1 /*
2 * Xilinx XADC driver
3 *
4 * Copyright 2013-2014 Analog Devices Inc.
5 * Author: Lars-Peter Clauen <lars@metafoo.de>
6 *
7 * Licensed under the GPL-2.
8 *
9 * Documentation for the parts can be found at:
10 * - XADC hardmacro: Xilinx UG480
11 * - ZYNQ XADC interface: Xilinx UG585
12 * - AXI XADC interface: Xilinx PG019
13 */
14
15 #include <linux/clk.h>
16 #include <linux/device.h>
17 #include <linux/err.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/platform_device.h>
24 #include <linux/slab.h>
25 #include <linux/sysfs.h>
26
27 #include <linux/iio/buffer.h>
28 #include <linux/iio/events.h>
29 #include <linux/iio/iio.h>
30 #include <linux/iio/sysfs.h>
31 #include <linux/iio/trigger.h>
32 #include <linux/iio/trigger_consumer.h>
33 #include <linux/iio/triggered_buffer.h>
34
35 #include "xilinx-xadc.h"
36
37 static const unsigned int XADC_ZYNQ_UNMASK_TIMEOUT = 500;
38
39 /* ZYNQ register definitions */
40 #define XADC_ZYNQ_REG_CFG 0x00
41 #define XADC_ZYNQ_REG_INTSTS 0x04
42 #define XADC_ZYNQ_REG_INTMSK 0x08
43 #define XADC_ZYNQ_REG_STATUS 0x0c
44 #define XADC_ZYNQ_REG_CFIFO 0x10
45 #define XADC_ZYNQ_REG_DFIFO 0x14
46 #define XADC_ZYNQ_REG_CTL 0x18
47
48 #define XADC_ZYNQ_CFG_ENABLE BIT(31)
49 #define XADC_ZYNQ_CFG_CFIFOTH_MASK (0xf << 20)
50 #define XADC_ZYNQ_CFG_CFIFOTH_OFFSET 20
51 #define XADC_ZYNQ_CFG_DFIFOTH_MASK (0xf << 16)
52 #define XADC_ZYNQ_CFG_DFIFOTH_OFFSET 16
53 #define XADC_ZYNQ_CFG_WEDGE BIT(13)
54 #define XADC_ZYNQ_CFG_REDGE BIT(12)
55 #define XADC_ZYNQ_CFG_TCKRATE_MASK (0x3 << 8)
56 #define XADC_ZYNQ_CFG_TCKRATE_DIV2 (0x0 << 8)
57 #define XADC_ZYNQ_CFG_TCKRATE_DIV4 (0x1 << 8)
58 #define XADC_ZYNQ_CFG_TCKRATE_DIV8 (0x2 << 8)
59 #define XADC_ZYNQ_CFG_TCKRATE_DIV16 (0x3 << 8)
60 #define XADC_ZYNQ_CFG_IGAP_MASK 0x1f
61 #define XADC_ZYNQ_CFG_IGAP(x) (x)
62
63 #define XADC_ZYNQ_INT_CFIFO_LTH BIT(9)
64 #define XADC_ZYNQ_INT_DFIFO_GTH BIT(8)
65 #define XADC_ZYNQ_INT_ALARM_MASK 0xff
66 #define XADC_ZYNQ_INT_ALARM_OFFSET 0
67
68 #define XADC_ZYNQ_STATUS_CFIFO_LVL_MASK (0xf << 16)
69 #define XADC_ZYNQ_STATUS_CFIFO_LVL_OFFSET 16
70 #define XADC_ZYNQ_STATUS_DFIFO_LVL_MASK (0xf << 12)
71 #define XADC_ZYNQ_STATUS_DFIFO_LVL_OFFSET 12
72 #define XADC_ZYNQ_STATUS_CFIFOF BIT(11)
73 #define XADC_ZYNQ_STATUS_CFIFOE BIT(10)
74 #define XADC_ZYNQ_STATUS_DFIFOF BIT(9)
75 #define XADC_ZYNQ_STATUS_DFIFOE BIT(8)
76 #define XADC_ZYNQ_STATUS_OT BIT(7)
77 #define XADC_ZYNQ_STATUS_ALM(x) BIT(x)
78
79 #define XADC_ZYNQ_CTL_RESET BIT(4)
80
81 #define XADC_ZYNQ_CMD_NOP 0x00
82 #define XADC_ZYNQ_CMD_READ 0x01
83 #define XADC_ZYNQ_CMD_WRITE 0x02
84
85 #define XADC_ZYNQ_CMD(cmd, addr, data) (((cmd) << 26) | ((addr) << 16) | (data))
86
87 /* AXI register definitions */
88 #define XADC_AXI_REG_RESET 0x00
89 #define XADC_AXI_REG_STATUS 0x04
90 #define XADC_AXI_REG_ALARM_STATUS 0x08
91 #define XADC_AXI_REG_CONVST 0x0c
92 #define XADC_AXI_REG_XADC_RESET 0x10
93 #define XADC_AXI_REG_GIER 0x5c
94 #define XADC_AXI_REG_IPISR 0x60
95 #define XADC_AXI_REG_IPIER 0x68
96 #define XADC_AXI_ADC_REG_OFFSET 0x200
97
98 #define XADC_AXI_RESET_MAGIC 0xa
99 #define XADC_AXI_GIER_ENABLE BIT(31)
100
101 #define XADC_AXI_INT_EOS BIT(4)
102 #define XADC_AXI_INT_ALARM_MASK 0x3c0f
103
104 #define XADC_FLAGS_BUFFERED BIT(0)
105
xadc_write_reg(struct xadc * xadc,unsigned int reg,uint32_t val)106 static void xadc_write_reg(struct xadc *xadc, unsigned int reg,
107 uint32_t val)
108 {
109 writel(val, xadc->base + reg);
110 }
111
xadc_read_reg(struct xadc * xadc,unsigned int reg,uint32_t * val)112 static void xadc_read_reg(struct xadc *xadc, unsigned int reg,
113 uint32_t *val)
114 {
115 *val = readl(xadc->base + reg);
116 }
117
118 /*
119 * The ZYNQ interface uses two asynchronous FIFOs for communication with the
120 * XADC. Reads and writes to the XADC register are performed by submitting a
121 * request to the command FIFO (CFIFO), once the request has been completed the
122 * result can be read from the data FIFO (DFIFO). The method currently used in
123 * this driver is to submit the request for a read/write operation, then go to
124 * sleep and wait for an interrupt that signals that a response is available in
125 * the data FIFO.
126 */
127
xadc_zynq_write_fifo(struct xadc * xadc,uint32_t * cmd,unsigned int n)128 static void xadc_zynq_write_fifo(struct xadc *xadc, uint32_t *cmd,
129 unsigned int n)
130 {
131 unsigned int i;
132
133 for (i = 0; i < n; i++)
134 xadc_write_reg(xadc, XADC_ZYNQ_REG_CFIFO, cmd[i]);
135 }
136
xadc_zynq_drain_fifo(struct xadc * xadc)137 static void xadc_zynq_drain_fifo(struct xadc *xadc)
138 {
139 uint32_t status, tmp;
140
141 xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
142
143 while (!(status & XADC_ZYNQ_STATUS_DFIFOE)) {
144 xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
145 xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
146 }
147 }
148
xadc_zynq_update_intmsk(struct xadc * xadc,unsigned int mask,unsigned int val)149 static void xadc_zynq_update_intmsk(struct xadc *xadc, unsigned int mask,
150 unsigned int val)
151 {
152 xadc->zynq_intmask &= ~mask;
153 xadc->zynq_intmask |= val;
154
155 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK,
156 xadc->zynq_intmask | xadc->zynq_masked_alarm);
157 }
158
xadc_zynq_write_adc_reg(struct xadc * xadc,unsigned int reg,uint16_t val)159 static int xadc_zynq_write_adc_reg(struct xadc *xadc, unsigned int reg,
160 uint16_t val)
161 {
162 uint32_t cmd[1];
163 uint32_t tmp;
164 int ret;
165
166 spin_lock_irq(&xadc->lock);
167 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
168 XADC_ZYNQ_INT_DFIFO_GTH);
169
170 reinit_completion(&xadc->completion);
171
172 cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_WRITE, reg, val);
173 xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
174 xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
175 tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
176 tmp |= 0 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
177 xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
178
179 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
180 spin_unlock_irq(&xadc->lock);
181
182 ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
183 if (ret == 0)
184 ret = -EIO;
185 else
186 ret = 0;
187
188 xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
189
190 return ret;
191 }
192
xadc_zynq_read_adc_reg(struct xadc * xadc,unsigned int reg,uint16_t * val)193 static int xadc_zynq_read_adc_reg(struct xadc *xadc, unsigned int reg,
194 uint16_t *val)
195 {
196 uint32_t cmd[2];
197 uint32_t resp, tmp;
198 int ret;
199
200 cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_READ, reg, 0);
201 cmd[1] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_NOP, 0, 0);
202
203 spin_lock_irq(&xadc->lock);
204 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
205 XADC_ZYNQ_INT_DFIFO_GTH);
206 xadc_zynq_drain_fifo(xadc);
207 reinit_completion(&xadc->completion);
208
209 xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
210 xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
211 tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
212 tmp |= 1 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
213 xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
214
215 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
216 spin_unlock_irq(&xadc->lock);
217 ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
218 if (ret == 0)
219 ret = -EIO;
220 if (ret < 0)
221 return ret;
222
223 xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
224 xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
225
226 *val = resp & 0xffff;
227
228 return 0;
229 }
230
xadc_zynq_transform_alarm(unsigned int alarm)231 static unsigned int xadc_zynq_transform_alarm(unsigned int alarm)
232 {
233 return ((alarm & 0x80) >> 4) |
234 ((alarm & 0x78) << 1) |
235 (alarm & 0x07);
236 }
237
238 /*
239 * The ZYNQ threshold interrupts are level sensitive. Since we can't make the
240 * threshold condition go way from within the interrupt handler, this means as
241 * soon as a threshold condition is present we would enter the interrupt handler
242 * again and again. To work around this we mask all active thresholds interrupts
243 * in the interrupt handler and start a timer. In this timer we poll the
244 * interrupt status and only if the interrupt is inactive we unmask it again.
245 */
xadc_zynq_unmask_worker(struct work_struct * work)246 static void xadc_zynq_unmask_worker(struct work_struct *work)
247 {
248 struct xadc *xadc = container_of(work, struct xadc, zynq_unmask_work.work);
249 unsigned int misc_sts, unmask;
250
251 xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &misc_sts);
252
253 misc_sts &= XADC_ZYNQ_INT_ALARM_MASK;
254
255 spin_lock_irq(&xadc->lock);
256
257 /* Clear those bits which are not active anymore */
258 unmask = (xadc->zynq_masked_alarm ^ misc_sts) & xadc->zynq_masked_alarm;
259 xadc->zynq_masked_alarm &= misc_sts;
260
261 /* Also clear those which are masked out anyway */
262 xadc->zynq_masked_alarm &= ~xadc->zynq_intmask;
263
264 /* Clear the interrupts before we unmask them */
265 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, unmask);
266
267 xadc_zynq_update_intmsk(xadc, 0, 0);
268
269 spin_unlock_irq(&xadc->lock);
270
271 /* if still pending some alarm re-trigger the timer */
272 if (xadc->zynq_masked_alarm) {
273 schedule_delayed_work(&xadc->zynq_unmask_work,
274 msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
275 }
276
277 }
278
xadc_zynq_interrupt_handler(int irq,void * devid)279 static irqreturn_t xadc_zynq_interrupt_handler(int irq, void *devid)
280 {
281 struct iio_dev *indio_dev = devid;
282 struct xadc *xadc = iio_priv(indio_dev);
283 uint32_t status;
284
285 xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
286
287 status &= ~(xadc->zynq_intmask | xadc->zynq_masked_alarm);
288
289 if (!status)
290 return IRQ_NONE;
291
292 spin_lock(&xadc->lock);
293
294 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status);
295
296 if (status & XADC_ZYNQ_INT_DFIFO_GTH) {
297 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
298 XADC_ZYNQ_INT_DFIFO_GTH);
299 complete(&xadc->completion);
300 }
301
302 status &= XADC_ZYNQ_INT_ALARM_MASK;
303 if (status) {
304 xadc->zynq_masked_alarm |= status;
305 /*
306 * mask the current event interrupt,
307 * unmask it when the interrupt is no more active.
308 */
309 xadc_zynq_update_intmsk(xadc, 0, 0);
310
311 xadc_handle_events(indio_dev,
312 xadc_zynq_transform_alarm(status));
313
314 /* unmask the required interrupts in timer. */
315 schedule_delayed_work(&xadc->zynq_unmask_work,
316 msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
317 }
318 spin_unlock(&xadc->lock);
319
320 return IRQ_HANDLED;
321 }
322
323 #define XADC_ZYNQ_TCK_RATE_MAX 50000000
324 #define XADC_ZYNQ_IGAP_DEFAULT 20
325 #define XADC_ZYNQ_PCAP_RATE_MAX 200000000
326
xadc_zynq_setup(struct platform_device * pdev,struct iio_dev * indio_dev,int irq)327 static int xadc_zynq_setup(struct platform_device *pdev,
328 struct iio_dev *indio_dev, int irq)
329 {
330 struct xadc *xadc = iio_priv(indio_dev);
331 unsigned long pcap_rate;
332 unsigned int tck_div;
333 unsigned int div;
334 unsigned int igap;
335 unsigned int tck_rate;
336 int ret;
337
338 /* TODO: Figure out how to make igap and tck_rate configurable */
339 igap = XADC_ZYNQ_IGAP_DEFAULT;
340 tck_rate = XADC_ZYNQ_TCK_RATE_MAX;
341
342 xadc->zynq_intmask = ~0;
343
344 pcap_rate = clk_get_rate(xadc->clk);
345 if (!pcap_rate)
346 return -EINVAL;
347
348 if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) {
349 ret = clk_set_rate(xadc->clk,
350 (unsigned long)XADC_ZYNQ_PCAP_RATE_MAX);
351 if (ret)
352 return ret;
353 }
354
355 if (tck_rate > pcap_rate / 2) {
356 div = 2;
357 } else {
358 div = pcap_rate / tck_rate;
359 if (pcap_rate / div > XADC_ZYNQ_TCK_RATE_MAX)
360 div++;
361 }
362
363 if (div <= 3)
364 tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV2;
365 else if (div <= 7)
366 tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV4;
367 else if (div <= 15)
368 tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV8;
369 else
370 tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV16;
371
372 xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, XADC_ZYNQ_CTL_RESET);
373 xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, 0);
374 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, ~0);
375 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK, xadc->zynq_intmask);
376 xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, XADC_ZYNQ_CFG_ENABLE |
377 XADC_ZYNQ_CFG_REDGE | XADC_ZYNQ_CFG_WEDGE |
378 tck_div | XADC_ZYNQ_CFG_IGAP(igap));
379
380 if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) {
381 ret = clk_set_rate(xadc->clk, pcap_rate);
382 if (ret)
383 return ret;
384 }
385
386 return 0;
387 }
388
xadc_zynq_get_dclk_rate(struct xadc * xadc)389 static unsigned long xadc_zynq_get_dclk_rate(struct xadc *xadc)
390 {
391 unsigned int div;
392 uint32_t val;
393
394 xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &val);
395
396 switch (val & XADC_ZYNQ_CFG_TCKRATE_MASK) {
397 case XADC_ZYNQ_CFG_TCKRATE_DIV4:
398 div = 4;
399 break;
400 case XADC_ZYNQ_CFG_TCKRATE_DIV8:
401 div = 8;
402 break;
403 case XADC_ZYNQ_CFG_TCKRATE_DIV16:
404 div = 16;
405 break;
406 default:
407 div = 2;
408 break;
409 }
410
411 return clk_get_rate(xadc->clk) / div;
412 }
413
xadc_zynq_update_alarm(struct xadc * xadc,unsigned int alarm)414 static void xadc_zynq_update_alarm(struct xadc *xadc, unsigned int alarm)
415 {
416 unsigned long flags;
417 uint32_t status;
418
419 /* Move OT to bit 7 */
420 alarm = ((alarm & 0x08) << 4) | ((alarm & 0xf0) >> 1) | (alarm & 0x07);
421
422 spin_lock_irqsave(&xadc->lock, flags);
423
424 /* Clear previous interrupts if any. */
425 xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
426 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status & alarm);
427
428 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_ALARM_MASK,
429 ~alarm & XADC_ZYNQ_INT_ALARM_MASK);
430
431 spin_unlock_irqrestore(&xadc->lock, flags);
432 }
433
434 static const struct xadc_ops xadc_zynq_ops = {
435 .read = xadc_zynq_read_adc_reg,
436 .write = xadc_zynq_write_adc_reg,
437 .setup = xadc_zynq_setup,
438 .get_dclk_rate = xadc_zynq_get_dclk_rate,
439 .interrupt_handler = xadc_zynq_interrupt_handler,
440 .update_alarm = xadc_zynq_update_alarm,
441 };
442
xadc_axi_read_adc_reg(struct xadc * xadc,unsigned int reg,uint16_t * val)443 static int xadc_axi_read_adc_reg(struct xadc *xadc, unsigned int reg,
444 uint16_t *val)
445 {
446 uint32_t val32;
447
448 xadc_read_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, &val32);
449 *val = val32 & 0xffff;
450
451 return 0;
452 }
453
xadc_axi_write_adc_reg(struct xadc * xadc,unsigned int reg,uint16_t val)454 static int xadc_axi_write_adc_reg(struct xadc *xadc, unsigned int reg,
455 uint16_t val)
456 {
457 xadc_write_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, val);
458
459 return 0;
460 }
461
xadc_axi_setup(struct platform_device * pdev,struct iio_dev * indio_dev,int irq)462 static int xadc_axi_setup(struct platform_device *pdev,
463 struct iio_dev *indio_dev, int irq)
464 {
465 struct xadc *xadc = iio_priv(indio_dev);
466
467 xadc_write_reg(xadc, XADC_AXI_REG_RESET, XADC_AXI_RESET_MAGIC);
468 xadc_write_reg(xadc, XADC_AXI_REG_GIER, XADC_AXI_GIER_ENABLE);
469
470 return 0;
471 }
472
xadc_axi_interrupt_handler(int irq,void * devid)473 static irqreturn_t xadc_axi_interrupt_handler(int irq, void *devid)
474 {
475 struct iio_dev *indio_dev = devid;
476 struct xadc *xadc = iio_priv(indio_dev);
477 uint32_t status, mask;
478 unsigned int events;
479
480 xadc_read_reg(xadc, XADC_AXI_REG_IPISR, &status);
481 xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &mask);
482 status &= mask;
483
484 if (!status)
485 return IRQ_NONE;
486
487 if ((status & XADC_AXI_INT_EOS) && xadc->trigger)
488 iio_trigger_poll(xadc->trigger);
489
490 if (status & XADC_AXI_INT_ALARM_MASK) {
491 /*
492 * The order of the bits in the AXI-XADC status register does
493 * not match the order of the bits in the XADC alarm enable
494 * register. xadc_handle_events() expects the events to be in
495 * the same order as the XADC alarm enable register.
496 */
497 events = (status & 0x000e) >> 1;
498 events |= (status & 0x0001) << 3;
499 events |= (status & 0x3c00) >> 6;
500 xadc_handle_events(indio_dev, events);
501 }
502
503 xadc_write_reg(xadc, XADC_AXI_REG_IPISR, status);
504
505 return IRQ_HANDLED;
506 }
507
xadc_axi_update_alarm(struct xadc * xadc,unsigned int alarm)508 static void xadc_axi_update_alarm(struct xadc *xadc, unsigned int alarm)
509 {
510 uint32_t val;
511 unsigned long flags;
512
513 /*
514 * The order of the bits in the AXI-XADC status register does not match
515 * the order of the bits in the XADC alarm enable register. We get
516 * passed the alarm mask in the same order as in the XADC alarm enable
517 * register.
518 */
519 alarm = ((alarm & 0x07) << 1) | ((alarm & 0x08) >> 3) |
520 ((alarm & 0xf0) << 6);
521
522 spin_lock_irqsave(&xadc->lock, flags);
523 xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
524 val &= ~XADC_AXI_INT_ALARM_MASK;
525 val |= alarm;
526 xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
527 spin_unlock_irqrestore(&xadc->lock, flags);
528 }
529
xadc_axi_get_dclk(struct xadc * xadc)530 static unsigned long xadc_axi_get_dclk(struct xadc *xadc)
531 {
532 return clk_get_rate(xadc->clk);
533 }
534
535 static const struct xadc_ops xadc_axi_ops = {
536 .read = xadc_axi_read_adc_reg,
537 .write = xadc_axi_write_adc_reg,
538 .setup = xadc_axi_setup,
539 .get_dclk_rate = xadc_axi_get_dclk,
540 .update_alarm = xadc_axi_update_alarm,
541 .interrupt_handler = xadc_axi_interrupt_handler,
542 .flags = XADC_FLAGS_BUFFERED,
543 };
544
_xadc_update_adc_reg(struct xadc * xadc,unsigned int reg,uint16_t mask,uint16_t val)545 static int _xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
546 uint16_t mask, uint16_t val)
547 {
548 uint16_t tmp;
549 int ret;
550
551 ret = _xadc_read_adc_reg(xadc, reg, &tmp);
552 if (ret)
553 return ret;
554
555 return _xadc_write_adc_reg(xadc, reg, (tmp & ~mask) | val);
556 }
557
xadc_update_adc_reg(struct xadc * xadc,unsigned int reg,uint16_t mask,uint16_t val)558 static int xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
559 uint16_t mask, uint16_t val)
560 {
561 int ret;
562
563 mutex_lock(&xadc->mutex);
564 ret = _xadc_update_adc_reg(xadc, reg, mask, val);
565 mutex_unlock(&xadc->mutex);
566
567 return ret;
568 }
569
xadc_get_dclk_rate(struct xadc * xadc)570 static unsigned long xadc_get_dclk_rate(struct xadc *xadc)
571 {
572 return xadc->ops->get_dclk_rate(xadc);
573 }
574
xadc_update_scan_mode(struct iio_dev * indio_dev,const unsigned long * mask)575 static int xadc_update_scan_mode(struct iio_dev *indio_dev,
576 const unsigned long *mask)
577 {
578 struct xadc *xadc = iio_priv(indio_dev);
579 unsigned int n;
580
581 n = bitmap_weight(mask, indio_dev->masklength);
582
583 kfree(xadc->data);
584 xadc->data = kcalloc(n, sizeof(*xadc->data), GFP_KERNEL);
585 if (!xadc->data)
586 return -ENOMEM;
587
588 return 0;
589 }
590
xadc_scan_index_to_channel(unsigned int scan_index)591 static unsigned int xadc_scan_index_to_channel(unsigned int scan_index)
592 {
593 switch (scan_index) {
594 case 5:
595 return XADC_REG_VCCPINT;
596 case 6:
597 return XADC_REG_VCCPAUX;
598 case 7:
599 return XADC_REG_VCCO_DDR;
600 case 8:
601 return XADC_REG_TEMP;
602 case 9:
603 return XADC_REG_VCCINT;
604 case 10:
605 return XADC_REG_VCCAUX;
606 case 11:
607 return XADC_REG_VPVN;
608 case 12:
609 return XADC_REG_VREFP;
610 case 13:
611 return XADC_REG_VREFN;
612 case 14:
613 return XADC_REG_VCCBRAM;
614 default:
615 return XADC_REG_VAUX(scan_index - 16);
616 }
617 }
618
xadc_trigger_handler(int irq,void * p)619 static irqreturn_t xadc_trigger_handler(int irq, void *p)
620 {
621 struct iio_poll_func *pf = p;
622 struct iio_dev *indio_dev = pf->indio_dev;
623 struct xadc *xadc = iio_priv(indio_dev);
624 unsigned int chan;
625 int i, j;
626
627 if (!xadc->data)
628 goto out;
629
630 j = 0;
631 for_each_set_bit(i, indio_dev->active_scan_mask,
632 indio_dev->masklength) {
633 chan = xadc_scan_index_to_channel(i);
634 xadc_read_adc_reg(xadc, chan, &xadc->data[j]);
635 j++;
636 }
637
638 iio_push_to_buffers(indio_dev, xadc->data);
639
640 out:
641 iio_trigger_notify_done(indio_dev->trig);
642
643 return IRQ_HANDLED;
644 }
645
xadc_trigger_set_state(struct iio_trigger * trigger,bool state)646 static int xadc_trigger_set_state(struct iio_trigger *trigger, bool state)
647 {
648 struct xadc *xadc = iio_trigger_get_drvdata(trigger);
649 unsigned long flags;
650 unsigned int convst;
651 unsigned int val;
652 int ret = 0;
653
654 mutex_lock(&xadc->mutex);
655
656 if (state) {
657 /* Only one of the two triggers can be active at the a time. */
658 if (xadc->trigger != NULL) {
659 ret = -EBUSY;
660 goto err_out;
661 } else {
662 xadc->trigger = trigger;
663 if (trigger == xadc->convst_trigger)
664 convst = XADC_CONF0_EC;
665 else
666 convst = 0;
667 }
668 ret = _xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF0_EC,
669 convst);
670 if (ret)
671 goto err_out;
672 } else {
673 xadc->trigger = NULL;
674 }
675
676 spin_lock_irqsave(&xadc->lock, flags);
677 xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
678 xadc_write_reg(xadc, XADC_AXI_REG_IPISR, val & XADC_AXI_INT_EOS);
679 if (state)
680 val |= XADC_AXI_INT_EOS;
681 else
682 val &= ~XADC_AXI_INT_EOS;
683 xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
684 spin_unlock_irqrestore(&xadc->lock, flags);
685
686 err_out:
687 mutex_unlock(&xadc->mutex);
688
689 return ret;
690 }
691
692 static const struct iio_trigger_ops xadc_trigger_ops = {
693 .set_trigger_state = &xadc_trigger_set_state,
694 };
695
xadc_alloc_trigger(struct iio_dev * indio_dev,const char * name)696 static struct iio_trigger *xadc_alloc_trigger(struct iio_dev *indio_dev,
697 const char *name)
698 {
699 struct iio_trigger *trig;
700 int ret;
701
702 trig = iio_trigger_alloc("%s%d-%s", indio_dev->name,
703 indio_dev->id, name);
704 if (trig == NULL)
705 return ERR_PTR(-ENOMEM);
706
707 trig->dev.parent = indio_dev->dev.parent;
708 trig->ops = &xadc_trigger_ops;
709 iio_trigger_set_drvdata(trig, iio_priv(indio_dev));
710
711 ret = iio_trigger_register(trig);
712 if (ret)
713 goto error_free_trig;
714
715 return trig;
716
717 error_free_trig:
718 iio_trigger_free(trig);
719 return ERR_PTR(ret);
720 }
721
xadc_power_adc_b(struct xadc * xadc,unsigned int seq_mode)722 static int xadc_power_adc_b(struct xadc *xadc, unsigned int seq_mode)
723 {
724 uint16_t val;
725
726 switch (seq_mode) {
727 case XADC_CONF1_SEQ_SIMULTANEOUS:
728 case XADC_CONF1_SEQ_INDEPENDENT:
729 val = XADC_CONF2_PD_ADC_B;
730 break;
731 default:
732 val = 0;
733 break;
734 }
735
736 return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_PD_MASK,
737 val);
738 }
739
xadc_get_seq_mode(struct xadc * xadc,unsigned long scan_mode)740 static int xadc_get_seq_mode(struct xadc *xadc, unsigned long scan_mode)
741 {
742 unsigned int aux_scan_mode = scan_mode >> 16;
743
744 if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_DUAL)
745 return XADC_CONF1_SEQ_SIMULTANEOUS;
746
747 if ((aux_scan_mode & 0xff00) == 0 ||
748 (aux_scan_mode & 0x00ff) == 0)
749 return XADC_CONF1_SEQ_CONTINUOUS;
750
751 return XADC_CONF1_SEQ_SIMULTANEOUS;
752 }
753
xadc_postdisable(struct iio_dev * indio_dev)754 static int xadc_postdisable(struct iio_dev *indio_dev)
755 {
756 struct xadc *xadc = iio_priv(indio_dev);
757 unsigned long scan_mask;
758 int ret;
759 int i;
760
761 scan_mask = 1; /* Run calibration as part of the sequence */
762 for (i = 0; i < indio_dev->num_channels; i++)
763 scan_mask |= BIT(indio_dev->channels[i].scan_index);
764
765 /* Enable all channels and calibration */
766 ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
767 if (ret)
768 return ret;
769
770 ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
771 if (ret)
772 return ret;
773
774 ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
775 XADC_CONF1_SEQ_CONTINUOUS);
776 if (ret)
777 return ret;
778
779 return xadc_power_adc_b(xadc, XADC_CONF1_SEQ_CONTINUOUS);
780 }
781
xadc_preenable(struct iio_dev * indio_dev)782 static int xadc_preenable(struct iio_dev *indio_dev)
783 {
784 struct xadc *xadc = iio_priv(indio_dev);
785 unsigned long scan_mask;
786 int seq_mode;
787 int ret;
788
789 ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
790 XADC_CONF1_SEQ_DEFAULT);
791 if (ret)
792 goto err;
793
794 scan_mask = *indio_dev->active_scan_mask;
795 seq_mode = xadc_get_seq_mode(xadc, scan_mask);
796
797 ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
798 if (ret)
799 goto err;
800
801 ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
802 if (ret)
803 goto err;
804
805 ret = xadc_power_adc_b(xadc, seq_mode);
806 if (ret)
807 goto err;
808
809 ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
810 seq_mode);
811 if (ret)
812 goto err;
813
814 return 0;
815 err:
816 xadc_postdisable(indio_dev);
817 return ret;
818 }
819
820 static const struct iio_buffer_setup_ops xadc_buffer_ops = {
821 .preenable = &xadc_preenable,
822 .postenable = &iio_triggered_buffer_postenable,
823 .predisable = &iio_triggered_buffer_predisable,
824 .postdisable = &xadc_postdisable,
825 };
826
xadc_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long info)827 static int xadc_read_raw(struct iio_dev *indio_dev,
828 struct iio_chan_spec const *chan, int *val, int *val2, long info)
829 {
830 struct xadc *xadc = iio_priv(indio_dev);
831 unsigned int div;
832 uint16_t val16;
833 int ret;
834
835 switch (info) {
836 case IIO_CHAN_INFO_RAW:
837 if (iio_buffer_enabled(indio_dev))
838 return -EBUSY;
839 ret = xadc_read_adc_reg(xadc, chan->address, &val16);
840 if (ret < 0)
841 return ret;
842
843 val16 >>= 4;
844 if (chan->scan_type.sign == 'u')
845 *val = val16;
846 else
847 *val = sign_extend32(val16, 11);
848
849 return IIO_VAL_INT;
850 case IIO_CHAN_INFO_SCALE:
851 switch (chan->type) {
852 case IIO_VOLTAGE:
853 /* V = (val * 3.0) / 4096 */
854 switch (chan->address) {
855 case XADC_REG_VCCINT:
856 case XADC_REG_VCCAUX:
857 case XADC_REG_VREFP:
858 case XADC_REG_VREFN:
859 case XADC_REG_VCCBRAM:
860 case XADC_REG_VCCPINT:
861 case XADC_REG_VCCPAUX:
862 case XADC_REG_VCCO_DDR:
863 *val = 3000;
864 break;
865 default:
866 *val = 1000;
867 break;
868 }
869 *val2 = 12;
870 return IIO_VAL_FRACTIONAL_LOG2;
871 case IIO_TEMP:
872 /* Temp in C = (val * 503.975) / 4096 - 273.15 */
873 *val = 503975;
874 *val2 = 12;
875 return IIO_VAL_FRACTIONAL_LOG2;
876 default:
877 return -EINVAL;
878 }
879 case IIO_CHAN_INFO_OFFSET:
880 /* Only the temperature channel has an offset */
881 *val = -((273150 << 12) / 503975);
882 return IIO_VAL_INT;
883 case IIO_CHAN_INFO_SAMP_FREQ:
884 ret = xadc_read_adc_reg(xadc, XADC_REG_CONF2, &val16);
885 if (ret)
886 return ret;
887
888 div = (val16 & XADC_CONF2_DIV_MASK) >> XADC_CONF2_DIV_OFFSET;
889 if (div < 2)
890 div = 2;
891
892 *val = xadc_get_dclk_rate(xadc) / div / 26;
893
894 return IIO_VAL_INT;
895 default:
896 return -EINVAL;
897 }
898 }
899
xadc_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long info)900 static int xadc_write_raw(struct iio_dev *indio_dev,
901 struct iio_chan_spec const *chan, int val, int val2, long info)
902 {
903 struct xadc *xadc = iio_priv(indio_dev);
904 unsigned long clk_rate = xadc_get_dclk_rate(xadc);
905 unsigned int div;
906
907 if (!clk_rate)
908 return -EINVAL;
909
910 if (info != IIO_CHAN_INFO_SAMP_FREQ)
911 return -EINVAL;
912
913 if (val <= 0)
914 return -EINVAL;
915
916 /* Max. 150 kSPS */
917 if (val > 150000)
918 val = 150000;
919
920 val *= 26;
921
922 /* Min 1MHz */
923 if (val < 1000000)
924 val = 1000000;
925
926 /*
927 * We want to round down, but only if we do not exceed the 150 kSPS
928 * limit.
929 */
930 div = clk_rate / val;
931 if (clk_rate / div / 26 > 150000)
932 div++;
933 if (div < 2)
934 div = 2;
935 else if (div > 0xff)
936 div = 0xff;
937
938 return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_DIV_MASK,
939 div << XADC_CONF2_DIV_OFFSET);
940 }
941
942 static const struct iio_event_spec xadc_temp_events[] = {
943 {
944 .type = IIO_EV_TYPE_THRESH,
945 .dir = IIO_EV_DIR_RISING,
946 .mask_separate = BIT(IIO_EV_INFO_ENABLE) |
947 BIT(IIO_EV_INFO_VALUE) |
948 BIT(IIO_EV_INFO_HYSTERESIS),
949 },
950 };
951
952 /* Separate values for upper and lower thresholds, but only a shared enabled */
953 static const struct iio_event_spec xadc_voltage_events[] = {
954 {
955 .type = IIO_EV_TYPE_THRESH,
956 .dir = IIO_EV_DIR_RISING,
957 .mask_separate = BIT(IIO_EV_INFO_VALUE),
958 }, {
959 .type = IIO_EV_TYPE_THRESH,
960 .dir = IIO_EV_DIR_FALLING,
961 .mask_separate = BIT(IIO_EV_INFO_VALUE),
962 }, {
963 .type = IIO_EV_TYPE_THRESH,
964 .dir = IIO_EV_DIR_EITHER,
965 .mask_separate = BIT(IIO_EV_INFO_ENABLE),
966 },
967 };
968
969 #define XADC_CHAN_TEMP(_chan, _scan_index, _addr) { \
970 .type = IIO_TEMP, \
971 .indexed = 1, \
972 .channel = (_chan), \
973 .address = (_addr), \
974 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
975 BIT(IIO_CHAN_INFO_SCALE) | \
976 BIT(IIO_CHAN_INFO_OFFSET), \
977 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
978 .event_spec = xadc_temp_events, \
979 .num_event_specs = ARRAY_SIZE(xadc_temp_events), \
980 .scan_index = (_scan_index), \
981 .scan_type = { \
982 .sign = 'u', \
983 .realbits = 12, \
984 .storagebits = 16, \
985 .shift = 4, \
986 .endianness = IIO_CPU, \
987 }, \
988 }
989
990 #define XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) { \
991 .type = IIO_VOLTAGE, \
992 .indexed = 1, \
993 .channel = (_chan), \
994 .address = (_addr), \
995 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
996 BIT(IIO_CHAN_INFO_SCALE), \
997 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
998 .event_spec = (_alarm) ? xadc_voltage_events : NULL, \
999 .num_event_specs = (_alarm) ? ARRAY_SIZE(xadc_voltage_events) : 0, \
1000 .scan_index = (_scan_index), \
1001 .scan_type = { \
1002 .sign = ((_addr) == XADC_REG_VREFN) ? 's' : 'u', \
1003 .realbits = 12, \
1004 .storagebits = 16, \
1005 .shift = 4, \
1006 .endianness = IIO_CPU, \
1007 }, \
1008 .extend_name = _ext, \
1009 }
1010
1011 static const struct iio_chan_spec xadc_channels[] = {
1012 XADC_CHAN_TEMP(0, 8, XADC_REG_TEMP),
1013 XADC_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true),
1014 XADC_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX, "vccaux", true),
1015 XADC_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true),
1016 XADC_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpint", true),
1017 XADC_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpaux", true),
1018 XADC_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccoddr", true),
1019 XADC_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false),
1020 XADC_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false),
1021 XADC_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false),
1022 XADC_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false),
1023 XADC_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false),
1024 XADC_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false),
1025 XADC_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false),
1026 XADC_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false),
1027 XADC_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false),
1028 XADC_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false),
1029 XADC_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false),
1030 XADC_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false),
1031 XADC_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false),
1032 XADC_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false),
1033 XADC_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false),
1034 XADC_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false),
1035 XADC_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false),
1036 XADC_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false),
1037 XADC_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false),
1038 };
1039
1040 static const struct iio_info xadc_info = {
1041 .read_raw = &xadc_read_raw,
1042 .write_raw = &xadc_write_raw,
1043 .read_event_config = &xadc_read_event_config,
1044 .write_event_config = &xadc_write_event_config,
1045 .read_event_value = &xadc_read_event_value,
1046 .write_event_value = &xadc_write_event_value,
1047 .update_scan_mode = &xadc_update_scan_mode,
1048 };
1049
1050 static const struct of_device_id xadc_of_match_table[] = {
1051 { .compatible = "xlnx,zynq-xadc-1.00.a", (void *)&xadc_zynq_ops },
1052 { .compatible = "xlnx,axi-xadc-1.00.a", (void *)&xadc_axi_ops },
1053 { },
1054 };
1055 MODULE_DEVICE_TABLE(of, xadc_of_match_table);
1056
xadc_parse_dt(struct iio_dev * indio_dev,struct device_node * np,unsigned int * conf)1057 static int xadc_parse_dt(struct iio_dev *indio_dev, struct device_node *np,
1058 unsigned int *conf)
1059 {
1060 struct xadc *xadc = iio_priv(indio_dev);
1061 struct iio_chan_spec *channels, *chan;
1062 struct device_node *chan_node, *child;
1063 unsigned int num_channels;
1064 const char *external_mux;
1065 u32 ext_mux_chan;
1066 u32 reg;
1067 int ret;
1068
1069 *conf = 0;
1070
1071 ret = of_property_read_string(np, "xlnx,external-mux", &external_mux);
1072 if (ret < 0 || strcasecmp(external_mux, "none") == 0)
1073 xadc->external_mux_mode = XADC_EXTERNAL_MUX_NONE;
1074 else if (strcasecmp(external_mux, "single") == 0)
1075 xadc->external_mux_mode = XADC_EXTERNAL_MUX_SINGLE;
1076 else if (strcasecmp(external_mux, "dual") == 0)
1077 xadc->external_mux_mode = XADC_EXTERNAL_MUX_DUAL;
1078 else
1079 return -EINVAL;
1080
1081 if (xadc->external_mux_mode != XADC_EXTERNAL_MUX_NONE) {
1082 ret = of_property_read_u32(np, "xlnx,external-mux-channel",
1083 &ext_mux_chan);
1084 if (ret < 0)
1085 return ret;
1086
1087 if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_SINGLE) {
1088 if (ext_mux_chan == 0)
1089 ext_mux_chan = XADC_REG_VPVN;
1090 else if (ext_mux_chan <= 16)
1091 ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1092 else
1093 return -EINVAL;
1094 } else {
1095 if (ext_mux_chan > 0 && ext_mux_chan <= 8)
1096 ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1097 else
1098 return -EINVAL;
1099 }
1100
1101 *conf |= XADC_CONF0_MUX | XADC_CONF0_CHAN(ext_mux_chan);
1102 }
1103
1104 channels = kmemdup(xadc_channels, sizeof(xadc_channels), GFP_KERNEL);
1105 if (!channels)
1106 return -ENOMEM;
1107
1108 num_channels = 9;
1109 chan = &channels[9];
1110
1111 chan_node = of_get_child_by_name(np, "xlnx,channels");
1112 if (chan_node) {
1113 for_each_child_of_node(chan_node, child) {
1114 if (num_channels >= ARRAY_SIZE(xadc_channels)) {
1115 of_node_put(child);
1116 break;
1117 }
1118
1119 ret = of_property_read_u32(child, "reg", ®);
1120 if (ret || reg > 16)
1121 continue;
1122
1123 if (of_property_read_bool(child, "xlnx,bipolar"))
1124 chan->scan_type.sign = 's';
1125
1126 if (reg == 0) {
1127 chan->scan_index = 11;
1128 chan->address = XADC_REG_VPVN;
1129 } else {
1130 chan->scan_index = 15 + reg;
1131 chan->address = XADC_REG_VAUX(reg - 1);
1132 }
1133 num_channels++;
1134 chan++;
1135 }
1136 }
1137 of_node_put(chan_node);
1138
1139 indio_dev->num_channels = num_channels;
1140 indio_dev->channels = krealloc(channels, sizeof(*channels) *
1141 num_channels, GFP_KERNEL);
1142 /* If we can't resize the channels array, just use the original */
1143 if (!indio_dev->channels)
1144 indio_dev->channels = channels;
1145
1146 return 0;
1147 }
1148
xadc_probe(struct platform_device * pdev)1149 static int xadc_probe(struct platform_device *pdev)
1150 {
1151 const struct of_device_id *id;
1152 struct iio_dev *indio_dev;
1153 unsigned int bipolar_mask;
1154 struct resource *mem;
1155 unsigned int conf0;
1156 struct xadc *xadc;
1157 int ret;
1158 int irq;
1159 int i;
1160
1161 if (!pdev->dev.of_node)
1162 return -ENODEV;
1163
1164 id = of_match_node(xadc_of_match_table, pdev->dev.of_node);
1165 if (!id)
1166 return -EINVAL;
1167
1168 irq = platform_get_irq(pdev, 0);
1169 if (irq <= 0)
1170 return -ENXIO;
1171
1172 indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*xadc));
1173 if (!indio_dev)
1174 return -ENOMEM;
1175
1176 xadc = iio_priv(indio_dev);
1177 xadc->ops = id->data;
1178 xadc->irq = irq;
1179 init_completion(&xadc->completion);
1180 mutex_init(&xadc->mutex);
1181 spin_lock_init(&xadc->lock);
1182 INIT_DELAYED_WORK(&xadc->zynq_unmask_work, xadc_zynq_unmask_worker);
1183
1184 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1185 xadc->base = devm_ioremap_resource(&pdev->dev, mem);
1186 if (IS_ERR(xadc->base))
1187 return PTR_ERR(xadc->base);
1188
1189 indio_dev->dev.parent = &pdev->dev;
1190 indio_dev->dev.of_node = pdev->dev.of_node;
1191 indio_dev->name = "xadc";
1192 indio_dev->modes = INDIO_DIRECT_MODE;
1193 indio_dev->info = &xadc_info;
1194
1195 ret = xadc_parse_dt(indio_dev, pdev->dev.of_node, &conf0);
1196 if (ret)
1197 goto err_device_free;
1198
1199 if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1200 ret = iio_triggered_buffer_setup(indio_dev,
1201 &iio_pollfunc_store_time, &xadc_trigger_handler,
1202 &xadc_buffer_ops);
1203 if (ret)
1204 goto err_device_free;
1205
1206 xadc->convst_trigger = xadc_alloc_trigger(indio_dev, "convst");
1207 if (IS_ERR(xadc->convst_trigger)) {
1208 ret = PTR_ERR(xadc->convst_trigger);
1209 goto err_triggered_buffer_cleanup;
1210 }
1211 xadc->samplerate_trigger = xadc_alloc_trigger(indio_dev,
1212 "samplerate");
1213 if (IS_ERR(xadc->samplerate_trigger)) {
1214 ret = PTR_ERR(xadc->samplerate_trigger);
1215 goto err_free_convst_trigger;
1216 }
1217 }
1218
1219 xadc->clk = devm_clk_get(&pdev->dev, NULL);
1220 if (IS_ERR(xadc->clk)) {
1221 ret = PTR_ERR(xadc->clk);
1222 goto err_free_samplerate_trigger;
1223 }
1224
1225 ret = clk_prepare_enable(xadc->clk);
1226 if (ret)
1227 goto err_free_samplerate_trigger;
1228
1229 ret = request_irq(xadc->irq, xadc->ops->interrupt_handler, 0,
1230 dev_name(&pdev->dev), indio_dev);
1231 if (ret)
1232 goto err_clk_disable_unprepare;
1233
1234 ret = xadc->ops->setup(pdev, indio_dev, xadc->irq);
1235 if (ret)
1236 goto err_free_irq;
1237
1238 for (i = 0; i < 16; i++)
1239 xadc_read_adc_reg(xadc, XADC_REG_THRESHOLD(i),
1240 &xadc->threshold[i]);
1241
1242 ret = xadc_write_adc_reg(xadc, XADC_REG_CONF0, conf0);
1243 if (ret)
1244 goto err_free_irq;
1245
1246 bipolar_mask = 0;
1247 for (i = 0; i < indio_dev->num_channels; i++) {
1248 if (indio_dev->channels[i].scan_type.sign == 's')
1249 bipolar_mask |= BIT(indio_dev->channels[i].scan_index);
1250 }
1251
1252 ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(0), bipolar_mask);
1253 if (ret)
1254 goto err_free_irq;
1255 ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(1),
1256 bipolar_mask >> 16);
1257 if (ret)
1258 goto err_free_irq;
1259
1260 /* Disable all alarms */
1261 ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_ALARM_MASK,
1262 XADC_CONF1_ALARM_MASK);
1263 if (ret)
1264 goto err_free_irq;
1265
1266 /* Set thresholds to min/max */
1267 for (i = 0; i < 16; i++) {
1268 /*
1269 * Set max voltage threshold and both temperature thresholds to
1270 * 0xffff, min voltage threshold to 0.
1271 */
1272 if (i % 8 < 4 || i == 7)
1273 xadc->threshold[i] = 0xffff;
1274 else
1275 xadc->threshold[i] = 0;
1276 xadc_write_adc_reg(xadc, XADC_REG_THRESHOLD(i),
1277 xadc->threshold[i]);
1278 }
1279
1280 /* Go to non-buffered mode */
1281 xadc_postdisable(indio_dev);
1282
1283 ret = iio_device_register(indio_dev);
1284 if (ret)
1285 goto err_free_irq;
1286
1287 platform_set_drvdata(pdev, indio_dev);
1288
1289 return 0;
1290
1291 err_free_irq:
1292 free_irq(xadc->irq, indio_dev);
1293 err_clk_disable_unprepare:
1294 clk_disable_unprepare(xadc->clk);
1295 err_free_samplerate_trigger:
1296 if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
1297 iio_trigger_free(xadc->samplerate_trigger);
1298 err_free_convst_trigger:
1299 if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
1300 iio_trigger_free(xadc->convst_trigger);
1301 err_triggered_buffer_cleanup:
1302 if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
1303 iio_triggered_buffer_cleanup(indio_dev);
1304 err_device_free:
1305 kfree(indio_dev->channels);
1306
1307 return ret;
1308 }
1309
xadc_remove(struct platform_device * pdev)1310 static int xadc_remove(struct platform_device *pdev)
1311 {
1312 struct iio_dev *indio_dev = platform_get_drvdata(pdev);
1313 struct xadc *xadc = iio_priv(indio_dev);
1314
1315 iio_device_unregister(indio_dev);
1316 if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1317 iio_trigger_free(xadc->samplerate_trigger);
1318 iio_trigger_free(xadc->convst_trigger);
1319 iio_triggered_buffer_cleanup(indio_dev);
1320 }
1321 free_irq(xadc->irq, indio_dev);
1322 clk_disable_unprepare(xadc->clk);
1323 cancel_delayed_work(&xadc->zynq_unmask_work);
1324 kfree(xadc->data);
1325 kfree(indio_dev->channels);
1326
1327 return 0;
1328 }
1329
1330 static struct platform_driver xadc_driver = {
1331 .probe = xadc_probe,
1332 .remove = xadc_remove,
1333 .driver = {
1334 .name = "xadc",
1335 .of_match_table = xadc_of_match_table,
1336 },
1337 };
1338 module_platform_driver(xadc_driver);
1339
1340 MODULE_LICENSE("GPL v2");
1341 MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
1342 MODULE_DESCRIPTION("Xilinx XADC IIO driver");
1343