1 /*
2  *  linux/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  This file contains the interface functions for the various
7  *  time related system calls: time, stime, gettimeofday, settimeofday,
8  *			       adjtime
9  */
10 /*
11  * Modification history kernel/time.c
12  *
13  * 1993-09-02    Philip Gladstone
14  *      Created file with time related functions from sched/core.c and adjtimex()
15  * 1993-10-08    Torsten Duwe
16  *      adjtime interface update and CMOS clock write code
17  * 1995-08-13    Torsten Duwe
18  *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
19  * 1999-01-16    Ulrich Windl
20  *	Introduced error checking for many cases in adjtimex().
21  *	Updated NTP code according to technical memorandum Jan '96
22  *	"A Kernel Model for Precision Timekeeping" by Dave Mills
23  *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24  *	(Even though the technical memorandum forbids it)
25  * 2004-07-14	 Christoph Lameter
26  *	Added getnstimeofday to allow the posix timer functions to return
27  *	with nanosecond accuracy
28  */
29 
30 #include <linux/export.h>
31 #include <linux/kernel.h>
32 #include <linux/timex.h>
33 #include <linux/capability.h>
34 #include <linux/timekeeper_internal.h>
35 #include <linux/errno.h>
36 #include <linux/syscalls.h>
37 #include <linux/security.h>
38 #include <linux/fs.h>
39 #include <linux/math64.h>
40 #include <linux/ptrace.h>
41 
42 #include <linux/uaccess.h>
43 #include <linux/compat.h>
44 #include <asm/unistd.h>
45 
46 #include <generated/timeconst.h>
47 #include "timekeeping.h"
48 
49 /*
50  * The timezone where the local system is located.  Used as a default by some
51  * programs who obtain this value by using gettimeofday.
52  */
53 struct timezone sys_tz;
54 
55 EXPORT_SYMBOL(sys_tz);
56 
57 #ifdef __ARCH_WANT_SYS_TIME
58 
59 /*
60  * sys_time() can be implemented in user-level using
61  * sys_gettimeofday().  Is this for backwards compatibility?  If so,
62  * why not move it into the appropriate arch directory (for those
63  * architectures that need it).
64  */
SYSCALL_DEFINE1(time,time_t __user *,tloc)65 SYSCALL_DEFINE1(time, time_t __user *, tloc)
66 {
67 	time_t i = (time_t)ktime_get_real_seconds();
68 
69 	if (tloc) {
70 		if (put_user(i,tloc))
71 			return -EFAULT;
72 	}
73 	force_successful_syscall_return();
74 	return i;
75 }
76 
77 /*
78  * sys_stime() can be implemented in user-level using
79  * sys_settimeofday().  Is this for backwards compatibility?  If so,
80  * why not move it into the appropriate arch directory (for those
81  * architectures that need it).
82  */
83 
SYSCALL_DEFINE1(stime,time_t __user *,tptr)84 SYSCALL_DEFINE1(stime, time_t __user *, tptr)
85 {
86 	struct timespec64 tv;
87 	int err;
88 
89 	if (get_user(tv.tv_sec, tptr))
90 		return -EFAULT;
91 
92 	tv.tv_nsec = 0;
93 
94 	err = security_settime64(&tv, NULL);
95 	if (err)
96 		return err;
97 
98 	do_settimeofday64(&tv);
99 	return 0;
100 }
101 
102 #endif /* __ARCH_WANT_SYS_TIME */
103 
104 #ifdef CONFIG_COMPAT
105 #ifdef __ARCH_WANT_COMPAT_SYS_TIME
106 
107 /* compat_time_t is a 32 bit "long" and needs to get converted. */
COMPAT_SYSCALL_DEFINE1(time,compat_time_t __user *,tloc)108 COMPAT_SYSCALL_DEFINE1(time, compat_time_t __user *, tloc)
109 {
110 	compat_time_t i;
111 
112 	i = (compat_time_t)ktime_get_real_seconds();
113 
114 	if (tloc) {
115 		if (put_user(i,tloc))
116 			return -EFAULT;
117 	}
118 	force_successful_syscall_return();
119 	return i;
120 }
121 
COMPAT_SYSCALL_DEFINE1(stime,compat_time_t __user *,tptr)122 COMPAT_SYSCALL_DEFINE1(stime, compat_time_t __user *, tptr)
123 {
124 	struct timespec64 tv;
125 	int err;
126 
127 	if (get_user(tv.tv_sec, tptr))
128 		return -EFAULT;
129 
130 	tv.tv_nsec = 0;
131 
132 	err = security_settime64(&tv, NULL);
133 	if (err)
134 		return err;
135 
136 	do_settimeofday64(&tv);
137 	return 0;
138 }
139 
140 #endif /* __ARCH_WANT_COMPAT_SYS_TIME */
141 #endif
142 
SYSCALL_DEFINE2(gettimeofday,struct timeval __user *,tv,struct timezone __user *,tz)143 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
144 		struct timezone __user *, tz)
145 {
146 	if (likely(tv != NULL)) {
147 		struct timeval ktv;
148 		do_gettimeofday(&ktv);
149 		if (copy_to_user(tv, &ktv, sizeof(ktv)))
150 			return -EFAULT;
151 	}
152 	if (unlikely(tz != NULL)) {
153 		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
154 			return -EFAULT;
155 	}
156 	return 0;
157 }
158 
159 /*
160  * In case for some reason the CMOS clock has not already been running
161  * in UTC, but in some local time: The first time we set the timezone,
162  * we will warp the clock so that it is ticking UTC time instead of
163  * local time. Presumably, if someone is setting the timezone then we
164  * are running in an environment where the programs understand about
165  * timezones. This should be done at boot time in the /etc/rc script,
166  * as soon as possible, so that the clock can be set right. Otherwise,
167  * various programs will get confused when the clock gets warped.
168  */
169 
do_sys_settimeofday64(const struct timespec64 * tv,const struct timezone * tz)170 int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
171 {
172 	static int firsttime = 1;
173 	int error = 0;
174 
175 	if (tv && !timespec64_valid(tv))
176 		return -EINVAL;
177 
178 	error = security_settime64(tv, tz);
179 	if (error)
180 		return error;
181 
182 	if (tz) {
183 		/* Verify we're witin the +-15 hrs range */
184 		if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
185 			return -EINVAL;
186 
187 		sys_tz = *tz;
188 		update_vsyscall_tz();
189 		if (firsttime) {
190 			firsttime = 0;
191 			if (!tv)
192 				timekeeping_warp_clock();
193 		}
194 	}
195 	if (tv)
196 		return do_settimeofday64(tv);
197 	return 0;
198 }
199 
SYSCALL_DEFINE2(settimeofday,struct timeval __user *,tv,struct timezone __user *,tz)200 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
201 		struct timezone __user *, tz)
202 {
203 	struct timespec64 new_ts;
204 	struct timeval user_tv;
205 	struct timezone new_tz;
206 
207 	if (tv) {
208 		if (copy_from_user(&user_tv, tv, sizeof(*tv)))
209 			return -EFAULT;
210 
211 		if (!timeval_valid(&user_tv))
212 			return -EINVAL;
213 
214 		new_ts.tv_sec = user_tv.tv_sec;
215 		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
216 	}
217 	if (tz) {
218 		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
219 			return -EFAULT;
220 	}
221 
222 	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
223 }
224 
225 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(gettimeofday,struct compat_timeval __user *,tv,struct timezone __user *,tz)226 COMPAT_SYSCALL_DEFINE2(gettimeofday, struct compat_timeval __user *, tv,
227 		       struct timezone __user *, tz)
228 {
229 	if (tv) {
230 		struct timeval ktv;
231 
232 		do_gettimeofday(&ktv);
233 		if (compat_put_timeval(&ktv, tv))
234 			return -EFAULT;
235 	}
236 	if (tz) {
237 		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
238 			return -EFAULT;
239 	}
240 
241 	return 0;
242 }
243 
COMPAT_SYSCALL_DEFINE2(settimeofday,struct compat_timeval __user *,tv,struct timezone __user *,tz)244 COMPAT_SYSCALL_DEFINE2(settimeofday, struct compat_timeval __user *, tv,
245 		       struct timezone __user *, tz)
246 {
247 	struct timespec64 new_ts;
248 	struct timeval user_tv;
249 	struct timezone new_tz;
250 
251 	if (tv) {
252 		if (compat_get_timeval(&user_tv, tv))
253 			return -EFAULT;
254 		new_ts.tv_sec = user_tv.tv_sec;
255 		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
256 	}
257 	if (tz) {
258 		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
259 			return -EFAULT;
260 	}
261 
262 	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
263 }
264 #endif
265 
SYSCALL_DEFINE1(adjtimex,struct timex __user *,txc_p)266 SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
267 {
268 	struct timex txc;		/* Local copy of parameter */
269 	int ret;
270 
271 	/* Copy the user data space into the kernel copy
272 	 * structure. But bear in mind that the structures
273 	 * may change
274 	 */
275 	if (copy_from_user(&txc, txc_p, sizeof(struct timex)))
276 		return -EFAULT;
277 	ret = do_adjtimex(&txc);
278 	return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
279 }
280 
281 #ifdef CONFIG_COMPAT
282 
COMPAT_SYSCALL_DEFINE1(adjtimex,struct compat_timex __user *,utp)283 COMPAT_SYSCALL_DEFINE1(adjtimex, struct compat_timex __user *, utp)
284 {
285 	struct timex txc;
286 	int err, ret;
287 
288 	err = compat_get_timex(&txc, utp);
289 	if (err)
290 		return err;
291 
292 	ret = do_adjtimex(&txc);
293 
294 	err = compat_put_timex(utp, &txc);
295 	if (err)
296 		return err;
297 
298 	return ret;
299 }
300 #endif
301 
302 /*
303  * Convert jiffies to milliseconds and back.
304  *
305  * Avoid unnecessary multiplications/divisions in the
306  * two most common HZ cases:
307  */
jiffies_to_msecs(const unsigned long j)308 unsigned int jiffies_to_msecs(const unsigned long j)
309 {
310 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
311 	return (MSEC_PER_SEC / HZ) * j;
312 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
313 	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
314 #else
315 # if BITS_PER_LONG == 32
316 	return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >>
317 	       HZ_TO_MSEC_SHR32;
318 # else
319 	return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
320 # endif
321 #endif
322 }
323 EXPORT_SYMBOL(jiffies_to_msecs);
324 
jiffies_to_usecs(const unsigned long j)325 unsigned int jiffies_to_usecs(const unsigned long j)
326 {
327 	/*
328 	 * Hz usually doesn't go much further MSEC_PER_SEC.
329 	 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
330 	 */
331 	BUILD_BUG_ON(HZ > USEC_PER_SEC);
332 
333 #if !(USEC_PER_SEC % HZ)
334 	return (USEC_PER_SEC / HZ) * j;
335 #else
336 # if BITS_PER_LONG == 32
337 	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
338 # else
339 	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
340 # endif
341 #endif
342 }
343 EXPORT_SYMBOL(jiffies_to_usecs);
344 
345 /**
346  * timespec_trunc - Truncate timespec to a granularity
347  * @t: Timespec
348  * @gran: Granularity in ns.
349  *
350  * Truncate a timespec to a granularity. Always rounds down. gran must
351  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
352  */
timespec_trunc(struct timespec t,unsigned gran)353 struct timespec timespec_trunc(struct timespec t, unsigned gran)
354 {
355 	/* Avoid division in the common cases 1 ns and 1 s. */
356 	if (gran == 1) {
357 		/* nothing */
358 	} else if (gran == NSEC_PER_SEC) {
359 		t.tv_nsec = 0;
360 	} else if (gran > 1 && gran < NSEC_PER_SEC) {
361 		t.tv_nsec -= t.tv_nsec % gran;
362 	} else {
363 		WARN(1, "illegal file time granularity: %u", gran);
364 	}
365 	return t;
366 }
367 EXPORT_SYMBOL(timespec_trunc);
368 
369 /*
370  * mktime64 - Converts date to seconds.
371  * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
372  * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
373  * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
374  *
375  * [For the Julian calendar (which was used in Russia before 1917,
376  * Britain & colonies before 1752, anywhere else before 1582,
377  * and is still in use by some communities) leave out the
378  * -year/100+year/400 terms, and add 10.]
379  *
380  * This algorithm was first published by Gauss (I think).
381  *
382  * A leap second can be indicated by calling this function with sec as
383  * 60 (allowable under ISO 8601).  The leap second is treated the same
384  * as the following second since they don't exist in UNIX time.
385  *
386  * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
387  * tomorrow - (allowable under ISO 8601) is supported.
388  */
mktime64(const unsigned int year0,const unsigned int mon0,const unsigned int day,const unsigned int hour,const unsigned int min,const unsigned int sec)389 time64_t mktime64(const unsigned int year0, const unsigned int mon0,
390 		const unsigned int day, const unsigned int hour,
391 		const unsigned int min, const unsigned int sec)
392 {
393 	unsigned int mon = mon0, year = year0;
394 
395 	/* 1..12 -> 11,12,1..10 */
396 	if (0 >= (int) (mon -= 2)) {
397 		mon += 12;	/* Puts Feb last since it has leap day */
398 		year -= 1;
399 	}
400 
401 	return ((((time64_t)
402 		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
403 		  year*365 - 719499
404 	    )*24 + hour /* now have hours - midnight tomorrow handled here */
405 	  )*60 + min /* now have minutes */
406 	)*60 + sec; /* finally seconds */
407 }
408 EXPORT_SYMBOL(mktime64);
409 
410 /**
411  * set_normalized_timespec - set timespec sec and nsec parts and normalize
412  *
413  * @ts:		pointer to timespec variable to be set
414  * @sec:	seconds to set
415  * @nsec:	nanoseconds to set
416  *
417  * Set seconds and nanoseconds field of a timespec variable and
418  * normalize to the timespec storage format
419  *
420  * Note: The tv_nsec part is always in the range of
421  *	0 <= tv_nsec < NSEC_PER_SEC
422  * For negative values only the tv_sec field is negative !
423  */
set_normalized_timespec(struct timespec * ts,time_t sec,s64 nsec)424 void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
425 {
426 	while (nsec >= NSEC_PER_SEC) {
427 		/*
428 		 * The following asm() prevents the compiler from
429 		 * optimising this loop into a modulo operation. See
430 		 * also __iter_div_u64_rem() in include/linux/time.h
431 		 */
432 		asm("" : "+rm"(nsec));
433 		nsec -= NSEC_PER_SEC;
434 		++sec;
435 	}
436 	while (nsec < 0) {
437 		asm("" : "+rm"(nsec));
438 		nsec += NSEC_PER_SEC;
439 		--sec;
440 	}
441 	ts->tv_sec = sec;
442 	ts->tv_nsec = nsec;
443 }
444 EXPORT_SYMBOL(set_normalized_timespec);
445 
446 /**
447  * ns_to_timespec - Convert nanoseconds to timespec
448  * @nsec:       the nanoseconds value to be converted
449  *
450  * Returns the timespec representation of the nsec parameter.
451  */
ns_to_timespec(const s64 nsec)452 struct timespec ns_to_timespec(const s64 nsec)
453 {
454 	struct timespec ts;
455 	s32 rem;
456 
457 	if (!nsec)
458 		return (struct timespec) {0, 0};
459 
460 	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
461 	if (unlikely(rem < 0)) {
462 		ts.tv_sec--;
463 		rem += NSEC_PER_SEC;
464 	}
465 	ts.tv_nsec = rem;
466 
467 	return ts;
468 }
469 EXPORT_SYMBOL(ns_to_timespec);
470 
471 /**
472  * ns_to_timeval - Convert nanoseconds to timeval
473  * @nsec:       the nanoseconds value to be converted
474  *
475  * Returns the timeval representation of the nsec parameter.
476  */
ns_to_timeval(const s64 nsec)477 struct timeval ns_to_timeval(const s64 nsec)
478 {
479 	struct timespec ts = ns_to_timespec(nsec);
480 	struct timeval tv;
481 
482 	tv.tv_sec = ts.tv_sec;
483 	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
484 
485 	return tv;
486 }
487 EXPORT_SYMBOL(ns_to_timeval);
488 
ns_to_kernel_old_timeval(const s64 nsec)489 struct __kernel_old_timeval ns_to_kernel_old_timeval(const s64 nsec)
490 {
491 	struct timespec64 ts = ns_to_timespec64(nsec);
492 	struct __kernel_old_timeval tv;
493 
494 	tv.tv_sec = ts.tv_sec;
495 	tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000;
496 
497 	return tv;
498 }
499 EXPORT_SYMBOL(ns_to_kernel_old_timeval);
500 
501 /**
502  * set_normalized_timespec - set timespec sec and nsec parts and normalize
503  *
504  * @ts:		pointer to timespec variable to be set
505  * @sec:	seconds to set
506  * @nsec:	nanoseconds to set
507  *
508  * Set seconds and nanoseconds field of a timespec variable and
509  * normalize to the timespec storage format
510  *
511  * Note: The tv_nsec part is always in the range of
512  *	0 <= tv_nsec < NSEC_PER_SEC
513  * For negative values only the tv_sec field is negative !
514  */
set_normalized_timespec64(struct timespec64 * ts,time64_t sec,s64 nsec)515 void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
516 {
517 	while (nsec >= NSEC_PER_SEC) {
518 		/*
519 		 * The following asm() prevents the compiler from
520 		 * optimising this loop into a modulo operation. See
521 		 * also __iter_div_u64_rem() in include/linux/time.h
522 		 */
523 		asm("" : "+rm"(nsec));
524 		nsec -= NSEC_PER_SEC;
525 		++sec;
526 	}
527 	while (nsec < 0) {
528 		asm("" : "+rm"(nsec));
529 		nsec += NSEC_PER_SEC;
530 		--sec;
531 	}
532 	ts->tv_sec = sec;
533 	ts->tv_nsec = nsec;
534 }
535 EXPORT_SYMBOL(set_normalized_timespec64);
536 
537 /**
538  * ns_to_timespec64 - Convert nanoseconds to timespec64
539  * @nsec:       the nanoseconds value to be converted
540  *
541  * Returns the timespec64 representation of the nsec parameter.
542  */
ns_to_timespec64(const s64 nsec)543 struct timespec64 ns_to_timespec64(const s64 nsec)
544 {
545 	struct timespec64 ts;
546 	s32 rem;
547 
548 	if (!nsec)
549 		return (struct timespec64) {0, 0};
550 
551 	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
552 	if (unlikely(rem < 0)) {
553 		ts.tv_sec--;
554 		rem += NSEC_PER_SEC;
555 	}
556 	ts.tv_nsec = rem;
557 
558 	return ts;
559 }
560 EXPORT_SYMBOL(ns_to_timespec64);
561 
562 /**
563  * msecs_to_jiffies: - convert milliseconds to jiffies
564  * @m:	time in milliseconds
565  *
566  * conversion is done as follows:
567  *
568  * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
569  *
570  * - 'too large' values [that would result in larger than
571  *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
572  *
573  * - all other values are converted to jiffies by either multiplying
574  *   the input value by a factor or dividing it with a factor and
575  *   handling any 32-bit overflows.
576  *   for the details see __msecs_to_jiffies()
577  *
578  * msecs_to_jiffies() checks for the passed in value being a constant
579  * via __builtin_constant_p() allowing gcc to eliminate most of the
580  * code, __msecs_to_jiffies() is called if the value passed does not
581  * allow constant folding and the actual conversion must be done at
582  * runtime.
583  * the _msecs_to_jiffies helpers are the HZ dependent conversion
584  * routines found in include/linux/jiffies.h
585  */
__msecs_to_jiffies(const unsigned int m)586 unsigned long __msecs_to_jiffies(const unsigned int m)
587 {
588 	/*
589 	 * Negative value, means infinite timeout:
590 	 */
591 	if ((int)m < 0)
592 		return MAX_JIFFY_OFFSET;
593 	return _msecs_to_jiffies(m);
594 }
595 EXPORT_SYMBOL(__msecs_to_jiffies);
596 
__usecs_to_jiffies(const unsigned int u)597 unsigned long __usecs_to_jiffies(const unsigned int u)
598 {
599 	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
600 		return MAX_JIFFY_OFFSET;
601 	return _usecs_to_jiffies(u);
602 }
603 EXPORT_SYMBOL(__usecs_to_jiffies);
604 
605 /*
606  * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
607  * that a remainder subtract here would not do the right thing as the
608  * resolution values don't fall on second boundries.  I.e. the line:
609  * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
610  * Note that due to the small error in the multiplier here, this
611  * rounding is incorrect for sufficiently large values of tv_nsec, but
612  * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
613  * OK.
614  *
615  * Rather, we just shift the bits off the right.
616  *
617  * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
618  * value to a scaled second value.
619  */
620 static unsigned long
__timespec64_to_jiffies(u64 sec,long nsec)621 __timespec64_to_jiffies(u64 sec, long nsec)
622 {
623 	nsec = nsec + TICK_NSEC - 1;
624 
625 	if (sec >= MAX_SEC_IN_JIFFIES){
626 		sec = MAX_SEC_IN_JIFFIES;
627 		nsec = 0;
628 	}
629 	return ((sec * SEC_CONVERSION) +
630 		(((u64)nsec * NSEC_CONVERSION) >>
631 		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
632 
633 }
634 
635 static unsigned long
__timespec_to_jiffies(unsigned long sec,long nsec)636 __timespec_to_jiffies(unsigned long sec, long nsec)
637 {
638 	return __timespec64_to_jiffies((u64)sec, nsec);
639 }
640 
641 unsigned long
timespec64_to_jiffies(const struct timespec64 * value)642 timespec64_to_jiffies(const struct timespec64 *value)
643 {
644 	return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
645 }
646 EXPORT_SYMBOL(timespec64_to_jiffies);
647 
648 void
jiffies_to_timespec64(const unsigned long jiffies,struct timespec64 * value)649 jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
650 {
651 	/*
652 	 * Convert jiffies to nanoseconds and separate with
653 	 * one divide.
654 	 */
655 	u32 rem;
656 	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
657 				    NSEC_PER_SEC, &rem);
658 	value->tv_nsec = rem;
659 }
660 EXPORT_SYMBOL(jiffies_to_timespec64);
661 
662 /*
663  * We could use a similar algorithm to timespec_to_jiffies (with a
664  * different multiplier for usec instead of nsec). But this has a
665  * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
666  * usec value, since it's not necessarily integral.
667  *
668  * We could instead round in the intermediate scaled representation
669  * (i.e. in units of 1/2^(large scale) jiffies) but that's also
670  * perilous: the scaling introduces a small positive error, which
671  * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
672  * units to the intermediate before shifting) leads to accidental
673  * overflow and overestimates.
674  *
675  * At the cost of one additional multiplication by a constant, just
676  * use the timespec implementation.
677  */
678 unsigned long
timeval_to_jiffies(const struct timeval * value)679 timeval_to_jiffies(const struct timeval *value)
680 {
681 	return __timespec_to_jiffies(value->tv_sec,
682 				     value->tv_usec * NSEC_PER_USEC);
683 }
684 EXPORT_SYMBOL(timeval_to_jiffies);
685 
jiffies_to_timeval(const unsigned long jiffies,struct timeval * value)686 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
687 {
688 	/*
689 	 * Convert jiffies to nanoseconds and separate with
690 	 * one divide.
691 	 */
692 	u32 rem;
693 
694 	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
695 				    NSEC_PER_SEC, &rem);
696 	value->tv_usec = rem / NSEC_PER_USEC;
697 }
698 EXPORT_SYMBOL(jiffies_to_timeval);
699 
700 /*
701  * Convert jiffies/jiffies_64 to clock_t and back.
702  */
jiffies_to_clock_t(unsigned long x)703 clock_t jiffies_to_clock_t(unsigned long x)
704 {
705 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
706 # if HZ < USER_HZ
707 	return x * (USER_HZ / HZ);
708 # else
709 	return x / (HZ / USER_HZ);
710 # endif
711 #else
712 	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
713 #endif
714 }
715 EXPORT_SYMBOL(jiffies_to_clock_t);
716 
clock_t_to_jiffies(unsigned long x)717 unsigned long clock_t_to_jiffies(unsigned long x)
718 {
719 #if (HZ % USER_HZ)==0
720 	if (x >= ~0UL / (HZ / USER_HZ))
721 		return ~0UL;
722 	return x * (HZ / USER_HZ);
723 #else
724 	/* Don't worry about loss of precision here .. */
725 	if (x >= ~0UL / HZ * USER_HZ)
726 		return ~0UL;
727 
728 	/* .. but do try to contain it here */
729 	return div_u64((u64)x * HZ, USER_HZ);
730 #endif
731 }
732 EXPORT_SYMBOL(clock_t_to_jiffies);
733 
jiffies_64_to_clock_t(u64 x)734 u64 jiffies_64_to_clock_t(u64 x)
735 {
736 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
737 # if HZ < USER_HZ
738 	x = div_u64(x * USER_HZ, HZ);
739 # elif HZ > USER_HZ
740 	x = div_u64(x, HZ / USER_HZ);
741 # else
742 	/* Nothing to do */
743 # endif
744 #else
745 	/*
746 	 * There are better ways that don't overflow early,
747 	 * but even this doesn't overflow in hundreds of years
748 	 * in 64 bits, so..
749 	 */
750 	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
751 #endif
752 	return x;
753 }
754 EXPORT_SYMBOL(jiffies_64_to_clock_t);
755 
nsec_to_clock_t(u64 x)756 u64 nsec_to_clock_t(u64 x)
757 {
758 #if (NSEC_PER_SEC % USER_HZ) == 0
759 	return div_u64(x, NSEC_PER_SEC / USER_HZ);
760 #elif (USER_HZ % 512) == 0
761 	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
762 #else
763 	/*
764          * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
765          * overflow after 64.99 years.
766          * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
767          */
768 	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
769 #endif
770 }
771 
jiffies64_to_nsecs(u64 j)772 u64 jiffies64_to_nsecs(u64 j)
773 {
774 #if !(NSEC_PER_SEC % HZ)
775 	return (NSEC_PER_SEC / HZ) * j;
776 # else
777 	return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
778 #endif
779 }
780 EXPORT_SYMBOL(jiffies64_to_nsecs);
781 
782 /**
783  * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
784  *
785  * @n:	nsecs in u64
786  *
787  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
788  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
789  * for scheduler, not for use in device drivers to calculate timeout value.
790  *
791  * note:
792  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
793  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
794  */
nsecs_to_jiffies64(u64 n)795 u64 nsecs_to_jiffies64(u64 n)
796 {
797 #if (NSEC_PER_SEC % HZ) == 0
798 	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
799 	return div_u64(n, NSEC_PER_SEC / HZ);
800 #elif (HZ % 512) == 0
801 	/* overflow after 292 years if HZ = 1024 */
802 	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
803 #else
804 	/*
805 	 * Generic case - optimized for cases where HZ is a multiple of 3.
806 	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
807 	 */
808 	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
809 #endif
810 }
811 EXPORT_SYMBOL(nsecs_to_jiffies64);
812 
813 /**
814  * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
815  *
816  * @n:	nsecs in u64
817  *
818  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
819  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
820  * for scheduler, not for use in device drivers to calculate timeout value.
821  *
822  * note:
823  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
824  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
825  */
nsecs_to_jiffies(u64 n)826 unsigned long nsecs_to_jiffies(u64 n)
827 {
828 	return (unsigned long)nsecs_to_jiffies64(n);
829 }
830 EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
831 
832 /*
833  * Add two timespec64 values and do a safety check for overflow.
834  * It's assumed that both values are valid (>= 0).
835  * And, each timespec64 is in normalized form.
836  */
timespec64_add_safe(const struct timespec64 lhs,const struct timespec64 rhs)837 struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
838 				const struct timespec64 rhs)
839 {
840 	struct timespec64 res;
841 
842 	set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
843 			lhs.tv_nsec + rhs.tv_nsec);
844 
845 	if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
846 		res.tv_sec = TIME64_MAX;
847 		res.tv_nsec = 0;
848 	}
849 
850 	return res;
851 }
852 
get_timespec64(struct timespec64 * ts,const struct __kernel_timespec __user * uts)853 int get_timespec64(struct timespec64 *ts,
854 		   const struct __kernel_timespec __user *uts)
855 {
856 	struct __kernel_timespec kts;
857 	int ret;
858 
859 	ret = copy_from_user(&kts, uts, sizeof(kts));
860 	if (ret)
861 		return -EFAULT;
862 
863 	ts->tv_sec = kts.tv_sec;
864 
865 	/* Zero out the padding for 32 bit systems or in compat mode */
866 	if (IS_ENABLED(CONFIG_64BIT_TIME) && (!IS_ENABLED(CONFIG_64BIT) || in_compat_syscall()))
867 		kts.tv_nsec &= 0xFFFFFFFFUL;
868 
869 	ts->tv_nsec = kts.tv_nsec;
870 
871 	return 0;
872 }
873 EXPORT_SYMBOL_GPL(get_timespec64);
874 
put_timespec64(const struct timespec64 * ts,struct __kernel_timespec __user * uts)875 int put_timespec64(const struct timespec64 *ts,
876 		   struct __kernel_timespec __user *uts)
877 {
878 	struct __kernel_timespec kts = {
879 		.tv_sec = ts->tv_sec,
880 		.tv_nsec = ts->tv_nsec
881 	};
882 
883 	return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
884 }
885 EXPORT_SYMBOL_GPL(put_timespec64);
886 
__compat_get_timespec64(struct timespec64 * ts64,const struct compat_timespec __user * cts)887 int __compat_get_timespec64(struct timespec64 *ts64,
888 				   const struct compat_timespec __user *cts)
889 {
890 	struct compat_timespec ts;
891 	int ret;
892 
893 	ret = copy_from_user(&ts, cts, sizeof(ts));
894 	if (ret)
895 		return -EFAULT;
896 
897 	ts64->tv_sec = ts.tv_sec;
898 	ts64->tv_nsec = ts.tv_nsec;
899 
900 	return 0;
901 }
902 
__compat_put_timespec64(const struct timespec64 * ts64,struct compat_timespec __user * cts)903 int __compat_put_timespec64(const struct timespec64 *ts64,
904 				   struct compat_timespec __user *cts)
905 {
906 	struct compat_timespec ts = {
907 		.tv_sec = ts64->tv_sec,
908 		.tv_nsec = ts64->tv_nsec
909 	};
910 	return copy_to_user(cts, &ts, sizeof(ts)) ? -EFAULT : 0;
911 }
912 
compat_get_timespec64(struct timespec64 * ts,const void __user * uts)913 int compat_get_timespec64(struct timespec64 *ts, const void __user *uts)
914 {
915 	if (COMPAT_USE_64BIT_TIME)
916 		return copy_from_user(ts, uts, sizeof(*ts)) ? -EFAULT : 0;
917 	else
918 		return __compat_get_timespec64(ts, uts);
919 }
920 EXPORT_SYMBOL_GPL(compat_get_timespec64);
921 
compat_put_timespec64(const struct timespec64 * ts,void __user * uts)922 int compat_put_timespec64(const struct timespec64 *ts, void __user *uts)
923 {
924 	if (COMPAT_USE_64BIT_TIME)
925 		return copy_to_user(uts, ts, sizeof(*ts)) ? -EFAULT : 0;
926 	else
927 		return __compat_put_timespec64(ts, uts);
928 }
929 EXPORT_SYMBOL_GPL(compat_put_timespec64);
930 
get_itimerspec64(struct itimerspec64 * it,const struct __kernel_itimerspec __user * uit)931 int get_itimerspec64(struct itimerspec64 *it,
932 			const struct __kernel_itimerspec __user *uit)
933 {
934 	int ret;
935 
936 	ret = get_timespec64(&it->it_interval, &uit->it_interval);
937 	if (ret)
938 		return ret;
939 
940 	ret = get_timespec64(&it->it_value, &uit->it_value);
941 
942 	return ret;
943 }
944 EXPORT_SYMBOL_GPL(get_itimerspec64);
945 
put_itimerspec64(const struct itimerspec64 * it,struct __kernel_itimerspec __user * uit)946 int put_itimerspec64(const struct itimerspec64 *it,
947 			struct __kernel_itimerspec __user *uit)
948 {
949 	int ret;
950 
951 	ret = put_timespec64(&it->it_interval, &uit->it_interval);
952 	if (ret)
953 		return ret;
954 
955 	ret = put_timespec64(&it->it_value, &uit->it_value);
956 
957 	return ret;
958 }
959 EXPORT_SYMBOL_GPL(put_itimerspec64);
960 
get_compat_itimerspec64(struct itimerspec64 * its,const struct compat_itimerspec __user * uits)961 int get_compat_itimerspec64(struct itimerspec64 *its,
962 			const struct compat_itimerspec __user *uits)
963 {
964 
965 	if (__compat_get_timespec64(&its->it_interval, &uits->it_interval) ||
966 	    __compat_get_timespec64(&its->it_value, &uits->it_value))
967 		return -EFAULT;
968 	return 0;
969 }
970 EXPORT_SYMBOL_GPL(get_compat_itimerspec64);
971 
put_compat_itimerspec64(const struct itimerspec64 * its,struct compat_itimerspec __user * uits)972 int put_compat_itimerspec64(const struct itimerspec64 *its,
973 			struct compat_itimerspec __user *uits)
974 {
975 	if (__compat_put_timespec64(&its->it_interval, &uits->it_interval) ||
976 	    __compat_put_timespec64(&its->it_value, &uits->it_value))
977 		return -EFAULT;
978 	return 0;
979 }
980 EXPORT_SYMBOL_GPL(put_compat_itimerspec64);
981