1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Universal Flash Storage Host controller driver Core 4 * Copyright (C) 2011-2013 Samsung India Software Operations 5 * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved. 6 * 7 * Authors: 8 * Santosh Yaraganavi <santosh.sy@samsung.com> 9 * Vinayak Holikatti <h.vinayak@samsung.com> 10 */ 11 12 #include <linux/async.h> 13 #include <linux/devfreq.h> 14 #include <linux/nls.h> 15 #include <linux/of.h> 16 #include <linux/bitfield.h> 17 #include <linux/blk-pm.h> 18 #include <linux/blkdev.h> 19 #include "ufshcd.h" 20 #include "ufs_quirks.h" 21 #include "unipro.h" 22 #include "ufs-sysfs.h" 23 #include "ufs_bsg.h" 24 #include "ufshcd-crypto.h" 25 #include <asm/unaligned.h> 26 #include <linux/blkdev.h> 27 28 #define CREATE_TRACE_POINTS 29 #include <trace/events/ufs.h> 30 31 #define UFSHCD_ENABLE_INTRS (UTP_TRANSFER_REQ_COMPL |\ 32 UTP_TASK_REQ_COMPL |\ 33 UFSHCD_ERROR_MASK) 34 /* UIC command timeout, unit: ms */ 35 #define UIC_CMD_TIMEOUT 500 36 37 /* NOP OUT retries waiting for NOP IN response */ 38 #define NOP_OUT_RETRIES 10 39 /* Timeout after 50 msecs if NOP OUT hangs without response */ 40 #define NOP_OUT_TIMEOUT 50 /* msecs */ 41 42 /* Query request retries */ 43 #define QUERY_REQ_RETRIES 3 44 /* Query request timeout */ 45 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */ 46 47 /* Task management command timeout */ 48 #define TM_CMD_TIMEOUT 100 /* msecs */ 49 50 /* maximum number of retries for a general UIC command */ 51 #define UFS_UIC_COMMAND_RETRIES 3 52 53 /* maximum number of link-startup retries */ 54 #define DME_LINKSTARTUP_RETRIES 3 55 56 /* Maximum retries for Hibern8 enter */ 57 #define UIC_HIBERN8_ENTER_RETRIES 3 58 59 /* maximum number of reset retries before giving up */ 60 #define MAX_HOST_RESET_RETRIES 5 61 62 /* Expose the flag value from utp_upiu_query.value */ 63 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF 64 65 /* Interrupt aggregation default timeout, unit: 40us */ 66 #define INT_AGGR_DEF_TO 0x02 67 68 /* default delay of autosuspend: 2000 ms */ 69 #define RPM_AUTOSUSPEND_DELAY_MS 2000 70 71 /* Default delay of RPM device flush delayed work */ 72 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000 73 74 /* Default value of wait time before gating device ref clock */ 75 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */ 76 77 /* Polling time to wait for fDeviceInit */ 78 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */ 79 80 #define ufshcd_toggle_vreg(_dev, _vreg, _on) \ 81 ({ \ 82 int _ret; \ 83 if (_on) \ 84 _ret = ufshcd_enable_vreg(_dev, _vreg); \ 85 else \ 86 _ret = ufshcd_disable_vreg(_dev, _vreg); \ 87 _ret; \ 88 }) 89 90 #define ufshcd_hex_dump(prefix_str, buf, len) do { \ 91 size_t __len = (len); \ 92 print_hex_dump(KERN_ERR, prefix_str, \ 93 __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\ 94 16, 4, buf, __len, false); \ 95 } while (0) 96 ufshcd_dump_regs(struct ufs_hba * hba,size_t offset,size_t len,const char * prefix)97 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len, 98 const char *prefix) 99 { 100 u32 *regs; 101 size_t pos; 102 103 if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */ 104 return -EINVAL; 105 106 regs = kzalloc(len, GFP_ATOMIC); 107 if (!regs) 108 return -ENOMEM; 109 110 for (pos = 0; pos < len; pos += 4) 111 regs[pos / 4] = ufshcd_readl(hba, offset + pos); 112 113 ufshcd_hex_dump(prefix, regs, len); 114 kfree(regs); 115 116 return 0; 117 } 118 EXPORT_SYMBOL_GPL(ufshcd_dump_regs); 119 120 enum { 121 UFSHCD_MAX_CHANNEL = 0, 122 UFSHCD_MAX_ID = 1, 123 UFSHCD_CMD_PER_LUN = 32, 124 UFSHCD_CAN_QUEUE = 32, 125 }; 126 127 /* UFSHCD states */ 128 enum { 129 UFSHCD_STATE_RESET, 130 UFSHCD_STATE_ERROR, 131 UFSHCD_STATE_OPERATIONAL, 132 UFSHCD_STATE_EH_SCHEDULED_FATAL, 133 UFSHCD_STATE_EH_SCHEDULED_NON_FATAL, 134 }; 135 136 /* UFSHCD error handling flags */ 137 enum { 138 UFSHCD_EH_IN_PROGRESS = (1 << 0), 139 }; 140 141 /* UFSHCD UIC layer error flags */ 142 enum { 143 UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */ 144 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */ 145 UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */ 146 UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */ 147 UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */ 148 UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */ 149 UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */ 150 }; 151 152 #define ufshcd_set_eh_in_progress(h) \ 153 ((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS) 154 #define ufshcd_eh_in_progress(h) \ 155 ((h)->eh_flags & UFSHCD_EH_IN_PROGRESS) 156 #define ufshcd_clear_eh_in_progress(h) \ 157 ((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS) 158 159 struct ufs_pm_lvl_states ufs_pm_lvl_states[] = { 160 {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE}, 161 {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE}, 162 {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE}, 163 {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE}, 164 {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE}, 165 {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE}, 166 }; 167 168 static inline enum ufs_dev_pwr_mode ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)169 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl) 170 { 171 return ufs_pm_lvl_states[lvl].dev_state; 172 } 173 174 static inline enum uic_link_state ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)175 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl) 176 { 177 return ufs_pm_lvl_states[lvl].link_state; 178 } 179 180 static inline enum ufs_pm_level ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,enum uic_link_state link_state)181 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state, 182 enum uic_link_state link_state) 183 { 184 enum ufs_pm_level lvl; 185 186 for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) { 187 if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) && 188 (ufs_pm_lvl_states[lvl].link_state == link_state)) 189 return lvl; 190 } 191 192 /* if no match found, return the level 0 */ 193 return UFS_PM_LVL_0; 194 } 195 196 static struct ufs_dev_fix ufs_fixups[] = { 197 /* UFS cards deviations table */ 198 UFS_FIX(UFS_VENDOR_MICRON, UFS_ANY_MODEL, 199 UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM), 200 UFS_FIX(UFS_VENDOR_SAMSUNG, UFS_ANY_MODEL, 201 UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM | 202 UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE | 203 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS), 204 UFS_FIX(UFS_VENDOR_SKHYNIX, UFS_ANY_MODEL, 205 UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME), 206 UFS_FIX(UFS_VENDOR_SKHYNIX, "hB8aL1" /*H28U62301AMR*/, 207 UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME), 208 UFS_FIX(UFS_VENDOR_TOSHIBA, UFS_ANY_MODEL, 209 UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM), 210 UFS_FIX(UFS_VENDOR_TOSHIBA, "THGLF2G9C8KBADG", 211 UFS_DEVICE_QUIRK_PA_TACTIVATE), 212 UFS_FIX(UFS_VENDOR_TOSHIBA, "THGLF2G9D8KBADG", 213 UFS_DEVICE_QUIRK_PA_TACTIVATE), 214 END_FIX 215 }; 216 217 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba); 218 static void ufshcd_async_scan(void *data, async_cookie_t cookie); 219 static int ufshcd_reset_and_restore(struct ufs_hba *hba); 220 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd); 221 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag); 222 static void ufshcd_hba_exit(struct ufs_hba *hba); 223 static int ufshcd_probe_hba(struct ufs_hba *hba, bool async); 224 static int __ufshcd_setup_clocks(struct ufs_hba *hba, bool on, 225 bool skip_ref_clk); 226 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on); 227 static int ufshcd_uic_hibern8_enter(struct ufs_hba *hba); 228 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba); 229 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba); 230 static void ufshcd_resume_clkscaling(struct ufs_hba *hba); 231 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba); 232 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba); 233 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up); 234 static irqreturn_t ufshcd_intr(int irq, void *__hba); 235 static int ufshcd_change_power_mode(struct ufs_hba *hba, 236 struct ufs_pa_layer_attr *pwr_mode); 237 static void ufshcd_schedule_eh_work(struct ufs_hba *hba); 238 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on); 239 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on); 240 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba, 241 struct ufs_vreg *vreg); 242 static int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag); 243 static int ufshcd_wb_buf_flush_enable(struct ufs_hba *hba); 244 static int ufshcd_wb_buf_flush_disable(struct ufs_hba *hba); 245 static int ufshcd_wb_ctrl(struct ufs_hba *hba, bool enable); 246 static int ufshcd_wb_toggle_flush_during_h8(struct ufs_hba *hba, bool set); 247 static inline void ufshcd_wb_toggle_flush(struct ufs_hba *hba, bool enable); 248 ufshcd_valid_tag(struct ufs_hba * hba,int tag)249 static inline bool ufshcd_valid_tag(struct ufs_hba *hba, int tag) 250 { 251 return tag >= 0 && tag < hba->nutrs; 252 } 253 ufshcd_enable_irq(struct ufs_hba * hba)254 static inline void ufshcd_enable_irq(struct ufs_hba *hba) 255 { 256 if (!hba->is_irq_enabled) { 257 enable_irq(hba->irq); 258 hba->is_irq_enabled = true; 259 } 260 } 261 ufshcd_disable_irq(struct ufs_hba * hba)262 static inline void ufshcd_disable_irq(struct ufs_hba *hba) 263 { 264 if (hba->is_irq_enabled) { 265 disable_irq(hba->irq); 266 hba->is_irq_enabled = false; 267 } 268 } 269 ufshcd_wb_config(struct ufs_hba * hba)270 static inline void ufshcd_wb_config(struct ufs_hba *hba) 271 { 272 int ret; 273 274 if (!ufshcd_is_wb_allowed(hba)) 275 return; 276 277 ret = ufshcd_wb_ctrl(hba, true); 278 if (ret) 279 dev_err(hba->dev, "%s: Enable WB failed: %d\n", __func__, ret); 280 else 281 dev_info(hba->dev, "%s: Write Booster Configured\n", __func__); 282 ret = ufshcd_wb_toggle_flush_during_h8(hba, true); 283 if (ret) 284 dev_err(hba->dev, "%s: En WB flush during H8: failed: %d\n", 285 __func__, ret); 286 ufshcd_wb_toggle_flush(hba, true); 287 } 288 ufshcd_scsi_unblock_requests(struct ufs_hba * hba)289 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba) 290 { 291 if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt)) 292 scsi_unblock_requests(hba->host); 293 } 294 ufshcd_scsi_block_requests(struct ufs_hba * hba)295 static void ufshcd_scsi_block_requests(struct ufs_hba *hba) 296 { 297 if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1) 298 scsi_block_requests(hba->host); 299 } 300 ufshcd_add_cmd_upiu_trace(struct ufs_hba * hba,unsigned int tag,const char * str)301 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag, 302 const char *str) 303 { 304 struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr; 305 306 trace_ufshcd_upiu(dev_name(hba->dev), str, &rq->header, &rq->sc.cdb); 307 } 308 ufshcd_add_query_upiu_trace(struct ufs_hba * hba,unsigned int tag,const char * str)309 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba, unsigned int tag, 310 const char *str) 311 { 312 struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr; 313 314 trace_ufshcd_upiu(dev_name(hba->dev), str, &rq->header, &rq->qr); 315 } 316 ufshcd_add_tm_upiu_trace(struct ufs_hba * hba,unsigned int tag,const char * str)317 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag, 318 const char *str) 319 { 320 int off = (int)tag - hba->nutrs; 321 struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[off]; 322 323 trace_ufshcd_upiu(dev_name(hba->dev), str, &descp->req_header, 324 &descp->input_param1); 325 } 326 ufshcd_add_uic_command_trace(struct ufs_hba * hba,struct uic_command * ucmd,const char * str)327 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba, 328 struct uic_command *ucmd, 329 const char *str) 330 { 331 u32 cmd; 332 333 if (!trace_ufshcd_uic_command_enabled()) 334 return; 335 336 if (!strcmp(str, "send")) 337 cmd = ucmd->command; 338 else 339 cmd = ufshcd_readl(hba, REG_UIC_COMMAND); 340 341 trace_ufshcd_uic_command(dev_name(hba->dev), str, cmd, 342 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1), 343 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2), 344 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3)); 345 } 346 ufshcd_add_command_trace(struct ufs_hba * hba,unsigned int tag,const char * str)347 static void ufshcd_add_command_trace(struct ufs_hba *hba, 348 unsigned int tag, const char *str) 349 { 350 sector_t lba = -1; 351 u8 opcode = 0; 352 u32 intr, doorbell; 353 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 354 struct scsi_cmnd *cmd = lrbp->cmd; 355 int transfer_len = -1; 356 357 if (!trace_ufshcd_command_enabled()) { 358 /* trace UPIU W/O tracing command */ 359 if (cmd) 360 ufshcd_add_cmd_upiu_trace(hba, tag, str); 361 return; 362 } 363 364 if (cmd) { /* data phase exists */ 365 /* trace UPIU also */ 366 ufshcd_add_cmd_upiu_trace(hba, tag, str); 367 opcode = cmd->cmnd[0]; 368 if ((opcode == READ_10) || (opcode == WRITE_10)) { 369 /* 370 * Currently we only fully trace read(10) and write(10) 371 * commands 372 */ 373 if (cmd->request && cmd->request->bio) 374 lba = cmd->request->bio->bi_iter.bi_sector; 375 transfer_len = be32_to_cpu( 376 lrbp->ucd_req_ptr->sc.exp_data_transfer_len); 377 } 378 } 379 380 intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS); 381 doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 382 trace_ufshcd_command(dev_name(hba->dev), str, tag, 383 doorbell, transfer_len, intr, lba, opcode); 384 } 385 ufshcd_print_clk_freqs(struct ufs_hba * hba)386 static void ufshcd_print_clk_freqs(struct ufs_hba *hba) 387 { 388 struct ufs_clk_info *clki; 389 struct list_head *head = &hba->clk_list_head; 390 391 if (list_empty(head)) 392 return; 393 394 list_for_each_entry(clki, head, list) { 395 if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq && 396 clki->max_freq) 397 dev_err(hba->dev, "clk: %s, rate: %u\n", 398 clki->name, clki->curr_freq); 399 } 400 } 401 ufshcd_print_err_hist(struct ufs_hba * hba,struct ufs_err_reg_hist * err_hist,char * err_name)402 static void ufshcd_print_err_hist(struct ufs_hba *hba, 403 struct ufs_err_reg_hist *err_hist, 404 char *err_name) 405 { 406 int i; 407 bool found = false; 408 409 for (i = 0; i < UFS_ERR_REG_HIST_LENGTH; i++) { 410 int p = (i + err_hist->pos) % UFS_ERR_REG_HIST_LENGTH; 411 412 if (err_hist->tstamp[p] == 0) 413 continue; 414 dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p, 415 err_hist->reg[p], ktime_to_us(err_hist->tstamp[p])); 416 found = true; 417 } 418 419 if (!found) 420 dev_err(hba->dev, "No record of %s\n", err_name); 421 } 422 ufshcd_print_host_regs(struct ufs_hba * hba)423 static void ufshcd_print_host_regs(struct ufs_hba *hba) 424 { 425 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: "); 426 427 ufshcd_print_err_hist(hba, &hba->ufs_stats.pa_err, "pa_err"); 428 ufshcd_print_err_hist(hba, &hba->ufs_stats.dl_err, "dl_err"); 429 ufshcd_print_err_hist(hba, &hba->ufs_stats.nl_err, "nl_err"); 430 ufshcd_print_err_hist(hba, &hba->ufs_stats.tl_err, "tl_err"); 431 ufshcd_print_err_hist(hba, &hba->ufs_stats.dme_err, "dme_err"); 432 ufshcd_print_err_hist(hba, &hba->ufs_stats.auto_hibern8_err, 433 "auto_hibern8_err"); 434 ufshcd_print_err_hist(hba, &hba->ufs_stats.fatal_err, "fatal_err"); 435 ufshcd_print_err_hist(hba, &hba->ufs_stats.link_startup_err, 436 "link_startup_fail"); 437 ufshcd_print_err_hist(hba, &hba->ufs_stats.resume_err, "resume_fail"); 438 ufshcd_print_err_hist(hba, &hba->ufs_stats.suspend_err, 439 "suspend_fail"); 440 ufshcd_print_err_hist(hba, &hba->ufs_stats.dev_reset, "dev_reset"); 441 ufshcd_print_err_hist(hba, &hba->ufs_stats.host_reset, "host_reset"); 442 ufshcd_print_err_hist(hba, &hba->ufs_stats.task_abort, "task_abort"); 443 444 ufshcd_vops_dbg_register_dump(hba); 445 } 446 447 static ufshcd_print_trs(struct ufs_hba * hba,unsigned long bitmap,bool pr_prdt)448 void ufshcd_print_trs(struct ufs_hba *hba, unsigned long bitmap, bool pr_prdt) 449 { 450 struct ufshcd_lrb *lrbp; 451 int prdt_length; 452 int tag; 453 454 for_each_set_bit(tag, &bitmap, hba->nutrs) { 455 lrbp = &hba->lrb[tag]; 456 457 dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n", 458 tag, ktime_to_us(lrbp->issue_time_stamp)); 459 dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n", 460 tag, ktime_to_us(lrbp->compl_time_stamp)); 461 dev_err(hba->dev, 462 "UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n", 463 tag, (u64)lrbp->utrd_dma_addr); 464 465 ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr, 466 sizeof(struct utp_transfer_req_desc)); 467 dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag, 468 (u64)lrbp->ucd_req_dma_addr); 469 ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr, 470 sizeof(struct utp_upiu_req)); 471 dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag, 472 (u64)lrbp->ucd_rsp_dma_addr); 473 ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr, 474 sizeof(struct utp_upiu_rsp)); 475 476 prdt_length = le16_to_cpu( 477 lrbp->utr_descriptor_ptr->prd_table_length); 478 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) 479 prdt_length /= sizeof(struct ufshcd_sg_entry); 480 481 dev_err(hba->dev, 482 "UPIU[%d] - PRDT - %d entries phys@0x%llx\n", 483 tag, prdt_length, 484 (u64)lrbp->ucd_prdt_dma_addr); 485 486 if (pr_prdt) 487 ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr, 488 sizeof(struct ufshcd_sg_entry) * prdt_length); 489 } 490 } 491 ufshcd_print_tmrs(struct ufs_hba * hba,unsigned long bitmap)492 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap) 493 { 494 int tag; 495 496 for_each_set_bit(tag, &bitmap, hba->nutmrs) { 497 struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag]; 498 499 dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag); 500 ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp)); 501 } 502 } 503 ufshcd_print_host_state(struct ufs_hba * hba)504 static void ufshcd_print_host_state(struct ufs_hba *hba) 505 { 506 struct scsi_device *sdev_ufs = hba->sdev_ufs_device; 507 508 dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state); 509 dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n", 510 hba->outstanding_reqs, hba->outstanding_tasks); 511 dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n", 512 hba->saved_err, hba->saved_uic_err); 513 dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n", 514 hba->curr_dev_pwr_mode, hba->uic_link_state); 515 dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n", 516 hba->pm_op_in_progress, hba->is_sys_suspended); 517 dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n", 518 hba->auto_bkops_enabled, hba->host->host_self_blocked); 519 dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state); 520 dev_err(hba->dev, 521 "last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n", 522 ktime_to_us(hba->ufs_stats.last_hibern8_exit_tstamp), 523 hba->ufs_stats.hibern8_exit_cnt); 524 dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n", 525 ktime_to_us(hba->ufs_stats.last_intr_ts), 526 hba->ufs_stats.last_intr_status); 527 dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n", 528 hba->eh_flags, hba->req_abort_count); 529 dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n", 530 hba->ufs_version, hba->capabilities, hba->caps); 531 dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks, 532 hba->dev_quirks); 533 if (sdev_ufs) 534 dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n", 535 sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev); 536 537 ufshcd_print_clk_freqs(hba); 538 } 539 540 /** 541 * ufshcd_print_pwr_info - print power params as saved in hba 542 * power info 543 * @hba: per-adapter instance 544 */ ufshcd_print_pwr_info(struct ufs_hba * hba)545 static void ufshcd_print_pwr_info(struct ufs_hba *hba) 546 { 547 static const char * const names[] = { 548 "INVALID MODE", 549 "FAST MODE", 550 "SLOW_MODE", 551 "INVALID MODE", 552 "FASTAUTO_MODE", 553 "SLOWAUTO_MODE", 554 "INVALID MODE", 555 }; 556 557 dev_err(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n", 558 __func__, 559 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx, 560 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx, 561 names[hba->pwr_info.pwr_rx], 562 names[hba->pwr_info.pwr_tx], 563 hba->pwr_info.hs_rate); 564 } 565 ufshcd_delay_us(unsigned long us,unsigned long tolerance)566 void ufshcd_delay_us(unsigned long us, unsigned long tolerance) 567 { 568 if (!us) 569 return; 570 571 if (us < 10) 572 udelay(us); 573 else 574 usleep_range(us, us + tolerance); 575 } 576 EXPORT_SYMBOL_GPL(ufshcd_delay_us); 577 578 /** 579 * ufshcd_wait_for_register - wait for register value to change 580 * @hba: per-adapter interface 581 * @reg: mmio register offset 582 * @mask: mask to apply to the read register value 583 * @val: value to wait for 584 * @interval_us: polling interval in microseconds 585 * @timeout_ms: timeout in milliseconds 586 * 587 * Return: 588 * -ETIMEDOUT on error, zero on success. 589 */ ufshcd_wait_for_register(struct ufs_hba * hba,u32 reg,u32 mask,u32 val,unsigned long interval_us,unsigned long timeout_ms)590 int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask, 591 u32 val, unsigned long interval_us, 592 unsigned long timeout_ms) 593 { 594 int err = 0; 595 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms); 596 597 /* ignore bits that we don't intend to wait on */ 598 val = val & mask; 599 600 while ((ufshcd_readl(hba, reg) & mask) != val) { 601 usleep_range(interval_us, interval_us + 50); 602 if (time_after(jiffies, timeout)) { 603 if ((ufshcd_readl(hba, reg) & mask) != val) 604 err = -ETIMEDOUT; 605 break; 606 } 607 } 608 609 return err; 610 } 611 612 /** 613 * ufshcd_get_intr_mask - Get the interrupt bit mask 614 * @hba: Pointer to adapter instance 615 * 616 * Returns interrupt bit mask per version 617 */ ufshcd_get_intr_mask(struct ufs_hba * hba)618 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba) 619 { 620 u32 intr_mask = 0; 621 622 switch (hba->ufs_version) { 623 case UFSHCI_VERSION_10: 624 intr_mask = INTERRUPT_MASK_ALL_VER_10; 625 break; 626 case UFSHCI_VERSION_11: 627 case UFSHCI_VERSION_20: 628 intr_mask = INTERRUPT_MASK_ALL_VER_11; 629 break; 630 case UFSHCI_VERSION_21: 631 default: 632 intr_mask = INTERRUPT_MASK_ALL_VER_21; 633 break; 634 } 635 636 return intr_mask; 637 } 638 639 /** 640 * ufshcd_get_ufs_version - Get the UFS version supported by the HBA 641 * @hba: Pointer to adapter instance 642 * 643 * Returns UFSHCI version supported by the controller 644 */ ufshcd_get_ufs_version(struct ufs_hba * hba)645 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba) 646 { 647 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION) 648 return ufshcd_vops_get_ufs_hci_version(hba); 649 650 return ufshcd_readl(hba, REG_UFS_VERSION); 651 } 652 653 /** 654 * ufshcd_is_device_present - Check if any device connected to 655 * the host controller 656 * @hba: pointer to adapter instance 657 * 658 * Returns true if device present, false if no device detected 659 */ ufshcd_is_device_present(struct ufs_hba * hba)660 static inline bool ufshcd_is_device_present(struct ufs_hba *hba) 661 { 662 return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) & 663 DEVICE_PRESENT) ? true : false; 664 } 665 666 /** 667 * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status 668 * @lrbp: pointer to local command reference block 669 * 670 * This function is used to get the OCS field from UTRD 671 * Returns the OCS field in the UTRD 672 */ ufshcd_get_tr_ocs(struct ufshcd_lrb * lrbp)673 static inline int ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp) 674 { 675 return le32_to_cpu(lrbp->utr_descriptor_ptr->header.dword_2) & MASK_OCS; 676 } 677 678 /** 679 * ufshcd_utrl_clear - Clear a bit in UTRLCLR register 680 * @hba: per adapter instance 681 * @pos: position of the bit to be cleared 682 */ ufshcd_utrl_clear(struct ufs_hba * hba,u32 pos)683 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 pos) 684 { 685 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR) 686 ufshcd_writel(hba, (1 << pos), REG_UTP_TRANSFER_REQ_LIST_CLEAR); 687 else 688 ufshcd_writel(hba, ~(1 << pos), 689 REG_UTP_TRANSFER_REQ_LIST_CLEAR); 690 } 691 692 /** 693 * ufshcd_utmrl_clear - Clear a bit in UTRMLCLR register 694 * @hba: per adapter instance 695 * @pos: position of the bit to be cleared 696 */ ufshcd_utmrl_clear(struct ufs_hba * hba,u32 pos)697 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos) 698 { 699 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR) 700 ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR); 701 else 702 ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR); 703 } 704 705 /** 706 * ufshcd_outstanding_req_clear - Clear a bit in outstanding request field 707 * @hba: per adapter instance 708 * @tag: position of the bit to be cleared 709 */ ufshcd_outstanding_req_clear(struct ufs_hba * hba,int tag)710 static inline void ufshcd_outstanding_req_clear(struct ufs_hba *hba, int tag) 711 { 712 __clear_bit(tag, &hba->outstanding_reqs); 713 } 714 715 /** 716 * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY 717 * @reg: Register value of host controller status 718 * 719 * Returns integer, 0 on Success and positive value if failed 720 */ ufshcd_get_lists_status(u32 reg)721 static inline int ufshcd_get_lists_status(u32 reg) 722 { 723 return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY); 724 } 725 726 /** 727 * ufshcd_get_uic_cmd_result - Get the UIC command result 728 * @hba: Pointer to adapter instance 729 * 730 * This function gets the result of UIC command completion 731 * Returns 0 on success, non zero value on error 732 */ ufshcd_get_uic_cmd_result(struct ufs_hba * hba)733 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba) 734 { 735 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) & 736 MASK_UIC_COMMAND_RESULT; 737 } 738 739 /** 740 * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command 741 * @hba: Pointer to adapter instance 742 * 743 * This function gets UIC command argument3 744 * Returns 0 on success, non zero value on error 745 */ ufshcd_get_dme_attr_val(struct ufs_hba * hba)746 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba) 747 { 748 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3); 749 } 750 751 /** 752 * ufshcd_get_req_rsp - returns the TR response transaction type 753 * @ucd_rsp_ptr: pointer to response UPIU 754 */ 755 static inline int ufshcd_get_req_rsp(struct utp_upiu_rsp * ucd_rsp_ptr)756 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr) 757 { 758 return be32_to_cpu(ucd_rsp_ptr->header.dword_0) >> 24; 759 } 760 761 /** 762 * ufshcd_get_rsp_upiu_result - Get the result from response UPIU 763 * @ucd_rsp_ptr: pointer to response UPIU 764 * 765 * This function gets the response status and scsi_status from response UPIU 766 * Returns the response result code. 767 */ 768 static inline int ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp * ucd_rsp_ptr)769 ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp *ucd_rsp_ptr) 770 { 771 return be32_to_cpu(ucd_rsp_ptr->header.dword_1) & MASK_RSP_UPIU_RESULT; 772 } 773 774 /* 775 * ufshcd_get_rsp_upiu_data_seg_len - Get the data segment length 776 * from response UPIU 777 * @ucd_rsp_ptr: pointer to response UPIU 778 * 779 * Return the data segment length. 780 */ 781 static inline unsigned int ufshcd_get_rsp_upiu_data_seg_len(struct utp_upiu_rsp * ucd_rsp_ptr)782 ufshcd_get_rsp_upiu_data_seg_len(struct utp_upiu_rsp *ucd_rsp_ptr) 783 { 784 return be32_to_cpu(ucd_rsp_ptr->header.dword_2) & 785 MASK_RSP_UPIU_DATA_SEG_LEN; 786 } 787 788 /** 789 * ufshcd_is_exception_event - Check if the device raised an exception event 790 * @ucd_rsp_ptr: pointer to response UPIU 791 * 792 * The function checks if the device raised an exception event indicated in 793 * the Device Information field of response UPIU. 794 * 795 * Returns true if exception is raised, false otherwise. 796 */ ufshcd_is_exception_event(struct utp_upiu_rsp * ucd_rsp_ptr)797 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr) 798 { 799 return be32_to_cpu(ucd_rsp_ptr->header.dword_2) & 800 MASK_RSP_EXCEPTION_EVENT ? true : false; 801 } 802 803 /** 804 * ufshcd_reset_intr_aggr - Reset interrupt aggregation values. 805 * @hba: per adapter instance 806 */ 807 static inline void ufshcd_reset_intr_aggr(struct ufs_hba * hba)808 ufshcd_reset_intr_aggr(struct ufs_hba *hba) 809 { 810 ufshcd_writel(hba, INT_AGGR_ENABLE | 811 INT_AGGR_COUNTER_AND_TIMER_RESET, 812 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL); 813 } 814 815 /** 816 * ufshcd_config_intr_aggr - Configure interrupt aggregation values. 817 * @hba: per adapter instance 818 * @cnt: Interrupt aggregation counter threshold 819 * @tmout: Interrupt aggregation timeout value 820 */ 821 static inline void ufshcd_config_intr_aggr(struct ufs_hba * hba,u8 cnt,u8 tmout)822 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout) 823 { 824 ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE | 825 INT_AGGR_COUNTER_THLD_VAL(cnt) | 826 INT_AGGR_TIMEOUT_VAL(tmout), 827 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL); 828 } 829 830 /** 831 * ufshcd_disable_intr_aggr - Disables interrupt aggregation. 832 * @hba: per adapter instance 833 */ ufshcd_disable_intr_aggr(struct ufs_hba * hba)834 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba) 835 { 836 ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL); 837 } 838 839 /** 840 * ufshcd_enable_run_stop_reg - Enable run-stop registers, 841 * When run-stop registers are set to 1, it indicates the 842 * host controller that it can process the requests 843 * @hba: per adapter instance 844 */ ufshcd_enable_run_stop_reg(struct ufs_hba * hba)845 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba) 846 { 847 ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT, 848 REG_UTP_TASK_REQ_LIST_RUN_STOP); 849 ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT, 850 REG_UTP_TRANSFER_REQ_LIST_RUN_STOP); 851 } 852 853 /** 854 * ufshcd_hba_start - Start controller initialization sequence 855 * @hba: per adapter instance 856 */ ufshcd_hba_start(struct ufs_hba * hba)857 static inline void ufshcd_hba_start(struct ufs_hba *hba) 858 { 859 u32 val = CONTROLLER_ENABLE; 860 861 if (ufshcd_crypto_enable(hba)) 862 val |= CRYPTO_GENERAL_ENABLE; 863 864 ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE); 865 } 866 867 /** 868 * ufshcd_is_hba_active - Get controller state 869 * @hba: per adapter instance 870 * 871 * Returns false if controller is active, true otherwise 872 */ ufshcd_is_hba_active(struct ufs_hba * hba)873 static inline bool ufshcd_is_hba_active(struct ufs_hba *hba) 874 { 875 return (ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE) 876 ? false : true; 877 } 878 ufshcd_get_local_unipro_ver(struct ufs_hba * hba)879 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba) 880 { 881 /* HCI version 1.0 and 1.1 supports UniPro 1.41 */ 882 if ((hba->ufs_version == UFSHCI_VERSION_10) || 883 (hba->ufs_version == UFSHCI_VERSION_11)) 884 return UFS_UNIPRO_VER_1_41; 885 else 886 return UFS_UNIPRO_VER_1_6; 887 } 888 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver); 889 ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba * hba)890 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba) 891 { 892 /* 893 * If both host and device support UniPro ver1.6 or later, PA layer 894 * parameters tuning happens during link startup itself. 895 * 896 * We can manually tune PA layer parameters if either host or device 897 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning 898 * logic simple, we will only do manual tuning if local unipro version 899 * doesn't support ver1.6 or later. 900 */ 901 if (ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6) 902 return true; 903 else 904 return false; 905 } 906 907 /** 908 * ufshcd_set_clk_freq - set UFS controller clock frequencies 909 * @hba: per adapter instance 910 * @scale_up: If True, set max possible frequency othewise set low frequency 911 * 912 * Returns 0 if successful 913 * Returns < 0 for any other errors 914 */ ufshcd_set_clk_freq(struct ufs_hba * hba,bool scale_up)915 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up) 916 { 917 int ret = 0; 918 struct ufs_clk_info *clki; 919 struct list_head *head = &hba->clk_list_head; 920 921 if (list_empty(head)) 922 goto out; 923 924 list_for_each_entry(clki, head, list) { 925 if (!IS_ERR_OR_NULL(clki->clk)) { 926 if (scale_up && clki->max_freq) { 927 if (clki->curr_freq == clki->max_freq) 928 continue; 929 930 ret = clk_set_rate(clki->clk, clki->max_freq); 931 if (ret) { 932 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n", 933 __func__, clki->name, 934 clki->max_freq, ret); 935 break; 936 } 937 trace_ufshcd_clk_scaling(dev_name(hba->dev), 938 "scaled up", clki->name, 939 clki->curr_freq, 940 clki->max_freq); 941 942 clki->curr_freq = clki->max_freq; 943 944 } else if (!scale_up && clki->min_freq) { 945 if (clki->curr_freq == clki->min_freq) 946 continue; 947 948 ret = clk_set_rate(clki->clk, clki->min_freq); 949 if (ret) { 950 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n", 951 __func__, clki->name, 952 clki->min_freq, ret); 953 break; 954 } 955 trace_ufshcd_clk_scaling(dev_name(hba->dev), 956 "scaled down", clki->name, 957 clki->curr_freq, 958 clki->min_freq); 959 clki->curr_freq = clki->min_freq; 960 } 961 } 962 dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__, 963 clki->name, clk_get_rate(clki->clk)); 964 } 965 966 out: 967 return ret; 968 } 969 970 /** 971 * ufshcd_scale_clks - scale up or scale down UFS controller clocks 972 * @hba: per adapter instance 973 * @scale_up: True if scaling up and false if scaling down 974 * 975 * Returns 0 if successful 976 * Returns < 0 for any other errors 977 */ ufshcd_scale_clks(struct ufs_hba * hba,bool scale_up)978 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up) 979 { 980 int ret = 0; 981 ktime_t start = ktime_get(); 982 983 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE); 984 if (ret) 985 goto out; 986 987 ret = ufshcd_set_clk_freq(hba, scale_up); 988 if (ret) 989 goto out; 990 991 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE); 992 if (ret) 993 ufshcd_set_clk_freq(hba, !scale_up); 994 995 out: 996 trace_ufshcd_profile_clk_scaling(dev_name(hba->dev), 997 (scale_up ? "up" : "down"), 998 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 999 return ret; 1000 } 1001 1002 /** 1003 * ufshcd_is_devfreq_scaling_required - check if scaling is required or not 1004 * @hba: per adapter instance 1005 * @scale_up: True if scaling up and false if scaling down 1006 * 1007 * Returns true if scaling is required, false otherwise. 1008 */ ufshcd_is_devfreq_scaling_required(struct ufs_hba * hba,bool scale_up)1009 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba, 1010 bool scale_up) 1011 { 1012 struct ufs_clk_info *clki; 1013 struct list_head *head = &hba->clk_list_head; 1014 1015 if (list_empty(head)) 1016 return false; 1017 1018 list_for_each_entry(clki, head, list) { 1019 if (!IS_ERR_OR_NULL(clki->clk)) { 1020 if (scale_up && clki->max_freq) { 1021 if (clki->curr_freq == clki->max_freq) 1022 continue; 1023 return true; 1024 } else if (!scale_up && clki->min_freq) { 1025 if (clki->curr_freq == clki->min_freq) 1026 continue; 1027 return true; 1028 } 1029 } 1030 } 1031 1032 return false; 1033 } 1034 ufshcd_wait_for_doorbell_clr(struct ufs_hba * hba,u64 wait_timeout_us)1035 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba, 1036 u64 wait_timeout_us) 1037 { 1038 unsigned long flags; 1039 int ret = 0; 1040 u32 tm_doorbell; 1041 u32 tr_doorbell; 1042 bool timeout = false, do_last_check = false; 1043 ktime_t start; 1044 1045 ufshcd_hold(hba, false); 1046 spin_lock_irqsave(hba->host->host_lock, flags); 1047 /* 1048 * Wait for all the outstanding tasks/transfer requests. 1049 * Verify by checking the doorbell registers are clear. 1050 */ 1051 start = ktime_get(); 1052 do { 1053 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) { 1054 ret = -EBUSY; 1055 goto out; 1056 } 1057 1058 tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL); 1059 tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 1060 if (!tm_doorbell && !tr_doorbell) { 1061 timeout = false; 1062 break; 1063 } else if (do_last_check) { 1064 break; 1065 } 1066 1067 spin_unlock_irqrestore(hba->host->host_lock, flags); 1068 schedule(); 1069 if (ktime_to_us(ktime_sub(ktime_get(), start)) > 1070 wait_timeout_us) { 1071 timeout = true; 1072 /* 1073 * We might have scheduled out for long time so make 1074 * sure to check if doorbells are cleared by this time 1075 * or not. 1076 */ 1077 do_last_check = true; 1078 } 1079 spin_lock_irqsave(hba->host->host_lock, flags); 1080 } while (tm_doorbell || tr_doorbell); 1081 1082 if (timeout) { 1083 dev_err(hba->dev, 1084 "%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n", 1085 __func__, tm_doorbell, tr_doorbell); 1086 ret = -EBUSY; 1087 } 1088 out: 1089 spin_unlock_irqrestore(hba->host->host_lock, flags); 1090 ufshcd_release(hba); 1091 return ret; 1092 } 1093 1094 /** 1095 * ufshcd_scale_gear - scale up/down UFS gear 1096 * @hba: per adapter instance 1097 * @scale_up: True for scaling up gear and false for scaling down 1098 * 1099 * Returns 0 for success, 1100 * Returns -EBUSY if scaling can't happen at this time 1101 * Returns non-zero for any other errors 1102 */ ufshcd_scale_gear(struct ufs_hba * hba,bool scale_up)1103 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up) 1104 { 1105 #define UFS_MIN_GEAR_TO_SCALE_DOWN UFS_HS_G1 1106 int ret = 0; 1107 struct ufs_pa_layer_attr new_pwr_info; 1108 1109 if (scale_up) { 1110 memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info.info, 1111 sizeof(struct ufs_pa_layer_attr)); 1112 } else { 1113 memcpy(&new_pwr_info, &hba->pwr_info, 1114 sizeof(struct ufs_pa_layer_attr)); 1115 1116 if (hba->pwr_info.gear_tx > UFS_MIN_GEAR_TO_SCALE_DOWN 1117 || hba->pwr_info.gear_rx > UFS_MIN_GEAR_TO_SCALE_DOWN) { 1118 /* save the current power mode */ 1119 memcpy(&hba->clk_scaling.saved_pwr_info.info, 1120 &hba->pwr_info, 1121 sizeof(struct ufs_pa_layer_attr)); 1122 1123 /* scale down gear */ 1124 new_pwr_info.gear_tx = UFS_MIN_GEAR_TO_SCALE_DOWN; 1125 new_pwr_info.gear_rx = UFS_MIN_GEAR_TO_SCALE_DOWN; 1126 } 1127 } 1128 1129 /* check if the power mode needs to be changed or not? */ 1130 ret = ufshcd_config_pwr_mode(hba, &new_pwr_info); 1131 if (ret) 1132 dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)", 1133 __func__, ret, 1134 hba->pwr_info.gear_tx, hba->pwr_info.gear_rx, 1135 new_pwr_info.gear_tx, new_pwr_info.gear_rx); 1136 1137 return ret; 1138 } 1139 ufshcd_clock_scaling_prepare(struct ufs_hba * hba)1140 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba) 1141 { 1142 #define DOORBELL_CLR_TOUT_US (1000 * 1000) /* 1 sec */ 1143 int ret = 0; 1144 /* 1145 * make sure that there are no outstanding requests when 1146 * clock scaling is in progress 1147 */ 1148 ufshcd_scsi_block_requests(hba); 1149 down_write(&hba->clk_scaling_lock); 1150 if (ufshcd_wait_for_doorbell_clr(hba, DOORBELL_CLR_TOUT_US)) { 1151 ret = -EBUSY; 1152 up_write(&hba->clk_scaling_lock); 1153 ufshcd_scsi_unblock_requests(hba); 1154 } 1155 1156 return ret; 1157 } 1158 ufshcd_clock_scaling_unprepare(struct ufs_hba * hba)1159 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba) 1160 { 1161 up_write(&hba->clk_scaling_lock); 1162 ufshcd_scsi_unblock_requests(hba); 1163 } 1164 1165 /** 1166 * ufshcd_devfreq_scale - scale up/down UFS clocks and gear 1167 * @hba: per adapter instance 1168 * @scale_up: True for scaling up and false for scalin down 1169 * 1170 * Returns 0 for success, 1171 * Returns -EBUSY if scaling can't happen at this time 1172 * Returns non-zero for any other errors 1173 */ ufshcd_devfreq_scale(struct ufs_hba * hba,bool scale_up)1174 static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up) 1175 { 1176 int ret = 0; 1177 1178 /* let's not get into low power until clock scaling is completed */ 1179 ufshcd_hold(hba, false); 1180 1181 ret = ufshcd_clock_scaling_prepare(hba); 1182 if (ret) 1183 goto out; 1184 1185 /* scale down the gear before scaling down clocks */ 1186 if (!scale_up) { 1187 ret = ufshcd_scale_gear(hba, false); 1188 if (ret) 1189 goto out_unprepare; 1190 } 1191 1192 ret = ufshcd_scale_clks(hba, scale_up); 1193 if (ret) { 1194 if (!scale_up) 1195 ufshcd_scale_gear(hba, true); 1196 goto out_unprepare; 1197 } 1198 1199 /* scale up the gear after scaling up clocks */ 1200 if (scale_up) { 1201 ret = ufshcd_scale_gear(hba, true); 1202 if (ret) { 1203 ufshcd_scale_clks(hba, false); 1204 goto out_unprepare; 1205 } 1206 } 1207 1208 /* Enable Write Booster if we have scaled up else disable it */ 1209 up_write(&hba->clk_scaling_lock); 1210 ufshcd_wb_ctrl(hba, scale_up); 1211 down_write(&hba->clk_scaling_lock); 1212 1213 out_unprepare: 1214 ufshcd_clock_scaling_unprepare(hba); 1215 out: 1216 ufshcd_release(hba); 1217 return ret; 1218 } 1219 ufshcd_clk_scaling_suspend_work(struct work_struct * work)1220 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work) 1221 { 1222 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1223 clk_scaling.suspend_work); 1224 unsigned long irq_flags; 1225 1226 spin_lock_irqsave(hba->host->host_lock, irq_flags); 1227 if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) { 1228 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1229 return; 1230 } 1231 hba->clk_scaling.is_suspended = true; 1232 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1233 1234 __ufshcd_suspend_clkscaling(hba); 1235 } 1236 ufshcd_clk_scaling_resume_work(struct work_struct * work)1237 static void ufshcd_clk_scaling_resume_work(struct work_struct *work) 1238 { 1239 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1240 clk_scaling.resume_work); 1241 unsigned long irq_flags; 1242 1243 spin_lock_irqsave(hba->host->host_lock, irq_flags); 1244 if (!hba->clk_scaling.is_suspended) { 1245 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1246 return; 1247 } 1248 hba->clk_scaling.is_suspended = false; 1249 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1250 1251 devfreq_resume_device(hba->devfreq); 1252 } 1253 ufshcd_devfreq_target(struct device * dev,unsigned long * freq,u32 flags)1254 static int ufshcd_devfreq_target(struct device *dev, 1255 unsigned long *freq, u32 flags) 1256 { 1257 int ret = 0; 1258 struct ufs_hba *hba = dev_get_drvdata(dev); 1259 ktime_t start; 1260 bool scale_up, sched_clk_scaling_suspend_work = false; 1261 struct list_head *clk_list = &hba->clk_list_head; 1262 struct ufs_clk_info *clki; 1263 unsigned long irq_flags; 1264 1265 if (!ufshcd_is_clkscaling_supported(hba)) 1266 return -EINVAL; 1267 1268 clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list); 1269 /* Override with the closest supported frequency */ 1270 *freq = (unsigned long) clk_round_rate(clki->clk, *freq); 1271 spin_lock_irqsave(hba->host->host_lock, irq_flags); 1272 if (ufshcd_eh_in_progress(hba)) { 1273 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1274 return 0; 1275 } 1276 1277 if (!hba->clk_scaling.active_reqs) 1278 sched_clk_scaling_suspend_work = true; 1279 1280 if (list_empty(clk_list)) { 1281 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1282 goto out; 1283 } 1284 1285 /* Decide based on the rounded-off frequency and update */ 1286 scale_up = (*freq == clki->max_freq) ? true : false; 1287 if (!scale_up) 1288 *freq = clki->min_freq; 1289 /* Update the frequency */ 1290 if (!ufshcd_is_devfreq_scaling_required(hba, scale_up)) { 1291 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1292 ret = 0; 1293 goto out; /* no state change required */ 1294 } 1295 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1296 1297 pm_runtime_get_noresume(hba->dev); 1298 if (!pm_runtime_active(hba->dev)) { 1299 pm_runtime_put_noidle(hba->dev); 1300 ret = -EAGAIN; 1301 goto out; 1302 } 1303 start = ktime_get(); 1304 ret = ufshcd_devfreq_scale(hba, scale_up); 1305 pm_runtime_put(hba->dev); 1306 1307 trace_ufshcd_profile_clk_scaling(dev_name(hba->dev), 1308 (scale_up ? "up" : "down"), 1309 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 1310 1311 out: 1312 if (sched_clk_scaling_suspend_work) 1313 queue_work(hba->clk_scaling.workq, 1314 &hba->clk_scaling.suspend_work); 1315 1316 return ret; 1317 } 1318 ufshcd_is_busy(struct request * req,void * priv,bool reserved)1319 static bool ufshcd_is_busy(struct request *req, void *priv, bool reserved) 1320 { 1321 int *busy = priv; 1322 1323 WARN_ON_ONCE(reserved); 1324 (*busy)++; 1325 return false; 1326 } 1327 1328 /* Whether or not any tag is in use by a request that is in progress. */ ufshcd_any_tag_in_use(struct ufs_hba * hba)1329 static bool ufshcd_any_tag_in_use(struct ufs_hba *hba) 1330 { 1331 struct request_queue *q = hba->cmd_queue; 1332 int busy = 0; 1333 1334 blk_mq_tagset_busy_iter(q->tag_set, ufshcd_is_busy, &busy); 1335 return busy; 1336 } 1337 ufshcd_devfreq_get_dev_status(struct device * dev,struct devfreq_dev_status * stat)1338 static int ufshcd_devfreq_get_dev_status(struct device *dev, 1339 struct devfreq_dev_status *stat) 1340 { 1341 struct ufs_hba *hba = dev_get_drvdata(dev); 1342 struct ufs_clk_scaling *scaling = &hba->clk_scaling; 1343 unsigned long flags; 1344 struct list_head *clk_list = &hba->clk_list_head; 1345 struct ufs_clk_info *clki; 1346 ktime_t curr_t; 1347 1348 if (!ufshcd_is_clkscaling_supported(hba)) 1349 return -EINVAL; 1350 1351 memset(stat, 0, sizeof(*stat)); 1352 1353 spin_lock_irqsave(hba->host->host_lock, flags); 1354 curr_t = ktime_get(); 1355 if (!scaling->window_start_t) 1356 goto start_window; 1357 1358 clki = list_first_entry(clk_list, struct ufs_clk_info, list); 1359 /* 1360 * If current frequency is 0, then the ondemand governor considers 1361 * there's no initial frequency set. And it always requests to set 1362 * to max. frequency. 1363 */ 1364 stat->current_frequency = clki->curr_freq; 1365 if (scaling->is_busy_started) 1366 scaling->tot_busy_t += ktime_us_delta(curr_t, 1367 scaling->busy_start_t); 1368 1369 stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t); 1370 stat->busy_time = scaling->tot_busy_t; 1371 start_window: 1372 scaling->window_start_t = curr_t; 1373 scaling->tot_busy_t = 0; 1374 1375 if (hba->outstanding_reqs) { 1376 scaling->busy_start_t = curr_t; 1377 scaling->is_busy_started = true; 1378 } else { 1379 scaling->busy_start_t = 0; 1380 scaling->is_busy_started = false; 1381 } 1382 spin_unlock_irqrestore(hba->host->host_lock, flags); 1383 return 0; 1384 } 1385 ufshcd_devfreq_init(struct ufs_hba * hba)1386 static int ufshcd_devfreq_init(struct ufs_hba *hba) 1387 { 1388 struct list_head *clk_list = &hba->clk_list_head; 1389 struct ufs_clk_info *clki; 1390 struct devfreq *devfreq; 1391 int ret; 1392 1393 /* Skip devfreq if we don't have any clocks in the list */ 1394 if (list_empty(clk_list)) 1395 return 0; 1396 1397 clki = list_first_entry(clk_list, struct ufs_clk_info, list); 1398 dev_pm_opp_add(hba->dev, clki->min_freq, 0); 1399 dev_pm_opp_add(hba->dev, clki->max_freq, 0); 1400 1401 ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile, 1402 &hba->vps->ondemand_data); 1403 devfreq = devfreq_add_device(hba->dev, 1404 &hba->vps->devfreq_profile, 1405 DEVFREQ_GOV_SIMPLE_ONDEMAND, 1406 &hba->vps->ondemand_data); 1407 if (IS_ERR(devfreq)) { 1408 ret = PTR_ERR(devfreq); 1409 dev_err(hba->dev, "Unable to register with devfreq %d\n", ret); 1410 1411 dev_pm_opp_remove(hba->dev, clki->min_freq); 1412 dev_pm_opp_remove(hba->dev, clki->max_freq); 1413 return ret; 1414 } 1415 1416 hba->devfreq = devfreq; 1417 1418 return 0; 1419 } 1420 ufshcd_devfreq_remove(struct ufs_hba * hba)1421 static void ufshcd_devfreq_remove(struct ufs_hba *hba) 1422 { 1423 struct list_head *clk_list = &hba->clk_list_head; 1424 struct ufs_clk_info *clki; 1425 1426 if (!hba->devfreq) 1427 return; 1428 1429 devfreq_remove_device(hba->devfreq); 1430 hba->devfreq = NULL; 1431 1432 clki = list_first_entry(clk_list, struct ufs_clk_info, list); 1433 dev_pm_opp_remove(hba->dev, clki->min_freq); 1434 dev_pm_opp_remove(hba->dev, clki->max_freq); 1435 } 1436 __ufshcd_suspend_clkscaling(struct ufs_hba * hba)1437 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba) 1438 { 1439 unsigned long flags; 1440 1441 devfreq_suspend_device(hba->devfreq); 1442 spin_lock_irqsave(hba->host->host_lock, flags); 1443 hba->clk_scaling.window_start_t = 0; 1444 spin_unlock_irqrestore(hba->host->host_lock, flags); 1445 } 1446 ufshcd_suspend_clkscaling(struct ufs_hba * hba)1447 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba) 1448 { 1449 unsigned long flags; 1450 bool suspend = false; 1451 1452 if (!ufshcd_is_clkscaling_supported(hba)) 1453 return; 1454 1455 spin_lock_irqsave(hba->host->host_lock, flags); 1456 if (!hba->clk_scaling.is_suspended) { 1457 suspend = true; 1458 hba->clk_scaling.is_suspended = true; 1459 } 1460 spin_unlock_irqrestore(hba->host->host_lock, flags); 1461 1462 if (suspend) 1463 __ufshcd_suspend_clkscaling(hba); 1464 } 1465 ufshcd_resume_clkscaling(struct ufs_hba * hba)1466 static void ufshcd_resume_clkscaling(struct ufs_hba *hba) 1467 { 1468 unsigned long flags; 1469 bool resume = false; 1470 1471 if (!ufshcd_is_clkscaling_supported(hba)) 1472 return; 1473 1474 spin_lock_irqsave(hba->host->host_lock, flags); 1475 if (hba->clk_scaling.is_suspended) { 1476 resume = true; 1477 hba->clk_scaling.is_suspended = false; 1478 } 1479 spin_unlock_irqrestore(hba->host->host_lock, flags); 1480 1481 if (resume) 1482 devfreq_resume_device(hba->devfreq); 1483 } 1484 ufshcd_clkscale_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1485 static ssize_t ufshcd_clkscale_enable_show(struct device *dev, 1486 struct device_attribute *attr, char *buf) 1487 { 1488 struct ufs_hba *hba = dev_get_drvdata(dev); 1489 1490 return snprintf(buf, PAGE_SIZE, "%d\n", hba->clk_scaling.is_allowed); 1491 } 1492 ufshcd_clkscale_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1493 static ssize_t ufshcd_clkscale_enable_store(struct device *dev, 1494 struct device_attribute *attr, const char *buf, size_t count) 1495 { 1496 struct ufs_hba *hba = dev_get_drvdata(dev); 1497 u32 value; 1498 int err; 1499 1500 if (kstrtou32(buf, 0, &value)) 1501 return -EINVAL; 1502 1503 value = !!value; 1504 if (value == hba->clk_scaling.is_allowed) 1505 goto out; 1506 1507 pm_runtime_get_sync(hba->dev); 1508 ufshcd_hold(hba, false); 1509 1510 cancel_work_sync(&hba->clk_scaling.suspend_work); 1511 cancel_work_sync(&hba->clk_scaling.resume_work); 1512 1513 hba->clk_scaling.is_allowed = value; 1514 1515 if (value) { 1516 ufshcd_resume_clkscaling(hba); 1517 } else { 1518 ufshcd_suspend_clkscaling(hba); 1519 err = ufshcd_devfreq_scale(hba, true); 1520 if (err) 1521 dev_err(hba->dev, "%s: failed to scale clocks up %d\n", 1522 __func__, err); 1523 } 1524 1525 ufshcd_release(hba); 1526 pm_runtime_put_sync(hba->dev); 1527 out: 1528 return count; 1529 } 1530 ufshcd_clkscaling_init_sysfs(struct ufs_hba * hba)1531 static void ufshcd_clkscaling_init_sysfs(struct ufs_hba *hba) 1532 { 1533 hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show; 1534 hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store; 1535 sysfs_attr_init(&hba->clk_scaling.enable_attr.attr); 1536 hba->clk_scaling.enable_attr.attr.name = "clkscale_enable"; 1537 hba->clk_scaling.enable_attr.attr.mode = 0644; 1538 if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr)) 1539 dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n"); 1540 } 1541 ufshcd_ungate_work(struct work_struct * work)1542 static void ufshcd_ungate_work(struct work_struct *work) 1543 { 1544 int ret; 1545 unsigned long flags; 1546 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1547 clk_gating.ungate_work); 1548 1549 cancel_delayed_work_sync(&hba->clk_gating.gate_work); 1550 1551 spin_lock_irqsave(hba->host->host_lock, flags); 1552 if (hba->clk_gating.state == CLKS_ON) { 1553 spin_unlock_irqrestore(hba->host->host_lock, flags); 1554 goto unblock_reqs; 1555 } 1556 1557 spin_unlock_irqrestore(hba->host->host_lock, flags); 1558 ufshcd_setup_clocks(hba, true); 1559 1560 ufshcd_enable_irq(hba); 1561 1562 /* Exit from hibern8 */ 1563 if (ufshcd_can_hibern8_during_gating(hba)) { 1564 /* Prevent gating in this path */ 1565 hba->clk_gating.is_suspended = true; 1566 if (ufshcd_is_link_hibern8(hba)) { 1567 ret = ufshcd_uic_hibern8_exit(hba); 1568 if (ret) 1569 dev_err(hba->dev, "%s: hibern8 exit failed %d\n", 1570 __func__, ret); 1571 else 1572 ufshcd_set_link_active(hba); 1573 } 1574 hba->clk_gating.is_suspended = false; 1575 } 1576 unblock_reqs: 1577 ufshcd_scsi_unblock_requests(hba); 1578 } 1579 1580 /** 1581 * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release. 1582 * Also, exit from hibern8 mode and set the link as active. 1583 * @hba: per adapter instance 1584 * @async: This indicates whether caller should ungate clocks asynchronously. 1585 */ ufshcd_hold(struct ufs_hba * hba,bool async)1586 int ufshcd_hold(struct ufs_hba *hba, bool async) 1587 { 1588 int rc = 0; 1589 bool flush_result; 1590 unsigned long flags; 1591 1592 if (!ufshcd_is_clkgating_allowed(hba)) 1593 goto out; 1594 spin_lock_irqsave(hba->host->host_lock, flags); 1595 hba->clk_gating.active_reqs++; 1596 1597 start: 1598 switch (hba->clk_gating.state) { 1599 case CLKS_ON: 1600 /* 1601 * Wait for the ungate work to complete if in progress. 1602 * Though the clocks may be in ON state, the link could 1603 * still be in hibner8 state if hibern8 is allowed 1604 * during clock gating. 1605 * Make sure we exit hibern8 state also in addition to 1606 * clocks being ON. 1607 */ 1608 if (ufshcd_can_hibern8_during_gating(hba) && 1609 ufshcd_is_link_hibern8(hba)) { 1610 if (async) { 1611 rc = -EAGAIN; 1612 hba->clk_gating.active_reqs--; 1613 break; 1614 } 1615 spin_unlock_irqrestore(hba->host->host_lock, flags); 1616 flush_result = flush_work(&hba->clk_gating.ungate_work); 1617 if (hba->clk_gating.is_suspended && !flush_result) 1618 goto out; 1619 spin_lock_irqsave(hba->host->host_lock, flags); 1620 goto start; 1621 } 1622 break; 1623 case REQ_CLKS_OFF: 1624 if (cancel_delayed_work(&hba->clk_gating.gate_work)) { 1625 hba->clk_gating.state = CLKS_ON; 1626 trace_ufshcd_clk_gating(dev_name(hba->dev), 1627 hba->clk_gating.state); 1628 break; 1629 } 1630 /* 1631 * If we are here, it means gating work is either done or 1632 * currently running. Hence, fall through to cancel gating 1633 * work and to enable clocks. 1634 */ 1635 fallthrough; 1636 case CLKS_OFF: 1637 hba->clk_gating.state = REQ_CLKS_ON; 1638 trace_ufshcd_clk_gating(dev_name(hba->dev), 1639 hba->clk_gating.state); 1640 if (queue_work(hba->clk_gating.clk_gating_workq, 1641 &hba->clk_gating.ungate_work)) 1642 ufshcd_scsi_block_requests(hba); 1643 /* 1644 * fall through to check if we should wait for this 1645 * work to be done or not. 1646 */ 1647 fallthrough; 1648 case REQ_CLKS_ON: 1649 if (async) { 1650 rc = -EAGAIN; 1651 hba->clk_gating.active_reqs--; 1652 break; 1653 } 1654 1655 spin_unlock_irqrestore(hba->host->host_lock, flags); 1656 flush_work(&hba->clk_gating.ungate_work); 1657 /* Make sure state is CLKS_ON before returning */ 1658 spin_lock_irqsave(hba->host->host_lock, flags); 1659 goto start; 1660 default: 1661 dev_err(hba->dev, "%s: clk gating is in invalid state %d\n", 1662 __func__, hba->clk_gating.state); 1663 break; 1664 } 1665 spin_unlock_irqrestore(hba->host->host_lock, flags); 1666 out: 1667 return rc; 1668 } 1669 EXPORT_SYMBOL_GPL(ufshcd_hold); 1670 ufshcd_gate_work(struct work_struct * work)1671 static void ufshcd_gate_work(struct work_struct *work) 1672 { 1673 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1674 clk_gating.gate_work.work); 1675 unsigned long flags; 1676 int ret; 1677 1678 spin_lock_irqsave(hba->host->host_lock, flags); 1679 /* 1680 * In case you are here to cancel this work the gating state 1681 * would be marked as REQ_CLKS_ON. In this case save time by 1682 * skipping the gating work and exit after changing the clock 1683 * state to CLKS_ON. 1684 */ 1685 if (hba->clk_gating.is_suspended || 1686 (hba->clk_gating.state != REQ_CLKS_OFF)) { 1687 hba->clk_gating.state = CLKS_ON; 1688 trace_ufshcd_clk_gating(dev_name(hba->dev), 1689 hba->clk_gating.state); 1690 goto rel_lock; 1691 } 1692 1693 if (hba->clk_gating.active_reqs 1694 || hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL 1695 || ufshcd_any_tag_in_use(hba) || hba->outstanding_tasks 1696 || hba->active_uic_cmd || hba->uic_async_done) 1697 goto rel_lock; 1698 1699 spin_unlock_irqrestore(hba->host->host_lock, flags); 1700 1701 /* put the link into hibern8 mode before turning off clocks */ 1702 if (ufshcd_can_hibern8_during_gating(hba)) { 1703 ret = ufshcd_uic_hibern8_enter(hba); 1704 if (ret) { 1705 hba->clk_gating.state = CLKS_ON; 1706 dev_err(hba->dev, "%s: hibern8 enter failed %d\n", 1707 __func__, ret); 1708 trace_ufshcd_clk_gating(dev_name(hba->dev), 1709 hba->clk_gating.state); 1710 goto out; 1711 } 1712 ufshcd_set_link_hibern8(hba); 1713 } 1714 1715 ufshcd_disable_irq(hba); 1716 1717 if (!ufshcd_is_link_active(hba)) 1718 ufshcd_setup_clocks(hba, false); 1719 else 1720 /* If link is active, device ref_clk can't be switched off */ 1721 __ufshcd_setup_clocks(hba, false, true); 1722 1723 /* 1724 * In case you are here to cancel this work the gating state 1725 * would be marked as REQ_CLKS_ON. In this case keep the state 1726 * as REQ_CLKS_ON which would anyway imply that clocks are off 1727 * and a request to turn them on is pending. By doing this way, 1728 * we keep the state machine in tact and this would ultimately 1729 * prevent from doing cancel work multiple times when there are 1730 * new requests arriving before the current cancel work is done. 1731 */ 1732 spin_lock_irqsave(hba->host->host_lock, flags); 1733 if (hba->clk_gating.state == REQ_CLKS_OFF) { 1734 hba->clk_gating.state = CLKS_OFF; 1735 trace_ufshcd_clk_gating(dev_name(hba->dev), 1736 hba->clk_gating.state); 1737 } 1738 rel_lock: 1739 spin_unlock_irqrestore(hba->host->host_lock, flags); 1740 out: 1741 return; 1742 } 1743 1744 /* host lock must be held before calling this variant */ __ufshcd_release(struct ufs_hba * hba)1745 static void __ufshcd_release(struct ufs_hba *hba) 1746 { 1747 if (!ufshcd_is_clkgating_allowed(hba)) 1748 return; 1749 1750 hba->clk_gating.active_reqs--; 1751 1752 if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended || 1753 hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL || 1754 ufshcd_any_tag_in_use(hba) || hba->outstanding_tasks || 1755 hba->active_uic_cmd || hba->uic_async_done) 1756 return; 1757 1758 hba->clk_gating.state = REQ_CLKS_OFF; 1759 trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state); 1760 queue_delayed_work(hba->clk_gating.clk_gating_workq, 1761 &hba->clk_gating.gate_work, 1762 msecs_to_jiffies(hba->clk_gating.delay_ms)); 1763 } 1764 ufshcd_release(struct ufs_hba * hba)1765 void ufshcd_release(struct ufs_hba *hba) 1766 { 1767 unsigned long flags; 1768 1769 spin_lock_irqsave(hba->host->host_lock, flags); 1770 __ufshcd_release(hba); 1771 spin_unlock_irqrestore(hba->host->host_lock, flags); 1772 } 1773 EXPORT_SYMBOL_GPL(ufshcd_release); 1774 ufshcd_clkgate_delay_show(struct device * dev,struct device_attribute * attr,char * buf)1775 static ssize_t ufshcd_clkgate_delay_show(struct device *dev, 1776 struct device_attribute *attr, char *buf) 1777 { 1778 struct ufs_hba *hba = dev_get_drvdata(dev); 1779 1780 return snprintf(buf, PAGE_SIZE, "%lu\n", hba->clk_gating.delay_ms); 1781 } 1782 ufshcd_clkgate_delay_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1783 static ssize_t ufshcd_clkgate_delay_store(struct device *dev, 1784 struct device_attribute *attr, const char *buf, size_t count) 1785 { 1786 struct ufs_hba *hba = dev_get_drvdata(dev); 1787 unsigned long flags, value; 1788 1789 if (kstrtoul(buf, 0, &value)) 1790 return -EINVAL; 1791 1792 spin_lock_irqsave(hba->host->host_lock, flags); 1793 hba->clk_gating.delay_ms = value; 1794 spin_unlock_irqrestore(hba->host->host_lock, flags); 1795 return count; 1796 } 1797 ufshcd_clkgate_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1798 static ssize_t ufshcd_clkgate_enable_show(struct device *dev, 1799 struct device_attribute *attr, char *buf) 1800 { 1801 struct ufs_hba *hba = dev_get_drvdata(dev); 1802 1803 return snprintf(buf, PAGE_SIZE, "%d\n", hba->clk_gating.is_enabled); 1804 } 1805 ufshcd_clkgate_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1806 static ssize_t ufshcd_clkgate_enable_store(struct device *dev, 1807 struct device_attribute *attr, const char *buf, size_t count) 1808 { 1809 struct ufs_hba *hba = dev_get_drvdata(dev); 1810 unsigned long flags; 1811 u32 value; 1812 1813 if (kstrtou32(buf, 0, &value)) 1814 return -EINVAL; 1815 1816 value = !!value; 1817 if (value == hba->clk_gating.is_enabled) 1818 goto out; 1819 1820 if (value) { 1821 ufshcd_release(hba); 1822 } else { 1823 spin_lock_irqsave(hba->host->host_lock, flags); 1824 hba->clk_gating.active_reqs++; 1825 spin_unlock_irqrestore(hba->host->host_lock, flags); 1826 } 1827 1828 hba->clk_gating.is_enabled = value; 1829 out: 1830 return count; 1831 } 1832 ufshcd_init_clk_scaling(struct ufs_hba * hba)1833 static void ufshcd_init_clk_scaling(struct ufs_hba *hba) 1834 { 1835 char wq_name[sizeof("ufs_clkscaling_00")]; 1836 1837 if (!ufshcd_is_clkscaling_supported(hba)) 1838 return; 1839 1840 INIT_WORK(&hba->clk_scaling.suspend_work, 1841 ufshcd_clk_scaling_suspend_work); 1842 INIT_WORK(&hba->clk_scaling.resume_work, 1843 ufshcd_clk_scaling_resume_work); 1844 1845 snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d", 1846 hba->host->host_no); 1847 hba->clk_scaling.workq = create_singlethread_workqueue(wq_name); 1848 1849 ufshcd_clkscaling_init_sysfs(hba); 1850 } 1851 ufshcd_exit_clk_scaling(struct ufs_hba * hba)1852 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba) 1853 { 1854 if (!ufshcd_is_clkscaling_supported(hba)) 1855 return; 1856 1857 destroy_workqueue(hba->clk_scaling.workq); 1858 ufshcd_devfreq_remove(hba); 1859 } 1860 ufshcd_init_clk_gating(struct ufs_hba * hba)1861 static void ufshcd_init_clk_gating(struct ufs_hba *hba) 1862 { 1863 char wq_name[sizeof("ufs_clk_gating_00")]; 1864 1865 if (!ufshcd_is_clkgating_allowed(hba)) 1866 return; 1867 1868 hba->clk_gating.state = CLKS_ON; 1869 1870 hba->clk_gating.delay_ms = 150; 1871 INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work); 1872 INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work); 1873 1874 snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d", 1875 hba->host->host_no); 1876 hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name, 1877 WQ_MEM_RECLAIM); 1878 1879 hba->clk_gating.is_enabled = true; 1880 1881 hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show; 1882 hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store; 1883 sysfs_attr_init(&hba->clk_gating.delay_attr.attr); 1884 hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms"; 1885 hba->clk_gating.delay_attr.attr.mode = 0644; 1886 if (device_create_file(hba->dev, &hba->clk_gating.delay_attr)) 1887 dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n"); 1888 1889 hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show; 1890 hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store; 1891 sysfs_attr_init(&hba->clk_gating.enable_attr.attr); 1892 hba->clk_gating.enable_attr.attr.name = "clkgate_enable"; 1893 hba->clk_gating.enable_attr.attr.mode = 0644; 1894 if (device_create_file(hba->dev, &hba->clk_gating.enable_attr)) 1895 dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n"); 1896 } 1897 ufshcd_exit_clk_gating(struct ufs_hba * hba)1898 static void ufshcd_exit_clk_gating(struct ufs_hba *hba) 1899 { 1900 if (!ufshcd_is_clkgating_allowed(hba)) 1901 return; 1902 device_remove_file(hba->dev, &hba->clk_gating.delay_attr); 1903 device_remove_file(hba->dev, &hba->clk_gating.enable_attr); 1904 cancel_work_sync(&hba->clk_gating.ungate_work); 1905 cancel_delayed_work_sync(&hba->clk_gating.gate_work); 1906 destroy_workqueue(hba->clk_gating.clk_gating_workq); 1907 } 1908 1909 /* Must be called with host lock acquired */ ufshcd_clk_scaling_start_busy(struct ufs_hba * hba)1910 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba) 1911 { 1912 bool queue_resume_work = false; 1913 ktime_t curr_t = ktime_get(); 1914 1915 if (!ufshcd_is_clkscaling_supported(hba)) 1916 return; 1917 1918 if (!hba->clk_scaling.active_reqs++) 1919 queue_resume_work = true; 1920 1921 if (!hba->clk_scaling.is_allowed || hba->pm_op_in_progress) 1922 return; 1923 1924 if (queue_resume_work) 1925 queue_work(hba->clk_scaling.workq, 1926 &hba->clk_scaling.resume_work); 1927 1928 if (!hba->clk_scaling.window_start_t) { 1929 hba->clk_scaling.window_start_t = curr_t; 1930 hba->clk_scaling.tot_busy_t = 0; 1931 hba->clk_scaling.is_busy_started = false; 1932 } 1933 1934 if (!hba->clk_scaling.is_busy_started) { 1935 hba->clk_scaling.busy_start_t = curr_t; 1936 hba->clk_scaling.is_busy_started = true; 1937 } 1938 } 1939 ufshcd_clk_scaling_update_busy(struct ufs_hba * hba)1940 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba) 1941 { 1942 struct ufs_clk_scaling *scaling = &hba->clk_scaling; 1943 1944 if (!ufshcd_is_clkscaling_supported(hba)) 1945 return; 1946 1947 if (!hba->outstanding_reqs && scaling->is_busy_started) { 1948 scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(), 1949 scaling->busy_start_t)); 1950 scaling->busy_start_t = 0; 1951 scaling->is_busy_started = false; 1952 } 1953 } 1954 /** 1955 * ufshcd_send_command - Send SCSI or device management commands 1956 * @hba: per adapter instance 1957 * @task_tag: Task tag of the command 1958 */ 1959 static inline ufshcd_send_command(struct ufs_hba * hba,unsigned int task_tag)1960 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag) 1961 { 1962 struct ufshcd_lrb *lrbp = &hba->lrb[task_tag]; 1963 1964 lrbp->issue_time_stamp = ktime_get(); 1965 lrbp->compl_time_stamp = ktime_set(0, 0); 1966 ufshcd_vops_setup_xfer_req(hba, task_tag, (lrbp->cmd ? true : false)); 1967 ufshcd_add_command_trace(hba, task_tag, "send"); 1968 ufshcd_clk_scaling_start_busy(hba); 1969 __set_bit(task_tag, &hba->outstanding_reqs); 1970 ufshcd_writel(hba, 1 << task_tag, REG_UTP_TRANSFER_REQ_DOOR_BELL); 1971 /* Make sure that doorbell is committed immediately */ 1972 wmb(); 1973 } 1974 1975 /** 1976 * ufshcd_copy_sense_data - Copy sense data in case of check condition 1977 * @lrbp: pointer to local reference block 1978 */ ufshcd_copy_sense_data(struct ufshcd_lrb * lrbp)1979 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp) 1980 { 1981 int len; 1982 if (lrbp->sense_buffer && 1983 ufshcd_get_rsp_upiu_data_seg_len(lrbp->ucd_rsp_ptr)) { 1984 int len_to_copy; 1985 1986 len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len); 1987 len_to_copy = min_t(int, UFS_SENSE_SIZE, len); 1988 1989 memcpy(lrbp->sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data, 1990 len_to_copy); 1991 } 1992 } 1993 1994 /** 1995 * ufshcd_copy_query_response() - Copy the Query Response and the data 1996 * descriptor 1997 * @hba: per adapter instance 1998 * @lrbp: pointer to local reference block 1999 */ 2000 static ufshcd_copy_query_response(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2001 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 2002 { 2003 struct ufs_query_res *query_res = &hba->dev_cmd.query.response; 2004 2005 memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE); 2006 2007 /* Get the descriptor */ 2008 if (hba->dev_cmd.query.descriptor && 2009 lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) { 2010 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + 2011 GENERAL_UPIU_REQUEST_SIZE; 2012 u16 resp_len; 2013 u16 buf_len; 2014 2015 /* data segment length */ 2016 resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) & 2017 MASK_QUERY_DATA_SEG_LEN; 2018 buf_len = be16_to_cpu( 2019 hba->dev_cmd.query.request.upiu_req.length); 2020 if (likely(buf_len >= resp_len)) { 2021 memcpy(hba->dev_cmd.query.descriptor, descp, resp_len); 2022 } else { 2023 dev_warn(hba->dev, 2024 "%s: rsp size %d is bigger than buffer size %d", 2025 __func__, resp_len, buf_len); 2026 return -EINVAL; 2027 } 2028 } 2029 2030 return 0; 2031 } 2032 2033 /** 2034 * ufshcd_hba_capabilities - Read controller capabilities 2035 * @hba: per adapter instance 2036 * 2037 * Return: 0 on success, negative on error. 2038 */ ufshcd_hba_capabilities(struct ufs_hba * hba)2039 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba) 2040 { 2041 int err; 2042 2043 hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES); 2044 2045 /* nutrs and nutmrs are 0 based values */ 2046 hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1; 2047 hba->nutmrs = 2048 ((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1; 2049 2050 /* Read crypto capabilities */ 2051 err = ufshcd_hba_init_crypto_capabilities(hba); 2052 if (err) 2053 dev_err(hba->dev, "crypto setup failed\n"); 2054 2055 return err; 2056 } 2057 2058 /** 2059 * ufshcd_ready_for_uic_cmd - Check if controller is ready 2060 * to accept UIC commands 2061 * @hba: per adapter instance 2062 * Return true on success, else false 2063 */ ufshcd_ready_for_uic_cmd(struct ufs_hba * hba)2064 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba) 2065 { 2066 if (ufshcd_readl(hba, REG_CONTROLLER_STATUS) & UIC_COMMAND_READY) 2067 return true; 2068 else 2069 return false; 2070 } 2071 2072 /** 2073 * ufshcd_get_upmcrs - Get the power mode change request status 2074 * @hba: Pointer to adapter instance 2075 * 2076 * This function gets the UPMCRS field of HCS register 2077 * Returns value of UPMCRS field 2078 */ ufshcd_get_upmcrs(struct ufs_hba * hba)2079 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba) 2080 { 2081 return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7; 2082 } 2083 2084 /** 2085 * ufshcd_dispatch_uic_cmd - Dispatch UIC commands to unipro layers 2086 * @hba: per adapter instance 2087 * @uic_cmd: UIC command 2088 * 2089 * Mutex must be held. 2090 */ 2091 static inline void ufshcd_dispatch_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2092 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 2093 { 2094 WARN_ON(hba->active_uic_cmd); 2095 2096 hba->active_uic_cmd = uic_cmd; 2097 2098 /* Write Args */ 2099 ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1); 2100 ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2); 2101 ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3); 2102 2103 ufshcd_add_uic_command_trace(hba, uic_cmd, "send"); 2104 2105 /* Write UIC Cmd */ 2106 ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK, 2107 REG_UIC_COMMAND); 2108 } 2109 2110 /** 2111 * ufshcd_wait_for_uic_cmd - Wait complectioin of UIC command 2112 * @hba: per adapter instance 2113 * @uic_cmd: UIC command 2114 * 2115 * Must be called with mutex held. 2116 * Returns 0 only if success. 2117 */ 2118 static int ufshcd_wait_for_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2119 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 2120 { 2121 int ret; 2122 unsigned long flags; 2123 2124 if (wait_for_completion_timeout(&uic_cmd->done, 2125 msecs_to_jiffies(UIC_CMD_TIMEOUT))) { 2126 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT; 2127 } else { 2128 ret = -ETIMEDOUT; 2129 dev_err(hba->dev, 2130 "uic cmd 0x%x with arg3 0x%x completion timeout\n", 2131 uic_cmd->command, uic_cmd->argument3); 2132 2133 if (!uic_cmd->cmd_active) { 2134 dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n", 2135 __func__); 2136 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT; 2137 } 2138 } 2139 2140 spin_lock_irqsave(hba->host->host_lock, flags); 2141 hba->active_uic_cmd = NULL; 2142 spin_unlock_irqrestore(hba->host->host_lock, flags); 2143 2144 return ret; 2145 } 2146 2147 /** 2148 * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result 2149 * @hba: per adapter instance 2150 * @uic_cmd: UIC command 2151 * @completion: initialize the completion only if this is set to true 2152 * 2153 * Identical to ufshcd_send_uic_cmd() expect mutex. Must be called 2154 * with mutex held and host_lock locked. 2155 * Returns 0 only if success. 2156 */ 2157 static int __ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd,bool completion)2158 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd, 2159 bool completion) 2160 { 2161 if (!ufshcd_ready_for_uic_cmd(hba)) { 2162 dev_err(hba->dev, 2163 "Controller not ready to accept UIC commands\n"); 2164 return -EIO; 2165 } 2166 2167 if (completion) 2168 init_completion(&uic_cmd->done); 2169 2170 uic_cmd->cmd_active = 1; 2171 ufshcd_dispatch_uic_cmd(hba, uic_cmd); 2172 2173 return 0; 2174 } 2175 2176 /** 2177 * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result 2178 * @hba: per adapter instance 2179 * @uic_cmd: UIC command 2180 * 2181 * Returns 0 only if success. 2182 */ ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2183 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 2184 { 2185 int ret; 2186 unsigned long flags; 2187 2188 ufshcd_hold(hba, false); 2189 mutex_lock(&hba->uic_cmd_mutex); 2190 ufshcd_add_delay_before_dme_cmd(hba); 2191 2192 spin_lock_irqsave(hba->host->host_lock, flags); 2193 ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true); 2194 spin_unlock_irqrestore(hba->host->host_lock, flags); 2195 if (!ret) 2196 ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd); 2197 2198 mutex_unlock(&hba->uic_cmd_mutex); 2199 2200 ufshcd_release(hba); 2201 return ret; 2202 } 2203 2204 /** 2205 * ufshcd_map_sg - Map scatter-gather list to prdt 2206 * @hba: per adapter instance 2207 * @lrbp: pointer to local reference block 2208 * 2209 * Returns 0 in case of success, non-zero value in case of failure 2210 */ ufshcd_map_sg(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2211 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 2212 { 2213 struct ufshcd_sg_entry *prd_table; 2214 struct scatterlist *sg; 2215 struct scsi_cmnd *cmd; 2216 int sg_segments; 2217 int i; 2218 2219 cmd = lrbp->cmd; 2220 sg_segments = scsi_dma_map(cmd); 2221 if (sg_segments < 0) 2222 return sg_segments; 2223 2224 if (sg_segments) { 2225 2226 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) 2227 lrbp->utr_descriptor_ptr->prd_table_length = 2228 cpu_to_le16((sg_segments * 2229 sizeof(struct ufshcd_sg_entry))); 2230 else 2231 lrbp->utr_descriptor_ptr->prd_table_length = 2232 cpu_to_le16((u16) (sg_segments)); 2233 2234 prd_table = (struct ufshcd_sg_entry *)lrbp->ucd_prdt_ptr; 2235 2236 scsi_for_each_sg(cmd, sg, sg_segments, i) { 2237 prd_table[i].size = 2238 cpu_to_le32(((u32) sg_dma_len(sg))-1); 2239 prd_table[i].base_addr = 2240 cpu_to_le32(lower_32_bits(sg->dma_address)); 2241 prd_table[i].upper_addr = 2242 cpu_to_le32(upper_32_bits(sg->dma_address)); 2243 prd_table[i].reserved = 0; 2244 } 2245 } else { 2246 lrbp->utr_descriptor_ptr->prd_table_length = 0; 2247 } 2248 2249 return 0; 2250 } 2251 2252 /** 2253 * ufshcd_enable_intr - enable interrupts 2254 * @hba: per adapter instance 2255 * @intrs: interrupt bits 2256 */ ufshcd_enable_intr(struct ufs_hba * hba,u32 intrs)2257 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs) 2258 { 2259 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 2260 2261 if (hba->ufs_version == UFSHCI_VERSION_10) { 2262 u32 rw; 2263 rw = set & INTERRUPT_MASK_RW_VER_10; 2264 set = rw | ((set ^ intrs) & intrs); 2265 } else { 2266 set |= intrs; 2267 } 2268 2269 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE); 2270 } 2271 2272 /** 2273 * ufshcd_disable_intr - disable interrupts 2274 * @hba: per adapter instance 2275 * @intrs: interrupt bits 2276 */ ufshcd_disable_intr(struct ufs_hba * hba,u32 intrs)2277 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs) 2278 { 2279 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 2280 2281 if (hba->ufs_version == UFSHCI_VERSION_10) { 2282 u32 rw; 2283 rw = (set & INTERRUPT_MASK_RW_VER_10) & 2284 ~(intrs & INTERRUPT_MASK_RW_VER_10); 2285 set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10); 2286 2287 } else { 2288 set &= ~intrs; 2289 } 2290 2291 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE); 2292 } 2293 2294 /** 2295 * ufshcd_prepare_req_desc_hdr() - Fills the requests header 2296 * descriptor according to request 2297 * @lrbp: pointer to local reference block 2298 * @upiu_flags: flags required in the header 2299 * @cmd_dir: requests data direction 2300 */ ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb * lrbp,u8 * upiu_flags,enum dma_data_direction cmd_dir)2301 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp, 2302 u8 *upiu_flags, enum dma_data_direction cmd_dir) 2303 { 2304 struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr; 2305 u32 data_direction; 2306 u32 dword_0; 2307 u32 dword_1 = 0; 2308 u32 dword_3 = 0; 2309 2310 if (cmd_dir == DMA_FROM_DEVICE) { 2311 data_direction = UTP_DEVICE_TO_HOST; 2312 *upiu_flags = UPIU_CMD_FLAGS_READ; 2313 } else if (cmd_dir == DMA_TO_DEVICE) { 2314 data_direction = UTP_HOST_TO_DEVICE; 2315 *upiu_flags = UPIU_CMD_FLAGS_WRITE; 2316 } else { 2317 data_direction = UTP_NO_DATA_TRANSFER; 2318 *upiu_flags = UPIU_CMD_FLAGS_NONE; 2319 } 2320 2321 dword_0 = data_direction | (lrbp->command_type 2322 << UPIU_COMMAND_TYPE_OFFSET); 2323 if (lrbp->intr_cmd) 2324 dword_0 |= UTP_REQ_DESC_INT_CMD; 2325 2326 /* Prepare crypto related dwords */ 2327 ufshcd_prepare_req_desc_hdr_crypto(lrbp, &dword_0, &dword_1, &dword_3); 2328 2329 /* Transfer request descriptor header fields */ 2330 req_desc->header.dword_0 = cpu_to_le32(dword_0); 2331 req_desc->header.dword_1 = cpu_to_le32(dword_1); 2332 /* 2333 * assigning invalid value for command status. Controller 2334 * updates OCS on command completion, with the command 2335 * status 2336 */ 2337 req_desc->header.dword_2 = 2338 cpu_to_le32(OCS_INVALID_COMMAND_STATUS); 2339 req_desc->header.dword_3 = cpu_to_le32(dword_3); 2340 2341 req_desc->prd_table_length = 0; 2342 } 2343 2344 /** 2345 * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc, 2346 * for scsi commands 2347 * @lrbp: local reference block pointer 2348 * @upiu_flags: flags 2349 */ 2350 static ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb * lrbp,u8 upiu_flags)2351 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags) 2352 { 2353 struct scsi_cmnd *cmd = lrbp->cmd; 2354 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr; 2355 unsigned short cdb_len; 2356 2357 /* command descriptor fields */ 2358 ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD( 2359 UPIU_TRANSACTION_COMMAND, upiu_flags, 2360 lrbp->lun, lrbp->task_tag); 2361 ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD( 2362 UPIU_COMMAND_SET_TYPE_SCSI, 0, 0, 0); 2363 2364 /* Total EHS length and Data segment length will be zero */ 2365 ucd_req_ptr->header.dword_2 = 0; 2366 2367 ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length); 2368 2369 cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE); 2370 memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE); 2371 memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len); 2372 2373 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 2374 } 2375 2376 /** 2377 * ufshcd_prepare_utp_query_req_upiu() - fills the utp_transfer_req_desc, 2378 * for query requsts 2379 * @hba: UFS hba 2380 * @lrbp: local reference block pointer 2381 * @upiu_flags: flags 2382 */ ufshcd_prepare_utp_query_req_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,u8 upiu_flags)2383 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba, 2384 struct ufshcd_lrb *lrbp, u8 upiu_flags) 2385 { 2386 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr; 2387 struct ufs_query *query = &hba->dev_cmd.query; 2388 u16 len = be16_to_cpu(query->request.upiu_req.length); 2389 2390 /* Query request header */ 2391 ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD( 2392 UPIU_TRANSACTION_QUERY_REQ, upiu_flags, 2393 lrbp->lun, lrbp->task_tag); 2394 ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD( 2395 0, query->request.query_func, 0, 0); 2396 2397 /* Data segment length only need for WRITE_DESC */ 2398 if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC) 2399 ucd_req_ptr->header.dword_2 = 2400 UPIU_HEADER_DWORD(0, 0, (len >> 8), (u8)len); 2401 else 2402 ucd_req_ptr->header.dword_2 = 0; 2403 2404 /* Copy the Query Request buffer as is */ 2405 memcpy(&ucd_req_ptr->qr, &query->request.upiu_req, 2406 QUERY_OSF_SIZE); 2407 2408 /* Copy the Descriptor */ 2409 if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC) 2410 memcpy(ucd_req_ptr + 1, query->descriptor, len); 2411 2412 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 2413 } 2414 ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb * lrbp)2415 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp) 2416 { 2417 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr; 2418 2419 memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req)); 2420 2421 /* command descriptor fields */ 2422 ucd_req_ptr->header.dword_0 = 2423 UPIU_HEADER_DWORD( 2424 UPIU_TRANSACTION_NOP_OUT, 0, 0, lrbp->task_tag); 2425 /* clear rest of the fields of basic header */ 2426 ucd_req_ptr->header.dword_1 = 0; 2427 ucd_req_ptr->header.dword_2 = 0; 2428 2429 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 2430 } 2431 2432 /** 2433 * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU) 2434 * for Device Management Purposes 2435 * @hba: per adapter instance 2436 * @lrbp: pointer to local reference block 2437 */ ufshcd_compose_devman_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2438 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba, 2439 struct ufshcd_lrb *lrbp) 2440 { 2441 u8 upiu_flags; 2442 int ret = 0; 2443 2444 if ((hba->ufs_version == UFSHCI_VERSION_10) || 2445 (hba->ufs_version == UFSHCI_VERSION_11)) 2446 lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE; 2447 else 2448 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE; 2449 2450 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE); 2451 if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY) 2452 ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags); 2453 else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP) 2454 ufshcd_prepare_utp_nop_upiu(lrbp); 2455 else 2456 ret = -EINVAL; 2457 2458 return ret; 2459 } 2460 2461 /** 2462 * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU) 2463 * for SCSI Purposes 2464 * @hba: per adapter instance 2465 * @lrbp: pointer to local reference block 2466 */ ufshcd_comp_scsi_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2467 static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 2468 { 2469 u8 upiu_flags; 2470 int ret = 0; 2471 2472 if ((hba->ufs_version == UFSHCI_VERSION_10) || 2473 (hba->ufs_version == UFSHCI_VERSION_11)) 2474 lrbp->command_type = UTP_CMD_TYPE_SCSI; 2475 else 2476 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE; 2477 2478 if (likely(lrbp->cmd)) { 2479 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, 2480 lrbp->cmd->sc_data_direction); 2481 ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags); 2482 } else { 2483 ret = -EINVAL; 2484 } 2485 2486 return ret; 2487 } 2488 2489 /** 2490 * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID 2491 * @upiu_wlun_id: UPIU W-LUN id 2492 * 2493 * Returns SCSI W-LUN id 2494 */ ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)2495 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id) 2496 { 2497 return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE; 2498 } 2499 ufshcd_init_lrb(struct ufs_hba * hba,struct ufshcd_lrb * lrb,int i)2500 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i) 2501 { 2502 struct utp_transfer_cmd_desc *cmd_descp = hba->ucdl_base_addr; 2503 struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr; 2504 dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr + 2505 i * sizeof(struct utp_transfer_cmd_desc); 2506 u16 response_offset = offsetof(struct utp_transfer_cmd_desc, 2507 response_upiu); 2508 u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table); 2509 2510 lrb->utr_descriptor_ptr = utrdlp + i; 2511 lrb->utrd_dma_addr = hba->utrdl_dma_addr + 2512 i * sizeof(struct utp_transfer_req_desc); 2513 lrb->ucd_req_ptr = (struct utp_upiu_req *)(cmd_descp + i); 2514 lrb->ucd_req_dma_addr = cmd_desc_element_addr; 2515 lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp[i].response_upiu; 2516 lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset; 2517 lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp[i].prd_table; 2518 lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset; 2519 } 2520 2521 /** 2522 * ufshcd_queuecommand - main entry point for SCSI requests 2523 * @host: SCSI host pointer 2524 * @cmd: command from SCSI Midlayer 2525 * 2526 * Returns 0 for success, non-zero in case of failure 2527 */ ufshcd_queuecommand(struct Scsi_Host * host,struct scsi_cmnd * cmd)2528 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd) 2529 { 2530 struct ufshcd_lrb *lrbp; 2531 struct ufs_hba *hba; 2532 unsigned long flags; 2533 int tag; 2534 int err = 0; 2535 2536 hba = shost_priv(host); 2537 2538 tag = cmd->request->tag; 2539 if (!ufshcd_valid_tag(hba, tag)) { 2540 dev_err(hba->dev, 2541 "%s: invalid command tag %d: cmd=0x%p, cmd->request=0x%p", 2542 __func__, tag, cmd, cmd->request); 2543 BUG(); 2544 } 2545 2546 if (!down_read_trylock(&hba->clk_scaling_lock)) 2547 return SCSI_MLQUEUE_HOST_BUSY; 2548 2549 hba->req_abort_count = 0; 2550 2551 err = ufshcd_hold(hba, true); 2552 if (err) { 2553 err = SCSI_MLQUEUE_HOST_BUSY; 2554 goto out; 2555 } 2556 WARN_ON(ufshcd_is_clkgating_allowed(hba) && 2557 (hba->clk_gating.state != CLKS_ON)); 2558 2559 lrbp = &hba->lrb[tag]; 2560 2561 WARN_ON(lrbp->cmd); 2562 lrbp->cmd = cmd; 2563 lrbp->sense_bufflen = UFS_SENSE_SIZE; 2564 lrbp->sense_buffer = cmd->sense_buffer; 2565 lrbp->task_tag = tag; 2566 lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun); 2567 lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba) ? true : false; 2568 2569 ufshcd_prepare_lrbp_crypto(cmd->request, lrbp); 2570 2571 lrbp->req_abort_skip = false; 2572 2573 ufshcd_comp_scsi_upiu(hba, lrbp); 2574 2575 err = ufshcd_map_sg(hba, lrbp); 2576 if (err) { 2577 lrbp->cmd = NULL; 2578 ufshcd_release(hba); 2579 goto out; 2580 } 2581 /* Make sure descriptors are ready before ringing the doorbell */ 2582 wmb(); 2583 2584 spin_lock_irqsave(hba->host->host_lock, flags); 2585 switch (hba->ufshcd_state) { 2586 case UFSHCD_STATE_OPERATIONAL: 2587 case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL: 2588 break; 2589 case UFSHCD_STATE_EH_SCHEDULED_FATAL: 2590 /* 2591 * pm_runtime_get_sync() is used at error handling preparation 2592 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's 2593 * PM ops, it can never be finished if we let SCSI layer keep 2594 * retrying it, which gets err handler stuck forever. Neither 2595 * can we let the scsi cmd pass through, because UFS is in bad 2596 * state, the scsi cmd may eventually time out, which will get 2597 * err handler blocked for too long. So, just fail the scsi cmd 2598 * sent from PM ops, err handler can recover PM error anyways. 2599 */ 2600 if (hba->pm_op_in_progress) { 2601 hba->force_reset = true; 2602 set_host_byte(cmd, DID_BAD_TARGET); 2603 goto out_compl_cmd; 2604 } 2605 fallthrough; 2606 case UFSHCD_STATE_RESET: 2607 err = SCSI_MLQUEUE_HOST_BUSY; 2608 goto out_compl_cmd; 2609 case UFSHCD_STATE_ERROR: 2610 set_host_byte(cmd, DID_ERROR); 2611 goto out_compl_cmd; 2612 default: 2613 dev_WARN_ONCE(hba->dev, 1, "%s: invalid state %d\n", 2614 __func__, hba->ufshcd_state); 2615 set_host_byte(cmd, DID_BAD_TARGET); 2616 goto out_compl_cmd; 2617 } 2618 ufshcd_send_command(hba, tag); 2619 spin_unlock_irqrestore(hba->host->host_lock, flags); 2620 goto out; 2621 2622 out_compl_cmd: 2623 scsi_dma_unmap(lrbp->cmd); 2624 lrbp->cmd = NULL; 2625 spin_unlock_irqrestore(hba->host->host_lock, flags); 2626 ufshcd_release(hba); 2627 if (!err) 2628 cmd->scsi_done(cmd); 2629 out: 2630 up_read(&hba->clk_scaling_lock); 2631 return err; 2632 } 2633 ufshcd_compose_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,enum dev_cmd_type cmd_type,int tag)2634 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba, 2635 struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag) 2636 { 2637 lrbp->cmd = NULL; 2638 lrbp->sense_bufflen = 0; 2639 lrbp->sense_buffer = NULL; 2640 lrbp->task_tag = tag; 2641 lrbp->lun = 0; /* device management cmd is not specific to any LUN */ 2642 lrbp->intr_cmd = true; /* No interrupt aggregation */ 2643 ufshcd_prepare_lrbp_crypto(NULL, lrbp); 2644 hba->dev_cmd.type = cmd_type; 2645 2646 return ufshcd_compose_devman_upiu(hba, lrbp); 2647 } 2648 2649 static int ufshcd_clear_cmd(struct ufs_hba * hba,int tag)2650 ufshcd_clear_cmd(struct ufs_hba *hba, int tag) 2651 { 2652 int err = 0; 2653 unsigned long flags; 2654 u32 mask = 1 << tag; 2655 2656 /* clear outstanding transaction before retry */ 2657 spin_lock_irqsave(hba->host->host_lock, flags); 2658 ufshcd_utrl_clear(hba, tag); 2659 spin_unlock_irqrestore(hba->host->host_lock, flags); 2660 2661 /* 2662 * wait for for h/w to clear corresponding bit in door-bell. 2663 * max. wait is 1 sec. 2664 */ 2665 err = ufshcd_wait_for_register(hba, 2666 REG_UTP_TRANSFER_REQ_DOOR_BELL, 2667 mask, ~mask, 1000, 1000); 2668 2669 return err; 2670 } 2671 2672 static int ufshcd_check_query_response(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2673 ufshcd_check_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 2674 { 2675 struct ufs_query_res *query_res = &hba->dev_cmd.query.response; 2676 2677 /* Get the UPIU response */ 2678 query_res->response = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr) >> 2679 UPIU_RSP_CODE_OFFSET; 2680 return query_res->response; 2681 } 2682 2683 /** 2684 * ufshcd_dev_cmd_completion() - handles device management command responses 2685 * @hba: per adapter instance 2686 * @lrbp: pointer to local reference block 2687 */ 2688 static int ufshcd_dev_cmd_completion(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2689 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 2690 { 2691 int resp; 2692 int err = 0; 2693 2694 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0); 2695 resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr); 2696 2697 switch (resp) { 2698 case UPIU_TRANSACTION_NOP_IN: 2699 if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) { 2700 err = -EINVAL; 2701 dev_err(hba->dev, "%s: unexpected response %x\n", 2702 __func__, resp); 2703 } 2704 break; 2705 case UPIU_TRANSACTION_QUERY_RSP: 2706 err = ufshcd_check_query_response(hba, lrbp); 2707 if (!err) 2708 err = ufshcd_copy_query_response(hba, lrbp); 2709 break; 2710 case UPIU_TRANSACTION_REJECT_UPIU: 2711 /* TODO: handle Reject UPIU Response */ 2712 err = -EPERM; 2713 dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n", 2714 __func__); 2715 break; 2716 default: 2717 err = -EINVAL; 2718 dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n", 2719 __func__, resp); 2720 break; 2721 } 2722 2723 return err; 2724 } 2725 ufshcd_wait_for_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int max_timeout)2726 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba, 2727 struct ufshcd_lrb *lrbp, int max_timeout) 2728 { 2729 int err = 0; 2730 unsigned long time_left; 2731 unsigned long flags; 2732 2733 time_left = wait_for_completion_timeout(hba->dev_cmd.complete, 2734 msecs_to_jiffies(max_timeout)); 2735 2736 /* Make sure descriptors are ready before ringing the doorbell */ 2737 wmb(); 2738 spin_lock_irqsave(hba->host->host_lock, flags); 2739 hba->dev_cmd.complete = NULL; 2740 if (likely(time_left)) { 2741 err = ufshcd_get_tr_ocs(lrbp); 2742 if (!err) 2743 err = ufshcd_dev_cmd_completion(hba, lrbp); 2744 } 2745 spin_unlock_irqrestore(hba->host->host_lock, flags); 2746 2747 if (!time_left) { 2748 err = -ETIMEDOUT; 2749 dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n", 2750 __func__, lrbp->task_tag); 2751 if (!ufshcd_clear_cmd(hba, lrbp->task_tag)) 2752 /* successfully cleared the command, retry if needed */ 2753 err = -EAGAIN; 2754 /* 2755 * in case of an error, after clearing the doorbell, 2756 * we also need to clear the outstanding_request 2757 * field in hba 2758 */ 2759 ufshcd_outstanding_req_clear(hba, lrbp->task_tag); 2760 } 2761 2762 return err; 2763 } 2764 2765 /** 2766 * ufshcd_exec_dev_cmd - API for sending device management requests 2767 * @hba: UFS hba 2768 * @cmd_type: specifies the type (NOP, Query...) 2769 * @timeout: time in seconds 2770 * 2771 * NOTE: Since there is only one available tag for device management commands, 2772 * it is expected you hold the hba->dev_cmd.lock mutex. 2773 */ ufshcd_exec_dev_cmd(struct ufs_hba * hba,enum dev_cmd_type cmd_type,int timeout)2774 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba, 2775 enum dev_cmd_type cmd_type, int timeout) 2776 { 2777 struct request_queue *q = hba->cmd_queue; 2778 struct request *req; 2779 struct ufshcd_lrb *lrbp; 2780 int err; 2781 int tag; 2782 struct completion wait; 2783 unsigned long flags; 2784 2785 down_read(&hba->clk_scaling_lock); 2786 2787 /* 2788 * Get free slot, sleep if slots are unavailable. 2789 * Even though we use wait_event() which sleeps indefinitely, 2790 * the maximum wait time is bounded by SCSI request timeout. 2791 */ 2792 req = blk_get_request(q, REQ_OP_DRV_OUT, 0); 2793 if (IS_ERR(req)) { 2794 err = PTR_ERR(req); 2795 goto out_unlock; 2796 } 2797 tag = req->tag; 2798 WARN_ON_ONCE(!ufshcd_valid_tag(hba, tag)); 2799 2800 init_completion(&wait); 2801 lrbp = &hba->lrb[tag]; 2802 WARN_ON(lrbp->cmd); 2803 err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag); 2804 if (unlikely(err)) 2805 goto out_put_tag; 2806 2807 hba->dev_cmd.complete = &wait; 2808 2809 ufshcd_add_query_upiu_trace(hba, tag, "query_send"); 2810 /* Make sure descriptors are ready before ringing the doorbell */ 2811 wmb(); 2812 spin_lock_irqsave(hba->host->host_lock, flags); 2813 ufshcd_send_command(hba, tag); 2814 spin_unlock_irqrestore(hba->host->host_lock, flags); 2815 2816 err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout); 2817 2818 ufshcd_add_query_upiu_trace(hba, tag, 2819 err ? "query_complete_err" : "query_complete"); 2820 2821 out_put_tag: 2822 blk_put_request(req); 2823 out_unlock: 2824 up_read(&hba->clk_scaling_lock); 2825 return err; 2826 } 2827 2828 /** 2829 * ufshcd_init_query() - init the query response and request parameters 2830 * @hba: per-adapter instance 2831 * @request: address of the request pointer to be initialized 2832 * @response: address of the response pointer to be initialized 2833 * @opcode: operation to perform 2834 * @idn: flag idn to access 2835 * @index: LU number to access 2836 * @selector: query/flag/descriptor further identification 2837 */ ufshcd_init_query(struct ufs_hba * hba,struct ufs_query_req ** request,struct ufs_query_res ** response,enum query_opcode opcode,u8 idn,u8 index,u8 selector)2838 static inline void ufshcd_init_query(struct ufs_hba *hba, 2839 struct ufs_query_req **request, struct ufs_query_res **response, 2840 enum query_opcode opcode, u8 idn, u8 index, u8 selector) 2841 { 2842 *request = &hba->dev_cmd.query.request; 2843 *response = &hba->dev_cmd.query.response; 2844 memset(*request, 0, sizeof(struct ufs_query_req)); 2845 memset(*response, 0, sizeof(struct ufs_query_res)); 2846 (*request)->upiu_req.opcode = opcode; 2847 (*request)->upiu_req.idn = idn; 2848 (*request)->upiu_req.index = index; 2849 (*request)->upiu_req.selector = selector; 2850 } 2851 ufshcd_query_flag_retry(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)2852 static int ufshcd_query_flag_retry(struct ufs_hba *hba, 2853 enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res) 2854 { 2855 int ret; 2856 int retries; 2857 2858 for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) { 2859 ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res); 2860 if (ret) 2861 dev_dbg(hba->dev, 2862 "%s: failed with error %d, retries %d\n", 2863 __func__, ret, retries); 2864 else 2865 break; 2866 } 2867 2868 if (ret) 2869 dev_err(hba->dev, 2870 "%s: query attribute, opcode %d, idn %d, failed with error %d after %d retires\n", 2871 __func__, opcode, idn, ret, retries); 2872 return ret; 2873 } 2874 2875 /** 2876 * ufshcd_query_flag() - API function for sending flag query requests 2877 * @hba: per-adapter instance 2878 * @opcode: flag query to perform 2879 * @idn: flag idn to access 2880 * @index: flag index to access 2881 * @flag_res: the flag value after the query request completes 2882 * 2883 * Returns 0 for success, non-zero in case of failure 2884 */ ufshcd_query_flag(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)2885 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode, 2886 enum flag_idn idn, u8 index, bool *flag_res) 2887 { 2888 struct ufs_query_req *request = NULL; 2889 struct ufs_query_res *response = NULL; 2890 int err, selector = 0; 2891 int timeout = QUERY_REQ_TIMEOUT; 2892 2893 BUG_ON(!hba); 2894 2895 ufshcd_hold(hba, false); 2896 mutex_lock(&hba->dev_cmd.lock); 2897 ufshcd_init_query(hba, &request, &response, opcode, idn, index, 2898 selector); 2899 2900 switch (opcode) { 2901 case UPIU_QUERY_OPCODE_SET_FLAG: 2902 case UPIU_QUERY_OPCODE_CLEAR_FLAG: 2903 case UPIU_QUERY_OPCODE_TOGGLE_FLAG: 2904 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 2905 break; 2906 case UPIU_QUERY_OPCODE_READ_FLAG: 2907 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; 2908 if (!flag_res) { 2909 /* No dummy reads */ 2910 dev_err(hba->dev, "%s: Invalid argument for read request\n", 2911 __func__); 2912 err = -EINVAL; 2913 goto out_unlock; 2914 } 2915 break; 2916 default: 2917 dev_err(hba->dev, 2918 "%s: Expected query flag opcode but got = %d\n", 2919 __func__, opcode); 2920 err = -EINVAL; 2921 goto out_unlock; 2922 } 2923 2924 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout); 2925 2926 if (err) { 2927 dev_err(hba->dev, 2928 "%s: Sending flag query for idn %d failed, err = %d\n", 2929 __func__, idn, err); 2930 goto out_unlock; 2931 } 2932 2933 if (flag_res) 2934 *flag_res = (be32_to_cpu(response->upiu_res.value) & 2935 MASK_QUERY_UPIU_FLAG_LOC) & 0x1; 2936 2937 out_unlock: 2938 mutex_unlock(&hba->dev_cmd.lock); 2939 ufshcd_release(hba); 2940 return err; 2941 } 2942 2943 /** 2944 * ufshcd_query_attr - API function for sending attribute requests 2945 * @hba: per-adapter instance 2946 * @opcode: attribute opcode 2947 * @idn: attribute idn to access 2948 * @index: index field 2949 * @selector: selector field 2950 * @attr_val: the attribute value after the query request completes 2951 * 2952 * Returns 0 for success, non-zero in case of failure 2953 */ ufshcd_query_attr(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)2954 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode, 2955 enum attr_idn idn, u8 index, u8 selector, u32 *attr_val) 2956 { 2957 struct ufs_query_req *request = NULL; 2958 struct ufs_query_res *response = NULL; 2959 int err; 2960 2961 BUG_ON(!hba); 2962 2963 ufshcd_hold(hba, false); 2964 if (!attr_val) { 2965 dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n", 2966 __func__, opcode); 2967 err = -EINVAL; 2968 goto out; 2969 } 2970 2971 mutex_lock(&hba->dev_cmd.lock); 2972 ufshcd_init_query(hba, &request, &response, opcode, idn, index, 2973 selector); 2974 2975 switch (opcode) { 2976 case UPIU_QUERY_OPCODE_WRITE_ATTR: 2977 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 2978 request->upiu_req.value = cpu_to_be32(*attr_val); 2979 break; 2980 case UPIU_QUERY_OPCODE_READ_ATTR: 2981 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; 2982 break; 2983 default: 2984 dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n", 2985 __func__, opcode); 2986 err = -EINVAL; 2987 goto out_unlock; 2988 } 2989 2990 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT); 2991 2992 if (err) { 2993 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n", 2994 __func__, opcode, idn, index, err); 2995 goto out_unlock; 2996 } 2997 2998 *attr_val = be32_to_cpu(response->upiu_res.value); 2999 3000 out_unlock: 3001 mutex_unlock(&hba->dev_cmd.lock); 3002 out: 3003 ufshcd_release(hba); 3004 return err; 3005 } 3006 3007 /** 3008 * ufshcd_query_attr_retry() - API function for sending query 3009 * attribute with retries 3010 * @hba: per-adapter instance 3011 * @opcode: attribute opcode 3012 * @idn: attribute idn to access 3013 * @index: index field 3014 * @selector: selector field 3015 * @attr_val: the attribute value after the query request 3016 * completes 3017 * 3018 * Returns 0 for success, non-zero in case of failure 3019 */ ufshcd_query_attr_retry(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3020 static int ufshcd_query_attr_retry(struct ufs_hba *hba, 3021 enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector, 3022 u32 *attr_val) 3023 { 3024 int ret = 0; 3025 u32 retries; 3026 3027 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) { 3028 ret = ufshcd_query_attr(hba, opcode, idn, index, 3029 selector, attr_val); 3030 if (ret) 3031 dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n", 3032 __func__, ret, retries); 3033 else 3034 break; 3035 } 3036 3037 if (ret) 3038 dev_err(hba->dev, 3039 "%s: query attribute, idn %d, failed with error %d after %d retires\n", 3040 __func__, idn, ret, QUERY_REQ_RETRIES); 3041 return ret; 3042 } 3043 __ufshcd_query_descriptor(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3044 static int __ufshcd_query_descriptor(struct ufs_hba *hba, 3045 enum query_opcode opcode, enum desc_idn idn, u8 index, 3046 u8 selector, u8 *desc_buf, int *buf_len) 3047 { 3048 struct ufs_query_req *request = NULL; 3049 struct ufs_query_res *response = NULL; 3050 int err; 3051 3052 BUG_ON(!hba); 3053 3054 ufshcd_hold(hba, false); 3055 if (!desc_buf) { 3056 dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n", 3057 __func__, opcode); 3058 err = -EINVAL; 3059 goto out; 3060 } 3061 3062 if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) { 3063 dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n", 3064 __func__, *buf_len); 3065 err = -EINVAL; 3066 goto out; 3067 } 3068 3069 mutex_lock(&hba->dev_cmd.lock); 3070 ufshcd_init_query(hba, &request, &response, opcode, idn, index, 3071 selector); 3072 hba->dev_cmd.query.descriptor = desc_buf; 3073 request->upiu_req.length = cpu_to_be16(*buf_len); 3074 3075 switch (opcode) { 3076 case UPIU_QUERY_OPCODE_WRITE_DESC: 3077 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 3078 break; 3079 case UPIU_QUERY_OPCODE_READ_DESC: 3080 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; 3081 break; 3082 default: 3083 dev_err(hba->dev, 3084 "%s: Expected query descriptor opcode but got = 0x%.2x\n", 3085 __func__, opcode); 3086 err = -EINVAL; 3087 goto out_unlock; 3088 } 3089 3090 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT); 3091 3092 if (err) { 3093 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n", 3094 __func__, opcode, idn, index, err); 3095 goto out_unlock; 3096 } 3097 3098 *buf_len = be16_to_cpu(response->upiu_res.length); 3099 3100 out_unlock: 3101 hba->dev_cmd.query.descriptor = NULL; 3102 mutex_unlock(&hba->dev_cmd.lock); 3103 out: 3104 ufshcd_release(hba); 3105 return err; 3106 } 3107 3108 /** 3109 * ufshcd_query_descriptor_retry - API function for sending descriptor requests 3110 * @hba: per-adapter instance 3111 * @opcode: attribute opcode 3112 * @idn: attribute idn to access 3113 * @index: index field 3114 * @selector: selector field 3115 * @desc_buf: the buffer that contains the descriptor 3116 * @buf_len: length parameter passed to the device 3117 * 3118 * Returns 0 for success, non-zero in case of failure. 3119 * The buf_len parameter will contain, on return, the length parameter 3120 * received on the response. 3121 */ ufshcd_query_descriptor_retry(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3122 int ufshcd_query_descriptor_retry(struct ufs_hba *hba, 3123 enum query_opcode opcode, 3124 enum desc_idn idn, u8 index, 3125 u8 selector, 3126 u8 *desc_buf, int *buf_len) 3127 { 3128 int err; 3129 int retries; 3130 3131 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) { 3132 err = __ufshcd_query_descriptor(hba, opcode, idn, index, 3133 selector, desc_buf, buf_len); 3134 if (!err || err == -EINVAL) 3135 break; 3136 } 3137 3138 return err; 3139 } 3140 3141 /** 3142 * ufshcd_map_desc_id_to_length - map descriptor IDN to its length 3143 * @hba: Pointer to adapter instance 3144 * @desc_id: descriptor idn value 3145 * @desc_len: mapped desc length (out) 3146 */ ufshcd_map_desc_id_to_length(struct ufs_hba * hba,enum desc_idn desc_id,int * desc_len)3147 void ufshcd_map_desc_id_to_length(struct ufs_hba *hba, enum desc_idn desc_id, 3148 int *desc_len) 3149 { 3150 if (desc_id >= QUERY_DESC_IDN_MAX || desc_id == QUERY_DESC_IDN_RFU_0 || 3151 desc_id == QUERY_DESC_IDN_RFU_1) 3152 *desc_len = 0; 3153 else 3154 *desc_len = hba->desc_size[desc_id]; 3155 } 3156 EXPORT_SYMBOL(ufshcd_map_desc_id_to_length); 3157 ufshcd_update_desc_length(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,unsigned char desc_len)3158 static void ufshcd_update_desc_length(struct ufs_hba *hba, 3159 enum desc_idn desc_id, int desc_index, 3160 unsigned char desc_len) 3161 { 3162 if (hba->desc_size[desc_id] == QUERY_DESC_MAX_SIZE && 3163 desc_id != QUERY_DESC_IDN_STRING && desc_index != UFS_RPMB_UNIT) 3164 /* For UFS 3.1, the normal unit descriptor is 10 bytes larger 3165 * than the RPMB unit, however, both descriptors share the same 3166 * desc_idn, to cover both unit descriptors with one length, we 3167 * choose the normal unit descriptor length by desc_index. 3168 */ 3169 hba->desc_size[desc_id] = desc_len; 3170 } 3171 3172 /** 3173 * ufshcd_read_desc_param - read the specified descriptor parameter 3174 * @hba: Pointer to adapter instance 3175 * @desc_id: descriptor idn value 3176 * @desc_index: descriptor index 3177 * @param_offset: offset of the parameter to read 3178 * @param_read_buf: pointer to buffer where parameter would be read 3179 * @param_size: sizeof(param_read_buf) 3180 * 3181 * Return 0 in case of success, non-zero otherwise 3182 */ ufshcd_read_desc_param(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,u8 param_offset,u8 * param_read_buf,u8 param_size)3183 int ufshcd_read_desc_param(struct ufs_hba *hba, 3184 enum desc_idn desc_id, 3185 int desc_index, 3186 u8 param_offset, 3187 u8 *param_read_buf, 3188 u8 param_size) 3189 { 3190 int ret; 3191 u8 *desc_buf; 3192 int buff_len; 3193 bool is_kmalloc = true; 3194 3195 /* Safety check */ 3196 if (desc_id >= QUERY_DESC_IDN_MAX || !param_size) 3197 return -EINVAL; 3198 3199 /* Get the length of descriptor */ 3200 ufshcd_map_desc_id_to_length(hba, desc_id, &buff_len); 3201 if (!buff_len) { 3202 dev_err(hba->dev, "%s: Failed to get desc length\n", __func__); 3203 return -EINVAL; 3204 } 3205 3206 if (param_offset >= buff_len) { 3207 dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n", 3208 __func__, param_offset, desc_id, buff_len); 3209 return -EINVAL; 3210 } 3211 3212 /* Check whether we need temp memory */ 3213 if (param_offset != 0 || param_size < buff_len) { 3214 desc_buf = kzalloc(buff_len, GFP_KERNEL); 3215 if (!desc_buf) 3216 return -ENOMEM; 3217 } else { 3218 desc_buf = param_read_buf; 3219 is_kmalloc = false; 3220 } 3221 3222 /* Request for full descriptor */ 3223 ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC, 3224 desc_id, desc_index, 0, 3225 desc_buf, &buff_len); 3226 3227 if (ret) { 3228 dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n", 3229 __func__, desc_id, desc_index, param_offset, ret); 3230 goto out; 3231 } 3232 3233 /* Sanity check */ 3234 if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) { 3235 dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n", 3236 __func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]); 3237 ret = -EINVAL; 3238 goto out; 3239 } 3240 3241 /* Update descriptor length */ 3242 buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET]; 3243 ufshcd_update_desc_length(hba, desc_id, desc_index, buff_len); 3244 3245 if (is_kmalloc) { 3246 /* Make sure we don't copy more data than available */ 3247 if (param_offset + param_size > buff_len) 3248 param_size = buff_len - param_offset; 3249 memcpy(param_read_buf, &desc_buf[param_offset], param_size); 3250 } 3251 out: 3252 if (is_kmalloc) 3253 kfree(desc_buf); 3254 return ret; 3255 } 3256 3257 /** 3258 * struct uc_string_id - unicode string 3259 * 3260 * @len: size of this descriptor inclusive 3261 * @type: descriptor type 3262 * @uc: unicode string character 3263 */ 3264 struct uc_string_id { 3265 u8 len; 3266 u8 type; 3267 wchar_t uc[]; 3268 } __packed; 3269 3270 /* replace non-printable or non-ASCII characters with spaces */ ufshcd_remove_non_printable(u8 ch)3271 static inline char ufshcd_remove_non_printable(u8 ch) 3272 { 3273 return (ch >= 0x20 && ch <= 0x7e) ? ch : ' '; 3274 } 3275 3276 /** 3277 * ufshcd_read_string_desc - read string descriptor 3278 * @hba: pointer to adapter instance 3279 * @desc_index: descriptor index 3280 * @buf: pointer to buffer where descriptor would be read, 3281 * the caller should free the memory. 3282 * @ascii: if true convert from unicode to ascii characters 3283 * null terminated string. 3284 * 3285 * Return: 3286 * * string size on success. 3287 * * -ENOMEM: on allocation failure 3288 * * -EINVAL: on a wrong parameter 3289 */ ufshcd_read_string_desc(struct ufs_hba * hba,u8 desc_index,u8 ** buf,bool ascii)3290 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index, 3291 u8 **buf, bool ascii) 3292 { 3293 struct uc_string_id *uc_str; 3294 u8 *str; 3295 int ret; 3296 3297 if (!buf) 3298 return -EINVAL; 3299 3300 uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 3301 if (!uc_str) 3302 return -ENOMEM; 3303 3304 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0, 3305 (u8 *)uc_str, QUERY_DESC_MAX_SIZE); 3306 if (ret < 0) { 3307 dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n", 3308 QUERY_REQ_RETRIES, ret); 3309 str = NULL; 3310 goto out; 3311 } 3312 3313 if (uc_str->len <= QUERY_DESC_HDR_SIZE) { 3314 dev_dbg(hba->dev, "String Desc is of zero length\n"); 3315 str = NULL; 3316 ret = 0; 3317 goto out; 3318 } 3319 3320 if (ascii) { 3321 ssize_t ascii_len; 3322 int i; 3323 /* remove header and divide by 2 to move from UTF16 to UTF8 */ 3324 ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1; 3325 str = kzalloc(ascii_len, GFP_KERNEL); 3326 if (!str) { 3327 ret = -ENOMEM; 3328 goto out; 3329 } 3330 3331 /* 3332 * the descriptor contains string in UTF16 format 3333 * we need to convert to utf-8 so it can be displayed 3334 */ 3335 ret = utf16s_to_utf8s(uc_str->uc, 3336 uc_str->len - QUERY_DESC_HDR_SIZE, 3337 UTF16_BIG_ENDIAN, str, ascii_len); 3338 3339 /* replace non-printable or non-ASCII characters with spaces */ 3340 for (i = 0; i < ret; i++) 3341 str[i] = ufshcd_remove_non_printable(str[i]); 3342 3343 str[ret++] = '\0'; 3344 3345 } else { 3346 str = kmemdup(uc_str, uc_str->len, GFP_KERNEL); 3347 if (!str) { 3348 ret = -ENOMEM; 3349 goto out; 3350 } 3351 ret = uc_str->len; 3352 } 3353 out: 3354 *buf = str; 3355 kfree(uc_str); 3356 return ret; 3357 } 3358 3359 /** 3360 * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter 3361 * @hba: Pointer to adapter instance 3362 * @lun: lun id 3363 * @param_offset: offset of the parameter to read 3364 * @param_read_buf: pointer to buffer where parameter would be read 3365 * @param_size: sizeof(param_read_buf) 3366 * 3367 * Return 0 in case of success, non-zero otherwise 3368 */ ufshcd_read_unit_desc_param(struct ufs_hba * hba,int lun,enum unit_desc_param param_offset,u8 * param_read_buf,u32 param_size)3369 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba, 3370 int lun, 3371 enum unit_desc_param param_offset, 3372 u8 *param_read_buf, 3373 u32 param_size) 3374 { 3375 /* 3376 * Unit descriptors are only available for general purpose LUs (LUN id 3377 * from 0 to 7) and RPMB Well known LU. 3378 */ 3379 if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun)) 3380 return -EOPNOTSUPP; 3381 3382 return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun, 3383 param_offset, param_read_buf, param_size); 3384 } 3385 ufshcd_get_ref_clk_gating_wait(struct ufs_hba * hba)3386 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba) 3387 { 3388 int err = 0; 3389 u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US; 3390 3391 if (hba->dev_info.wspecversion >= 0x300) { 3392 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 3393 QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0, 3394 &gating_wait); 3395 if (err) 3396 dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n", 3397 err, gating_wait); 3398 3399 if (gating_wait == 0) { 3400 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US; 3401 dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n", 3402 gating_wait); 3403 } 3404 3405 hba->dev_info.clk_gating_wait_us = gating_wait; 3406 } 3407 3408 return err; 3409 } 3410 3411 /** 3412 * ufshcd_memory_alloc - allocate memory for host memory space data structures 3413 * @hba: per adapter instance 3414 * 3415 * 1. Allocate DMA memory for Command Descriptor array 3416 * Each command descriptor consist of Command UPIU, Response UPIU and PRDT 3417 * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL). 3418 * 3. Allocate DMA memory for UTP Task Management Request Descriptor List 3419 * (UTMRDL) 3420 * 4. Allocate memory for local reference block(lrb). 3421 * 3422 * Returns 0 for success, non-zero in case of failure 3423 */ ufshcd_memory_alloc(struct ufs_hba * hba)3424 static int ufshcd_memory_alloc(struct ufs_hba *hba) 3425 { 3426 size_t utmrdl_size, utrdl_size, ucdl_size; 3427 3428 /* Allocate memory for UTP command descriptors */ 3429 ucdl_size = (sizeof(struct utp_transfer_cmd_desc) * hba->nutrs); 3430 hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev, 3431 ucdl_size, 3432 &hba->ucdl_dma_addr, 3433 GFP_KERNEL); 3434 3435 /* 3436 * UFSHCI requires UTP command descriptor to be 128 byte aligned. 3437 * make sure hba->ucdl_dma_addr is aligned to PAGE_SIZE 3438 * if hba->ucdl_dma_addr is aligned to PAGE_SIZE, then it will 3439 * be aligned to 128 bytes as well 3440 */ 3441 if (!hba->ucdl_base_addr || 3442 WARN_ON(hba->ucdl_dma_addr & (PAGE_SIZE - 1))) { 3443 dev_err(hba->dev, 3444 "Command Descriptor Memory allocation failed\n"); 3445 goto out; 3446 } 3447 3448 /* 3449 * Allocate memory for UTP Transfer descriptors 3450 * UFSHCI requires 1024 byte alignment of UTRD 3451 */ 3452 utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs); 3453 hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev, 3454 utrdl_size, 3455 &hba->utrdl_dma_addr, 3456 GFP_KERNEL); 3457 if (!hba->utrdl_base_addr || 3458 WARN_ON(hba->utrdl_dma_addr & (PAGE_SIZE - 1))) { 3459 dev_err(hba->dev, 3460 "Transfer Descriptor Memory allocation failed\n"); 3461 goto out; 3462 } 3463 3464 /* 3465 * Allocate memory for UTP Task Management descriptors 3466 * UFSHCI requires 1024 byte alignment of UTMRD 3467 */ 3468 utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs; 3469 hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev, 3470 utmrdl_size, 3471 &hba->utmrdl_dma_addr, 3472 GFP_KERNEL); 3473 if (!hba->utmrdl_base_addr || 3474 WARN_ON(hba->utmrdl_dma_addr & (PAGE_SIZE - 1))) { 3475 dev_err(hba->dev, 3476 "Task Management Descriptor Memory allocation failed\n"); 3477 goto out; 3478 } 3479 3480 /* Allocate memory for local reference block */ 3481 hba->lrb = devm_kcalloc(hba->dev, 3482 hba->nutrs, sizeof(struct ufshcd_lrb), 3483 GFP_KERNEL); 3484 if (!hba->lrb) { 3485 dev_err(hba->dev, "LRB Memory allocation failed\n"); 3486 goto out; 3487 } 3488 return 0; 3489 out: 3490 return -ENOMEM; 3491 } 3492 3493 /** 3494 * ufshcd_host_memory_configure - configure local reference block with 3495 * memory offsets 3496 * @hba: per adapter instance 3497 * 3498 * Configure Host memory space 3499 * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA 3500 * address. 3501 * 2. Update each UTRD with Response UPIU offset, Response UPIU length 3502 * and PRDT offset. 3503 * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT 3504 * into local reference block. 3505 */ ufshcd_host_memory_configure(struct ufs_hba * hba)3506 static void ufshcd_host_memory_configure(struct ufs_hba *hba) 3507 { 3508 struct utp_transfer_req_desc *utrdlp; 3509 dma_addr_t cmd_desc_dma_addr; 3510 dma_addr_t cmd_desc_element_addr; 3511 u16 response_offset; 3512 u16 prdt_offset; 3513 int cmd_desc_size; 3514 int i; 3515 3516 utrdlp = hba->utrdl_base_addr; 3517 3518 response_offset = 3519 offsetof(struct utp_transfer_cmd_desc, response_upiu); 3520 prdt_offset = 3521 offsetof(struct utp_transfer_cmd_desc, prd_table); 3522 3523 cmd_desc_size = sizeof(struct utp_transfer_cmd_desc); 3524 cmd_desc_dma_addr = hba->ucdl_dma_addr; 3525 3526 for (i = 0; i < hba->nutrs; i++) { 3527 /* Configure UTRD with command descriptor base address */ 3528 cmd_desc_element_addr = 3529 (cmd_desc_dma_addr + (cmd_desc_size * i)); 3530 utrdlp[i].command_desc_base_addr_lo = 3531 cpu_to_le32(lower_32_bits(cmd_desc_element_addr)); 3532 utrdlp[i].command_desc_base_addr_hi = 3533 cpu_to_le32(upper_32_bits(cmd_desc_element_addr)); 3534 3535 /* Response upiu and prdt offset should be in double words */ 3536 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) { 3537 utrdlp[i].response_upiu_offset = 3538 cpu_to_le16(response_offset); 3539 utrdlp[i].prd_table_offset = 3540 cpu_to_le16(prdt_offset); 3541 utrdlp[i].response_upiu_length = 3542 cpu_to_le16(ALIGNED_UPIU_SIZE); 3543 } else { 3544 utrdlp[i].response_upiu_offset = 3545 cpu_to_le16(response_offset >> 2); 3546 utrdlp[i].prd_table_offset = 3547 cpu_to_le16(prdt_offset >> 2); 3548 utrdlp[i].response_upiu_length = 3549 cpu_to_le16(ALIGNED_UPIU_SIZE >> 2); 3550 } 3551 3552 ufshcd_init_lrb(hba, &hba->lrb[i], i); 3553 } 3554 } 3555 3556 /** 3557 * ufshcd_dme_link_startup - Notify Unipro to perform link startup 3558 * @hba: per adapter instance 3559 * 3560 * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer, 3561 * in order to initialize the Unipro link startup procedure. 3562 * Once the Unipro links are up, the device connected to the controller 3563 * is detected. 3564 * 3565 * Returns 0 on success, non-zero value on failure 3566 */ ufshcd_dme_link_startup(struct ufs_hba * hba)3567 static int ufshcd_dme_link_startup(struct ufs_hba *hba) 3568 { 3569 struct uic_command uic_cmd = {0}; 3570 int ret; 3571 3572 uic_cmd.command = UIC_CMD_DME_LINK_STARTUP; 3573 3574 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 3575 if (ret) 3576 dev_dbg(hba->dev, 3577 "dme-link-startup: error code %d\n", ret); 3578 return ret; 3579 } 3580 /** 3581 * ufshcd_dme_reset - UIC command for DME_RESET 3582 * @hba: per adapter instance 3583 * 3584 * DME_RESET command is issued in order to reset UniPro stack. 3585 * This function now deals with cold reset. 3586 * 3587 * Returns 0 on success, non-zero value on failure 3588 */ ufshcd_dme_reset(struct ufs_hba * hba)3589 static int ufshcd_dme_reset(struct ufs_hba *hba) 3590 { 3591 struct uic_command uic_cmd = {0}; 3592 int ret; 3593 3594 uic_cmd.command = UIC_CMD_DME_RESET; 3595 3596 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 3597 if (ret) 3598 dev_err(hba->dev, 3599 "dme-reset: error code %d\n", ret); 3600 3601 return ret; 3602 } 3603 3604 /** 3605 * ufshcd_dme_enable - UIC command for DME_ENABLE 3606 * @hba: per adapter instance 3607 * 3608 * DME_ENABLE command is issued in order to enable UniPro stack. 3609 * 3610 * Returns 0 on success, non-zero value on failure 3611 */ ufshcd_dme_enable(struct ufs_hba * hba)3612 static int ufshcd_dme_enable(struct ufs_hba *hba) 3613 { 3614 struct uic_command uic_cmd = {0}; 3615 int ret; 3616 3617 uic_cmd.command = UIC_CMD_DME_ENABLE; 3618 3619 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 3620 if (ret) 3621 dev_err(hba->dev, 3622 "dme-reset: error code %d\n", ret); 3623 3624 return ret; 3625 } 3626 ufshcd_add_delay_before_dme_cmd(struct ufs_hba * hba)3627 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba) 3628 { 3629 #define MIN_DELAY_BEFORE_DME_CMDS_US 1000 3630 unsigned long min_sleep_time_us; 3631 3632 if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS)) 3633 return; 3634 3635 /* 3636 * last_dme_cmd_tstamp will be 0 only for 1st call to 3637 * this function 3638 */ 3639 if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) { 3640 min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US; 3641 } else { 3642 unsigned long delta = 3643 (unsigned long) ktime_to_us( 3644 ktime_sub(ktime_get(), 3645 hba->last_dme_cmd_tstamp)); 3646 3647 if (delta < MIN_DELAY_BEFORE_DME_CMDS_US) 3648 min_sleep_time_us = 3649 MIN_DELAY_BEFORE_DME_CMDS_US - delta; 3650 else 3651 return; /* no more delay required */ 3652 } 3653 3654 /* allow sleep for extra 50us if needed */ 3655 usleep_range(min_sleep_time_us, min_sleep_time_us + 50); 3656 } 3657 3658 /** 3659 * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET 3660 * @hba: per adapter instance 3661 * @attr_sel: uic command argument1 3662 * @attr_set: attribute set type as uic command argument2 3663 * @mib_val: setting value as uic command argument3 3664 * @peer: indicate whether peer or local 3665 * 3666 * Returns 0 on success, non-zero value on failure 3667 */ ufshcd_dme_set_attr(struct ufs_hba * hba,u32 attr_sel,u8 attr_set,u32 mib_val,u8 peer)3668 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel, 3669 u8 attr_set, u32 mib_val, u8 peer) 3670 { 3671 struct uic_command uic_cmd = {0}; 3672 static const char *const action[] = { 3673 "dme-set", 3674 "dme-peer-set" 3675 }; 3676 const char *set = action[!!peer]; 3677 int ret; 3678 int retries = UFS_UIC_COMMAND_RETRIES; 3679 3680 uic_cmd.command = peer ? 3681 UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET; 3682 uic_cmd.argument1 = attr_sel; 3683 uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set); 3684 uic_cmd.argument3 = mib_val; 3685 3686 do { 3687 /* for peer attributes we retry upon failure */ 3688 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 3689 if (ret) 3690 dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n", 3691 set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret); 3692 } while (ret && peer && --retries); 3693 3694 if (ret) 3695 dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n", 3696 set, UIC_GET_ATTR_ID(attr_sel), mib_val, 3697 UFS_UIC_COMMAND_RETRIES - retries); 3698 3699 return ret; 3700 } 3701 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr); 3702 3703 /** 3704 * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET 3705 * @hba: per adapter instance 3706 * @attr_sel: uic command argument1 3707 * @mib_val: the value of the attribute as returned by the UIC command 3708 * @peer: indicate whether peer or local 3709 * 3710 * Returns 0 on success, non-zero value on failure 3711 */ ufshcd_dme_get_attr(struct ufs_hba * hba,u32 attr_sel,u32 * mib_val,u8 peer)3712 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel, 3713 u32 *mib_val, u8 peer) 3714 { 3715 struct uic_command uic_cmd = {0}; 3716 static const char *const action[] = { 3717 "dme-get", 3718 "dme-peer-get" 3719 }; 3720 const char *get = action[!!peer]; 3721 int ret; 3722 int retries = UFS_UIC_COMMAND_RETRIES; 3723 struct ufs_pa_layer_attr orig_pwr_info; 3724 struct ufs_pa_layer_attr temp_pwr_info; 3725 bool pwr_mode_change = false; 3726 3727 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) { 3728 orig_pwr_info = hba->pwr_info; 3729 temp_pwr_info = orig_pwr_info; 3730 3731 if (orig_pwr_info.pwr_tx == FAST_MODE || 3732 orig_pwr_info.pwr_rx == FAST_MODE) { 3733 temp_pwr_info.pwr_tx = FASTAUTO_MODE; 3734 temp_pwr_info.pwr_rx = FASTAUTO_MODE; 3735 pwr_mode_change = true; 3736 } else if (orig_pwr_info.pwr_tx == SLOW_MODE || 3737 orig_pwr_info.pwr_rx == SLOW_MODE) { 3738 temp_pwr_info.pwr_tx = SLOWAUTO_MODE; 3739 temp_pwr_info.pwr_rx = SLOWAUTO_MODE; 3740 pwr_mode_change = true; 3741 } 3742 if (pwr_mode_change) { 3743 ret = ufshcd_change_power_mode(hba, &temp_pwr_info); 3744 if (ret) 3745 goto out; 3746 } 3747 } 3748 3749 uic_cmd.command = peer ? 3750 UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET; 3751 uic_cmd.argument1 = attr_sel; 3752 3753 do { 3754 /* for peer attributes we retry upon failure */ 3755 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 3756 if (ret) 3757 dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n", 3758 get, UIC_GET_ATTR_ID(attr_sel), ret); 3759 } while (ret && peer && --retries); 3760 3761 if (ret) 3762 dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n", 3763 get, UIC_GET_ATTR_ID(attr_sel), 3764 UFS_UIC_COMMAND_RETRIES - retries); 3765 3766 if (mib_val && !ret) 3767 *mib_val = uic_cmd.argument3; 3768 3769 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE) 3770 && pwr_mode_change) 3771 ufshcd_change_power_mode(hba, &orig_pwr_info); 3772 out: 3773 return ret; 3774 } 3775 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr); 3776 3777 /** 3778 * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power 3779 * state) and waits for it to take effect. 3780 * 3781 * @hba: per adapter instance 3782 * @cmd: UIC command to execute 3783 * 3784 * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER & 3785 * DME_HIBERNATE_EXIT commands take some time to take its effect on both host 3786 * and device UniPro link and hence it's final completion would be indicated by 3787 * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in 3788 * addition to normal UIC command completion Status (UCCS). This function only 3789 * returns after the relevant status bits indicate the completion. 3790 * 3791 * Returns 0 on success, non-zero value on failure 3792 */ ufshcd_uic_pwr_ctrl(struct ufs_hba * hba,struct uic_command * cmd)3793 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd) 3794 { 3795 struct completion uic_async_done; 3796 unsigned long flags; 3797 u8 status; 3798 int ret; 3799 bool reenable_intr = false; 3800 3801 mutex_lock(&hba->uic_cmd_mutex); 3802 init_completion(&uic_async_done); 3803 ufshcd_add_delay_before_dme_cmd(hba); 3804 3805 spin_lock_irqsave(hba->host->host_lock, flags); 3806 if (ufshcd_is_link_broken(hba)) { 3807 ret = -ENOLINK; 3808 goto out_unlock; 3809 } 3810 hba->uic_async_done = &uic_async_done; 3811 if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) { 3812 ufshcd_disable_intr(hba, UIC_COMMAND_COMPL); 3813 /* 3814 * Make sure UIC command completion interrupt is disabled before 3815 * issuing UIC command. 3816 */ 3817 wmb(); 3818 reenable_intr = true; 3819 } 3820 ret = __ufshcd_send_uic_cmd(hba, cmd, false); 3821 spin_unlock_irqrestore(hba->host->host_lock, flags); 3822 if (ret) { 3823 dev_err(hba->dev, 3824 "pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n", 3825 cmd->command, cmd->argument3, ret); 3826 goto out; 3827 } 3828 3829 if (!wait_for_completion_timeout(hba->uic_async_done, 3830 msecs_to_jiffies(UIC_CMD_TIMEOUT))) { 3831 dev_err(hba->dev, 3832 "pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n", 3833 cmd->command, cmd->argument3); 3834 3835 if (!cmd->cmd_active) { 3836 dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n", 3837 __func__); 3838 goto check_upmcrs; 3839 } 3840 3841 ret = -ETIMEDOUT; 3842 goto out; 3843 } 3844 3845 check_upmcrs: 3846 status = ufshcd_get_upmcrs(hba); 3847 if (status != PWR_LOCAL) { 3848 dev_err(hba->dev, 3849 "pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n", 3850 cmd->command, status); 3851 ret = (status != PWR_OK) ? status : -1; 3852 } 3853 out: 3854 if (ret) { 3855 ufshcd_print_host_state(hba); 3856 ufshcd_print_pwr_info(hba); 3857 ufshcd_print_host_regs(hba); 3858 } 3859 3860 spin_lock_irqsave(hba->host->host_lock, flags); 3861 hba->active_uic_cmd = NULL; 3862 hba->uic_async_done = NULL; 3863 if (reenable_intr) 3864 ufshcd_enable_intr(hba, UIC_COMMAND_COMPL); 3865 if (ret) { 3866 ufshcd_set_link_broken(hba); 3867 ufshcd_schedule_eh_work(hba); 3868 } 3869 out_unlock: 3870 spin_unlock_irqrestore(hba->host->host_lock, flags); 3871 mutex_unlock(&hba->uic_cmd_mutex); 3872 3873 return ret; 3874 } 3875 3876 /** 3877 * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage 3878 * using DME_SET primitives. 3879 * @hba: per adapter instance 3880 * @mode: powr mode value 3881 * 3882 * Returns 0 on success, non-zero value on failure 3883 */ ufshcd_uic_change_pwr_mode(struct ufs_hba * hba,u8 mode)3884 static int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode) 3885 { 3886 struct uic_command uic_cmd = {0}; 3887 int ret; 3888 3889 if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) { 3890 ret = ufshcd_dme_set(hba, 3891 UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1); 3892 if (ret) { 3893 dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n", 3894 __func__, ret); 3895 goto out; 3896 } 3897 } 3898 3899 uic_cmd.command = UIC_CMD_DME_SET; 3900 uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE); 3901 uic_cmd.argument3 = mode; 3902 ufshcd_hold(hba, false); 3903 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd); 3904 ufshcd_release(hba); 3905 3906 out: 3907 return ret; 3908 } 3909 ufshcd_link_recovery(struct ufs_hba * hba)3910 int ufshcd_link_recovery(struct ufs_hba *hba) 3911 { 3912 int ret; 3913 unsigned long flags; 3914 3915 spin_lock_irqsave(hba->host->host_lock, flags); 3916 hba->ufshcd_state = UFSHCD_STATE_RESET; 3917 ufshcd_set_eh_in_progress(hba); 3918 spin_unlock_irqrestore(hba->host->host_lock, flags); 3919 3920 /* Reset the attached device */ 3921 ufshcd_vops_device_reset(hba); 3922 3923 ret = ufshcd_host_reset_and_restore(hba); 3924 3925 spin_lock_irqsave(hba->host->host_lock, flags); 3926 if (ret) 3927 hba->ufshcd_state = UFSHCD_STATE_ERROR; 3928 ufshcd_clear_eh_in_progress(hba); 3929 spin_unlock_irqrestore(hba->host->host_lock, flags); 3930 3931 if (ret) 3932 dev_err(hba->dev, "%s: link recovery failed, err %d", 3933 __func__, ret); 3934 3935 return ret; 3936 } 3937 EXPORT_SYMBOL_GPL(ufshcd_link_recovery); 3938 ufshcd_uic_hibern8_enter(struct ufs_hba * hba)3939 static int ufshcd_uic_hibern8_enter(struct ufs_hba *hba) 3940 { 3941 int ret; 3942 struct uic_command uic_cmd = {0}; 3943 ktime_t start = ktime_get(); 3944 3945 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE); 3946 3947 uic_cmd.command = UIC_CMD_DME_HIBER_ENTER; 3948 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd); 3949 trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter", 3950 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 3951 3952 if (ret) 3953 dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n", 3954 __func__, ret); 3955 else 3956 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, 3957 POST_CHANGE); 3958 3959 return ret; 3960 } 3961 ufshcd_uic_hibern8_exit(struct ufs_hba * hba)3962 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba) 3963 { 3964 struct uic_command uic_cmd = {0}; 3965 int ret; 3966 ktime_t start = ktime_get(); 3967 3968 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE); 3969 3970 uic_cmd.command = UIC_CMD_DME_HIBER_EXIT; 3971 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd); 3972 trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit", 3973 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 3974 3975 if (ret) { 3976 dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n", 3977 __func__, ret); 3978 } else { 3979 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, 3980 POST_CHANGE); 3981 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_get(); 3982 hba->ufs_stats.hibern8_exit_cnt++; 3983 } 3984 3985 return ret; 3986 } 3987 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit); 3988 ufshcd_auto_hibern8_update(struct ufs_hba * hba,u32 ahit)3989 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit) 3990 { 3991 unsigned long flags; 3992 bool update = false; 3993 3994 if (!ufshcd_is_auto_hibern8_supported(hba)) 3995 return; 3996 3997 spin_lock_irqsave(hba->host->host_lock, flags); 3998 if (hba->ahit != ahit) { 3999 hba->ahit = ahit; 4000 update = true; 4001 } 4002 spin_unlock_irqrestore(hba->host->host_lock, flags); 4003 4004 if (update && !pm_runtime_suspended(hba->dev)) { 4005 pm_runtime_get_sync(hba->dev); 4006 ufshcd_hold(hba, false); 4007 ufshcd_auto_hibern8_enable(hba); 4008 ufshcd_release(hba); 4009 pm_runtime_put(hba->dev); 4010 } 4011 } 4012 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update); 4013 ufshcd_auto_hibern8_enable(struct ufs_hba * hba)4014 void ufshcd_auto_hibern8_enable(struct ufs_hba *hba) 4015 { 4016 unsigned long flags; 4017 4018 if (!ufshcd_is_auto_hibern8_supported(hba)) 4019 return; 4020 4021 spin_lock_irqsave(hba->host->host_lock, flags); 4022 ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER); 4023 spin_unlock_irqrestore(hba->host->host_lock, flags); 4024 } 4025 4026 /** 4027 * ufshcd_init_pwr_info - setting the POR (power on reset) 4028 * values in hba power info 4029 * @hba: per-adapter instance 4030 */ ufshcd_init_pwr_info(struct ufs_hba * hba)4031 static void ufshcd_init_pwr_info(struct ufs_hba *hba) 4032 { 4033 hba->pwr_info.gear_rx = UFS_PWM_G1; 4034 hba->pwr_info.gear_tx = UFS_PWM_G1; 4035 hba->pwr_info.lane_rx = 1; 4036 hba->pwr_info.lane_tx = 1; 4037 hba->pwr_info.pwr_rx = SLOWAUTO_MODE; 4038 hba->pwr_info.pwr_tx = SLOWAUTO_MODE; 4039 hba->pwr_info.hs_rate = 0; 4040 } 4041 4042 /** 4043 * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device 4044 * @hba: per-adapter instance 4045 */ ufshcd_get_max_pwr_mode(struct ufs_hba * hba)4046 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba) 4047 { 4048 struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info; 4049 4050 if (hba->max_pwr_info.is_valid) 4051 return 0; 4052 4053 pwr_info->pwr_tx = FAST_MODE; 4054 pwr_info->pwr_rx = FAST_MODE; 4055 pwr_info->hs_rate = PA_HS_MODE_B; 4056 4057 /* Get the connected lane count */ 4058 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES), 4059 &pwr_info->lane_rx); 4060 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), 4061 &pwr_info->lane_tx); 4062 4063 if (!pwr_info->lane_rx || !pwr_info->lane_tx) { 4064 dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n", 4065 __func__, 4066 pwr_info->lane_rx, 4067 pwr_info->lane_tx); 4068 return -EINVAL; 4069 } 4070 4071 /* 4072 * First, get the maximum gears of HS speed. 4073 * If a zero value, it means there is no HSGEAR capability. 4074 * Then, get the maximum gears of PWM speed. 4075 */ 4076 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx); 4077 if (!pwr_info->gear_rx) { 4078 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR), 4079 &pwr_info->gear_rx); 4080 if (!pwr_info->gear_rx) { 4081 dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n", 4082 __func__, pwr_info->gear_rx); 4083 return -EINVAL; 4084 } 4085 pwr_info->pwr_rx = SLOW_MODE; 4086 } 4087 4088 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), 4089 &pwr_info->gear_tx); 4090 if (!pwr_info->gear_tx) { 4091 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR), 4092 &pwr_info->gear_tx); 4093 if (!pwr_info->gear_tx) { 4094 dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n", 4095 __func__, pwr_info->gear_tx); 4096 return -EINVAL; 4097 } 4098 pwr_info->pwr_tx = SLOW_MODE; 4099 } 4100 4101 hba->max_pwr_info.is_valid = true; 4102 return 0; 4103 } 4104 ufshcd_change_power_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * pwr_mode)4105 static int ufshcd_change_power_mode(struct ufs_hba *hba, 4106 struct ufs_pa_layer_attr *pwr_mode) 4107 { 4108 int ret; 4109 4110 /* if already configured to the requested pwr_mode */ 4111 if (!hba->force_pmc && 4112 pwr_mode->gear_rx == hba->pwr_info.gear_rx && 4113 pwr_mode->gear_tx == hba->pwr_info.gear_tx && 4114 pwr_mode->lane_rx == hba->pwr_info.lane_rx && 4115 pwr_mode->lane_tx == hba->pwr_info.lane_tx && 4116 pwr_mode->pwr_rx == hba->pwr_info.pwr_rx && 4117 pwr_mode->pwr_tx == hba->pwr_info.pwr_tx && 4118 pwr_mode->hs_rate == hba->pwr_info.hs_rate) { 4119 dev_dbg(hba->dev, "%s: power already configured\n", __func__); 4120 return 0; 4121 } 4122 4123 /* 4124 * Configure attributes for power mode change with below. 4125 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION, 4126 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION, 4127 * - PA_HSSERIES 4128 */ 4129 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx); 4130 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES), 4131 pwr_mode->lane_rx); 4132 if (pwr_mode->pwr_rx == FASTAUTO_MODE || 4133 pwr_mode->pwr_rx == FAST_MODE) 4134 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), TRUE); 4135 else 4136 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), FALSE); 4137 4138 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx); 4139 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES), 4140 pwr_mode->lane_tx); 4141 if (pwr_mode->pwr_tx == FASTAUTO_MODE || 4142 pwr_mode->pwr_tx == FAST_MODE) 4143 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), TRUE); 4144 else 4145 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), FALSE); 4146 4147 if (pwr_mode->pwr_rx == FASTAUTO_MODE || 4148 pwr_mode->pwr_tx == FASTAUTO_MODE || 4149 pwr_mode->pwr_rx == FAST_MODE || 4150 pwr_mode->pwr_tx == FAST_MODE) 4151 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES), 4152 pwr_mode->hs_rate); 4153 4154 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0), 4155 DL_FC0ProtectionTimeOutVal_Default); 4156 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1), 4157 DL_TC0ReplayTimeOutVal_Default); 4158 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2), 4159 DL_AFC0ReqTimeOutVal_Default); 4160 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3), 4161 DL_FC1ProtectionTimeOutVal_Default); 4162 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4), 4163 DL_TC1ReplayTimeOutVal_Default); 4164 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5), 4165 DL_AFC1ReqTimeOutVal_Default); 4166 4167 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal), 4168 DL_FC0ProtectionTimeOutVal_Default); 4169 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal), 4170 DL_TC0ReplayTimeOutVal_Default); 4171 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal), 4172 DL_AFC0ReqTimeOutVal_Default); 4173 4174 ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4 4175 | pwr_mode->pwr_tx); 4176 4177 if (ret) { 4178 dev_err(hba->dev, 4179 "%s: power mode change failed %d\n", __func__, ret); 4180 } else { 4181 ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL, 4182 pwr_mode); 4183 4184 memcpy(&hba->pwr_info, pwr_mode, 4185 sizeof(struct ufs_pa_layer_attr)); 4186 } 4187 4188 return ret; 4189 } 4190 4191 /** 4192 * ufshcd_config_pwr_mode - configure a new power mode 4193 * @hba: per-adapter instance 4194 * @desired_pwr_mode: desired power configuration 4195 */ ufshcd_config_pwr_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * desired_pwr_mode)4196 int ufshcd_config_pwr_mode(struct ufs_hba *hba, 4197 struct ufs_pa_layer_attr *desired_pwr_mode) 4198 { 4199 struct ufs_pa_layer_attr final_params = { 0 }; 4200 int ret; 4201 4202 ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE, 4203 desired_pwr_mode, &final_params); 4204 4205 if (ret) 4206 memcpy(&final_params, desired_pwr_mode, sizeof(final_params)); 4207 4208 ret = ufshcd_change_power_mode(hba, &final_params); 4209 4210 return ret; 4211 } 4212 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode); 4213 4214 /** 4215 * ufshcd_complete_dev_init() - checks device readiness 4216 * @hba: per-adapter instance 4217 * 4218 * Set fDeviceInit flag and poll until device toggles it. 4219 */ ufshcd_complete_dev_init(struct ufs_hba * hba)4220 static int ufshcd_complete_dev_init(struct ufs_hba *hba) 4221 { 4222 int err; 4223 bool flag_res = true; 4224 ktime_t timeout; 4225 4226 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG, 4227 QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL); 4228 if (err) { 4229 dev_err(hba->dev, 4230 "%s setting fDeviceInit flag failed with error %d\n", 4231 __func__, err); 4232 goto out; 4233 } 4234 4235 /* Poll fDeviceInit flag to be cleared */ 4236 timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT); 4237 do { 4238 err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG, 4239 QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res); 4240 if (!flag_res) 4241 break; 4242 usleep_range(5000, 10000); 4243 } while (ktime_before(ktime_get(), timeout)); 4244 4245 if (err) { 4246 dev_err(hba->dev, 4247 "%s reading fDeviceInit flag failed with error %d\n", 4248 __func__, err); 4249 } else if (flag_res) { 4250 dev_err(hba->dev, 4251 "%s fDeviceInit was not cleared by the device\n", 4252 __func__); 4253 err = -EBUSY; 4254 } 4255 out: 4256 return err; 4257 } 4258 4259 /** 4260 * ufshcd_make_hba_operational - Make UFS controller operational 4261 * @hba: per adapter instance 4262 * 4263 * To bring UFS host controller to operational state, 4264 * 1. Enable required interrupts 4265 * 2. Configure interrupt aggregation 4266 * 3. Program UTRL and UTMRL base address 4267 * 4. Configure run-stop-registers 4268 * 4269 * Returns 0 on success, non-zero value on failure 4270 */ ufshcd_make_hba_operational(struct ufs_hba * hba)4271 int ufshcd_make_hba_operational(struct ufs_hba *hba) 4272 { 4273 int err = 0; 4274 u32 reg; 4275 4276 /* Enable required interrupts */ 4277 ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS); 4278 4279 /* Configure interrupt aggregation */ 4280 if (ufshcd_is_intr_aggr_allowed(hba)) 4281 ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO); 4282 else 4283 ufshcd_disable_intr_aggr(hba); 4284 4285 /* Configure UTRL and UTMRL base address registers */ 4286 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr), 4287 REG_UTP_TRANSFER_REQ_LIST_BASE_L); 4288 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr), 4289 REG_UTP_TRANSFER_REQ_LIST_BASE_H); 4290 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr), 4291 REG_UTP_TASK_REQ_LIST_BASE_L); 4292 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr), 4293 REG_UTP_TASK_REQ_LIST_BASE_H); 4294 4295 /* 4296 * Make sure base address and interrupt setup are updated before 4297 * enabling the run/stop registers below. 4298 */ 4299 wmb(); 4300 4301 /* 4302 * UCRDY, UTMRLDY and UTRLRDY bits must be 1 4303 */ 4304 reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS); 4305 if (!(ufshcd_get_lists_status(reg))) { 4306 ufshcd_enable_run_stop_reg(hba); 4307 } else { 4308 dev_err(hba->dev, 4309 "Host controller not ready to process requests"); 4310 err = -EIO; 4311 } 4312 4313 return err; 4314 } 4315 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational); 4316 4317 /** 4318 * ufshcd_hba_stop - Send controller to reset state 4319 * @hba: per adapter instance 4320 */ ufshcd_hba_stop(struct ufs_hba * hba)4321 static inline void ufshcd_hba_stop(struct ufs_hba *hba) 4322 { 4323 unsigned long flags; 4324 int err; 4325 4326 /* 4327 * Obtain the host lock to prevent that the controller is disabled 4328 * while the UFS interrupt handler is active on another CPU. 4329 */ 4330 spin_lock_irqsave(hba->host->host_lock, flags); 4331 ufshcd_writel(hba, CONTROLLER_DISABLE, REG_CONTROLLER_ENABLE); 4332 spin_unlock_irqrestore(hba->host->host_lock, flags); 4333 4334 err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE, 4335 CONTROLLER_ENABLE, CONTROLLER_DISABLE, 4336 10, 1); 4337 if (err) 4338 dev_err(hba->dev, "%s: Controller disable failed\n", __func__); 4339 } 4340 4341 /** 4342 * ufshcd_hba_execute_hce - initialize the controller 4343 * @hba: per adapter instance 4344 * 4345 * The controller resets itself and controller firmware initialization 4346 * sequence kicks off. When controller is ready it will set 4347 * the Host Controller Enable bit to 1. 4348 * 4349 * Returns 0 on success, non-zero value on failure 4350 */ ufshcd_hba_execute_hce(struct ufs_hba * hba)4351 static int ufshcd_hba_execute_hce(struct ufs_hba *hba) 4352 { 4353 int retry; 4354 4355 if (!ufshcd_is_hba_active(hba)) 4356 /* change controller state to "reset state" */ 4357 ufshcd_hba_stop(hba); 4358 4359 /* UniPro link is disabled at this point */ 4360 ufshcd_set_link_off(hba); 4361 4362 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE); 4363 4364 /* start controller initialization sequence */ 4365 ufshcd_hba_start(hba); 4366 4367 /* 4368 * To initialize a UFS host controller HCE bit must be set to 1. 4369 * During initialization the HCE bit value changes from 1->0->1. 4370 * When the host controller completes initialization sequence 4371 * it sets the value of HCE bit to 1. The same HCE bit is read back 4372 * to check if the controller has completed initialization sequence. 4373 * So without this delay the value HCE = 1, set in the previous 4374 * instruction might be read back. 4375 * This delay can be changed based on the controller. 4376 */ 4377 ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100); 4378 4379 /* wait for the host controller to complete initialization */ 4380 retry = 50; 4381 while (ufshcd_is_hba_active(hba)) { 4382 if (retry) { 4383 retry--; 4384 } else { 4385 dev_err(hba->dev, 4386 "Controller enable failed\n"); 4387 return -EIO; 4388 } 4389 usleep_range(1000, 1100); 4390 } 4391 4392 /* enable UIC related interrupts */ 4393 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK); 4394 4395 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE); 4396 4397 return 0; 4398 } 4399 ufshcd_hba_enable(struct ufs_hba * hba)4400 int ufshcd_hba_enable(struct ufs_hba *hba) 4401 { 4402 int ret; 4403 4404 if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) { 4405 ufshcd_set_link_off(hba); 4406 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE); 4407 4408 /* enable UIC related interrupts */ 4409 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK); 4410 ret = ufshcd_dme_reset(hba); 4411 if (!ret) { 4412 ret = ufshcd_dme_enable(hba); 4413 if (!ret) 4414 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE); 4415 if (ret) 4416 dev_err(hba->dev, 4417 "Host controller enable failed with non-hce\n"); 4418 } 4419 } else { 4420 ret = ufshcd_hba_execute_hce(hba); 4421 } 4422 4423 return ret; 4424 } 4425 EXPORT_SYMBOL_GPL(ufshcd_hba_enable); 4426 ufshcd_disable_tx_lcc(struct ufs_hba * hba,bool peer)4427 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer) 4428 { 4429 int tx_lanes = 0, i, err = 0; 4430 4431 if (!peer) 4432 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), 4433 &tx_lanes); 4434 else 4435 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), 4436 &tx_lanes); 4437 for (i = 0; i < tx_lanes; i++) { 4438 if (!peer) 4439 err = ufshcd_dme_set(hba, 4440 UIC_ARG_MIB_SEL(TX_LCC_ENABLE, 4441 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)), 4442 0); 4443 else 4444 err = ufshcd_dme_peer_set(hba, 4445 UIC_ARG_MIB_SEL(TX_LCC_ENABLE, 4446 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)), 4447 0); 4448 if (err) { 4449 dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d", 4450 __func__, peer, i, err); 4451 break; 4452 } 4453 } 4454 4455 return err; 4456 } 4457 ufshcd_disable_device_tx_lcc(struct ufs_hba * hba)4458 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba) 4459 { 4460 return ufshcd_disable_tx_lcc(hba, true); 4461 } 4462 ufshcd_update_reg_hist(struct ufs_err_reg_hist * reg_hist,u32 reg)4463 void ufshcd_update_reg_hist(struct ufs_err_reg_hist *reg_hist, 4464 u32 reg) 4465 { 4466 reg_hist->reg[reg_hist->pos] = reg; 4467 reg_hist->tstamp[reg_hist->pos] = ktime_get(); 4468 reg_hist->pos = (reg_hist->pos + 1) % UFS_ERR_REG_HIST_LENGTH; 4469 } 4470 EXPORT_SYMBOL_GPL(ufshcd_update_reg_hist); 4471 4472 /** 4473 * ufshcd_link_startup - Initialize unipro link startup 4474 * @hba: per adapter instance 4475 * 4476 * Returns 0 for success, non-zero in case of failure 4477 */ ufshcd_link_startup(struct ufs_hba * hba)4478 static int ufshcd_link_startup(struct ufs_hba *hba) 4479 { 4480 int ret; 4481 int retries = DME_LINKSTARTUP_RETRIES; 4482 bool link_startup_again = false; 4483 4484 /* 4485 * If UFS device isn't active then we will have to issue link startup 4486 * 2 times to make sure the device state move to active. 4487 */ 4488 if (!ufshcd_is_ufs_dev_active(hba)) 4489 link_startup_again = true; 4490 4491 link_startup: 4492 do { 4493 ufshcd_vops_link_startup_notify(hba, PRE_CHANGE); 4494 4495 ret = ufshcd_dme_link_startup(hba); 4496 4497 /* check if device is detected by inter-connect layer */ 4498 if (!ret && !ufshcd_is_device_present(hba)) { 4499 ufshcd_update_reg_hist(&hba->ufs_stats.link_startup_err, 4500 0); 4501 dev_err(hba->dev, "%s: Device not present\n", __func__); 4502 ret = -ENXIO; 4503 goto out; 4504 } 4505 4506 /* 4507 * DME link lost indication is only received when link is up, 4508 * but we can't be sure if the link is up until link startup 4509 * succeeds. So reset the local Uni-Pro and try again. 4510 */ 4511 if (ret && ufshcd_hba_enable(hba)) { 4512 ufshcd_update_reg_hist(&hba->ufs_stats.link_startup_err, 4513 (u32)ret); 4514 goto out; 4515 } 4516 } while (ret && retries--); 4517 4518 if (ret) { 4519 /* failed to get the link up... retire */ 4520 ufshcd_update_reg_hist(&hba->ufs_stats.link_startup_err, 4521 (u32)ret); 4522 goto out; 4523 } 4524 4525 if (link_startup_again) { 4526 link_startup_again = false; 4527 retries = DME_LINKSTARTUP_RETRIES; 4528 goto link_startup; 4529 } 4530 4531 /* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */ 4532 ufshcd_init_pwr_info(hba); 4533 ufshcd_print_pwr_info(hba); 4534 4535 if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) { 4536 ret = ufshcd_disable_device_tx_lcc(hba); 4537 if (ret) 4538 goto out; 4539 } 4540 4541 /* Include any host controller configuration via UIC commands */ 4542 ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE); 4543 if (ret) 4544 goto out; 4545 4546 /* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */ 4547 ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER); 4548 ret = ufshcd_make_hba_operational(hba); 4549 out: 4550 if (ret) { 4551 dev_err(hba->dev, "link startup failed %d\n", ret); 4552 ufshcd_print_host_state(hba); 4553 ufshcd_print_pwr_info(hba); 4554 ufshcd_print_host_regs(hba); 4555 } 4556 return ret; 4557 } 4558 4559 /** 4560 * ufshcd_verify_dev_init() - Verify device initialization 4561 * @hba: per-adapter instance 4562 * 4563 * Send NOP OUT UPIU and wait for NOP IN response to check whether the 4564 * device Transport Protocol (UTP) layer is ready after a reset. 4565 * If the UTP layer at the device side is not initialized, it may 4566 * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT 4567 * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations. 4568 */ ufshcd_verify_dev_init(struct ufs_hba * hba)4569 static int ufshcd_verify_dev_init(struct ufs_hba *hba) 4570 { 4571 int err = 0; 4572 int retries; 4573 4574 ufshcd_hold(hba, false); 4575 mutex_lock(&hba->dev_cmd.lock); 4576 for (retries = NOP_OUT_RETRIES; retries > 0; retries--) { 4577 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP, 4578 NOP_OUT_TIMEOUT); 4579 4580 if (!err || err == -ETIMEDOUT) 4581 break; 4582 4583 dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err); 4584 } 4585 mutex_unlock(&hba->dev_cmd.lock); 4586 ufshcd_release(hba); 4587 4588 if (err) 4589 dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err); 4590 return err; 4591 } 4592 4593 /** 4594 * ufshcd_set_queue_depth - set lun queue depth 4595 * @sdev: pointer to SCSI device 4596 * 4597 * Read bLUQueueDepth value and activate scsi tagged command 4598 * queueing. For WLUN, queue depth is set to 1. For best-effort 4599 * cases (bLUQueueDepth = 0) the queue depth is set to a maximum 4600 * value that host can queue. 4601 */ ufshcd_set_queue_depth(struct scsi_device * sdev)4602 static void ufshcd_set_queue_depth(struct scsi_device *sdev) 4603 { 4604 int ret = 0; 4605 u8 lun_qdepth; 4606 struct ufs_hba *hba; 4607 4608 hba = shost_priv(sdev->host); 4609 4610 lun_qdepth = hba->nutrs; 4611 ret = ufshcd_read_unit_desc_param(hba, 4612 ufshcd_scsi_to_upiu_lun(sdev->lun), 4613 UNIT_DESC_PARAM_LU_Q_DEPTH, 4614 &lun_qdepth, 4615 sizeof(lun_qdepth)); 4616 4617 /* Some WLUN doesn't support unit descriptor */ 4618 if (ret == -EOPNOTSUPP) 4619 lun_qdepth = 1; 4620 else if (!lun_qdepth) 4621 /* eventually, we can figure out the real queue depth */ 4622 lun_qdepth = hba->nutrs; 4623 else 4624 lun_qdepth = min_t(int, lun_qdepth, hba->nutrs); 4625 4626 dev_dbg(hba->dev, "%s: activate tcq with queue depth %d\n", 4627 __func__, lun_qdepth); 4628 scsi_change_queue_depth(sdev, lun_qdepth); 4629 } 4630 4631 /* 4632 * ufshcd_get_lu_wp - returns the "b_lu_write_protect" from UNIT DESCRIPTOR 4633 * @hba: per-adapter instance 4634 * @lun: UFS device lun id 4635 * @b_lu_write_protect: pointer to buffer to hold the LU's write protect info 4636 * 4637 * Returns 0 in case of success and b_lu_write_protect status would be returned 4638 * @b_lu_write_protect parameter. 4639 * Returns -ENOTSUPP if reading b_lu_write_protect is not supported. 4640 * Returns -EINVAL in case of invalid parameters passed to this function. 4641 */ ufshcd_get_lu_wp(struct ufs_hba * hba,u8 lun,u8 * b_lu_write_protect)4642 static int ufshcd_get_lu_wp(struct ufs_hba *hba, 4643 u8 lun, 4644 u8 *b_lu_write_protect) 4645 { 4646 int ret; 4647 4648 if (!b_lu_write_protect) 4649 ret = -EINVAL; 4650 /* 4651 * According to UFS device spec, RPMB LU can't be write 4652 * protected so skip reading bLUWriteProtect parameter for 4653 * it. For other W-LUs, UNIT DESCRIPTOR is not available. 4654 */ 4655 else if (lun >= hba->dev_info.max_lu_supported) 4656 ret = -ENOTSUPP; 4657 else 4658 ret = ufshcd_read_unit_desc_param(hba, 4659 lun, 4660 UNIT_DESC_PARAM_LU_WR_PROTECT, 4661 b_lu_write_protect, 4662 sizeof(*b_lu_write_protect)); 4663 return ret; 4664 } 4665 4666 /** 4667 * ufshcd_get_lu_power_on_wp_status - get LU's power on write protect 4668 * status 4669 * @hba: per-adapter instance 4670 * @sdev: pointer to SCSI device 4671 * 4672 */ ufshcd_get_lu_power_on_wp_status(struct ufs_hba * hba,struct scsi_device * sdev)4673 static inline void ufshcd_get_lu_power_on_wp_status(struct ufs_hba *hba, 4674 struct scsi_device *sdev) 4675 { 4676 if (hba->dev_info.f_power_on_wp_en && 4677 !hba->dev_info.is_lu_power_on_wp) { 4678 u8 b_lu_write_protect; 4679 4680 if (!ufshcd_get_lu_wp(hba, ufshcd_scsi_to_upiu_lun(sdev->lun), 4681 &b_lu_write_protect) && 4682 (b_lu_write_protect == UFS_LU_POWER_ON_WP)) 4683 hba->dev_info.is_lu_power_on_wp = true; 4684 } 4685 } 4686 4687 /** 4688 * ufshcd_slave_alloc - handle initial SCSI device configurations 4689 * @sdev: pointer to SCSI device 4690 * 4691 * Returns success 4692 */ ufshcd_slave_alloc(struct scsi_device * sdev)4693 static int ufshcd_slave_alloc(struct scsi_device *sdev) 4694 { 4695 struct ufs_hba *hba; 4696 4697 hba = shost_priv(sdev->host); 4698 4699 /* Mode sense(6) is not supported by UFS, so use Mode sense(10) */ 4700 sdev->use_10_for_ms = 1; 4701 4702 /* DBD field should be set to 1 in mode sense(10) */ 4703 sdev->set_dbd_for_ms = 1; 4704 4705 /* allow SCSI layer to restart the device in case of errors */ 4706 sdev->allow_restart = 1; 4707 4708 /* REPORT SUPPORTED OPERATION CODES is not supported */ 4709 sdev->no_report_opcodes = 1; 4710 4711 /* WRITE_SAME command is not supported */ 4712 sdev->no_write_same = 1; 4713 4714 ufshcd_set_queue_depth(sdev); 4715 4716 ufshcd_get_lu_power_on_wp_status(hba, sdev); 4717 4718 return 0; 4719 } 4720 4721 /** 4722 * ufshcd_change_queue_depth - change queue depth 4723 * @sdev: pointer to SCSI device 4724 * @depth: required depth to set 4725 * 4726 * Change queue depth and make sure the max. limits are not crossed. 4727 */ ufshcd_change_queue_depth(struct scsi_device * sdev,int depth)4728 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth) 4729 { 4730 struct ufs_hba *hba = shost_priv(sdev->host); 4731 4732 if (depth > hba->nutrs) 4733 depth = hba->nutrs; 4734 return scsi_change_queue_depth(sdev, depth); 4735 } 4736 4737 /** 4738 * ufshcd_slave_configure - adjust SCSI device configurations 4739 * @sdev: pointer to SCSI device 4740 */ ufshcd_slave_configure(struct scsi_device * sdev)4741 static int ufshcd_slave_configure(struct scsi_device *sdev) 4742 { 4743 struct ufs_hba *hba = shost_priv(sdev->host); 4744 struct request_queue *q = sdev->request_queue; 4745 4746 blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1); 4747 4748 if (ufshcd_is_rpm_autosuspend_allowed(hba)) 4749 sdev->rpm_autosuspend = 1; 4750 4751 ufshcd_crypto_setup_rq_keyslot_manager(hba, q); 4752 4753 return 0; 4754 } 4755 4756 /** 4757 * ufshcd_slave_destroy - remove SCSI device configurations 4758 * @sdev: pointer to SCSI device 4759 */ ufshcd_slave_destroy(struct scsi_device * sdev)4760 static void ufshcd_slave_destroy(struct scsi_device *sdev) 4761 { 4762 struct ufs_hba *hba; 4763 4764 hba = shost_priv(sdev->host); 4765 /* Drop the reference as it won't be needed anymore */ 4766 if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) { 4767 unsigned long flags; 4768 4769 spin_lock_irqsave(hba->host->host_lock, flags); 4770 hba->sdev_ufs_device = NULL; 4771 spin_unlock_irqrestore(hba->host->host_lock, flags); 4772 } 4773 } 4774 4775 /** 4776 * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status 4777 * @lrbp: pointer to local reference block of completed command 4778 * @scsi_status: SCSI command status 4779 * 4780 * Returns value base on SCSI command status 4781 */ 4782 static inline int ufshcd_scsi_cmd_status(struct ufshcd_lrb * lrbp,int scsi_status)4783 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status) 4784 { 4785 int result = 0; 4786 4787 switch (scsi_status) { 4788 case SAM_STAT_CHECK_CONDITION: 4789 ufshcd_copy_sense_data(lrbp); 4790 fallthrough; 4791 case SAM_STAT_GOOD: 4792 result |= DID_OK << 16 | 4793 COMMAND_COMPLETE << 8 | 4794 scsi_status; 4795 break; 4796 case SAM_STAT_TASK_SET_FULL: 4797 case SAM_STAT_BUSY: 4798 case SAM_STAT_TASK_ABORTED: 4799 ufshcd_copy_sense_data(lrbp); 4800 result |= scsi_status; 4801 break; 4802 default: 4803 result |= DID_ERROR << 16; 4804 break; 4805 } /* end of switch */ 4806 4807 return result; 4808 } 4809 4810 /** 4811 * ufshcd_transfer_rsp_status - Get overall status of the response 4812 * @hba: per adapter instance 4813 * @lrbp: pointer to local reference block of completed command 4814 * 4815 * Returns result of the command to notify SCSI midlayer 4816 */ 4817 static inline int ufshcd_transfer_rsp_status(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)4818 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 4819 { 4820 int result = 0; 4821 int scsi_status; 4822 int ocs; 4823 4824 /* overall command status of utrd */ 4825 ocs = ufshcd_get_tr_ocs(lrbp); 4826 4827 if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) { 4828 if (be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_1) & 4829 MASK_RSP_UPIU_RESULT) 4830 ocs = OCS_SUCCESS; 4831 } 4832 4833 switch (ocs) { 4834 case OCS_SUCCESS: 4835 result = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr); 4836 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0); 4837 switch (result) { 4838 case UPIU_TRANSACTION_RESPONSE: 4839 /* 4840 * get the response UPIU result to extract 4841 * the SCSI command status 4842 */ 4843 result = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr); 4844 4845 /* 4846 * get the result based on SCSI status response 4847 * to notify the SCSI midlayer of the command status 4848 */ 4849 scsi_status = result & MASK_SCSI_STATUS; 4850 result = ufshcd_scsi_cmd_status(lrbp, scsi_status); 4851 4852 /* 4853 * Currently we are only supporting BKOPs exception 4854 * events hence we can ignore BKOPs exception event 4855 * during power management callbacks. BKOPs exception 4856 * event is not expected to be raised in runtime suspend 4857 * callback as it allows the urgent bkops. 4858 * During system suspend, we are anyway forcefully 4859 * disabling the bkops and if urgent bkops is needed 4860 * it will be enabled on system resume. Long term 4861 * solution could be to abort the system suspend if 4862 * UFS device needs urgent BKOPs. 4863 */ 4864 if (!hba->pm_op_in_progress && 4865 ufshcd_is_exception_event(lrbp->ucd_rsp_ptr) && 4866 schedule_work(&hba->eeh_work)) { 4867 /* 4868 * Prevent suspend once eeh_work is scheduled 4869 * to avoid deadlock between ufshcd_suspend 4870 * and exception event handler. 4871 */ 4872 pm_runtime_get_noresume(hba->dev); 4873 } 4874 break; 4875 case UPIU_TRANSACTION_REJECT_UPIU: 4876 /* TODO: handle Reject UPIU Response */ 4877 result = DID_ERROR << 16; 4878 dev_err(hba->dev, 4879 "Reject UPIU not fully implemented\n"); 4880 break; 4881 default: 4882 dev_err(hba->dev, 4883 "Unexpected request response code = %x\n", 4884 result); 4885 result = DID_ERROR << 16; 4886 break; 4887 } 4888 break; 4889 case OCS_ABORTED: 4890 result |= DID_ABORT << 16; 4891 break; 4892 case OCS_INVALID_COMMAND_STATUS: 4893 result |= DID_REQUEUE << 16; 4894 break; 4895 case OCS_INVALID_CMD_TABLE_ATTR: 4896 case OCS_INVALID_PRDT_ATTR: 4897 case OCS_MISMATCH_DATA_BUF_SIZE: 4898 case OCS_MISMATCH_RESP_UPIU_SIZE: 4899 case OCS_PEER_COMM_FAILURE: 4900 case OCS_FATAL_ERROR: 4901 case OCS_DEVICE_FATAL_ERROR: 4902 case OCS_INVALID_CRYPTO_CONFIG: 4903 case OCS_GENERAL_CRYPTO_ERROR: 4904 default: 4905 result |= DID_ERROR << 16; 4906 dev_err(hba->dev, 4907 "OCS error from controller = %x for tag %d\n", 4908 ocs, lrbp->task_tag); 4909 ufshcd_print_host_regs(hba); 4910 ufshcd_print_host_state(hba); 4911 break; 4912 } /* end of switch */ 4913 4914 if ((host_byte(result) != DID_OK) && !hba->silence_err_logs) 4915 ufshcd_print_trs(hba, 1 << lrbp->task_tag, true); 4916 return result; 4917 } 4918 4919 /** 4920 * ufshcd_uic_cmd_compl - handle completion of uic command 4921 * @hba: per adapter instance 4922 * @intr_status: interrupt status generated by the controller 4923 * 4924 * Returns 4925 * IRQ_HANDLED - If interrupt is valid 4926 * IRQ_NONE - If invalid interrupt 4927 */ ufshcd_uic_cmd_compl(struct ufs_hba * hba,u32 intr_status)4928 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status) 4929 { 4930 irqreturn_t retval = IRQ_NONE; 4931 4932 if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) { 4933 hba->active_uic_cmd->argument2 |= 4934 ufshcd_get_uic_cmd_result(hba); 4935 hba->active_uic_cmd->argument3 = 4936 ufshcd_get_dme_attr_val(hba); 4937 if (!hba->uic_async_done) 4938 hba->active_uic_cmd->cmd_active = 0; 4939 complete(&hba->active_uic_cmd->done); 4940 retval = IRQ_HANDLED; 4941 } 4942 4943 if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) { 4944 hba->active_uic_cmd->cmd_active = 0; 4945 complete(hba->uic_async_done); 4946 retval = IRQ_HANDLED; 4947 } 4948 4949 if (retval == IRQ_HANDLED) 4950 ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd, 4951 "complete"); 4952 return retval; 4953 } 4954 4955 /** 4956 * __ufshcd_transfer_req_compl - handle SCSI and query command completion 4957 * @hba: per adapter instance 4958 * @completed_reqs: requests to complete 4959 */ __ufshcd_transfer_req_compl(struct ufs_hba * hba,unsigned long completed_reqs)4960 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba, 4961 unsigned long completed_reqs) 4962 { 4963 struct ufshcd_lrb *lrbp; 4964 struct scsi_cmnd *cmd; 4965 int result; 4966 int index; 4967 4968 for_each_set_bit(index, &completed_reqs, hba->nutrs) { 4969 lrbp = &hba->lrb[index]; 4970 lrbp->compl_time_stamp = ktime_get(); 4971 cmd = lrbp->cmd; 4972 if (cmd) { 4973 ufshcd_add_command_trace(hba, index, "complete"); 4974 result = ufshcd_transfer_rsp_status(hba, lrbp); 4975 scsi_dma_unmap(cmd); 4976 cmd->result = result; 4977 /* Mark completed command as NULL in LRB */ 4978 lrbp->cmd = NULL; 4979 /* Do not touch lrbp after scsi done */ 4980 cmd->scsi_done(cmd); 4981 __ufshcd_release(hba); 4982 } else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE || 4983 lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) { 4984 if (hba->dev_cmd.complete) { 4985 ufshcd_add_command_trace(hba, index, 4986 "dev_complete"); 4987 complete(hba->dev_cmd.complete); 4988 } 4989 } 4990 if (ufshcd_is_clkscaling_supported(hba)) 4991 hba->clk_scaling.active_reqs--; 4992 } 4993 4994 /* clear corresponding bits of completed commands */ 4995 hba->outstanding_reqs ^= completed_reqs; 4996 4997 ufshcd_clk_scaling_update_busy(hba); 4998 } 4999 5000 /** 5001 * ufshcd_transfer_req_compl - handle SCSI and query command completion 5002 * @hba: per adapter instance 5003 * 5004 * Returns 5005 * IRQ_HANDLED - If interrupt is valid 5006 * IRQ_NONE - If invalid interrupt 5007 */ ufshcd_transfer_req_compl(struct ufs_hba * hba)5008 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba) 5009 { 5010 unsigned long completed_reqs; 5011 u32 tr_doorbell; 5012 5013 /* Resetting interrupt aggregation counters first and reading the 5014 * DOOR_BELL afterward allows us to handle all the completed requests. 5015 * In order to prevent other interrupts starvation the DB is read once 5016 * after reset. The down side of this solution is the possibility of 5017 * false interrupt if device completes another request after resetting 5018 * aggregation and before reading the DB. 5019 */ 5020 if (ufshcd_is_intr_aggr_allowed(hba) && 5021 !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR)) 5022 ufshcd_reset_intr_aggr(hba); 5023 5024 tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 5025 completed_reqs = tr_doorbell ^ hba->outstanding_reqs; 5026 5027 if (completed_reqs) { 5028 __ufshcd_transfer_req_compl(hba, completed_reqs); 5029 return IRQ_HANDLED; 5030 } else { 5031 return IRQ_NONE; 5032 } 5033 } 5034 5035 /** 5036 * ufshcd_disable_ee - disable exception event 5037 * @hba: per-adapter instance 5038 * @mask: exception event to disable 5039 * 5040 * Disables exception event in the device so that the EVENT_ALERT 5041 * bit is not set. 5042 * 5043 * Returns zero on success, non-zero error value on failure. 5044 */ ufshcd_disable_ee(struct ufs_hba * hba,u16 mask)5045 static int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask) 5046 { 5047 int err = 0; 5048 u32 val; 5049 5050 if (!(hba->ee_ctrl_mask & mask)) 5051 goto out; 5052 5053 val = hba->ee_ctrl_mask & ~mask; 5054 val &= MASK_EE_STATUS; 5055 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 5056 QUERY_ATTR_IDN_EE_CONTROL, 0, 0, &val); 5057 if (!err) 5058 hba->ee_ctrl_mask &= ~mask; 5059 out: 5060 return err; 5061 } 5062 5063 /** 5064 * ufshcd_enable_ee - enable exception event 5065 * @hba: per-adapter instance 5066 * @mask: exception event to enable 5067 * 5068 * Enable corresponding exception event in the device to allow 5069 * device to alert host in critical scenarios. 5070 * 5071 * Returns zero on success, non-zero error value on failure. 5072 */ ufshcd_enable_ee(struct ufs_hba * hba,u16 mask)5073 static int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask) 5074 { 5075 int err = 0; 5076 u32 val; 5077 5078 if (hba->ee_ctrl_mask & mask) 5079 goto out; 5080 5081 val = hba->ee_ctrl_mask | mask; 5082 val &= MASK_EE_STATUS; 5083 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 5084 QUERY_ATTR_IDN_EE_CONTROL, 0, 0, &val); 5085 if (!err) 5086 hba->ee_ctrl_mask |= mask; 5087 out: 5088 return err; 5089 } 5090 5091 /** 5092 * ufshcd_enable_auto_bkops - Allow device managed BKOPS 5093 * @hba: per-adapter instance 5094 * 5095 * Allow device to manage background operations on its own. Enabling 5096 * this might lead to inconsistent latencies during normal data transfers 5097 * as the device is allowed to manage its own way of handling background 5098 * operations. 5099 * 5100 * Returns zero on success, non-zero on failure. 5101 */ ufshcd_enable_auto_bkops(struct ufs_hba * hba)5102 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba) 5103 { 5104 int err = 0; 5105 5106 if (hba->auto_bkops_enabled) 5107 goto out; 5108 5109 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG, 5110 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL); 5111 if (err) { 5112 dev_err(hba->dev, "%s: failed to enable bkops %d\n", 5113 __func__, err); 5114 goto out; 5115 } 5116 5117 hba->auto_bkops_enabled = true; 5118 trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled"); 5119 5120 /* No need of URGENT_BKOPS exception from the device */ 5121 err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS); 5122 if (err) 5123 dev_err(hba->dev, "%s: failed to disable exception event %d\n", 5124 __func__, err); 5125 out: 5126 return err; 5127 } 5128 5129 /** 5130 * ufshcd_disable_auto_bkops - block device in doing background operations 5131 * @hba: per-adapter instance 5132 * 5133 * Disabling background operations improves command response latency but 5134 * has drawback of device moving into critical state where the device is 5135 * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the 5136 * host is idle so that BKOPS are managed effectively without any negative 5137 * impacts. 5138 * 5139 * Returns zero on success, non-zero on failure. 5140 */ ufshcd_disable_auto_bkops(struct ufs_hba * hba)5141 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba) 5142 { 5143 int err = 0; 5144 5145 if (!hba->auto_bkops_enabled) 5146 goto out; 5147 5148 /* 5149 * If host assisted BKOPs is to be enabled, make sure 5150 * urgent bkops exception is allowed. 5151 */ 5152 err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS); 5153 if (err) { 5154 dev_err(hba->dev, "%s: failed to enable exception event %d\n", 5155 __func__, err); 5156 goto out; 5157 } 5158 5159 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG, 5160 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL); 5161 if (err) { 5162 dev_err(hba->dev, "%s: failed to disable bkops %d\n", 5163 __func__, err); 5164 ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS); 5165 goto out; 5166 } 5167 5168 hba->auto_bkops_enabled = false; 5169 trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled"); 5170 hba->is_urgent_bkops_lvl_checked = false; 5171 out: 5172 return err; 5173 } 5174 5175 /** 5176 * ufshcd_force_reset_auto_bkops - force reset auto bkops state 5177 * @hba: per adapter instance 5178 * 5179 * After a device reset the device may toggle the BKOPS_EN flag 5180 * to default value. The s/w tracking variables should be updated 5181 * as well. This function would change the auto-bkops state based on 5182 * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND. 5183 */ ufshcd_force_reset_auto_bkops(struct ufs_hba * hba)5184 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba) 5185 { 5186 if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) { 5187 hba->auto_bkops_enabled = false; 5188 hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS; 5189 ufshcd_enable_auto_bkops(hba); 5190 } else { 5191 hba->auto_bkops_enabled = true; 5192 hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS; 5193 ufshcd_disable_auto_bkops(hba); 5194 } 5195 hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT; 5196 hba->is_urgent_bkops_lvl_checked = false; 5197 } 5198 ufshcd_get_bkops_status(struct ufs_hba * hba,u32 * status)5199 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status) 5200 { 5201 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 5202 QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status); 5203 } 5204 5205 /** 5206 * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status 5207 * @hba: per-adapter instance 5208 * @status: bkops_status value 5209 * 5210 * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn 5211 * flag in the device to permit background operations if the device 5212 * bkops_status is greater than or equal to "status" argument passed to 5213 * this function, disable otherwise. 5214 * 5215 * Returns 0 for success, non-zero in case of failure. 5216 * 5217 * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag 5218 * to know whether auto bkops is enabled or disabled after this function 5219 * returns control to it. 5220 */ ufshcd_bkops_ctrl(struct ufs_hba * hba,enum bkops_status status)5221 static int ufshcd_bkops_ctrl(struct ufs_hba *hba, 5222 enum bkops_status status) 5223 { 5224 int err; 5225 u32 curr_status = 0; 5226 5227 err = ufshcd_get_bkops_status(hba, &curr_status); 5228 if (err) { 5229 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n", 5230 __func__, err); 5231 goto out; 5232 } else if (curr_status > BKOPS_STATUS_MAX) { 5233 dev_err(hba->dev, "%s: invalid BKOPS status %d\n", 5234 __func__, curr_status); 5235 err = -EINVAL; 5236 goto out; 5237 } 5238 5239 if (curr_status >= status) 5240 err = ufshcd_enable_auto_bkops(hba); 5241 else 5242 err = ufshcd_disable_auto_bkops(hba); 5243 out: 5244 return err; 5245 } 5246 5247 /** 5248 * ufshcd_urgent_bkops - handle urgent bkops exception event 5249 * @hba: per-adapter instance 5250 * 5251 * Enable fBackgroundOpsEn flag in the device to permit background 5252 * operations. 5253 * 5254 * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled 5255 * and negative error value for any other failure. 5256 */ ufshcd_urgent_bkops(struct ufs_hba * hba)5257 static int ufshcd_urgent_bkops(struct ufs_hba *hba) 5258 { 5259 return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl); 5260 } 5261 ufshcd_get_ee_status(struct ufs_hba * hba,u32 * status)5262 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status) 5263 { 5264 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 5265 QUERY_ATTR_IDN_EE_STATUS, 0, 0, status); 5266 } 5267 ufshcd_bkops_exception_event_handler(struct ufs_hba * hba)5268 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba) 5269 { 5270 int err; 5271 u32 curr_status = 0; 5272 5273 if (hba->is_urgent_bkops_lvl_checked) 5274 goto enable_auto_bkops; 5275 5276 err = ufshcd_get_bkops_status(hba, &curr_status); 5277 if (err) { 5278 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n", 5279 __func__, err); 5280 goto out; 5281 } 5282 5283 /* 5284 * We are seeing that some devices are raising the urgent bkops 5285 * exception events even when BKOPS status doesn't indicate performace 5286 * impacted or critical. Handle these device by determining their urgent 5287 * bkops status at runtime. 5288 */ 5289 if (curr_status < BKOPS_STATUS_PERF_IMPACT) { 5290 dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n", 5291 __func__, curr_status); 5292 /* update the current status as the urgent bkops level */ 5293 hba->urgent_bkops_lvl = curr_status; 5294 hba->is_urgent_bkops_lvl_checked = true; 5295 } 5296 5297 enable_auto_bkops: 5298 err = ufshcd_enable_auto_bkops(hba); 5299 out: 5300 if (err < 0) 5301 dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n", 5302 __func__, err); 5303 } 5304 ufshcd_wb_ctrl(struct ufs_hba * hba,bool enable)5305 static int ufshcd_wb_ctrl(struct ufs_hba *hba, bool enable) 5306 { 5307 int ret; 5308 u8 index; 5309 enum query_opcode opcode; 5310 5311 if (!ufshcd_is_wb_allowed(hba)) 5312 return 0; 5313 5314 if (!(enable ^ hba->wb_enabled)) 5315 return 0; 5316 if (enable) 5317 opcode = UPIU_QUERY_OPCODE_SET_FLAG; 5318 else 5319 opcode = UPIU_QUERY_OPCODE_CLEAR_FLAG; 5320 5321 index = ufshcd_wb_get_query_index(hba); 5322 ret = ufshcd_query_flag_retry(hba, opcode, 5323 QUERY_FLAG_IDN_WB_EN, index, NULL); 5324 if (ret) { 5325 dev_err(hba->dev, "%s write booster %s failed %d\n", 5326 __func__, enable ? "enable" : "disable", ret); 5327 return ret; 5328 } 5329 5330 hba->wb_enabled = enable; 5331 dev_dbg(hba->dev, "%s write booster %s %d\n", 5332 __func__, enable ? "enable" : "disable", ret); 5333 5334 return ret; 5335 } 5336 ufshcd_wb_toggle_flush_during_h8(struct ufs_hba * hba,bool set)5337 static int ufshcd_wb_toggle_flush_during_h8(struct ufs_hba *hba, bool set) 5338 { 5339 int val; 5340 u8 index; 5341 5342 if (set) 5343 val = UPIU_QUERY_OPCODE_SET_FLAG; 5344 else 5345 val = UPIU_QUERY_OPCODE_CLEAR_FLAG; 5346 5347 index = ufshcd_wb_get_query_index(hba); 5348 return ufshcd_query_flag_retry(hba, val, 5349 QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8, 5350 index, NULL); 5351 } 5352 ufshcd_wb_toggle_flush(struct ufs_hba * hba,bool enable)5353 static inline void ufshcd_wb_toggle_flush(struct ufs_hba *hba, bool enable) 5354 { 5355 if (hba->quirks & UFSHCI_QUIRK_SKIP_MANUAL_WB_FLUSH_CTRL) 5356 return; 5357 5358 if (enable) 5359 ufshcd_wb_buf_flush_enable(hba); 5360 else 5361 ufshcd_wb_buf_flush_disable(hba); 5362 5363 } 5364 ufshcd_wb_buf_flush_enable(struct ufs_hba * hba)5365 static int ufshcd_wb_buf_flush_enable(struct ufs_hba *hba) 5366 { 5367 int ret; 5368 u8 index; 5369 5370 if (!ufshcd_is_wb_allowed(hba) || hba->wb_buf_flush_enabled) 5371 return 0; 5372 5373 index = ufshcd_wb_get_query_index(hba); 5374 ret = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG, 5375 QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN, 5376 index, NULL); 5377 if (ret) 5378 dev_err(hba->dev, "%s WB - buf flush enable failed %d\n", 5379 __func__, ret); 5380 else 5381 hba->wb_buf_flush_enabled = true; 5382 5383 dev_dbg(hba->dev, "WB - Flush enabled: %d\n", ret); 5384 return ret; 5385 } 5386 ufshcd_wb_buf_flush_disable(struct ufs_hba * hba)5387 static int ufshcd_wb_buf_flush_disable(struct ufs_hba *hba) 5388 { 5389 int ret; 5390 u8 index; 5391 5392 if (!ufshcd_is_wb_allowed(hba) || !hba->wb_buf_flush_enabled) 5393 return 0; 5394 5395 index = ufshcd_wb_get_query_index(hba); 5396 ret = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG, 5397 QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN, 5398 index, NULL); 5399 if (ret) { 5400 dev_warn(hba->dev, "%s: WB - buf flush disable failed %d\n", 5401 __func__, ret); 5402 } else { 5403 hba->wb_buf_flush_enabled = false; 5404 dev_dbg(hba->dev, "WB - Flush disabled: %d\n", ret); 5405 } 5406 5407 return ret; 5408 } 5409 ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba * hba,u32 avail_buf)5410 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba, 5411 u32 avail_buf) 5412 { 5413 u32 cur_buf; 5414 int ret; 5415 u8 index; 5416 5417 index = ufshcd_wb_get_query_index(hba); 5418 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 5419 QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE, 5420 index, 0, &cur_buf); 5421 if (ret) { 5422 dev_err(hba->dev, "%s dCurWriteBoosterBufferSize read failed %d\n", 5423 __func__, ret); 5424 return false; 5425 } 5426 5427 if (!cur_buf) { 5428 dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n", 5429 cur_buf); 5430 return false; 5431 } 5432 /* Let it continue to flush when available buffer exceeds threshold */ 5433 if (avail_buf < hba->vps->wb_flush_threshold) 5434 return true; 5435 5436 return false; 5437 } 5438 ufshcd_wb_need_flush(struct ufs_hba * hba)5439 static bool ufshcd_wb_need_flush(struct ufs_hba *hba) 5440 { 5441 int ret; 5442 u32 avail_buf; 5443 u8 index; 5444 5445 if (!ufshcd_is_wb_allowed(hba)) 5446 return false; 5447 /* 5448 * The ufs device needs the vcc to be ON to flush. 5449 * With user-space reduction enabled, it's enough to enable flush 5450 * by checking only the available buffer. The threshold 5451 * defined here is > 90% full. 5452 * With user-space preserved enabled, the current-buffer 5453 * should be checked too because the wb buffer size can reduce 5454 * when disk tends to be full. This info is provided by current 5455 * buffer (dCurrentWriteBoosterBufferSize). There's no point in 5456 * keeping vcc on when current buffer is empty. 5457 */ 5458 index = ufshcd_wb_get_query_index(hba); 5459 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 5460 QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE, 5461 index, 0, &avail_buf); 5462 if (ret) { 5463 dev_warn(hba->dev, "%s dAvailableWriteBoosterBufferSize read failed %d\n", 5464 __func__, ret); 5465 return false; 5466 } 5467 5468 if (!hba->dev_info.b_presrv_uspc_en) { 5469 if (avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10)) 5470 return true; 5471 return false; 5472 } 5473 5474 return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf); 5475 } 5476 ufshcd_rpm_dev_flush_recheck_work(struct work_struct * work)5477 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work) 5478 { 5479 struct ufs_hba *hba = container_of(to_delayed_work(work), 5480 struct ufs_hba, 5481 rpm_dev_flush_recheck_work); 5482 /* 5483 * To prevent unnecessary VCC power drain after device finishes 5484 * WriteBooster buffer flush or Auto BKOPs, force runtime resume 5485 * after a certain delay to recheck the threshold by next runtime 5486 * suspend. 5487 */ 5488 pm_runtime_get_sync(hba->dev); 5489 pm_runtime_put_sync(hba->dev); 5490 } 5491 5492 /** 5493 * ufshcd_exception_event_handler - handle exceptions raised by device 5494 * @work: pointer to work data 5495 * 5496 * Read bExceptionEventStatus attribute from the device and handle the 5497 * exception event accordingly. 5498 */ ufshcd_exception_event_handler(struct work_struct * work)5499 static void ufshcd_exception_event_handler(struct work_struct *work) 5500 { 5501 struct ufs_hba *hba; 5502 int err; 5503 u32 status = 0; 5504 hba = container_of(work, struct ufs_hba, eeh_work); 5505 5506 pm_runtime_get_sync(hba->dev); 5507 ufshcd_scsi_block_requests(hba); 5508 err = ufshcd_get_ee_status(hba, &status); 5509 if (err) { 5510 dev_err(hba->dev, "%s: failed to get exception status %d\n", 5511 __func__, err); 5512 goto out; 5513 } 5514 5515 status &= hba->ee_ctrl_mask; 5516 5517 if (status & MASK_EE_URGENT_BKOPS) 5518 ufshcd_bkops_exception_event_handler(hba); 5519 5520 out: 5521 ufshcd_scsi_unblock_requests(hba); 5522 /* 5523 * pm_runtime_get_noresume is called while scheduling 5524 * eeh_work to avoid suspend racing with exception work. 5525 * Hence decrement usage counter using pm_runtime_put_noidle 5526 * to allow suspend on completion of exception event handler. 5527 */ 5528 pm_runtime_put_noidle(hba->dev); 5529 pm_runtime_put(hba->dev); 5530 return; 5531 } 5532 5533 /* Complete requests that have door-bell cleared */ ufshcd_complete_requests(struct ufs_hba * hba)5534 static void ufshcd_complete_requests(struct ufs_hba *hba) 5535 { 5536 ufshcd_transfer_req_compl(hba); 5537 ufshcd_tmc_handler(hba); 5538 } 5539 5540 /** 5541 * ufshcd_quirk_dl_nac_errors - This function checks if error handling is 5542 * to recover from the DL NAC errors or not. 5543 * @hba: per-adapter instance 5544 * 5545 * Returns true if error handling is required, false otherwise 5546 */ ufshcd_quirk_dl_nac_errors(struct ufs_hba * hba)5547 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba) 5548 { 5549 unsigned long flags; 5550 bool err_handling = true; 5551 5552 spin_lock_irqsave(hba->host->host_lock, flags); 5553 /* 5554 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the 5555 * device fatal error and/or DL NAC & REPLAY timeout errors. 5556 */ 5557 if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR)) 5558 goto out; 5559 5560 if ((hba->saved_err & DEVICE_FATAL_ERROR) || 5561 ((hba->saved_err & UIC_ERROR) && 5562 (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR))) 5563 goto out; 5564 5565 if ((hba->saved_err & UIC_ERROR) && 5566 (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) { 5567 int err; 5568 /* 5569 * wait for 50ms to see if we can get any other errors or not. 5570 */ 5571 spin_unlock_irqrestore(hba->host->host_lock, flags); 5572 msleep(50); 5573 spin_lock_irqsave(hba->host->host_lock, flags); 5574 5575 /* 5576 * now check if we have got any other severe errors other than 5577 * DL NAC error? 5578 */ 5579 if ((hba->saved_err & INT_FATAL_ERRORS) || 5580 ((hba->saved_err & UIC_ERROR) && 5581 (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR))) 5582 goto out; 5583 5584 /* 5585 * As DL NAC is the only error received so far, send out NOP 5586 * command to confirm if link is still active or not. 5587 * - If we don't get any response then do error recovery. 5588 * - If we get response then clear the DL NAC error bit. 5589 */ 5590 5591 spin_unlock_irqrestore(hba->host->host_lock, flags); 5592 err = ufshcd_verify_dev_init(hba); 5593 spin_lock_irqsave(hba->host->host_lock, flags); 5594 5595 if (err) 5596 goto out; 5597 5598 /* Link seems to be alive hence ignore the DL NAC errors */ 5599 if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR) 5600 hba->saved_err &= ~UIC_ERROR; 5601 /* clear NAC error */ 5602 hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR; 5603 if (!hba->saved_uic_err) 5604 err_handling = false; 5605 } 5606 out: 5607 spin_unlock_irqrestore(hba->host->host_lock, flags); 5608 return err_handling; 5609 } 5610 5611 /* host lock must be held before calling this func */ ufshcd_is_saved_err_fatal(struct ufs_hba * hba)5612 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba) 5613 { 5614 return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) || 5615 (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)); 5616 } 5617 5618 /* host lock must be held before calling this func */ ufshcd_schedule_eh_work(struct ufs_hba * hba)5619 static inline void ufshcd_schedule_eh_work(struct ufs_hba *hba) 5620 { 5621 /* handle fatal errors only when link is not in error state */ 5622 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) { 5623 if (hba->force_reset || ufshcd_is_link_broken(hba) || 5624 ufshcd_is_saved_err_fatal(hba)) 5625 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL; 5626 else 5627 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL; 5628 queue_work(hba->eh_wq, &hba->eh_work); 5629 } 5630 } 5631 ufshcd_err_handling_prepare(struct ufs_hba * hba)5632 static void ufshcd_err_handling_prepare(struct ufs_hba *hba) 5633 { 5634 pm_runtime_get_sync(hba->dev); 5635 if (pm_runtime_suspended(hba->dev)) { 5636 /* 5637 * Don't assume anything of pm_runtime_get_sync(), if 5638 * resume fails, irq and clocks can be OFF, and powers 5639 * can be OFF or in LPM. 5640 */ 5641 ufshcd_setup_hba_vreg(hba, true); 5642 ufshcd_enable_irq(hba); 5643 ufshcd_setup_vreg(hba, true); 5644 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq); 5645 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2); 5646 ufshcd_hold(hba, false); 5647 if (!ufshcd_is_clkgating_allowed(hba)) 5648 ufshcd_setup_clocks(hba, true); 5649 ufshcd_release(hba); 5650 ufshcd_vops_resume(hba, UFS_RUNTIME_PM); 5651 } else { 5652 ufshcd_hold(hba, false); 5653 if (hba->clk_scaling.is_allowed) { 5654 cancel_work_sync(&hba->clk_scaling.suspend_work); 5655 cancel_work_sync(&hba->clk_scaling.resume_work); 5656 ufshcd_suspend_clkscaling(hba); 5657 } 5658 } 5659 } 5660 ufshcd_err_handling_unprepare(struct ufs_hba * hba)5661 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba) 5662 { 5663 ufshcd_release(hba); 5664 if (hba->clk_scaling.is_allowed) 5665 ufshcd_resume_clkscaling(hba); 5666 pm_runtime_put(hba->dev); 5667 } 5668 ufshcd_err_handling_should_stop(struct ufs_hba * hba)5669 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba) 5670 { 5671 return (hba->ufshcd_state == UFSHCD_STATE_ERROR || 5672 (!(hba->saved_err || hba->saved_uic_err || hba->force_reset || 5673 ufshcd_is_link_broken(hba)))); 5674 } 5675 5676 #ifdef CONFIG_PM ufshcd_recover_pm_error(struct ufs_hba * hba)5677 static void ufshcd_recover_pm_error(struct ufs_hba *hba) 5678 { 5679 struct Scsi_Host *shost = hba->host; 5680 struct scsi_device *sdev; 5681 struct request_queue *q; 5682 int ret; 5683 5684 /* 5685 * Set RPM status of hba device to RPM_ACTIVE, 5686 * this also clears its runtime error. 5687 */ 5688 ret = pm_runtime_set_active(hba->dev); 5689 /* 5690 * If hba device had runtime error, we also need to resume those 5691 * scsi devices under hba in case any of them has failed to be 5692 * resumed due to hba runtime resume failure. This is to unblock 5693 * blk_queue_enter in case there are bios waiting inside it. 5694 */ 5695 if (!ret) { 5696 shost_for_each_device(sdev, shost) { 5697 q = sdev->request_queue; 5698 if (q->dev && (q->rpm_status == RPM_SUSPENDED || 5699 q->rpm_status == RPM_SUSPENDING)) 5700 pm_request_resume(q->dev); 5701 } 5702 } 5703 } 5704 #else ufshcd_recover_pm_error(struct ufs_hba * hba)5705 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba) 5706 { 5707 } 5708 #endif 5709 ufshcd_is_pwr_mode_restore_needed(struct ufs_hba * hba)5710 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba) 5711 { 5712 struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info; 5713 u32 mode; 5714 5715 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode); 5716 5717 if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK)) 5718 return true; 5719 5720 if (pwr_info->pwr_tx != (mode & PWRMODE_MASK)) 5721 return true; 5722 5723 return false; 5724 } 5725 5726 /** 5727 * ufshcd_err_handler - handle UFS errors that require s/w attention 5728 * @work: pointer to work structure 5729 */ ufshcd_err_handler(struct work_struct * work)5730 static void ufshcd_err_handler(struct work_struct *work) 5731 { 5732 struct ufs_hba *hba; 5733 unsigned long flags; 5734 bool err_xfer = false; 5735 bool err_tm = false; 5736 int err = 0, pmc_err; 5737 int tag; 5738 bool needs_reset = false, needs_restore = false; 5739 5740 hba = container_of(work, struct ufs_hba, eh_work); 5741 5742 spin_lock_irqsave(hba->host->host_lock, flags); 5743 if (ufshcd_err_handling_should_stop(hba)) { 5744 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) 5745 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL; 5746 spin_unlock_irqrestore(hba->host->host_lock, flags); 5747 return; 5748 } 5749 ufshcd_set_eh_in_progress(hba); 5750 spin_unlock_irqrestore(hba->host->host_lock, flags); 5751 ufshcd_err_handling_prepare(hba); 5752 spin_lock_irqsave(hba->host->host_lock, flags); 5753 ufshcd_scsi_block_requests(hba); 5754 /* 5755 * A full reset and restore might have happened after preparation 5756 * is finished, double check whether we should stop. 5757 */ 5758 if (ufshcd_err_handling_should_stop(hba)) { 5759 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) 5760 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL; 5761 goto out; 5762 } 5763 hba->ufshcd_state = UFSHCD_STATE_RESET; 5764 5765 /* Complete requests that have door-bell cleared by h/w */ 5766 ufshcd_complete_requests(hba); 5767 5768 if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) { 5769 bool ret; 5770 5771 spin_unlock_irqrestore(hba->host->host_lock, flags); 5772 /* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */ 5773 ret = ufshcd_quirk_dl_nac_errors(hba); 5774 spin_lock_irqsave(hba->host->host_lock, flags); 5775 if (!ret && !hba->force_reset && ufshcd_is_link_active(hba)) 5776 goto skip_err_handling; 5777 } 5778 5779 if (hba->force_reset || ufshcd_is_link_broken(hba) || 5780 ufshcd_is_saved_err_fatal(hba) || 5781 ((hba->saved_err & UIC_ERROR) && 5782 (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR | 5783 UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) 5784 needs_reset = true; 5785 5786 if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) || 5787 (hba->saved_uic_err && 5788 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) { 5789 bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR); 5790 5791 spin_unlock_irqrestore(hba->host->host_lock, flags); 5792 ufshcd_print_host_state(hba); 5793 ufshcd_print_pwr_info(hba); 5794 ufshcd_print_host_regs(hba); 5795 ufshcd_print_tmrs(hba, hba->outstanding_tasks); 5796 ufshcd_print_trs(hba, hba->outstanding_reqs, pr_prdt); 5797 spin_lock_irqsave(hba->host->host_lock, flags); 5798 } 5799 5800 /* 5801 * if host reset is required then skip clearing the pending 5802 * transfers forcefully because they will get cleared during 5803 * host reset and restore 5804 */ 5805 if (needs_reset) 5806 goto do_reset; 5807 5808 /* 5809 * If LINERESET was caught, UFS might have been put to PWM mode, 5810 * check if power mode restore is needed. 5811 */ 5812 if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) { 5813 hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR; 5814 if (!hba->saved_uic_err) 5815 hba->saved_err &= ~UIC_ERROR; 5816 spin_unlock_irqrestore(hba->host->host_lock, flags); 5817 if (ufshcd_is_pwr_mode_restore_needed(hba)) 5818 needs_restore = true; 5819 spin_lock_irqsave(hba->host->host_lock, flags); 5820 if (!hba->saved_err && !needs_restore) 5821 goto skip_err_handling; 5822 } 5823 5824 hba->silence_err_logs = true; 5825 /* release lock as clear command might sleep */ 5826 spin_unlock_irqrestore(hba->host->host_lock, flags); 5827 /* Clear pending transfer requests */ 5828 for_each_set_bit(tag, &hba->outstanding_reqs, hba->nutrs) { 5829 if (ufshcd_try_to_abort_task(hba, tag)) { 5830 err_xfer = true; 5831 goto lock_skip_pending_xfer_clear; 5832 } 5833 } 5834 5835 /* Clear pending task management requests */ 5836 for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) { 5837 if (ufshcd_clear_tm_cmd(hba, tag)) { 5838 err_tm = true; 5839 goto lock_skip_pending_xfer_clear; 5840 } 5841 } 5842 5843 lock_skip_pending_xfer_clear: 5844 spin_lock_irqsave(hba->host->host_lock, flags); 5845 5846 /* Complete the requests that are cleared by s/w */ 5847 ufshcd_complete_requests(hba); 5848 hba->silence_err_logs = false; 5849 5850 if (err_xfer || err_tm) { 5851 needs_reset = true; 5852 goto do_reset; 5853 } 5854 5855 /* 5856 * After all reqs and tasks are cleared from doorbell, 5857 * now it is safe to retore power mode. 5858 */ 5859 if (needs_restore) { 5860 spin_unlock_irqrestore(hba->host->host_lock, flags); 5861 /* 5862 * Hold the scaling lock just in case dev cmds 5863 * are sent via bsg and/or sysfs. 5864 */ 5865 down_write(&hba->clk_scaling_lock); 5866 hba->force_pmc = true; 5867 pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info)); 5868 if (pmc_err) { 5869 needs_reset = true; 5870 dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n", 5871 __func__, pmc_err); 5872 } 5873 hba->force_pmc = false; 5874 ufshcd_print_pwr_info(hba); 5875 up_write(&hba->clk_scaling_lock); 5876 spin_lock_irqsave(hba->host->host_lock, flags); 5877 } 5878 5879 do_reset: 5880 /* Fatal errors need reset */ 5881 if (needs_reset) { 5882 unsigned long max_doorbells = (1UL << hba->nutrs) - 1; 5883 5884 /* 5885 * ufshcd_reset_and_restore() does the link reinitialization 5886 * which will need atleast one empty doorbell slot to send the 5887 * device management commands (NOP and query commands). 5888 * If there is no slot empty at this moment then free up last 5889 * slot forcefully. 5890 */ 5891 if (hba->outstanding_reqs == max_doorbells) 5892 __ufshcd_transfer_req_compl(hba, 5893 (1UL << (hba->nutrs - 1))); 5894 5895 hba->force_reset = false; 5896 spin_unlock_irqrestore(hba->host->host_lock, flags); 5897 err = ufshcd_reset_and_restore(hba); 5898 if (err) 5899 dev_err(hba->dev, "%s: reset and restore failed with err %d\n", 5900 __func__, err); 5901 else 5902 ufshcd_recover_pm_error(hba); 5903 spin_lock_irqsave(hba->host->host_lock, flags); 5904 } 5905 5906 skip_err_handling: 5907 if (!needs_reset) { 5908 if (hba->ufshcd_state == UFSHCD_STATE_RESET) 5909 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL; 5910 if (hba->saved_err || hba->saved_uic_err) 5911 dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x", 5912 __func__, hba->saved_err, hba->saved_uic_err); 5913 } 5914 5915 out: 5916 ufshcd_clear_eh_in_progress(hba); 5917 spin_unlock_irqrestore(hba->host->host_lock, flags); 5918 ufshcd_scsi_unblock_requests(hba); 5919 ufshcd_err_handling_unprepare(hba); 5920 } 5921 5922 /** 5923 * ufshcd_update_uic_error - check and set fatal UIC error flags. 5924 * @hba: per-adapter instance 5925 * 5926 * Returns 5927 * IRQ_HANDLED - If interrupt is valid 5928 * IRQ_NONE - If invalid interrupt 5929 */ ufshcd_update_uic_error(struct ufs_hba * hba)5930 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba) 5931 { 5932 u32 reg; 5933 irqreturn_t retval = IRQ_NONE; 5934 5935 /* PHY layer error */ 5936 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER); 5937 if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) && 5938 (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) { 5939 ufshcd_update_reg_hist(&hba->ufs_stats.pa_err, reg); 5940 /* 5941 * To know whether this error is fatal or not, DB timeout 5942 * must be checked but this error is handled separately. 5943 */ 5944 if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK) 5945 dev_dbg(hba->dev, "%s: UIC Lane error reported\n", 5946 __func__); 5947 5948 /* Got a LINERESET indication. */ 5949 if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) { 5950 struct uic_command *cmd = NULL; 5951 5952 hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR; 5953 if (hba->uic_async_done && hba->active_uic_cmd) 5954 cmd = hba->active_uic_cmd; 5955 /* 5956 * Ignore the LINERESET during power mode change 5957 * operation via DME_SET command. 5958 */ 5959 if (cmd && (cmd->command == UIC_CMD_DME_SET)) 5960 hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR; 5961 } 5962 retval |= IRQ_HANDLED; 5963 } 5964 5965 /* PA_INIT_ERROR is fatal and needs UIC reset */ 5966 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER); 5967 if ((reg & UIC_DATA_LINK_LAYER_ERROR) && 5968 (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) { 5969 ufshcd_update_reg_hist(&hba->ufs_stats.dl_err, reg); 5970 5971 if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT) 5972 hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR; 5973 else if (hba->dev_quirks & 5974 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) { 5975 if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED) 5976 hba->uic_error |= 5977 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR; 5978 else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT) 5979 hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR; 5980 } 5981 retval |= IRQ_HANDLED; 5982 } 5983 5984 /* UIC NL/TL/DME errors needs software retry */ 5985 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER); 5986 if ((reg & UIC_NETWORK_LAYER_ERROR) && 5987 (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) { 5988 ufshcd_update_reg_hist(&hba->ufs_stats.nl_err, reg); 5989 hba->uic_error |= UFSHCD_UIC_NL_ERROR; 5990 retval |= IRQ_HANDLED; 5991 } 5992 5993 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER); 5994 if ((reg & UIC_TRANSPORT_LAYER_ERROR) && 5995 (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) { 5996 ufshcd_update_reg_hist(&hba->ufs_stats.tl_err, reg); 5997 hba->uic_error |= UFSHCD_UIC_TL_ERROR; 5998 retval |= IRQ_HANDLED; 5999 } 6000 6001 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME); 6002 if ((reg & UIC_DME_ERROR) && 6003 (reg & UIC_DME_ERROR_CODE_MASK)) { 6004 ufshcd_update_reg_hist(&hba->ufs_stats.dme_err, reg); 6005 hba->uic_error |= UFSHCD_UIC_DME_ERROR; 6006 retval |= IRQ_HANDLED; 6007 } 6008 6009 dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n", 6010 __func__, hba->uic_error); 6011 return retval; 6012 } 6013 ufshcd_is_auto_hibern8_error(struct ufs_hba * hba,u32 intr_mask)6014 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba, 6015 u32 intr_mask) 6016 { 6017 if (!ufshcd_is_auto_hibern8_supported(hba) || 6018 !ufshcd_is_auto_hibern8_enabled(hba)) 6019 return false; 6020 6021 if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK)) 6022 return false; 6023 6024 if (hba->active_uic_cmd && 6025 (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER || 6026 hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT)) 6027 return false; 6028 6029 return true; 6030 } 6031 6032 /** 6033 * ufshcd_check_errors - Check for errors that need s/w attention 6034 * @hba: per-adapter instance 6035 * 6036 * Returns 6037 * IRQ_HANDLED - If interrupt is valid 6038 * IRQ_NONE - If invalid interrupt 6039 */ ufshcd_check_errors(struct ufs_hba * hba)6040 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba) 6041 { 6042 bool queue_eh_work = false; 6043 irqreturn_t retval = IRQ_NONE; 6044 6045 if (hba->errors & INT_FATAL_ERRORS) { 6046 ufshcd_update_reg_hist(&hba->ufs_stats.fatal_err, hba->errors); 6047 queue_eh_work = true; 6048 } 6049 6050 if (hba->errors & UIC_ERROR) { 6051 hba->uic_error = 0; 6052 retval = ufshcd_update_uic_error(hba); 6053 if (hba->uic_error) 6054 queue_eh_work = true; 6055 } 6056 6057 if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) { 6058 dev_err(hba->dev, 6059 "%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n", 6060 __func__, (hba->errors & UIC_HIBERNATE_ENTER) ? 6061 "Enter" : "Exit", 6062 hba->errors, ufshcd_get_upmcrs(hba)); 6063 ufshcd_update_reg_hist(&hba->ufs_stats.auto_hibern8_err, 6064 hba->errors); 6065 ufshcd_set_link_broken(hba); 6066 queue_eh_work = true; 6067 } 6068 6069 if (queue_eh_work) { 6070 /* 6071 * update the transfer error masks to sticky bits, let's do this 6072 * irrespective of current ufshcd_state. 6073 */ 6074 hba->saved_err |= hba->errors; 6075 hba->saved_uic_err |= hba->uic_error; 6076 6077 /* dump controller state before resetting */ 6078 if ((hba->saved_err & (INT_FATAL_ERRORS)) || 6079 (hba->saved_uic_err && 6080 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) { 6081 dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n", 6082 __func__, hba->saved_err, 6083 hba->saved_uic_err); 6084 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, 6085 "host_regs: "); 6086 ufshcd_print_pwr_info(hba); 6087 } 6088 ufshcd_schedule_eh_work(hba); 6089 retval |= IRQ_HANDLED; 6090 } 6091 /* 6092 * if (!queue_eh_work) - 6093 * Other errors are either non-fatal where host recovers 6094 * itself without s/w intervention or errors that will be 6095 * handled by the SCSI core layer. 6096 */ 6097 return retval; 6098 } 6099 6100 struct ctm_info { 6101 struct ufs_hba *hba; 6102 unsigned long pending; 6103 unsigned int ncpl; 6104 }; 6105 ufshcd_compl_tm(struct request * req,void * priv,bool reserved)6106 static bool ufshcd_compl_tm(struct request *req, void *priv, bool reserved) 6107 { 6108 struct ctm_info *const ci = priv; 6109 struct completion *c; 6110 6111 WARN_ON_ONCE(reserved); 6112 if (test_bit(req->tag, &ci->pending)) 6113 return true; 6114 ci->ncpl++; 6115 c = req->end_io_data; 6116 if (c) 6117 complete(c); 6118 return true; 6119 } 6120 6121 /** 6122 * ufshcd_tmc_handler - handle task management function completion 6123 * @hba: per adapter instance 6124 * 6125 * Returns 6126 * IRQ_HANDLED - If interrupt is valid 6127 * IRQ_NONE - If invalid interrupt 6128 */ ufshcd_tmc_handler(struct ufs_hba * hba)6129 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba) 6130 { 6131 struct request_queue *q = hba->tmf_queue; 6132 struct ctm_info ci = { 6133 .hba = hba, 6134 .pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL), 6135 }; 6136 6137 blk_mq_tagset_busy_iter(q->tag_set, ufshcd_compl_tm, &ci); 6138 return ci.ncpl ? IRQ_HANDLED : IRQ_NONE; 6139 } 6140 6141 /** 6142 * ufshcd_sl_intr - Interrupt service routine 6143 * @hba: per adapter instance 6144 * @intr_status: contains interrupts generated by the controller 6145 * 6146 * Returns 6147 * IRQ_HANDLED - If interrupt is valid 6148 * IRQ_NONE - If invalid interrupt 6149 */ ufshcd_sl_intr(struct ufs_hba * hba,u32 intr_status)6150 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status) 6151 { 6152 irqreturn_t retval = IRQ_NONE; 6153 6154 hba->errors = UFSHCD_ERROR_MASK & intr_status; 6155 6156 if (ufshcd_is_auto_hibern8_error(hba, intr_status)) 6157 hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status); 6158 6159 if (hba->errors) 6160 retval |= ufshcd_check_errors(hba); 6161 6162 if (intr_status & UFSHCD_UIC_MASK) 6163 retval |= ufshcd_uic_cmd_compl(hba, intr_status); 6164 6165 if (intr_status & UTP_TASK_REQ_COMPL) 6166 retval |= ufshcd_tmc_handler(hba); 6167 6168 if (intr_status & UTP_TRANSFER_REQ_COMPL) 6169 retval |= ufshcd_transfer_req_compl(hba); 6170 6171 return retval; 6172 } 6173 6174 /** 6175 * ufshcd_intr - Main interrupt service routine 6176 * @irq: irq number 6177 * @__hba: pointer to adapter instance 6178 * 6179 * Returns 6180 * IRQ_HANDLED - If interrupt is valid 6181 * IRQ_NONE - If invalid interrupt 6182 */ ufshcd_intr(int irq,void * __hba)6183 static irqreturn_t ufshcd_intr(int irq, void *__hba) 6184 { 6185 u32 intr_status, enabled_intr_status = 0; 6186 irqreturn_t retval = IRQ_NONE; 6187 struct ufs_hba *hba = __hba; 6188 int retries = hba->nutrs; 6189 6190 spin_lock(hba->host->host_lock); 6191 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS); 6192 hba->ufs_stats.last_intr_status = intr_status; 6193 hba->ufs_stats.last_intr_ts = ktime_get(); 6194 6195 /* 6196 * There could be max of hba->nutrs reqs in flight and in worst case 6197 * if the reqs get finished 1 by 1 after the interrupt status is 6198 * read, make sure we handle them by checking the interrupt status 6199 * again in a loop until we process all of the reqs before returning. 6200 */ 6201 while (intr_status && retries--) { 6202 enabled_intr_status = 6203 intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 6204 if (intr_status) 6205 ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS); 6206 if (enabled_intr_status) 6207 retval |= ufshcd_sl_intr(hba, enabled_intr_status); 6208 6209 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS); 6210 } 6211 6212 if (enabled_intr_status && retval == IRQ_NONE) { 6213 dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x\n", 6214 __func__, intr_status); 6215 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: "); 6216 } 6217 6218 spin_unlock(hba->host->host_lock); 6219 return retval; 6220 } 6221 ufshcd_clear_tm_cmd(struct ufs_hba * hba,int tag)6222 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag) 6223 { 6224 int err = 0; 6225 u32 mask = 1 << tag; 6226 unsigned long flags; 6227 6228 if (!test_bit(tag, &hba->outstanding_tasks)) 6229 goto out; 6230 6231 spin_lock_irqsave(hba->host->host_lock, flags); 6232 ufshcd_utmrl_clear(hba, tag); 6233 spin_unlock_irqrestore(hba->host->host_lock, flags); 6234 6235 /* poll for max. 1 sec to clear door bell register by h/w */ 6236 err = ufshcd_wait_for_register(hba, 6237 REG_UTP_TASK_REQ_DOOR_BELL, 6238 mask, 0, 1000, 1000); 6239 out: 6240 return err; 6241 } 6242 __ufshcd_issue_tm_cmd(struct ufs_hba * hba,struct utp_task_req_desc * treq,u8 tm_function)6243 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba, 6244 struct utp_task_req_desc *treq, u8 tm_function) 6245 { 6246 struct request_queue *q = hba->tmf_queue; 6247 struct Scsi_Host *host = hba->host; 6248 DECLARE_COMPLETION_ONSTACK(wait); 6249 struct request *req; 6250 unsigned long flags; 6251 int free_slot, task_tag, err; 6252 6253 /* 6254 * Get free slot, sleep if slots are unavailable. 6255 * Even though we use wait_event() which sleeps indefinitely, 6256 * the maximum wait time is bounded by %TM_CMD_TIMEOUT. 6257 */ 6258 req = blk_get_request(q, REQ_OP_DRV_OUT, BLK_MQ_REQ_RESERVED); 6259 req->end_io_data = &wait; 6260 free_slot = req->tag; 6261 WARN_ON_ONCE(free_slot < 0 || free_slot >= hba->nutmrs); 6262 ufshcd_hold(hba, false); 6263 6264 spin_lock_irqsave(host->host_lock, flags); 6265 task_tag = hba->nutrs + free_slot; 6266 6267 treq->req_header.dword_0 |= cpu_to_be32(task_tag); 6268 6269 memcpy(hba->utmrdl_base_addr + free_slot, treq, sizeof(*treq)); 6270 ufshcd_vops_setup_task_mgmt(hba, free_slot, tm_function); 6271 6272 /* send command to the controller */ 6273 __set_bit(free_slot, &hba->outstanding_tasks); 6274 6275 /* Make sure descriptors are ready before ringing the task doorbell */ 6276 wmb(); 6277 6278 ufshcd_writel(hba, 1 << free_slot, REG_UTP_TASK_REQ_DOOR_BELL); 6279 /* Make sure that doorbell is committed immediately */ 6280 wmb(); 6281 6282 spin_unlock_irqrestore(host->host_lock, flags); 6283 6284 ufshcd_add_tm_upiu_trace(hba, task_tag, "tm_send"); 6285 6286 /* wait until the task management command is completed */ 6287 err = wait_for_completion_io_timeout(&wait, 6288 msecs_to_jiffies(TM_CMD_TIMEOUT)); 6289 if (!err) { 6290 /* 6291 * Make sure that ufshcd_compl_tm() does not trigger a 6292 * use-after-free. 6293 */ 6294 req->end_io_data = NULL; 6295 ufshcd_add_tm_upiu_trace(hba, task_tag, "tm_complete_err"); 6296 dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n", 6297 __func__, tm_function); 6298 if (ufshcd_clear_tm_cmd(hba, free_slot)) 6299 dev_WARN(hba->dev, "%s: unable clear tm cmd (slot %d) after timeout\n", 6300 __func__, free_slot); 6301 err = -ETIMEDOUT; 6302 } else { 6303 err = 0; 6304 memcpy(treq, hba->utmrdl_base_addr + free_slot, sizeof(*treq)); 6305 6306 ufshcd_add_tm_upiu_trace(hba, task_tag, "tm_complete"); 6307 } 6308 6309 spin_lock_irqsave(hba->host->host_lock, flags); 6310 __clear_bit(free_slot, &hba->outstanding_tasks); 6311 spin_unlock_irqrestore(hba->host->host_lock, flags); 6312 6313 blk_put_request(req); 6314 6315 ufshcd_release(hba); 6316 return err; 6317 } 6318 6319 /** 6320 * ufshcd_issue_tm_cmd - issues task management commands to controller 6321 * @hba: per adapter instance 6322 * @lun_id: LUN ID to which TM command is sent 6323 * @task_id: task ID to which the TM command is applicable 6324 * @tm_function: task management function opcode 6325 * @tm_response: task management service response return value 6326 * 6327 * Returns non-zero value on error, zero on success. 6328 */ ufshcd_issue_tm_cmd(struct ufs_hba * hba,int lun_id,int task_id,u8 tm_function,u8 * tm_response)6329 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id, 6330 u8 tm_function, u8 *tm_response) 6331 { 6332 struct utp_task_req_desc treq = { { 0 }, }; 6333 int ocs_value, err; 6334 6335 /* Configure task request descriptor */ 6336 treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD); 6337 treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS); 6338 6339 /* Configure task request UPIU */ 6340 treq.req_header.dword_0 = cpu_to_be32(lun_id << 8) | 6341 cpu_to_be32(UPIU_TRANSACTION_TASK_REQ << 24); 6342 treq.req_header.dword_1 = cpu_to_be32(tm_function << 16); 6343 6344 /* 6345 * The host shall provide the same value for LUN field in the basic 6346 * header and for Input Parameter. 6347 */ 6348 treq.input_param1 = cpu_to_be32(lun_id); 6349 treq.input_param2 = cpu_to_be32(task_id); 6350 6351 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function); 6352 if (err == -ETIMEDOUT) 6353 return err; 6354 6355 ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS; 6356 if (ocs_value != OCS_SUCCESS) 6357 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", 6358 __func__, ocs_value); 6359 else if (tm_response) 6360 *tm_response = be32_to_cpu(treq.output_param1) & 6361 MASK_TM_SERVICE_RESP; 6362 return err; 6363 } 6364 6365 /** 6366 * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests 6367 * @hba: per-adapter instance 6368 * @req_upiu: upiu request 6369 * @rsp_upiu: upiu reply 6370 * @desc_buff: pointer to descriptor buffer, NULL if NA 6371 * @buff_len: descriptor size, 0 if NA 6372 * @cmd_type: specifies the type (NOP, Query...) 6373 * @desc_op: descriptor operation 6374 * 6375 * Those type of requests uses UTP Transfer Request Descriptor - utrd. 6376 * Therefore, it "rides" the device management infrastructure: uses its tag and 6377 * tasks work queues. 6378 * 6379 * Since there is only one available tag for device management commands, 6380 * the caller is expected to hold the hba->dev_cmd.lock mutex. 6381 */ ufshcd_issue_devman_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,u8 * desc_buff,int * buff_len,enum dev_cmd_type cmd_type,enum query_opcode desc_op)6382 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba, 6383 struct utp_upiu_req *req_upiu, 6384 struct utp_upiu_req *rsp_upiu, 6385 u8 *desc_buff, int *buff_len, 6386 enum dev_cmd_type cmd_type, 6387 enum query_opcode desc_op) 6388 { 6389 struct request_queue *q = hba->cmd_queue; 6390 struct request *req; 6391 struct ufshcd_lrb *lrbp; 6392 int err = 0; 6393 int tag; 6394 struct completion wait; 6395 unsigned long flags; 6396 u8 upiu_flags; 6397 6398 down_read(&hba->clk_scaling_lock); 6399 6400 req = blk_get_request(q, REQ_OP_DRV_OUT, 0); 6401 if (IS_ERR(req)) { 6402 err = PTR_ERR(req); 6403 goto out_unlock; 6404 } 6405 tag = req->tag; 6406 WARN_ON_ONCE(!ufshcd_valid_tag(hba, tag)); 6407 6408 init_completion(&wait); 6409 lrbp = &hba->lrb[tag]; 6410 WARN_ON(lrbp->cmd); 6411 6412 lrbp->cmd = NULL; 6413 lrbp->sense_bufflen = 0; 6414 lrbp->sense_buffer = NULL; 6415 lrbp->task_tag = tag; 6416 lrbp->lun = 0; 6417 lrbp->intr_cmd = true; 6418 ufshcd_prepare_lrbp_crypto(NULL, lrbp); 6419 hba->dev_cmd.type = cmd_type; 6420 6421 switch (hba->ufs_version) { 6422 case UFSHCI_VERSION_10: 6423 case UFSHCI_VERSION_11: 6424 lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE; 6425 break; 6426 default: 6427 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE; 6428 break; 6429 } 6430 6431 /* update the task tag in the request upiu */ 6432 req_upiu->header.dword_0 |= cpu_to_be32(tag); 6433 6434 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE); 6435 6436 /* just copy the upiu request as it is */ 6437 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr)); 6438 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) { 6439 /* The Data Segment Area is optional depending upon the query 6440 * function value. for WRITE DESCRIPTOR, the data segment 6441 * follows right after the tsf. 6442 */ 6443 memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len); 6444 *buff_len = 0; 6445 } 6446 6447 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 6448 6449 hba->dev_cmd.complete = &wait; 6450 6451 /* Make sure descriptors are ready before ringing the doorbell */ 6452 wmb(); 6453 spin_lock_irqsave(hba->host->host_lock, flags); 6454 ufshcd_send_command(hba, tag); 6455 spin_unlock_irqrestore(hba->host->host_lock, flags); 6456 6457 /* 6458 * ignore the returning value here - ufshcd_check_query_response is 6459 * bound to fail since dev_cmd.query and dev_cmd.type were left empty. 6460 * read the response directly ignoring all errors. 6461 */ 6462 ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT); 6463 6464 /* just copy the upiu response as it is */ 6465 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu)); 6466 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) { 6467 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu); 6468 u16 resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) & 6469 MASK_QUERY_DATA_SEG_LEN; 6470 6471 if (*buff_len >= resp_len) { 6472 memcpy(desc_buff, descp, resp_len); 6473 *buff_len = resp_len; 6474 } else { 6475 dev_warn(hba->dev, 6476 "%s: rsp size %d is bigger than buffer size %d", 6477 __func__, resp_len, *buff_len); 6478 *buff_len = 0; 6479 err = -EINVAL; 6480 } 6481 } 6482 6483 blk_put_request(req); 6484 out_unlock: 6485 up_read(&hba->clk_scaling_lock); 6486 return err; 6487 } 6488 6489 /** 6490 * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands 6491 * @hba: per-adapter instance 6492 * @req_upiu: upiu request 6493 * @rsp_upiu: upiu reply - only 8 DW as we do not support scsi commands 6494 * @msgcode: message code, one of UPIU Transaction Codes Initiator to Target 6495 * @desc_buff: pointer to descriptor buffer, NULL if NA 6496 * @buff_len: descriptor size, 0 if NA 6497 * @desc_op: descriptor operation 6498 * 6499 * Supports UTP Transfer requests (nop and query), and UTP Task 6500 * Management requests. 6501 * It is up to the caller to fill the upiu conent properly, as it will 6502 * be copied without any further input validations. 6503 */ ufshcd_exec_raw_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,int msgcode,u8 * desc_buff,int * buff_len,enum query_opcode desc_op)6504 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba, 6505 struct utp_upiu_req *req_upiu, 6506 struct utp_upiu_req *rsp_upiu, 6507 int msgcode, 6508 u8 *desc_buff, int *buff_len, 6509 enum query_opcode desc_op) 6510 { 6511 int err; 6512 enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY; 6513 struct utp_task_req_desc treq = { { 0 }, }; 6514 int ocs_value; 6515 u8 tm_f = be32_to_cpu(req_upiu->header.dword_1) >> 16 & MASK_TM_FUNC; 6516 6517 switch (msgcode) { 6518 case UPIU_TRANSACTION_NOP_OUT: 6519 cmd_type = DEV_CMD_TYPE_NOP; 6520 fallthrough; 6521 case UPIU_TRANSACTION_QUERY_REQ: 6522 ufshcd_hold(hba, false); 6523 mutex_lock(&hba->dev_cmd.lock); 6524 err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu, 6525 desc_buff, buff_len, 6526 cmd_type, desc_op); 6527 mutex_unlock(&hba->dev_cmd.lock); 6528 ufshcd_release(hba); 6529 6530 break; 6531 case UPIU_TRANSACTION_TASK_REQ: 6532 treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD); 6533 treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS); 6534 6535 memcpy(&treq.req_header, req_upiu, sizeof(*req_upiu)); 6536 6537 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f); 6538 if (err == -ETIMEDOUT) 6539 break; 6540 6541 ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS; 6542 if (ocs_value != OCS_SUCCESS) { 6543 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__, 6544 ocs_value); 6545 break; 6546 } 6547 6548 memcpy(rsp_upiu, &treq.rsp_header, sizeof(*rsp_upiu)); 6549 6550 break; 6551 default: 6552 err = -EINVAL; 6553 6554 break; 6555 } 6556 6557 return err; 6558 } 6559 6560 /** 6561 * ufshcd_eh_device_reset_handler - device reset handler registered to 6562 * scsi layer. 6563 * @cmd: SCSI command pointer 6564 * 6565 * Returns SUCCESS/FAILED 6566 */ ufshcd_eh_device_reset_handler(struct scsi_cmnd * cmd)6567 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd) 6568 { 6569 struct Scsi_Host *host; 6570 struct ufs_hba *hba; 6571 unsigned int tag; 6572 u32 pos; 6573 int err; 6574 u8 resp = 0xF; 6575 struct ufshcd_lrb *lrbp; 6576 unsigned long flags; 6577 6578 host = cmd->device->host; 6579 hba = shost_priv(host); 6580 tag = cmd->request->tag; 6581 6582 lrbp = &hba->lrb[tag]; 6583 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, 0, UFS_LOGICAL_RESET, &resp); 6584 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) { 6585 if (!err) 6586 err = resp; 6587 goto out; 6588 } 6589 6590 /* clear the commands that were pending for corresponding LUN */ 6591 for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs) { 6592 if (hba->lrb[pos].lun == lrbp->lun) { 6593 err = ufshcd_clear_cmd(hba, pos); 6594 if (err) 6595 break; 6596 } 6597 } 6598 spin_lock_irqsave(host->host_lock, flags); 6599 ufshcd_transfer_req_compl(hba); 6600 spin_unlock_irqrestore(host->host_lock, flags); 6601 6602 out: 6603 hba->req_abort_count = 0; 6604 ufshcd_update_reg_hist(&hba->ufs_stats.dev_reset, (u32)err); 6605 if (!err) { 6606 err = SUCCESS; 6607 } else { 6608 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err); 6609 err = FAILED; 6610 } 6611 return err; 6612 } 6613 ufshcd_set_req_abort_skip(struct ufs_hba * hba,unsigned long bitmap)6614 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap) 6615 { 6616 struct ufshcd_lrb *lrbp; 6617 int tag; 6618 6619 for_each_set_bit(tag, &bitmap, hba->nutrs) { 6620 lrbp = &hba->lrb[tag]; 6621 lrbp->req_abort_skip = true; 6622 } 6623 } 6624 6625 /** 6626 * ufshcd_try_to_abort_task - abort a specific task 6627 * @cmd: SCSI command pointer 6628 * 6629 * Abort the pending command in device by sending UFS_ABORT_TASK task management 6630 * command, and in host controller by clearing the door-bell register. There can 6631 * be race between controller sending the command to the device while abort is 6632 * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is 6633 * really issued and then try to abort it. 6634 * 6635 * Returns zero on success, non-zero on failure 6636 */ ufshcd_try_to_abort_task(struct ufs_hba * hba,int tag)6637 static int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag) 6638 { 6639 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 6640 int err = 0; 6641 int poll_cnt; 6642 u8 resp = 0xF; 6643 u32 reg; 6644 6645 for (poll_cnt = 100; poll_cnt; poll_cnt--) { 6646 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag, 6647 UFS_QUERY_TASK, &resp); 6648 if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) { 6649 /* cmd pending in the device */ 6650 dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n", 6651 __func__, tag); 6652 break; 6653 } else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) { 6654 /* 6655 * cmd not pending in the device, check if it is 6656 * in transition. 6657 */ 6658 dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n", 6659 __func__, tag); 6660 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 6661 if (reg & (1 << tag)) { 6662 /* sleep for max. 200us to stabilize */ 6663 usleep_range(100, 200); 6664 continue; 6665 } 6666 /* command completed already */ 6667 dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n", 6668 __func__, tag); 6669 goto out; 6670 } else { 6671 dev_err(hba->dev, 6672 "%s: no response from device. tag = %d, err %d\n", 6673 __func__, tag, err); 6674 if (!err) 6675 err = resp; /* service response error */ 6676 goto out; 6677 } 6678 } 6679 6680 if (!poll_cnt) { 6681 err = -EBUSY; 6682 goto out; 6683 } 6684 6685 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag, 6686 UFS_ABORT_TASK, &resp); 6687 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) { 6688 if (!err) { 6689 err = resp; /* service response error */ 6690 dev_err(hba->dev, "%s: issued. tag = %d, err %d\n", 6691 __func__, tag, err); 6692 } 6693 goto out; 6694 } 6695 6696 err = ufshcd_clear_cmd(hba, tag); 6697 if (err) 6698 dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n", 6699 __func__, tag, err); 6700 6701 out: 6702 return err; 6703 } 6704 6705 /** 6706 * ufshcd_abort - scsi host template eh_abort_handler callback 6707 * @cmd: SCSI command pointer 6708 * 6709 * Returns SUCCESS/FAILED 6710 */ ufshcd_abort(struct scsi_cmnd * cmd)6711 static int ufshcd_abort(struct scsi_cmnd *cmd) 6712 { 6713 struct Scsi_Host *host; 6714 struct ufs_hba *hba; 6715 unsigned long flags; 6716 unsigned int tag; 6717 int err = 0; 6718 struct ufshcd_lrb *lrbp; 6719 u32 reg; 6720 6721 host = cmd->device->host; 6722 hba = shost_priv(host); 6723 tag = cmd->request->tag; 6724 lrbp = &hba->lrb[tag]; 6725 if (!ufshcd_valid_tag(hba, tag)) { 6726 dev_err(hba->dev, 6727 "%s: invalid command tag %d: cmd=0x%p, cmd->request=0x%p", 6728 __func__, tag, cmd, cmd->request); 6729 BUG(); 6730 } 6731 6732 /* 6733 * Task abort to the device W-LUN is illegal. When this command 6734 * will fail, due to spec violation, scsi err handling next step 6735 * will be to send LU reset which, again, is a spec violation. 6736 * To avoid these unnecessary/illegal step we skip to the last error 6737 * handling stage: reset and restore. 6738 */ 6739 if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) 6740 return ufshcd_eh_host_reset_handler(cmd); 6741 6742 ufshcd_hold(hba, false); 6743 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 6744 /* If command is already aborted/completed, return SUCCESS */ 6745 if (!(test_bit(tag, &hba->outstanding_reqs))) { 6746 dev_err(hba->dev, 6747 "%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n", 6748 __func__, tag, hba->outstanding_reqs, reg); 6749 goto out; 6750 } 6751 6752 /* Print Transfer Request of aborted task */ 6753 dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag); 6754 6755 /* 6756 * Print detailed info about aborted request. 6757 * As more than one request might get aborted at the same time, 6758 * print full information only for the first aborted request in order 6759 * to reduce repeated printouts. For other aborted requests only print 6760 * basic details. 6761 */ 6762 scsi_print_command(hba->lrb[tag].cmd); 6763 if (!hba->req_abort_count) { 6764 ufshcd_update_reg_hist(&hba->ufs_stats.task_abort, 0); 6765 ufshcd_print_host_regs(hba); 6766 ufshcd_print_host_state(hba); 6767 ufshcd_print_pwr_info(hba); 6768 ufshcd_print_trs(hba, 1 << tag, true); 6769 } else { 6770 ufshcd_print_trs(hba, 1 << tag, false); 6771 } 6772 hba->req_abort_count++; 6773 6774 if (!(reg & (1 << tag))) { 6775 dev_err(hba->dev, 6776 "%s: cmd was completed, but without a notifying intr, tag = %d", 6777 __func__, tag); 6778 goto cleanup; 6779 } 6780 6781 /* Skip task abort in case previous aborts failed and report failure */ 6782 if (lrbp->req_abort_skip) 6783 err = -EIO; 6784 else 6785 err = ufshcd_try_to_abort_task(hba, tag); 6786 6787 if (!err) { 6788 cleanup: 6789 spin_lock_irqsave(host->host_lock, flags); 6790 __ufshcd_transfer_req_compl(hba, (1UL << tag)); 6791 spin_unlock_irqrestore(host->host_lock, flags); 6792 out: 6793 err = SUCCESS; 6794 } else { 6795 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err); 6796 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs); 6797 err = FAILED; 6798 } 6799 6800 /* 6801 * This ufshcd_release() corresponds to the original scsi cmd that got 6802 * aborted here (as we won't get any IRQ for it). 6803 */ 6804 ufshcd_release(hba); 6805 return err; 6806 } 6807 6808 /** 6809 * ufshcd_host_reset_and_restore - reset and restore host controller 6810 * @hba: per-adapter instance 6811 * 6812 * Note that host controller reset may issue DME_RESET to 6813 * local and remote (device) Uni-Pro stack and the attributes 6814 * are reset to default state. 6815 * 6816 * Returns zero on success, non-zero on failure 6817 */ ufshcd_host_reset_and_restore(struct ufs_hba * hba)6818 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba) 6819 { 6820 int err; 6821 unsigned long flags; 6822 6823 /* 6824 * Stop the host controller and complete the requests 6825 * cleared by h/w 6826 */ 6827 ufshcd_hba_stop(hba); 6828 6829 spin_lock_irqsave(hba->host->host_lock, flags); 6830 hba->silence_err_logs = true; 6831 ufshcd_complete_requests(hba); 6832 hba->silence_err_logs = false; 6833 spin_unlock_irqrestore(hba->host->host_lock, flags); 6834 6835 /* scale up clocks to max frequency before full reinitialization */ 6836 ufshcd_set_clk_freq(hba, true); 6837 6838 err = ufshcd_hba_enable(hba); 6839 if (err) 6840 goto out; 6841 6842 /* Establish the link again and restore the device */ 6843 err = ufshcd_probe_hba(hba, false); 6844 6845 out: 6846 if (err) 6847 dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err); 6848 ufshcd_update_reg_hist(&hba->ufs_stats.host_reset, (u32)err); 6849 return err; 6850 } 6851 6852 /** 6853 * ufshcd_reset_and_restore - reset and re-initialize host/device 6854 * @hba: per-adapter instance 6855 * 6856 * Reset and recover device, host and re-establish link. This 6857 * is helpful to recover the communication in fatal error conditions. 6858 * 6859 * Returns zero on success, non-zero on failure 6860 */ ufshcd_reset_and_restore(struct ufs_hba * hba)6861 static int ufshcd_reset_and_restore(struct ufs_hba *hba) 6862 { 6863 u32 saved_err; 6864 u32 saved_uic_err; 6865 int err = 0; 6866 unsigned long flags; 6867 int retries = MAX_HOST_RESET_RETRIES; 6868 6869 /* 6870 * This is a fresh start, cache and clear saved error first, 6871 * in case new error generated during reset and restore. 6872 */ 6873 spin_lock_irqsave(hba->host->host_lock, flags); 6874 saved_err = hba->saved_err; 6875 saved_uic_err = hba->saved_uic_err; 6876 hba->saved_err = 0; 6877 hba->saved_uic_err = 0; 6878 spin_unlock_irqrestore(hba->host->host_lock, flags); 6879 6880 do { 6881 /* Reset the attached device */ 6882 ufshcd_vops_device_reset(hba); 6883 6884 err = ufshcd_host_reset_and_restore(hba); 6885 } while (err && --retries); 6886 6887 spin_lock_irqsave(hba->host->host_lock, flags); 6888 /* 6889 * Inform scsi mid-layer that we did reset and allow to handle 6890 * Unit Attention properly. 6891 */ 6892 scsi_report_bus_reset(hba->host, 0); 6893 if (err) { 6894 hba->saved_err |= saved_err; 6895 hba->saved_uic_err |= saved_uic_err; 6896 } 6897 spin_unlock_irqrestore(hba->host->host_lock, flags); 6898 6899 return err; 6900 } 6901 6902 /** 6903 * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer 6904 * @cmd: SCSI command pointer 6905 * 6906 * Returns SUCCESS/FAILED 6907 */ ufshcd_eh_host_reset_handler(struct scsi_cmnd * cmd)6908 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd) 6909 { 6910 int err = SUCCESS; 6911 unsigned long flags; 6912 struct ufs_hba *hba; 6913 6914 hba = shost_priv(cmd->device->host); 6915 6916 spin_lock_irqsave(hba->host->host_lock, flags); 6917 hba->force_reset = true; 6918 ufshcd_schedule_eh_work(hba); 6919 dev_err(hba->dev, "%s: reset in progress - 1\n", __func__); 6920 spin_unlock_irqrestore(hba->host->host_lock, flags); 6921 6922 flush_work(&hba->eh_work); 6923 6924 spin_lock_irqsave(hba->host->host_lock, flags); 6925 if (hba->ufshcd_state == UFSHCD_STATE_ERROR) 6926 err = FAILED; 6927 spin_unlock_irqrestore(hba->host->host_lock, flags); 6928 6929 return err; 6930 } 6931 6932 /** 6933 * ufshcd_get_max_icc_level - calculate the ICC level 6934 * @sup_curr_uA: max. current supported by the regulator 6935 * @start_scan: row at the desc table to start scan from 6936 * @buff: power descriptor buffer 6937 * 6938 * Returns calculated max ICC level for specific regulator 6939 */ ufshcd_get_max_icc_level(int sup_curr_uA,u32 start_scan,char * buff)6940 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan, char *buff) 6941 { 6942 int i; 6943 int curr_uA; 6944 u16 data; 6945 u16 unit; 6946 6947 for (i = start_scan; i >= 0; i--) { 6948 data = be16_to_cpup((__be16 *)&buff[2 * i]); 6949 unit = (data & ATTR_ICC_LVL_UNIT_MASK) >> 6950 ATTR_ICC_LVL_UNIT_OFFSET; 6951 curr_uA = data & ATTR_ICC_LVL_VALUE_MASK; 6952 switch (unit) { 6953 case UFSHCD_NANO_AMP: 6954 curr_uA = curr_uA / 1000; 6955 break; 6956 case UFSHCD_MILI_AMP: 6957 curr_uA = curr_uA * 1000; 6958 break; 6959 case UFSHCD_AMP: 6960 curr_uA = curr_uA * 1000 * 1000; 6961 break; 6962 case UFSHCD_MICRO_AMP: 6963 default: 6964 break; 6965 } 6966 if (sup_curr_uA >= curr_uA) 6967 break; 6968 } 6969 if (i < 0) { 6970 i = 0; 6971 pr_err("%s: Couldn't find valid icc_level = %d", __func__, i); 6972 } 6973 6974 return (u32)i; 6975 } 6976 6977 /** 6978 * ufshcd_calc_icc_level - calculate the max ICC level 6979 * In case regulators are not initialized we'll return 0 6980 * @hba: per-adapter instance 6981 * @desc_buf: power descriptor buffer to extract ICC levels from. 6982 * @len: length of desc_buff 6983 * 6984 * Returns calculated ICC level 6985 */ ufshcd_find_max_sup_active_icc_level(struct ufs_hba * hba,u8 * desc_buf,int len)6986 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba, 6987 u8 *desc_buf, int len) 6988 { 6989 u32 icc_level = 0; 6990 6991 if (!hba->vreg_info.vcc || !hba->vreg_info.vccq || 6992 !hba->vreg_info.vccq2) { 6993 dev_err(hba->dev, 6994 "%s: Regulator capability was not set, actvIccLevel=%d", 6995 __func__, icc_level); 6996 goto out; 6997 } 6998 6999 if (hba->vreg_info.vcc && hba->vreg_info.vcc->max_uA) 7000 icc_level = ufshcd_get_max_icc_level( 7001 hba->vreg_info.vcc->max_uA, 7002 POWER_DESC_MAX_ACTV_ICC_LVLS - 1, 7003 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]); 7004 7005 if (hba->vreg_info.vccq && hba->vreg_info.vccq->max_uA) 7006 icc_level = ufshcd_get_max_icc_level( 7007 hba->vreg_info.vccq->max_uA, 7008 icc_level, 7009 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]); 7010 7011 if (hba->vreg_info.vccq2 && hba->vreg_info.vccq2->max_uA) 7012 icc_level = ufshcd_get_max_icc_level( 7013 hba->vreg_info.vccq2->max_uA, 7014 icc_level, 7015 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]); 7016 out: 7017 return icc_level; 7018 } 7019 ufshcd_set_active_icc_lvl(struct ufs_hba * hba)7020 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba) 7021 { 7022 int ret; 7023 int buff_len = hba->desc_size[QUERY_DESC_IDN_POWER]; 7024 u8 *desc_buf; 7025 u32 icc_level; 7026 7027 desc_buf = kmalloc(buff_len, GFP_KERNEL); 7028 if (!desc_buf) 7029 return; 7030 7031 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0, 7032 desc_buf, buff_len); 7033 if (ret) { 7034 dev_err(hba->dev, 7035 "%s: Failed reading power descriptor.len = %d ret = %d", 7036 __func__, buff_len, ret); 7037 goto out; 7038 } 7039 7040 icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf, 7041 buff_len); 7042 dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level); 7043 7044 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 7045 QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level); 7046 7047 if (ret) 7048 dev_err(hba->dev, 7049 "%s: Failed configuring bActiveICCLevel = %d ret = %d", 7050 __func__, icc_level, ret); 7051 7052 out: 7053 kfree(desc_buf); 7054 } 7055 ufshcd_blk_pm_runtime_init(struct scsi_device * sdev)7056 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev) 7057 { 7058 scsi_autopm_get_device(sdev); 7059 blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev); 7060 if (sdev->rpm_autosuspend) 7061 pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev, 7062 RPM_AUTOSUSPEND_DELAY_MS); 7063 scsi_autopm_put_device(sdev); 7064 } 7065 7066 /** 7067 * ufshcd_scsi_add_wlus - Adds required W-LUs 7068 * @hba: per-adapter instance 7069 * 7070 * UFS device specification requires the UFS devices to support 4 well known 7071 * logical units: 7072 * "REPORT_LUNS" (address: 01h) 7073 * "UFS Device" (address: 50h) 7074 * "RPMB" (address: 44h) 7075 * "BOOT" (address: 30h) 7076 * UFS device's power management needs to be controlled by "POWER CONDITION" 7077 * field of SSU (START STOP UNIT) command. But this "power condition" field 7078 * will take effect only when its sent to "UFS device" well known logical unit 7079 * hence we require the scsi_device instance to represent this logical unit in 7080 * order for the UFS host driver to send the SSU command for power management. 7081 * 7082 * We also require the scsi_device instance for "RPMB" (Replay Protected Memory 7083 * Block) LU so user space process can control this LU. User space may also 7084 * want to have access to BOOT LU. 7085 * 7086 * This function adds scsi device instances for each of all well known LUs 7087 * (except "REPORT LUNS" LU). 7088 * 7089 * Returns zero on success (all required W-LUs are added successfully), 7090 * non-zero error value on failure (if failed to add any of the required W-LU). 7091 */ ufshcd_scsi_add_wlus(struct ufs_hba * hba)7092 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba) 7093 { 7094 int ret = 0; 7095 struct scsi_device *sdev_rpmb; 7096 struct scsi_device *sdev_boot; 7097 7098 hba->sdev_ufs_device = __scsi_add_device(hba->host, 0, 0, 7099 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL); 7100 if (IS_ERR(hba->sdev_ufs_device)) { 7101 ret = PTR_ERR(hba->sdev_ufs_device); 7102 hba->sdev_ufs_device = NULL; 7103 goto out; 7104 } 7105 ufshcd_blk_pm_runtime_init(hba->sdev_ufs_device); 7106 scsi_device_put(hba->sdev_ufs_device); 7107 7108 sdev_rpmb = __scsi_add_device(hba->host, 0, 0, 7109 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL); 7110 if (IS_ERR(sdev_rpmb)) { 7111 ret = PTR_ERR(sdev_rpmb); 7112 goto remove_sdev_ufs_device; 7113 } 7114 ufshcd_blk_pm_runtime_init(sdev_rpmb); 7115 scsi_device_put(sdev_rpmb); 7116 7117 sdev_boot = __scsi_add_device(hba->host, 0, 0, 7118 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL); 7119 if (IS_ERR(sdev_boot)) { 7120 dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__); 7121 } else { 7122 ufshcd_blk_pm_runtime_init(sdev_boot); 7123 scsi_device_put(sdev_boot); 7124 } 7125 goto out; 7126 7127 remove_sdev_ufs_device: 7128 scsi_remove_device(hba->sdev_ufs_device); 7129 out: 7130 return ret; 7131 } 7132 ufshcd_wb_probe(struct ufs_hba * hba,u8 * desc_buf)7133 static void ufshcd_wb_probe(struct ufs_hba *hba, u8 *desc_buf) 7134 { 7135 struct ufs_dev_info *dev_info = &hba->dev_info; 7136 u8 lun; 7137 u32 d_lu_wb_buf_alloc; 7138 7139 if (!ufshcd_is_wb_allowed(hba)) 7140 return; 7141 /* 7142 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or 7143 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES 7144 * enabled 7145 */ 7146 if (!(dev_info->wspecversion >= 0x310 || 7147 dev_info->wspecversion == 0x220 || 7148 (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES))) 7149 goto wb_disabled; 7150 7151 if (hba->desc_size[QUERY_DESC_IDN_DEVICE] < 7152 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP + 4) 7153 goto wb_disabled; 7154 7155 dev_info->d_ext_ufs_feature_sup = 7156 get_unaligned_be32(desc_buf + 7157 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP); 7158 7159 if (!(dev_info->d_ext_ufs_feature_sup & UFS_DEV_WRITE_BOOSTER_SUP)) 7160 goto wb_disabled; 7161 7162 /* 7163 * WB may be supported but not configured while provisioning. 7164 * The spec says, in dedicated wb buffer mode, 7165 * a max of 1 lun would have wb buffer configured. 7166 * Now only shared buffer mode is supported. 7167 */ 7168 dev_info->b_wb_buffer_type = 7169 desc_buf[DEVICE_DESC_PARAM_WB_TYPE]; 7170 7171 dev_info->b_presrv_uspc_en = 7172 desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN]; 7173 7174 if (dev_info->b_wb_buffer_type == WB_BUF_MODE_SHARED) { 7175 dev_info->d_wb_alloc_units = 7176 get_unaligned_be32(desc_buf + 7177 DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS); 7178 if (!dev_info->d_wb_alloc_units) 7179 goto wb_disabled; 7180 } else { 7181 for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) { 7182 d_lu_wb_buf_alloc = 0; 7183 ufshcd_read_unit_desc_param(hba, 7184 lun, 7185 UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS, 7186 (u8 *)&d_lu_wb_buf_alloc, 7187 sizeof(d_lu_wb_buf_alloc)); 7188 if (d_lu_wb_buf_alloc) { 7189 dev_info->wb_dedicated_lu = lun; 7190 break; 7191 } 7192 } 7193 7194 if (!d_lu_wb_buf_alloc) 7195 goto wb_disabled; 7196 } 7197 return; 7198 7199 wb_disabled: 7200 hba->caps &= ~UFSHCD_CAP_WB_EN; 7201 } 7202 ufshcd_fixup_dev_quirks(struct ufs_hba * hba,struct ufs_dev_fix * fixups)7203 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba, struct ufs_dev_fix *fixups) 7204 { 7205 struct ufs_dev_fix *f; 7206 struct ufs_dev_info *dev_info = &hba->dev_info; 7207 7208 if (!fixups) 7209 return; 7210 7211 for (f = fixups; f->quirk; f++) { 7212 if ((f->wmanufacturerid == dev_info->wmanufacturerid || 7213 f->wmanufacturerid == UFS_ANY_VENDOR) && 7214 ((dev_info->model && 7215 STR_PRFX_EQUAL(f->model, dev_info->model)) || 7216 !strcmp(f->model, UFS_ANY_MODEL))) 7217 hba->dev_quirks |= f->quirk; 7218 } 7219 } 7220 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks); 7221 ufs_fixup_device_setup(struct ufs_hba * hba)7222 static void ufs_fixup_device_setup(struct ufs_hba *hba) 7223 { 7224 /* fix by general quirk table */ 7225 ufshcd_fixup_dev_quirks(hba, ufs_fixups); 7226 7227 /* allow vendors to fix quirks */ 7228 ufshcd_vops_fixup_dev_quirks(hba); 7229 } 7230 ufs_get_device_desc(struct ufs_hba * hba)7231 static int ufs_get_device_desc(struct ufs_hba *hba) 7232 { 7233 int err; 7234 u8 model_index; 7235 u8 *desc_buf; 7236 struct ufs_dev_info *dev_info = &hba->dev_info; 7237 7238 desc_buf = kmalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 7239 if (!desc_buf) { 7240 err = -ENOMEM; 7241 goto out; 7242 } 7243 7244 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf, 7245 hba->desc_size[QUERY_DESC_IDN_DEVICE]); 7246 if (err) { 7247 dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n", 7248 __func__, err); 7249 goto out; 7250 } 7251 7252 /* 7253 * getting vendor (manufacturerID) and Bank Index in big endian 7254 * format 7255 */ 7256 dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 | 7257 desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1]; 7258 7259 /* getting Specification Version in big endian format */ 7260 dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 | 7261 desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1]; 7262 7263 model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME]; 7264 7265 err = ufshcd_read_string_desc(hba, model_index, 7266 &dev_info->model, SD_ASCII_STD); 7267 if (err < 0) { 7268 dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n", 7269 __func__, err); 7270 goto out; 7271 } 7272 7273 ufs_fixup_device_setup(hba); 7274 7275 ufshcd_wb_probe(hba, desc_buf); 7276 7277 /* 7278 * ufshcd_read_string_desc returns size of the string 7279 * reset the error value 7280 */ 7281 err = 0; 7282 7283 out: 7284 kfree(desc_buf); 7285 return err; 7286 } 7287 ufs_put_device_desc(struct ufs_hba * hba)7288 static void ufs_put_device_desc(struct ufs_hba *hba) 7289 { 7290 struct ufs_dev_info *dev_info = &hba->dev_info; 7291 7292 kfree(dev_info->model); 7293 dev_info->model = NULL; 7294 } 7295 7296 /** 7297 * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro 7298 * @hba: per-adapter instance 7299 * 7300 * PA_TActivate parameter can be tuned manually if UniPro version is less than 7301 * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's 7302 * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce 7303 * the hibern8 exit latency. 7304 * 7305 * Returns zero on success, non-zero error value on failure. 7306 */ ufshcd_tune_pa_tactivate(struct ufs_hba * hba)7307 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba) 7308 { 7309 int ret = 0; 7310 u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate; 7311 7312 ret = ufshcd_dme_peer_get(hba, 7313 UIC_ARG_MIB_SEL( 7314 RX_MIN_ACTIVATETIME_CAPABILITY, 7315 UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)), 7316 &peer_rx_min_activatetime); 7317 if (ret) 7318 goto out; 7319 7320 /* make sure proper unit conversion is applied */ 7321 tuned_pa_tactivate = 7322 ((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US) 7323 / PA_TACTIVATE_TIME_UNIT_US); 7324 ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 7325 tuned_pa_tactivate); 7326 7327 out: 7328 return ret; 7329 } 7330 7331 /** 7332 * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro 7333 * @hba: per-adapter instance 7334 * 7335 * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than 7336 * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's 7337 * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY. 7338 * This optimal value can help reduce the hibern8 exit latency. 7339 * 7340 * Returns zero on success, non-zero error value on failure. 7341 */ ufshcd_tune_pa_hibern8time(struct ufs_hba * hba)7342 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba) 7343 { 7344 int ret = 0; 7345 u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0; 7346 u32 max_hibern8_time, tuned_pa_hibern8time; 7347 7348 ret = ufshcd_dme_get(hba, 7349 UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY, 7350 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)), 7351 &local_tx_hibern8_time_cap); 7352 if (ret) 7353 goto out; 7354 7355 ret = ufshcd_dme_peer_get(hba, 7356 UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY, 7357 UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)), 7358 &peer_rx_hibern8_time_cap); 7359 if (ret) 7360 goto out; 7361 7362 max_hibern8_time = max(local_tx_hibern8_time_cap, 7363 peer_rx_hibern8_time_cap); 7364 /* make sure proper unit conversion is applied */ 7365 tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US) 7366 / PA_HIBERN8_TIME_UNIT_US); 7367 ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME), 7368 tuned_pa_hibern8time); 7369 out: 7370 return ret; 7371 } 7372 7373 /** 7374 * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is 7375 * less than device PA_TACTIVATE time. 7376 * @hba: per-adapter instance 7377 * 7378 * Some UFS devices require host PA_TACTIVATE to be lower than device 7379 * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk 7380 * for such devices. 7381 * 7382 * Returns zero on success, non-zero error value on failure. 7383 */ ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba * hba)7384 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba) 7385 { 7386 int ret = 0; 7387 u32 granularity, peer_granularity; 7388 u32 pa_tactivate, peer_pa_tactivate; 7389 u32 pa_tactivate_us, peer_pa_tactivate_us; 7390 u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100}; 7391 7392 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY), 7393 &granularity); 7394 if (ret) 7395 goto out; 7396 7397 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY), 7398 &peer_granularity); 7399 if (ret) 7400 goto out; 7401 7402 if ((granularity < PA_GRANULARITY_MIN_VAL) || 7403 (granularity > PA_GRANULARITY_MAX_VAL)) { 7404 dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d", 7405 __func__, granularity); 7406 return -EINVAL; 7407 } 7408 7409 if ((peer_granularity < PA_GRANULARITY_MIN_VAL) || 7410 (peer_granularity > PA_GRANULARITY_MAX_VAL)) { 7411 dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d", 7412 __func__, peer_granularity); 7413 return -EINVAL; 7414 } 7415 7416 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate); 7417 if (ret) 7418 goto out; 7419 7420 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE), 7421 &peer_pa_tactivate); 7422 if (ret) 7423 goto out; 7424 7425 pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1]; 7426 peer_pa_tactivate_us = peer_pa_tactivate * 7427 gran_to_us_table[peer_granularity - 1]; 7428 7429 if (pa_tactivate_us > peer_pa_tactivate_us) { 7430 u32 new_peer_pa_tactivate; 7431 7432 new_peer_pa_tactivate = pa_tactivate_us / 7433 gran_to_us_table[peer_granularity - 1]; 7434 new_peer_pa_tactivate++; 7435 ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 7436 new_peer_pa_tactivate); 7437 } 7438 7439 out: 7440 return ret; 7441 } 7442 ufshcd_tune_unipro_params(struct ufs_hba * hba)7443 static void ufshcd_tune_unipro_params(struct ufs_hba *hba) 7444 { 7445 if (ufshcd_is_unipro_pa_params_tuning_req(hba)) { 7446 ufshcd_tune_pa_tactivate(hba); 7447 ufshcd_tune_pa_hibern8time(hba); 7448 } 7449 7450 ufshcd_vops_apply_dev_quirks(hba); 7451 7452 if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE) 7453 /* set 1ms timeout for PA_TACTIVATE */ 7454 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10); 7455 7456 if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE) 7457 ufshcd_quirk_tune_host_pa_tactivate(hba); 7458 } 7459 ufshcd_clear_dbg_ufs_stats(struct ufs_hba * hba)7460 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba) 7461 { 7462 hba->ufs_stats.hibern8_exit_cnt = 0; 7463 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0); 7464 hba->req_abort_count = 0; 7465 } 7466 ufshcd_device_geo_params_init(struct ufs_hba * hba)7467 static int ufshcd_device_geo_params_init(struct ufs_hba *hba) 7468 { 7469 int err; 7470 size_t buff_len; 7471 u8 *desc_buf; 7472 7473 buff_len = hba->desc_size[QUERY_DESC_IDN_GEOMETRY]; 7474 desc_buf = kmalloc(buff_len, GFP_KERNEL); 7475 if (!desc_buf) { 7476 err = -ENOMEM; 7477 goto out; 7478 } 7479 7480 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0, 7481 desc_buf, buff_len); 7482 if (err) { 7483 dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n", 7484 __func__, err); 7485 goto out; 7486 } 7487 7488 if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1) 7489 hba->dev_info.max_lu_supported = 32; 7490 else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0) 7491 hba->dev_info.max_lu_supported = 8; 7492 7493 out: 7494 kfree(desc_buf); 7495 return err; 7496 } 7497 7498 static struct ufs_ref_clk ufs_ref_clk_freqs[] = { 7499 {19200000, REF_CLK_FREQ_19_2_MHZ}, 7500 {26000000, REF_CLK_FREQ_26_MHZ}, 7501 {38400000, REF_CLK_FREQ_38_4_MHZ}, 7502 {52000000, REF_CLK_FREQ_52_MHZ}, 7503 {0, REF_CLK_FREQ_INVAL}, 7504 }; 7505 7506 static enum ufs_ref_clk_freq ufs_get_bref_clk_from_hz(unsigned long freq)7507 ufs_get_bref_clk_from_hz(unsigned long freq) 7508 { 7509 int i; 7510 7511 for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++) 7512 if (ufs_ref_clk_freqs[i].freq_hz == freq) 7513 return ufs_ref_clk_freqs[i].val; 7514 7515 return REF_CLK_FREQ_INVAL; 7516 } 7517 ufshcd_parse_dev_ref_clk_freq(struct ufs_hba * hba,struct clk * refclk)7518 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk) 7519 { 7520 unsigned long freq; 7521 7522 freq = clk_get_rate(refclk); 7523 7524 hba->dev_ref_clk_freq = 7525 ufs_get_bref_clk_from_hz(freq); 7526 7527 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL) 7528 dev_err(hba->dev, 7529 "invalid ref_clk setting = %ld\n", freq); 7530 } 7531 ufshcd_set_dev_ref_clk(struct ufs_hba * hba)7532 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba) 7533 { 7534 int err; 7535 u32 ref_clk; 7536 u32 freq = hba->dev_ref_clk_freq; 7537 7538 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 7539 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk); 7540 7541 if (err) { 7542 dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n", 7543 err); 7544 goto out; 7545 } 7546 7547 if (ref_clk == freq) 7548 goto out; /* nothing to update */ 7549 7550 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 7551 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq); 7552 7553 if (err) { 7554 dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n", 7555 ufs_ref_clk_freqs[freq].freq_hz); 7556 goto out; 7557 } 7558 7559 dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n", 7560 ufs_ref_clk_freqs[freq].freq_hz); 7561 7562 out: 7563 return err; 7564 } 7565 ufshcd_device_params_init(struct ufs_hba * hba)7566 static int ufshcd_device_params_init(struct ufs_hba *hba) 7567 { 7568 bool flag; 7569 int ret, i; 7570 7571 /* Init device descriptor sizes */ 7572 for (i = 0; i < QUERY_DESC_IDN_MAX; i++) 7573 hba->desc_size[i] = QUERY_DESC_MAX_SIZE; 7574 7575 /* Init UFS geometry descriptor related parameters */ 7576 ret = ufshcd_device_geo_params_init(hba); 7577 if (ret) 7578 goto out; 7579 7580 /* Check and apply UFS device quirks */ 7581 ret = ufs_get_device_desc(hba); 7582 if (ret) { 7583 dev_err(hba->dev, "%s: Failed getting device info. err = %d\n", 7584 __func__, ret); 7585 goto out; 7586 } 7587 7588 ufshcd_get_ref_clk_gating_wait(hba); 7589 7590 if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG, 7591 QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag)) 7592 hba->dev_info.f_power_on_wp_en = flag; 7593 7594 /* Probe maximum power mode co-supported by both UFS host and device */ 7595 if (ufshcd_get_max_pwr_mode(hba)) 7596 dev_err(hba->dev, 7597 "%s: Failed getting max supported power mode\n", 7598 __func__); 7599 out: 7600 return ret; 7601 } 7602 7603 /** 7604 * ufshcd_add_lus - probe and add UFS logical units 7605 * @hba: per-adapter instance 7606 */ ufshcd_add_lus(struct ufs_hba * hba)7607 static int ufshcd_add_lus(struct ufs_hba *hba) 7608 { 7609 int ret; 7610 7611 /* Add required well known logical units to scsi mid layer */ 7612 ret = ufshcd_scsi_add_wlus(hba); 7613 if (ret) 7614 goto out; 7615 7616 /* Initialize devfreq after UFS device is detected */ 7617 if (ufshcd_is_clkscaling_supported(hba)) { 7618 memcpy(&hba->clk_scaling.saved_pwr_info.info, 7619 &hba->pwr_info, 7620 sizeof(struct ufs_pa_layer_attr)); 7621 hba->clk_scaling.saved_pwr_info.is_valid = true; 7622 if (!hba->devfreq) { 7623 ret = ufshcd_devfreq_init(hba); 7624 if (ret) 7625 goto out; 7626 } 7627 7628 hba->clk_scaling.is_allowed = true; 7629 } 7630 7631 ufs_bsg_probe(hba); 7632 scsi_scan_host(hba->host); 7633 pm_runtime_put_sync(hba->dev); 7634 7635 out: 7636 return ret; 7637 } 7638 7639 /** 7640 * ufshcd_probe_hba - probe hba to detect device and initialize 7641 * @hba: per-adapter instance 7642 * @async: asynchronous execution or not 7643 * 7644 * Execute link-startup and verify device initialization 7645 */ ufshcd_probe_hba(struct ufs_hba * hba,bool async)7646 static int ufshcd_probe_hba(struct ufs_hba *hba, bool async) 7647 { 7648 int ret; 7649 unsigned long flags; 7650 ktime_t start = ktime_get(); 7651 7652 ret = ufshcd_link_startup(hba); 7653 if (ret) 7654 goto out; 7655 7656 /* Debug counters initialization */ 7657 ufshcd_clear_dbg_ufs_stats(hba); 7658 7659 /* UniPro link is active now */ 7660 ufshcd_set_link_active(hba); 7661 7662 /* Verify device initialization by sending NOP OUT UPIU */ 7663 ret = ufshcd_verify_dev_init(hba); 7664 if (ret) 7665 goto out; 7666 7667 /* Initiate UFS initialization, and waiting until completion */ 7668 ret = ufshcd_complete_dev_init(hba); 7669 if (ret) 7670 goto out; 7671 7672 /* 7673 * Initialize UFS device parameters used by driver, these 7674 * parameters are associated with UFS descriptors. 7675 */ 7676 if (async) { 7677 ret = ufshcd_device_params_init(hba); 7678 if (ret) 7679 goto out; 7680 } 7681 7682 ufshcd_tune_unipro_params(hba); 7683 7684 /* UFS device is also active now */ 7685 ufshcd_set_ufs_dev_active(hba); 7686 ufshcd_force_reset_auto_bkops(hba); 7687 hba->wlun_dev_clr_ua = true; 7688 7689 /* Gear up to HS gear if supported */ 7690 if (hba->max_pwr_info.is_valid) { 7691 /* 7692 * Set the right value to bRefClkFreq before attempting to 7693 * switch to HS gears. 7694 */ 7695 if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL) 7696 ufshcd_set_dev_ref_clk(hba); 7697 ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info); 7698 if (ret) { 7699 dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n", 7700 __func__, ret); 7701 goto out; 7702 } 7703 ufshcd_print_pwr_info(hba); 7704 } 7705 7706 /* 7707 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec) 7708 * and for removable UFS card as well, hence always set the parameter. 7709 * Note: Error handler may issue the device reset hence resetting 7710 * bActiveICCLevel as well so it is always safe to set this here. 7711 */ 7712 ufshcd_set_active_icc_lvl(hba); 7713 7714 ufshcd_wb_config(hba); 7715 /* Enable Auto-Hibernate if configured */ 7716 ufshcd_auto_hibern8_enable(hba); 7717 7718 out: 7719 spin_lock_irqsave(hba->host->host_lock, flags); 7720 if (ret) 7721 hba->ufshcd_state = UFSHCD_STATE_ERROR; 7722 else if (hba->ufshcd_state == UFSHCD_STATE_RESET) 7723 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL; 7724 spin_unlock_irqrestore(hba->host->host_lock, flags); 7725 7726 trace_ufshcd_init(dev_name(hba->dev), ret, 7727 ktime_to_us(ktime_sub(ktime_get(), start)), 7728 hba->curr_dev_pwr_mode, hba->uic_link_state); 7729 return ret; 7730 } 7731 7732 /** 7733 * ufshcd_async_scan - asynchronous execution for probing hba 7734 * @data: data pointer to pass to this function 7735 * @cookie: cookie data 7736 */ ufshcd_async_scan(void * data,async_cookie_t cookie)7737 static void ufshcd_async_scan(void *data, async_cookie_t cookie) 7738 { 7739 struct ufs_hba *hba = (struct ufs_hba *)data; 7740 int ret; 7741 7742 /* Initialize hba, detect and initialize UFS device */ 7743 ret = ufshcd_probe_hba(hba, true); 7744 if (ret) 7745 goto out; 7746 7747 /* Probe and add UFS logical units */ 7748 ret = ufshcd_add_lus(hba); 7749 out: 7750 /* 7751 * If we failed to initialize the device or the device is not 7752 * present, turn off the power/clocks etc. 7753 */ 7754 if (ret) { 7755 pm_runtime_put_sync(hba->dev); 7756 ufshcd_exit_clk_scaling(hba); 7757 ufshcd_hba_exit(hba); 7758 } 7759 } 7760 7761 static const struct attribute_group *ufshcd_driver_groups[] = { 7762 &ufs_sysfs_unit_descriptor_group, 7763 &ufs_sysfs_lun_attributes_group, 7764 NULL, 7765 }; 7766 7767 static struct ufs_hba_variant_params ufs_hba_vps = { 7768 .hba_enable_delay_us = 1000, 7769 .wb_flush_threshold = UFS_WB_BUF_REMAIN_PERCENT(40), 7770 .devfreq_profile.polling_ms = 100, 7771 .devfreq_profile.target = ufshcd_devfreq_target, 7772 .devfreq_profile.get_dev_status = ufshcd_devfreq_get_dev_status, 7773 .ondemand_data.upthreshold = 70, 7774 .ondemand_data.downdifferential = 5, 7775 }; 7776 7777 static struct scsi_host_template ufshcd_driver_template = { 7778 .module = THIS_MODULE, 7779 .name = UFSHCD, 7780 .proc_name = UFSHCD, 7781 .queuecommand = ufshcd_queuecommand, 7782 .slave_alloc = ufshcd_slave_alloc, 7783 .slave_configure = ufshcd_slave_configure, 7784 .slave_destroy = ufshcd_slave_destroy, 7785 .change_queue_depth = ufshcd_change_queue_depth, 7786 .eh_abort_handler = ufshcd_abort, 7787 .eh_device_reset_handler = ufshcd_eh_device_reset_handler, 7788 .eh_host_reset_handler = ufshcd_eh_host_reset_handler, 7789 .this_id = -1, 7790 .sg_tablesize = SG_ALL, 7791 .cmd_per_lun = UFSHCD_CMD_PER_LUN, 7792 .can_queue = UFSHCD_CAN_QUEUE, 7793 .max_segment_size = PRDT_DATA_BYTE_COUNT_MAX, 7794 .max_host_blocked = 1, 7795 .track_queue_depth = 1, 7796 .sdev_groups = ufshcd_driver_groups, 7797 .dma_boundary = PAGE_SIZE - 1, 7798 .rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS, 7799 }; 7800 ufshcd_config_vreg_load(struct device * dev,struct ufs_vreg * vreg,int ua)7801 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg, 7802 int ua) 7803 { 7804 int ret; 7805 7806 if (!vreg) 7807 return 0; 7808 7809 /* 7810 * "set_load" operation shall be required on those regulators 7811 * which specifically configured current limitation. Otherwise 7812 * zero max_uA may cause unexpected behavior when regulator is 7813 * enabled or set as high power mode. 7814 */ 7815 if (!vreg->max_uA) 7816 return 0; 7817 7818 ret = regulator_set_load(vreg->reg, ua); 7819 if (ret < 0) { 7820 dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n", 7821 __func__, vreg->name, ua, ret); 7822 } 7823 7824 return ret; 7825 } 7826 ufshcd_config_vreg_lpm(struct ufs_hba * hba,struct ufs_vreg * vreg)7827 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba, 7828 struct ufs_vreg *vreg) 7829 { 7830 return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA); 7831 } 7832 ufshcd_config_vreg_hpm(struct ufs_hba * hba,struct ufs_vreg * vreg)7833 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba, 7834 struct ufs_vreg *vreg) 7835 { 7836 if (!vreg) 7837 return 0; 7838 7839 return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA); 7840 } 7841 ufshcd_config_vreg(struct device * dev,struct ufs_vreg * vreg,bool on)7842 static int ufshcd_config_vreg(struct device *dev, 7843 struct ufs_vreg *vreg, bool on) 7844 { 7845 int ret = 0; 7846 struct regulator *reg; 7847 const char *name; 7848 int min_uV, uA_load; 7849 7850 BUG_ON(!vreg); 7851 7852 reg = vreg->reg; 7853 name = vreg->name; 7854 7855 if (regulator_count_voltages(reg) > 0) { 7856 uA_load = on ? vreg->max_uA : 0; 7857 ret = ufshcd_config_vreg_load(dev, vreg, uA_load); 7858 if (ret) 7859 goto out; 7860 7861 if (vreg->min_uV && vreg->max_uV) { 7862 min_uV = on ? vreg->min_uV : 0; 7863 ret = regulator_set_voltage(reg, min_uV, vreg->max_uV); 7864 if (ret) 7865 dev_err(dev, 7866 "%s: %s set voltage failed, err=%d\n", 7867 __func__, name, ret); 7868 } 7869 } 7870 out: 7871 return ret; 7872 } 7873 ufshcd_enable_vreg(struct device * dev,struct ufs_vreg * vreg)7874 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg) 7875 { 7876 int ret = 0; 7877 7878 if (!vreg || vreg->enabled) 7879 goto out; 7880 7881 ret = ufshcd_config_vreg(dev, vreg, true); 7882 if (!ret) 7883 ret = regulator_enable(vreg->reg); 7884 7885 if (!ret) 7886 vreg->enabled = true; 7887 else 7888 dev_err(dev, "%s: %s enable failed, err=%d\n", 7889 __func__, vreg->name, ret); 7890 out: 7891 return ret; 7892 } 7893 ufshcd_disable_vreg(struct device * dev,struct ufs_vreg * vreg)7894 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg) 7895 { 7896 int ret = 0; 7897 7898 if (!vreg || !vreg->enabled) 7899 goto out; 7900 7901 ret = regulator_disable(vreg->reg); 7902 7903 if (!ret) { 7904 /* ignore errors on applying disable config */ 7905 ufshcd_config_vreg(dev, vreg, false); 7906 vreg->enabled = false; 7907 } else { 7908 dev_err(dev, "%s: %s disable failed, err=%d\n", 7909 __func__, vreg->name, ret); 7910 } 7911 out: 7912 return ret; 7913 } 7914 ufshcd_setup_vreg(struct ufs_hba * hba,bool on)7915 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on) 7916 { 7917 int ret = 0; 7918 struct device *dev = hba->dev; 7919 struct ufs_vreg_info *info = &hba->vreg_info; 7920 7921 ret = ufshcd_toggle_vreg(dev, info->vcc, on); 7922 if (ret) 7923 goto out; 7924 7925 ret = ufshcd_toggle_vreg(dev, info->vccq, on); 7926 if (ret) 7927 goto out; 7928 7929 ret = ufshcd_toggle_vreg(dev, info->vccq2, on); 7930 7931 out: 7932 if (ret) { 7933 ufshcd_toggle_vreg(dev, info->vccq2, false); 7934 ufshcd_toggle_vreg(dev, info->vccq, false); 7935 ufshcd_toggle_vreg(dev, info->vcc, false); 7936 } 7937 return ret; 7938 } 7939 ufshcd_setup_hba_vreg(struct ufs_hba * hba,bool on)7940 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on) 7941 { 7942 struct ufs_vreg_info *info = &hba->vreg_info; 7943 7944 return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on); 7945 } 7946 ufshcd_get_vreg(struct device * dev,struct ufs_vreg * vreg)7947 static int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg) 7948 { 7949 int ret = 0; 7950 7951 if (!vreg) 7952 goto out; 7953 7954 vreg->reg = devm_regulator_get(dev, vreg->name); 7955 if (IS_ERR(vreg->reg)) { 7956 ret = PTR_ERR(vreg->reg); 7957 dev_err(dev, "%s: %s get failed, err=%d\n", 7958 __func__, vreg->name, ret); 7959 } 7960 out: 7961 return ret; 7962 } 7963 ufshcd_init_vreg(struct ufs_hba * hba)7964 static int ufshcd_init_vreg(struct ufs_hba *hba) 7965 { 7966 int ret = 0; 7967 struct device *dev = hba->dev; 7968 struct ufs_vreg_info *info = &hba->vreg_info; 7969 7970 ret = ufshcd_get_vreg(dev, info->vcc); 7971 if (ret) 7972 goto out; 7973 7974 ret = ufshcd_get_vreg(dev, info->vccq); 7975 if (!ret) 7976 ret = ufshcd_get_vreg(dev, info->vccq2); 7977 out: 7978 return ret; 7979 } 7980 ufshcd_init_hba_vreg(struct ufs_hba * hba)7981 static int ufshcd_init_hba_vreg(struct ufs_hba *hba) 7982 { 7983 struct ufs_vreg_info *info = &hba->vreg_info; 7984 7985 if (info) 7986 return ufshcd_get_vreg(hba->dev, info->vdd_hba); 7987 7988 return 0; 7989 } 7990 __ufshcd_setup_clocks(struct ufs_hba * hba,bool on,bool skip_ref_clk)7991 static int __ufshcd_setup_clocks(struct ufs_hba *hba, bool on, 7992 bool skip_ref_clk) 7993 { 7994 int ret = 0; 7995 struct ufs_clk_info *clki; 7996 struct list_head *head = &hba->clk_list_head; 7997 unsigned long flags; 7998 ktime_t start = ktime_get(); 7999 bool clk_state_changed = false; 8000 8001 if (list_empty(head)) 8002 goto out; 8003 8004 ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE); 8005 if (ret) 8006 return ret; 8007 8008 list_for_each_entry(clki, head, list) { 8009 if (!IS_ERR_OR_NULL(clki->clk)) { 8010 if (skip_ref_clk && !strcmp(clki->name, "ref_clk")) 8011 continue; 8012 8013 clk_state_changed = on ^ clki->enabled; 8014 if (on && !clki->enabled) { 8015 ret = clk_prepare_enable(clki->clk); 8016 if (ret) { 8017 dev_err(hba->dev, "%s: %s prepare enable failed, %d\n", 8018 __func__, clki->name, ret); 8019 goto out; 8020 } 8021 } else if (!on && clki->enabled) { 8022 clk_disable_unprepare(clki->clk); 8023 } 8024 clki->enabled = on; 8025 dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__, 8026 clki->name, on ? "en" : "dis"); 8027 } 8028 } 8029 8030 ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE); 8031 if (ret) 8032 return ret; 8033 8034 out: 8035 if (ret) { 8036 list_for_each_entry(clki, head, list) { 8037 if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled) 8038 clk_disable_unprepare(clki->clk); 8039 } 8040 } else if (!ret && on) { 8041 spin_lock_irqsave(hba->host->host_lock, flags); 8042 hba->clk_gating.state = CLKS_ON; 8043 trace_ufshcd_clk_gating(dev_name(hba->dev), 8044 hba->clk_gating.state); 8045 spin_unlock_irqrestore(hba->host->host_lock, flags); 8046 } 8047 8048 if (clk_state_changed) 8049 trace_ufshcd_profile_clk_gating(dev_name(hba->dev), 8050 (on ? "on" : "off"), 8051 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 8052 return ret; 8053 } 8054 ufshcd_setup_clocks(struct ufs_hba * hba,bool on)8055 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on) 8056 { 8057 return __ufshcd_setup_clocks(hba, on, false); 8058 } 8059 ufshcd_init_clocks(struct ufs_hba * hba)8060 static int ufshcd_init_clocks(struct ufs_hba *hba) 8061 { 8062 int ret = 0; 8063 struct ufs_clk_info *clki; 8064 struct device *dev = hba->dev; 8065 struct list_head *head = &hba->clk_list_head; 8066 8067 if (list_empty(head)) 8068 goto out; 8069 8070 list_for_each_entry(clki, head, list) { 8071 if (!clki->name) 8072 continue; 8073 8074 clki->clk = devm_clk_get(dev, clki->name); 8075 if (IS_ERR(clki->clk)) { 8076 ret = PTR_ERR(clki->clk); 8077 dev_err(dev, "%s: %s clk get failed, %d\n", 8078 __func__, clki->name, ret); 8079 goto out; 8080 } 8081 8082 /* 8083 * Parse device ref clk freq as per device tree "ref_clk". 8084 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL 8085 * in ufshcd_alloc_host(). 8086 */ 8087 if (!strcmp(clki->name, "ref_clk")) 8088 ufshcd_parse_dev_ref_clk_freq(hba, clki->clk); 8089 8090 if (clki->max_freq) { 8091 ret = clk_set_rate(clki->clk, clki->max_freq); 8092 if (ret) { 8093 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n", 8094 __func__, clki->name, 8095 clki->max_freq, ret); 8096 goto out; 8097 } 8098 clki->curr_freq = clki->max_freq; 8099 } 8100 dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__, 8101 clki->name, clk_get_rate(clki->clk)); 8102 } 8103 out: 8104 return ret; 8105 } 8106 ufshcd_variant_hba_init(struct ufs_hba * hba)8107 static int ufshcd_variant_hba_init(struct ufs_hba *hba) 8108 { 8109 int err = 0; 8110 8111 if (!hba->vops) 8112 goto out; 8113 8114 err = ufshcd_vops_init(hba); 8115 if (err) 8116 goto out; 8117 8118 err = ufshcd_vops_setup_regulators(hba, true); 8119 if (err) 8120 ufshcd_vops_exit(hba); 8121 out: 8122 if (err) 8123 dev_err(hba->dev, "%s: variant %s init failed err %d\n", 8124 __func__, ufshcd_get_var_name(hba), err); 8125 return err; 8126 } 8127 ufshcd_variant_hba_exit(struct ufs_hba * hba)8128 static void ufshcd_variant_hba_exit(struct ufs_hba *hba) 8129 { 8130 if (!hba->vops) 8131 return; 8132 8133 ufshcd_vops_setup_regulators(hba, false); 8134 8135 ufshcd_vops_exit(hba); 8136 } 8137 ufshcd_hba_init(struct ufs_hba * hba)8138 static int ufshcd_hba_init(struct ufs_hba *hba) 8139 { 8140 int err; 8141 8142 /* 8143 * Handle host controller power separately from the UFS device power 8144 * rails as it will help controlling the UFS host controller power 8145 * collapse easily which is different than UFS device power collapse. 8146 * Also, enable the host controller power before we go ahead with rest 8147 * of the initialization here. 8148 */ 8149 err = ufshcd_init_hba_vreg(hba); 8150 if (err) 8151 goto out; 8152 8153 err = ufshcd_setup_hba_vreg(hba, true); 8154 if (err) 8155 goto out; 8156 8157 err = ufshcd_init_clocks(hba); 8158 if (err) 8159 goto out_disable_hba_vreg; 8160 8161 err = ufshcd_setup_clocks(hba, true); 8162 if (err) 8163 goto out_disable_hba_vreg; 8164 8165 err = ufshcd_init_vreg(hba); 8166 if (err) 8167 goto out_disable_clks; 8168 8169 err = ufshcd_setup_vreg(hba, true); 8170 if (err) 8171 goto out_disable_clks; 8172 8173 err = ufshcd_variant_hba_init(hba); 8174 if (err) 8175 goto out_disable_vreg; 8176 8177 hba->is_powered = true; 8178 goto out; 8179 8180 out_disable_vreg: 8181 ufshcd_setup_vreg(hba, false); 8182 out_disable_clks: 8183 ufshcd_setup_clocks(hba, false); 8184 out_disable_hba_vreg: 8185 ufshcd_setup_hba_vreg(hba, false); 8186 out: 8187 return err; 8188 } 8189 ufshcd_hba_exit(struct ufs_hba * hba)8190 static void ufshcd_hba_exit(struct ufs_hba *hba) 8191 { 8192 if (hba->is_powered) { 8193 ufshcd_variant_hba_exit(hba); 8194 ufshcd_setup_vreg(hba, false); 8195 ufshcd_suspend_clkscaling(hba); 8196 if (ufshcd_is_clkscaling_supported(hba)) 8197 if (hba->devfreq) 8198 ufshcd_suspend_clkscaling(hba); 8199 ufshcd_setup_clocks(hba, false); 8200 ufshcd_setup_hba_vreg(hba, false); 8201 hba->is_powered = false; 8202 ufs_put_device_desc(hba); 8203 } 8204 } 8205 8206 static int ufshcd_send_request_sense(struct ufs_hba * hba,struct scsi_device * sdp)8207 ufshcd_send_request_sense(struct ufs_hba *hba, struct scsi_device *sdp) 8208 { 8209 unsigned char cmd[6] = {REQUEST_SENSE, 8210 0, 8211 0, 8212 0, 8213 UFS_SENSE_SIZE, 8214 0}; 8215 char *buffer; 8216 int ret; 8217 8218 buffer = kzalloc(UFS_SENSE_SIZE, GFP_KERNEL); 8219 if (!buffer) { 8220 ret = -ENOMEM; 8221 goto out; 8222 } 8223 8224 ret = scsi_execute(sdp, cmd, DMA_FROM_DEVICE, buffer, 8225 UFS_SENSE_SIZE, NULL, NULL, 8226 msecs_to_jiffies(1000), 3, 0, RQF_PM, NULL); 8227 if (ret) 8228 pr_err("%s: failed with err %d\n", __func__, ret); 8229 8230 kfree(buffer); 8231 out: 8232 return ret; 8233 } 8234 8235 /** 8236 * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device 8237 * power mode 8238 * @hba: per adapter instance 8239 * @pwr_mode: device power mode to set 8240 * 8241 * Returns 0 if requested power mode is set successfully 8242 * Returns non-zero if failed to set the requested power mode 8243 */ ufshcd_set_dev_pwr_mode(struct ufs_hba * hba,enum ufs_dev_pwr_mode pwr_mode)8244 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba, 8245 enum ufs_dev_pwr_mode pwr_mode) 8246 { 8247 unsigned char cmd[6] = { START_STOP }; 8248 struct scsi_sense_hdr sshdr; 8249 struct scsi_device *sdp; 8250 unsigned long flags; 8251 int ret; 8252 8253 spin_lock_irqsave(hba->host->host_lock, flags); 8254 sdp = hba->sdev_ufs_device; 8255 if (sdp) { 8256 ret = scsi_device_get(sdp); 8257 if (!ret && !scsi_device_online(sdp)) { 8258 ret = -ENODEV; 8259 scsi_device_put(sdp); 8260 } 8261 } else { 8262 ret = -ENODEV; 8263 } 8264 spin_unlock_irqrestore(hba->host->host_lock, flags); 8265 8266 if (ret) 8267 return ret; 8268 8269 /* 8270 * If scsi commands fail, the scsi mid-layer schedules scsi error- 8271 * handling, which would wait for host to be resumed. Since we know 8272 * we are functional while we are here, skip host resume in error 8273 * handling context. 8274 */ 8275 hba->host->eh_noresume = 1; 8276 if (hba->wlun_dev_clr_ua) { 8277 ret = ufshcd_send_request_sense(hba, sdp); 8278 if (ret) 8279 goto out; 8280 /* Unit attention condition is cleared now */ 8281 hba->wlun_dev_clr_ua = false; 8282 } 8283 8284 cmd[4] = pwr_mode << 4; 8285 8286 /* 8287 * Current function would be generally called from the power management 8288 * callbacks hence set the RQF_PM flag so that it doesn't resume the 8289 * already suspended childs. 8290 */ 8291 ret = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr, 8292 START_STOP_TIMEOUT, 0, 0, RQF_PM, NULL); 8293 if (ret) { 8294 sdev_printk(KERN_WARNING, sdp, 8295 "START_STOP failed for power mode: %d, result %x\n", 8296 pwr_mode, ret); 8297 if (driver_byte(ret) == DRIVER_SENSE) 8298 scsi_print_sense_hdr(sdp, NULL, &sshdr); 8299 } 8300 8301 if (!ret) 8302 hba->curr_dev_pwr_mode = pwr_mode; 8303 out: 8304 scsi_device_put(sdp); 8305 hba->host->eh_noresume = 0; 8306 return ret; 8307 } 8308 ufshcd_link_state_transition(struct ufs_hba * hba,enum uic_link_state req_link_state,int check_for_bkops)8309 static int ufshcd_link_state_transition(struct ufs_hba *hba, 8310 enum uic_link_state req_link_state, 8311 int check_for_bkops) 8312 { 8313 int ret = 0; 8314 8315 if (req_link_state == hba->uic_link_state) 8316 return 0; 8317 8318 if (req_link_state == UIC_LINK_HIBERN8_STATE) { 8319 ret = ufshcd_uic_hibern8_enter(hba); 8320 if (!ret) { 8321 ufshcd_set_link_hibern8(hba); 8322 } else { 8323 dev_err(hba->dev, "%s: hibern8 enter failed %d\n", 8324 __func__, ret); 8325 goto out; 8326 } 8327 } 8328 /* 8329 * If autobkops is enabled, link can't be turned off because 8330 * turning off the link would also turn off the device. 8331 */ 8332 else if ((req_link_state == UIC_LINK_OFF_STATE) && 8333 (!check_for_bkops || !hba->auto_bkops_enabled)) { 8334 /* 8335 * Let's make sure that link is in low power mode, we are doing 8336 * this currently by putting the link in Hibern8. Otherway to 8337 * put the link in low power mode is to send the DME end point 8338 * to device and then send the DME reset command to local 8339 * unipro. But putting the link in hibern8 is much faster. 8340 */ 8341 ret = ufshcd_uic_hibern8_enter(hba); 8342 if (ret) { 8343 dev_err(hba->dev, "%s: hibern8 enter failed %d\n", 8344 __func__, ret); 8345 goto out; 8346 } 8347 /* 8348 * Change controller state to "reset state" which 8349 * should also put the link in off/reset state 8350 */ 8351 ufshcd_hba_stop(hba); 8352 /* 8353 * TODO: Check if we need any delay to make sure that 8354 * controller is reset 8355 */ 8356 ufshcd_set_link_off(hba); 8357 } 8358 8359 out: 8360 return ret; 8361 } 8362 ufshcd_vreg_set_lpm(struct ufs_hba * hba)8363 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba) 8364 { 8365 bool vcc_off = false; 8366 8367 /* 8368 * It seems some UFS devices may keep drawing more than sleep current 8369 * (atleast for 500us) from UFS rails (especially from VCCQ rail). 8370 * To avoid this situation, add 2ms delay before putting these UFS 8371 * rails in LPM mode. 8372 */ 8373 if (!ufshcd_is_link_active(hba) && 8374 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM) 8375 usleep_range(2000, 2100); 8376 8377 /* 8378 * If UFS device is either in UFS_Sleep turn off VCC rail to save some 8379 * power. 8380 * 8381 * If UFS device and link is in OFF state, all power supplies (VCC, 8382 * VCCQ, VCCQ2) can be turned off if power on write protect is not 8383 * required. If UFS link is inactive (Hibern8 or OFF state) and device 8384 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode. 8385 * 8386 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway 8387 * in low power state which would save some power. 8388 * 8389 * If Write Booster is enabled and the device needs to flush the WB 8390 * buffer OR if bkops status is urgent for WB, keep Vcc on. 8391 */ 8392 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) && 8393 !hba->dev_info.is_lu_power_on_wp) { 8394 ufshcd_setup_vreg(hba, false); 8395 vcc_off = true; 8396 } else if (!ufshcd_is_ufs_dev_active(hba)) { 8397 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false); 8398 vcc_off = true; 8399 if (!ufshcd_is_link_active(hba)) { 8400 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq); 8401 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2); 8402 } 8403 } 8404 8405 /* 8406 * Some UFS devices require delay after VCC power rail is turned-off. 8407 */ 8408 if (vcc_off && hba->vreg_info.vcc && 8409 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM) 8410 usleep_range(5000, 5100); 8411 } 8412 ufshcd_vreg_set_hpm(struct ufs_hba * hba)8413 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba) 8414 { 8415 int ret = 0; 8416 8417 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) && 8418 !hba->dev_info.is_lu_power_on_wp) { 8419 ret = ufshcd_setup_vreg(hba, true); 8420 } else if (!ufshcd_is_ufs_dev_active(hba)) { 8421 if (!ret && !ufshcd_is_link_active(hba)) { 8422 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq); 8423 if (ret) 8424 goto vcc_disable; 8425 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2); 8426 if (ret) 8427 goto vccq_lpm; 8428 } 8429 ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true); 8430 } 8431 goto out; 8432 8433 vccq_lpm: 8434 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq); 8435 vcc_disable: 8436 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false); 8437 out: 8438 return ret; 8439 } 8440 ufshcd_hba_vreg_set_lpm(struct ufs_hba * hba)8441 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba) 8442 { 8443 if (ufshcd_is_link_off(hba)) 8444 ufshcd_setup_hba_vreg(hba, false); 8445 } 8446 ufshcd_hba_vreg_set_hpm(struct ufs_hba * hba)8447 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba) 8448 { 8449 if (ufshcd_is_link_off(hba)) 8450 ufshcd_setup_hba_vreg(hba, true); 8451 } 8452 8453 /** 8454 * ufshcd_suspend - helper function for suspend operations 8455 * @hba: per adapter instance 8456 * @pm_op: desired low power operation type 8457 * 8458 * This function will try to put the UFS device and link into low power 8459 * mode based on the "rpm_lvl" (Runtime PM level) or "spm_lvl" 8460 * (System PM level). 8461 * 8462 * If this function is called during shutdown, it will make sure that 8463 * both UFS device and UFS link is powered off. 8464 * 8465 * NOTE: UFS device & link must be active before we enter in this function. 8466 * 8467 * Returns 0 for success and non-zero for failure 8468 */ ufshcd_suspend(struct ufs_hba * hba,enum ufs_pm_op pm_op)8469 static int ufshcd_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op) 8470 { 8471 int ret = 0; 8472 enum ufs_pm_level pm_lvl; 8473 enum ufs_dev_pwr_mode req_dev_pwr_mode; 8474 enum uic_link_state req_link_state; 8475 8476 hba->pm_op_in_progress = 1; 8477 if (!ufshcd_is_shutdown_pm(pm_op)) { 8478 pm_lvl = ufshcd_is_runtime_pm(pm_op) ? 8479 hba->rpm_lvl : hba->spm_lvl; 8480 req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl); 8481 req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl); 8482 } else { 8483 req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE; 8484 req_link_state = UIC_LINK_OFF_STATE; 8485 } 8486 8487 /* 8488 * If we can't transition into any of the low power modes 8489 * just gate the clocks. 8490 */ 8491 ufshcd_hold(hba, false); 8492 hba->clk_gating.is_suspended = true; 8493 8494 if (hba->clk_scaling.is_allowed) { 8495 cancel_work_sync(&hba->clk_scaling.suspend_work); 8496 cancel_work_sync(&hba->clk_scaling.resume_work); 8497 ufshcd_suspend_clkscaling(hba); 8498 } 8499 8500 if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE && 8501 req_link_state == UIC_LINK_ACTIVE_STATE) { 8502 goto disable_clks; 8503 } 8504 8505 if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) && 8506 (req_link_state == hba->uic_link_state)) 8507 goto enable_gating; 8508 8509 /* UFS device & link must be active before we enter in this function */ 8510 if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) { 8511 ret = -EINVAL; 8512 goto enable_gating; 8513 } 8514 8515 if (ufshcd_is_runtime_pm(pm_op)) { 8516 if (ufshcd_can_autobkops_during_suspend(hba)) { 8517 /* 8518 * The device is idle with no requests in the queue, 8519 * allow background operations if bkops status shows 8520 * that performance might be impacted. 8521 */ 8522 ret = ufshcd_urgent_bkops(hba); 8523 if (ret) 8524 goto enable_gating; 8525 } else { 8526 /* make sure that auto bkops is disabled */ 8527 ufshcd_disable_auto_bkops(hba); 8528 } 8529 /* 8530 * If device needs to do BKOP or WB buffer flush during 8531 * Hibern8, keep device power mode as "active power mode" 8532 * and VCC supply. 8533 */ 8534 hba->dev_info.b_rpm_dev_flush_capable = 8535 hba->auto_bkops_enabled || 8536 (((req_link_state == UIC_LINK_HIBERN8_STATE) || 8537 ((req_link_state == UIC_LINK_ACTIVE_STATE) && 8538 ufshcd_is_auto_hibern8_enabled(hba))) && 8539 ufshcd_wb_need_flush(hba)); 8540 } 8541 8542 if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) { 8543 if ((ufshcd_is_runtime_pm(pm_op) && !hba->auto_bkops_enabled) || 8544 !ufshcd_is_runtime_pm(pm_op)) { 8545 /* ensure that bkops is disabled */ 8546 ufshcd_disable_auto_bkops(hba); 8547 } 8548 8549 if (!hba->dev_info.b_rpm_dev_flush_capable) { 8550 ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode); 8551 if (ret) 8552 goto enable_gating; 8553 } 8554 } 8555 8556 flush_work(&hba->eeh_work); 8557 ret = ufshcd_link_state_transition(hba, req_link_state, 1); 8558 if (ret) 8559 goto set_dev_active; 8560 8561 ufshcd_vreg_set_lpm(hba); 8562 8563 disable_clks: 8564 /* 8565 * Call vendor specific suspend callback. As these callbacks may access 8566 * vendor specific host controller register space call them before the 8567 * host clocks are ON. 8568 */ 8569 ret = ufshcd_vops_suspend(hba, pm_op); 8570 if (ret) 8571 goto set_link_active; 8572 /* 8573 * Disable the host irq as host controller as there won't be any 8574 * host controller transaction expected till resume. 8575 */ 8576 ufshcd_disable_irq(hba); 8577 8578 if (!ufshcd_is_link_active(hba)) 8579 ufshcd_setup_clocks(hba, false); 8580 else 8581 /* If link is active, device ref_clk can't be switched off */ 8582 __ufshcd_setup_clocks(hba, false, true); 8583 8584 if (ufshcd_is_clkgating_allowed(hba)) { 8585 hba->clk_gating.state = CLKS_OFF; 8586 trace_ufshcd_clk_gating(dev_name(hba->dev), 8587 hba->clk_gating.state); 8588 } 8589 8590 /* Put the host controller in low power mode if possible */ 8591 ufshcd_hba_vreg_set_lpm(hba); 8592 goto out; 8593 8594 set_link_active: 8595 if (hba->clk_scaling.is_allowed) 8596 ufshcd_resume_clkscaling(hba); 8597 ufshcd_vreg_set_hpm(hba); 8598 if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba)) 8599 ufshcd_set_link_active(hba); 8600 else if (ufshcd_is_link_off(hba)) 8601 ufshcd_host_reset_and_restore(hba); 8602 set_dev_active: 8603 if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE)) 8604 ufshcd_disable_auto_bkops(hba); 8605 enable_gating: 8606 if (hba->clk_scaling.is_allowed) 8607 ufshcd_resume_clkscaling(hba); 8608 hba->clk_gating.is_suspended = false; 8609 hba->dev_info.b_rpm_dev_flush_capable = false; 8610 ufshcd_release(hba); 8611 out: 8612 if (hba->dev_info.b_rpm_dev_flush_capable) { 8613 schedule_delayed_work(&hba->rpm_dev_flush_recheck_work, 8614 msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS)); 8615 } 8616 8617 hba->pm_op_in_progress = 0; 8618 8619 if (ret) 8620 ufshcd_update_reg_hist(&hba->ufs_stats.suspend_err, (u32)ret); 8621 return ret; 8622 } 8623 8624 /** 8625 * ufshcd_resume - helper function for resume operations 8626 * @hba: per adapter instance 8627 * @pm_op: runtime PM or system PM 8628 * 8629 * This function basically brings the UFS device, UniPro link and controller 8630 * to active state. 8631 * 8632 * Returns 0 for success and non-zero for failure 8633 */ ufshcd_resume(struct ufs_hba * hba,enum ufs_pm_op pm_op)8634 static int ufshcd_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op) 8635 { 8636 int ret; 8637 enum uic_link_state old_link_state; 8638 8639 hba->pm_op_in_progress = 1; 8640 old_link_state = hba->uic_link_state; 8641 8642 ufshcd_hba_vreg_set_hpm(hba); 8643 /* Make sure clocks are enabled before accessing controller */ 8644 ret = ufshcd_setup_clocks(hba, true); 8645 if (ret) 8646 goto out; 8647 8648 /* enable the host irq as host controller would be active soon */ 8649 ufshcd_enable_irq(hba); 8650 8651 ret = ufshcd_vreg_set_hpm(hba); 8652 if (ret) 8653 goto disable_irq_and_vops_clks; 8654 8655 /* 8656 * Call vendor specific resume callback. As these callbacks may access 8657 * vendor specific host controller register space call them when the 8658 * host clocks are ON. 8659 */ 8660 ret = ufshcd_vops_resume(hba, pm_op); 8661 if (ret) 8662 goto disable_vreg; 8663 8664 if (ufshcd_is_link_hibern8(hba)) { 8665 ret = ufshcd_uic_hibern8_exit(hba); 8666 if (!ret) { 8667 ufshcd_set_link_active(hba); 8668 } else { 8669 dev_err(hba->dev, "%s: hibern8 exit failed %d\n", 8670 __func__, ret); 8671 goto vendor_suspend; 8672 } 8673 } else if (ufshcd_is_link_off(hba)) { 8674 /* 8675 * A full initialization of the host and the device is 8676 * required since the link was put to off during suspend. 8677 */ 8678 ret = ufshcd_reset_and_restore(hba); 8679 /* 8680 * ufshcd_reset_and_restore() should have already 8681 * set the link state as active 8682 */ 8683 if (ret || !ufshcd_is_link_active(hba)) 8684 goto vendor_suspend; 8685 } 8686 8687 if (!ufshcd_is_ufs_dev_active(hba)) { 8688 ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE); 8689 if (ret) 8690 goto set_old_link_state; 8691 } 8692 8693 if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) 8694 ufshcd_enable_auto_bkops(hba); 8695 else 8696 /* 8697 * If BKOPs operations are urgently needed at this moment then 8698 * keep auto-bkops enabled or else disable it. 8699 */ 8700 ufshcd_urgent_bkops(hba); 8701 8702 hba->clk_gating.is_suspended = false; 8703 8704 if (hba->clk_scaling.is_allowed) 8705 ufshcd_resume_clkscaling(hba); 8706 8707 /* Enable Auto-Hibernate if configured */ 8708 ufshcd_auto_hibern8_enable(hba); 8709 8710 if (hba->dev_info.b_rpm_dev_flush_capable) { 8711 hba->dev_info.b_rpm_dev_flush_capable = false; 8712 cancel_delayed_work(&hba->rpm_dev_flush_recheck_work); 8713 } 8714 8715 /* Schedule clock gating in case of no access to UFS device yet */ 8716 ufshcd_release(hba); 8717 8718 goto out; 8719 8720 set_old_link_state: 8721 ufshcd_link_state_transition(hba, old_link_state, 0); 8722 vendor_suspend: 8723 ufshcd_vops_suspend(hba, pm_op); 8724 disable_vreg: 8725 ufshcd_vreg_set_lpm(hba); 8726 disable_irq_and_vops_clks: 8727 ufshcd_disable_irq(hba); 8728 if (hba->clk_scaling.is_allowed) 8729 ufshcd_suspend_clkscaling(hba); 8730 ufshcd_setup_clocks(hba, false); 8731 if (ufshcd_is_clkgating_allowed(hba)) { 8732 hba->clk_gating.state = CLKS_OFF; 8733 trace_ufshcd_clk_gating(dev_name(hba->dev), 8734 hba->clk_gating.state); 8735 } 8736 out: 8737 hba->pm_op_in_progress = 0; 8738 if (ret) 8739 ufshcd_update_reg_hist(&hba->ufs_stats.resume_err, (u32)ret); 8740 return ret; 8741 } 8742 8743 /** 8744 * ufshcd_system_suspend - system suspend routine 8745 * @hba: per adapter instance 8746 * 8747 * Check the description of ufshcd_suspend() function for more details. 8748 * 8749 * Returns 0 for success and non-zero for failure 8750 */ ufshcd_system_suspend(struct ufs_hba * hba)8751 int ufshcd_system_suspend(struct ufs_hba *hba) 8752 { 8753 int ret = 0; 8754 ktime_t start = ktime_get(); 8755 8756 if (!hba || !hba->is_powered) 8757 return 0; 8758 8759 if ((ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl) == 8760 hba->curr_dev_pwr_mode) && 8761 (ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl) == 8762 hba->uic_link_state)) 8763 goto out; 8764 8765 if (pm_runtime_suspended(hba->dev)) { 8766 /* 8767 * UFS device and/or UFS link low power states during runtime 8768 * suspend seems to be different than what is expected during 8769 * system suspend. Hence runtime resume the devic & link and 8770 * let the system suspend low power states to take effect. 8771 * TODO: If resume takes longer time, we might have optimize 8772 * it in future by not resuming everything if possible. 8773 */ 8774 ret = ufshcd_runtime_resume(hba); 8775 if (ret) 8776 goto out; 8777 } 8778 8779 ret = ufshcd_suspend(hba, UFS_SYSTEM_PM); 8780 out: 8781 trace_ufshcd_system_suspend(dev_name(hba->dev), ret, 8782 ktime_to_us(ktime_sub(ktime_get(), start)), 8783 hba->curr_dev_pwr_mode, hba->uic_link_state); 8784 if (!ret) 8785 hba->is_sys_suspended = true; 8786 return ret; 8787 } 8788 EXPORT_SYMBOL(ufshcd_system_suspend); 8789 8790 /** 8791 * ufshcd_system_resume - system resume routine 8792 * @hba: per adapter instance 8793 * 8794 * Returns 0 for success and non-zero for failure 8795 */ 8796 ufshcd_system_resume(struct ufs_hba * hba)8797 int ufshcd_system_resume(struct ufs_hba *hba) 8798 { 8799 int ret = 0; 8800 ktime_t start = ktime_get(); 8801 8802 if (!hba) 8803 return -EINVAL; 8804 8805 if (!hba->is_powered || pm_runtime_suspended(hba->dev)) 8806 /* 8807 * Let the runtime resume take care of resuming 8808 * if runtime suspended. 8809 */ 8810 goto out; 8811 else 8812 ret = ufshcd_resume(hba, UFS_SYSTEM_PM); 8813 out: 8814 trace_ufshcd_system_resume(dev_name(hba->dev), ret, 8815 ktime_to_us(ktime_sub(ktime_get(), start)), 8816 hba->curr_dev_pwr_mode, hba->uic_link_state); 8817 if (!ret) 8818 hba->is_sys_suspended = false; 8819 return ret; 8820 } 8821 EXPORT_SYMBOL(ufshcd_system_resume); 8822 8823 /** 8824 * ufshcd_runtime_suspend - runtime suspend routine 8825 * @hba: per adapter instance 8826 * 8827 * Check the description of ufshcd_suspend() function for more details. 8828 * 8829 * Returns 0 for success and non-zero for failure 8830 */ ufshcd_runtime_suspend(struct ufs_hba * hba)8831 int ufshcd_runtime_suspend(struct ufs_hba *hba) 8832 { 8833 int ret = 0; 8834 ktime_t start = ktime_get(); 8835 8836 if (!hba) 8837 return -EINVAL; 8838 8839 if (!hba->is_powered) 8840 goto out; 8841 else 8842 ret = ufshcd_suspend(hba, UFS_RUNTIME_PM); 8843 out: 8844 trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret, 8845 ktime_to_us(ktime_sub(ktime_get(), start)), 8846 hba->curr_dev_pwr_mode, hba->uic_link_state); 8847 return ret; 8848 } 8849 EXPORT_SYMBOL(ufshcd_runtime_suspend); 8850 8851 /** 8852 * ufshcd_runtime_resume - runtime resume routine 8853 * @hba: per adapter instance 8854 * 8855 * This function basically brings the UFS device, UniPro link and controller 8856 * to active state. Following operations are done in this function: 8857 * 8858 * 1. Turn on all the controller related clocks 8859 * 2. Bring the UniPro link out of Hibernate state 8860 * 3. If UFS device is in sleep state, turn ON VCC rail and bring the UFS device 8861 * to active state. 8862 * 4. If auto-bkops is enabled on the device, disable it. 8863 * 8864 * So following would be the possible power state after this function return 8865 * successfully: 8866 * S1: UFS device in Active state with VCC rail ON 8867 * UniPro link in Active state 8868 * All the UFS/UniPro controller clocks are ON 8869 * 8870 * Returns 0 for success and non-zero for failure 8871 */ ufshcd_runtime_resume(struct ufs_hba * hba)8872 int ufshcd_runtime_resume(struct ufs_hba *hba) 8873 { 8874 int ret = 0; 8875 ktime_t start = ktime_get(); 8876 8877 if (!hba) 8878 return -EINVAL; 8879 8880 if (!hba->is_powered) 8881 goto out; 8882 else 8883 ret = ufshcd_resume(hba, UFS_RUNTIME_PM); 8884 out: 8885 trace_ufshcd_runtime_resume(dev_name(hba->dev), ret, 8886 ktime_to_us(ktime_sub(ktime_get(), start)), 8887 hba->curr_dev_pwr_mode, hba->uic_link_state); 8888 return ret; 8889 } 8890 EXPORT_SYMBOL(ufshcd_runtime_resume); 8891 ufshcd_runtime_idle(struct ufs_hba * hba)8892 int ufshcd_runtime_idle(struct ufs_hba *hba) 8893 { 8894 return 0; 8895 } 8896 EXPORT_SYMBOL(ufshcd_runtime_idle); 8897 8898 /** 8899 * ufshcd_shutdown - shutdown routine 8900 * @hba: per adapter instance 8901 * 8902 * This function would power off both UFS device and UFS link. 8903 * 8904 * Returns 0 always to allow force shutdown even in case of errors. 8905 */ ufshcd_shutdown(struct ufs_hba * hba)8906 int ufshcd_shutdown(struct ufs_hba *hba) 8907 { 8908 int ret = 0; 8909 8910 if (!hba->is_powered) 8911 goto out; 8912 8913 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba)) 8914 goto out; 8915 8916 pm_runtime_get_sync(hba->dev); 8917 8918 ret = ufshcd_suspend(hba, UFS_SHUTDOWN_PM); 8919 out: 8920 if (ret) 8921 dev_err(hba->dev, "%s failed, err %d\n", __func__, ret); 8922 /* allow force shutdown even in case of errors */ 8923 return 0; 8924 } 8925 EXPORT_SYMBOL(ufshcd_shutdown); 8926 8927 /** 8928 * ufshcd_remove - de-allocate SCSI host and host memory space 8929 * data structure memory 8930 * @hba: per adapter instance 8931 */ ufshcd_remove(struct ufs_hba * hba)8932 void ufshcd_remove(struct ufs_hba *hba) 8933 { 8934 ufs_bsg_remove(hba); 8935 ufs_sysfs_remove_nodes(hba->dev); 8936 blk_cleanup_queue(hba->tmf_queue); 8937 blk_mq_free_tag_set(&hba->tmf_tag_set); 8938 blk_cleanup_queue(hba->cmd_queue); 8939 scsi_remove_host(hba->host); 8940 destroy_workqueue(hba->eh_wq); 8941 /* disable interrupts */ 8942 ufshcd_disable_intr(hba, hba->intr_mask); 8943 ufshcd_hba_stop(hba); 8944 8945 ufshcd_exit_clk_scaling(hba); 8946 ufshcd_exit_clk_gating(hba); 8947 if (ufshcd_is_clkscaling_supported(hba)) 8948 device_remove_file(hba->dev, &hba->clk_scaling.enable_attr); 8949 ufshcd_hba_exit(hba); 8950 } 8951 EXPORT_SYMBOL_GPL(ufshcd_remove); 8952 8953 /** 8954 * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA) 8955 * @hba: pointer to Host Bus Adapter (HBA) 8956 */ ufshcd_dealloc_host(struct ufs_hba * hba)8957 void ufshcd_dealloc_host(struct ufs_hba *hba) 8958 { 8959 ufshcd_crypto_destroy_keyslot_manager(hba); 8960 scsi_host_put(hba->host); 8961 } 8962 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host); 8963 8964 /** 8965 * ufshcd_set_dma_mask - Set dma mask based on the controller 8966 * addressing capability 8967 * @hba: per adapter instance 8968 * 8969 * Returns 0 for success, non-zero for failure 8970 */ ufshcd_set_dma_mask(struct ufs_hba * hba)8971 static int ufshcd_set_dma_mask(struct ufs_hba *hba) 8972 { 8973 if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) { 8974 if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64))) 8975 return 0; 8976 } 8977 return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32)); 8978 } 8979 8980 /** 8981 * ufshcd_alloc_host - allocate Host Bus Adapter (HBA) 8982 * @dev: pointer to device handle 8983 * @hba_handle: driver private handle 8984 * Returns 0 on success, non-zero value on failure 8985 */ ufshcd_alloc_host(struct device * dev,struct ufs_hba ** hba_handle)8986 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle) 8987 { 8988 struct Scsi_Host *host; 8989 struct ufs_hba *hba; 8990 int err = 0; 8991 8992 if (!dev) { 8993 dev_err(dev, 8994 "Invalid memory reference for dev is NULL\n"); 8995 err = -ENODEV; 8996 goto out_error; 8997 } 8998 8999 host = scsi_host_alloc(&ufshcd_driver_template, 9000 sizeof(struct ufs_hba)); 9001 if (!host) { 9002 dev_err(dev, "scsi_host_alloc failed\n"); 9003 err = -ENOMEM; 9004 goto out_error; 9005 } 9006 hba = shost_priv(host); 9007 hba->host = host; 9008 hba->dev = dev; 9009 *hba_handle = hba; 9010 hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL; 9011 9012 INIT_LIST_HEAD(&hba->clk_list_head); 9013 9014 out_error: 9015 return err; 9016 } 9017 EXPORT_SYMBOL(ufshcd_alloc_host); 9018 9019 /* This function exists because blk_mq_alloc_tag_set() requires this. */ ufshcd_queue_tmf(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * qd)9020 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx, 9021 const struct blk_mq_queue_data *qd) 9022 { 9023 WARN_ON_ONCE(true); 9024 return BLK_STS_NOTSUPP; 9025 } 9026 9027 static const struct blk_mq_ops ufshcd_tmf_ops = { 9028 .queue_rq = ufshcd_queue_tmf, 9029 }; 9030 9031 /** 9032 * ufshcd_init - Driver initialization routine 9033 * @hba: per-adapter instance 9034 * @mmio_base: base register address 9035 * @irq: Interrupt line of device 9036 * Returns 0 on success, non-zero value on failure 9037 */ ufshcd_init(struct ufs_hba * hba,void __iomem * mmio_base,unsigned int irq)9038 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq) 9039 { 9040 int err; 9041 struct Scsi_Host *host = hba->host; 9042 struct device *dev = hba->dev; 9043 char eh_wq_name[sizeof("ufs_eh_wq_00")]; 9044 9045 if (!mmio_base) { 9046 dev_err(hba->dev, 9047 "Invalid memory reference for mmio_base is NULL\n"); 9048 err = -ENODEV; 9049 goto out_error; 9050 } 9051 9052 hba->mmio_base = mmio_base; 9053 hba->irq = irq; 9054 hba->vps = &ufs_hba_vps; 9055 9056 err = ufshcd_hba_init(hba); 9057 if (err) 9058 goto out_error; 9059 9060 /* Read capabilities registers */ 9061 err = ufshcd_hba_capabilities(hba); 9062 if (err) 9063 goto out_disable; 9064 9065 /* Get UFS version supported by the controller */ 9066 hba->ufs_version = ufshcd_get_ufs_version(hba); 9067 9068 if ((hba->ufs_version != UFSHCI_VERSION_10) && 9069 (hba->ufs_version != UFSHCI_VERSION_11) && 9070 (hba->ufs_version != UFSHCI_VERSION_20) && 9071 (hba->ufs_version != UFSHCI_VERSION_21)) 9072 dev_err(hba->dev, "invalid UFS version 0x%x\n", 9073 hba->ufs_version); 9074 9075 /* Get Interrupt bit mask per version */ 9076 hba->intr_mask = ufshcd_get_intr_mask(hba); 9077 9078 err = ufshcd_set_dma_mask(hba); 9079 if (err) { 9080 dev_err(hba->dev, "set dma mask failed\n"); 9081 goto out_disable; 9082 } 9083 9084 /* Allocate memory for host memory space */ 9085 err = ufshcd_memory_alloc(hba); 9086 if (err) { 9087 dev_err(hba->dev, "Memory allocation failed\n"); 9088 goto out_disable; 9089 } 9090 9091 /* Configure LRB */ 9092 ufshcd_host_memory_configure(hba); 9093 9094 host->can_queue = hba->nutrs; 9095 host->cmd_per_lun = hba->nutrs; 9096 host->max_id = UFSHCD_MAX_ID; 9097 host->max_lun = UFS_MAX_LUNS; 9098 host->max_channel = UFSHCD_MAX_CHANNEL; 9099 host->unique_id = host->host_no; 9100 host->max_cmd_len = UFS_CDB_SIZE; 9101 9102 hba->max_pwr_info.is_valid = false; 9103 9104 /* Initialize work queues */ 9105 snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d", 9106 hba->host->host_no); 9107 hba->eh_wq = create_singlethread_workqueue(eh_wq_name); 9108 if (!hba->eh_wq) { 9109 dev_err(hba->dev, "%s: failed to create eh workqueue\n", 9110 __func__); 9111 err = -ENOMEM; 9112 goto out_disable; 9113 } 9114 INIT_WORK(&hba->eh_work, ufshcd_err_handler); 9115 INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler); 9116 9117 /* Initialize UIC command mutex */ 9118 mutex_init(&hba->uic_cmd_mutex); 9119 9120 /* Initialize mutex for device management commands */ 9121 mutex_init(&hba->dev_cmd.lock); 9122 9123 init_rwsem(&hba->clk_scaling_lock); 9124 9125 ufshcd_init_clk_gating(hba); 9126 9127 ufshcd_init_clk_scaling(hba); 9128 9129 /* 9130 * In order to avoid any spurious interrupt immediately after 9131 * registering UFS controller interrupt handler, clear any pending UFS 9132 * interrupt status and disable all the UFS interrupts. 9133 */ 9134 ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS), 9135 REG_INTERRUPT_STATUS); 9136 ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE); 9137 /* 9138 * Make sure that UFS interrupts are disabled and any pending interrupt 9139 * status is cleared before registering UFS interrupt handler. 9140 */ 9141 mb(); 9142 9143 /* IRQ registration */ 9144 err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba); 9145 if (err) { 9146 dev_err(hba->dev, "request irq failed\n"); 9147 goto exit_gating; 9148 } else { 9149 hba->is_irq_enabled = true; 9150 } 9151 9152 err = scsi_add_host(host, hba->dev); 9153 if (err) { 9154 dev_err(hba->dev, "scsi_add_host failed\n"); 9155 goto exit_gating; 9156 } 9157 9158 hba->cmd_queue = blk_mq_init_queue(&hba->host->tag_set); 9159 if (IS_ERR(hba->cmd_queue)) { 9160 err = PTR_ERR(hba->cmd_queue); 9161 goto out_remove_scsi_host; 9162 } 9163 9164 hba->tmf_tag_set = (struct blk_mq_tag_set) { 9165 .nr_hw_queues = 1, 9166 .queue_depth = hba->nutmrs, 9167 .ops = &ufshcd_tmf_ops, 9168 .flags = BLK_MQ_F_NO_SCHED, 9169 }; 9170 err = blk_mq_alloc_tag_set(&hba->tmf_tag_set); 9171 if (err < 0) 9172 goto free_cmd_queue; 9173 hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set); 9174 if (IS_ERR(hba->tmf_queue)) { 9175 err = PTR_ERR(hba->tmf_queue); 9176 goto free_tmf_tag_set; 9177 } 9178 9179 /* Reset the attached device */ 9180 ufshcd_vops_device_reset(hba); 9181 9182 ufshcd_init_crypto(hba); 9183 9184 /* Host controller enable */ 9185 err = ufshcd_hba_enable(hba); 9186 if (err) { 9187 dev_err(hba->dev, "Host controller enable failed\n"); 9188 ufshcd_print_host_regs(hba); 9189 ufshcd_print_host_state(hba); 9190 goto free_tmf_queue; 9191 } 9192 9193 /* 9194 * Set the default power management level for runtime and system PM. 9195 * Default power saving mode is to keep UFS link in Hibern8 state 9196 * and UFS device in sleep state. 9197 */ 9198 hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state( 9199 UFS_SLEEP_PWR_MODE, 9200 UIC_LINK_HIBERN8_STATE); 9201 hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state( 9202 UFS_SLEEP_PWR_MODE, 9203 UIC_LINK_HIBERN8_STATE); 9204 9205 INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work, 9206 ufshcd_rpm_dev_flush_recheck_work); 9207 9208 /* Set the default auto-hiberate idle timer value to 150 ms */ 9209 if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) { 9210 hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) | 9211 FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3); 9212 } 9213 9214 /* Hold auto suspend until async scan completes */ 9215 pm_runtime_get_sync(dev); 9216 atomic_set(&hba->scsi_block_reqs_cnt, 0); 9217 /* 9218 * We are assuming that device wasn't put in sleep/power-down 9219 * state exclusively during the boot stage before kernel. 9220 * This assumption helps avoid doing link startup twice during 9221 * ufshcd_probe_hba(). 9222 */ 9223 ufshcd_set_ufs_dev_active(hba); 9224 9225 async_schedule(ufshcd_async_scan, hba); 9226 ufs_sysfs_add_nodes(hba->dev); 9227 9228 return 0; 9229 9230 free_tmf_queue: 9231 blk_cleanup_queue(hba->tmf_queue); 9232 free_tmf_tag_set: 9233 blk_mq_free_tag_set(&hba->tmf_tag_set); 9234 free_cmd_queue: 9235 blk_cleanup_queue(hba->cmd_queue); 9236 out_remove_scsi_host: 9237 scsi_remove_host(hba->host); 9238 exit_gating: 9239 ufshcd_exit_clk_scaling(hba); 9240 ufshcd_exit_clk_gating(hba); 9241 destroy_workqueue(hba->eh_wq); 9242 out_disable: 9243 hba->is_irq_enabled = false; 9244 ufshcd_hba_exit(hba); 9245 out_error: 9246 return err; 9247 } 9248 EXPORT_SYMBOL_GPL(ufshcd_init); 9249 9250 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>"); 9251 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>"); 9252 MODULE_DESCRIPTION("Generic UFS host controller driver Core"); 9253 MODULE_LICENSE("GPL"); 9254 MODULE_VERSION(UFSHCD_DRIVER_VERSION); 9255