1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/gfp.h>
4 #include <linux/hugetlb.h>
5 #include <asm/pgalloc.h>
6 #include <asm/pgtable.h>
7 #include <asm/tlb.h>
8 #include <asm/fixmap.h>
9 #include <asm/mtrr.h>
10
11 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
12 phys_addr_t physical_mask __ro_after_init = (1ULL << __PHYSICAL_MASK_SHIFT) - 1;
13 EXPORT_SYMBOL(physical_mask);
14 #endif
15
16 #define PGALLOC_GFP (GFP_KERNEL_ACCOUNT | __GFP_ZERO)
17
18 #ifdef CONFIG_HIGHPTE
19 #define PGALLOC_USER_GFP __GFP_HIGHMEM
20 #else
21 #define PGALLOC_USER_GFP 0
22 #endif
23
24 gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
25
pte_alloc_one_kernel(struct mm_struct * mm,unsigned long address)26 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
27 {
28 return (pte_t *)__get_free_page(PGALLOC_GFP & ~__GFP_ACCOUNT);
29 }
30
pte_alloc_one(struct mm_struct * mm,unsigned long address)31 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
32 {
33 struct page *pte;
34
35 pte = alloc_pages(__userpte_alloc_gfp, 0);
36 if (!pte)
37 return NULL;
38 if (!pgtable_page_ctor(pte)) {
39 __free_page(pte);
40 return NULL;
41 }
42 return pte;
43 }
44
setup_userpte(char * arg)45 static int __init setup_userpte(char *arg)
46 {
47 if (!arg)
48 return -EINVAL;
49
50 /*
51 * "userpte=nohigh" disables allocation of user pagetables in
52 * high memory.
53 */
54 if (strcmp(arg, "nohigh") == 0)
55 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
56 else
57 return -EINVAL;
58 return 0;
59 }
60 early_param("userpte", setup_userpte);
61
___pte_free_tlb(struct mmu_gather * tlb,struct page * pte)62 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
63 {
64 pgtable_page_dtor(pte);
65 paravirt_release_pte(page_to_pfn(pte));
66 paravirt_tlb_remove_table(tlb, pte);
67 }
68
69 #if CONFIG_PGTABLE_LEVELS > 2
___pmd_free_tlb(struct mmu_gather * tlb,pmd_t * pmd)70 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
71 {
72 struct page *page = virt_to_page(pmd);
73 paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
74 /*
75 * NOTE! For PAE, any changes to the top page-directory-pointer-table
76 * entries need a full cr3 reload to flush.
77 */
78 #ifdef CONFIG_X86_PAE
79 tlb->need_flush_all = 1;
80 #endif
81 pgtable_pmd_page_dtor(page);
82 paravirt_tlb_remove_table(tlb, page);
83 }
84
85 #if CONFIG_PGTABLE_LEVELS > 3
___pud_free_tlb(struct mmu_gather * tlb,pud_t * pud)86 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
87 {
88 paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
89 paravirt_tlb_remove_table(tlb, virt_to_page(pud));
90 }
91
92 #if CONFIG_PGTABLE_LEVELS > 4
___p4d_free_tlb(struct mmu_gather * tlb,p4d_t * p4d)93 void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d)
94 {
95 paravirt_release_p4d(__pa(p4d) >> PAGE_SHIFT);
96 paravirt_tlb_remove_table(tlb, virt_to_page(p4d));
97 }
98 #endif /* CONFIG_PGTABLE_LEVELS > 4 */
99 #endif /* CONFIG_PGTABLE_LEVELS > 3 */
100 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
101
pgd_list_add(pgd_t * pgd)102 static inline void pgd_list_add(pgd_t *pgd)
103 {
104 struct page *page = virt_to_page(pgd);
105
106 list_add(&page->lru, &pgd_list);
107 }
108
pgd_list_del(pgd_t * pgd)109 static inline void pgd_list_del(pgd_t *pgd)
110 {
111 struct page *page = virt_to_page(pgd);
112
113 list_del(&page->lru);
114 }
115
116 #define UNSHARED_PTRS_PER_PGD \
117 (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
118 #define MAX_UNSHARED_PTRS_PER_PGD \
119 max_t(size_t, KERNEL_PGD_BOUNDARY, PTRS_PER_PGD)
120
121
pgd_set_mm(pgd_t * pgd,struct mm_struct * mm)122 static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
123 {
124 virt_to_page(pgd)->pt_mm = mm;
125 }
126
pgd_page_get_mm(struct page * page)127 struct mm_struct *pgd_page_get_mm(struct page *page)
128 {
129 return page->pt_mm;
130 }
131
pgd_ctor(struct mm_struct * mm,pgd_t * pgd)132 static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
133 {
134 /* If the pgd points to a shared pagetable level (either the
135 ptes in non-PAE, or shared PMD in PAE), then just copy the
136 references from swapper_pg_dir. */
137 if (CONFIG_PGTABLE_LEVELS == 2 ||
138 (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
139 CONFIG_PGTABLE_LEVELS >= 4) {
140 clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
141 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
142 KERNEL_PGD_PTRS);
143 }
144
145 /* list required to sync kernel mapping updates */
146 if (!SHARED_KERNEL_PMD) {
147 pgd_set_mm(pgd, mm);
148 pgd_list_add(pgd);
149 }
150 }
151
pgd_dtor(pgd_t * pgd)152 static void pgd_dtor(pgd_t *pgd)
153 {
154 if (SHARED_KERNEL_PMD)
155 return;
156
157 spin_lock(&pgd_lock);
158 pgd_list_del(pgd);
159 spin_unlock(&pgd_lock);
160 }
161
162 /*
163 * List of all pgd's needed for non-PAE so it can invalidate entries
164 * in both cached and uncached pgd's; not needed for PAE since the
165 * kernel pmd is shared. If PAE were not to share the pmd a similar
166 * tactic would be needed. This is essentially codepath-based locking
167 * against pageattr.c; it is the unique case in which a valid change
168 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
169 * vmalloc faults work because attached pagetables are never freed.
170 * -- nyc
171 */
172
173 #ifdef CONFIG_X86_PAE
174 /*
175 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
176 * updating the top-level pagetable entries to guarantee the
177 * processor notices the update. Since this is expensive, and
178 * all 4 top-level entries are used almost immediately in a
179 * new process's life, we just pre-populate them here.
180 *
181 * Also, if we're in a paravirt environment where the kernel pmd is
182 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
183 * and initialize the kernel pmds here.
184 */
185 #define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD
186 #define MAX_PREALLOCATED_PMDS MAX_UNSHARED_PTRS_PER_PGD
187
188 /*
189 * We allocate separate PMDs for the kernel part of the user page-table
190 * when PTI is enabled. We need them to map the per-process LDT into the
191 * user-space page-table.
192 */
193 #define PREALLOCATED_USER_PMDS (static_cpu_has(X86_FEATURE_PTI) ? \
194 KERNEL_PGD_PTRS : 0)
195 #define MAX_PREALLOCATED_USER_PMDS KERNEL_PGD_PTRS
196
pud_populate(struct mm_struct * mm,pud_t * pudp,pmd_t * pmd)197 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
198 {
199 paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
200
201 /* Note: almost everything apart from _PAGE_PRESENT is
202 reserved at the pmd (PDPT) level. */
203 set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
204
205 /*
206 * According to Intel App note "TLBs, Paging-Structure Caches,
207 * and Their Invalidation", April 2007, document 317080-001,
208 * section 8.1: in PAE mode we explicitly have to flush the
209 * TLB via cr3 if the top-level pgd is changed...
210 */
211 flush_tlb_mm(mm);
212 }
213 #else /* !CONFIG_X86_PAE */
214
215 /* No need to prepopulate any pagetable entries in non-PAE modes. */
216 #define PREALLOCATED_PMDS 0
217 #define MAX_PREALLOCATED_PMDS 0
218 #define PREALLOCATED_USER_PMDS 0
219 #define MAX_PREALLOCATED_USER_PMDS 0
220 #endif /* CONFIG_X86_PAE */
221
free_pmds(struct mm_struct * mm,pmd_t * pmds[],int count)222 static void free_pmds(struct mm_struct *mm, pmd_t *pmds[], int count)
223 {
224 int i;
225
226 for (i = 0; i < count; i++)
227 if (pmds[i]) {
228 pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
229 free_page((unsigned long)pmds[i]);
230 mm_dec_nr_pmds(mm);
231 }
232 }
233
preallocate_pmds(struct mm_struct * mm,pmd_t * pmds[],int count)234 static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[], int count)
235 {
236 int i;
237 bool failed = false;
238 gfp_t gfp = PGALLOC_GFP;
239
240 if (mm == &init_mm)
241 gfp &= ~__GFP_ACCOUNT;
242
243 for (i = 0; i < count; i++) {
244 pmd_t *pmd = (pmd_t *)__get_free_page(gfp);
245 if (!pmd)
246 failed = true;
247 if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
248 free_page((unsigned long)pmd);
249 pmd = NULL;
250 failed = true;
251 }
252 if (pmd)
253 mm_inc_nr_pmds(mm);
254 pmds[i] = pmd;
255 }
256
257 if (failed) {
258 free_pmds(mm, pmds, count);
259 return -ENOMEM;
260 }
261
262 return 0;
263 }
264
265 /*
266 * Mop up any pmd pages which may still be attached to the pgd.
267 * Normally they will be freed by munmap/exit_mmap, but any pmd we
268 * preallocate which never got a corresponding vma will need to be
269 * freed manually.
270 */
mop_up_one_pmd(struct mm_struct * mm,pgd_t * pgdp)271 static void mop_up_one_pmd(struct mm_struct *mm, pgd_t *pgdp)
272 {
273 pgd_t pgd = *pgdp;
274
275 if (pgd_val(pgd) != 0) {
276 pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
277
278 pgd_clear(pgdp);
279
280 paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
281 pmd_free(mm, pmd);
282 mm_dec_nr_pmds(mm);
283 }
284 }
285
pgd_mop_up_pmds(struct mm_struct * mm,pgd_t * pgdp)286 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
287 {
288 int i;
289
290 for (i = 0; i < PREALLOCATED_PMDS; i++)
291 mop_up_one_pmd(mm, &pgdp[i]);
292
293 #ifdef CONFIG_PAGE_TABLE_ISOLATION
294
295 if (!static_cpu_has(X86_FEATURE_PTI))
296 return;
297
298 pgdp = kernel_to_user_pgdp(pgdp);
299
300 for (i = 0; i < PREALLOCATED_USER_PMDS; i++)
301 mop_up_one_pmd(mm, &pgdp[i + KERNEL_PGD_BOUNDARY]);
302 #endif
303 }
304
pgd_prepopulate_pmd(struct mm_struct * mm,pgd_t * pgd,pmd_t * pmds[])305 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
306 {
307 p4d_t *p4d;
308 pud_t *pud;
309 int i;
310
311 if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
312 return;
313
314 p4d = p4d_offset(pgd, 0);
315 pud = pud_offset(p4d, 0);
316
317 for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
318 pmd_t *pmd = pmds[i];
319
320 if (i >= KERNEL_PGD_BOUNDARY)
321 memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
322 sizeof(pmd_t) * PTRS_PER_PMD);
323
324 pud_populate(mm, pud, pmd);
325 }
326 }
327
328 #ifdef CONFIG_PAGE_TABLE_ISOLATION
pgd_prepopulate_user_pmd(struct mm_struct * mm,pgd_t * k_pgd,pmd_t * pmds[])329 static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
330 pgd_t *k_pgd, pmd_t *pmds[])
331 {
332 pgd_t *s_pgd = kernel_to_user_pgdp(swapper_pg_dir);
333 pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd);
334 p4d_t *u_p4d;
335 pud_t *u_pud;
336 int i;
337
338 u_p4d = p4d_offset(u_pgd, 0);
339 u_pud = pud_offset(u_p4d, 0);
340
341 s_pgd += KERNEL_PGD_BOUNDARY;
342 u_pud += KERNEL_PGD_BOUNDARY;
343
344 for (i = 0; i < PREALLOCATED_USER_PMDS; i++, u_pud++, s_pgd++) {
345 pmd_t *pmd = pmds[i];
346
347 memcpy(pmd, (pmd_t *)pgd_page_vaddr(*s_pgd),
348 sizeof(pmd_t) * PTRS_PER_PMD);
349
350 pud_populate(mm, u_pud, pmd);
351 }
352
353 }
354 #else
pgd_prepopulate_user_pmd(struct mm_struct * mm,pgd_t * k_pgd,pmd_t * pmds[])355 static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
356 pgd_t *k_pgd, pmd_t *pmds[])
357 {
358 }
359 #endif
360 /*
361 * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
362 * assumes that pgd should be in one page.
363 *
364 * But kernel with PAE paging that is not running as a Xen domain
365 * only needs to allocate 32 bytes for pgd instead of one page.
366 */
367 #ifdef CONFIG_X86_PAE
368
369 #include <linux/slab.h>
370
371 #define PGD_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
372 #define PGD_ALIGN 32
373
374 static struct kmem_cache *pgd_cache;
375
pgd_cache_init(void)376 static int __init pgd_cache_init(void)
377 {
378 /*
379 * When PAE kernel is running as a Xen domain, it does not use
380 * shared kernel pmd. And this requires a whole page for pgd.
381 */
382 if (!SHARED_KERNEL_PMD)
383 return 0;
384
385 /*
386 * when PAE kernel is not running as a Xen domain, it uses
387 * shared kernel pmd. Shared kernel pmd does not require a whole
388 * page for pgd. We are able to just allocate a 32-byte for pgd.
389 * During boot time, we create a 32-byte slab for pgd table allocation.
390 */
391 pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
392 SLAB_PANIC, NULL);
393 return 0;
394 }
395 core_initcall(pgd_cache_init);
396
_pgd_alloc(void)397 static inline pgd_t *_pgd_alloc(void)
398 {
399 /*
400 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
401 * We allocate one page for pgd.
402 */
403 if (!SHARED_KERNEL_PMD)
404 return (pgd_t *)__get_free_pages(PGALLOC_GFP,
405 PGD_ALLOCATION_ORDER);
406
407 /*
408 * Now PAE kernel is not running as a Xen domain. We can allocate
409 * a 32-byte slab for pgd to save memory space.
410 */
411 return kmem_cache_alloc(pgd_cache, PGALLOC_GFP);
412 }
413
_pgd_free(pgd_t * pgd)414 static inline void _pgd_free(pgd_t *pgd)
415 {
416 if (!SHARED_KERNEL_PMD)
417 free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
418 else
419 kmem_cache_free(pgd_cache, pgd);
420 }
421 #else
422
_pgd_alloc(void)423 static inline pgd_t *_pgd_alloc(void)
424 {
425 return (pgd_t *)__get_free_pages(PGALLOC_GFP, PGD_ALLOCATION_ORDER);
426 }
427
_pgd_free(pgd_t * pgd)428 static inline void _pgd_free(pgd_t *pgd)
429 {
430 free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
431 }
432 #endif /* CONFIG_X86_PAE */
433
pgd_alloc(struct mm_struct * mm)434 pgd_t *pgd_alloc(struct mm_struct *mm)
435 {
436 pgd_t *pgd;
437 pmd_t *u_pmds[MAX_PREALLOCATED_USER_PMDS];
438 pmd_t *pmds[MAX_PREALLOCATED_PMDS];
439
440 pgd = _pgd_alloc();
441
442 if (pgd == NULL)
443 goto out;
444
445 mm->pgd = pgd;
446
447 if (preallocate_pmds(mm, pmds, PREALLOCATED_PMDS) != 0)
448 goto out_free_pgd;
449
450 if (preallocate_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS) != 0)
451 goto out_free_pmds;
452
453 if (paravirt_pgd_alloc(mm) != 0)
454 goto out_free_user_pmds;
455
456 /*
457 * Make sure that pre-populating the pmds is atomic with
458 * respect to anything walking the pgd_list, so that they
459 * never see a partially populated pgd.
460 */
461 spin_lock(&pgd_lock);
462
463 pgd_ctor(mm, pgd);
464 pgd_prepopulate_pmd(mm, pgd, pmds);
465 pgd_prepopulate_user_pmd(mm, pgd, u_pmds);
466
467 spin_unlock(&pgd_lock);
468
469 return pgd;
470
471 out_free_user_pmds:
472 free_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS);
473 out_free_pmds:
474 free_pmds(mm, pmds, PREALLOCATED_PMDS);
475 out_free_pgd:
476 _pgd_free(pgd);
477 out:
478 return NULL;
479 }
480
pgd_free(struct mm_struct * mm,pgd_t * pgd)481 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
482 {
483 pgd_mop_up_pmds(mm, pgd);
484 pgd_dtor(pgd);
485 paravirt_pgd_free(mm, pgd);
486 _pgd_free(pgd);
487 }
488
489 /*
490 * Used to set accessed or dirty bits in the page table entries
491 * on other architectures. On x86, the accessed and dirty bits
492 * are tracked by hardware. However, do_wp_page calls this function
493 * to also make the pte writeable at the same time the dirty bit is
494 * set. In that case we do actually need to write the PTE.
495 */
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long address,pte_t * ptep,pte_t entry,int dirty)496 int ptep_set_access_flags(struct vm_area_struct *vma,
497 unsigned long address, pte_t *ptep,
498 pte_t entry, int dirty)
499 {
500 int changed = !pte_same(*ptep, entry);
501
502 if (changed && dirty)
503 set_pte(ptep, entry);
504
505 return changed;
506 }
507
508 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)509 int pmdp_set_access_flags(struct vm_area_struct *vma,
510 unsigned long address, pmd_t *pmdp,
511 pmd_t entry, int dirty)
512 {
513 int changed = !pmd_same(*pmdp, entry);
514
515 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
516
517 if (changed && dirty) {
518 set_pmd(pmdp, entry);
519 /*
520 * We had a write-protection fault here and changed the pmd
521 * to to more permissive. No need to flush the TLB for that,
522 * #PF is architecturally guaranteed to do that and in the
523 * worst-case we'll generate a spurious fault.
524 */
525 }
526
527 return changed;
528 }
529
pudp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,pud_t entry,int dirty)530 int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
531 pud_t *pudp, pud_t entry, int dirty)
532 {
533 int changed = !pud_same(*pudp, entry);
534
535 VM_BUG_ON(address & ~HPAGE_PUD_MASK);
536
537 if (changed && dirty) {
538 set_pud(pudp, entry);
539 /*
540 * We had a write-protection fault here and changed the pud
541 * to to more permissive. No need to flush the TLB for that,
542 * #PF is architecturally guaranteed to do that and in the
543 * worst-case we'll generate a spurious fault.
544 */
545 }
546
547 return changed;
548 }
549 #endif
550
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)551 int ptep_test_and_clear_young(struct vm_area_struct *vma,
552 unsigned long addr, pte_t *ptep)
553 {
554 int ret = 0;
555
556 if (pte_young(*ptep))
557 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
558 (unsigned long *) &ptep->pte);
559
560 return ret;
561 }
562
563 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)564 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
565 unsigned long addr, pmd_t *pmdp)
566 {
567 int ret = 0;
568
569 if (pmd_young(*pmdp))
570 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
571 (unsigned long *)pmdp);
572
573 return ret;
574 }
pudp_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pud_t * pudp)575 int pudp_test_and_clear_young(struct vm_area_struct *vma,
576 unsigned long addr, pud_t *pudp)
577 {
578 int ret = 0;
579
580 if (pud_young(*pudp))
581 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
582 (unsigned long *)pudp);
583
584 return ret;
585 }
586 #endif
587
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)588 int ptep_clear_flush_young(struct vm_area_struct *vma,
589 unsigned long address, pte_t *ptep)
590 {
591 /*
592 * On x86 CPUs, clearing the accessed bit without a TLB flush
593 * doesn't cause data corruption. [ It could cause incorrect
594 * page aging and the (mistaken) reclaim of hot pages, but the
595 * chance of that should be relatively low. ]
596 *
597 * So as a performance optimization don't flush the TLB when
598 * clearing the accessed bit, it will eventually be flushed by
599 * a context switch or a VM operation anyway. [ In the rare
600 * event of it not getting flushed for a long time the delay
601 * shouldn't really matter because there's no real memory
602 * pressure for swapout to react to. ]
603 */
604 return ptep_test_and_clear_young(vma, address, ptep);
605 }
606
607 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)608 int pmdp_clear_flush_young(struct vm_area_struct *vma,
609 unsigned long address, pmd_t *pmdp)
610 {
611 int young;
612
613 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
614
615 young = pmdp_test_and_clear_young(vma, address, pmdp);
616 if (young)
617 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
618
619 return young;
620 }
621 #endif
622
623 /**
624 * reserve_top_address - reserves a hole in the top of kernel address space
625 * @reserve - size of hole to reserve
626 *
627 * Can be used to relocate the fixmap area and poke a hole in the top
628 * of kernel address space to make room for a hypervisor.
629 */
reserve_top_address(unsigned long reserve)630 void __init reserve_top_address(unsigned long reserve)
631 {
632 #ifdef CONFIG_X86_32
633 BUG_ON(fixmaps_set > 0);
634 __FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
635 printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
636 -reserve, __FIXADDR_TOP + PAGE_SIZE);
637 #endif
638 }
639
640 int fixmaps_set;
641
__native_set_fixmap(enum fixed_addresses idx,pte_t pte)642 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
643 {
644 unsigned long address = __fix_to_virt(idx);
645
646 #ifdef CONFIG_X86_64
647 /*
648 * Ensure that the static initial page tables are covering the
649 * fixmap completely.
650 */
651 BUILD_BUG_ON(__end_of_permanent_fixed_addresses >
652 (FIXMAP_PMD_NUM * PTRS_PER_PTE));
653 #endif
654
655 if (idx >= __end_of_fixed_addresses) {
656 BUG();
657 return;
658 }
659 set_pte_vaddr(address, pte);
660 fixmaps_set++;
661 }
662
native_set_fixmap(enum fixed_addresses idx,phys_addr_t phys,pgprot_t flags)663 void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
664 pgprot_t flags)
665 {
666 /* Sanitize 'prot' against any unsupported bits: */
667 pgprot_val(flags) &= __default_kernel_pte_mask;
668
669 __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
670 }
671
672 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
673 #ifdef CONFIG_X86_5LEVEL
674 /**
675 * p4d_set_huge - setup kernel P4D mapping
676 *
677 * No 512GB pages yet -- always return 0
678 */
p4d_set_huge(p4d_t * p4d,phys_addr_t addr,pgprot_t prot)679 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
680 {
681 return 0;
682 }
683
684 /**
685 * p4d_clear_huge - clear kernel P4D mapping when it is set
686 *
687 * No 512GB pages yet -- always return 0
688 */
p4d_clear_huge(p4d_t * p4d)689 int p4d_clear_huge(p4d_t *p4d)
690 {
691 return 0;
692 }
693 #endif
694
695 /**
696 * pud_set_huge - setup kernel PUD mapping
697 *
698 * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
699 * function sets up a huge page only if any of the following conditions are met:
700 *
701 * - MTRRs are disabled, or
702 *
703 * - MTRRs are enabled and the range is completely covered by a single MTRR, or
704 *
705 * - MTRRs are enabled and the corresponding MTRR memory type is WB, which
706 * has no effect on the requested PAT memory type.
707 *
708 * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
709 * page mapping attempt fails.
710 *
711 * Returns 1 on success and 0 on failure.
712 */
pud_set_huge(pud_t * pud,phys_addr_t addr,pgprot_t prot)713 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
714 {
715 u8 mtrr, uniform;
716
717 mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
718 if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
719 (mtrr != MTRR_TYPE_WRBACK))
720 return 0;
721
722 /* Bail out if we are we on a populated non-leaf entry: */
723 if (pud_present(*pud) && !pud_huge(*pud))
724 return 0;
725
726 prot = pgprot_4k_2_large(prot);
727
728 set_pte((pte_t *)pud, pfn_pte(
729 (u64)addr >> PAGE_SHIFT,
730 __pgprot(pgprot_val(prot) | _PAGE_PSE)));
731
732 return 1;
733 }
734
735 /**
736 * pmd_set_huge - setup kernel PMD mapping
737 *
738 * See text over pud_set_huge() above.
739 *
740 * Returns 1 on success and 0 on failure.
741 */
pmd_set_huge(pmd_t * pmd,phys_addr_t addr,pgprot_t prot)742 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
743 {
744 u8 mtrr, uniform;
745
746 mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
747 if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
748 (mtrr != MTRR_TYPE_WRBACK)) {
749 pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
750 __func__, addr, addr + PMD_SIZE);
751 return 0;
752 }
753
754 /* Bail out if we are we on a populated non-leaf entry: */
755 if (pmd_present(*pmd) && !pmd_huge(*pmd))
756 return 0;
757
758 prot = pgprot_4k_2_large(prot);
759
760 set_pte((pte_t *)pmd, pfn_pte(
761 (u64)addr >> PAGE_SHIFT,
762 __pgprot(pgprot_val(prot) | _PAGE_PSE)));
763
764 return 1;
765 }
766
767 /**
768 * pud_clear_huge - clear kernel PUD mapping when it is set
769 *
770 * Returns 1 on success and 0 on failure (no PUD map is found).
771 */
pud_clear_huge(pud_t * pud)772 int pud_clear_huge(pud_t *pud)
773 {
774 if (pud_large(*pud)) {
775 pud_clear(pud);
776 return 1;
777 }
778
779 return 0;
780 }
781
782 /**
783 * pmd_clear_huge - clear kernel PMD mapping when it is set
784 *
785 * Returns 1 on success and 0 on failure (no PMD map is found).
786 */
pmd_clear_huge(pmd_t * pmd)787 int pmd_clear_huge(pmd_t *pmd)
788 {
789 if (pmd_large(*pmd)) {
790 pmd_clear(pmd);
791 return 1;
792 }
793
794 return 0;
795 }
796
797 #ifdef CONFIG_X86_64
798 /**
799 * pud_free_pmd_page - Clear pud entry and free pmd page.
800 * @pud: Pointer to a PUD.
801 * @addr: Virtual address associated with pud.
802 *
803 * Context: The pud range has been unmapped and TLB purged.
804 * Return: 1 if clearing the entry succeeded. 0 otherwise.
805 *
806 * NOTE: Callers must allow a single page allocation.
807 */
pud_free_pmd_page(pud_t * pud,unsigned long addr)808 int pud_free_pmd_page(pud_t *pud, unsigned long addr)
809 {
810 pmd_t *pmd, *pmd_sv;
811 pte_t *pte;
812 int i;
813
814 if (pud_none(*pud))
815 return 1;
816
817 pmd = (pmd_t *)pud_page_vaddr(*pud);
818 pmd_sv = (pmd_t *)__get_free_page(GFP_KERNEL);
819 if (!pmd_sv)
820 return 0;
821
822 for (i = 0; i < PTRS_PER_PMD; i++) {
823 pmd_sv[i] = pmd[i];
824 if (!pmd_none(pmd[i]))
825 pmd_clear(&pmd[i]);
826 }
827
828 pud_clear(pud);
829
830 /* INVLPG to clear all paging-structure caches */
831 flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
832
833 for (i = 0; i < PTRS_PER_PMD; i++) {
834 if (!pmd_none(pmd_sv[i])) {
835 pte = (pte_t *)pmd_page_vaddr(pmd_sv[i]);
836 free_page((unsigned long)pte);
837 }
838 }
839
840 free_page((unsigned long)pmd_sv);
841 free_page((unsigned long)pmd);
842
843 return 1;
844 }
845
846 /**
847 * pmd_free_pte_page - Clear pmd entry and free pte page.
848 * @pmd: Pointer to a PMD.
849 * @addr: Virtual address associated with pmd.
850 *
851 * Context: The pmd range has been unmapped and TLB purged.
852 * Return: 1 if clearing the entry succeeded. 0 otherwise.
853 */
pmd_free_pte_page(pmd_t * pmd,unsigned long addr)854 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
855 {
856 pte_t *pte;
857
858 if (pmd_none(*pmd))
859 return 1;
860
861 pte = (pte_t *)pmd_page_vaddr(*pmd);
862 pmd_clear(pmd);
863
864 /* INVLPG to clear all paging-structure caches */
865 flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
866
867 free_page((unsigned long)pte);
868
869 return 1;
870 }
871
872 #else /* !CONFIG_X86_64 */
873
pud_free_pmd_page(pud_t * pud,unsigned long addr)874 int pud_free_pmd_page(pud_t *pud, unsigned long addr)
875 {
876 return pud_none(*pud);
877 }
878
879 /*
880 * Disable free page handling on x86-PAE. This assures that ioremap()
881 * does not update sync'd pmd entries. See vmalloc_sync_one().
882 */
pmd_free_pte_page(pmd_t * pmd,unsigned long addr)883 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
884 {
885 return pmd_none(*pmd);
886 }
887
888 #endif /* CONFIG_X86_64 */
889 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
890