1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 *
5 * This file contains the interface functions for the various time related
6 * system calls: time, stime, gettimeofday, settimeofday, adjtime
7 *
8 * Modification history:
9 *
10 * 1993-09-02 Philip Gladstone
11 * Created file with time related functions from sched/core.c and adjtimex()
12 * 1993-10-08 Torsten Duwe
13 * adjtime interface update and CMOS clock write code
14 * 1995-08-13 Torsten Duwe
15 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
16 * 1999-01-16 Ulrich Windl
17 * Introduced error checking for many cases in adjtimex().
18 * Updated NTP code according to technical memorandum Jan '96
19 * "A Kernel Model for Precision Timekeeping" by Dave Mills
20 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
21 * (Even though the technical memorandum forbids it)
22 * 2004-07-14 Christoph Lameter
23 * Added getnstimeofday to allow the posix timer functions to return
24 * with nanosecond accuracy
25 */
26
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/timex.h>
30 #include <linux/capability.h>
31 #include <linux/timekeeper_internal.h>
32 #include <linux/errno.h>
33 #include <linux/syscalls.h>
34 #include <linux/security.h>
35 #include <linux/fs.h>
36 #include <linux/math64.h>
37 #include <linux/ptrace.h>
38
39 #include <linux/uaccess.h>
40 #include <linux/compat.h>
41 #include <asm/unistd.h>
42
43 #include <generated/timeconst.h>
44 #include "timekeeping.h"
45
46 /*
47 * The timezone where the local system is located. Used as a default by some
48 * programs who obtain this value by using gettimeofday.
49 */
50 struct timezone sys_tz;
51
52 EXPORT_SYMBOL(sys_tz);
53
54 #ifdef __ARCH_WANT_SYS_TIME
55
56 /*
57 * sys_time() can be implemented in user-level using
58 * sys_gettimeofday(). Is this for backwards compatibility? If so,
59 * why not move it into the appropriate arch directory (for those
60 * architectures that need it).
61 */
SYSCALL_DEFINE1(time,__kernel_old_time_t __user *,tloc)62 SYSCALL_DEFINE1(time, __kernel_old_time_t __user *, tloc)
63 {
64 __kernel_old_time_t i = (__kernel_old_time_t)ktime_get_real_seconds();
65
66 if (tloc) {
67 if (put_user(i,tloc))
68 return -EFAULT;
69 }
70 force_successful_syscall_return();
71 return i;
72 }
73
74 /*
75 * sys_stime() can be implemented in user-level using
76 * sys_settimeofday(). Is this for backwards compatibility? If so,
77 * why not move it into the appropriate arch directory (for those
78 * architectures that need it).
79 */
80
SYSCALL_DEFINE1(stime,__kernel_old_time_t __user *,tptr)81 SYSCALL_DEFINE1(stime, __kernel_old_time_t __user *, tptr)
82 {
83 struct timespec64 tv;
84 int err;
85
86 if (get_user(tv.tv_sec, tptr))
87 return -EFAULT;
88
89 tv.tv_nsec = 0;
90
91 err = security_settime64(&tv, NULL);
92 if (err)
93 return err;
94
95 do_settimeofday64(&tv);
96 return 0;
97 }
98
99 #endif /* __ARCH_WANT_SYS_TIME */
100
101 #ifdef CONFIG_COMPAT_32BIT_TIME
102 #ifdef __ARCH_WANT_SYS_TIME32
103
104 /* old_time32_t is a 32 bit "long" and needs to get converted. */
SYSCALL_DEFINE1(time32,old_time32_t __user *,tloc)105 SYSCALL_DEFINE1(time32, old_time32_t __user *, tloc)
106 {
107 old_time32_t i;
108
109 i = (old_time32_t)ktime_get_real_seconds();
110
111 if (tloc) {
112 if (put_user(i,tloc))
113 return -EFAULT;
114 }
115 force_successful_syscall_return();
116 return i;
117 }
118
SYSCALL_DEFINE1(stime32,old_time32_t __user *,tptr)119 SYSCALL_DEFINE1(stime32, old_time32_t __user *, tptr)
120 {
121 struct timespec64 tv;
122 int err;
123
124 if (get_user(tv.tv_sec, tptr))
125 return -EFAULT;
126
127 tv.tv_nsec = 0;
128
129 err = security_settime64(&tv, NULL);
130 if (err)
131 return err;
132
133 do_settimeofday64(&tv);
134 return 0;
135 }
136
137 #endif /* __ARCH_WANT_SYS_TIME32 */
138 #endif
139
SYSCALL_DEFINE2(gettimeofday,struct __kernel_old_timeval __user *,tv,struct timezone __user *,tz)140 SYSCALL_DEFINE2(gettimeofday, struct __kernel_old_timeval __user *, tv,
141 struct timezone __user *, tz)
142 {
143 if (likely(tv != NULL)) {
144 struct timespec64 ts;
145
146 ktime_get_real_ts64(&ts);
147 if (put_user(ts.tv_sec, &tv->tv_sec) ||
148 put_user(ts.tv_nsec / 1000, &tv->tv_usec))
149 return -EFAULT;
150 }
151 if (unlikely(tz != NULL)) {
152 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
153 return -EFAULT;
154 }
155 return 0;
156 }
157
158 /*
159 * In case for some reason the CMOS clock has not already been running
160 * in UTC, but in some local time: The first time we set the timezone,
161 * we will warp the clock so that it is ticking UTC time instead of
162 * local time. Presumably, if someone is setting the timezone then we
163 * are running in an environment where the programs understand about
164 * timezones. This should be done at boot time in the /etc/rc script,
165 * as soon as possible, so that the clock can be set right. Otherwise,
166 * various programs will get confused when the clock gets warped.
167 */
168
do_sys_settimeofday64(const struct timespec64 * tv,const struct timezone * tz)169 int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
170 {
171 static int firsttime = 1;
172 int error = 0;
173
174 if (tv && !timespec64_valid_settod(tv))
175 return -EINVAL;
176
177 error = security_settime64(tv, tz);
178 if (error)
179 return error;
180
181 if (tz) {
182 /* Verify we're within the +-15 hrs range */
183 if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
184 return -EINVAL;
185
186 sys_tz = *tz;
187 update_vsyscall_tz();
188 if (firsttime) {
189 firsttime = 0;
190 if (!tv)
191 timekeeping_warp_clock();
192 }
193 }
194 if (tv)
195 return do_settimeofday64(tv);
196 return 0;
197 }
198
SYSCALL_DEFINE2(settimeofday,struct __kernel_old_timeval __user *,tv,struct timezone __user *,tz)199 SYSCALL_DEFINE2(settimeofday, struct __kernel_old_timeval __user *, tv,
200 struct timezone __user *, tz)
201 {
202 struct timespec64 new_ts;
203 struct timezone new_tz;
204
205 if (tv) {
206 if (get_user(new_ts.tv_sec, &tv->tv_sec) ||
207 get_user(new_ts.tv_nsec, &tv->tv_usec))
208 return -EFAULT;
209
210 if (new_ts.tv_nsec > USEC_PER_SEC || new_ts.tv_nsec < 0)
211 return -EINVAL;
212
213 new_ts.tv_nsec *= NSEC_PER_USEC;
214 }
215 if (tz) {
216 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
217 return -EFAULT;
218 }
219
220 return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
221 }
222
223 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(gettimeofday,struct old_timeval32 __user *,tv,struct timezone __user *,tz)224 COMPAT_SYSCALL_DEFINE2(gettimeofday, struct old_timeval32 __user *, tv,
225 struct timezone __user *, tz)
226 {
227 if (tv) {
228 struct timespec64 ts;
229
230 ktime_get_real_ts64(&ts);
231 if (put_user(ts.tv_sec, &tv->tv_sec) ||
232 put_user(ts.tv_nsec / 1000, &tv->tv_usec))
233 return -EFAULT;
234 }
235 if (tz) {
236 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
237 return -EFAULT;
238 }
239
240 return 0;
241 }
242
COMPAT_SYSCALL_DEFINE2(settimeofday,struct old_timeval32 __user *,tv,struct timezone __user *,tz)243 COMPAT_SYSCALL_DEFINE2(settimeofday, struct old_timeval32 __user *, tv,
244 struct timezone __user *, tz)
245 {
246 struct timespec64 new_ts;
247 struct timezone new_tz;
248
249 if (tv) {
250 if (get_user(new_ts.tv_sec, &tv->tv_sec) ||
251 get_user(new_ts.tv_nsec, &tv->tv_usec))
252 return -EFAULT;
253
254 if (new_ts.tv_nsec > USEC_PER_SEC || new_ts.tv_nsec < 0)
255 return -EINVAL;
256
257 new_ts.tv_nsec *= NSEC_PER_USEC;
258 }
259 if (tz) {
260 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
261 return -EFAULT;
262 }
263
264 return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
265 }
266 #endif
267
268 #ifdef CONFIG_64BIT
SYSCALL_DEFINE1(adjtimex,struct __kernel_timex __user *,txc_p)269 SYSCALL_DEFINE1(adjtimex, struct __kernel_timex __user *, txc_p)
270 {
271 struct __kernel_timex txc; /* Local copy of parameter */
272 int ret;
273
274 /* Copy the user data space into the kernel copy
275 * structure. But bear in mind that the structures
276 * may change
277 */
278 if (copy_from_user(&txc, txc_p, sizeof(struct __kernel_timex)))
279 return -EFAULT;
280 ret = do_adjtimex(&txc);
281 return copy_to_user(txc_p, &txc, sizeof(struct __kernel_timex)) ? -EFAULT : ret;
282 }
283 #endif
284
285 #ifdef CONFIG_COMPAT_32BIT_TIME
get_old_timex32(struct __kernel_timex * txc,const struct old_timex32 __user * utp)286 int get_old_timex32(struct __kernel_timex *txc, const struct old_timex32 __user *utp)
287 {
288 struct old_timex32 tx32;
289
290 memset(txc, 0, sizeof(struct __kernel_timex));
291 if (copy_from_user(&tx32, utp, sizeof(struct old_timex32)))
292 return -EFAULT;
293
294 txc->modes = tx32.modes;
295 txc->offset = tx32.offset;
296 txc->freq = tx32.freq;
297 txc->maxerror = tx32.maxerror;
298 txc->esterror = tx32.esterror;
299 txc->status = tx32.status;
300 txc->constant = tx32.constant;
301 txc->precision = tx32.precision;
302 txc->tolerance = tx32.tolerance;
303 txc->time.tv_sec = tx32.time.tv_sec;
304 txc->time.tv_usec = tx32.time.tv_usec;
305 txc->tick = tx32.tick;
306 txc->ppsfreq = tx32.ppsfreq;
307 txc->jitter = tx32.jitter;
308 txc->shift = tx32.shift;
309 txc->stabil = tx32.stabil;
310 txc->jitcnt = tx32.jitcnt;
311 txc->calcnt = tx32.calcnt;
312 txc->errcnt = tx32.errcnt;
313 txc->stbcnt = tx32.stbcnt;
314
315 return 0;
316 }
317
put_old_timex32(struct old_timex32 __user * utp,const struct __kernel_timex * txc)318 int put_old_timex32(struct old_timex32 __user *utp, const struct __kernel_timex *txc)
319 {
320 struct old_timex32 tx32;
321
322 memset(&tx32, 0, sizeof(struct old_timex32));
323 tx32.modes = txc->modes;
324 tx32.offset = txc->offset;
325 tx32.freq = txc->freq;
326 tx32.maxerror = txc->maxerror;
327 tx32.esterror = txc->esterror;
328 tx32.status = txc->status;
329 tx32.constant = txc->constant;
330 tx32.precision = txc->precision;
331 tx32.tolerance = txc->tolerance;
332 tx32.time.tv_sec = txc->time.tv_sec;
333 tx32.time.tv_usec = txc->time.tv_usec;
334 tx32.tick = txc->tick;
335 tx32.ppsfreq = txc->ppsfreq;
336 tx32.jitter = txc->jitter;
337 tx32.shift = txc->shift;
338 tx32.stabil = txc->stabil;
339 tx32.jitcnt = txc->jitcnt;
340 tx32.calcnt = txc->calcnt;
341 tx32.errcnt = txc->errcnt;
342 tx32.stbcnt = txc->stbcnt;
343 tx32.tai = txc->tai;
344 if (copy_to_user(utp, &tx32, sizeof(struct old_timex32)))
345 return -EFAULT;
346 return 0;
347 }
348
SYSCALL_DEFINE1(adjtimex_time32,struct old_timex32 __user *,utp)349 SYSCALL_DEFINE1(adjtimex_time32, struct old_timex32 __user *, utp)
350 {
351 struct __kernel_timex txc;
352 int err, ret;
353
354 err = get_old_timex32(&txc, utp);
355 if (err)
356 return err;
357
358 ret = do_adjtimex(&txc);
359
360 err = put_old_timex32(utp, &txc);
361 if (err)
362 return err;
363
364 return ret;
365 }
366 #endif
367
368 /*
369 * Convert jiffies to milliseconds and back.
370 *
371 * Avoid unnecessary multiplications/divisions in the
372 * two most common HZ cases:
373 */
jiffies_to_msecs(const unsigned long j)374 unsigned int jiffies_to_msecs(const unsigned long j)
375 {
376 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
377 return (MSEC_PER_SEC / HZ) * j;
378 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
379 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
380 #else
381 # if BITS_PER_LONG == 32
382 return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >>
383 HZ_TO_MSEC_SHR32;
384 # else
385 return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
386 # endif
387 #endif
388 }
389 EXPORT_SYMBOL(jiffies_to_msecs);
390
jiffies_to_usecs(const unsigned long j)391 unsigned int jiffies_to_usecs(const unsigned long j)
392 {
393 /*
394 * Hz usually doesn't go much further MSEC_PER_SEC.
395 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
396 */
397 BUILD_BUG_ON(HZ > USEC_PER_SEC);
398
399 #if !(USEC_PER_SEC % HZ)
400 return (USEC_PER_SEC / HZ) * j;
401 #else
402 # if BITS_PER_LONG == 32
403 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
404 # else
405 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
406 # endif
407 #endif
408 }
409 EXPORT_SYMBOL(jiffies_to_usecs);
410
411 /*
412 * mktime64 - Converts date to seconds.
413 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
414 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
415 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
416 *
417 * [For the Julian calendar (which was used in Russia before 1917,
418 * Britain & colonies before 1752, anywhere else before 1582,
419 * and is still in use by some communities) leave out the
420 * -year/100+year/400 terms, and add 10.]
421 *
422 * This algorithm was first published by Gauss (I think).
423 *
424 * A leap second can be indicated by calling this function with sec as
425 * 60 (allowable under ISO 8601). The leap second is treated the same
426 * as the following second since they don't exist in UNIX time.
427 *
428 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
429 * tomorrow - (allowable under ISO 8601) is supported.
430 */
mktime64(const unsigned int year0,const unsigned int mon0,const unsigned int day,const unsigned int hour,const unsigned int min,const unsigned int sec)431 time64_t mktime64(const unsigned int year0, const unsigned int mon0,
432 const unsigned int day, const unsigned int hour,
433 const unsigned int min, const unsigned int sec)
434 {
435 unsigned int mon = mon0, year = year0;
436
437 /* 1..12 -> 11,12,1..10 */
438 if (0 >= (int) (mon -= 2)) {
439 mon += 12; /* Puts Feb last since it has leap day */
440 year -= 1;
441 }
442
443 return ((((time64_t)
444 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
445 year*365 - 719499
446 )*24 + hour /* now have hours - midnight tomorrow handled here */
447 )*60 + min /* now have minutes */
448 )*60 + sec; /* finally seconds */
449 }
450 EXPORT_SYMBOL(mktime64);
451
ns_to_kernel_old_timeval(const s64 nsec)452 struct __kernel_old_timeval ns_to_kernel_old_timeval(const s64 nsec)
453 {
454 struct timespec64 ts = ns_to_timespec64(nsec);
455 struct __kernel_old_timeval tv;
456
457 tv.tv_sec = ts.tv_sec;
458 tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000;
459
460 return tv;
461 }
462 EXPORT_SYMBOL(ns_to_kernel_old_timeval);
463
464 /**
465 * set_normalized_timespec - set timespec sec and nsec parts and normalize
466 *
467 * @ts: pointer to timespec variable to be set
468 * @sec: seconds to set
469 * @nsec: nanoseconds to set
470 *
471 * Set seconds and nanoseconds field of a timespec variable and
472 * normalize to the timespec storage format
473 *
474 * Note: The tv_nsec part is always in the range of
475 * 0 <= tv_nsec < NSEC_PER_SEC
476 * For negative values only the tv_sec field is negative !
477 */
set_normalized_timespec64(struct timespec64 * ts,time64_t sec,s64 nsec)478 void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
479 {
480 while (nsec >= NSEC_PER_SEC) {
481 /*
482 * The following asm() prevents the compiler from
483 * optimising this loop into a modulo operation. See
484 * also __iter_div_u64_rem() in include/linux/time.h
485 */
486 asm("" : "+rm"(nsec));
487 nsec -= NSEC_PER_SEC;
488 ++sec;
489 }
490 while (nsec < 0) {
491 asm("" : "+rm"(nsec));
492 nsec += NSEC_PER_SEC;
493 --sec;
494 }
495 ts->tv_sec = sec;
496 ts->tv_nsec = nsec;
497 }
498 EXPORT_SYMBOL(set_normalized_timespec64);
499
500 /**
501 * ns_to_timespec64 - Convert nanoseconds to timespec64
502 * @nsec: the nanoseconds value to be converted
503 *
504 * Returns the timespec64 representation of the nsec parameter.
505 */
ns_to_timespec64(const s64 nsec)506 struct timespec64 ns_to_timespec64(const s64 nsec)
507 {
508 struct timespec64 ts = { 0, 0 };
509 s32 rem;
510
511 if (likely(nsec > 0)) {
512 ts.tv_sec = div_u64_rem(nsec, NSEC_PER_SEC, &rem);
513 ts.tv_nsec = rem;
514 } else if (nsec < 0) {
515 /*
516 * With negative times, tv_sec points to the earlier
517 * second, and tv_nsec counts the nanoseconds since
518 * then, so tv_nsec is always a positive number.
519 */
520 ts.tv_sec = -div_u64_rem(-nsec - 1, NSEC_PER_SEC, &rem) - 1;
521 ts.tv_nsec = NSEC_PER_SEC - rem - 1;
522 }
523
524 return ts;
525 }
526 EXPORT_SYMBOL(ns_to_timespec64);
527
528 /**
529 * msecs_to_jiffies: - convert milliseconds to jiffies
530 * @m: time in milliseconds
531 *
532 * conversion is done as follows:
533 *
534 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
535 *
536 * - 'too large' values [that would result in larger than
537 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
538 *
539 * - all other values are converted to jiffies by either multiplying
540 * the input value by a factor or dividing it with a factor and
541 * handling any 32-bit overflows.
542 * for the details see __msecs_to_jiffies()
543 *
544 * msecs_to_jiffies() checks for the passed in value being a constant
545 * via __builtin_constant_p() allowing gcc to eliminate most of the
546 * code, __msecs_to_jiffies() is called if the value passed does not
547 * allow constant folding and the actual conversion must be done at
548 * runtime.
549 * the _msecs_to_jiffies helpers are the HZ dependent conversion
550 * routines found in include/linux/jiffies.h
551 */
__msecs_to_jiffies(const unsigned int m)552 unsigned long __msecs_to_jiffies(const unsigned int m)
553 {
554 /*
555 * Negative value, means infinite timeout:
556 */
557 if ((int)m < 0)
558 return MAX_JIFFY_OFFSET;
559 return _msecs_to_jiffies(m);
560 }
561 EXPORT_SYMBOL(__msecs_to_jiffies);
562
__usecs_to_jiffies(const unsigned int u)563 unsigned long __usecs_to_jiffies(const unsigned int u)
564 {
565 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
566 return MAX_JIFFY_OFFSET;
567 return _usecs_to_jiffies(u);
568 }
569 EXPORT_SYMBOL(__usecs_to_jiffies);
570
571 /*
572 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
573 * that a remainder subtract here would not do the right thing as the
574 * resolution values don't fall on second boundries. I.e. the line:
575 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
576 * Note that due to the small error in the multiplier here, this
577 * rounding is incorrect for sufficiently large values of tv_nsec, but
578 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
579 * OK.
580 *
581 * Rather, we just shift the bits off the right.
582 *
583 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
584 * value to a scaled second value.
585 */
586
587 unsigned long
timespec64_to_jiffies(const struct timespec64 * value)588 timespec64_to_jiffies(const struct timespec64 *value)
589 {
590 u64 sec = value->tv_sec;
591 long nsec = value->tv_nsec + TICK_NSEC - 1;
592
593 if (sec >= MAX_SEC_IN_JIFFIES){
594 sec = MAX_SEC_IN_JIFFIES;
595 nsec = 0;
596 }
597 return ((sec * SEC_CONVERSION) +
598 (((u64)nsec * NSEC_CONVERSION) >>
599 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
600
601 }
602 EXPORT_SYMBOL(timespec64_to_jiffies);
603
604 void
jiffies_to_timespec64(const unsigned long jiffies,struct timespec64 * value)605 jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
606 {
607 /*
608 * Convert jiffies to nanoseconds and separate with
609 * one divide.
610 */
611 u32 rem;
612 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
613 NSEC_PER_SEC, &rem);
614 value->tv_nsec = rem;
615 }
616 EXPORT_SYMBOL(jiffies_to_timespec64);
617
618 /*
619 * Convert jiffies/jiffies_64 to clock_t and back.
620 */
jiffies_to_clock_t(unsigned long x)621 clock_t jiffies_to_clock_t(unsigned long x)
622 {
623 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
624 # if HZ < USER_HZ
625 return x * (USER_HZ / HZ);
626 # else
627 return x / (HZ / USER_HZ);
628 # endif
629 #else
630 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
631 #endif
632 }
633 EXPORT_SYMBOL(jiffies_to_clock_t);
634
clock_t_to_jiffies(unsigned long x)635 unsigned long clock_t_to_jiffies(unsigned long x)
636 {
637 #if (HZ % USER_HZ)==0
638 if (x >= ~0UL / (HZ / USER_HZ))
639 return ~0UL;
640 return x * (HZ / USER_HZ);
641 #else
642 /* Don't worry about loss of precision here .. */
643 if (x >= ~0UL / HZ * USER_HZ)
644 return ~0UL;
645
646 /* .. but do try to contain it here */
647 return div_u64((u64)x * HZ, USER_HZ);
648 #endif
649 }
650 EXPORT_SYMBOL(clock_t_to_jiffies);
651
jiffies_64_to_clock_t(u64 x)652 u64 jiffies_64_to_clock_t(u64 x)
653 {
654 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
655 # if HZ < USER_HZ
656 x = div_u64(x * USER_HZ, HZ);
657 # elif HZ > USER_HZ
658 x = div_u64(x, HZ / USER_HZ);
659 # else
660 /* Nothing to do */
661 # endif
662 #else
663 /*
664 * There are better ways that don't overflow early,
665 * but even this doesn't overflow in hundreds of years
666 * in 64 bits, so..
667 */
668 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
669 #endif
670 return x;
671 }
672 EXPORT_SYMBOL(jiffies_64_to_clock_t);
673
nsec_to_clock_t(u64 x)674 u64 nsec_to_clock_t(u64 x)
675 {
676 #if (NSEC_PER_SEC % USER_HZ) == 0
677 return div_u64(x, NSEC_PER_SEC / USER_HZ);
678 #elif (USER_HZ % 512) == 0
679 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
680 #else
681 /*
682 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
683 * overflow after 64.99 years.
684 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
685 */
686 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
687 #endif
688 }
689
jiffies64_to_nsecs(u64 j)690 u64 jiffies64_to_nsecs(u64 j)
691 {
692 #if !(NSEC_PER_SEC % HZ)
693 return (NSEC_PER_SEC / HZ) * j;
694 # else
695 return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
696 #endif
697 }
698 EXPORT_SYMBOL(jiffies64_to_nsecs);
699
jiffies64_to_msecs(const u64 j)700 u64 jiffies64_to_msecs(const u64 j)
701 {
702 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
703 return (MSEC_PER_SEC / HZ) * j;
704 #else
705 return div_u64(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
706 #endif
707 }
708 EXPORT_SYMBOL(jiffies64_to_msecs);
709
710 /**
711 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
712 *
713 * @n: nsecs in u64
714 *
715 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
716 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
717 * for scheduler, not for use in device drivers to calculate timeout value.
718 *
719 * note:
720 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
721 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
722 */
nsecs_to_jiffies64(u64 n)723 u64 nsecs_to_jiffies64(u64 n)
724 {
725 #if (NSEC_PER_SEC % HZ) == 0
726 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
727 return div_u64(n, NSEC_PER_SEC / HZ);
728 #elif (HZ % 512) == 0
729 /* overflow after 292 years if HZ = 1024 */
730 return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
731 #else
732 /*
733 * Generic case - optimized for cases where HZ is a multiple of 3.
734 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
735 */
736 return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
737 #endif
738 }
739 EXPORT_SYMBOL(nsecs_to_jiffies64);
740
741 /**
742 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
743 *
744 * @n: nsecs in u64
745 *
746 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
747 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
748 * for scheduler, not for use in device drivers to calculate timeout value.
749 *
750 * note:
751 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
752 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
753 */
nsecs_to_jiffies(u64 n)754 unsigned long nsecs_to_jiffies(u64 n)
755 {
756 return (unsigned long)nsecs_to_jiffies64(n);
757 }
758 EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
759
760 /*
761 * Add two timespec64 values and do a safety check for overflow.
762 * It's assumed that both values are valid (>= 0).
763 * And, each timespec64 is in normalized form.
764 */
timespec64_add_safe(const struct timespec64 lhs,const struct timespec64 rhs)765 struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
766 const struct timespec64 rhs)
767 {
768 struct timespec64 res;
769
770 set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
771 lhs.tv_nsec + rhs.tv_nsec);
772
773 if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
774 res.tv_sec = TIME64_MAX;
775 res.tv_nsec = 0;
776 }
777
778 return res;
779 }
780
get_timespec64(struct timespec64 * ts,const struct __kernel_timespec __user * uts)781 int get_timespec64(struct timespec64 *ts,
782 const struct __kernel_timespec __user *uts)
783 {
784 struct __kernel_timespec kts;
785 int ret;
786
787 ret = copy_from_user(&kts, uts, sizeof(kts));
788 if (ret)
789 return -EFAULT;
790
791 ts->tv_sec = kts.tv_sec;
792
793 /* Zero out the padding in compat mode */
794 if (in_compat_syscall())
795 kts.tv_nsec &= 0xFFFFFFFFUL;
796
797 /* In 32-bit mode, this drops the padding */
798 ts->tv_nsec = kts.tv_nsec;
799
800 return 0;
801 }
802 EXPORT_SYMBOL_GPL(get_timespec64);
803
put_timespec64(const struct timespec64 * ts,struct __kernel_timespec __user * uts)804 int put_timespec64(const struct timespec64 *ts,
805 struct __kernel_timespec __user *uts)
806 {
807 struct __kernel_timespec kts = {
808 .tv_sec = ts->tv_sec,
809 .tv_nsec = ts->tv_nsec
810 };
811
812 return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
813 }
814 EXPORT_SYMBOL_GPL(put_timespec64);
815
__get_old_timespec32(struct timespec64 * ts64,const struct old_timespec32 __user * cts)816 static int __get_old_timespec32(struct timespec64 *ts64,
817 const struct old_timespec32 __user *cts)
818 {
819 struct old_timespec32 ts;
820 int ret;
821
822 ret = copy_from_user(&ts, cts, sizeof(ts));
823 if (ret)
824 return -EFAULT;
825
826 ts64->tv_sec = ts.tv_sec;
827 ts64->tv_nsec = ts.tv_nsec;
828
829 return 0;
830 }
831
__put_old_timespec32(const struct timespec64 * ts64,struct old_timespec32 __user * cts)832 static int __put_old_timespec32(const struct timespec64 *ts64,
833 struct old_timespec32 __user *cts)
834 {
835 struct old_timespec32 ts = {
836 .tv_sec = ts64->tv_sec,
837 .tv_nsec = ts64->tv_nsec
838 };
839 return copy_to_user(cts, &ts, sizeof(ts)) ? -EFAULT : 0;
840 }
841
get_old_timespec32(struct timespec64 * ts,const void __user * uts)842 int get_old_timespec32(struct timespec64 *ts, const void __user *uts)
843 {
844 if (COMPAT_USE_64BIT_TIME)
845 return copy_from_user(ts, uts, sizeof(*ts)) ? -EFAULT : 0;
846 else
847 return __get_old_timespec32(ts, uts);
848 }
849 EXPORT_SYMBOL_GPL(get_old_timespec32);
850
put_old_timespec32(const struct timespec64 * ts,void __user * uts)851 int put_old_timespec32(const struct timespec64 *ts, void __user *uts)
852 {
853 if (COMPAT_USE_64BIT_TIME)
854 return copy_to_user(uts, ts, sizeof(*ts)) ? -EFAULT : 0;
855 else
856 return __put_old_timespec32(ts, uts);
857 }
858 EXPORT_SYMBOL_GPL(put_old_timespec32);
859
get_itimerspec64(struct itimerspec64 * it,const struct __kernel_itimerspec __user * uit)860 int get_itimerspec64(struct itimerspec64 *it,
861 const struct __kernel_itimerspec __user *uit)
862 {
863 int ret;
864
865 ret = get_timespec64(&it->it_interval, &uit->it_interval);
866 if (ret)
867 return ret;
868
869 ret = get_timespec64(&it->it_value, &uit->it_value);
870
871 return ret;
872 }
873 EXPORT_SYMBOL_GPL(get_itimerspec64);
874
put_itimerspec64(const struct itimerspec64 * it,struct __kernel_itimerspec __user * uit)875 int put_itimerspec64(const struct itimerspec64 *it,
876 struct __kernel_itimerspec __user *uit)
877 {
878 int ret;
879
880 ret = put_timespec64(&it->it_interval, &uit->it_interval);
881 if (ret)
882 return ret;
883
884 ret = put_timespec64(&it->it_value, &uit->it_value);
885
886 return ret;
887 }
888 EXPORT_SYMBOL_GPL(put_itimerspec64);
889
get_old_itimerspec32(struct itimerspec64 * its,const struct old_itimerspec32 __user * uits)890 int get_old_itimerspec32(struct itimerspec64 *its,
891 const struct old_itimerspec32 __user *uits)
892 {
893
894 if (__get_old_timespec32(&its->it_interval, &uits->it_interval) ||
895 __get_old_timespec32(&its->it_value, &uits->it_value))
896 return -EFAULT;
897 return 0;
898 }
899 EXPORT_SYMBOL_GPL(get_old_itimerspec32);
900
put_old_itimerspec32(const struct itimerspec64 * its,struct old_itimerspec32 __user * uits)901 int put_old_itimerspec32(const struct itimerspec64 *its,
902 struct old_itimerspec32 __user *uits)
903 {
904 if (__put_old_timespec32(&its->it_interval, &uits->it_interval) ||
905 __put_old_timespec32(&its->it_value, &uits->it_value))
906 return -EFAULT;
907 return 0;
908 }
909 EXPORT_SYMBOL_GPL(put_old_itimerspec32);
910