1 // SPDX-License-Identifier: LGPL-2.1
2 /*
3  *
4  *   Copyright (C) International Business Machines  Corp., 2002,2008
5  *   Author(s): Steve French (sfrench@us.ibm.com)
6  *
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/ctype.h>
11 #include <linux/mempool.h>
12 #include <linux/vmalloc.h>
13 #include "cifspdu.h"
14 #include "cifsglob.h"
15 #include "cifsproto.h"
16 #include "cifs_debug.h"
17 #include "smberr.h"
18 #include "nterr.h"
19 #include "cifs_unicode.h"
20 #include "smb2pdu.h"
21 #include "cifsfs.h"
22 #ifdef CONFIG_CIFS_DFS_UPCALL
23 #include "dns_resolve.h"
24 #endif
25 #include "fs_context.h"
26 
27 extern mempool_t *cifs_sm_req_poolp;
28 extern mempool_t *cifs_req_poolp;
29 
30 /* The xid serves as a useful identifier for each incoming vfs request,
31    in a similar way to the mid which is useful to track each sent smb,
32    and CurrentXid can also provide a running counter (although it
33    will eventually wrap past zero) of the total vfs operations handled
34    since the cifs fs was mounted */
35 
36 unsigned int
_get_xid(void)37 _get_xid(void)
38 {
39 	unsigned int xid;
40 
41 	spin_lock(&GlobalMid_Lock);
42 	GlobalTotalActiveXid++;
43 
44 	/* keep high water mark for number of simultaneous ops in filesystem */
45 	if (GlobalTotalActiveXid > GlobalMaxActiveXid)
46 		GlobalMaxActiveXid = GlobalTotalActiveXid;
47 	if (GlobalTotalActiveXid > 65000)
48 		cifs_dbg(FYI, "warning: more than 65000 requests active\n");
49 	xid = GlobalCurrentXid++;
50 	spin_unlock(&GlobalMid_Lock);
51 	return xid;
52 }
53 
54 void
_free_xid(unsigned int xid)55 _free_xid(unsigned int xid)
56 {
57 	spin_lock(&GlobalMid_Lock);
58 	/* if (GlobalTotalActiveXid == 0)
59 		BUG(); */
60 	GlobalTotalActiveXid--;
61 	spin_unlock(&GlobalMid_Lock);
62 }
63 
64 struct cifs_ses *
sesInfoAlloc(void)65 sesInfoAlloc(void)
66 {
67 	struct cifs_ses *ret_buf;
68 
69 	ret_buf = kzalloc(sizeof(struct cifs_ses), GFP_KERNEL);
70 	if (ret_buf) {
71 		atomic_inc(&sesInfoAllocCount);
72 		ret_buf->status = CifsNew;
73 		++ret_buf->ses_count;
74 		INIT_LIST_HEAD(&ret_buf->smb_ses_list);
75 		INIT_LIST_HEAD(&ret_buf->tcon_list);
76 		mutex_init(&ret_buf->session_mutex);
77 		spin_lock_init(&ret_buf->iface_lock);
78 	}
79 	return ret_buf;
80 }
81 
82 void
sesInfoFree(struct cifs_ses * buf_to_free)83 sesInfoFree(struct cifs_ses *buf_to_free)
84 {
85 	if (buf_to_free == NULL) {
86 		cifs_dbg(FYI, "Null buffer passed to sesInfoFree\n");
87 		return;
88 	}
89 
90 	atomic_dec(&sesInfoAllocCount);
91 	kfree(buf_to_free->serverOS);
92 	kfree(buf_to_free->serverDomain);
93 	kfree(buf_to_free->serverNOS);
94 	kfree_sensitive(buf_to_free->password);
95 	kfree(buf_to_free->user_name);
96 	kfree(buf_to_free->domainName);
97 	kfree_sensitive(buf_to_free->auth_key.response);
98 	kfree(buf_to_free->iface_list);
99 	kfree_sensitive(buf_to_free);
100 }
101 
102 struct cifs_tcon *
tconInfoAlloc(void)103 tconInfoAlloc(void)
104 {
105 	struct cifs_tcon *ret_buf;
106 
107 	ret_buf = kzalloc(sizeof(*ret_buf), GFP_KERNEL);
108 	if (!ret_buf)
109 		return NULL;
110 	ret_buf->crfid.fid = kzalloc(sizeof(*ret_buf->crfid.fid), GFP_KERNEL);
111 	if (!ret_buf->crfid.fid) {
112 		kfree(ret_buf);
113 		return NULL;
114 	}
115 
116 	atomic_inc(&tconInfoAllocCount);
117 	ret_buf->tidStatus = CifsNew;
118 	++ret_buf->tc_count;
119 	INIT_LIST_HEAD(&ret_buf->openFileList);
120 	INIT_LIST_HEAD(&ret_buf->tcon_list);
121 	spin_lock_init(&ret_buf->open_file_lock);
122 	mutex_init(&ret_buf->crfid.fid_mutex);
123 	spin_lock_init(&ret_buf->stat_lock);
124 	atomic_set(&ret_buf->num_local_opens, 0);
125 	atomic_set(&ret_buf->num_remote_opens, 0);
126 
127 	return ret_buf;
128 }
129 
130 void
tconInfoFree(struct cifs_tcon * buf_to_free)131 tconInfoFree(struct cifs_tcon *buf_to_free)
132 {
133 	if (buf_to_free == NULL) {
134 		cifs_dbg(FYI, "Null buffer passed to tconInfoFree\n");
135 		return;
136 	}
137 	atomic_dec(&tconInfoAllocCount);
138 	kfree(buf_to_free->nativeFileSystem);
139 	kfree_sensitive(buf_to_free->password);
140 	kfree(buf_to_free->crfid.fid);
141 #ifdef CONFIG_CIFS_DFS_UPCALL
142 	kfree(buf_to_free->dfs_path);
143 #endif
144 	kfree(buf_to_free);
145 }
146 
147 struct smb_hdr *
cifs_buf_get(void)148 cifs_buf_get(void)
149 {
150 	struct smb_hdr *ret_buf = NULL;
151 	/*
152 	 * SMB2 header is bigger than CIFS one - no problems to clean some
153 	 * more bytes for CIFS.
154 	 */
155 	size_t buf_size = sizeof(struct smb2_sync_hdr);
156 
157 	/*
158 	 * We could use negotiated size instead of max_msgsize -
159 	 * but it may be more efficient to always alloc same size
160 	 * albeit slightly larger than necessary and maxbuffersize
161 	 * defaults to this and can not be bigger.
162 	 */
163 	ret_buf = mempool_alloc(cifs_req_poolp, GFP_NOFS);
164 
165 	/* clear the first few header bytes */
166 	/* for most paths, more is cleared in header_assemble */
167 	memset(ret_buf, 0, buf_size + 3);
168 	atomic_inc(&bufAllocCount);
169 #ifdef CONFIG_CIFS_STATS2
170 	atomic_inc(&totBufAllocCount);
171 #endif /* CONFIG_CIFS_STATS2 */
172 
173 	return ret_buf;
174 }
175 
176 void
cifs_buf_release(void * buf_to_free)177 cifs_buf_release(void *buf_to_free)
178 {
179 	if (buf_to_free == NULL) {
180 		/* cifs_dbg(FYI, "Null buffer passed to cifs_buf_release\n");*/
181 		return;
182 	}
183 	mempool_free(buf_to_free, cifs_req_poolp);
184 
185 	atomic_dec(&bufAllocCount);
186 	return;
187 }
188 
189 struct smb_hdr *
cifs_small_buf_get(void)190 cifs_small_buf_get(void)
191 {
192 	struct smb_hdr *ret_buf = NULL;
193 
194 /* We could use negotiated size instead of max_msgsize -
195    but it may be more efficient to always alloc same size
196    albeit slightly larger than necessary and maxbuffersize
197    defaults to this and can not be bigger */
198 	ret_buf = mempool_alloc(cifs_sm_req_poolp, GFP_NOFS);
199 	/* No need to clear memory here, cleared in header assemble */
200 	/*	memset(ret_buf, 0, sizeof(struct smb_hdr) + 27);*/
201 	atomic_inc(&smBufAllocCount);
202 #ifdef CONFIG_CIFS_STATS2
203 	atomic_inc(&totSmBufAllocCount);
204 #endif /* CONFIG_CIFS_STATS2 */
205 
206 	return ret_buf;
207 }
208 
209 void
cifs_small_buf_release(void * buf_to_free)210 cifs_small_buf_release(void *buf_to_free)
211 {
212 
213 	if (buf_to_free == NULL) {
214 		cifs_dbg(FYI, "Null buffer passed to cifs_small_buf_release\n");
215 		return;
216 	}
217 	mempool_free(buf_to_free, cifs_sm_req_poolp);
218 
219 	atomic_dec(&smBufAllocCount);
220 	return;
221 }
222 
223 void
free_rsp_buf(int resp_buftype,void * rsp)224 free_rsp_buf(int resp_buftype, void *rsp)
225 {
226 	if (resp_buftype == CIFS_SMALL_BUFFER)
227 		cifs_small_buf_release(rsp);
228 	else if (resp_buftype == CIFS_LARGE_BUFFER)
229 		cifs_buf_release(rsp);
230 }
231 
232 /* NB: MID can not be set if treeCon not passed in, in that
233    case it is responsbility of caller to set the mid */
234 void
header_assemble(struct smb_hdr * buffer,char smb_command,const struct cifs_tcon * treeCon,int word_count)235 header_assemble(struct smb_hdr *buffer, char smb_command /* command */ ,
236 		const struct cifs_tcon *treeCon, int word_count
237 		/* length of fixed section (word count) in two byte units  */)
238 {
239 	char *temp = (char *) buffer;
240 
241 	memset(temp, 0, 256); /* bigger than MAX_CIFS_HDR_SIZE */
242 
243 	buffer->smb_buf_length = cpu_to_be32(
244 	    (2 * word_count) + sizeof(struct smb_hdr) -
245 	    4 /*  RFC 1001 length field does not count */  +
246 	    2 /* for bcc field itself */) ;
247 
248 	buffer->Protocol[0] = 0xFF;
249 	buffer->Protocol[1] = 'S';
250 	buffer->Protocol[2] = 'M';
251 	buffer->Protocol[3] = 'B';
252 	buffer->Command = smb_command;
253 	buffer->Flags = 0x00;	/* case sensitive */
254 	buffer->Flags2 = SMBFLG2_KNOWS_LONG_NAMES;
255 	buffer->Pid = cpu_to_le16((__u16)current->tgid);
256 	buffer->PidHigh = cpu_to_le16((__u16)(current->tgid >> 16));
257 	if (treeCon) {
258 		buffer->Tid = treeCon->tid;
259 		if (treeCon->ses) {
260 			if (treeCon->ses->capabilities & CAP_UNICODE)
261 				buffer->Flags2 |= SMBFLG2_UNICODE;
262 			if (treeCon->ses->capabilities & CAP_STATUS32)
263 				buffer->Flags2 |= SMBFLG2_ERR_STATUS;
264 
265 			/* Uid is not converted */
266 			buffer->Uid = treeCon->ses->Suid;
267 			if (treeCon->ses->server)
268 				buffer->Mid = get_next_mid(treeCon->ses->server);
269 		}
270 		if (treeCon->Flags & SMB_SHARE_IS_IN_DFS)
271 			buffer->Flags2 |= SMBFLG2_DFS;
272 		if (treeCon->nocase)
273 			buffer->Flags  |= SMBFLG_CASELESS;
274 		if ((treeCon->ses) && (treeCon->ses->server))
275 			if (treeCon->ses->server->sign)
276 				buffer->Flags2 |= SMBFLG2_SECURITY_SIGNATURE;
277 	}
278 
279 /*  endian conversion of flags is now done just before sending */
280 	buffer->WordCount = (char) word_count;
281 	return;
282 }
283 
284 static int
check_smb_hdr(struct smb_hdr * smb)285 check_smb_hdr(struct smb_hdr *smb)
286 {
287 	/* does it have the right SMB "signature" ? */
288 	if (*(__le32 *) smb->Protocol != cpu_to_le32(0x424d53ff)) {
289 		cifs_dbg(VFS, "Bad protocol string signature header 0x%x\n",
290 			 *(unsigned int *)smb->Protocol);
291 		return 1;
292 	}
293 
294 	/* if it's a response then accept */
295 	if (smb->Flags & SMBFLG_RESPONSE)
296 		return 0;
297 
298 	/* only one valid case where server sends us request */
299 	if (smb->Command == SMB_COM_LOCKING_ANDX)
300 		return 0;
301 
302 	cifs_dbg(VFS, "Server sent request, not response. mid=%u\n",
303 		 get_mid(smb));
304 	return 1;
305 }
306 
307 int
checkSMB(char * buf,unsigned int total_read,struct TCP_Server_Info * server)308 checkSMB(char *buf, unsigned int total_read, struct TCP_Server_Info *server)
309 {
310 	struct smb_hdr *smb = (struct smb_hdr *)buf;
311 	__u32 rfclen = be32_to_cpu(smb->smb_buf_length);
312 	__u32 clc_len;  /* calculated length */
313 	cifs_dbg(FYI, "checkSMB Length: 0x%x, smb_buf_length: 0x%x\n",
314 		 total_read, rfclen);
315 
316 	/* is this frame too small to even get to a BCC? */
317 	if (total_read < 2 + sizeof(struct smb_hdr)) {
318 		if ((total_read >= sizeof(struct smb_hdr) - 1)
319 			    && (smb->Status.CifsError != 0)) {
320 			/* it's an error return */
321 			smb->WordCount = 0;
322 			/* some error cases do not return wct and bcc */
323 			return 0;
324 		} else if ((total_read == sizeof(struct smb_hdr) + 1) &&
325 				(smb->WordCount == 0)) {
326 			char *tmp = (char *)smb;
327 			/* Need to work around a bug in two servers here */
328 			/* First, check if the part of bcc they sent was zero */
329 			if (tmp[sizeof(struct smb_hdr)] == 0) {
330 				/* some servers return only half of bcc
331 				 * on simple responses (wct, bcc both zero)
332 				 * in particular have seen this on
333 				 * ulogoffX and FindClose. This leaves
334 				 * one byte of bcc potentially unitialized
335 				 */
336 				/* zero rest of bcc */
337 				tmp[sizeof(struct smb_hdr)+1] = 0;
338 				return 0;
339 			}
340 			cifs_dbg(VFS, "rcvd invalid byte count (bcc)\n");
341 		} else {
342 			cifs_dbg(VFS, "Length less than smb header size\n");
343 		}
344 		return -EIO;
345 	}
346 
347 	/* otherwise, there is enough to get to the BCC */
348 	if (check_smb_hdr(smb))
349 		return -EIO;
350 	clc_len = smbCalcSize(smb, server);
351 
352 	if (4 + rfclen != total_read) {
353 		cifs_dbg(VFS, "Length read does not match RFC1001 length %d\n",
354 			 rfclen);
355 		return -EIO;
356 	}
357 
358 	if (4 + rfclen != clc_len) {
359 		__u16 mid = get_mid(smb);
360 		/* check if bcc wrapped around for large read responses */
361 		if ((rfclen > 64 * 1024) && (rfclen > clc_len)) {
362 			/* check if lengths match mod 64K */
363 			if (((4 + rfclen) & 0xFFFF) == (clc_len & 0xFFFF))
364 				return 0; /* bcc wrapped */
365 		}
366 		cifs_dbg(FYI, "Calculated size %u vs length %u mismatch for mid=%u\n",
367 			 clc_len, 4 + rfclen, mid);
368 
369 		if (4 + rfclen < clc_len) {
370 			cifs_dbg(VFS, "RFC1001 size %u smaller than SMB for mid=%u\n",
371 				 rfclen, mid);
372 			return -EIO;
373 		} else if (rfclen > clc_len + 512) {
374 			/*
375 			 * Some servers (Windows XP in particular) send more
376 			 * data than the lengths in the SMB packet would
377 			 * indicate on certain calls (byte range locks and
378 			 * trans2 find first calls in particular). While the
379 			 * client can handle such a frame by ignoring the
380 			 * trailing data, we choose limit the amount of extra
381 			 * data to 512 bytes.
382 			 */
383 			cifs_dbg(VFS, "RFC1001 size %u more than 512 bytes larger than SMB for mid=%u\n",
384 				 rfclen, mid);
385 			return -EIO;
386 		}
387 	}
388 	return 0;
389 }
390 
391 bool
is_valid_oplock_break(char * buffer,struct TCP_Server_Info * srv)392 is_valid_oplock_break(char *buffer, struct TCP_Server_Info *srv)
393 {
394 	struct smb_hdr *buf = (struct smb_hdr *)buffer;
395 	struct smb_com_lock_req *pSMB = (struct smb_com_lock_req *)buf;
396 	struct list_head *tmp, *tmp1, *tmp2;
397 	struct cifs_ses *ses;
398 	struct cifs_tcon *tcon;
399 	struct cifsInodeInfo *pCifsInode;
400 	struct cifsFileInfo *netfile;
401 
402 	cifs_dbg(FYI, "Checking for oplock break or dnotify response\n");
403 	if ((pSMB->hdr.Command == SMB_COM_NT_TRANSACT) &&
404 	   (pSMB->hdr.Flags & SMBFLG_RESPONSE)) {
405 		struct smb_com_transaction_change_notify_rsp *pSMBr =
406 			(struct smb_com_transaction_change_notify_rsp *)buf;
407 		struct file_notify_information *pnotify;
408 		__u32 data_offset = 0;
409 		size_t len = srv->total_read - sizeof(pSMBr->hdr.smb_buf_length);
410 
411 		if (get_bcc(buf) > sizeof(struct file_notify_information)) {
412 			data_offset = le32_to_cpu(pSMBr->DataOffset);
413 
414 			if (data_offset >
415 			    len - sizeof(struct file_notify_information)) {
416 				cifs_dbg(FYI, "Invalid data_offset %u\n",
417 					 data_offset);
418 				return true;
419 			}
420 			pnotify = (struct file_notify_information *)
421 				((char *)&pSMBr->hdr.Protocol + data_offset);
422 			cifs_dbg(FYI, "dnotify on %s Action: 0x%x\n",
423 				 pnotify->FileName, pnotify->Action);
424 			/*   cifs_dump_mem("Rcvd notify Data: ",buf,
425 				sizeof(struct smb_hdr)+60); */
426 			return true;
427 		}
428 		if (pSMBr->hdr.Status.CifsError) {
429 			cifs_dbg(FYI, "notify err 0x%x\n",
430 				 pSMBr->hdr.Status.CifsError);
431 			return true;
432 		}
433 		return false;
434 	}
435 	if (pSMB->hdr.Command != SMB_COM_LOCKING_ANDX)
436 		return false;
437 	if (pSMB->hdr.Flags & SMBFLG_RESPONSE) {
438 		/* no sense logging error on invalid handle on oplock
439 		   break - harmless race between close request and oplock
440 		   break response is expected from time to time writing out
441 		   large dirty files cached on the client */
442 		if ((NT_STATUS_INVALID_HANDLE) ==
443 		   le32_to_cpu(pSMB->hdr.Status.CifsError)) {
444 			cifs_dbg(FYI, "Invalid handle on oplock break\n");
445 			return true;
446 		} else if (ERRbadfid ==
447 		   le16_to_cpu(pSMB->hdr.Status.DosError.Error)) {
448 			return true;
449 		} else {
450 			return false; /* on valid oplock brk we get "request" */
451 		}
452 	}
453 	if (pSMB->hdr.WordCount != 8)
454 		return false;
455 
456 	cifs_dbg(FYI, "oplock type 0x%x level 0x%x\n",
457 		 pSMB->LockType, pSMB->OplockLevel);
458 	if (!(pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE))
459 		return false;
460 
461 	/* look up tcon based on tid & uid */
462 	spin_lock(&cifs_tcp_ses_lock);
463 	list_for_each(tmp, &srv->smb_ses_list) {
464 		ses = list_entry(tmp, struct cifs_ses, smb_ses_list);
465 		list_for_each(tmp1, &ses->tcon_list) {
466 			tcon = list_entry(tmp1, struct cifs_tcon, tcon_list);
467 			if (tcon->tid != buf->Tid)
468 				continue;
469 
470 			cifs_stats_inc(&tcon->stats.cifs_stats.num_oplock_brks);
471 			spin_lock(&tcon->open_file_lock);
472 			list_for_each(tmp2, &tcon->openFileList) {
473 				netfile = list_entry(tmp2, struct cifsFileInfo,
474 						     tlist);
475 				if (pSMB->Fid != netfile->fid.netfid)
476 					continue;
477 
478 				cifs_dbg(FYI, "file id match, oplock break\n");
479 				pCifsInode = CIFS_I(d_inode(netfile->dentry));
480 
481 				set_bit(CIFS_INODE_PENDING_OPLOCK_BREAK,
482 					&pCifsInode->flags);
483 
484 				netfile->oplock_epoch = 0;
485 				netfile->oplock_level = pSMB->OplockLevel;
486 				netfile->oplock_break_cancelled = false;
487 				cifs_queue_oplock_break(netfile);
488 
489 				spin_unlock(&tcon->open_file_lock);
490 				spin_unlock(&cifs_tcp_ses_lock);
491 				return true;
492 			}
493 			spin_unlock(&tcon->open_file_lock);
494 			spin_unlock(&cifs_tcp_ses_lock);
495 			cifs_dbg(FYI, "No matching file for oplock break\n");
496 			return true;
497 		}
498 	}
499 	spin_unlock(&cifs_tcp_ses_lock);
500 	cifs_dbg(FYI, "Can not process oplock break for non-existent connection\n");
501 	return true;
502 }
503 
504 void
dump_smb(void * buf,int smb_buf_length)505 dump_smb(void *buf, int smb_buf_length)
506 {
507 	if (traceSMB == 0)
508 		return;
509 
510 	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_NONE, 8, 2, buf,
511 		       smb_buf_length, true);
512 }
513 
514 void
cifs_autodisable_serverino(struct cifs_sb_info * cifs_sb)515 cifs_autodisable_serverino(struct cifs_sb_info *cifs_sb)
516 {
517 	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM) {
518 		struct cifs_tcon *tcon = NULL;
519 
520 		if (cifs_sb->master_tlink)
521 			tcon = cifs_sb_master_tcon(cifs_sb);
522 
523 		cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SERVER_INUM;
524 		cifs_sb->mnt_cifs_serverino_autodisabled = true;
525 		cifs_dbg(VFS, "Autodisabling the use of server inode numbers on %s\n",
526 			 tcon ? tcon->treeName : "new server");
527 		cifs_dbg(VFS, "The server doesn't seem to support them properly or the files might be on different servers (DFS)\n");
528 		cifs_dbg(VFS, "Hardlinks will not be recognized on this mount. Consider mounting with the \"noserverino\" option to silence this message.\n");
529 
530 	}
531 }
532 
cifs_set_oplock_level(struct cifsInodeInfo * cinode,__u32 oplock)533 void cifs_set_oplock_level(struct cifsInodeInfo *cinode, __u32 oplock)
534 {
535 	oplock &= 0xF;
536 
537 	if (oplock == OPLOCK_EXCLUSIVE) {
538 		cinode->oplock = CIFS_CACHE_WRITE_FLG | CIFS_CACHE_READ_FLG;
539 		cifs_dbg(FYI, "Exclusive Oplock granted on inode %p\n",
540 			 &cinode->vfs_inode);
541 	} else if (oplock == OPLOCK_READ) {
542 		cinode->oplock = CIFS_CACHE_READ_FLG;
543 		cifs_dbg(FYI, "Level II Oplock granted on inode %p\n",
544 			 &cinode->vfs_inode);
545 	} else
546 		cinode->oplock = 0;
547 }
548 
549 /*
550  * We wait for oplock breaks to be processed before we attempt to perform
551  * writes.
552  */
cifs_get_writer(struct cifsInodeInfo * cinode)553 int cifs_get_writer(struct cifsInodeInfo *cinode)
554 {
555 	int rc;
556 
557 start:
558 	rc = wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK,
559 			 TASK_KILLABLE);
560 	if (rc)
561 		return rc;
562 
563 	spin_lock(&cinode->writers_lock);
564 	if (!cinode->writers)
565 		set_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
566 	cinode->writers++;
567 	/* Check to see if we have started servicing an oplock break */
568 	if (test_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags)) {
569 		cinode->writers--;
570 		if (cinode->writers == 0) {
571 			clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
572 			wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
573 		}
574 		spin_unlock(&cinode->writers_lock);
575 		goto start;
576 	}
577 	spin_unlock(&cinode->writers_lock);
578 	return 0;
579 }
580 
cifs_put_writer(struct cifsInodeInfo * cinode)581 void cifs_put_writer(struct cifsInodeInfo *cinode)
582 {
583 	spin_lock(&cinode->writers_lock);
584 	cinode->writers--;
585 	if (cinode->writers == 0) {
586 		clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
587 		wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
588 	}
589 	spin_unlock(&cinode->writers_lock);
590 }
591 
592 /**
593  * cifs_queue_oplock_break - queue the oplock break handler for cfile
594  * @cfile: The file to break the oplock on
595  *
596  * This function is called from the demultiplex thread when it
597  * receives an oplock break for @cfile.
598  *
599  * Assumes the tcon->open_file_lock is held.
600  * Assumes cfile->file_info_lock is NOT held.
601  */
cifs_queue_oplock_break(struct cifsFileInfo * cfile)602 void cifs_queue_oplock_break(struct cifsFileInfo *cfile)
603 {
604 	/*
605 	 * Bump the handle refcount now while we hold the
606 	 * open_file_lock to enforce the validity of it for the oplock
607 	 * break handler. The matching put is done at the end of the
608 	 * handler.
609 	 */
610 	cifsFileInfo_get(cfile);
611 
612 	queue_work(cifsoplockd_wq, &cfile->oplock_break);
613 }
614 
cifs_done_oplock_break(struct cifsInodeInfo * cinode)615 void cifs_done_oplock_break(struct cifsInodeInfo *cinode)
616 {
617 	clear_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags);
618 	wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK);
619 }
620 
621 bool
backup_cred(struct cifs_sb_info * cifs_sb)622 backup_cred(struct cifs_sb_info *cifs_sb)
623 {
624 	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPUID) {
625 		if (uid_eq(cifs_sb->ctx->backupuid, current_fsuid()))
626 			return true;
627 	}
628 	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPGID) {
629 		if (in_group_p(cifs_sb->ctx->backupgid))
630 			return true;
631 	}
632 
633 	return false;
634 }
635 
636 void
cifs_del_pending_open(struct cifs_pending_open * open)637 cifs_del_pending_open(struct cifs_pending_open *open)
638 {
639 	spin_lock(&tlink_tcon(open->tlink)->open_file_lock);
640 	list_del(&open->olist);
641 	spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
642 }
643 
644 void
cifs_add_pending_open_locked(struct cifs_fid * fid,struct tcon_link * tlink,struct cifs_pending_open * open)645 cifs_add_pending_open_locked(struct cifs_fid *fid, struct tcon_link *tlink,
646 			     struct cifs_pending_open *open)
647 {
648 	memcpy(open->lease_key, fid->lease_key, SMB2_LEASE_KEY_SIZE);
649 	open->oplock = CIFS_OPLOCK_NO_CHANGE;
650 	open->tlink = tlink;
651 	fid->pending_open = open;
652 	list_add_tail(&open->olist, &tlink_tcon(tlink)->pending_opens);
653 }
654 
655 void
cifs_add_pending_open(struct cifs_fid * fid,struct tcon_link * tlink,struct cifs_pending_open * open)656 cifs_add_pending_open(struct cifs_fid *fid, struct tcon_link *tlink,
657 		      struct cifs_pending_open *open)
658 {
659 	spin_lock(&tlink_tcon(tlink)->open_file_lock);
660 	cifs_add_pending_open_locked(fid, tlink, open);
661 	spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
662 }
663 
664 /*
665  * Critical section which runs after acquiring deferred_lock.
666  * As there is no reference count on cifs_deferred_close, pdclose
667  * should not be used outside deferred_lock.
668  */
669 bool
cifs_is_deferred_close(struct cifsFileInfo * cfile,struct cifs_deferred_close ** pdclose)670 cifs_is_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close **pdclose)
671 {
672 	struct cifs_deferred_close *dclose;
673 
674 	list_for_each_entry(dclose, &CIFS_I(d_inode(cfile->dentry))->deferred_closes, dlist) {
675 		if ((dclose->netfid == cfile->fid.netfid) &&
676 			(dclose->persistent_fid == cfile->fid.persistent_fid) &&
677 			(dclose->volatile_fid == cfile->fid.volatile_fid)) {
678 			*pdclose = dclose;
679 			return true;
680 		}
681 	}
682 	return false;
683 }
684 
685 /*
686  * Critical section which runs after acquiring deferred_lock.
687  */
688 void
cifs_add_deferred_close(struct cifsFileInfo * cfile,struct cifs_deferred_close * dclose)689 cifs_add_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close *dclose)
690 {
691 	bool is_deferred = false;
692 	struct cifs_deferred_close *pdclose;
693 
694 	is_deferred = cifs_is_deferred_close(cfile, &pdclose);
695 	if (is_deferred) {
696 		kfree(dclose);
697 		return;
698 	}
699 
700 	dclose->tlink = cfile->tlink;
701 	dclose->netfid = cfile->fid.netfid;
702 	dclose->persistent_fid = cfile->fid.persistent_fid;
703 	dclose->volatile_fid = cfile->fid.volatile_fid;
704 	list_add_tail(&dclose->dlist, &CIFS_I(d_inode(cfile->dentry))->deferred_closes);
705 }
706 
707 /*
708  * Critical section which runs after acquiring deferred_lock.
709  */
710 void
cifs_del_deferred_close(struct cifsFileInfo * cfile)711 cifs_del_deferred_close(struct cifsFileInfo *cfile)
712 {
713 	bool is_deferred = false;
714 	struct cifs_deferred_close *dclose;
715 
716 	is_deferred = cifs_is_deferred_close(cfile, &dclose);
717 	if (!is_deferred)
718 		return;
719 	list_del(&dclose->dlist);
720 	kfree(dclose);
721 }
722 
723 void
cifs_close_deferred_file(struct cifsInodeInfo * cifs_inode)724 cifs_close_deferred_file(struct cifsInodeInfo *cifs_inode)
725 {
726 	struct cifsFileInfo *cfile = NULL;
727 	struct file_list *tmp_list, *tmp_next_list;
728 	struct list_head file_head;
729 
730 	if (cifs_inode == NULL)
731 		return;
732 
733 	INIT_LIST_HEAD(&file_head);
734 	spin_lock(&cifs_inode->open_file_lock);
735 	list_for_each_entry(cfile, &cifs_inode->openFileList, flist) {
736 		if (delayed_work_pending(&cfile->deferred)) {
737 			if (cancel_delayed_work(&cfile->deferred)) {
738 				tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
739 				if (tmp_list == NULL)
740 					break;
741 				tmp_list->cfile = cfile;
742 				list_add_tail(&tmp_list->list, &file_head);
743 			}
744 		}
745 	}
746 	spin_unlock(&cifs_inode->open_file_lock);
747 
748 	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
749 		_cifsFileInfo_put(tmp_list->cfile, true, false);
750 		list_del(&tmp_list->list);
751 		kfree(tmp_list);
752 	}
753 }
754 
755 void
cifs_close_all_deferred_files(struct cifs_tcon * tcon)756 cifs_close_all_deferred_files(struct cifs_tcon *tcon)
757 {
758 	struct cifsFileInfo *cfile;
759 	struct list_head *tmp;
760 	struct file_list *tmp_list, *tmp_next_list;
761 	struct list_head file_head;
762 
763 	INIT_LIST_HEAD(&file_head);
764 	spin_lock(&tcon->open_file_lock);
765 	list_for_each(tmp, &tcon->openFileList) {
766 		cfile = list_entry(tmp, struct cifsFileInfo, tlist);
767 		if (delayed_work_pending(&cfile->deferred)) {
768 			if (cancel_delayed_work(&cfile->deferred)) {
769 				tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
770 				if (tmp_list == NULL)
771 					break;
772 				tmp_list->cfile = cfile;
773 				list_add_tail(&tmp_list->list, &file_head);
774 			}
775 		}
776 	}
777 	spin_unlock(&tcon->open_file_lock);
778 
779 	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
780 		_cifsFileInfo_put(tmp_list->cfile, true, false);
781 		list_del(&tmp_list->list);
782 		kfree(tmp_list);
783 	}
784 }
785 void
cifs_close_deferred_file_under_dentry(struct cifs_tcon * tcon,const char * path)786 cifs_close_deferred_file_under_dentry(struct cifs_tcon *tcon, const char *path)
787 {
788 	struct cifsFileInfo *cfile;
789 	struct list_head *tmp;
790 	struct file_list *tmp_list, *tmp_next_list;
791 	struct list_head file_head;
792 	void *page;
793 	const char *full_path;
794 
795 	INIT_LIST_HEAD(&file_head);
796 	page = alloc_dentry_path();
797 	spin_lock(&tcon->open_file_lock);
798 	list_for_each(tmp, &tcon->openFileList) {
799 		cfile = list_entry(tmp, struct cifsFileInfo, tlist);
800 		full_path = build_path_from_dentry(cfile->dentry, page);
801 		if (strstr(full_path, path)) {
802 			if (delayed_work_pending(&cfile->deferred)) {
803 				if (cancel_delayed_work(&cfile->deferred)) {
804 					tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
805 					if (tmp_list == NULL)
806 						break;
807 					tmp_list->cfile = cfile;
808 					list_add_tail(&tmp_list->list, &file_head);
809 				}
810 			}
811 		}
812 	}
813 	spin_unlock(&tcon->open_file_lock);
814 
815 	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
816 		_cifsFileInfo_put(tmp_list->cfile, true, false);
817 		list_del(&tmp_list->list);
818 		kfree(tmp_list);
819 	}
820 	free_dentry_path(page);
821 }
822 
823 /* parses DFS refferal V3 structure
824  * caller is responsible for freeing target_nodes
825  * returns:
826  * - on success - 0
827  * - on failure - errno
828  */
829 int
parse_dfs_referrals(struct get_dfs_referral_rsp * rsp,u32 rsp_size,unsigned int * num_of_nodes,struct dfs_info3_param ** target_nodes,const struct nls_table * nls_codepage,int remap,const char * searchName,bool is_unicode)830 parse_dfs_referrals(struct get_dfs_referral_rsp *rsp, u32 rsp_size,
831 		    unsigned int *num_of_nodes,
832 		    struct dfs_info3_param **target_nodes,
833 		    const struct nls_table *nls_codepage, int remap,
834 		    const char *searchName, bool is_unicode)
835 {
836 	int i, rc = 0;
837 	char *data_end;
838 	struct dfs_referral_level_3 *ref;
839 
840 	*num_of_nodes = le16_to_cpu(rsp->NumberOfReferrals);
841 
842 	if (*num_of_nodes < 1) {
843 		cifs_dbg(VFS, "num_referrals: must be at least > 0, but we get num_referrals = %d\n",
844 			 *num_of_nodes);
845 		rc = -EINVAL;
846 		goto parse_DFS_referrals_exit;
847 	}
848 
849 	ref = (struct dfs_referral_level_3 *) &(rsp->referrals);
850 	if (ref->VersionNumber != cpu_to_le16(3)) {
851 		cifs_dbg(VFS, "Referrals of V%d version are not supported, should be V3\n",
852 			 le16_to_cpu(ref->VersionNumber));
853 		rc = -EINVAL;
854 		goto parse_DFS_referrals_exit;
855 	}
856 
857 	/* get the upper boundary of the resp buffer */
858 	data_end = (char *)rsp + rsp_size;
859 
860 	cifs_dbg(FYI, "num_referrals: %d dfs flags: 0x%x ...\n",
861 		 *num_of_nodes, le32_to_cpu(rsp->DFSFlags));
862 
863 	*target_nodes = kcalloc(*num_of_nodes, sizeof(struct dfs_info3_param),
864 				GFP_KERNEL);
865 	if (*target_nodes == NULL) {
866 		rc = -ENOMEM;
867 		goto parse_DFS_referrals_exit;
868 	}
869 
870 	/* collect necessary data from referrals */
871 	for (i = 0; i < *num_of_nodes; i++) {
872 		char *temp;
873 		int max_len;
874 		struct dfs_info3_param *node = (*target_nodes)+i;
875 
876 		node->flags = le32_to_cpu(rsp->DFSFlags);
877 		if (is_unicode) {
878 			__le16 *tmp = kmalloc(strlen(searchName)*2 + 2,
879 						GFP_KERNEL);
880 			if (tmp == NULL) {
881 				rc = -ENOMEM;
882 				goto parse_DFS_referrals_exit;
883 			}
884 			cifsConvertToUTF16((__le16 *) tmp, searchName,
885 					   PATH_MAX, nls_codepage, remap);
886 			node->path_consumed = cifs_utf16_bytes(tmp,
887 					le16_to_cpu(rsp->PathConsumed),
888 					nls_codepage);
889 			kfree(tmp);
890 		} else
891 			node->path_consumed = le16_to_cpu(rsp->PathConsumed);
892 
893 		node->server_type = le16_to_cpu(ref->ServerType);
894 		node->ref_flag = le16_to_cpu(ref->ReferralEntryFlags);
895 
896 		/* copy DfsPath */
897 		temp = (char *)ref + le16_to_cpu(ref->DfsPathOffset);
898 		max_len = data_end - temp;
899 		node->path_name = cifs_strndup_from_utf16(temp, max_len,
900 						is_unicode, nls_codepage);
901 		if (!node->path_name) {
902 			rc = -ENOMEM;
903 			goto parse_DFS_referrals_exit;
904 		}
905 
906 		/* copy link target UNC */
907 		temp = (char *)ref + le16_to_cpu(ref->NetworkAddressOffset);
908 		max_len = data_end - temp;
909 		node->node_name = cifs_strndup_from_utf16(temp, max_len,
910 						is_unicode, nls_codepage);
911 		if (!node->node_name) {
912 			rc = -ENOMEM;
913 			goto parse_DFS_referrals_exit;
914 		}
915 
916 		node->ttl = le32_to_cpu(ref->TimeToLive);
917 
918 		ref++;
919 	}
920 
921 parse_DFS_referrals_exit:
922 	if (rc) {
923 		free_dfs_info_array(*target_nodes, *num_of_nodes);
924 		*target_nodes = NULL;
925 		*num_of_nodes = 0;
926 	}
927 	return rc;
928 }
929 
930 struct cifs_aio_ctx *
cifs_aio_ctx_alloc(void)931 cifs_aio_ctx_alloc(void)
932 {
933 	struct cifs_aio_ctx *ctx;
934 
935 	/*
936 	 * Must use kzalloc to initialize ctx->bv to NULL and ctx->direct_io
937 	 * to false so that we know when we have to unreference pages within
938 	 * cifs_aio_ctx_release()
939 	 */
940 	ctx = kzalloc(sizeof(struct cifs_aio_ctx), GFP_KERNEL);
941 	if (!ctx)
942 		return NULL;
943 
944 	INIT_LIST_HEAD(&ctx->list);
945 	mutex_init(&ctx->aio_mutex);
946 	init_completion(&ctx->done);
947 	kref_init(&ctx->refcount);
948 	return ctx;
949 }
950 
951 void
cifs_aio_ctx_release(struct kref * refcount)952 cifs_aio_ctx_release(struct kref *refcount)
953 {
954 	struct cifs_aio_ctx *ctx = container_of(refcount,
955 					struct cifs_aio_ctx, refcount);
956 
957 	cifsFileInfo_put(ctx->cfile);
958 
959 	/*
960 	 * ctx->bv is only set if setup_aio_ctx_iter() was call successfuly
961 	 * which means that iov_iter_get_pages() was a success and thus that
962 	 * we have taken reference on pages.
963 	 */
964 	if (ctx->bv) {
965 		unsigned i;
966 
967 		for (i = 0; i < ctx->npages; i++) {
968 			if (ctx->should_dirty)
969 				set_page_dirty(ctx->bv[i].bv_page);
970 			put_page(ctx->bv[i].bv_page);
971 		}
972 		kvfree(ctx->bv);
973 	}
974 
975 	kfree(ctx);
976 }
977 
978 #define CIFS_AIO_KMALLOC_LIMIT (1024 * 1024)
979 
980 int
setup_aio_ctx_iter(struct cifs_aio_ctx * ctx,struct iov_iter * iter,int rw)981 setup_aio_ctx_iter(struct cifs_aio_ctx *ctx, struct iov_iter *iter, int rw)
982 {
983 	ssize_t rc;
984 	unsigned int cur_npages;
985 	unsigned int npages = 0;
986 	unsigned int i;
987 	size_t len;
988 	size_t count = iov_iter_count(iter);
989 	unsigned int saved_len;
990 	size_t start;
991 	unsigned int max_pages = iov_iter_npages(iter, INT_MAX);
992 	struct page **pages = NULL;
993 	struct bio_vec *bv = NULL;
994 
995 	if (iov_iter_is_kvec(iter)) {
996 		memcpy(&ctx->iter, iter, sizeof(*iter));
997 		ctx->len = count;
998 		iov_iter_advance(iter, count);
999 		return 0;
1000 	}
1001 
1002 	if (array_size(max_pages, sizeof(*bv)) <= CIFS_AIO_KMALLOC_LIMIT)
1003 		bv = kmalloc_array(max_pages, sizeof(*bv), GFP_KERNEL);
1004 
1005 	if (!bv) {
1006 		bv = vmalloc(array_size(max_pages, sizeof(*bv)));
1007 		if (!bv)
1008 			return -ENOMEM;
1009 	}
1010 
1011 	if (array_size(max_pages, sizeof(*pages)) <= CIFS_AIO_KMALLOC_LIMIT)
1012 		pages = kmalloc_array(max_pages, sizeof(*pages), GFP_KERNEL);
1013 
1014 	if (!pages) {
1015 		pages = vmalloc(array_size(max_pages, sizeof(*pages)));
1016 		if (!pages) {
1017 			kvfree(bv);
1018 			return -ENOMEM;
1019 		}
1020 	}
1021 
1022 	saved_len = count;
1023 
1024 	while (count && npages < max_pages) {
1025 		rc = iov_iter_get_pages(iter, pages, count, max_pages, &start);
1026 		if (rc < 0) {
1027 			cifs_dbg(VFS, "Couldn't get user pages (rc=%zd)\n", rc);
1028 			break;
1029 		}
1030 
1031 		if (rc > count) {
1032 			cifs_dbg(VFS, "get pages rc=%zd more than %zu\n", rc,
1033 				 count);
1034 			break;
1035 		}
1036 
1037 		iov_iter_advance(iter, rc);
1038 		count -= rc;
1039 		rc += start;
1040 		cur_npages = DIV_ROUND_UP(rc, PAGE_SIZE);
1041 
1042 		if (npages + cur_npages > max_pages) {
1043 			cifs_dbg(VFS, "out of vec array capacity (%u vs %u)\n",
1044 				 npages + cur_npages, max_pages);
1045 			break;
1046 		}
1047 
1048 		for (i = 0; i < cur_npages; i++) {
1049 			len = rc > PAGE_SIZE ? PAGE_SIZE : rc;
1050 			bv[npages + i].bv_page = pages[i];
1051 			bv[npages + i].bv_offset = start;
1052 			bv[npages + i].bv_len = len - start;
1053 			rc -= len;
1054 			start = 0;
1055 		}
1056 
1057 		npages += cur_npages;
1058 	}
1059 
1060 	kvfree(pages);
1061 	ctx->bv = bv;
1062 	ctx->len = saved_len - count;
1063 	ctx->npages = npages;
1064 	iov_iter_bvec(&ctx->iter, rw, ctx->bv, npages, ctx->len);
1065 	return 0;
1066 }
1067 
1068 /**
1069  * cifs_alloc_hash - allocate hash and hash context together
1070  * @name: The name of the crypto hash algo
1071  * @shash: Where to put the pointer to the hash algo
1072  * @sdesc: Where to put the pointer to the hash descriptor
1073  *
1074  * The caller has to make sure @sdesc is initialized to either NULL or
1075  * a valid context. Both can be freed via cifs_free_hash().
1076  */
1077 int
cifs_alloc_hash(const char * name,struct crypto_shash ** shash,struct sdesc ** sdesc)1078 cifs_alloc_hash(const char *name,
1079 		struct crypto_shash **shash, struct sdesc **sdesc)
1080 {
1081 	int rc = 0;
1082 	size_t size;
1083 
1084 	if (*sdesc != NULL)
1085 		return 0;
1086 
1087 	*shash = crypto_alloc_shash(name, 0, 0);
1088 	if (IS_ERR(*shash)) {
1089 		cifs_dbg(VFS, "Could not allocate crypto %s\n", name);
1090 		rc = PTR_ERR(*shash);
1091 		*shash = NULL;
1092 		*sdesc = NULL;
1093 		return rc;
1094 	}
1095 
1096 	size = sizeof(struct shash_desc) + crypto_shash_descsize(*shash);
1097 	*sdesc = kmalloc(size, GFP_KERNEL);
1098 	if (*sdesc == NULL) {
1099 		cifs_dbg(VFS, "no memory left to allocate crypto %s\n", name);
1100 		crypto_free_shash(*shash);
1101 		*shash = NULL;
1102 		return -ENOMEM;
1103 	}
1104 
1105 	(*sdesc)->shash.tfm = *shash;
1106 	return 0;
1107 }
1108 
1109 /**
1110  * cifs_free_hash - free hash and hash context together
1111  * @shash: Where to find the pointer to the hash algo
1112  * @sdesc: Where to find the pointer to the hash descriptor
1113  *
1114  * Freeing a NULL hash or context is safe.
1115  */
1116 void
cifs_free_hash(struct crypto_shash ** shash,struct sdesc ** sdesc)1117 cifs_free_hash(struct crypto_shash **shash, struct sdesc **sdesc)
1118 {
1119 	kfree(*sdesc);
1120 	*sdesc = NULL;
1121 	if (*shash)
1122 		crypto_free_shash(*shash);
1123 	*shash = NULL;
1124 }
1125 
1126 /**
1127  * rqst_page_get_length - obtain the length and offset for a page in smb_rqst
1128  * @rqst: The request descriptor
1129  * @page: The index of the page to query
1130  * @len: Where to store the length for this page:
1131  * @offset: Where to store the offset for this page
1132  */
rqst_page_get_length(struct smb_rqst * rqst,unsigned int page,unsigned int * len,unsigned int * offset)1133 void rqst_page_get_length(struct smb_rqst *rqst, unsigned int page,
1134 				unsigned int *len, unsigned int *offset)
1135 {
1136 	*len = rqst->rq_pagesz;
1137 	*offset = (page == 0) ? rqst->rq_offset : 0;
1138 
1139 	if (rqst->rq_npages == 1 || page == rqst->rq_npages-1)
1140 		*len = rqst->rq_tailsz;
1141 	else if (page == 0)
1142 		*len = rqst->rq_pagesz - rqst->rq_offset;
1143 }
1144 
extract_unc_hostname(const char * unc,const char ** h,size_t * len)1145 void extract_unc_hostname(const char *unc, const char **h, size_t *len)
1146 {
1147 	const char *end;
1148 
1149 	/* skip initial slashes */
1150 	while (*unc && (*unc == '\\' || *unc == '/'))
1151 		unc++;
1152 
1153 	end = unc;
1154 
1155 	while (*end && !(*end == '\\' || *end == '/'))
1156 		end++;
1157 
1158 	*h = unc;
1159 	*len = end - unc;
1160 }
1161 
1162 /**
1163  * copy_path_name - copy src path to dst, possibly truncating
1164  * @dst: The destination buffer
1165  * @src: The source name
1166  *
1167  * returns number of bytes written (including trailing nul)
1168  */
copy_path_name(char * dst,const char * src)1169 int copy_path_name(char *dst, const char *src)
1170 {
1171 	int name_len;
1172 
1173 	/*
1174 	 * PATH_MAX includes nul, so if strlen(src) >= PATH_MAX it
1175 	 * will truncate and strlen(dst) will be PATH_MAX-1
1176 	 */
1177 	name_len = strscpy(dst, src, PATH_MAX);
1178 	if (WARN_ON_ONCE(name_len < 0))
1179 		name_len = PATH_MAX-1;
1180 
1181 	/* we count the trailing nul */
1182 	name_len++;
1183 	return name_len;
1184 }
1185 
1186 struct super_cb_data {
1187 	void *data;
1188 	struct super_block *sb;
1189 };
1190 
tcp_super_cb(struct super_block * sb,void * arg)1191 static void tcp_super_cb(struct super_block *sb, void *arg)
1192 {
1193 	struct super_cb_data *sd = arg;
1194 	struct TCP_Server_Info *server = sd->data;
1195 	struct cifs_sb_info *cifs_sb;
1196 	struct cifs_tcon *tcon;
1197 
1198 	if (sd->sb)
1199 		return;
1200 
1201 	cifs_sb = CIFS_SB(sb);
1202 	tcon = cifs_sb_master_tcon(cifs_sb);
1203 	if (tcon->ses->server == server)
1204 		sd->sb = sb;
1205 }
1206 
__cifs_get_super(void (* f)(struct super_block *,void *),void * data)1207 static struct super_block *__cifs_get_super(void (*f)(struct super_block *, void *),
1208 					    void *data)
1209 {
1210 	struct super_cb_data sd = {
1211 		.data = data,
1212 		.sb = NULL,
1213 	};
1214 
1215 	iterate_supers_type(&cifs_fs_type, f, &sd);
1216 
1217 	if (!sd.sb)
1218 		return ERR_PTR(-EINVAL);
1219 	/*
1220 	 * Grab an active reference in order to prevent automounts (DFS links)
1221 	 * of expiring and then freeing up our cifs superblock pointer while
1222 	 * we're doing failover.
1223 	 */
1224 	cifs_sb_active(sd.sb);
1225 	return sd.sb;
1226 }
1227 
__cifs_put_super(struct super_block * sb)1228 static void __cifs_put_super(struct super_block *sb)
1229 {
1230 	if (!IS_ERR_OR_NULL(sb))
1231 		cifs_sb_deactive(sb);
1232 }
1233 
cifs_get_tcp_super(struct TCP_Server_Info * server)1234 struct super_block *cifs_get_tcp_super(struct TCP_Server_Info *server)
1235 {
1236 	return __cifs_get_super(tcp_super_cb, server);
1237 }
1238 
cifs_put_tcp_super(struct super_block * sb)1239 void cifs_put_tcp_super(struct super_block *sb)
1240 {
1241 	__cifs_put_super(sb);
1242 }
1243 
1244 #ifdef CONFIG_CIFS_DFS_UPCALL
match_target_ip(struct TCP_Server_Info * server,const char * share,size_t share_len,bool * result)1245 int match_target_ip(struct TCP_Server_Info *server,
1246 		    const char *share, size_t share_len,
1247 		    bool *result)
1248 {
1249 	int rc;
1250 	char *target, *tip = NULL;
1251 	struct sockaddr tipaddr;
1252 
1253 	*result = false;
1254 
1255 	target = kzalloc(share_len + 3, GFP_KERNEL);
1256 	if (!target) {
1257 		rc = -ENOMEM;
1258 		goto out;
1259 	}
1260 
1261 	scnprintf(target, share_len + 3, "\\\\%.*s", (int)share_len, share);
1262 
1263 	cifs_dbg(FYI, "%s: target name: %s\n", __func__, target + 2);
1264 
1265 	rc = dns_resolve_server_name_to_ip(target, &tip, NULL);
1266 	if (rc < 0)
1267 		goto out;
1268 
1269 	cifs_dbg(FYI, "%s: target ip: %s\n", __func__, tip);
1270 
1271 	if (!cifs_convert_address(&tipaddr, tip, strlen(tip))) {
1272 		cifs_dbg(VFS, "%s: failed to convert target ip address\n",
1273 			 __func__);
1274 		rc = -EINVAL;
1275 		goto out;
1276 	}
1277 
1278 	*result = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr,
1279 				    &tipaddr);
1280 	cifs_dbg(FYI, "%s: ip addresses match: %u\n", __func__, *result);
1281 	rc = 0;
1282 
1283 out:
1284 	kfree(target);
1285 	kfree(tip);
1286 
1287 	return rc;
1288 }
1289 
tcon_super_cb(struct super_block * sb,void * arg)1290 static void tcon_super_cb(struct super_block *sb, void *arg)
1291 {
1292 	struct super_cb_data *sd = arg;
1293 	struct cifs_tcon *tcon = sd->data;
1294 	struct cifs_sb_info *cifs_sb;
1295 
1296 	if (sd->sb)
1297 		return;
1298 
1299 	cifs_sb = CIFS_SB(sb);
1300 	if (tcon->dfs_path && cifs_sb->origin_fullpath &&
1301 	    !strcasecmp(tcon->dfs_path, cifs_sb->origin_fullpath))
1302 		sd->sb = sb;
1303 }
1304 
cifs_get_tcon_super(struct cifs_tcon * tcon)1305 static inline struct super_block *cifs_get_tcon_super(struct cifs_tcon *tcon)
1306 {
1307 	return __cifs_get_super(tcon_super_cb, tcon);
1308 }
1309 
cifs_put_tcon_super(struct super_block * sb)1310 static inline void cifs_put_tcon_super(struct super_block *sb)
1311 {
1312 	__cifs_put_super(sb);
1313 }
1314 #else
cifs_get_tcon_super(struct cifs_tcon * tcon)1315 static inline struct super_block *cifs_get_tcon_super(struct cifs_tcon *tcon)
1316 {
1317 	return ERR_PTR(-EOPNOTSUPP);
1318 }
1319 
cifs_put_tcon_super(struct super_block * sb)1320 static inline void cifs_put_tcon_super(struct super_block *sb)
1321 {
1322 }
1323 #endif
1324 
update_super_prepath(struct cifs_tcon * tcon,char * prefix)1325 int update_super_prepath(struct cifs_tcon *tcon, char *prefix)
1326 {
1327 	struct super_block *sb;
1328 	struct cifs_sb_info *cifs_sb;
1329 	int rc = 0;
1330 
1331 	sb = cifs_get_tcon_super(tcon);
1332 	if (IS_ERR(sb))
1333 		return PTR_ERR(sb);
1334 
1335 	cifs_sb = CIFS_SB(sb);
1336 
1337 	kfree(cifs_sb->prepath);
1338 
1339 	if (prefix && *prefix) {
1340 		cifs_sb->prepath = kstrdup(prefix, GFP_ATOMIC);
1341 		if (!cifs_sb->prepath) {
1342 			rc = -ENOMEM;
1343 			goto out;
1344 		}
1345 
1346 		convert_delimiter(cifs_sb->prepath, CIFS_DIR_SEP(cifs_sb));
1347 	} else
1348 		cifs_sb->prepath = NULL;
1349 
1350 	cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH;
1351 
1352 out:
1353 	cifs_put_tcon_super(sb);
1354 	return rc;
1355 }
1356