085  					 "host_regs: ");
6086  			ufshcd_print_pwr_info(hba);
6087  		}
6088  		ufshcd_schedule_eh_work(hba);
6089  		retval |= IRQ_HANDLED;
6090  	}
6091  	/*
6092  	 * if (!queue_eh_work) -
6093  	 * Other errors are either non-fatal where host recovers
6094  	 * itself without s/w intervention or errors that will be
6095  	 * handled by the SCSI core layer.
6096  	 */
6097  	return retval;
6098  }
6099  
6100  struct ctm_info {
6101  	struct ufs_hba	*hba;
6102  	unsigned long	pending;
6103  	unsigned int	ncpl;
6104  };
6105  
ufshcd_compl_tm(struct request * req,void * priv,bool reserved)6106  static bool ufshcd_compl_tm(struct request *req, void *priv, bool reserved)
6107  {
6108  	struct ctm_info *const ci = priv;
6109  	struct completion *c;
6110  
6111  	WARN_ON_ONCE(reserved);
6112  	if (test_bit(req->tag, &ci->pending))
6113  		return true;
6114  	ci->ncpl++;
6115  	c = req->end_io_data;
6116  	if (c)
6117  		complete(c);
6118  	return true;
6119  }
6120  
6121  /**
6122   * ufshcd_tmc_handler - handle task management function completion
6123   * @hba: per adapter instance
6124   *
6125   * Returns
6126   *  IRQ_HANDLED - If interrupt is valid
6127   *  IRQ_NONE    - If invalid interrupt
6128   */
ufshcd_tmc_handler(struct ufs_hba * hba)6129  static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6130  {
6131  	struct request_queue *q = hba->tmf_queue;
6132  	struct ctm_info ci = {
6133  		.hba	 = hba,
6134  		.pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL),
6135  	};
6136  
6137  	blk_mq_tagset_busy_iter(q->tag_set, ufshcd_compl_tm, &ci);
6138  	return ci.ncpl ? IRQ_HANDLED : IRQ_NONE;
6139  }
6140  
6141  /**
6142   * ufshcd_sl_intr - Interrupt service routine
6143   * @hba: per adapter instance
6144   * @intr_status: contains interrupts generated by the controller
6145   *
6146   * Returns
6147   *  IRQ_HANDLED - If interrupt is valid
6148   *  IRQ_NONE    - If invalid interrupt
6149   */
ufshcd_sl_intr(struct ufs_hba * hba,u32 intr_status)6150  static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6151  {
6152  	irqreturn_t retval = IRQ_NONE;
6153  
6154  	hba->errors = UFSHCD_ERROR_MASK & intr_status;
6155  
6156  	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
6157  		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
6158  
6159  	if (hba->errors)
6160  		retval |= ufshcd_check_errors(hba);
6161  
6162  	if (intr_status & UFSHCD_UIC_MASK)
6163  		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6164  
6165  	if (intr_status & UTP_TASK_REQ_COMPL)
6166  		retval |= ufshcd_tmc_handler(hba);
6167  
6168  	if (intr_status & UTP_TRANSFER_REQ_COMPL)
6169  		retval |= ufshcd_transfer_req_compl(hba);
6170  
6171  	return retval;
6172  }
6173  
6174  /**
6175   * ufshcd_intr - Main interrupt service routine
6176   * @irq: irq number
6177   * @__hba: pointer to adapter instance
6178   *
6179   * Returns
6180   *  IRQ_HANDLED - If interrupt is valid
6181   *  IRQ_NONE    - If invalid interrupt
6182   */
ufshcd_intr(int irq,void * __hba)6183  static irqreturn_t ufshcd_intr(int irq, void *__hba)
6184  {
6185  	u32 intr_status, enabled_intr_status = 0;
6186  	irqreturn_t retval = IRQ_NONE;
6187  	struct ufs_hba *hba = __hba;
6188  	int retries = hba->nutrs;
6189  
6190  	spin_lock(hba->host->host_lock);
6191  	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6192  	hba->ufs_stats.last_intr_status = intr_status;
6193  	hba->ufs_stats.last_intr_ts = ktime_get();
6194  
6195  	/*
6196  	 * There could be max of hba->nutrs reqs in flight and in worst case
6197  	 * if the reqs get finished 1 by 1 after the interrupt status is
6198  	 * read, make sure we handle them by checking the interrupt status
6199  	 * again in a loop until we process all of the reqs before returning.
6200  	 */
6201  	while (intr_status && retries--) {
6202  		enabled_intr_status =
6203  			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6204  		if (intr_status)
6205  			ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
6206  		if (enabled_intr_status)
6207  			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
6208  
6209  		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6210  	}
6211  
6212  	if (enabled_intr_status && retval == IRQ_NONE) {
6213  		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x\n",
6214  					__func__, intr_status);
6215  		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
6216  	}
6217  
6218  	spin_unlock(hba->host->host_lock);
6219  	return retval;
6220  }
6221  
ufshcd_clear_tm_cmd(struct ufs_hba * hba,int tag)6222  static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
6223  {
6224  	int err = 0;
6225  	u32 mask = 1 << tag;
6226  	unsigned long flags;
6227  
6228  	if (!test_bit(tag, &hba->outstanding_tasks))
6229  		goto out;
6230  
6231  	spin_lock_irqsave(hba->host->host_lock, flags);
6232  	ufshcd_utmrl_clear(hba, tag);
6233  	spin_unlock_irqrestore(hba->host->host_lock, flags);
6234  
6235  	/* poll for max. 1 sec to clear door bell register by h/w */
6236  	err = ufshcd_wait_for_register(hba,
6237  			REG_UTP_TASK_REQ_DOOR_BELL,
6238  			mask, 0, 1000, 1000);
6239  out:
6240  	return err;
6241  }
6242  
__ufshcd_issue_tm_cmd(struct ufs_hba * hba,struct utp_task_req_desc * treq,u8 tm_function)6243  static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
6244  		struct utp_task_req_desc *treq, u8 tm_function)
6245  {
6246  	struct request_queue *q = hba->tmf_queue;
6247  	struct Scsi_Host *host = hba->host;
6248  	DECLARE_COMPLETION_ONSTACK(wait);
6249  	struct request *req;
6250  	unsigned long flags;
6251  	int free_slot, task_tag, err;
6252  
6253  	/*
6254  	 * Get free slot, sleep if slots are unavailable.
6255  	 * Even though we use wait_event() which sleeps indefinitely,
6256  	 * the maximum wait time is bounded by %TM_CMD_TIMEOUT.
6257  	 */
6258  	req = blk_get_request(q, REQ_OP_DRV_OUT, BLK_MQ_REQ_RESERVED);
6259  	req->end_io_data = &wait;
6260  	free_slot = req->tag;
6261  	WARN_ON_ONCE(free_slot < 0 || free_slot >= hba->nutmrs);
6262  	ufshcd_hold(hba, false);
6263  
6264  	spin_lock_irqsave(host->host_lock, flags);
6265  	task_tag = hba->nutrs + free_slot;
6266  
6267  	treq->req_header.dword_0 |= cpu_to_be32(task_tag);
6268  
6269  	memcpy(hba->utmrdl_base_addr + free_slot, treq, sizeof(*treq));
6270  	ufshcd_vops_setup_task_mgmt(hba, free_slot, tm_function);
6271  
6272  	/* send command to the controller */
6273  	__set_bit(free_slot, &hba->outstanding_tasks);
6274  
6275  	/* Make sure descriptors are ready before ringing the task doorbell */
6276  	wmb();
6277  
6278  	ufshcd_writel(hba, 1 << free_slot, REG_UTP_TASK_REQ_DOOR_BELL);
6279  	/* Make sure that doorbell is committed immediately */
6280  	wmb();
6281  
6282  	spin_unlock_irqrestore(host->host_lock, flags);
6283  
6284  	ufshcd_add_tm_upiu_trace(hba, task_tag, "tm_send");
6285  
6286  	/* wait until the task management command is completed */
6287  	err = wait_for_completion_io_timeout(&wait,
6288  			msecs_to_jiffies(TM_CMD_TIMEOUT));
6289  	if (!err) {
6290  		/*
6291  		 * Make sure that ufshcd_compl_tm() does not trigger a
6292  		 * use-after-free.
6293  		 */
6294  		req->end_io_data = NULL;
6295  		ufshcd_add_tm_upiu_trace(hba, task_tag, "tm_complete_err");
6296  		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
6297  				__func__, tm_function);
6298  		if (ufshcd_clear_tm_cmd(hba, free_slot))
6299  			dev_WARN(hba->dev, "%s: unable clear tm cmd (slot %d) after timeout\n",
6300  					__func__, free_slot);
6301  		err = -ETIMEDOUT;
6302  	} else {
6303  		err = 0;
6304  		memcpy(treq, hba->utmrdl_base_addr + free_slot, sizeof(*treq));
6305  
6306  		ufshcd_add_tm_upiu_trace(hba, task_tag, "tm_complete");
6307  	}
6308  
6309  	spin_lock_irqsave(hba->host->host_lock, flags);
6310  	__clear_bit(free_slot, &hba->outstanding_tasks);
6311  	spin_unlock_irqrestore(hba->host->host_lock, flags);
6312  
6313  	blk_put_request(req);
6314  
6315  	ufshcd_release(hba);
6316  	return err;
6317  }
6318  
6319  /**
6320   * ufshcd_issue_tm_cmd - issues task management commands to controller
6321   * @hba: per adapter instance
6322   * @lun_id: LUN ID to which TM command is sent
6323   * @task_id: task ID to which the TM command is applicable
6324   * @tm_function: task management function opcode
6325   * @tm_response: task management service response return value
6326   *
6327   * Returns non-zero value on error, zero on success.
6328   */
ufshcd_issue_tm_cmd(struct ufs_hba * hba,int lun_id,int task_id,u8 tm_function,u8 * tm_response)6329  static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
6330  		u8 tm_function, u8 *tm_response)
6331  {
6332  	struct utp_task_req_desc treq = { { 0 }, };
6333  	int ocs_value, err;
6334  
6335  	/* Configure task request descriptor */
6336  	treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
6337  	treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
6338  
6339  	/* Configure task request UPIU */
6340  	treq.req_header.dword_0 = cpu_to_be32(lun_id << 8) |
6341  				  cpu_to_be32(UPIU_TRANSACTION_TASK_REQ << 24);
6342  	treq.req_header.dword_1 = cpu_to_be32(tm_function << 16);
6343  
6344  	/*
6345  	 * The host shall provide the same value for LUN field in the basic
6346  	 * header and for Input Parameter.
6347  	 */
6348  	treq.input_param1 = cpu_to_be32(lun_id);
6349  	treq.input_param2 = cpu_to_be32(task_id);
6350  
6351  	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
6352  	if (err == -ETIMEDOUT)
6353  		return err;
6354  
6355  	ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS;
6356  	if (ocs_value != OCS_SUCCESS)
6357  		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
6358  				__func__, ocs_value);
6359  	else if (tm_response)
6360  		*tm_response = be32_to_cpu(treq.output_param1) &
6361  				MASK_TM_SERVICE_RESP;
6362  	return err;
6363  }
6364  
6365  /**
6366   * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
6367   * @hba:	per-adapter instance
6368   * @req_upiu:	upiu request
6369   * @rsp_upiu:	upiu reply
6370   * @desc_buff:	pointer to descriptor buffer, NULL if NA
6371   * @buff_len:	descriptor size, 0 if NA
6372   * @cmd_type:	specifies the type (NOP, Query...)
6373   * @desc_op:	descriptor operation
6374   *
6375   * Those type of requests uses UTP Transfer Request Descriptor - utrd.
6376   * Therefore, it "rides" the device management infrastructure: uses its tag and
6377   * tasks work queues.
6378   *
6379   * Since there is only one available tag for device management commands,
6380   * the caller is expected to hold the hba->dev_cmd.lock mutex.
6381   */
ufshcd_issue_devman_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,u8 * desc_buff,int * buff_len,enum dev_cmd_type cmd_type,enum query_opcode desc_op)6382  static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
6383  					struct utp_upiu_req *req_upiu,
6384  					struct utp_upiu_req *rsp_upiu,
6385  					u8 *desc_buff, int *buff_len,
6386  					enum dev_cmd_type cmd_type,
6387  					enum query_opcode desc_op)
6388  {
6389  	struct request_queue *q = hba->cmd_queue;
6390  	struct request *req;
6391  	struct ufshcd_lrb *lrbp;
6392  	int err = 0;
6393  	int tag;
6394  	struct completion wait;
6395  	unsigned long flags;
6396  	u8 upiu_flags;
6397  
6398  	down_read(&hba->clk_scaling_lock);
6399  
6400  	req = blk_get_request(q, REQ_OP_DRV_OUT, 0);
6401  	if (IS_ERR(req)) {
6402  		err = PTR_ERR(req);
6403  		goto out_unlock;
6404  	}
6405  	tag = req->tag;
6406  	WARN_ON_ONCE(!ufshcd_valid_tag(hba, tag));
6407  
6408  	init_completion(&wait);
6409  	lrbp = &hba->lrb[tag];
6410  	WARN_ON(lrbp->cmd);
6411  
6412  	lrbp->cmd = NULL;
6413  	lrbp->sense_bufflen = 0;
6414  	lrbp->sense_buffer = NULL;
6415  	lrbp->task_tag = tag;
6416  	lrbp->lun = 0;
6417  	lrbp->intr_cmd = true;
6418  	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
6419  	hba->dev_cmd.type = cmd_type;
6420  
6421  	switch (hba->ufs_version) {
6422  	case UFSHCI_VERSION_10:
6423  	case UFSHCI_VERSION_11:
6424  		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
6425  		break;
6426  	default:
6427  		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
6428  		break;
6429  	}
6430  
6431  	/* update the task tag in the request upiu */
6432  	req_upiu->header.dword_0 |= cpu_to_be32(tag);
6433  
6434  	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE);
6435  
6436  	/* just copy the upiu request as it is */
6437  	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
6438  	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
6439  		/* The Data Segment Area is optional depending upon the query
6440  		 * function value. for WRITE DESCRIPTOR, the data segment
6441  		 * follows right after the tsf.
6442  		 */
6443  		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
6444  		*buff_len = 0;
6445  	}
6446  
6447  	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
6448  
6449  	hba->dev_cmd.complete = &wait;
6450  
6451  	/* Make sure descriptors are ready before ringing the doorbell */
6452  	wmb();
6453  	spin_lock_irqsave(hba->host->host_lock, flags);
6454  	ufshcd_send_command(hba, tag);
6455  	spin_unlock_irqrestore(hba->host->host_lock, flags);
6456  
6457  	/*
6458  	 * ignore the returning value here - ufshcd_check_query_response is
6459  	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
6460  	 * read the response directly ignoring all errors.
6461  	 */
6462  	ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT);
6463  
6464  	/* just copy the upiu response as it is */
6465  	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
6466  	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
6467  		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
6468  		u16 resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) &
6469  			       MASK_QUERY_DATA_SEG_LEN;
6470  
6471  		if (*buff_len >= resp_len) {
6472  			memcpy(desc_buff, descp, resp_len);
6473  			*buff_len = resp_len;
6474  		} else {
6475  			dev_warn(hba->dev,
6476  				 "%s: rsp size %d is bigger than buffer size %d",
6477  				 __func__, resp_len, *buff_len);
6478  			*buff_len = 0;
6479  			err = -EINVAL;
6480  		}
6481  	}
6482  
6483  	blk_put_request(req);
6484  out_unlock:
6485  	up_read(&hba->clk_scaling_lock);
6486  	return err;
6487  }
6488  
6489  /**
6490   * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
6491   * @hba:	per-adapter instance
6492   * @req_upiu:	upiu request
6493   * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
6494   * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
6495   * @desc_buff:	pointer to descriptor buffer, NULL if NA
6496   * @buff_len:	descriptor size, 0 if NA
6497   * @desc_op:	descriptor operation
6498   *
6499   * Supports UTP Transfer requests (nop and query), and UTP Task
6500   * Management requests.
6501   * It is up to the caller to fill the upiu conent properly, as it will
6502   * be copied without any further input validations.
6503   */
ufshcd_exec_raw_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,int msgcode,u8 * desc_buff,int * buff_len,enum query_opcode desc_op)6504  int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
6505  			     struct utp_upiu_req *req_upiu,
6506  			     struct utp_upiu_req *rsp_upiu,
6507  			     int msgcode,
6508  			     u8 *desc_buff, int *buff_len,
6509  			     enum query_opcode desc_op)
6510  {
6511  	int err;
6512  	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
6513  	struct utp_task_req_desc treq = { { 0 }, };
6514  	int ocs_value;
6515  	u8 tm_f = be32_to_cpu(req_upiu->header.dword_1) >> 16 & MASK_TM_FUNC;
6516  
6517  	switch (msgcode) {
6518  	case UPIU_TRANSACTION_NOP_OUT:
6519  		cmd_type = DEV_CMD_TYPE_NOP;
6520  		fallthrough;
6521  	case UPIU_TRANSACTION_QUERY_REQ:
6522  		ufshcd_hold(hba, false);
6523  		mutex_lock(&hba->dev_cmd.lock);
6524  		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
6525  						   desc_buff, buff_len,
6526  						   cmd_type, desc_op);
6527  		mutex_unlock(&hba->dev_cmd.lock);
6528  		ufshcd_release(hba);
6529  
6530  		break;
6531  	case UPIU_TRANSACTION_TASK_REQ:
6532  		treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
6533  		treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
6534  
6535  		memcpy(&treq.req_header, req_upiu, sizeof(*req_upiu));
6536  
6537  		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
6538  		if (err == -ETIMEDOUT)
6539  			break;
6540  
6541  		ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS;
6542  		if (ocs_value != OCS_SUCCESS) {
6543  			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
6544  				ocs_value);
6545  			break;
6546  		}
6547  
6548  		memcpy(rsp_upiu, &treq.rsp_header, sizeof(*rsp_upiu));
6549  
6550  		break;
6551  	default:
6552  		err = -EINVAL;
6553  
6554  		break;
6555  	}
6556  
6557  	return err;
6558  }
6559  
6560  /**
6561   * ufshcd_eh_device_reset_handler - device reset handler registered to
6562   *                                    scsi layer.
6563   * @cmd: SCSI command pointer
6564   *
6565   * Returns SUCCESS/FAILED
6566   */
ufshcd_eh_device_reset_handler(struct scsi_cmnd * cmd)6567  static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
6568  {
6569  	struct Scsi_Host *host;
6570  	struct ufs_hba *hba;
6571  	unsigned int tag;
6572  	u32 pos;
6573  	int err;
6574  	u8 resp = 0xF;
6575  	struct ufshcd_lrb *lrbp;
6576  	unsigned long flags;
6577  
6578  	host = cmd->device->host;
6579  	hba = shost_priv(host);
6580  	tag = cmd->request->tag;
6581  
6582  	lrbp = &hba->lrb[tag];
6583  	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, 0, UFS_LOGICAL_RESET, &resp);
6584  	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
6585  		if (!err)
6586  			err = resp;
6587  		goto out;
6588  	}
6589  
6590  	/* clear the commands that were pending for corresponding LUN */
6591  	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs) {
6592  		if (hba->lrb[pos].lun == lrbp->lun) {
6593  			err = ufshcd_clear_cmd(hba, pos);
6594  			if (err)
6595  				break;
6596  		}
6597  	}
6598  	spin_lock_irqsave(host->host_lock, flags);
6599  	ufshcd_transfer_req_compl(hba);
6600  	spin_unlock_irqrestore(host->host_lock, flags);
6601  
6602  out:
6603  	hba->req_abort_count = 0;
6604  	ufshcd_update_reg_hist(&hba->ufs_stats.dev_reset, (u32)err);
6605  	if (!err) {
6606  		err = SUCCESS;
6607  	} else {
6608  		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
6609  		err = FAILED;
6610  	}
6611  	return err;
6612  }
6613  
ufshcd_set_req_abort_skip(struct ufs_hba * hba,unsigned long bitmap)6614  static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
6615  {
6616  	struct ufshcd_lrb *lrbp;
6617  	int tag;
6618  
6619  	for_each_set_bit(tag, &bitmap, hba->nutrs) {
6620  		lrbp = &hba->lrb[tag];
6621  		lrbp->req_abort_skip = true;
6622  	}
6623  }
6624  
6625  /**
6626   * ufshcd_try_to_abort_task - abort a specific task
6627   * @cmd: SCSI command pointer
6628   *
6629   * Abort the pending command in device by sending UFS_ABORT_TASK task management
6630   * command, and in host controller by clearing the door-bell register. There can
6631   * be race between controller sending the command to the device while abort is
6632   * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
6633   * really issued and then try to abort it.
6634   *
6635   * Returns zero on success, non-zero on failure
6636   */
ufshcd_try_to_abort_task(struct ufs_hba * hba,int tag)6637  static int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
6638  {
6639  	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
6640  	int err = 0;
6641  	int poll_cnt;
6642  	u8 resp = 0xF;
6643  	u32 reg;
6644  
6645  	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
6646  		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
6647  				UFS_QUERY_TASK, &resp);
6648  		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
6649  			/* cmd pending in the device */
6650  			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
6651  				__func__, tag);
6652  			break;
6653  		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
6654  			/*
6655  			 * cmd not pending in the device, check if it is
6656  			 * in transition.
6657  			 */
6658  			dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
6659  				__func__, tag);
6660  			reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
6661  			if (reg & (1 << tag)) {
6662  				/* sleep for max. 200us to stabilize */
6663  				usleep_range(100, 200);
6664  				continue;
6665  			}
6666  			/* command completed already */
6667  			dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
6668  				__func__, tag);
6669  			goto out;
6670  		} else {
6671  			dev_err(hba->dev,
6672  				"%s: no response from device. tag = %d, err %d\n",
6673  				__func__, tag, err);
6674  			if (!err)
6675  				err = resp; /* service response error */
6676  			goto out;
6677  		}
6678  	}
6679  
6680  	if (!poll_cnt) {
6681  		err = -EBUSY;
6682  		goto out;
6683  	}
6684  
6685  	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
6686  			UFS_ABORT_TASK, &resp);
6687  	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
6688  		if (!err) {
6689  			err = resp; /* service response error */
6690  			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
6691  				__func__, tag, err);
6692  		}
6693  		goto out;
6694  	}
6695  
6696  	err = ufshcd_clear_cmd(hba, tag);
6697  	if (err)
6698  		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
6699  			__func__, tag, err);
6700  
6701  out:
6702  	return err;
6703  }
6704  
6705  /**
6706   * ufshcd_abort - scsi host template eh_abort_handler callback
6707   * @cmd: SCSI command pointer
6708   *
6709   * Returns SUCCESS/FAILED
6710   */
ufshcd_abort(struct scsi_cmnd * cmd)6711  static int ufshcd_abort(struct scsi_cmnd *cmd)
6712  {
6713  	struct Scsi_Host *host;
6714  	struct ufs_hba *hba;
6715  	unsigned long flags;
6716  	unsigned int tag;
6717  	int err = 0;
6718  	struct ufshcd_lrb *lrbp;
6719  	u32 reg;
6720  
6721  	host = cmd->device->host;
6722  	hba = shost_priv(host);
6723  	tag = cmd->request->tag;
6724  	lrbp = &hba->lrb[tag];
6725  	if (!ufshcd_valid_tag(hba, tag)) {
6726  		dev_err(hba->dev,
6727  			"%s: invalid command tag %d: cmd=0x%p, cmd->request=0x%p",
6728  			__func__, tag, cmd, cmd->request);
6729  		BUG();
6730  	}
6731  
6732  	/*
6733  	 * Task abort to the device W-LUN is illegal. When this command
6734  	 * will fail, due to spec violation, scsi err handling next step
6735  	 * will be to send LU reset which, again, is a spec violation.
6736  	 * To avoid these unnecessary/illegal step we skip to the last error
6737  	 * handling stage: reset and restore.
6738  	 */
6739  	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN)
6740  		return ufshcd_eh_host_reset_handler(cmd);
6741  
6742  	ufshcd_hold(hba, false);
6743  	reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
6744  	/* If command is already aborted/completed, return SUCCESS */
6745  	if (!(test_bit(tag, &hba->outstanding_reqs))) {
6746  		dev_err(hba->dev,
6747  			"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
6748  			__func__, tag, hba->outstanding_reqs, reg);
6749  		goto out;
6750  	}
6751  
6752  	/* Print Transfer Request of aborted task */
6753  	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
6754  
6755  	/*
6756  	 * Print detailed info about aborted request.
6757  	 * As more than one request might get aborted at the same time,
6758  	 * print full information only for the first aborted request in order
6759  	 * to reduce repeated printouts. For other aborted requests only print
6760  	 * basic details.
6761  	 */
6762  	scsi_print_command(hba->lrb[tag].cmd);
6763  	if (!hba->req_abort_count) {
6764  		ufshcd_update_reg_hist(&hba->ufs_stats.task_abort, 0);
6765  		ufshcd_print_host_regs(hba);
6766  		ufshcd_print_host_state(hba);
6767  		ufshcd_print_pwr_info(hba);
6768  		ufshcd_print_trs(hba, 1 << tag, true);
6769  	} else {
6770  		ufshcd_print_trs(hba, 1 << tag, false);
6771  	}
6772  	hba->req_abort_count++;
6773  
6774  	if (!(reg & (1 << tag))) {
6775  		dev_err(hba->dev,
6776  		"%s: cmd was completed, but without a notifying intr, tag = %d",
6777  		__func__, tag);
6778  		goto cleanup;
6779  	}
6780  
6781  	/* Skip task abort in case previous aborts failed and report failure */
6782  	if (lrbp->req_abort_skip)
6783  		err = -EIO;
6784  	else
6785  		err = ufshcd_try_to_abort_task(hba, tag);
6786  
6787  	if (!err) {
6788  cleanup:
6789  		spin_lock_irqsave(host->host_lock, flags);
6790  		__ufshcd_transfer_req_compl(hba, (1UL << tag));
6791  		spin_unlock_irqrestore(host->host_lock, flags);
6792  out:
6793  		err = SUCCESS;
6794  	} else {
6795  		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
6796  		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
6797  		err = FAILED;
6798  	}
6799  
6800  	/*
6801  	 * This ufshcd_release() corresponds to the original scsi cmd that got
6802  	 * aborted here (as we won't get any IRQ for it).
6803  	 */
6804  	ufshcd_release(hba);
6805  	return err;
6806  }
6807  
6808  /**
6809   * ufshcd_host_reset_and_restore - reset and restore host controller
6810   * @hba: per-adapter instance
6811   *
6812   * Note that host controller reset may issue DME_RESET to
6813   * local and remote (device) Uni-Pro stack and the attributes
6814   * are reset to default state.
6815   *
6816   * Returns zero on success, non-zero on failure
6817   */
ufshcd_host_reset_and_restore(struct ufs_hba * hba)6818  static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
6819  {
6820  	int err;
6821  	unsigned long flags;
6822  
6823  	/*
6824  	 * Stop the host controller and complete the requests
6825  	 * cleared by h/w
6826  	 */
6827  	ufshcd_hba_stop(hba);
6828  
6829  	spin_lock_irqsave(hba->host->host_lock, flags);
6830  	hba->silence_err_logs = true;
6831  	ufshcd_complete_requests(hba);
6832  	hba->silence_err_logs = false;
6833  	spin_unlock_irqrestore(hba->host->host_lock, flags);
6834  
6835  	/* scale up clocks to max frequency before full reinitialization */
6836  	ufshcd_set_clk_freq(hba, true);
6837  
6838  	err = ufshcd_hba_enable(hba);
6839  	if (err)
6840  		goto out;
6841  
6842  	/* Establish the link again and restore the device */
6843  	err = ufshcd_probe_hba(hba, false);
6844  
6845  out:
6846  	if (err)
6847  		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
6848  	ufshcd_update_reg_hist(&hba->ufs_stats.host_reset, (u32)err);
6849  	return err;
6850  }
6851  
6852  /**
6853   * ufshcd_reset_and_restore - reset and re-initialize host/device
6854   * @hba: per-adapter instance
6855   *
6856   * Reset and recover device, host and re-establish link. This
6857   * is helpful to recover the communication in fatal error conditions.
6858   *
6859   * Returns zero on success, non-zero on failure
6860   */
ufshcd_reset_and_restore(struct ufs_hba * hba)6861  static int ufshcd_reset_and_restore(struct ufs_hba *hba)
6862  {
6863  	u32 saved_err;
6864  	u32 saved_uic_err;
6865  	int err = 0;
6866  	unsigned long flags;
6867  	int retries = MAX_HOST_RESET_RETRIES;
6868  
6869  	/*
6870  	 * This is a fresh start, cache and clear saved error first,
6871  	 * in case new error generated during reset and restore.
6872  	 */
6873  	spin_lock_irqsave(hba->host->host_lock, flags);
6874  	saved_err = hba->saved_err;
6875  	saved_uic_err = hba->saved_uic_err;
6876  	hba->saved_err = 0;
6877  	hba->saved_uic_err = 0;
6878  	spin_unlock_irqrestore(hba->host->host_lock, flags);
6879  
6880  	do {
6881  		/* Reset the attached device */
6882  		ufshcd_vops_device_reset(hba);
6883  
6884  		err = ufshcd_host_reset_and_restore(hba);
6885  	} while (err && --retries);
6886  
6887  	spin_lock_irqsave(hba->host->host_lock, flags);
6888  	/*
6889  	 * Inform scsi mid-layer that we did reset and allow to handle
6890  	 * Unit Attention properly.
6891  	 */
6892  	scsi_report_bus_reset(hba->host, 0);
6893  	if (err) {
6894  		hba->saved_err |= saved_err;
6895  		hba->saved_uic_err |= saved_uic_err;
6896  	}
6897  	spin_unlock_irqrestore(hba->host->host_lock, flags);
6898  
6899  	return err;
6900  }
6901  
6902  /**
6903   * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
6904   * @cmd: SCSI command pointer
6905   *
6906   * Returns SUCCESS/FAILED
6907   */
ufshcd_eh_host_reset_handler(struct scsi_cmnd * cmd)6908  static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
6909  {
6910  	int err = SUCCESS;
6911  	unsigned long flags;
6912  	struct ufs_hba *hba;
6913  
6914  	hba = shost_priv(cmd->device->host);
6915  
6916  	spin_lock_irqsave(hba->host->host_lock, flags);
6917  	hba->force_reset = true;
6918  	ufshcd_schedule_eh_work(hba);
6919  	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
6920  	spin_unlock_irqrestore(hba->host->host_lock, flags);
6921  
6922  	flush_work(&hba->eh_work);
6923  
6924  	spin_lock_irqsave(hba->host->host_lock, flags);
6925  	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
6926  		err = FAILED;
6927  	spin_unlock_irqrestore(hba->host->host_lock, flags);
6928  
6929  	return err;
6930  }
6931  
6932  /**
6933   * ufshcd_get_max_icc_level - calculate the ICC level
6934   * @sup_curr_uA: max. current supported by the regulator
6935   * @start_scan: row at the desc table to start scan from
6936   * @buff: power descriptor buffer
6937   *
6938   * Returns calculated max ICC level for specific regulator
6939   */
ufshcd_get_max_icc_level(int sup_curr_uA,u32 start_scan,char * buff)6940  static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan, char *buff)
6941  {
6942  	int i;
6943  	int curr_uA;
6944  	u16 data;
6945  	u16 unit;
6946  
6947  	for (i = start_scan; i >= 0; i--) {
6948  		data = be16_to_cpup((__be16 *)&buff[2 * i]);
6949  		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
6950  						ATTR_ICC_LVL_UNIT_OFFSET;
6951  		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
6952  		switch (unit) {
6953  		case UFSHCD_NANO_AMP:
6954  			curr_uA = curr_uA / 1000;
6955  			break;
6956  		case UFSHCD_MILI_AMP:
6957  			curr_uA = curr_uA * 1000;
6958  			break;
6959  		case UFSHCD_AMP:
6960  			curr_uA = curr_uA * 1000 * 1000;
6961  			break;
6962  		case UFSHCD_MICRO_AMP:
6963  		default:
6964  			break;
6965  		}
6966  		if (sup_curr_uA >= curr_uA)
6967  			break;
6968  	}
6969  	if (i < 0) {
6970  		i = 0;
6971  		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
6972  	}
6973  
6974  	return (u32)i;
6975  }
6976  
6977  /**
6978   * ufshcd_calc_icc_level - calculate the max ICC level
6979   * In case regulators are not initialized we'll return 0
6980   * @hba: per-adapter instance
6981   * @desc_buf: power descriptor buffer to extract ICC levels from.
6982   * @len: length of desc_buff
6983   *
6984   * Returns calculated ICC level
6985   */
ufshcd_find_max_sup_active_icc_level(struct ufs_hba * hba,u8 * desc_buf,int len)6986  static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
6987  							u8 *desc_buf, int len)
6988  {
6989  	u32 icc_level = 0;
6990  
6991  	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
6992  						!hba->vreg_info.vccq2) {
6993  		dev_err(hba->dev,
6994  			"%s: Regulator capability was not set, actvIccLevel=%d",
6995  							__func__, icc_level);
6996  		goto out;
6997  	}
6998  
6999  	if (hba->vreg_info.vcc && hba->vreg_info.vcc->max_uA)
7000  		icc_level = ufshcd_get_max_icc_level(
7001  				hba->vreg_info.vcc->max_uA,
7002  				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7003  				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7004  
7005  	if (hba->vreg_info.vccq && hba->vreg_info.vccq->max_uA)
7006  		icc_level = ufshcd_get_max_icc_level(
7007  				hba->vreg_info.vccq->max_uA,
7008  				icc_level,
7009  				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7010  
7011  	if (hba->vreg_info.vccq2 && hba->vreg_info.vccq2->max_uA)
7012  		icc_level = ufshcd_get_max_icc_level(
7013  				hba->vreg_info.vccq2->max_uA,
7014  				icc_level,
7015  				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7016  out:
7017  	return icc_level;
7018  }
7019  
ufshcd_set_active_icc_lvl(struct ufs_hba * hba)7020  static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7021  {
7022  	int ret;
7023  	int buff_len = hba->desc_size[QUERY_DESC_IDN_POWER];
7024  	u8 *desc_buf;
7025  	u32 icc_level;
7026  
7027  	desc_buf = kmalloc(buff_len, GFP_KERNEL);
7028  	if (!desc_buf)
7029  		return;
7030  
7031  	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7032  				     desc_buf, buff_len);
7033  	if (ret) {
7034  		dev_err(hba->dev,
7035  			"%s: Failed reading power descriptor.len = %d ret = %d",
7036  			__func__, buff_len, ret);
7037  		goto out;
7038  	}
7039  
7040  	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf,
7041  							 buff_len);
7042  	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7043  
7044  	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7045  		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7046  
7047  	if (ret)
7048  		dev_err(hba->dev,
7049  			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
7050  			__func__, icc_level, ret);
7051  
7052  out:
7053  	kfree(desc_buf);
7054  }
7055  
ufshcd_blk_pm_runtime_init(struct scsi_device * sdev)7056  static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7057  {
7058  	scsi_autopm_get_device(sdev);
7059  	blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7060  	if (sdev->rpm_autosuspend)
7061  		pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7062  						 RPM_AUTOSUSPEND_DELAY_MS);
7063  	scsi_autopm_put_device(sdev);
7064  }
7065  
7066  /**
7067   * ufshcd_scsi_add_wlus - Adds required W-LUs
7068   * @hba: per-adapter instance
7069   *
7070   * UFS device specification requires the UFS devices to support 4 well known
7071   * logical units:
7072   *	"REPORT_LUNS" (address: 01h)
7073   *	"UFS Device" (address: 50h)
7074   *	"RPMB" (address: 44h)
7075   *	"BOOT" (address: 30h)
7076   * UFS device's power management needs to be controlled by "POWER CONDITION"
7077   * field of SSU (START STOP UNIT) command. But this "power condition" field
7078   * will take effect only when its sent to "UFS device" well known logical unit
7079   * hence we require the scsi_device instance to represent this logical unit in
7080   * order for the UFS host driver to send the SSU command for power management.
7081   *
7082   * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
7083   * Block) LU so user space process can control this LU. User space may also
7084   * want to have access to BOOT LU.
7085   *
7086   * This function adds scsi device instances for each of all well known LUs
7087   * (except "REPORT LUNS" LU).
7088   *
7089   * Returns zero on success (all required W-LUs are added successfully),
7090   * non-zero error value on failure (if failed to add any of the required W-LU).
7091   */
ufshcd_scsi_add_wlus(struct ufs_hba * hba)7092  static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
7093  {
7094  	int ret = 0;
7095  	struct scsi_device *sdev_rpmb;
7096  	struct scsi_device *sdev_boot;
7097  
7098  	hba->sdev_ufs_device = __scsi_add_device(hba->host, 0, 0,
7099  		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
7100  	if (IS_ERR(hba->sdev_ufs_device)) {
7101  		ret = PTR_ERR(hba->sdev_ufs_device);
7102  		hba->sdev_ufs_device = NULL;
7103  		goto out;
7104  	}
7105  	ufshcd_blk_pm_runtime_init(hba->sdev_ufs_device);
7106  	scsi_device_put(hba->sdev_ufs_device);
7107  
7108  	sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
7109  		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
7110  	if (IS_ERR(sdev_rpmb)) {
7111  		ret = PTR_ERR(sdev_rpmb);
7112  		goto remove_sdev_ufs_device;
7113  	}
7114  	ufshcd_blk_pm_runtime_init(sdev_rpmb);
7115  	scsi_device_put(sdev_rpmb);
7116  
7117  	sdev_boot = __scsi_add_device(hba->host, 0, 0,
7118  		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
7119  	if (IS_ERR(sdev_boot)) {
7120  		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
7121  	} else {
7122  		ufshcd_blk_pm_runtime_init(sdev_boot);
7123  		scsi_device_put(sdev_boot);
7124  	}
7125  	goto out;
7126  
7127  remove_sdev_ufs_device:
7128  	scsi_remove_device(hba->sdev_ufs_device);
7129  out:
7130  	return ret;
7131  }
7132  
ufshcd_wb_probe(struct ufs_hba * hba,u8 * desc_buf)7133  static void ufshcd_wb_probe(struct ufs_hba *hba, u8 *desc_buf)
7134  {
7135  	struct ufs_dev_info *dev_info = &hba->dev_info;
7136  	u8 lun;
7137  	u32 d_lu_wb_buf_alloc;
7138  
7139  	if (!ufshcd_is_wb_allowed(hba))
7140  		return;
7141  	/*
7142  	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
7143  	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
7144  	 * enabled
7145  	 */
7146  	if (!(dev_info->wspecversion >= 0x310 ||
7147  	      dev_info->wspecversion == 0x220 ||
7148  	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
7149  		goto wb_disabled;
7150  
7151  	if (hba->desc_size[QUERY_DESC_IDN_DEVICE] <
7152  	    DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP + 4)
7153  		goto wb_disabled;
7154  
7155  	dev_info->d_ext_ufs_feature_sup =
7156  		get_unaligned_be32(desc_buf +
7157  				   DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
7158  
7159  	if (!(dev_info->d_ext_ufs_feature_sup & UFS_DEV_WRITE_BOOSTER_SUP))
7160  		goto wb_disabled;
7161  
7162  	/*
7163  	 * WB may be supported but not configured while provisioning.
7164  	 * The spec says, in dedicated wb buffer mode,
7165  	 * a max of 1 lun would have wb buffer configured.
7166  	 * Now only shared buffer mode is supported.
7167  	 */
7168  	dev_info->b_wb_buffer_type =
7169  		desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
7170  
7171  	dev_info->b_presrv_uspc_en =
7172  		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
7173  
7174  	if (dev_info->b_wb_buffer_type == WB_BUF_MODE_SHARED) {
7175  		dev_info->d_wb_alloc_units =
7176  		get_unaligned_be32(desc_buf +
7177  				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS);
7178  		if (!dev_info->d_wb_alloc_units)
7179  			goto wb_disabled;
7180  	} else {
7181  		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
7182  			d_lu_wb_buf_alloc = 0;
7183  			ufshcd_read_unit_desc_param(hba,
7184  					lun,
7185  					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
7186  					(u8 *)&d_lu_wb_buf_alloc,
7187  					sizeof(d_lu_wb_buf_alloc));
7188  			if (d_lu_wb_buf_alloc) {
7189  				dev_info->wb_dedicated_lu = lun;
7190  				break;
7191  			}
7192  		}
7193  
7194  		if (!d_lu_wb_buf_alloc)
7195  			goto wb_disabled;
7196  	}
7197  	return;
7198  
7199  wb_disabled:
7200  	hba->caps &= ~UFSHCD_CAP_WB_EN;
7201  }
7202  
ufshcd_fixup_dev_quirks(struct ufs_hba * hba,struct ufs_dev_fix * fixups)7203  void ufshcd_fixup_dev_quirks(struct ufs_hba *hba, struct ufs_dev_fix *fixups)
7204  {
7205  	struct ufs_dev_fix *f;
7206  	struct ufs_dev_info *dev_info = &hba->dev_info;
7207  
7208  	if (!fixups)
7209  		return;
7210  
7211  	for (f = fixups; f->quirk; f++) {
7212  		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
7213  		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
7214  		     ((dev_info->model &&
7215  		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
7216  		      !strcmp(f->model, UFS_ANY_MODEL)))
7217  			hba->dev_quirks |= f->quirk;
7218  	}
7219  }
7220  EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
7221  
ufs_fixup_device_setup(struct ufs_hba * hba)7222  static void ufs_fixup_device_setup(struct ufs_hba *hba)
7223  {
7224  	/* fix by general quirk table */
7225  	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
7226  
7227  	/* allow vendors to fix quirks */
7228  	ufshcd_vops_fixup_dev_quirks(hba);
7229  }
7230  
ufs_get_device_desc(struct ufs_hba * hba)7231  static int ufs_get_device_desc(struct ufs_hba *hba)
7232  {
7233  	int err;
7234  	u8 model_index;
7235  	u8 *desc_buf;
7236  	struct ufs_dev_info *dev_info = &hba->dev_info;
7237  
7238  	desc_buf = kmalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7239  	if (!desc_buf) {
7240  		err = -ENOMEM;
7241  		goto out;
7242  	}
7243  
7244  	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
7245  				     hba->desc_size[QUERY_DESC_IDN_DEVICE]);
7246  	if (err) {
7247  		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
7248  			__func__, err);
7249  		goto out;
7250  	}
7251  
7252  	/*
7253  	 * getting vendor (manufacturerID) and Bank Index in big endian
7254  	 * format
7255  	 */
7256  	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
7257  				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
7258  
7259  	/* getting Specification Version in big endian format */
7260  	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
7261  				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
7262  
7263  	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
7264  
7265  	err = ufshcd_read_string_desc(hba, model_index,
7266  				      &dev_info->model, SD_ASCII_STD);
7267  	if (err < 0) {
7268  		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
7269  			__func__, err);
7270  		goto out;
7271  	}
7272  
7273  	ufs_fixup_device_setup(hba);
7274  
7275  	ufshcd_wb_probe(hba, desc_buf);
7276  
7277  	/*
7278  	 * ufshcd_read_string_desc returns size of the string
7279  	 * reset the error value
7280  	 */
7281  	err = 0;
7282  
7283  out:
7284  	kfree(desc_buf);
7285  	return err;
7286  }
7287  
ufs_put_device_desc(struct ufs_hba * hba)7288  static void ufs_put_device_desc(struct ufs_hba *hba)
7289  {
7290  	struct ufs_dev_info *dev_info = &hba->dev_info;
7291  
7292  	kfree(dev_info->model);
7293  	dev_info->model = NULL;
7294  }
7295  
7296  /**
7297   * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro
7298   * @hba: per-adapter instance
7299   *
7300   * PA_TActivate parameter can be tuned manually if UniPro version is less than
7301   * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's
7302   * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce
7303   * the hibern8 exit latency.
7304   *
7305   * Returns zero on success, non-zero error value on failure.
7306   */
ufshcd_tune_pa_tactivate(struct ufs_hba * hba)7307  static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba)
7308  {
7309  	int ret = 0;
7310  	u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate;
7311  
7312  	ret = ufshcd_dme_peer_get(hba,
7313  				  UIC_ARG_MIB_SEL(
7314  					RX_MIN_ACTIVATETIME_CAPABILITY,
7315  					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
7316  				  &peer_rx_min_activatetime);
7317  	if (ret)
7318  		goto out;
7319  
7320  	/* make sure proper unit conversion is applied */
7321  	tuned_pa_tactivate =
7322  		((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US)
7323  		 / PA_TACTIVATE_TIME_UNIT_US);
7324  	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
7325  			     tuned_pa_tactivate);
7326  
7327  out:
7328  	return ret;
7329  }
7330  
7331  /**
7332   * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro
7333   * @hba: per-adapter instance
7334   *
7335   * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than
7336   * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's
7337   * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY.
7338   * This optimal value can help reduce the hibern8 exit latency.
7339   *
7340   * Returns zero on success, non-zero error value on failure.
7341   */
ufshcd_tune_pa_hibern8time(struct ufs_hba * hba)7342  static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba)
7343  {
7344  	int ret = 0;
7345  	u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0;
7346  	u32 max_hibern8_time, tuned_pa_hibern8time;
7347  
7348  	ret = ufshcd_dme_get(hba,
7349  			     UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY,
7350  					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
7351  				  &local_tx_hibern8_time_cap);
7352  	if (ret)
7353  		goto out;
7354  
7355  	ret = ufshcd_dme_peer_get(hba,
7356  				  UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY,
7357  					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
7358  				  &peer_rx_hibern8_time_cap);
7359  	if (ret)
7360  		goto out;
7361  
7362  	max_hibern8_time = max(local_tx_hibern8_time_cap,
7363  			       peer_rx_hibern8_time_cap);
7364  	/* make sure proper unit conversion is applied */
7365  	tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US)
7366  				/ PA_HIBERN8_TIME_UNIT_US);
7367  	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
7368  			     tuned_pa_hibern8time);
7369  out:
7370  	return ret;
7371  }
7372  
7373  /**
7374   * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
7375   * less than device PA_TACTIVATE time.
7376   * @hba: per-adapter instance
7377   *
7378   * Some UFS devices require host PA_TACTIVATE to be lower than device
7379   * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
7380   * for such devices.
7381   *
7382   * Returns zero on success, non-zero error value on failure.
7383   */
ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba * hba)7384  static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
7385  {
7386  	int ret = 0;
7387  	u32 granularity, peer_granularity;
7388  	u32 pa_tactivate, peer_pa_tactivate;
7389  	u32 pa_tactivate_us, peer_pa_tactivate_us;
7390  	u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
7391  
7392  	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
7393  				  &granularity);
7394  	if (ret)
7395  		goto out;
7396  
7397  	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
7398  				  &peer_granularity);
7399  	if (ret)
7400  		goto out;
7401  
7402  	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
7403  	    (granularity > PA_GRANULARITY_MAX_VAL)) {
7404  		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
7405  			__func__, granularity);
7406  		return -EINVAL;
7407  	}
7408  
7409  	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
7410  	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
7411  		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
7412  			__func__, peer_granularity);
7413  		return -EINVAL;
7414  	}
7415  
7416  	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
7417  	if (ret)
7418  		goto out;
7419  
7420  	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
7421  				  &peer_pa_tactivate);
7422  	if (ret)
7423  		goto out;
7424  
7425  	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
7426  	peer_pa_tactivate_us = peer_pa_tactivate *
7427  			     gran_to_us_table[peer_granularity - 1];
7428  
7429  	if (pa_tactivate_us > peer_pa_tactivate_us) {
7430  		u32 new_peer_pa_tactivate;
7431  
7432  		new_peer_pa_tactivate = pa_tactivate_us /
7433  				      gran_to_us_table[peer_granularity - 1];
7434  		new_peer_pa_tactivate++;
7435  		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
7436  					  new_peer_pa_tactivate);
7437  	}
7438  
7439  out:
7440  	return ret;
7441  }
7442  
ufshcd_tune_unipro_params(struct ufs_hba * hba)7443  static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
7444  {
7445  	if (ufshcd_is_unipro_pa_params_tuning_req(hba)) {
7446  		ufshcd_tune_pa_tactivate(hba);
7447  		ufshcd_tune_pa_hibern8time(hba);
7448  	}
7449  
7450  	ufshcd_vops_apply_dev_quirks(hba);
7451  
7452  	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
7453  		/* set 1ms timeout for PA_TACTIVATE */
7454  		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
7455  
7456  	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
7457  		ufshcd_quirk_tune_host_pa_tactivate(hba);
7458  }
7459  
ufshcd_clear_dbg_ufs_stats(struct ufs_hba * hba)7460  static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
7461  {
7462  	hba->ufs_stats.hibern8_exit_cnt = 0;
7463  	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
7464  	hba->req_abort_count = 0;
7465  }
7466  
ufshcd_device_geo_params_init(struct ufs_hba * hba)7467  static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
7468  {
7469  	int err;
7470  	size_t buff_len;
7471  	u8 *desc_buf;
7472  
7473  	buff_len = hba->desc_size[QUERY_DESC_IDN_GEOMETRY];
7474  	desc_buf = kmalloc(buff_len, GFP_KERNEL);
7475  	if (!desc_buf) {
7476  		err = -ENOMEM;
7477  		goto out;
7478  	}
7479  
7480  	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
7481  				     desc_buf, buff_len);
7482  	if (err) {
7483  		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
7484  				__func__, err);
7485  		goto out;
7486  	}
7487  
7488  	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
7489  		hba->dev_info.max_lu_supported = 32;
7490  	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
7491  		hba->dev_info.max_lu_supported = 8;
7492  
7493  out:
7494  	kfree(desc_buf);
7495  	return err;
7496  }
7497  
7498  static struct ufs_ref_clk ufs_ref_clk_freqs[] = {
7499  	{19200000, REF_CLK_FREQ_19_2_MHZ},
7500  	{26000000, REF_CLK_FREQ_26_MHZ},
7501  	{38400000, REF_CLK_FREQ_38_4_MHZ},
7502  	{52000000, REF_CLK_FREQ_52_MHZ},
7503  	{0, REF_CLK_FREQ_INVAL},
7504  };
7505  
7506  static enum ufs_ref_clk_freq
ufs_get_bref_clk_from_hz(unsigned long freq)7507  ufs_get_bref_clk_from_hz(unsigned long freq)
7508  {
7509  	int i;
7510  
7511  	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
7512  		if (ufs_ref_clk_freqs[i].freq_hz == freq)
7513  			return ufs_ref_clk_freqs[i].val;
7514  
7515  	return REF_CLK_FREQ_INVAL;
7516  }
7517  
ufshcd_parse_dev_ref_clk_freq(struct ufs_hba * hba,struct clk * refclk)7518  void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
7519  {
7520  	unsigned long freq;
7521  
7522  	freq = clk_get_rate(refclk);
7523  
7524  	hba->dev_ref_clk_freq =
7525  		ufs_get_bref_clk_from_hz(freq);
7526  
7527  	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
7528  		dev_err(hba->dev,
7529  		"invalid ref_clk setting = %ld\n", freq);
7530  }
7531  
ufshcd_set_dev_ref_clk(struct ufs_hba * hba)7532  static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
7533  {
7534  	int err;
7535  	u32 ref_clk;
7536  	u32 freq = hba->dev_ref_clk_freq;
7537  
7538  	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
7539  			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
7540  
7541  	if (err) {
7542  		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
7543  			err);
7544  		goto out;
7545  	}
7546  
7547  	if (ref_clk == freq)
7548  		goto out; /* nothing to update */
7549  
7550  	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7551  			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
7552  
7553  	if (err) {
7554  		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
7555  			ufs_ref_clk_freqs[freq].freq_hz);
7556  		goto out;
7557  	}
7558  
7559  	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
7560  			ufs_ref_clk_freqs[freq].freq_hz);
7561  
7562  out:
7563  	return err;
7564  }
7565  
ufshcd_device_params_init(struct ufs_hba * hba)7566  static int ufshcd_device_params_init(struct ufs_hba *hba)
7567  {
7568  	bool flag;
7569  	int ret, i;
7570  
7571  	 /* Init device descriptor sizes */
7572  	for (i = 0; i < QUERY_DESC_IDN_MAX; i++)
7573  		hba->desc_size[i] = QUERY_DESC_MAX_SIZE;
7574  
7575  	/* Init UFS geometry descriptor related parameters */
7576  	ret = ufshcd_device_geo_params_init(hba);
7577  	if (ret)
7578  		goto out;
7579  
7580  	/* Check and apply UFS device quirks */
7581  	ret = ufs_get_device_desc(hba);
7582  	if (ret) {
7583  		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
7584  			__func__, ret);
7585  		goto out;
7586  	}
7587  
7588  	ufshcd_get_ref_clk_gating_wait(hba);
7589  
7590  	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
7591  			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
7592  		hba->dev_info.f_power_on_wp_en = flag;
7593  
7594  	/* Probe maximum power mode co-supported by both UFS host and device */
7595  	if (ufshcd_get_max_pwr_mode(hba))
7596  		dev_err(hba->dev,
7597  			"%s: Failed getting max supported power mode\n",
7598  			__func__);
7599  out:
7600  	return ret;
7601  }
7602  
7603  /**
7604   * ufshcd_add_lus - probe and add UFS logical units
7605   * @hba: per-adapter instance
7606   */
ufshcd_add_lus(struct ufs_hba * hba)7607  static int ufshcd_add_lus(struct ufs_hba *hba)
7608  {
7609  	int ret;
7610  
7611  	/* Add required well known logical units to scsi mid layer */
7612  	ret = ufshcd_scsi_add_wlus(hba);
7613  	if (ret)
7614  		goto out;
7615  
7616  	/* Initialize devfreq after UFS device is detected */
7617  	if (ufshcd_is_clkscaling_supported(hba)) {
7618  		memcpy(&hba->clk_scaling.saved_pwr_info.info,
7619  			&hba->pwr_info,
7620  			sizeof(struct ufs_pa_layer_attr));
7621  		hba->clk_scaling.saved_pwr_info.is_valid = true;
7622  		if (!hba->devfreq) {
7623  			ret = ufshcd_devfreq_init(hba);
7624  			if (ret)
7625  				goto out;
7626  		}
7627  
7628  		hba->clk_scaling.is_allowed = true;
7629  	}
7630  
7631  	ufs_bsg_probe(hba);
7632  	scsi_scan_host(hba->host);
7633  	pm_runtime_put_sync(hba->dev);
7634  
7635  out:
7636  	return ret;
7637  }
7638  
7639  /**
7640   * ufshcd_probe_hba - probe hba to detect device and initialize
7641   * @hba: per-adapter instance
7642   * @async: asynchronous execution or not
7643   *
7644   * Execute link-startup and verify device initialization
7645   */
ufshcd_probe_hba(struct ufs_hba * hba,bool async)7646  static int ufshcd_probe_hba(struct ufs_hba *hba, bool async)
7647  {
7648  	int ret;
7649  	unsigned long flags;
7650  	ktime_t start = ktime_get();
7651  
7652  	ret = ufshcd_link_startup(hba);
7653  	if (ret)
7654  		goto out;
7655  
7656  	/* Debug counters initialization */
7657  	ufshcd_clear_dbg_ufs_stats(hba);
7658  
7659  	/* UniPro link is active now */
7660  	ufshcd_set_link_active(hba);
7661  
7662  	/* Verify device initialization by sending NOP OUT UPIU */
7663  	ret = ufshcd_verify_dev_init(hba);
7664  	if (ret)
7665  		goto out;
7666  
7667  	/* Initiate UFS initialization, and waiting until completion */
7668  	ret = ufshcd_complete_dev_init(hba);
7669  	if (ret)
7670  		goto out;
7671  
7672  	/*
7673  	 * Initialize UFS device parameters used by driver, these
7674  	 * parameters are associated with UFS descriptors.
7675  	 */
7676  	if (async) {
7677  		ret = ufshcd_device_params_init(hba);
7678  		if (ret)
7679  			goto out;
7680  	}
7681  
7682  	ufshcd_tune_unipro_params(hba);
7683  
7684  	/* UFS device is also active now */
7685  	ufshcd_set_ufs_dev_active(hba);
7686  	ufshcd_force_reset_auto_bkops(hba);
7687  	hba->wlun_dev_clr_ua = true;
7688  
7689  	/* Gear up to HS gear if supported */
7690  	if (hba->max_pwr_info.is_valid) {
7691  		/*
7692  		 * Set the right value to bRefClkFreq before attempting to
7693  		 * switch to HS gears.
7694  		 */
7695  		if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
7696  			ufshcd_set_dev_ref_clk(hba);
7697  		ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
7698  		if (ret) {
7699  			dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
7700  					__func__, ret);
7701  			goto out;
7702  		}
7703  		ufshcd_print_pwr_info(hba);
7704  	}
7705  
7706  	/*
7707  	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
7708  	 * and for removable UFS card as well, hence always set the parameter.
7709  	 * Note: Error handler may issue the device reset hence resetting
7710  	 * bActiveICCLevel as well so it is always safe to set this here.
7711  	 */
7712  	ufshcd_set_active_icc_lvl(hba);
7713  
7714  	ufshcd_wb_config(hba);
7715  	/* Enable Auto-Hibernate if configured */
7716  	ufshcd_auto_hibern8_enable(hba);
7717  
7718  out:
7719  	spin_lock_irqsave(hba->host->host_lock, flags);
7720  	if (ret)
7721  		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7722  	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
7723  		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
7724  	spin_unlock_irqrestore(hba->host->host_lock, flags);
7725  
7726  	trace_ufshcd_init(dev_name(hba->dev), ret,
7727  		ktime_to_us(ktime_sub(ktime_get(), start)),
7728  		hba->curr_dev_pwr_mode, hba->uic_link_state);
7729  	return ret;
7730  }
7731  
7732  /**
7733   * ufshcd_async_scan - asynchronous execution for probing hba
7734   * @data: data pointer to pass to this function
7735   * @cookie: cookie data
7736   */
ufshcd_async_scan(void * data,async_cookie_t cookie)7737  static void ufshcd_async_scan(void *data, async_cookie_t cookie)
7738  {
7739  	struct ufs_hba *hba = (struct ufs_hba *)data;
7740  	int ret;
7741  
7742  	/* Initialize hba, detect and initialize UFS device */
7743  	ret = ufshcd_probe_hba(hba, true);
7744  	if (ret)
7745  		goto out;
7746  
7747  	/* Probe and add UFS logical units  */
7748  	ret = ufshcd_add_lus(hba);
7749  out:
7750  	/*
7751  	 * If we failed to initialize the device or the device is not
7752  	 * present, turn off the power/clocks etc.
7753  	 */
7754  	if (ret) {
7755  		pm_runtime_put_sync(hba->dev);
7756  		ufshcd_exit_clk_scaling(hba);
7757  		ufshcd_hba_exit(hba);
7758  	}
7759  }
7760  
7761  static const struct attribute_group *ufshcd_driver_groups[] = {
7762  	&ufs_sysfs_unit_descriptor_group,
7763  	&ufs_sysfs_lun_attributes_group,
7764  	NULL,
7765  };
7766  
7767  static struct ufs_hba_variant_params ufs_hba_vps = {
7768  	.hba_enable_delay_us		= 1000,
7769  	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
7770  	.devfreq_profile.polling_ms	= 100,
7771  	.devfreq_profile.target		= ufshcd_devfreq_target,
7772  	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
7773  	.ondemand_data.upthreshold	= 70,
7774  	.ondemand_data.downdifferential	= 5,
7775  };
7776  
7777  static struct scsi_host_template ufshcd_driver_template = {
7778  	.module			= THIS_MODULE,
7779  	.name			= UFSHCD,
7780  	.proc_name		= UFSHCD,
7781  	.queuecommand		= ufshcd_queuecommand,
7782  	.slave_alloc		= ufshcd_slave_alloc,
7783  	.slave_configure	= ufshcd_slave_configure,
7784  	.slave_destroy		= ufshcd_slave_destroy,
7785  	.change_queue_depth	= ufshcd_change_queue_depth,
7786  	.eh_abort_handler	= ufshcd_abort,
7787  	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
7788  	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
7789  	.this_id		= -1,
7790  	.sg_tablesize		= SG_ALL,
7791  	.cmd_per_lun		= UFSHCD_CMD_PER_LUN,
7792  	.can_queue		= UFSHCD_CAN_QUEUE,
7793  	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
7794  	.max_host_blocked	= 1,
7795  	.track_queue_depth	= 1,
7796  	.sdev_groups		= ufshcd_driver_groups,
7797  	.dma_boundary		= PAGE_SIZE - 1,
7798  	.rpm_autosuspend_delay	= RPM_AUTOSUSPEND_DELAY_MS,
7799  };
7800  
ufshcd_config_vreg_load(struct device * dev,struct ufs_vreg * vreg,int ua)7801  static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
7802  				   int ua)
7803  {
7804  	int ret;
7805  
7806  	if (!vreg)
7807  		return 0;
7808  
7809  	/*
7810  	 * "set_load" operation shall be required on those regulators
7811  	 * which specifically configured current limitation. Otherwise
7812  	 * zero max_uA may cause unexpected behavior when regulator is
7813  	 * enabled or set as high power mode.
7814  	 */
7815  	if (!vreg->max_uA)
7816  		return 0;
7817  
7818  	ret = regulator_set_load(vreg->reg, ua);
7819  	if (ret < 0) {
7820  		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
7821  				__func__, vreg->name, ua, ret);
7822  	}
7823  
7824  	return ret;
7825  }
7826  
ufshcd_config_vreg_lpm(struct ufs_hba * hba,struct ufs_vreg * vreg)7827  static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
7828  					 struct ufs_vreg *vreg)
7829  {
7830  	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
7831  }
7832  
ufshcd_config_vreg_hpm(struct ufs_hba * hba,struct ufs_vreg * vreg)7833  static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
7834  					 struct ufs_vreg *vreg)
7835  {
7836  	if (!vreg)
7837  		return 0;
7838  
7839  	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
7840  }
7841  
ufshcd_config_vreg(struct device * dev,struct ufs_vreg * vreg,bool on)7842  static int ufshcd_config_vreg(struct device *dev,
7843  		struct ufs_vreg *vreg, bool on)
7844  {
7845  	int ret = 0;
7846  	struct regulator *reg;
7847  	const char *name;
7848  	int min_uV, uA_load;
7849  
7850  	BUG_ON(!vreg);
7851  
7852  	reg = vreg->reg;
7853  	name = vreg->name;
7854  
7855  	if (regulator_count_voltages(reg) > 0) {
7856  		uA_load = on ? vreg->max_uA : 0;
7857  		ret = ufshcd_config_vreg_load(dev, vreg, uA_load);
7858  		if (ret)
7859  			goto out;
7860  
7861  		if (vreg->min_uV && vreg->max_uV) {
7862  			min_uV = on ? vreg->min_uV : 0;
7863  			ret = regulator_set_voltage(reg, min_uV, vreg->max_uV);
7864  			if (ret)
7865  				dev_err(dev,
7866  					"%s: %s set voltage failed, err=%d\n",
7867  					__func__, name, ret);
7868  		}
7869  	}
7870  out:
7871  	return ret;
7872  }
7873  
ufshcd_enable_vreg(struct device * dev,struct ufs_vreg * vreg)7874  static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
7875  {
7876  	int ret = 0;
7877  
7878  	if (!vreg || vreg->enabled)
7879  		goto out;
7880  
7881  	ret = ufshcd_config_vreg(dev, vreg, true);
7882  	if (!ret)
7883  		ret = regulator_enable(vreg->reg);
7884  
7885  	if (!ret)
7886  		vreg->enabled = true;
7887  	else
7888  		dev_err(dev, "%s: %s enable failed, err=%d\n",
7889  				__func__, vreg->name, ret);
7890  out:
7891  	return ret;
7892  }
7893  
ufshcd_disable_vreg(struct device * dev,struct ufs_vreg * vreg)7894  static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
7895  {
7896  	int ret = 0;
7897  
7898  	if (!vreg || !vreg->enabled)
7899  		goto out;
7900  
7901  	ret = regulator_disable(vreg->reg);
7902  
7903  	if (!ret) {
7904  		/* ignore errors on applying disable config */
7905  		ufshcd_config_vreg(dev, vreg, false);
7906  		vreg->enabled = false;
7907  	} else {
7908  		dev_err(dev, "%s: %s disable failed, err=%d\n",
7909  				__func__, vreg->name, ret);
7910  	}
7911  out:
7912  	return ret;
7913  }
7914  
ufshcd_setup_vreg(struct ufs_hba * hba,bool on)7915  static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
7916  {
7917  	int ret = 0;
7918  	struct device *dev = hba->dev;
7919  	struct ufs_vreg_info *info = &hba->vreg_info;
7920  
7921  	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
7922  	if (ret)
7923  		goto out;
7924  
7925  	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
7926  	if (ret)
7927  		goto out;
7928  
7929  	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
7930  
7931  out:
7932  	if (ret) {
7933  		ufshcd_toggle_vreg(dev, info->vccq2, false);
7934  		ufshcd_toggle_vreg(dev, info->vccq, false);
7935  		ufshcd_toggle_vreg(dev, info->vcc, false);
7936  	}
7937  	return ret;
7938  }
7939  
ufshcd_setup_hba_vreg(struct ufs_hba * hba,bool on)7940  static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
7941  {
7942  	struct ufs_vreg_info *info = &hba->vreg_info;
7943  
7944  	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
7945  }
7946  
ufshcd_get_vreg(struct device * dev,struct ufs_vreg * vreg)7947  static int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
7948  {
7949  	int ret = 0;
7950  
7951  	if (!vreg)
7952  		goto out;
7953  
7954  	vreg->reg = devm_regulator_get(dev, vreg->name);
7955  	if (IS_ERR(vreg->reg)) {
7956  		ret = PTR_ERR(vreg->reg);
7957  		dev_err(dev, "%s: %s get failed, err=%d\n",
7958  				__func__, vreg->name, ret);
7959  	}
7960  out:
7961  	return ret;
7962  }
7963  
ufshcd_init_vreg(struct ufs_hba * hba)7964  static int ufshcd_init_vreg(struct ufs_hba *hba)
7965  {
7966  	int ret = 0;
7967  	struct device *dev = hba->dev;
7968  	struct ufs_vreg_info *info = &hba->vreg_info;
7969  
7970  	ret = ufshcd_get_vreg(dev, info->vcc);
7971  	if (ret)
7972  		goto out;
7973  
7974  	ret = ufshcd_get_vreg(dev, info->vccq);
7975  	if (!ret)
7976  		ret = ufshcd_get_vreg(dev, info->vccq2);
7977  out:
7978  	return ret;
7979  }
7980  
ufshcd_init_hba_vreg(struct ufs_hba * hba)7981  static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
7982  {
7983  	struct ufs_vreg_info *info = &hba->vreg_info;
7984  
7985  	if (info)
7986  		return ufshcd_get_vreg(hba->dev, info->vdd_hba);
7987  
7988  	return 0;
7989  }
7990  
__ufshcd_setup_clocks(struct ufs_hba * hba,bool on,bool skip_ref_clk)7991  static int __ufshcd_setup_clocks(struct ufs_hba *hba, bool on,
7992  					bool skip_ref_clk)
7993  {
7994  	int ret = 0;
7995  	struct ufs_clk_info *clki;
7996  	struct list_head *head = &hba->clk_list_head;
7997  	unsigned long flags;
7998  	ktime_t start = ktime_get();
7999  	bool clk_state_changed = false;
8000  
8001  	if (list_empty(head))
8002  		goto out;
8003  
8004  	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
8005  	if (ret)
8006  		return ret;
8007  
8008  	list_for_each_entry(clki, head, list) {
8009  		if (!IS_ERR_OR_NULL(clki->clk)) {
8010  			if (skip_ref_clk && !strcmp(clki->name, "ref_clk"))
8011  				continue;
8012  
8013  			clk_state_changed = on ^ clki->enabled;
8014  			if (on && !clki->enabled) {
8015  				ret = clk_prepare_enable(clki->clk);
8016  				if (ret) {
8017  					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
8018  						__func__, clki->name, ret);
8019  					goto out;
8020  				}
8021  			} else if (!on && clki->enabled) {
8022  				clk_disable_unprepare(clki->clk);
8023  			}
8024  			clki->enabled = on;
8025  			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
8026  					clki->name, on ? "en" : "dis");
8027  		}
8028  	}
8029  
8030  	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
8031  	if (ret)
8032  		return ret;
8033  
8034  out:
8035  	if (ret) {
8036  		list_for_each_entry(clki, head, list) {
8037  			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
8038  				clk_disable_unprepare(clki->clk);
8039  		}
8040  	} else if (!ret && on) {
8041  		spin_lock_irqsave(hba->host->host_lock, flags);
8042  		hba->clk_gating.state = CLKS_ON;
8043  		trace_ufshcd_clk_gating(dev_name(hba->dev),
8044  					hba->clk_gating.state);
8045  		spin_unlock_irqrestore(hba->host->host_lock, flags);
8046  	}
8047  
8048  	if (clk_state_changed)
8049  		trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
8050  			(on ? "on" : "off"),
8051  			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
8052  	return ret;
8053  }
8054  
ufshcd_setup_clocks(struct ufs_hba * hba,bool on)8055  static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
8056  {
8057  	return  __ufshcd_setup_clocks(hba, on, false);
8058  }
8059  
ufshcd_init_clocks(struct ufs_hba * hba)8060  static int ufshcd_init_clocks(struct ufs_hba *hba)
8061  {
8062  	int ret = 0;
8063  	struct ufs_clk_info *clki;
8064  	struct device *dev = hba->dev;
8065  	struct list_head *head = &hba->clk_list_head;
8066  
8067  	if (list_empty(head))
8068  		goto out;
8069  
8070  	list_for_each_entry(clki, head, list) {
8071  		if (!clki->name)
8072  			continue;
8073  
8074  		clki->clk = devm_clk_get(dev, clki->name);
8075  		if (IS_ERR(clki->clk)) {
8076  			ret = PTR_ERR(clki->clk);
8077  			dev_err(dev, "%s: %s clk get failed, %d\n",
8078  					__func__, clki->name, ret);
8079  			goto out;
8080  		}
8081  
8082  		/*
8083  		 * Parse device ref clk freq as per device tree "ref_clk".
8084  		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
8085  		 * in ufshcd_alloc_host().
8086  		 */
8087  		if (!strcmp(clki->name, "ref_clk"))
8088  			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
8089  
8090  		if (clki->max_freq) {
8091  			ret = clk_set_rate(clki->clk, clki->max_freq);
8092  			if (ret) {
8093  				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
8094  					__func__, clki->name,
8095  					clki->max_freq, ret);
8096  				goto out;
8097  			}
8098  			clki->curr_freq = clki->max_freq;
8099  		}
8100  		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
8101  				clki->name, clk_get_rate(clki->clk));
8102  	}
8103  out:
8104  	return ret;
8105  }
8106  
ufshcd_variant_hba_init(struct ufs_hba * hba)8107  static int ufshcd_variant_hba_init(struct ufs_hba *hba)
8108  {
8109  	int err = 0;
8110  
8111  	if (!hba->vops)
8112  		goto out;
8113  
8114  	err = ufshcd_vops_init(hba);
8115  	if (err)
8116  		goto out;
8117  
8118  	err = ufshcd_vops_setup_regulators(hba, true);
8119  	if (err)
8120  		ufshcd_vops_exit(hba);
8121  out:
8122  	if (err)
8123  		dev_err(hba->dev, "%s: variant %s init failed err %d\n",
8124  			__func__, ufshcd_get_var_name(hba), err);
8125  	return err;
8126  }
8127  
ufshcd_variant_hba_exit(struct ufs_hba * hba)8128  static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
8129  {
8130  	if (!hba->vops)
8131  		return;
8132  
8133  	ufshcd_vops_setup_regulators(hba, false);
8134  
8135  	ufshcd_vops_exit(hba);
8136  }
8137  
ufshcd_hba_init(struct ufs_hba * hba)8138  static int ufshcd_hba_init(struct ufs_hba *hba)
8139  {
8140  	int err;
8141  
8142  	/*
8143  	 * Handle host controller power separately from the UFS device power
8144  	 * rails as it will help controlling the UFS host controller power
8145  	 * collapse easily which is different than UFS device power collapse.
8146  	 * Also, enable the host controller power before we go ahead with rest
8147  	 * of the initialization here.
8148  	 */
8149  	err = ufshcd_init_hba_vreg(hba);
8150  	if (err)
8151  		goto out;
8152  
8153  	err = ufshcd_setup_hba_vreg(hba, true);
8154  	if (err)
8155  		goto out;
8156  
8157  	err = ufshcd_init_clocks(hba);
8158  	if (err)
8159  		goto out_disable_hba_vreg;
8160  
8161  	err = ufshcd_setup_clocks(hba, true);
8162  	if (err)
8163  		goto out_disable_hba_vreg;
8164  
8165  	err = ufshcd_init_vreg(hba);
8166  	if (err)
8167  		goto out_disable_clks;
8168  
8169  	err = ufshcd_setup_vreg(hba, true);
8170  	if (err)
8171  		goto out_disable_clks;
8172  
8173  	err = ufshcd_variant_hba_init(hba);
8174  	if (err)
8175  		goto out_disable_vreg;
8176  
8177  	hba->is_powered = true;
8178  	goto out;
8179  
8180  out_disable_vreg:
8181  	ufshcd_setup_vreg(hba, false);
8182  out_disable_clks:
8183  	ufshcd_setup_clocks(hba, false);
8184  out_disable_hba_vreg:
8185  	ufshcd_setup_hba_vreg(hba, false);
8186  out:
8187  	return err;
8188  }
8189  
ufshcd_hba_exit(struct ufs_hba * hba)8190  static void ufshcd_hba_exit(struct ufs_hba *hba)
8191  {
8192  	if (hba->is_powered) {
8193  		ufshcd_variant_hba_exit(hba);
8194  		ufshcd_setup_vreg(hba, false);
8195  		ufshcd_suspend_clkscaling(hba);
8196  		if (ufshcd_is_clkscaling_supported(hba))
8197  			if (hba->devfreq)
8198  				ufshcd_suspend_clkscaling(hba);
8199  		ufshcd_setup_clocks(hba, false);
8200  		ufshcd_setup_hba_vreg(hba, false);
8201  		hba->is_powered = false;
8202  		ufs_put_device_desc(hba);
8203  	}
8204  }
8205  
8206  static int
ufshcd_send_request_sense(struct ufs_hba * hba,struct scsi_device * sdp)8207  ufshcd_send_request_sense(struct ufs_hba *hba, struct scsi_device *sdp)
8208  {
8209  	unsigned char cmd[6] = {REQUEST_SENSE,
8210  				0,
8211  				0,
8212  				0,
8213  				UFS_SENSE_SIZE,
8214  				0};
8215  	char *buffer;
8216  	int ret;
8217  
8218  	buffer = kzalloc(UFS_SENSE_SIZE, GFP_KERNEL);
8219  	if (!buffer) {
8220  		ret = -ENOMEM;
8221  		goto out;
8222  	}
8223  
8224  	ret = scsi_execute(sdp, cmd, DMA_FROM_DEVICE, buffer,
8225  			UFS_SENSE_SIZE, NULL, NULL,
8226  			msecs_to_jiffies(1000), 3, 0, RQF_PM, NULL);
8227  	if (ret)
8228  		pr_err("%s: failed with err %d\n", __func__, ret);
8229  
8230  	kfree(buffer);
8231  out:
8232  	return ret;
8233  }
8234  
8235  /**
8236   * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
8237   *			     power mode
8238   * @hba: per adapter instance
8239   * @pwr_mode: device power mode to set
8240   *
8241   * Returns 0 if requested power mode is set successfully
8242   * Returns non-zero if failed to set the requested power mode
8243   */
ufshcd_set_dev_pwr_mode(struct ufs_hba * hba,enum ufs_dev_pwr_mode pwr_mode)8244  static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
8245  				     enum ufs_dev_pwr_mode pwr_mode)
8246  {
8247  	unsigned char cmd[6] = { START_STOP };
8248  	struct scsi_sense_hdr sshdr;
8249  	struct scsi_device *sdp;
8250  	unsigned long flags;
8251  	int ret;
8252  
8253  	spin_lock_irqsave(hba->host->host_lock, flags);
8254  	sdp = hba->sdev_ufs_device;
8255  	if (sdp) {
8256  		ret = scsi_device_get(sdp);
8257  		if (!ret && !scsi_device_online(sdp)) {
8258  			ret = -ENODEV;
8259  			scsi_device_put(sdp);
8260  		}
8261  	} else {
8262  		ret = -ENODEV;
8263  	}
8264  	spin_unlock_irqrestore(hba->host->host_lock, flags);
8265  
8266  	if (ret)
8267  		return ret;
8268  
8269  	/*
8270  	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
8271  	 * handling, which would wait for host to be resumed. Since we know
8272  	 * we are functional while we are here, skip host resume in error
8273  	 * handling context.
8274  	 */
8275  	hba->host->eh_noresume = 1;
8276  	if (hba->wlun_dev_clr_ua) {
8277  		ret = ufshcd_send_request_sense(hba, sdp);
8278  		if (ret)
8279  			goto out;
8280  		/* Unit attention condition is cleared now */
8281  		hba->wlun_dev_clr_ua = false;
8282  	}
8283  
8284  	cmd[4] = pwr_mode << 4;
8285  
8286  	/*
8287  	 * Current function would be generally called from the power management
8288  	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
8289  	 * already suspended childs.
8290  	 */
8291  	ret = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
8292  			START_STOP_TIMEOUT, 0, 0, RQF_PM, NULL);
8293  	if (ret) {
8294  		sdev_printk(KERN_WARNING, sdp,
8295  			    "START_STOP failed for power mode: %d, result %x\n",
8296  			    pwr_mode, ret);
8297  		if (driver_byte(ret) == DRIVER_SENSE)
8298  			scsi_print_sense_hdr(sdp, NULL, &sshdr);
8299  	}
8300  
8301  	if (!ret)
8302  		hba->curr_dev_pwr_mode = pwr_mode;
8303  out:
8304  	scsi_device_put(sdp);
8305  	hba->host->eh_noresume = 0;
8306  	return ret;
8307  }
8308  
ufshcd_link_state_transition(struct ufs_hba * hba,enum uic_link_state req_link_state,int check_for_bkops)8309  static int ufshcd_link_state_transition(struct ufs_hba *hba,
8310  					enum uic_link_state req_link_state,
8311  					int check_for_bkops)
8312  {
8313  	int ret = 0;
8314  
8315  	if (req_link_state == hba->uic_link_state)
8316  		return 0;
8317  
8318  	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
8319  		ret = ufshcd_uic_hibern8_enter(hba);
8320  		if (!ret) {
8321  			ufshcd_set_link_hibern8(hba);
8322  		} else {
8323  			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
8324  					__func__, ret);
8325  			goto out;
8326  		}
8327  	}
8328  	/*
8329  	 * If autobkops is enabled, link can't be turned off because
8330  	 * turning off the link would also turn off the device.
8331  	 */
8332  	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
8333  		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
8334  		/*
8335  		 * Let's make sure that link is in low power mode, we are doing
8336  		 * this currently by putting the link in Hibern8. Otherway to
8337  		 * put the link in low power mode is to send the DME end point
8338  		 * to device and then send the DME reset command to local
8339  		 * unipro. But putting the link in hibern8 is much faster.
8340  		 */
8341  		ret = ufshcd_uic_hibern8_enter(hba);
8342  		if (ret) {
8343  			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
8344  					__func__, ret);
8345  			goto out;
8346  		}
8347  		/*
8348  		 * Change controller state to "reset state" which
8349  		 * should also put the link in off/reset state
8350  		 */
8351  		ufshcd_hba_stop(hba);
8352  		/*
8353  		 * TODO: Check if we need any delay to make sure that
8354  		 * controller is reset
8355  		 */
8356  		ufshcd_set_link_off(hba);
8357  	}
8358  
8359  out:
8360  	return ret;
8361  }
8362  
ufshcd_vreg_set_lpm(struct ufs_hba * hba)8363  static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
8364  {
8365  	bool vcc_off = false;
8366  
8367  	/*
8368  	 * It seems some UFS devices may keep drawing more than sleep current
8369  	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
8370  	 * To avoid this situation, add 2ms delay before putting these UFS
8371  	 * rails in LPM mode.
8372  	 */
8373  	if (!ufshcd_is_link_active(hba) &&
8374  	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
8375  		usleep_range(2000, 2100);
8376  
8377  	/*
8378  	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
8379  	 * power.
8380  	 *
8381  	 * If UFS device and link is in OFF state, all power supplies (VCC,
8382  	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
8383  	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
8384  	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
8385  	 *
8386  	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
8387  	 * in low power state which would save some power.
8388  	 *
8389  	 * If Write Booster is enabled and the device needs to flush the WB
8390  	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
8391  	 */
8392  	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
8393  	    !hba->dev_info.is_lu_power_on_wp) {
8394  		ufshcd_setup_vreg(hba, false);
8395  		vcc_off = true;
8396  	} else if (!ufshcd_is_ufs_dev_active(hba)) {
8397  		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
8398  		vcc_off = true;
8399  		if (!ufshcd_is_link_active(hba)) {
8400  			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
8401  			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
8402  		}
8403  	}
8404  
8405  	/*
8406  	 * Some UFS devices require delay after VCC power rail is turned-off.
8407  	 */
8408  	if (vcc_off && hba->vreg_info.vcc &&
8409  		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
8410  		usleep_range(5000, 5100);
8411  }
8412  
ufshcd_vreg_set_hpm(struct ufs_hba * hba)8413  static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
8414  {
8415  	int ret = 0;
8416  
8417  	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
8418  	    !hba->dev_info.is_lu_power_on_wp) {
8419  		ret = ufshcd_setup_vreg(hba, true);
8420  	} else if (!ufshcd_is_ufs_dev_active(hba)) {
8421  		if (!ret && !ufshcd_is_link_active(hba)) {
8422  			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
8423  			if (ret)
8424  				goto vcc_disable;
8425  			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
8426  			if (ret)
8427  				goto vccq_lpm;
8428  		}
8429  		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
8430  	}
8431  	goto out;
8432  
8433  vccq_lpm:
8434  	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
8435  vcc_disable:
8436  	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
8437  out:
8438  	return ret;
8439  }
8440  
ufshcd_hba_vreg_set_lpm(struct ufs_hba * hba)8441  static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
8442  {
8443  	if (ufshcd_is_link_off(hba))
8444  		ufshcd_setup_hba_vreg(hba, false);
8445  }
8446  
ufshcd_hba_vreg_set_hpm(struct ufs_hba * hba)8447  static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
8448  {
8449  	if (ufshcd_is_link_off(hba))
8450  		ufshcd_setup_hba_vreg(hba, true);
8451  }
8452  
8453  /**
8454   * ufshcd_suspend - helper function for suspend operations
8455   * @hba: per adapter instance
8456   * @pm_op: desired low power operation type
8457   *
8458   * This function will try to put the UFS device and link into low power
8459   * mode based on the "rpm_lvl" (Runtime PM level) or "spm_lvl"
8460   * (System PM level).
8461   *
8462   * If this function is called during shutdown, it will make sure that
8463   * both UFS device and UFS link is powered off.
8464   *
8465   * NOTE: UFS device & link must be active before we enter in this function.
8466   *
8467   * Returns 0 for success and non-zero for failure
8468   */
ufshcd_suspend(struct ufs_hba * hba,enum ufs_pm_op pm_op)8469  static int ufshcd_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
8470  {
8471  	int ret = 0;
8472  	enum ufs_pm_level pm_lvl;
8473  	enum ufs_dev_pwr_mode req_dev_pwr_mode;
8474  	enum uic_link_state req_link_state;
8475  
8476  	hba->pm_op_in_progress = 1;
8477  	if (!ufshcd_is_shutdown_pm(pm_op)) {
8478  		pm_lvl = ufshcd_is_runtime_pm(pm_op) ?
8479  			 hba->rpm_lvl : hba->spm_lvl;
8480  		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
8481  		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
8482  	} else {
8483  		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
8484  		req_link_state = UIC_LINK_OFF_STATE;
8485  	}
8486  
8487  	/*
8488  	 * If we can't transition into any of the low power modes
8489  	 * just gate the clocks.
8490  	 */
8491  	ufshcd_hold(hba, false);
8492  	hba->clk_gating.is_suspended = true;
8493  
8494  	if (hba->clk_scaling.is_allowed) {
8495  		cancel_work_sync(&hba->clk_scaling.suspend_work);
8496  		cancel_work_sync(&hba->clk_scaling.resume_work);
8497  		ufshcd_suspend_clkscaling(hba);
8498  	}
8499  
8500  	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
8501  			req_link_state == UIC_LINK_ACTIVE_STATE) {
8502  		goto disable_clks;
8503  	}
8504  
8505  	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
8506  	    (req_link_state == hba->uic_link_state))
8507  		goto enable_gating;
8508  
8509  	/* UFS device & link must be active before we enter in this function */
8510  	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
8511  		ret = -EINVAL;
8512  		goto enable_gating;
8513  	}
8514  
8515  	if (ufshcd_is_runtime_pm(pm_op)) {
8516  		if (ufshcd_can_autobkops_during_suspend(hba)) {
8517  			/*
8518  			 * The device is idle with no requests in the queue,
8519  			 * allow background operations if bkops status shows
8520  			 * that performance might be impacted.
8521  			 */
8522  			ret = ufshcd_urgent_bkops(hba);
8523  			if (ret)
8524  				goto enable_gating;
8525  		} else {
8526  			/* make sure that auto bkops is disabled */
8527  			ufshcd_disable_auto_bkops(hba);
8528  		}
8529  		/*
8530  		 * If device needs to do BKOP or WB buffer flush during
8531  		 * Hibern8, keep device power mode as "active power mode"
8532  		 * and VCC supply.
8533  		 */
8534  		hba->dev_info.b_rpm_dev_flush_capable =
8535  			hba->auto_bkops_enabled ||
8536  			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
8537  			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
8538  			ufshcd_is_auto_hibern8_enabled(hba))) &&
8539  			ufshcd_wb_need_flush(hba));
8540  	}
8541  
8542  	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
8543  		if ((ufshcd_is_runtime_pm(pm_op) && !hba->auto_bkops_enabled) ||
8544  		    !ufshcd_is_runtime_pm(pm_op)) {
8545  			/* ensure that bkops is disabled */
8546  			ufshcd_disable_auto_bkops(hba);
8547  		}
8548  
8549  		if (!hba->dev_info.b_rpm_dev_flush_capable) {
8550  			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
8551  			if (ret)
8552  				goto enable_gating;
8553  		}
8554  	}
8555  
8556  	flush_work(&hba->eeh_work);
8557  	ret = ufshcd_link_state_transition(hba, req_link_state, 1);
8558  	if (ret)
8559  		goto set_dev_active;
8560  
8561  	ufshcd_vreg_set_lpm(hba);
8562  
8563  disable_clks:
8564  	/*
8565  	 * Call vendor specific suspend callback. As these callbacks may access
8566  	 * vendor specific host controller register space call them before the
8567  	 * host clocks are ON.
8568  	 */
8569  	ret = ufshcd_vops_suspend(hba, pm_op);
8570  	if (ret)
8571  		goto set_link_active;
8572  	/*
8573  	 * Disable the host irq as host controller as there won't be any
8574  	 * host controller transaction expected till resume.
8575  	 */
8576  	ufshcd_disable_irq(hba);
8577  
8578  	if (!ufshcd_is_link_active(hba))
8579  		ufshcd_setup_clocks(hba, false);
8580  	else
8581  		/* If link is active, device ref_clk can't be switched off */
8582  		__ufshcd_setup_clocks(hba, false, true);
8583  
8584  	if (ufshcd_is_clkgating_allowed(hba)) {
8585  		hba->clk_gating.state = CLKS_OFF;
8586  		trace_ufshcd_clk_gating(dev_name(hba->dev),
8587  					hba->clk_gating.state);
8588  	}
8589  
8590  	/* Put the host controller in low power mode if possible */
8591  	ufshcd_hba_vreg_set_lpm(hba);
8592  	goto out;
8593  
8594  set_link_active:
8595  	if (hba->clk_scaling.is_allowed)
8596  		ufshcd_resume_clkscaling(hba);
8597  	ufshcd_vreg_set_hpm(hba);
8598  	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
8599  		ufshcd_set_link_active(hba);
8600  	else if (ufshcd_is_link_off(hba))
8601  		ufshcd_host_reset_and_restore(hba);
8602  set_dev_active:
8603  	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
8604  		ufshcd_disable_auto_bkops(hba);
8605  enable_gating:
8606  	if (hba->clk_scaling.is_allowed)
8607  		ufshcd_resume_clkscaling(hba);
8608  	hba->clk_gating.is_suspended = false;
8609  	hba->dev_info.b_rpm_dev_flush_capable = false;
8610  	ufshcd_release(hba);
8611  out:
8612  	if (hba->dev_info.b_rpm_dev_flush_capable) {
8613  		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
8614  			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
8615  	}
8616  
8617  	hba->pm_op_in_progress = 0;
8618  
8619  	if (ret)
8620  		ufshcd_update_reg_hist(&hba->ufs_stats.suspend_err, (u32)ret);
8621  	return ret;
8622  }
8623  
8624  /**
8625   * ufshcd_resume - helper function for resume operations
8626   * @hba: per adapter instance
8627   * @pm_op: runtime PM or system PM
8628   *
8629   * This function basically brings the UFS device, UniPro link and controller
8630   * to active state.
8631   *
8632   * Returns 0 for success and non-zero for failure
8633   */
ufshcd_resume(struct ufs_hba * hba,enum ufs_pm_op pm_op)8634  static int ufshcd_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
8635  {
8636  	int ret;
8637  	enum uic_link_state old_link_state;
8638  
8639  	hba->pm_op_in_progress = 1;
8640  	old_link_state = hba->uic_link_state;
8641  
8642  	ufshcd_hba_vreg_set_hpm(hba);
8643  	/* Make sure clocks are enabled before accessing controller */
8644  	ret = ufshcd_setup_clocks(hba, true);
8645  	if (ret)
8646  		goto out;
8647  
8648  	/* enable the host irq as host controller would be active soon */
8649  	ufshcd_enable_irq(hba);
8650  
8651  	ret = ufshcd_vreg_set_hpm(hba);
8652  	if (ret)
8653  		goto disable_irq_and_vops_clks;
8654  
8655  	/*
8656  	 * Call vendor specific resume callback. As these callbacks may access
8657  	 * vendor specific host controller register space call them when the
8658  	 * host clocks are ON.
8659  	 */
8660  	ret = ufshcd_vops_resume(hba, pm_op);
8661  	if (ret)
8662  		goto disable_vreg;
8663  
8664  	if (ufshcd_is_link_hibern8(hba)) {
8665  		ret = ufshcd_uic_hibern8_exit(hba);
8666  		if (!ret) {
8667  			ufshcd_set_link_active(hba);
8668  		} else {
8669  			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
8670  					__func__, ret);
8671  			goto vendor_suspend;
8672  		}
8673  	} else if (ufshcd_is_link_off(hba)) {
8674  		/*
8675  		 * A full initialization of the host and the device is
8676  		 * required since the link was put to off during suspend.
8677  		 */
8678  		ret = ufshcd_reset_and_restore(hba);
8679  		/*
8680  		 * ufshcd_reset_and_restore() should have already
8681  		 * set the link state as active
8682  		 */
8683  		if (ret || !ufshcd_is_link_active(hba))
8684  			goto vendor_suspend;
8685  	}
8686  
8687  	if (!ufshcd_is_ufs_dev_active(hba)) {
8688  		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
8689  		if (ret)
8690  			goto set_old_link_state;
8691  	}
8692  
8693  	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
8694  		ufshcd_enable_auto_bkops(hba);
8695  	else
8696  		/*
8697  		 * If BKOPs operations are urgently needed at this moment then
8698  		 * keep auto-bkops enabled or else disable it.
8699  		 */
8700  		ufshcd_urgent_bkops(hba);
8701  
8702  	hba->clk_gating.is_suspended = false;
8703  
8704  	if (hba->clk_scaling.is_allowed)
8705  		ufshcd_resume_clkscaling(hba);
8706  
8707  	/* Enable Auto-Hibernate if configured */
8708  	ufshcd_auto_hibern8_enable(hba);
8709  
8710  	if (hba->dev_info.b_rpm_dev_flush_capable) {
8711  		hba->dev_info.b_rpm_dev_flush_capable = false;
8712  		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
8713  	}
8714  
8715  	/* Schedule clock gating in case of no access to UFS device yet */
8716  	ufshcd_release(hba);
8717  
8718  	goto out;
8719  
8720  set_old_link_state:
8721  	ufshcd_link_state_transition(hba, old_link_state, 0);
8722  vendor_suspend:
8723  	ufshcd_vops_suspend(hba, pm_op);
8724  disable_vreg:
8725  	ufshcd_vreg_set_lpm(hba);
8726  disable_irq_and_vops_clks:
8727  	ufshcd_disable_irq(hba);
8728  	if (hba->clk_scaling.is_allowed)
8729  		ufshcd_suspend_clkscaling(hba);
8730  	ufshcd_setup_clocks(hba, false);
8731  	if (ufshcd_is_clkgating_allowed(hba)) {
8732  		hba->clk_gating.state = CLKS_OFF;
8733  		trace_ufshcd_clk_gating(dev_name(hba->dev),
8734  					hba->clk_gating.state);
8735  	}
8736  out:
8737  	hba->pm_op_in_progress = 0;
8738  	if (ret)
8739  		ufshcd_update_reg_hist(&hba->ufs_stats.resume_err, (u32)ret);
8740  	return ret;
8741  }
8742  
8743  /**
8744   * ufshcd_system_suspend - system suspend routine
8745   * @hba: per adapter instance
8746   *
8747   * Check the description of ufshcd_suspend() function for more details.
8748   *
8749   * Returns 0 for success and non-zero for failure
8750   */
ufshcd_system_suspend(struct ufs_hba * hba)8751  int ufshcd_system_suspend(struct ufs_hba *hba)
8752  {
8753  	int ret = 0;
8754  	ktime_t start = ktime_get();
8755  
8756  	if (!hba || !hba->is_powered)
8757  		return 0;
8758  
8759  	if ((ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl) ==
8760  	     hba->curr_dev_pwr_mode) &&
8761  	    (ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl) ==
8762  	     hba->uic_link_state))
8763  		goto out;
8764  
8765  	if (pm_runtime_suspended(hba->dev)) {
8766  		/*
8767  		 * UFS device and/or UFS link low power states during runtime
8768  		 * suspend seems to be different than what is expected during
8769  		 * system suspend. Hence runtime resume the devic & link and
8770  		 * let the system suspend low power states to take effect.
8771  		 * TODO: If resume takes longer time, we might have optimize
8772  		 * it in future by not resuming everything if possible.
8773  		 */
8774  		ret = ufshcd_runtime_resume(hba);
8775  		if (ret)
8776  			goto out;
8777  	}
8778  
8779  	ret = ufshcd_suspend(hba, UFS_SYSTEM_PM);
8780  out:
8781  	trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
8782  		ktime_to_us(ktime_sub(ktime_get(), start)),
8783  		hba->curr_dev_pwr_mode, hba->uic_link_state);
8784  	if (!ret)
8785  		hba->is_sys_suspended = true;
8786  	return ret;
8787  }
8788  EXPORT_SYMBOL(ufshcd_system_suspend);
8789  
8790  /**
8791   * ufshcd_system_resume - system resume routine
8792   * @hba: per adapter instance
8793   *
8794   * Returns 0 for success and non-zero for failure
8795   */
8796  
ufshcd_system_resume(struct ufs_hba * hba)8797  int ufshcd_system_resume(struct ufs_hba *hba)
8798  {
8799  	int ret = 0;
8800  	ktime_t start = ktime_get();
8801  
8802  	if (!hba)
8803  		return -EINVAL;
8804  
8805  	if (!hba->is_powered || pm_runtime_suspended(hba->dev))
8806  		/*
8807  		 * Let the runtime resume take care of resuming
8808  		 * if runtime suspended.
8809  		 */
8810  		goto out;
8811  	else
8812  		ret = ufshcd_resume(hba, UFS_SYSTEM_PM);
8813  out:
8814  	trace_ufshcd_system_resume(dev_name(hba->dev), ret,
8815  		ktime_to_us(ktime_sub(ktime_get(), start)),
8816  		hba->curr_dev_pwr_mode, hba->uic_link_state);
8817  	if (!ret)
8818  		hba->is_sys_suspended = false;
8819  	return ret;
8820  }
8821  EXPORT_SYMBOL(ufshcd_system_resume);
8822  
8823  /**
8824   * ufshcd_runtime_suspend - runtime suspend routine
8825   * @hba: per adapter instance
8826   *
8827   * Check the description of ufshcd_suspend() function for more details.
8828   *
8829   * Returns 0 for success and non-zero for failure
8830   */
ufshcd_runtime_suspend(struct ufs_hba * hba)8831  int ufshcd_runtime_suspend(struct ufs_hba *hba)
8832  {
8833  	int ret = 0;
8834  	ktime_t start = ktime_get();
8835  
8836  	if (!hba)
8837  		return -EINVAL;
8838  
8839  	if (!hba->is_powered)
8840  		goto out;
8841  	else
8842  		ret = ufshcd_suspend(hba, UFS_RUNTIME_PM);
8843  out:
8844  	trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
8845  		ktime_to_us(ktime_sub(ktime_get(), start)),
8846  		hba->curr_dev_pwr_mode, hba->uic_link_state);
8847  	return ret;
8848  }
8849  EXPORT_SYMBOL(ufshcd_runtime_suspend);
8850  
8851  /**
8852   * ufshcd_runtime_resume - runtime resume routine
8853   * @hba: per adapter instance
8854   *
8855   * This function basically brings the UFS device, UniPro link and controller
8856   * to active state. Following operations are done in this function:
8857   *
8858   * 1. Turn on all the controller related clocks
8859   * 2. Bring the UniPro link out of Hibernate state
8860   * 3. If UFS device is in sleep state, turn ON VCC rail and bring the UFS device
8861   *    to active state.
8862   * 4. If auto-bkops is enabled on the device, disable it.
8863   *
8864   * So following would be the possible power state after this function return
8865   * successfully:
8866   *	S1: UFS device in Active state with VCC rail ON
8867   *	    UniPro link in Active state
8868   *	    All the UFS/UniPro controller clocks are ON
8869   *
8870   * Returns 0 for success and non-zero for failure
8871   */
ufshcd_runtime_resume(struct ufs_hba * hba)8872  int ufshcd_runtime_resume(struct ufs_hba *hba)
8873  {
8874  	int ret = 0;
8875  	ktime_t start = ktime_get();
8876  
8877  	if (!hba)
8878  		return -EINVAL;
8879  
8880  	if (!hba->is_powered)
8881  		goto out;
8882  	else
8883  		ret = ufshcd_resume(hba, UFS_RUNTIME_PM);
8884  out:
8885  	trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
8886  		ktime_to_us(ktime_sub(ktime_get(), start)),
8887  		hba->curr_dev_pwr_mode, hba->uic_link_state);
8888  	return ret;
8889  }
8890  EXPORT_SYMBOL(ufshcd_runtime_resume);
8891  
ufshcd_runtime_idle(struct ufs_hba * hba)8892  int ufshcd_runtime_idle(struct ufs_hba *hba)
8893  {
8894  	return 0;
8895  }
8896  EXPORT_SYMBOL(ufshcd_runtime_idle);
8897  
8898  /**
8899   * ufshcd_shutdown - shutdown routine
8900   * @hba: per adapter instance
8901   *
8902   * This function would power off both UFS device and UFS link.
8903   *
8904   * Returns 0 always to allow force shutdown even in case of errors.
8905   */
ufshcd_shutdown(struct ufs_hba * hba)8906  int ufshcd_shutdown(struct ufs_hba *hba)
8907  {
8908  	int ret = 0;
8909  
8910  	if (!hba->is_powered)
8911  		goto out;
8912  
8913  	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
8914  		goto out;
8915  
8916  	pm_runtime_get_sync(hba->dev);
8917  
8918  	ret = ufshcd_suspend(hba, UFS_SHUTDOWN_PM);
8919  out:
8920  	if (ret)
8921  		dev_err(hba->dev, "%s failed, err %d\n", __func__, ret);
8922  	/* allow force shutdown even in case of errors */
8923  	return 0;
8924  }
8925  EXPORT_SYMBOL(ufshcd_shutdown);
8926  
8927  /**
8928   * ufshcd_remove - de-allocate SCSI host and host memory space
8929   *		data structure memory
8930   * @hba: per adapter instance
8931   */
ufshcd_remove(struct ufs_hba * hba)8932  void ufshcd_remove(struct ufs_hba *hba)
8933  {
8934  	ufs_bsg_remove(hba);
8935  	ufs_sysfs_remove_nodes(hba->dev);
8936  	blk_cleanup_queue(hba->tmf_queue);
8937  	blk_mq_free_tag_set(&hba->tmf_tag_set);
8938  	blk_cleanup_queue(hba->cmd_queue);
8939  	scsi_remove_host(hba->host);
8940  	destroy_workqueue(hba->eh_wq);
8941  	/* disable interrupts */
8942  	ufshcd_disable_intr(hba, hba->intr_mask);
8943  	ufshcd_hba_stop(hba);
8944  
8945  	ufshcd_exit_clk_scaling(hba);
8946  	ufshcd_exit_clk_gating(hba);
8947  	if (ufshcd_is_clkscaling_supported(hba))
8948  		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
8949  	ufshcd_hba_exit(hba);
8950  }
8951  EXPORT_SYMBOL_GPL(ufshcd_remove);
8952  
8953  /**
8954   * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
8955   * @hba: pointer to Host Bus Adapter (HBA)
8956   */
ufshcd_dealloc_host(struct ufs_hba * hba)8957  void ufshcd_dealloc_host(struct ufs_hba *hba)
8958  {
8959  	ufshcd_crypto_destroy_keyslot_manager(hba);
8960  	scsi_host_put(hba->host);
8961  }
8962  EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
8963  
8964  /**
8965   * ufshcd_set_dma_mask - Set dma mask based on the controller
8966   *			 addressing capability
8967   * @hba: per adapter instance
8968   *
8969   * Returns 0 for success, non-zero for failure
8970   */
ufshcd_set_dma_mask(struct ufs_hba * hba)8971  static int ufshcd_set_dma_mask(struct ufs_hba *hba)
8972  {
8973  	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
8974  		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
8975  			return 0;
8976  	}
8977  	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
8978  }
8979  
8980  /**
8981   * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
8982   * @dev: pointer to device handle
8983   * @hba_handle: driver private handle
8984   * Returns 0 on success, non-zero value on failure
8985   */
ufshcd_alloc_host(struct device * dev,struct ufs_hba ** hba_handle)8986  int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
8987  {
8988  	struct Scsi_Host *host;
8989  	struct ufs_hba *hba;
8990  	int err = 0;
8991  
8992  	if (!dev) {
8993  		dev_err(dev,
8994  		"Invalid memory reference for dev is NULL\n");
8995  		err = -ENODEV;
8996  		goto out_error;
8997  	}
8998  
8999  	host = scsi_host_alloc(&ufshcd_driver_template,
9000  				sizeof(struct ufs_hba));
9001  	if (!host) {
9002  		dev_err(dev, "scsi_host_alloc failed\n");
9003  		err = -ENOMEM;
9004  		goto out_error;
9005  	}
9006  	hba = shost_priv(host);
9007  	hba->host = host;
9008  	hba->dev = dev;
9009  	*hba_handle = hba;
9010  	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
9011  
9012  	INIT_LIST_HEAD(&hba->clk_list_head);
9013  
9014  out_error:
9015  	return err;
9016  }
9017  EXPORT_SYMBOL(ufshcd_alloc_host);
9018  
9019  /* This function exists because blk_mq_alloc_tag_set() requires this. */
ufshcd_queue_tmf(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * qd)9020  static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
9021  				     const struct blk_mq_queue_data *qd)
9022  {
9023  	WARN_ON_ONCE(true);
9024  	return BLK_STS_NOTSUPP;
9025  }
9026  
9027  static const struct blk_mq_ops ufshcd_tmf_ops = {
9028  	.queue_rq = ufshcd_queue_tmf,
9029  };
9030  
9031  /**
9032   * ufshcd_init - Driver initialization routine
9033   * @hba: per-adapter instance
9034   * @mmio_base: base register address
9035   * @irq: Interrupt line of device
9036   * Returns 0 on success, non-zero value on failure
9037   */
ufshcd_init(struct ufs_hba * hba,void __iomem * mmio_base,unsigned int irq)9038  int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
9039  {
9040  	int err;
9041  	struct Scsi_Host *host = hba->host;
9042  	struct device *dev = hba->dev;
9043  	char eh_wq_name[sizeof("ufs_eh_wq_00")];
9044  
9045  	if (!mmio_base) {
9046  		dev_err(hba->dev,
9047  		"Invalid memory reference for mmio_base is NULL\n");
9048  		err = -ENODEV;
9049  		goto out_error;
9050  	}
9051  
9052  	hba->mmio_base = mmio_base;
9053  	hba->irq = irq;
9054  	hba->vps = &ufs_hba_vps;
9055  
9056  	err = ufshcd_hba_init(hba);
9057  	if (err)
9058  		goto out_error;
9059  
9060  	/* Read capabilities registers */
9061  	err = ufshcd_hba_capabilities(hba);
9062  	if (err)
9063  		goto out_disable;
9064  
9065  	/* Get UFS version supported by the controller */
9066  	hba->ufs_version = ufshcd_get_ufs_version(hba);
9067  
9068  	if ((hba->ufs_version != UFSHCI_VERSION_10) &&
9069  	    (hba->ufs_version != UFSHCI_VERSION_11) &&
9070  	    (hba->ufs_version != UFSHCI_VERSION_20) &&
9071  	    (hba->ufs_version != UFSHCI_VERSION_21))
9072  		dev_err(hba->dev, "invalid UFS version 0x%x\n",
9073  			hba->ufs_version);
9074  
9075  	/* Get Interrupt bit mask per version */
9076  	hba->intr_mask = ufshcd_get_intr_mask(hba);
9077  
9078  	err = ufshcd_set_dma_mask(hba);
9079  	if (err) {
9080  		dev_err(hba->dev, "set dma mask failed\n");
9081  		goto out_disable;
9082  	}
9083  
9084  	/* Allocate memory for host memory space */
9085  	err = ufshcd_memory_alloc(hba);
9086  	if (err) {
9087  		dev_err(hba->dev, "Memory allocation failed\n");
9088  		goto out_disable;
9089  	}
9090  
9091  	/* Configure LRB */
9092  	ufshcd_host_memory_configure(hba);
9093  
9094  	host->can_queue = hba->nutrs;
9095  	host->cmd_per_lun = hba->nutrs;
9096  	host->max_id = UFSHCD_MAX_ID;
9097  	host->max_lun = UFS_MAX_LUNS;
9098  	host->max_channel = UFSHCD_MAX_CHANNEL;
9099  	host->unique_id = host->host_no;
9100  	host->max_cmd_len = UFS_CDB_SIZE;
9101  
9102  	hba->max_pwr_info.is_valid = false;
9103  
9104  	/* Initialize work queues */
9105  	snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d",
9106  		 hba->host->host_no);
9107  	hba->eh_wq = create_singlethread_workqueue(eh_wq_name);
9108  	if (!hba->eh_wq) {
9109  		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
9110  				__func__);
9111  		err = -ENOMEM;
9112  		goto out_disable;
9113  	}
9114  	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
9115  	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
9116  
9117  	/* Initialize UIC command mutex */
9118  	mutex_init(&hba->uic_cmd_mutex);
9119  
9120  	/* Initialize mutex for device management commands */
9121  	mutex_init(&hba->dev_cmd.lock);
9122  
9123  	init_rwsem(&hba->clk_scaling_lock);
9124  
9125  	ufshcd_init_clk_gating(hba);
9126  
9127  	ufshcd_init_clk_scaling(hba);
9128  
9129  	/*
9130  	 * In order to avoid any spurious interrupt immediately after
9131  	 * registering UFS controller interrupt handler, clear any pending UFS
9132  	 * interrupt status and disable all the UFS interrupts.
9133  	 */
9134  	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
9135  		      REG_INTERRUPT_STATUS);
9136  	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
9137  	/*
9138  	 * Make sure that UFS interrupts are disabled and any pending interrupt
9139  	 * status is cleared before registering UFS interrupt handler.
9140  	 */
9141  	mb();
9142  
9143  	/* IRQ registration */
9144  	err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
9145  	if (err) {
9146  		dev_err(hba->dev, "request irq failed\n");
9147  		goto exit_gating;
9148  	} else {
9149  		hba->is_irq_enabled = true;
9150  	}
9151  
9152  	err = scsi_add_host(host, hba->dev);
9153  	if (err) {
9154  		dev_err(hba->dev, "scsi_add_host failed\n");
9155  		goto exit_gating;
9156  	}
9157  
9158  	hba->cmd_queue = blk_mq_init_queue(&hba->host->tag_set);
9159  	if (IS_ERR(hba->cmd_queue)) {
9160  		err = PTR_ERR(hba->cmd_queue);
9161  		goto out_remove_scsi_host;
9162  	}
9163  
9164  	hba->tmf_tag_set = (struct blk_mq_tag_set) {
9165  		.nr_hw_queues	= 1,
9166  		.queue_depth	= hba->nutmrs,
9167  		.ops		= &ufshcd_tmf_ops,
9168  		.flags		= BLK_MQ_F_NO_SCHED,
9169  	};
9170  	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
9171  	if (err < 0)
9172  		goto free_cmd_queue;
9173  	hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set);
9174  	if (IS_ERR(hba->tmf_queue)) {
9175  		err = PTR_ERR(hba->tmf_queue);
9176  		goto free_tmf_tag_set;
9177  	}
9178  
9179  	/* Reset the attached device */
9180  	ufshcd_vops_device_reset(hba);
9181  
9182  	ufshcd_init_crypto(hba);
9183  
9184  	/* Host controller enable */
9185  	err = ufshcd_hba_enable(hba);
9186  	if (err) {
9187  		dev_err(hba->dev, "Host controller enable failed\n");
9188  		ufshcd_print_host_regs(hba);
9189  		ufshcd_print_host_state(hba);
9190  		goto free_tmf_queue;
9191  	}
9192  
9193  	/*
9194  	 * Set the default power management level for runtime and system PM.
9195  	 * Default power saving mode is to keep UFS link in Hibern8 state
9196  	 * and UFS device in sleep state.
9197  	 */
9198  	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
9199  						UFS_SLEEP_PWR_MODE,
9200  						UIC_LINK_HIBERN8_STATE);
9201  	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
9202  						UFS_SLEEP_PWR_MODE,
9203  						UIC_LINK_HIBERN8_STATE);
9204  
9205  	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work,
9206  			  ufshcd_rpm_dev_flush_recheck_work);
9207  
9208  	/* Set the default auto-hiberate idle timer value to 150 ms */
9209  	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
9210  		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
9211  			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
9212  	}
9213  
9214  	/* Hold auto suspend until async scan completes */
9215  	pm_runtime_get_sync(dev);
9216  	atomic_set(&hba->scsi_block_reqs_cnt, 0);
9217  	/*
9218  	 * We are assuming that device wasn't put in sleep/power-down
9219  	 * state exclusively during the boot stage before kernel.
9220  	 * This assumption helps avoid doing link startup twice during
9221  	 * ufshcd_probe_hba().
9222  	 */
9223  	ufshcd_set_ufs_dev_active(hba);
9224  
9225  	async_schedule(ufshcd_async_scan, hba);
9226  	ufs_sysfs_add_nodes(hba->dev);
9227  
9228  	return 0;
9229  
9230  free_tmf_queue:
9231  	blk_cleanup_queue(hba->tmf_queue);
9232  free_tmf_tag_set:
9233  	blk_mq_free_tag_set(&hba->tmf_tag_set);
9234  free_cmd_queue:
9235  	blk_cleanup_queue(hba->cmd_queue);
9236  out_remove_scsi_host:
9237  	scsi_remove_host(hba->host);
9238  exit_gating:
9239  	ufshcd_exit_clk_scaling(hba);
9240  	ufshcd_exit_clk_gating(hba);
9241  	destroy_workqueue(hba->eh_wq);
9242  out_disable:
9243  	hba->is_irq_enabled = false;
9244  	ufshcd_hba_exit(hba);
9245  out_error:
9246  	return err;
9247  }
9248  EXPORT_SYMBOL_GPL(ufshcd_init);
9249  
9250  MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
9251  MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
9252  MODULE_DESCRIPTION("Generic UFS host controller driver Core");
9253  MODULE_LICENSE("GPL");
9254  MODULE_VERSION(UFSHCD_DRIVER_VERSION);
9255