1  #ifndef _ASM_POWERPC_IO_H
2  #define _ASM_POWERPC_IO_H
3  #ifdef __KERNEL__
4  
5  #define ARCH_HAS_IOREMAP_WC
6  
7  /*
8   * This program is free software; you can redistribute it and/or
9   * modify it under the terms of the GNU General Public License
10   * as published by the Free Software Foundation; either version
11   * 2 of the License, or (at your option) any later version.
12   */
13  
14  /* Check of existence of legacy devices */
15  extern int check_legacy_ioport(unsigned long base_port);
16  #define I8042_DATA_REG	0x60
17  #define FDC_BASE	0x3f0
18  
19  #if defined(CONFIG_PPC64) && defined(CONFIG_PCI)
20  extern struct pci_dev *isa_bridge_pcidev;
21  /*
22   * has legacy ISA devices ?
23   */
24  #define arch_has_dev_port()	(isa_bridge_pcidev != NULL || isa_io_special)
25  #endif
26  
27  #include <linux/device.h>
28  #include <linux/compiler.h>
29  #include <asm/page.h>
30  #include <asm/byteorder.h>
31  #include <asm/synch.h>
32  #include <asm/delay.h>
33  #include <asm/mmu.h>
34  #include <asm/ppc_asm.h>
35  
36  #ifdef CONFIG_PPC64
37  #include <asm/paca.h>
38  #endif
39  
40  #define SIO_CONFIG_RA	0x398
41  #define SIO_CONFIG_RD	0x399
42  
43  #define SLOW_DOWN_IO
44  
45  /* 32 bits uses slightly different variables for the various IO
46   * bases. Most of this file only uses _IO_BASE though which we
47   * define properly based on the platform
48   */
49  #ifndef CONFIG_PCI
50  #define _IO_BASE	0
51  #define _ISA_MEM_BASE	0
52  #define PCI_DRAM_OFFSET 0
53  #elif defined(CONFIG_PPC32)
54  #define _IO_BASE	isa_io_base
55  #define _ISA_MEM_BASE	isa_mem_base
56  #define PCI_DRAM_OFFSET	pci_dram_offset
57  #else
58  #define _IO_BASE	pci_io_base
59  #define _ISA_MEM_BASE	isa_mem_base
60  #define PCI_DRAM_OFFSET	0
61  #endif
62  
63  extern unsigned long isa_io_base;
64  extern unsigned long pci_io_base;
65  extern unsigned long pci_dram_offset;
66  
67  extern resource_size_t isa_mem_base;
68  
69  /* Boolean set by platform if PIO accesses are suppored while _IO_BASE
70   * is not set or addresses cannot be translated to MMIO. This is typically
71   * set when the platform supports "special" PIO accesses via a non memory
72   * mapped mechanism, and allows things like the early udbg UART code to
73   * function.
74   */
75  extern bool isa_io_special;
76  
77  #ifdef CONFIG_PPC32
78  #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
79  #error CONFIG_PPC_INDIRECT_{PIO,MMIO} are not yet supported on 32 bits
80  #endif
81  #endif
82  
83  /*
84   *
85   * Low level MMIO accessors
86   *
87   * This provides the non-bus specific accessors to MMIO. Those are PowerPC
88   * specific and thus shouldn't be used in generic code. The accessors
89   * provided here are:
90   *
91   *	in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64
92   *	out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64
93   *	_insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns
94   *
95   * Those operate directly on a kernel virtual address. Note that the prototype
96   * for the out_* accessors has the arguments in opposite order from the usual
97   * linux PCI accessors. Unlike those, they take the address first and the value
98   * next.
99   *
100   * Note: I might drop the _ns suffix on the stream operations soon as it is
101   * simply normal for stream operations to not swap in the first place.
102   *
103   */
104  
105  #ifdef CONFIG_PPC64
106  #define IO_SET_SYNC_FLAG()	do { local_paca->io_sync = 1; } while(0)
107  #else
108  #define IO_SET_SYNC_FLAG()
109  #endif
110  
111  /* gcc 4.0 and older doesn't have 'Z' constraint */
112  #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ == 0)
113  #define DEF_MMIO_IN_X(name, size, insn)				\
114  static inline u##size name(const volatile u##size __iomem *addr)	\
115  {									\
116  	u##size ret;							\
117  	__asm__ __volatile__("sync;"#insn" %0,0,%1;twi 0,%0,0;isync"	\
118  		: "=r" (ret) : "r" (addr), "m" (*addr) : "memory");	\
119  	return ret;							\
120  }
121  
122  #define DEF_MMIO_OUT_X(name, size, insn)				\
123  static inline void name(volatile u##size __iomem *addr, u##size val)	\
124  {									\
125  	__asm__ __volatile__("sync;"#insn" %1,0,%2"			\
126  		: "=m" (*addr) : "r" (val), "r" (addr) : "memory");	\
127  	IO_SET_SYNC_FLAG();						\
128  }
129  #else /* newer gcc */
130  #define DEF_MMIO_IN_X(name, size, insn)				\
131  static inline u##size name(const volatile u##size __iomem *addr)	\
132  {									\
133  	u##size ret;							\
134  	__asm__ __volatile__("sync;"#insn" %0,%y1;twi 0,%0,0;isync"	\
135  		: "=r" (ret) : "Z" (*addr) : "memory");			\
136  	return ret;							\
137  }
138  
139  #define DEF_MMIO_OUT_X(name, size, insn)				\
140  static inline void name(volatile u##size __iomem *addr, u##size val)	\
141  {									\
142  	__asm__ __volatile__("sync;"#insn" %1,%y0"			\
143  		: "=Z" (*addr) : "r" (val) : "memory");			\
144  	IO_SET_SYNC_FLAG();						\
145  }
146  #endif
147  
148  #define DEF_MMIO_IN_D(name, size, insn)				\
149  static inline u##size name(const volatile u##size __iomem *addr)	\
150  {									\
151  	u##size ret;							\
152  	__asm__ __volatile__("sync;"#insn"%U1%X1 %0,%1;twi 0,%0,0;isync"\
153  		: "=r" (ret) : "m" (*addr) : "memory");			\
154  	return ret;							\
155  }
156  
157  #define DEF_MMIO_OUT_D(name, size, insn)				\
158  static inline void name(volatile u##size __iomem *addr, u##size val)	\
159  {									\
160  	__asm__ __volatile__("sync;"#insn"%U0%X0 %1,%0"			\
161  		: "=m" (*addr) : "r" (val) : "memory");			\
162  	IO_SET_SYNC_FLAG();						\
163  }
164  
165  DEF_MMIO_IN_D(in_8,     8, lbz);
166  DEF_MMIO_OUT_D(out_8,   8, stb);
167  
168  #ifdef __BIG_ENDIAN__
169  DEF_MMIO_IN_D(in_be16, 16, lhz);
170  DEF_MMIO_IN_D(in_be32, 32, lwz);
171  DEF_MMIO_IN_X(in_le16, 16, lhbrx);
172  DEF_MMIO_IN_X(in_le32, 32, lwbrx);
173  
174  DEF_MMIO_OUT_D(out_be16, 16, sth);
175  DEF_MMIO_OUT_D(out_be32, 32, stw);
176  DEF_MMIO_OUT_X(out_le16, 16, sthbrx);
177  DEF_MMIO_OUT_X(out_le32, 32, stwbrx);
178  #else
179  DEF_MMIO_IN_X(in_be16, 16, lhbrx);
180  DEF_MMIO_IN_X(in_be32, 32, lwbrx);
181  DEF_MMIO_IN_D(in_le16, 16, lhz);
182  DEF_MMIO_IN_D(in_le32, 32, lwz);
183  
184  DEF_MMIO_OUT_X(out_be16, 16, sthbrx);
185  DEF_MMIO_OUT_X(out_be32, 32, stwbrx);
186  DEF_MMIO_OUT_D(out_le16, 16, sth);
187  DEF_MMIO_OUT_D(out_le32, 32, stw);
188  
189  #endif /* __BIG_ENDIAN */
190  
191  #ifdef __powerpc64__
192  
193  #ifdef __BIG_ENDIAN__
194  DEF_MMIO_OUT_D(out_be64, 64, std);
195  DEF_MMIO_IN_D(in_be64, 64, ld);
196  
197  /* There is no asm instructions for 64 bits reverse loads and stores */
in_le64(const volatile u64 __iomem * addr)198  static inline u64 in_le64(const volatile u64 __iomem *addr)
199  {
200  	return swab64(in_be64(addr));
201  }
202  
out_le64(volatile u64 __iomem * addr,u64 val)203  static inline void out_le64(volatile u64 __iomem *addr, u64 val)
204  {
205  	out_be64(addr, swab64(val));
206  }
207  #else
208  DEF_MMIO_OUT_D(out_le64, 64, std);
209  DEF_MMIO_IN_D(in_le64, 64, ld);
210  
211  /* There is no asm instructions for 64 bits reverse loads and stores */
in_be64(const volatile u64 __iomem * addr)212  static inline u64 in_be64(const volatile u64 __iomem *addr)
213  {
214  	return swab64(in_le64(addr));
215  }
216  
out_be64(volatile u64 __iomem * addr,u64 val)217  static inline void out_be64(volatile u64 __iomem *addr, u64 val)
218  {
219  	out_le64(addr, swab64(val));
220  }
221  
222  #endif
223  #endif /* __powerpc64__ */
224  
225  /*
226   * Low level IO stream instructions are defined out of line for now
227   */
228  extern void _insb(const volatile u8 __iomem *addr, void *buf, long count);
229  extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count);
230  extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count);
231  extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count);
232  extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count);
233  extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count);
234  
235  /* The _ns naming is historical and will be removed. For now, just #define
236   * the non _ns equivalent names
237   */
238  #define _insw	_insw_ns
239  #define _insl	_insl_ns
240  #define _outsw	_outsw_ns
241  #define _outsl	_outsl_ns
242  
243  
244  /*
245   * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line
246   */
247  
248  extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n);
249  extern void _memcpy_fromio(void *dest, const volatile void __iomem *src,
250  			   unsigned long n);
251  extern void _memcpy_toio(volatile void __iomem *dest, const void *src,
252  			 unsigned long n);
253  
254  /*
255   *
256   * PCI and standard ISA accessors
257   *
258   * Those are globally defined linux accessors for devices on PCI or ISA
259   * busses. They follow the Linux defined semantics. The current implementation
260   * for PowerPC is as close as possible to the x86 version of these, and thus
261   * provides fairly heavy weight barriers for the non-raw versions
262   *
263   * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_MMIO
264   * or CONFIG_PPC_INDIRECT_PIO are set allowing the platform to provide its
265   * own implementation of some or all of the accessors.
266   */
267  
268  /*
269   * Include the EEH definitions when EEH is enabled only so they don't get
270   * in the way when building for 32 bits
271   */
272  #ifdef CONFIG_EEH
273  #include <asm/eeh.h>
274  #endif
275  
276  /* Shortcut to the MMIO argument pointer */
277  #define PCI_IO_ADDR	volatile void __iomem *
278  
279  /* Indirect IO address tokens:
280   *
281   * When CONFIG_PPC_INDIRECT_MMIO is set, the platform can provide hooks
282   * on all MMIOs. (Note that this is all 64 bits only for now)
283   *
284   * To help platforms who may need to differentiate MMIO addresses in
285   * their hooks, a bitfield is reserved for use by the platform near the
286   * top of MMIO addresses (not PIO, those have to cope the hard way).
287   *
288   * This bit field is 12 bits and is at the top of the IO virtual
289   * addresses PCI_IO_INDIRECT_TOKEN_MASK.
290   *
291   * The kernel virtual space is thus:
292   *
293   *  0xD000000000000000		: vmalloc
294   *  0xD000080000000000		: PCI PHB IO space
295   *  0xD000080080000000		: ioremap
296   *  0xD0000fffffffffff		: end of ioremap region
297   *
298   * Since the top 4 bits are reserved as the region ID, we use thus
299   * the next 12 bits and keep 4 bits available for the future if the
300   * virtual address space is ever to be extended.
301   *
302   * The direct IO mapping operations will then mask off those bits
303   * before doing the actual access, though that only happen when
304   * CONFIG_PPC_INDIRECT_MMIO is set, thus be careful when you use that
305   * mechanism
306   *
307   * For PIO, there is a separate CONFIG_PPC_INDIRECT_PIO which makes
308   * all PIO functions call through a hook.
309   */
310  
311  #ifdef CONFIG_PPC_INDIRECT_MMIO
312  #define PCI_IO_IND_TOKEN_MASK	0x0fff000000000000ul
313  #define PCI_IO_IND_TOKEN_SHIFT	48
314  #define PCI_FIX_ADDR(addr)						\
315  	((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK))
316  #define PCI_GET_ADDR_TOKEN(addr)					\
317  	(((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >> 		\
318  		PCI_IO_IND_TOKEN_SHIFT)
319  #define PCI_SET_ADDR_TOKEN(addr, token) 				\
320  do {									\
321  	unsigned long __a = (unsigned long)(addr);			\
322  	__a &= ~PCI_IO_IND_TOKEN_MASK;					\
323  	__a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT;	\
324  	(addr) = (void __iomem *)__a;					\
325  } while(0)
326  #else
327  #define PCI_FIX_ADDR(addr) (addr)
328  #endif
329  
330  
331  /*
332   * Non ordered and non-swapping "raw" accessors
333   */
334  
__raw_readb(const volatile void __iomem * addr)335  static inline unsigned char __raw_readb(const volatile void __iomem *addr)
336  {
337  	return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr);
338  }
__raw_readw(const volatile void __iomem * addr)339  static inline unsigned short __raw_readw(const volatile void __iomem *addr)
340  {
341  	return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr);
342  }
__raw_readl(const volatile void __iomem * addr)343  static inline unsigned int __raw_readl(const volatile void __iomem *addr)
344  {
345  	return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr);
346  }
__raw_writeb(unsigned char v,volatile void __iomem * addr)347  static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr)
348  {
349  	*(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v;
350  }
__raw_writew(unsigned short v,volatile void __iomem * addr)351  static inline void __raw_writew(unsigned short v, volatile void __iomem *addr)
352  {
353  	*(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v;
354  }
__raw_writel(unsigned int v,volatile void __iomem * addr)355  static inline void __raw_writel(unsigned int v, volatile void __iomem *addr)
356  {
357  	*(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v;
358  }
359  
360  #ifdef __powerpc64__
__raw_readq(const volatile void __iomem * addr)361  static inline unsigned long __raw_readq(const volatile void __iomem *addr)
362  {
363  	return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr);
364  }
__raw_writeq(unsigned long v,volatile void __iomem * addr)365  static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr)
366  {
367  	*(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v;
368  }
369  
__raw_writeq_be(unsigned long v,volatile void __iomem * addr)370  static inline void __raw_writeq_be(unsigned long v, volatile void __iomem *addr)
371  {
372  	__raw_writeq((__force unsigned long)cpu_to_be64(v), addr);
373  }
374  
375  /*
376   * Real mode versions of the above. Those instructions are only supposed
377   * to be used in hypervisor real mode as per the architecture spec.
378   */
__raw_rm_writeb(u8 val,volatile void __iomem * paddr)379  static inline void __raw_rm_writeb(u8 val, volatile void __iomem *paddr)
380  {
381  	__asm__ __volatile__("stbcix %0,0,%1"
382  		: : "r" (val), "r" (paddr) : "memory");
383  }
384  
__raw_rm_writew(u16 val,volatile void __iomem * paddr)385  static inline void __raw_rm_writew(u16 val, volatile void __iomem *paddr)
386  {
387  	__asm__ __volatile__("sthcix %0,0,%1"
388  		: : "r" (val), "r" (paddr) : "memory");
389  }
390  
__raw_rm_writel(u32 val,volatile void __iomem * paddr)391  static inline void __raw_rm_writel(u32 val, volatile void __iomem *paddr)
392  {
393  	__asm__ __volatile__("stwcix %0,0,%1"
394  		: : "r" (val), "r" (paddr) : "memory");
395  }
396  
__raw_rm_writeq(u64 val,volatile void __iomem * paddr)397  static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
398  {
399  	__asm__ __volatile__("stdcix %0,0,%1"
400  		: : "r" (val), "r" (paddr) : "memory");
401  }
402  
__raw_rm_writeq_be(u64 val,volatile void __iomem * paddr)403  static inline void __raw_rm_writeq_be(u64 val, volatile void __iomem *paddr)
404  {
405  	__raw_rm_writeq((__force u64)cpu_to_be64(val), paddr);
406  }
407  
__raw_rm_readb(volatile void __iomem * paddr)408  static inline u8 __raw_rm_readb(volatile void __iomem *paddr)
409  {
410  	u8 ret;
411  	__asm__ __volatile__("lbzcix %0,0, %1"
412  			     : "=r" (ret) : "r" (paddr) : "memory");
413  	return ret;
414  }
415  
__raw_rm_readw(volatile void __iomem * paddr)416  static inline u16 __raw_rm_readw(volatile void __iomem *paddr)
417  {
418  	u16 ret;
419  	__asm__ __volatile__("lhzcix %0,0, %1"
420  			     : "=r" (ret) : "r" (paddr) : "memory");
421  	return ret;
422  }
423  
__raw_rm_readl(volatile void __iomem * paddr)424  static inline u32 __raw_rm_readl(volatile void __iomem *paddr)
425  {
426  	u32 ret;
427  	__asm__ __volatile__("lwzcix %0,0, %1"
428  			     : "=r" (ret) : "r" (paddr) : "memory");
429  	return ret;
430  }
431  
__raw_rm_readq(volatile void __iomem * paddr)432  static inline u64 __raw_rm_readq(volatile void __iomem *paddr)
433  {
434  	u64 ret;
435  	__asm__ __volatile__("ldcix %0,0, %1"
436  			     : "=r" (ret) : "r" (paddr) : "memory");
437  	return ret;
438  }
439  #endif /* __powerpc64__ */
440  
441  /*
442   *
443   * PCI PIO and MMIO accessors.
444   *
445   *
446   * On 32 bits, PIO operations have a recovery mechanism in case they trigger
447   * machine checks (which they occasionally do when probing non existing
448   * IO ports on some platforms, like PowerMac and 8xx).
449   * I always found it to be of dubious reliability and I am tempted to get
450   * rid of it one of these days. So if you think it's important to keep it,
451   * please voice up asap. We never had it for 64 bits and I do not intend
452   * to port it over
453   */
454  
455  #ifdef CONFIG_PPC32
456  
457  #define __do_in_asm(name, op)				\
458  static inline unsigned int name(unsigned int port)	\
459  {							\
460  	unsigned int x;					\
461  	__asm__ __volatile__(				\
462  		"sync\n"				\
463  		"0:"	op "	%0,0,%1\n"		\
464  		"1:	twi	0,%0,0\n"		\
465  		"2:	isync\n"			\
466  		"3:	nop\n"				\
467  		"4:\n"					\
468  		".section .fixup,\"ax\"\n"		\
469  		"5:	li	%0,-1\n"		\
470  		"	b	4b\n"			\
471  		".previous\n"				\
472  		EX_TABLE(0b, 5b)			\
473  		EX_TABLE(1b, 5b)			\
474  		EX_TABLE(2b, 5b)			\
475  		EX_TABLE(3b, 5b)			\
476  		: "=&r" (x)				\
477  		: "r" (port + _IO_BASE)			\
478  		: "memory");  				\
479  	return x;					\
480  }
481  
482  #define __do_out_asm(name, op)				\
483  static inline void name(unsigned int val, unsigned int port) \
484  {							\
485  	__asm__ __volatile__(				\
486  		"sync\n"				\
487  		"0:" op " %0,0,%1\n"			\
488  		"1:	sync\n"				\
489  		"2:\n"					\
490  		EX_TABLE(0b, 2b)			\
491  		EX_TABLE(1b, 2b)			\
492  		: : "r" (val), "r" (port + _IO_BASE)	\
493  		: "memory");   	   	   		\
494  }
495  
496  __do_in_asm(_rec_inb, "lbzx")
497  __do_in_asm(_rec_inw, "lhbrx")
498  __do_in_asm(_rec_inl, "lwbrx")
499  __do_out_asm(_rec_outb, "stbx")
500  __do_out_asm(_rec_outw, "sthbrx")
501  __do_out_asm(_rec_outl, "stwbrx")
502  
503  #endif /* CONFIG_PPC32 */
504  
505  /* The "__do_*" operations below provide the actual "base" implementation
506   * for each of the defined accessors. Some of them use the out_* functions
507   * directly, some of them still use EEH, though we might change that in the
508   * future. Those macros below provide the necessary argument swapping and
509   * handling of the IO base for PIO.
510   *
511   * They are themselves used by the macros that define the actual accessors
512   * and can be used by the hooks if any.
513   *
514   * Note that PIO operations are always defined in terms of their corresonding
515   * MMIO operations. That allows platforms like iSeries who want to modify the
516   * behaviour of both to only hook on the MMIO version and get both. It's also
517   * possible to hook directly at the toplevel PIO operation if they have to
518   * be handled differently
519   */
520  #define __do_writeb(val, addr)	out_8(PCI_FIX_ADDR(addr), val)
521  #define __do_writew(val, addr)	out_le16(PCI_FIX_ADDR(addr), val)
522  #define __do_writel(val, addr)	out_le32(PCI_FIX_ADDR(addr), val)
523  #define __do_writeq(val, addr)	out_le64(PCI_FIX_ADDR(addr), val)
524  #define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val)
525  #define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val)
526  #define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val)
527  
528  #ifdef CONFIG_EEH
529  #define __do_readb(addr)	eeh_readb(PCI_FIX_ADDR(addr))
530  #define __do_readw(addr)	eeh_readw(PCI_FIX_ADDR(addr))
531  #define __do_readl(addr)	eeh_readl(PCI_FIX_ADDR(addr))
532  #define __do_readq(addr)	eeh_readq(PCI_FIX_ADDR(addr))
533  #define __do_readw_be(addr)	eeh_readw_be(PCI_FIX_ADDR(addr))
534  #define __do_readl_be(addr)	eeh_readl_be(PCI_FIX_ADDR(addr))
535  #define __do_readq_be(addr)	eeh_readq_be(PCI_FIX_ADDR(addr))
536  #else /* CONFIG_EEH */
537  #define __do_readb(addr)	in_8(PCI_FIX_ADDR(addr))
538  #define __do_readw(addr)	in_le16(PCI_FIX_ADDR(addr))
539  #define __do_readl(addr)	in_le32(PCI_FIX_ADDR(addr))
540  #define __do_readq(addr)	in_le64(PCI_FIX_ADDR(addr))
541  #define __do_readw_be(addr)	in_be16(PCI_FIX_ADDR(addr))
542  #define __do_readl_be(addr)	in_be32(PCI_FIX_ADDR(addr))
543  #define __do_readq_be(addr)	in_be64(PCI_FIX_ADDR(addr))
544  #endif /* !defined(CONFIG_EEH) */
545  
546  #ifdef CONFIG_PPC32
547  #define __do_outb(val, port)	_rec_outb(val, port)
548  #define __do_outw(val, port)	_rec_outw(val, port)
549  #define __do_outl(val, port)	_rec_outl(val, port)
550  #define __do_inb(port)		_rec_inb(port)
551  #define __do_inw(port)		_rec_inw(port)
552  #define __do_inl(port)		_rec_inl(port)
553  #else /* CONFIG_PPC32 */
554  #define __do_outb(val, port)	writeb(val,(PCI_IO_ADDR)_IO_BASE+port);
555  #define __do_outw(val, port)	writew(val,(PCI_IO_ADDR)_IO_BASE+port);
556  #define __do_outl(val, port)	writel(val,(PCI_IO_ADDR)_IO_BASE+port);
557  #define __do_inb(port)		readb((PCI_IO_ADDR)_IO_BASE + port);
558  #define __do_inw(port)		readw((PCI_IO_ADDR)_IO_BASE + port);
559  #define __do_inl(port)		readl((PCI_IO_ADDR)_IO_BASE + port);
560  #endif /* !CONFIG_PPC32 */
561  
562  #ifdef CONFIG_EEH
563  #define __do_readsb(a, b, n)	eeh_readsb(PCI_FIX_ADDR(a), (b), (n))
564  #define __do_readsw(a, b, n)	eeh_readsw(PCI_FIX_ADDR(a), (b), (n))
565  #define __do_readsl(a, b, n)	eeh_readsl(PCI_FIX_ADDR(a), (b), (n))
566  #else /* CONFIG_EEH */
567  #define __do_readsb(a, b, n)	_insb(PCI_FIX_ADDR(a), (b), (n))
568  #define __do_readsw(a, b, n)	_insw(PCI_FIX_ADDR(a), (b), (n))
569  #define __do_readsl(a, b, n)	_insl(PCI_FIX_ADDR(a), (b), (n))
570  #endif /* !CONFIG_EEH */
571  #define __do_writesb(a, b, n)	_outsb(PCI_FIX_ADDR(a),(b),(n))
572  #define __do_writesw(a, b, n)	_outsw(PCI_FIX_ADDR(a),(b),(n))
573  #define __do_writesl(a, b, n)	_outsl(PCI_FIX_ADDR(a),(b),(n))
574  
575  #define __do_insb(p, b, n)	readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
576  #define __do_insw(p, b, n)	readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
577  #define __do_insl(p, b, n)	readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
578  #define __do_outsb(p, b, n)	writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
579  #define __do_outsw(p, b, n)	writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
580  #define __do_outsl(p, b, n)	writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
581  
582  #define __do_memset_io(addr, c, n)	\
583  				_memset_io(PCI_FIX_ADDR(addr), c, n)
584  #define __do_memcpy_toio(dst, src, n)	\
585  				_memcpy_toio(PCI_FIX_ADDR(dst), src, n)
586  
587  #ifdef CONFIG_EEH
588  #define __do_memcpy_fromio(dst, src, n)	\
589  				eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n)
590  #else /* CONFIG_EEH */
591  #define __do_memcpy_fromio(dst, src, n)	\
592  				_memcpy_fromio(dst,PCI_FIX_ADDR(src),n)
593  #endif /* !CONFIG_EEH */
594  
595  #ifdef CONFIG_PPC_INDIRECT_PIO
596  #define DEF_PCI_HOOK_pio(x)	x
597  #else
598  #define DEF_PCI_HOOK_pio(x)	NULL
599  #endif
600  
601  #ifdef CONFIG_PPC_INDIRECT_MMIO
602  #define DEF_PCI_HOOK_mem(x)	x
603  #else
604  #define DEF_PCI_HOOK_mem(x)	NULL
605  #endif
606  
607  /* Structure containing all the hooks */
608  extern struct ppc_pci_io {
609  
610  #define DEF_PCI_AC_RET(name, ret, at, al, space, aa)	ret (*name) at;
611  #define DEF_PCI_AC_NORET(name, at, al, space, aa)	void (*name) at;
612  
613  #include <asm/io-defs.h>
614  
615  #undef DEF_PCI_AC_RET
616  #undef DEF_PCI_AC_NORET
617  
618  } ppc_pci_io;
619  
620  /* The inline wrappers */
621  #define DEF_PCI_AC_RET(name, ret, at, al, space, aa)		\
622  static inline ret name at					\
623  {								\
624  	if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL)	\
625  		return ppc_pci_io.name al;			\
626  	return __do_##name al;					\
627  }
628  
629  #define DEF_PCI_AC_NORET(name, at, al, space, aa)		\
630  static inline void name at					\
631  {								\
632  	if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL)		\
633  		ppc_pci_io.name al;				\
634  	else							\
635  		__do_##name al;					\
636  }
637  
638  #include <asm/io-defs.h>
639  
640  #undef DEF_PCI_AC_RET
641  #undef DEF_PCI_AC_NORET
642  
643  /* Some drivers check for the presence of readq & writeq with
644   * a #ifdef, so we make them happy here.
645   */
646  #ifdef __powerpc64__
647  #define readq	readq
648  #define writeq	writeq
649  #endif
650  
651  /*
652   * Convert a physical pointer to a virtual kernel pointer for /dev/mem
653   * access
654   */
655  #define xlate_dev_mem_ptr(p)	__va(p)
656  
657  /*
658   * Convert a virtual cached pointer to an uncached pointer
659   */
660  #define xlate_dev_kmem_ptr(p)	p
661  
662  /*
663   * We don't do relaxed operations yet, at least not with this semantic
664   */
665  #define readb_relaxed(addr)	readb(addr)
666  #define readw_relaxed(addr)	readw(addr)
667  #define readl_relaxed(addr)	readl(addr)
668  #define readq_relaxed(addr)	readq(addr)
669  #define writeb_relaxed(v, addr)	writeb(v, addr)
670  #define writew_relaxed(v, addr)	writew(v, addr)
671  #define writel_relaxed(v, addr)	writel(v, addr)
672  #define writeq_relaxed(v, addr)	writeq(v, addr)
673  
674  #include <asm-generic/iomap.h>
675  
676  #ifdef CONFIG_PPC32
677  #define mmiowb()
678  #else
679  /*
680   * Enforce synchronisation of stores vs. spin_unlock
681   * (this does it explicitly, though our implementation of spin_unlock
682   * does it implicitely too)
683   */
mmiowb(void)684  static inline void mmiowb(void)
685  {
686  	unsigned long tmp;
687  
688  	__asm__ __volatile__("sync; li %0,0; stb %0,%1(13)"
689  	: "=&r" (tmp) : "i" (offsetof(struct paca_struct, io_sync))
690  	: "memory");
691  }
692  #endif /* !CONFIG_PPC32 */
693  
iosync(void)694  static inline void iosync(void)
695  {
696          __asm__ __volatile__ ("sync" : : : "memory");
697  }
698  
699  /* Enforce in-order execution of data I/O.
700   * No distinction between read/write on PPC; use eieio for all three.
701   * Those are fairly week though. They don't provide a barrier between
702   * MMIO and cacheable storage nor do they provide a barrier vs. locks,
703   * they only provide barriers between 2 __raw MMIO operations and
704   * possibly break write combining.
705   */
706  #define iobarrier_rw() eieio()
707  #define iobarrier_r()  eieio()
708  #define iobarrier_w()  eieio()
709  
710  
711  /*
712   * output pause versions need a delay at least for the
713   * w83c105 ide controller in a p610.
714   */
715  #define inb_p(port)             inb(port)
716  #define outb_p(val, port)       (udelay(1), outb((val), (port)))
717  #define inw_p(port)             inw(port)
718  #define outw_p(val, port)       (udelay(1), outw((val), (port)))
719  #define inl_p(port)             inl(port)
720  #define outl_p(val, port)       (udelay(1), outl((val), (port)))
721  
722  
723  #define IO_SPACE_LIMIT ~(0UL)
724  
725  
726  /**
727   * ioremap     -   map bus memory into CPU space
728   * @address:   bus address of the memory
729   * @size:      size of the resource to map
730   *
731   * ioremap performs a platform specific sequence of operations to
732   * make bus memory CPU accessible via the readb/readw/readl/writeb/
733   * writew/writel functions and the other mmio helpers. The returned
734   * address is not guaranteed to be usable directly as a virtual
735   * address.
736   *
737   * We provide a few variations of it:
738   *
739   * * ioremap is the standard one and provides non-cacheable guarded mappings
740   *   and can be hooked by the platform via ppc_md
741   *
742   * * ioremap_prot allows to specify the page flags as an argument and can
743   *   also be hooked by the platform via ppc_md.
744   *
745   * * ioremap_nocache is identical to ioremap
746   *
747   * * ioremap_wc enables write combining
748   *
749   * * iounmap undoes such a mapping and can be hooked
750   *
751   * * __ioremap_at (and the pending __iounmap_at) are low level functions to
752   *   create hand-made mappings for use only by the PCI code and cannot
753   *   currently be hooked. Must be page aligned.
754   *
755   * * __ioremap is the low level implementation used by ioremap and
756   *   ioremap_prot and cannot be hooked (but can be used by a hook on one
757   *   of the previous ones)
758   *
759   * * __ioremap_caller is the same as above but takes an explicit caller
760   *   reference rather than using __builtin_return_address(0)
761   *
762   * * __iounmap, is the low level implementation used by iounmap and cannot
763   *   be hooked (but can be used by a hook on iounmap)
764   *
765   */
766  extern void __iomem *ioremap(phys_addr_t address, unsigned long size);
767  extern void __iomem *ioremap_prot(phys_addr_t address, unsigned long size,
768  				  unsigned long flags);
769  extern void __iomem *ioremap_wc(phys_addr_t address, unsigned long size);
770  #define ioremap_nocache(addr, size)	ioremap((addr), (size))
771  #define ioremap_uc(addr, size)		ioremap((addr), (size))
772  #define ioremap_cache(addr, size) \
773  	ioremap_prot((addr), (size), pgprot_val(PAGE_KERNEL))
774  
775  extern void iounmap(volatile void __iomem *addr);
776  
777  extern void __iomem *__ioremap(phys_addr_t, unsigned long size,
778  			       unsigned long flags);
779  extern void __iomem *__ioremap_caller(phys_addr_t, unsigned long size,
780  				      unsigned long flags, void *caller);
781  
782  extern void __iounmap(volatile void __iomem *addr);
783  
784  extern void __iomem * __ioremap_at(phys_addr_t pa, void *ea,
785  				   unsigned long size, unsigned long flags);
786  extern void __iounmap_at(void *ea, unsigned long size);
787  
788  /*
789   * When CONFIG_PPC_INDIRECT_PIO is set, we use the generic iomap implementation
790   * which needs some additional definitions here. They basically allow PIO
791   * space overall to be 1GB. This will work as long as we never try to use
792   * iomap to map MMIO below 1GB which should be fine on ppc64
793   */
794  #define HAVE_ARCH_PIO_SIZE		1
795  #define PIO_OFFSET			0x00000000UL
796  #define PIO_MASK			(FULL_IO_SIZE - 1)
797  #define PIO_RESERVED			(FULL_IO_SIZE)
798  
799  #define mmio_read16be(addr)		readw_be(addr)
800  #define mmio_read32be(addr)		readl_be(addr)
801  #define mmio_write16be(val, addr)	writew_be(val, addr)
802  #define mmio_write32be(val, addr)	writel_be(val, addr)
803  #define mmio_insb(addr, dst, count)	readsb(addr, dst, count)
804  #define mmio_insw(addr, dst, count)	readsw(addr, dst, count)
805  #define mmio_insl(addr, dst, count)	readsl(addr, dst, count)
806  #define mmio_outsb(addr, src, count)	writesb(addr, src, count)
807  #define mmio_outsw(addr, src, count)	writesw(addr, src, count)
808  #define mmio_outsl(addr, src, count)	writesl(addr, src, count)
809  
810  /**
811   *	virt_to_phys	-	map virtual addresses to physical
812   *	@address: address to remap
813   *
814   *	The returned physical address is the physical (CPU) mapping for
815   *	the memory address given. It is only valid to use this function on
816   *	addresses directly mapped or allocated via kmalloc.
817   *
818   *	This function does not give bus mappings for DMA transfers. In
819   *	almost all conceivable cases a device driver should not be using
820   *	this function
821   */
virt_to_phys(volatile void * address)822  static inline unsigned long virt_to_phys(volatile void * address)
823  {
824  	return __pa((unsigned long)address);
825  }
826  
827  /**
828   *	phys_to_virt	-	map physical address to virtual
829   *	@address: address to remap
830   *
831   *	The returned virtual address is a current CPU mapping for
832   *	the memory address given. It is only valid to use this function on
833   *	addresses that have a kernel mapping
834   *
835   *	This function does not handle bus mappings for DMA transfers. In
836   *	almost all conceivable cases a device driver should not be using
837   *	this function
838   */
phys_to_virt(unsigned long address)839  static inline void * phys_to_virt(unsigned long address)
840  {
841  	return (void *)__va(address);
842  }
843  
844  /*
845   * Change "struct page" to physical address.
846   */
847  #define page_to_phys(page)	((phys_addr_t)page_to_pfn(page) << PAGE_SHIFT)
848  
849  /*
850   * 32 bits still uses virt_to_bus() for it's implementation of DMA
851   * mappings se we have to keep it defined here. We also have some old
852   * drivers (shame shame shame) that use bus_to_virt() and haven't been
853   * fixed yet so I need to define it here.
854   */
855  #ifdef CONFIG_PPC32
856  
virt_to_bus(volatile void * address)857  static inline unsigned long virt_to_bus(volatile void * address)
858  {
859          if (address == NULL)
860  		return 0;
861          return __pa(address) + PCI_DRAM_OFFSET;
862  }
863  
bus_to_virt(unsigned long address)864  static inline void * bus_to_virt(unsigned long address)
865  {
866          if (address == 0)
867  		return NULL;
868          return __va(address - PCI_DRAM_OFFSET);
869  }
870  
871  #define page_to_bus(page)	(page_to_phys(page) + PCI_DRAM_OFFSET)
872  
873  #endif /* CONFIG_PPC32 */
874  
875  /* access ports */
876  #define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) |  (_v))
877  #define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v))
878  
879  #define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) |  (_v))
880  #define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v))
881  
882  #define setbits8(_addr, _v) out_8((_addr), in_8(_addr) |  (_v))
883  #define clrbits8(_addr, _v) out_8((_addr), in_8(_addr) & ~(_v))
884  
885  /* Clear and set bits in one shot.  These macros can be used to clear and
886   * set multiple bits in a register using a single read-modify-write.  These
887   * macros can also be used to set a multiple-bit bit pattern using a mask,
888   * by specifying the mask in the 'clear' parameter and the new bit pattern
889   * in the 'set' parameter.
890   */
891  
892  #define clrsetbits(type, addr, clear, set) \
893  	out_##type((addr), (in_##type(addr) & ~(clear)) | (set))
894  
895  #ifdef __powerpc64__
896  #define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set)
897  #define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set)
898  #endif
899  
900  #define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set)
901  #define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set)
902  
903  #define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set)
904  #define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set)
905  
906  #define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set)
907  
908  #endif /* __KERNEL__ */
909  
910  #endif /* _ASM_POWERPC_IO_H */
911