1 // SPDX-License-Identifier: LGPL-2.1
2 /*
3 *
4 * Copyright (C) International Business Machines Corp., 2002,2008
5 * Author(s): Steve French (sfrench@us.ibm.com)
6 *
7 */
8
9 #include <linux/slab.h>
10 #include <linux/ctype.h>
11 #include <linux/mempool.h>
12 #include <linux/vmalloc.h>
13 #include "cifspdu.h"
14 #include "cifsglob.h"
15 #include "cifsproto.h"
16 #include "cifs_debug.h"
17 #include "smberr.h"
18 #include "nterr.h"
19 #include "cifs_unicode.h"
20 #include "smb2pdu.h"
21 #include "cifsfs.h"
22 #ifdef CONFIG_CIFS_DFS_UPCALL
23 #include "dns_resolve.h"
24 #include "dfs_cache.h"
25 #include "dfs.h"
26 #endif
27 #include "fs_context.h"
28 #include "cached_dir.h"
29
30 extern mempool_t *cifs_sm_req_poolp;
31 extern mempool_t *cifs_req_poolp;
32
33 /* The xid serves as a useful identifier for each incoming vfs request,
34 in a similar way to the mid which is useful to track each sent smb,
35 and CurrentXid can also provide a running counter (although it
36 will eventually wrap past zero) of the total vfs operations handled
37 since the cifs fs was mounted */
38
39 unsigned int
_get_xid(void)40 _get_xid(void)
41 {
42 unsigned int xid;
43
44 spin_lock(&GlobalMid_Lock);
45 GlobalTotalActiveXid++;
46
47 /* keep high water mark for number of simultaneous ops in filesystem */
48 if (GlobalTotalActiveXid > GlobalMaxActiveXid)
49 GlobalMaxActiveXid = GlobalTotalActiveXid;
50 if (GlobalTotalActiveXid > 65000)
51 cifs_dbg(FYI, "warning: more than 65000 requests active\n");
52 xid = GlobalCurrentXid++;
53 spin_unlock(&GlobalMid_Lock);
54 return xid;
55 }
56
57 void
_free_xid(unsigned int xid)58 _free_xid(unsigned int xid)
59 {
60 spin_lock(&GlobalMid_Lock);
61 /* if (GlobalTotalActiveXid == 0)
62 BUG(); */
63 GlobalTotalActiveXid--;
64 spin_unlock(&GlobalMid_Lock);
65 }
66
67 struct cifs_ses *
sesInfoAlloc(void)68 sesInfoAlloc(void)
69 {
70 struct cifs_ses *ret_buf;
71
72 ret_buf = kzalloc(sizeof(struct cifs_ses), GFP_KERNEL);
73 if (ret_buf) {
74 atomic_inc(&sesInfoAllocCount);
75 spin_lock_init(&ret_buf->ses_lock);
76 ret_buf->ses_status = SES_NEW;
77 ++ret_buf->ses_count;
78 INIT_LIST_HEAD(&ret_buf->smb_ses_list);
79 INIT_LIST_HEAD(&ret_buf->tcon_list);
80 mutex_init(&ret_buf->session_mutex);
81 spin_lock_init(&ret_buf->iface_lock);
82 INIT_LIST_HEAD(&ret_buf->iface_list);
83 spin_lock_init(&ret_buf->chan_lock);
84 }
85 return ret_buf;
86 }
87
88 void
sesInfoFree(struct cifs_ses * buf_to_free)89 sesInfoFree(struct cifs_ses *buf_to_free)
90 {
91 struct cifs_server_iface *iface = NULL, *niface = NULL;
92
93 if (buf_to_free == NULL) {
94 cifs_dbg(FYI, "Null buffer passed to sesInfoFree\n");
95 return;
96 }
97
98 unload_nls(buf_to_free->local_nls);
99 atomic_dec(&sesInfoAllocCount);
100 kfree(buf_to_free->serverOS);
101 kfree(buf_to_free->serverDomain);
102 kfree(buf_to_free->serverNOS);
103 kfree_sensitive(buf_to_free->password);
104 kfree(buf_to_free->user_name);
105 kfree(buf_to_free->domainName);
106 kfree_sensitive(buf_to_free->auth_key.response);
107 spin_lock(&buf_to_free->iface_lock);
108 list_for_each_entry_safe(iface, niface, &buf_to_free->iface_list,
109 iface_head)
110 kref_put(&iface->refcount, release_iface);
111 spin_unlock(&buf_to_free->iface_lock);
112 kfree_sensitive(buf_to_free);
113 }
114
115 struct cifs_tcon *
tcon_info_alloc(bool dir_leases_enabled)116 tcon_info_alloc(bool dir_leases_enabled)
117 {
118 struct cifs_tcon *ret_buf;
119
120 ret_buf = kzalloc(sizeof(*ret_buf), GFP_KERNEL);
121 if (!ret_buf)
122 return NULL;
123
124 if (dir_leases_enabled == true) {
125 ret_buf->cfids = init_cached_dirs();
126 if (!ret_buf->cfids) {
127 kfree(ret_buf);
128 return NULL;
129 }
130 }
131 /* else ret_buf->cfids is already set to NULL above */
132
133 atomic_inc(&tconInfoAllocCount);
134 ret_buf->status = TID_NEW;
135 ++ret_buf->tc_count;
136 spin_lock_init(&ret_buf->tc_lock);
137 INIT_LIST_HEAD(&ret_buf->openFileList);
138 INIT_LIST_HEAD(&ret_buf->tcon_list);
139 spin_lock_init(&ret_buf->open_file_lock);
140 spin_lock_init(&ret_buf->stat_lock);
141 atomic_set(&ret_buf->num_local_opens, 0);
142 atomic_set(&ret_buf->num_remote_opens, 0);
143 #ifdef CONFIG_CIFS_DFS_UPCALL
144 INIT_LIST_HEAD(&ret_buf->dfs_ses_list);
145 #endif
146
147 return ret_buf;
148 }
149
150 void
tconInfoFree(struct cifs_tcon * tcon)151 tconInfoFree(struct cifs_tcon *tcon)
152 {
153 if (tcon == NULL) {
154 cifs_dbg(FYI, "Null buffer passed to tconInfoFree\n");
155 return;
156 }
157 free_cached_dirs(tcon->cfids);
158 atomic_dec(&tconInfoAllocCount);
159 kfree(tcon->nativeFileSystem);
160 kfree_sensitive(tcon->password);
161 #ifdef CONFIG_CIFS_DFS_UPCALL
162 dfs_put_root_smb_sessions(&tcon->dfs_ses_list);
163 #endif
164 kfree(tcon->origin_fullpath);
165 kfree(tcon);
166 }
167
168 struct smb_hdr *
cifs_buf_get(void)169 cifs_buf_get(void)
170 {
171 struct smb_hdr *ret_buf = NULL;
172 /*
173 * SMB2 header is bigger than CIFS one - no problems to clean some
174 * more bytes for CIFS.
175 */
176 size_t buf_size = sizeof(struct smb2_hdr);
177
178 /*
179 * We could use negotiated size instead of max_msgsize -
180 * but it may be more efficient to always alloc same size
181 * albeit slightly larger than necessary and maxbuffersize
182 * defaults to this and can not be bigger.
183 */
184 ret_buf = mempool_alloc(cifs_req_poolp, GFP_NOFS);
185
186 /* clear the first few header bytes */
187 /* for most paths, more is cleared in header_assemble */
188 memset(ret_buf, 0, buf_size + 3);
189 atomic_inc(&buf_alloc_count);
190 #ifdef CONFIG_CIFS_STATS2
191 atomic_inc(&total_buf_alloc_count);
192 #endif /* CONFIG_CIFS_STATS2 */
193
194 return ret_buf;
195 }
196
197 void
cifs_buf_release(void * buf_to_free)198 cifs_buf_release(void *buf_to_free)
199 {
200 if (buf_to_free == NULL) {
201 /* cifs_dbg(FYI, "Null buffer passed to cifs_buf_release\n");*/
202 return;
203 }
204 mempool_free(buf_to_free, cifs_req_poolp);
205
206 atomic_dec(&buf_alloc_count);
207 return;
208 }
209
210 struct smb_hdr *
cifs_small_buf_get(void)211 cifs_small_buf_get(void)
212 {
213 struct smb_hdr *ret_buf = NULL;
214
215 /* We could use negotiated size instead of max_msgsize -
216 but it may be more efficient to always alloc same size
217 albeit slightly larger than necessary and maxbuffersize
218 defaults to this and can not be bigger */
219 ret_buf = mempool_alloc(cifs_sm_req_poolp, GFP_NOFS);
220 /* No need to clear memory here, cleared in header assemble */
221 /* memset(ret_buf, 0, sizeof(struct smb_hdr) + 27);*/
222 atomic_inc(&small_buf_alloc_count);
223 #ifdef CONFIG_CIFS_STATS2
224 atomic_inc(&total_small_buf_alloc_count);
225 #endif /* CONFIG_CIFS_STATS2 */
226
227 return ret_buf;
228 }
229
230 void
cifs_small_buf_release(void * buf_to_free)231 cifs_small_buf_release(void *buf_to_free)
232 {
233
234 if (buf_to_free == NULL) {
235 cifs_dbg(FYI, "Null buffer passed to cifs_small_buf_release\n");
236 return;
237 }
238 mempool_free(buf_to_free, cifs_sm_req_poolp);
239
240 atomic_dec(&small_buf_alloc_count);
241 return;
242 }
243
244 void
free_rsp_buf(int resp_buftype,void * rsp)245 free_rsp_buf(int resp_buftype, void *rsp)
246 {
247 if (resp_buftype == CIFS_SMALL_BUFFER)
248 cifs_small_buf_release(rsp);
249 else if (resp_buftype == CIFS_LARGE_BUFFER)
250 cifs_buf_release(rsp);
251 }
252
253 /* NB: MID can not be set if treeCon not passed in, in that
254 case it is responsbility of caller to set the mid */
255 void
header_assemble(struct smb_hdr * buffer,char smb_command,const struct cifs_tcon * treeCon,int word_count)256 header_assemble(struct smb_hdr *buffer, char smb_command /* command */ ,
257 const struct cifs_tcon *treeCon, int word_count
258 /* length of fixed section (word count) in two byte units */)
259 {
260 char *temp = (char *) buffer;
261
262 memset(temp, 0, 256); /* bigger than MAX_CIFS_HDR_SIZE */
263
264 buffer->smb_buf_length = cpu_to_be32(
265 (2 * word_count) + sizeof(struct smb_hdr) -
266 4 /* RFC 1001 length field does not count */ +
267 2 /* for bcc field itself */) ;
268
269 buffer->Protocol[0] = 0xFF;
270 buffer->Protocol[1] = 'S';
271 buffer->Protocol[2] = 'M';
272 buffer->Protocol[3] = 'B';
273 buffer->Command = smb_command;
274 buffer->Flags = 0x00; /* case sensitive */
275 buffer->Flags2 = SMBFLG2_KNOWS_LONG_NAMES;
276 buffer->Pid = cpu_to_le16((__u16)current->tgid);
277 buffer->PidHigh = cpu_to_le16((__u16)(current->tgid >> 16));
278 if (treeCon) {
279 buffer->Tid = treeCon->tid;
280 if (treeCon->ses) {
281 if (treeCon->ses->capabilities & CAP_UNICODE)
282 buffer->Flags2 |= SMBFLG2_UNICODE;
283 if (treeCon->ses->capabilities & CAP_STATUS32)
284 buffer->Flags2 |= SMBFLG2_ERR_STATUS;
285
286 /* Uid is not converted */
287 buffer->Uid = treeCon->ses->Suid;
288 if (treeCon->ses->server)
289 buffer->Mid = get_next_mid(treeCon->ses->server);
290 }
291 if (treeCon->Flags & SMB_SHARE_IS_IN_DFS)
292 buffer->Flags2 |= SMBFLG2_DFS;
293 if (treeCon->nocase)
294 buffer->Flags |= SMBFLG_CASELESS;
295 if ((treeCon->ses) && (treeCon->ses->server))
296 if (treeCon->ses->server->sign)
297 buffer->Flags2 |= SMBFLG2_SECURITY_SIGNATURE;
298 }
299
300 /* endian conversion of flags is now done just before sending */
301 buffer->WordCount = (char) word_count;
302 return;
303 }
304
305 static int
check_smb_hdr(struct smb_hdr * smb)306 check_smb_hdr(struct smb_hdr *smb)
307 {
308 /* does it have the right SMB "signature" ? */
309 if (*(__le32 *) smb->Protocol != cpu_to_le32(0x424d53ff)) {
310 cifs_dbg(VFS, "Bad protocol string signature header 0x%x\n",
311 *(unsigned int *)smb->Protocol);
312 return 1;
313 }
314
315 /* if it's a response then accept */
316 if (smb->Flags & SMBFLG_RESPONSE)
317 return 0;
318
319 /* only one valid case where server sends us request */
320 if (smb->Command == SMB_COM_LOCKING_ANDX)
321 return 0;
322
323 cifs_dbg(VFS, "Server sent request, not response. mid=%u\n",
324 get_mid(smb));
325 return 1;
326 }
327
328 int
checkSMB(char * buf,unsigned int total_read,struct TCP_Server_Info * server)329 checkSMB(char *buf, unsigned int total_read, struct TCP_Server_Info *server)
330 {
331 struct smb_hdr *smb = (struct smb_hdr *)buf;
332 __u32 rfclen = be32_to_cpu(smb->smb_buf_length);
333 __u32 clc_len; /* calculated length */
334 cifs_dbg(FYI, "checkSMB Length: 0x%x, smb_buf_length: 0x%x\n",
335 total_read, rfclen);
336
337 /* is this frame too small to even get to a BCC? */
338 if (total_read < 2 + sizeof(struct smb_hdr)) {
339 if ((total_read >= sizeof(struct smb_hdr) - 1)
340 && (smb->Status.CifsError != 0)) {
341 /* it's an error return */
342 smb->WordCount = 0;
343 /* some error cases do not return wct and bcc */
344 return 0;
345 } else if ((total_read == sizeof(struct smb_hdr) + 1) &&
346 (smb->WordCount == 0)) {
347 char *tmp = (char *)smb;
348 /* Need to work around a bug in two servers here */
349 /* First, check if the part of bcc they sent was zero */
350 if (tmp[sizeof(struct smb_hdr)] == 0) {
351 /* some servers return only half of bcc
352 * on simple responses (wct, bcc both zero)
353 * in particular have seen this on
354 * ulogoffX and FindClose. This leaves
355 * one byte of bcc potentially unitialized
356 */
357 /* zero rest of bcc */
358 tmp[sizeof(struct smb_hdr)+1] = 0;
359 return 0;
360 }
361 cifs_dbg(VFS, "rcvd invalid byte count (bcc)\n");
362 } else {
363 cifs_dbg(VFS, "Length less than smb header size\n");
364 }
365 return -EIO;
366 }
367
368 /* otherwise, there is enough to get to the BCC */
369 if (check_smb_hdr(smb))
370 return -EIO;
371 clc_len = smbCalcSize(smb);
372
373 if (4 + rfclen != total_read) {
374 cifs_dbg(VFS, "Length read does not match RFC1001 length %d\n",
375 rfclen);
376 return -EIO;
377 }
378
379 if (4 + rfclen != clc_len) {
380 __u16 mid = get_mid(smb);
381 /* check if bcc wrapped around for large read responses */
382 if ((rfclen > 64 * 1024) && (rfclen > clc_len)) {
383 /* check if lengths match mod 64K */
384 if (((4 + rfclen) & 0xFFFF) == (clc_len & 0xFFFF))
385 return 0; /* bcc wrapped */
386 }
387 cifs_dbg(FYI, "Calculated size %u vs length %u mismatch for mid=%u\n",
388 clc_len, 4 + rfclen, mid);
389
390 if (4 + rfclen < clc_len) {
391 cifs_dbg(VFS, "RFC1001 size %u smaller than SMB for mid=%u\n",
392 rfclen, mid);
393 return -EIO;
394 } else if (rfclen > clc_len + 512) {
395 /*
396 * Some servers (Windows XP in particular) send more
397 * data than the lengths in the SMB packet would
398 * indicate on certain calls (byte range locks and
399 * trans2 find first calls in particular). While the
400 * client can handle such a frame by ignoring the
401 * trailing data, we choose limit the amount of extra
402 * data to 512 bytes.
403 */
404 cifs_dbg(VFS, "RFC1001 size %u more than 512 bytes larger than SMB for mid=%u\n",
405 rfclen, mid);
406 return -EIO;
407 }
408 }
409 return 0;
410 }
411
412 bool
is_valid_oplock_break(char * buffer,struct TCP_Server_Info * srv)413 is_valid_oplock_break(char *buffer, struct TCP_Server_Info *srv)
414 {
415 struct smb_hdr *buf = (struct smb_hdr *)buffer;
416 struct smb_com_lock_req *pSMB = (struct smb_com_lock_req *)buf;
417 struct TCP_Server_Info *pserver;
418 struct cifs_ses *ses;
419 struct cifs_tcon *tcon;
420 struct cifsInodeInfo *pCifsInode;
421 struct cifsFileInfo *netfile;
422
423 cifs_dbg(FYI, "Checking for oplock break or dnotify response\n");
424 if ((pSMB->hdr.Command == SMB_COM_NT_TRANSACT) &&
425 (pSMB->hdr.Flags & SMBFLG_RESPONSE)) {
426 struct smb_com_transaction_change_notify_rsp *pSMBr =
427 (struct smb_com_transaction_change_notify_rsp *)buf;
428 struct file_notify_information *pnotify;
429 __u32 data_offset = 0;
430 size_t len = srv->total_read - sizeof(pSMBr->hdr.smb_buf_length);
431
432 if (get_bcc(buf) > sizeof(struct file_notify_information)) {
433 data_offset = le32_to_cpu(pSMBr->DataOffset);
434
435 if (data_offset >
436 len - sizeof(struct file_notify_information)) {
437 cifs_dbg(FYI, "Invalid data_offset %u\n",
438 data_offset);
439 return true;
440 }
441 pnotify = (struct file_notify_information *)
442 ((char *)&pSMBr->hdr.Protocol + data_offset);
443 cifs_dbg(FYI, "dnotify on %s Action: 0x%x\n",
444 pnotify->FileName, pnotify->Action);
445 /* cifs_dump_mem("Rcvd notify Data: ",buf,
446 sizeof(struct smb_hdr)+60); */
447 return true;
448 }
449 if (pSMBr->hdr.Status.CifsError) {
450 cifs_dbg(FYI, "notify err 0x%x\n",
451 pSMBr->hdr.Status.CifsError);
452 return true;
453 }
454 return false;
455 }
456 if (pSMB->hdr.Command != SMB_COM_LOCKING_ANDX)
457 return false;
458 if (pSMB->hdr.Flags & SMBFLG_RESPONSE) {
459 /* no sense logging error on invalid handle on oplock
460 break - harmless race between close request and oplock
461 break response is expected from time to time writing out
462 large dirty files cached on the client */
463 if ((NT_STATUS_INVALID_HANDLE) ==
464 le32_to_cpu(pSMB->hdr.Status.CifsError)) {
465 cifs_dbg(FYI, "Invalid handle on oplock break\n");
466 return true;
467 } else if (ERRbadfid ==
468 le16_to_cpu(pSMB->hdr.Status.DosError.Error)) {
469 return true;
470 } else {
471 return false; /* on valid oplock brk we get "request" */
472 }
473 }
474 if (pSMB->hdr.WordCount != 8)
475 return false;
476
477 cifs_dbg(FYI, "oplock type 0x%x level 0x%x\n",
478 pSMB->LockType, pSMB->OplockLevel);
479 if (!(pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE))
480 return false;
481
482 /* If server is a channel, select the primary channel */
483 pserver = SERVER_IS_CHAN(srv) ? srv->primary_server : srv;
484
485 /* look up tcon based on tid & uid */
486 spin_lock(&cifs_tcp_ses_lock);
487 list_for_each_entry(ses, &pserver->smb_ses_list, smb_ses_list) {
488 list_for_each_entry(tcon, &ses->tcon_list, tcon_list) {
489 if (tcon->tid != buf->Tid)
490 continue;
491
492 cifs_stats_inc(&tcon->stats.cifs_stats.num_oplock_brks);
493 spin_lock(&tcon->open_file_lock);
494 list_for_each_entry(netfile, &tcon->openFileList, tlist) {
495 if (pSMB->Fid != netfile->fid.netfid)
496 continue;
497
498 cifs_dbg(FYI, "file id match, oplock break\n");
499 pCifsInode = CIFS_I(d_inode(netfile->dentry));
500
501 set_bit(CIFS_INODE_PENDING_OPLOCK_BREAK,
502 &pCifsInode->flags);
503
504 netfile->oplock_epoch = 0;
505 netfile->oplock_level = pSMB->OplockLevel;
506 netfile->oplock_break_cancelled = false;
507 cifs_queue_oplock_break(netfile);
508
509 spin_unlock(&tcon->open_file_lock);
510 spin_unlock(&cifs_tcp_ses_lock);
511 return true;
512 }
513 spin_unlock(&tcon->open_file_lock);
514 spin_unlock(&cifs_tcp_ses_lock);
515 cifs_dbg(FYI, "No matching file for oplock break\n");
516 return true;
517 }
518 }
519 spin_unlock(&cifs_tcp_ses_lock);
520 cifs_dbg(FYI, "Can not process oplock break for non-existent connection\n");
521 return true;
522 }
523
524 void
dump_smb(void * buf,int smb_buf_length)525 dump_smb(void *buf, int smb_buf_length)
526 {
527 if (traceSMB == 0)
528 return;
529
530 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_NONE, 8, 2, buf,
531 smb_buf_length, true);
532 }
533
534 void
cifs_autodisable_serverino(struct cifs_sb_info * cifs_sb)535 cifs_autodisable_serverino(struct cifs_sb_info *cifs_sb)
536 {
537 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM) {
538 struct cifs_tcon *tcon = NULL;
539
540 if (cifs_sb->master_tlink)
541 tcon = cifs_sb_master_tcon(cifs_sb);
542
543 cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SERVER_INUM;
544 cifs_sb->mnt_cifs_serverino_autodisabled = true;
545 cifs_dbg(VFS, "Autodisabling the use of server inode numbers on %s\n",
546 tcon ? tcon->tree_name : "new server");
547 cifs_dbg(VFS, "The server doesn't seem to support them properly or the files might be on different servers (DFS)\n");
548 cifs_dbg(VFS, "Hardlinks will not be recognized on this mount. Consider mounting with the \"noserverino\" option to silence this message.\n");
549
550 }
551 }
552
cifs_set_oplock_level(struct cifsInodeInfo * cinode,__u32 oplock)553 void cifs_set_oplock_level(struct cifsInodeInfo *cinode, __u32 oplock)
554 {
555 oplock &= 0xF;
556
557 if (oplock == OPLOCK_EXCLUSIVE) {
558 cinode->oplock = CIFS_CACHE_WRITE_FLG | CIFS_CACHE_READ_FLG;
559 cifs_dbg(FYI, "Exclusive Oplock granted on inode %p\n",
560 &cinode->netfs.inode);
561 } else if (oplock == OPLOCK_READ) {
562 cinode->oplock = CIFS_CACHE_READ_FLG;
563 cifs_dbg(FYI, "Level II Oplock granted on inode %p\n",
564 &cinode->netfs.inode);
565 } else
566 cinode->oplock = 0;
567 }
568
569 /*
570 * We wait for oplock breaks to be processed before we attempt to perform
571 * writes.
572 */
cifs_get_writer(struct cifsInodeInfo * cinode)573 int cifs_get_writer(struct cifsInodeInfo *cinode)
574 {
575 int rc;
576
577 start:
578 rc = wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK,
579 TASK_KILLABLE);
580 if (rc)
581 return rc;
582
583 spin_lock(&cinode->writers_lock);
584 if (!cinode->writers)
585 set_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
586 cinode->writers++;
587 /* Check to see if we have started servicing an oplock break */
588 if (test_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags)) {
589 cinode->writers--;
590 if (cinode->writers == 0) {
591 clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
592 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
593 }
594 spin_unlock(&cinode->writers_lock);
595 goto start;
596 }
597 spin_unlock(&cinode->writers_lock);
598 return 0;
599 }
600
cifs_put_writer(struct cifsInodeInfo * cinode)601 void cifs_put_writer(struct cifsInodeInfo *cinode)
602 {
603 spin_lock(&cinode->writers_lock);
604 cinode->writers--;
605 if (cinode->writers == 0) {
606 clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
607 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
608 }
609 spin_unlock(&cinode->writers_lock);
610 }
611
612 /**
613 * cifs_queue_oplock_break - queue the oplock break handler for cfile
614 * @cfile: The file to break the oplock on
615 *
616 * This function is called from the demultiplex thread when it
617 * receives an oplock break for @cfile.
618 *
619 * Assumes the tcon->open_file_lock is held.
620 * Assumes cfile->file_info_lock is NOT held.
621 */
cifs_queue_oplock_break(struct cifsFileInfo * cfile)622 void cifs_queue_oplock_break(struct cifsFileInfo *cfile)
623 {
624 /*
625 * Bump the handle refcount now while we hold the
626 * open_file_lock to enforce the validity of it for the oplock
627 * break handler. The matching put is done at the end of the
628 * handler.
629 */
630 cifsFileInfo_get(cfile);
631
632 queue_work(cifsoplockd_wq, &cfile->oplock_break);
633 }
634
cifs_done_oplock_break(struct cifsInodeInfo * cinode)635 void cifs_done_oplock_break(struct cifsInodeInfo *cinode)
636 {
637 clear_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags);
638 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK);
639 }
640
641 bool
backup_cred(struct cifs_sb_info * cifs_sb)642 backup_cred(struct cifs_sb_info *cifs_sb)
643 {
644 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPUID) {
645 if (uid_eq(cifs_sb->ctx->backupuid, current_fsuid()))
646 return true;
647 }
648 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPGID) {
649 if (in_group_p(cifs_sb->ctx->backupgid))
650 return true;
651 }
652
653 return false;
654 }
655
656 void
cifs_del_pending_open(struct cifs_pending_open * open)657 cifs_del_pending_open(struct cifs_pending_open *open)
658 {
659 spin_lock(&tlink_tcon(open->tlink)->open_file_lock);
660 list_del(&open->olist);
661 spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
662 }
663
664 void
cifs_add_pending_open_locked(struct cifs_fid * fid,struct tcon_link * tlink,struct cifs_pending_open * open)665 cifs_add_pending_open_locked(struct cifs_fid *fid, struct tcon_link *tlink,
666 struct cifs_pending_open *open)
667 {
668 memcpy(open->lease_key, fid->lease_key, SMB2_LEASE_KEY_SIZE);
669 open->oplock = CIFS_OPLOCK_NO_CHANGE;
670 open->tlink = tlink;
671 fid->pending_open = open;
672 list_add_tail(&open->olist, &tlink_tcon(tlink)->pending_opens);
673 }
674
675 void
cifs_add_pending_open(struct cifs_fid * fid,struct tcon_link * tlink,struct cifs_pending_open * open)676 cifs_add_pending_open(struct cifs_fid *fid, struct tcon_link *tlink,
677 struct cifs_pending_open *open)
678 {
679 spin_lock(&tlink_tcon(tlink)->open_file_lock);
680 cifs_add_pending_open_locked(fid, tlink, open);
681 spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
682 }
683
684 /*
685 * Critical section which runs after acquiring deferred_lock.
686 * As there is no reference count on cifs_deferred_close, pdclose
687 * should not be used outside deferred_lock.
688 */
689 bool
cifs_is_deferred_close(struct cifsFileInfo * cfile,struct cifs_deferred_close ** pdclose)690 cifs_is_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close **pdclose)
691 {
692 struct cifs_deferred_close *dclose;
693
694 list_for_each_entry(dclose, &CIFS_I(d_inode(cfile->dentry))->deferred_closes, dlist) {
695 if ((dclose->netfid == cfile->fid.netfid) &&
696 (dclose->persistent_fid == cfile->fid.persistent_fid) &&
697 (dclose->volatile_fid == cfile->fid.volatile_fid)) {
698 *pdclose = dclose;
699 return true;
700 }
701 }
702 return false;
703 }
704
705 /*
706 * Critical section which runs after acquiring deferred_lock.
707 */
708 void
cifs_add_deferred_close(struct cifsFileInfo * cfile,struct cifs_deferred_close * dclose)709 cifs_add_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close *dclose)
710 {
711 bool is_deferred = false;
712 struct cifs_deferred_close *pdclose;
713
714 is_deferred = cifs_is_deferred_close(cfile, &pdclose);
715 if (is_deferred) {
716 kfree(dclose);
717 return;
718 }
719
720 dclose->tlink = cfile->tlink;
721 dclose->netfid = cfile->fid.netfid;
722 dclose->persistent_fid = cfile->fid.persistent_fid;
723 dclose->volatile_fid = cfile->fid.volatile_fid;
724 list_add_tail(&dclose->dlist, &CIFS_I(d_inode(cfile->dentry))->deferred_closes);
725 }
726
727 /*
728 * Critical section which runs after acquiring deferred_lock.
729 */
730 void
cifs_del_deferred_close(struct cifsFileInfo * cfile)731 cifs_del_deferred_close(struct cifsFileInfo *cfile)
732 {
733 bool is_deferred = false;
734 struct cifs_deferred_close *dclose;
735
736 is_deferred = cifs_is_deferred_close(cfile, &dclose);
737 if (!is_deferred)
738 return;
739 list_del(&dclose->dlist);
740 kfree(dclose);
741 }
742
743 void
cifs_close_deferred_file(struct cifsInodeInfo * cifs_inode)744 cifs_close_deferred_file(struct cifsInodeInfo *cifs_inode)
745 {
746 struct cifsFileInfo *cfile = NULL;
747 struct file_list *tmp_list, *tmp_next_list;
748 struct list_head file_head;
749
750 if (cifs_inode == NULL)
751 return;
752
753 INIT_LIST_HEAD(&file_head);
754 spin_lock(&cifs_inode->open_file_lock);
755 list_for_each_entry(cfile, &cifs_inode->openFileList, flist) {
756 if (delayed_work_pending(&cfile->deferred)) {
757 if (cancel_delayed_work(&cfile->deferred)) {
758 spin_lock(&cifs_inode->deferred_lock);
759 cifs_del_deferred_close(cfile);
760 spin_unlock(&cifs_inode->deferred_lock);
761
762 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
763 if (tmp_list == NULL)
764 break;
765 tmp_list->cfile = cfile;
766 list_add_tail(&tmp_list->list, &file_head);
767 }
768 }
769 }
770 spin_unlock(&cifs_inode->open_file_lock);
771
772 list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
773 _cifsFileInfo_put(tmp_list->cfile, false, false);
774 list_del(&tmp_list->list);
775 kfree(tmp_list);
776 }
777 }
778
779 void
cifs_close_all_deferred_files(struct cifs_tcon * tcon)780 cifs_close_all_deferred_files(struct cifs_tcon *tcon)
781 {
782 struct cifsFileInfo *cfile;
783 struct file_list *tmp_list, *tmp_next_list;
784 struct list_head file_head;
785
786 INIT_LIST_HEAD(&file_head);
787 spin_lock(&tcon->open_file_lock);
788 list_for_each_entry(cfile, &tcon->openFileList, tlist) {
789 if (delayed_work_pending(&cfile->deferred)) {
790 if (cancel_delayed_work(&cfile->deferred)) {
791 spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
792 cifs_del_deferred_close(cfile);
793 spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
794
795 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
796 if (tmp_list == NULL)
797 break;
798 tmp_list->cfile = cfile;
799 list_add_tail(&tmp_list->list, &file_head);
800 }
801 }
802 }
803 spin_unlock(&tcon->open_file_lock);
804
805 list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
806 _cifsFileInfo_put(tmp_list->cfile, true, false);
807 list_del(&tmp_list->list);
808 kfree(tmp_list);
809 }
810 }
811 void
cifs_close_deferred_file_under_dentry(struct cifs_tcon * tcon,const char * path)812 cifs_close_deferred_file_under_dentry(struct cifs_tcon *tcon, const char *path)
813 {
814 struct cifsFileInfo *cfile;
815 struct file_list *tmp_list, *tmp_next_list;
816 struct list_head file_head;
817 void *page;
818 const char *full_path;
819
820 INIT_LIST_HEAD(&file_head);
821 page = alloc_dentry_path();
822 spin_lock(&tcon->open_file_lock);
823 list_for_each_entry(cfile, &tcon->openFileList, tlist) {
824 full_path = build_path_from_dentry(cfile->dentry, page);
825 if (strstr(full_path, path)) {
826 if (delayed_work_pending(&cfile->deferred)) {
827 if (cancel_delayed_work(&cfile->deferred)) {
828 spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
829 cifs_del_deferred_close(cfile);
830 spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
831
832 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
833 if (tmp_list == NULL)
834 break;
835 tmp_list->cfile = cfile;
836 list_add_tail(&tmp_list->list, &file_head);
837 }
838 }
839 }
840 }
841 spin_unlock(&tcon->open_file_lock);
842
843 list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
844 _cifsFileInfo_put(tmp_list->cfile, true, false);
845 list_del(&tmp_list->list);
846 kfree(tmp_list);
847 }
848 free_dentry_path(page);
849 }
850
851 /* parses DFS referral V3 structure
852 * caller is responsible for freeing target_nodes
853 * returns:
854 * - on success - 0
855 * - on failure - errno
856 */
857 int
parse_dfs_referrals(struct get_dfs_referral_rsp * rsp,u32 rsp_size,unsigned int * num_of_nodes,struct dfs_info3_param ** target_nodes,const struct nls_table * nls_codepage,int remap,const char * searchName,bool is_unicode)858 parse_dfs_referrals(struct get_dfs_referral_rsp *rsp, u32 rsp_size,
859 unsigned int *num_of_nodes,
860 struct dfs_info3_param **target_nodes,
861 const struct nls_table *nls_codepage, int remap,
862 const char *searchName, bool is_unicode)
863 {
864 int i, rc = 0;
865 char *data_end;
866 struct dfs_referral_level_3 *ref;
867
868 *num_of_nodes = le16_to_cpu(rsp->NumberOfReferrals);
869
870 if (*num_of_nodes < 1) {
871 cifs_dbg(VFS, "num_referrals: must be at least > 0, but we get num_referrals = %d\n",
872 *num_of_nodes);
873 rc = -EINVAL;
874 goto parse_DFS_referrals_exit;
875 }
876
877 ref = (struct dfs_referral_level_3 *) &(rsp->referrals);
878 if (ref->VersionNumber != cpu_to_le16(3)) {
879 cifs_dbg(VFS, "Referrals of V%d version are not supported, should be V3\n",
880 le16_to_cpu(ref->VersionNumber));
881 rc = -EINVAL;
882 goto parse_DFS_referrals_exit;
883 }
884
885 /* get the upper boundary of the resp buffer */
886 data_end = (char *)rsp + rsp_size;
887
888 cifs_dbg(FYI, "num_referrals: %d dfs flags: 0x%x ...\n",
889 *num_of_nodes, le32_to_cpu(rsp->DFSFlags));
890
891 *target_nodes = kcalloc(*num_of_nodes, sizeof(struct dfs_info3_param),
892 GFP_KERNEL);
893 if (*target_nodes == NULL) {
894 rc = -ENOMEM;
895 goto parse_DFS_referrals_exit;
896 }
897
898 /* collect necessary data from referrals */
899 for (i = 0; i < *num_of_nodes; i++) {
900 char *temp;
901 int max_len;
902 struct dfs_info3_param *node = (*target_nodes)+i;
903
904 node->flags = le32_to_cpu(rsp->DFSFlags);
905 if (is_unicode) {
906 __le16 *tmp = kmalloc(strlen(searchName)*2 + 2,
907 GFP_KERNEL);
908 if (tmp == NULL) {
909 rc = -ENOMEM;
910 goto parse_DFS_referrals_exit;
911 }
912 cifsConvertToUTF16((__le16 *) tmp, searchName,
913 PATH_MAX, nls_codepage, remap);
914 node->path_consumed = cifs_utf16_bytes(tmp,
915 le16_to_cpu(rsp->PathConsumed),
916 nls_codepage);
917 kfree(tmp);
918 } else
919 node->path_consumed = le16_to_cpu(rsp->PathConsumed);
920
921 node->server_type = le16_to_cpu(ref->ServerType);
922 node->ref_flag = le16_to_cpu(ref->ReferralEntryFlags);
923
924 /* copy DfsPath */
925 temp = (char *)ref + le16_to_cpu(ref->DfsPathOffset);
926 max_len = data_end - temp;
927 node->path_name = cifs_strndup_from_utf16(temp, max_len,
928 is_unicode, nls_codepage);
929 if (!node->path_name) {
930 rc = -ENOMEM;
931 goto parse_DFS_referrals_exit;
932 }
933
934 /* copy link target UNC */
935 temp = (char *)ref + le16_to_cpu(ref->NetworkAddressOffset);
936 max_len = data_end - temp;
937 node->node_name = cifs_strndup_from_utf16(temp, max_len,
938 is_unicode, nls_codepage);
939 if (!node->node_name) {
940 rc = -ENOMEM;
941 goto parse_DFS_referrals_exit;
942 }
943
944 node->ttl = le32_to_cpu(ref->TimeToLive);
945
946 ref++;
947 }
948
949 parse_DFS_referrals_exit:
950 if (rc) {
951 free_dfs_info_array(*target_nodes, *num_of_nodes);
952 *target_nodes = NULL;
953 *num_of_nodes = 0;
954 }
955 return rc;
956 }
957
958 struct cifs_aio_ctx *
cifs_aio_ctx_alloc(void)959 cifs_aio_ctx_alloc(void)
960 {
961 struct cifs_aio_ctx *ctx;
962
963 /*
964 * Must use kzalloc to initialize ctx->bv to NULL and ctx->direct_io
965 * to false so that we know when we have to unreference pages within
966 * cifs_aio_ctx_release()
967 */
968 ctx = kzalloc(sizeof(struct cifs_aio_ctx), GFP_KERNEL);
969 if (!ctx)
970 return NULL;
971
972 INIT_LIST_HEAD(&ctx->list);
973 mutex_init(&ctx->aio_mutex);
974 init_completion(&ctx->done);
975 kref_init(&ctx->refcount);
976 return ctx;
977 }
978
979 void
cifs_aio_ctx_release(struct kref * refcount)980 cifs_aio_ctx_release(struct kref *refcount)
981 {
982 struct cifs_aio_ctx *ctx = container_of(refcount,
983 struct cifs_aio_ctx, refcount);
984
985 cifsFileInfo_put(ctx->cfile);
986
987 /*
988 * ctx->bv is only set if setup_aio_ctx_iter() was call successfuly
989 * which means that iov_iter_extract_pages() was a success and thus
990 * that we may have references or pins on pages that we need to
991 * release.
992 */
993 if (ctx->bv) {
994 if (ctx->should_dirty || ctx->bv_need_unpin) {
995 unsigned int i;
996
997 for (i = 0; i < ctx->nr_pinned_pages; i++) {
998 struct page *page = ctx->bv[i].bv_page;
999
1000 if (ctx->should_dirty)
1001 set_page_dirty(page);
1002 if (ctx->bv_need_unpin)
1003 unpin_user_page(page);
1004 }
1005 }
1006 kvfree(ctx->bv);
1007 }
1008
1009 kfree(ctx);
1010 }
1011
1012 /**
1013 * cifs_alloc_hash - allocate hash and hash context together
1014 * @name: The name of the crypto hash algo
1015 * @sdesc: SHASH descriptor where to put the pointer to the hash TFM
1016 *
1017 * The caller has to make sure @sdesc is initialized to either NULL or
1018 * a valid context. It can be freed via cifs_free_hash().
1019 */
1020 int
cifs_alloc_hash(const char * name,struct shash_desc ** sdesc)1021 cifs_alloc_hash(const char *name, struct shash_desc **sdesc)
1022 {
1023 int rc = 0;
1024 struct crypto_shash *alg = NULL;
1025
1026 if (*sdesc)
1027 return 0;
1028
1029 alg = crypto_alloc_shash(name, 0, 0);
1030 if (IS_ERR(alg)) {
1031 cifs_dbg(VFS, "Could not allocate shash TFM '%s'\n", name);
1032 rc = PTR_ERR(alg);
1033 *sdesc = NULL;
1034 return rc;
1035 }
1036
1037 *sdesc = kmalloc(sizeof(struct shash_desc) + crypto_shash_descsize(alg), GFP_KERNEL);
1038 if (*sdesc == NULL) {
1039 cifs_dbg(VFS, "no memory left to allocate shash TFM '%s'\n", name);
1040 crypto_free_shash(alg);
1041 return -ENOMEM;
1042 }
1043
1044 (*sdesc)->tfm = alg;
1045 return 0;
1046 }
1047
1048 /**
1049 * cifs_free_hash - free hash and hash context together
1050 * @sdesc: Where to find the pointer to the hash TFM
1051 *
1052 * Freeing a NULL descriptor is safe.
1053 */
1054 void
cifs_free_hash(struct shash_desc ** sdesc)1055 cifs_free_hash(struct shash_desc **sdesc)
1056 {
1057 if (unlikely(!sdesc) || !*sdesc)
1058 return;
1059
1060 if ((*sdesc)->tfm) {
1061 crypto_free_shash((*sdesc)->tfm);
1062 (*sdesc)->tfm = NULL;
1063 }
1064
1065 kfree_sensitive(*sdesc);
1066 *sdesc = NULL;
1067 }
1068
extract_unc_hostname(const char * unc,const char ** h,size_t * len)1069 void extract_unc_hostname(const char *unc, const char **h, size_t *len)
1070 {
1071 const char *end;
1072
1073 /* skip initial slashes */
1074 while (*unc && (*unc == '\\' || *unc == '/'))
1075 unc++;
1076
1077 end = unc;
1078
1079 while (*end && !(*end == '\\' || *end == '/'))
1080 end++;
1081
1082 *h = unc;
1083 *len = end - unc;
1084 }
1085
1086 /**
1087 * copy_path_name - copy src path to dst, possibly truncating
1088 * @dst: The destination buffer
1089 * @src: The source name
1090 *
1091 * returns number of bytes written (including trailing nul)
1092 */
copy_path_name(char * dst,const char * src)1093 int copy_path_name(char *dst, const char *src)
1094 {
1095 int name_len;
1096
1097 /*
1098 * PATH_MAX includes nul, so if strlen(src) >= PATH_MAX it
1099 * will truncate and strlen(dst) will be PATH_MAX-1
1100 */
1101 name_len = strscpy(dst, src, PATH_MAX);
1102 if (WARN_ON_ONCE(name_len < 0))
1103 name_len = PATH_MAX-1;
1104
1105 /* we count the trailing nul */
1106 name_len++;
1107 return name_len;
1108 }
1109
1110 struct super_cb_data {
1111 void *data;
1112 struct super_block *sb;
1113 };
1114
tcon_super_cb(struct super_block * sb,void * arg)1115 static void tcon_super_cb(struct super_block *sb, void *arg)
1116 {
1117 struct super_cb_data *sd = arg;
1118 struct cifs_sb_info *cifs_sb;
1119 struct cifs_tcon *t1 = sd->data, *t2;
1120
1121 if (sd->sb)
1122 return;
1123
1124 cifs_sb = CIFS_SB(sb);
1125 t2 = cifs_sb_master_tcon(cifs_sb);
1126
1127 spin_lock(&t2->tc_lock);
1128 if (t1->ses == t2->ses &&
1129 t1->ses->server == t2->ses->server &&
1130 t2->origin_fullpath &&
1131 dfs_src_pathname_equal(t2->origin_fullpath, t1->origin_fullpath))
1132 sd->sb = sb;
1133 spin_unlock(&t2->tc_lock);
1134 }
1135
__cifs_get_super(void (* f)(struct super_block *,void *),void * data)1136 static struct super_block *__cifs_get_super(void (*f)(struct super_block *, void *),
1137 void *data)
1138 {
1139 struct super_cb_data sd = {
1140 .data = data,
1141 .sb = NULL,
1142 };
1143 struct file_system_type **fs_type = (struct file_system_type *[]) {
1144 &cifs_fs_type, &smb3_fs_type, NULL,
1145 };
1146
1147 for (; *fs_type; fs_type++) {
1148 iterate_supers_type(*fs_type, f, &sd);
1149 if (sd.sb) {
1150 /*
1151 * Grab an active reference in order to prevent automounts (DFS links)
1152 * of expiring and then freeing up our cifs superblock pointer while
1153 * we're doing failover.
1154 */
1155 cifs_sb_active(sd.sb);
1156 return sd.sb;
1157 }
1158 }
1159 pr_warn_once("%s: could not find dfs superblock\n", __func__);
1160 return ERR_PTR(-EINVAL);
1161 }
1162
__cifs_put_super(struct super_block * sb)1163 static void __cifs_put_super(struct super_block *sb)
1164 {
1165 if (!IS_ERR_OR_NULL(sb))
1166 cifs_sb_deactive(sb);
1167 }
1168
cifs_get_dfs_tcon_super(struct cifs_tcon * tcon)1169 struct super_block *cifs_get_dfs_tcon_super(struct cifs_tcon *tcon)
1170 {
1171 spin_lock(&tcon->tc_lock);
1172 if (!tcon->origin_fullpath) {
1173 spin_unlock(&tcon->tc_lock);
1174 return ERR_PTR(-ENOENT);
1175 }
1176 spin_unlock(&tcon->tc_lock);
1177 return __cifs_get_super(tcon_super_cb, tcon);
1178 }
1179
cifs_put_tcp_super(struct super_block * sb)1180 void cifs_put_tcp_super(struct super_block *sb)
1181 {
1182 __cifs_put_super(sb);
1183 }
1184
1185 #ifdef CONFIG_CIFS_DFS_UPCALL
match_target_ip(struct TCP_Server_Info * server,const char * share,size_t share_len,bool * result)1186 int match_target_ip(struct TCP_Server_Info *server,
1187 const char *share, size_t share_len,
1188 bool *result)
1189 {
1190 int rc;
1191 char *target;
1192 struct sockaddr_storage ss;
1193
1194 *result = false;
1195
1196 target = kzalloc(share_len + 3, GFP_KERNEL);
1197 if (!target)
1198 return -ENOMEM;
1199
1200 scnprintf(target, share_len + 3, "\\\\%.*s", (int)share_len, share);
1201
1202 cifs_dbg(FYI, "%s: target name: %s\n", __func__, target + 2);
1203
1204 rc = dns_resolve_server_name_to_ip(target, (struct sockaddr *)&ss, NULL);
1205 kfree(target);
1206
1207 if (rc < 0)
1208 return rc;
1209
1210 spin_lock(&server->srv_lock);
1211 *result = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr, (struct sockaddr *)&ss);
1212 spin_unlock(&server->srv_lock);
1213 cifs_dbg(FYI, "%s: ip addresses match: %u\n", __func__, *result);
1214 return 0;
1215 }
1216
cifs_update_super_prepath(struct cifs_sb_info * cifs_sb,char * prefix)1217 int cifs_update_super_prepath(struct cifs_sb_info *cifs_sb, char *prefix)
1218 {
1219 int rc;
1220
1221 kfree(cifs_sb->prepath);
1222 cifs_sb->prepath = NULL;
1223
1224 if (prefix && *prefix) {
1225 cifs_sb->prepath = cifs_sanitize_prepath(prefix, GFP_ATOMIC);
1226 if (IS_ERR(cifs_sb->prepath)) {
1227 rc = PTR_ERR(cifs_sb->prepath);
1228 cifs_sb->prepath = NULL;
1229 return rc;
1230 }
1231 if (cifs_sb->prepath)
1232 convert_delimiter(cifs_sb->prepath, CIFS_DIR_SEP(cifs_sb));
1233 }
1234
1235 cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH;
1236 return 0;
1237 }
1238
1239 /*
1240 * Handle weird Windows SMB server behaviour. It responds with
1241 * STATUS_OBJECT_NAME_INVALID code to SMB2 QUERY_INFO request for
1242 * "\<server>\<dfsname>\<linkpath>" DFS reference, where <dfsname> contains
1243 * non-ASCII unicode symbols.
1244 */
cifs_inval_name_dfs_link_error(const unsigned int xid,struct cifs_tcon * tcon,struct cifs_sb_info * cifs_sb,const char * full_path,bool * islink)1245 int cifs_inval_name_dfs_link_error(const unsigned int xid,
1246 struct cifs_tcon *tcon,
1247 struct cifs_sb_info *cifs_sb,
1248 const char *full_path,
1249 bool *islink)
1250 {
1251 struct cifs_ses *ses = tcon->ses;
1252 size_t len;
1253 char *path;
1254 char *ref_path;
1255
1256 *islink = false;
1257
1258 /*
1259 * Fast path - skip check when @full_path doesn't have a prefix path to
1260 * look up or tcon is not DFS.
1261 */
1262 if (strlen(full_path) < 2 || !cifs_sb ||
1263 (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NO_DFS) ||
1264 !is_tcon_dfs(tcon))
1265 return 0;
1266
1267 spin_lock(&tcon->tc_lock);
1268 if (!tcon->origin_fullpath) {
1269 spin_unlock(&tcon->tc_lock);
1270 return 0;
1271 }
1272 spin_unlock(&tcon->tc_lock);
1273
1274 /*
1275 * Slow path - tcon is DFS and @full_path has prefix path, so attempt
1276 * to get a referral to figure out whether it is an DFS link.
1277 */
1278 len = strnlen(tcon->tree_name, MAX_TREE_SIZE + 1) + strlen(full_path) + 1;
1279 path = kmalloc(len, GFP_KERNEL);
1280 if (!path)
1281 return -ENOMEM;
1282
1283 scnprintf(path, len, "%s%s", tcon->tree_name, full_path);
1284 ref_path = dfs_cache_canonical_path(path + 1, cifs_sb->local_nls,
1285 cifs_remap(cifs_sb));
1286 kfree(path);
1287
1288 if (IS_ERR(ref_path)) {
1289 if (PTR_ERR(ref_path) != -EINVAL)
1290 return PTR_ERR(ref_path);
1291 } else {
1292 struct dfs_info3_param *refs = NULL;
1293 int num_refs = 0;
1294
1295 /*
1296 * XXX: we are not using dfs_cache_find() here because we might
1297 * end up filling all the DFS cache and thus potentially
1298 * removing cached DFS targets that the client would eventually
1299 * need during failover.
1300 */
1301 ses = CIFS_DFS_ROOT_SES(ses);
1302 if (ses->server->ops->get_dfs_refer &&
1303 !ses->server->ops->get_dfs_refer(xid, ses, ref_path, &refs,
1304 &num_refs, cifs_sb->local_nls,
1305 cifs_remap(cifs_sb)))
1306 *islink = refs[0].server_type == DFS_TYPE_LINK;
1307 free_dfs_info_array(refs, num_refs);
1308 kfree(ref_path);
1309 }
1310 return 0;
1311 }
1312 #endif
1313
cifs_wait_for_server_reconnect(struct TCP_Server_Info * server,bool retry)1314 int cifs_wait_for_server_reconnect(struct TCP_Server_Info *server, bool retry)
1315 {
1316 int timeout = 10;
1317 int rc;
1318
1319 spin_lock(&server->srv_lock);
1320 if (server->tcpStatus != CifsNeedReconnect) {
1321 spin_unlock(&server->srv_lock);
1322 return 0;
1323 }
1324 timeout *= server->nr_targets;
1325 spin_unlock(&server->srv_lock);
1326
1327 /*
1328 * Give demultiplex thread up to 10 seconds to each target available for
1329 * reconnect -- should be greater than cifs socket timeout which is 7
1330 * seconds.
1331 *
1332 * On "soft" mounts we wait once. Hard mounts keep retrying until
1333 * process is killed or server comes back on-line.
1334 */
1335 do {
1336 rc = wait_event_interruptible_timeout(server->response_q,
1337 (server->tcpStatus != CifsNeedReconnect),
1338 timeout * HZ);
1339 if (rc < 0) {
1340 cifs_dbg(FYI, "%s: aborting reconnect due to received signal\n",
1341 __func__);
1342 return -ERESTARTSYS;
1343 }
1344
1345 /* are we still trying to reconnect? */
1346 spin_lock(&server->srv_lock);
1347 if (server->tcpStatus != CifsNeedReconnect) {
1348 spin_unlock(&server->srv_lock);
1349 return 0;
1350 }
1351 spin_unlock(&server->srv_lock);
1352 } while (retry);
1353
1354 cifs_dbg(FYI, "%s: gave up waiting on reconnect\n", __func__);
1355 return -EHOSTDOWN;
1356 }
1357