1 /*
2 * linux/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
10 /*
11 * Modification history kernel/time.c
12 *
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched/core.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
28 */
29
30 #include <linux/export.h>
31 #include <linux/kernel.h>
32 #include <linux/timex.h>
33 #include <linux/capability.h>
34 #include <linux/timekeeper_internal.h>
35 #include <linux/errno.h>
36 #include <linux/syscalls.h>
37 #include <linux/security.h>
38 #include <linux/fs.h>
39 #include <linux/math64.h>
40 #include <linux/ptrace.h>
41
42 #include <linux/uaccess.h>
43 #include <linux/compat.h>
44 #include <asm/unistd.h>
45
46 #include <generated/timeconst.h>
47 #include "timekeeping.h"
48
49 /*
50 * The timezone where the local system is located. Used as a default by some
51 * programs who obtain this value by using gettimeofday.
52 */
53 struct timezone sys_tz;
54
55 EXPORT_SYMBOL(sys_tz);
56
57 #ifdef __ARCH_WANT_SYS_TIME
58
59 /*
60 * sys_time() can be implemented in user-level using
61 * sys_gettimeofday(). Is this for backwards compatibility? If so,
62 * why not move it into the appropriate arch directory (for those
63 * architectures that need it).
64 */
SYSCALL_DEFINE1(time,time_t __user *,tloc)65 SYSCALL_DEFINE1(time, time_t __user *, tloc)
66 {
67 time_t i = (time_t)ktime_get_real_seconds();
68
69 if (tloc) {
70 if (put_user(i,tloc))
71 return -EFAULT;
72 }
73 force_successful_syscall_return();
74 return i;
75 }
76
77 /*
78 * sys_stime() can be implemented in user-level using
79 * sys_settimeofday(). Is this for backwards compatibility? If so,
80 * why not move it into the appropriate arch directory (for those
81 * architectures that need it).
82 */
83
SYSCALL_DEFINE1(stime,time_t __user *,tptr)84 SYSCALL_DEFINE1(stime, time_t __user *, tptr)
85 {
86 struct timespec64 tv;
87 int err;
88
89 if (get_user(tv.tv_sec, tptr))
90 return -EFAULT;
91
92 tv.tv_nsec = 0;
93
94 err = security_settime64(&tv, NULL);
95 if (err)
96 return err;
97
98 do_settimeofday64(&tv);
99 return 0;
100 }
101
102 #endif /* __ARCH_WANT_SYS_TIME */
103
104 #ifdef CONFIG_COMPAT
105 #ifdef __ARCH_WANT_COMPAT_SYS_TIME
106
107 /* compat_time_t is a 32 bit "long" and needs to get converted. */
COMPAT_SYSCALL_DEFINE1(time,compat_time_t __user *,tloc)108 COMPAT_SYSCALL_DEFINE1(time, compat_time_t __user *, tloc)
109 {
110 compat_time_t i;
111
112 i = (compat_time_t)ktime_get_real_seconds();
113
114 if (tloc) {
115 if (put_user(i,tloc))
116 return -EFAULT;
117 }
118 force_successful_syscall_return();
119 return i;
120 }
121
COMPAT_SYSCALL_DEFINE1(stime,compat_time_t __user *,tptr)122 COMPAT_SYSCALL_DEFINE1(stime, compat_time_t __user *, tptr)
123 {
124 struct timespec64 tv;
125 int err;
126
127 if (get_user(tv.tv_sec, tptr))
128 return -EFAULT;
129
130 tv.tv_nsec = 0;
131
132 err = security_settime64(&tv, NULL);
133 if (err)
134 return err;
135
136 do_settimeofday64(&tv);
137 return 0;
138 }
139
140 #endif /* __ARCH_WANT_COMPAT_SYS_TIME */
141 #endif
142
SYSCALL_DEFINE2(gettimeofday,struct timeval __user *,tv,struct timezone __user *,tz)143 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
144 struct timezone __user *, tz)
145 {
146 if (likely(tv != NULL)) {
147 struct timeval ktv;
148 do_gettimeofday(&ktv);
149 if (copy_to_user(tv, &ktv, sizeof(ktv)))
150 return -EFAULT;
151 }
152 if (unlikely(tz != NULL)) {
153 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
154 return -EFAULT;
155 }
156 return 0;
157 }
158
159 /*
160 * In case for some reason the CMOS clock has not already been running
161 * in UTC, but in some local time: The first time we set the timezone,
162 * we will warp the clock so that it is ticking UTC time instead of
163 * local time. Presumably, if someone is setting the timezone then we
164 * are running in an environment where the programs understand about
165 * timezones. This should be done at boot time in the /etc/rc script,
166 * as soon as possible, so that the clock can be set right. Otherwise,
167 * various programs will get confused when the clock gets warped.
168 */
169
do_sys_settimeofday64(const struct timespec64 * tv,const struct timezone * tz)170 int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
171 {
172 static int firsttime = 1;
173 int error = 0;
174
175 if (tv && !timespec64_valid(tv))
176 return -EINVAL;
177
178 error = security_settime64(tv, tz);
179 if (error)
180 return error;
181
182 if (tz) {
183 /* Verify we're witin the +-15 hrs range */
184 if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
185 return -EINVAL;
186
187 sys_tz = *tz;
188 update_vsyscall_tz();
189 if (firsttime) {
190 firsttime = 0;
191 if (!tv)
192 timekeeping_warp_clock();
193 }
194 }
195 if (tv)
196 return do_settimeofday64(tv);
197 return 0;
198 }
199
SYSCALL_DEFINE2(settimeofday,struct timeval __user *,tv,struct timezone __user *,tz)200 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
201 struct timezone __user *, tz)
202 {
203 struct timespec64 new_ts;
204 struct timeval user_tv;
205 struct timezone new_tz;
206
207 if (tv) {
208 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
209 return -EFAULT;
210
211 if (!timeval_valid(&user_tv))
212 return -EINVAL;
213
214 new_ts.tv_sec = user_tv.tv_sec;
215 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
216 }
217 if (tz) {
218 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
219 return -EFAULT;
220 }
221
222 return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
223 }
224
225 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(gettimeofday,struct compat_timeval __user *,tv,struct timezone __user *,tz)226 COMPAT_SYSCALL_DEFINE2(gettimeofday, struct compat_timeval __user *, tv,
227 struct timezone __user *, tz)
228 {
229 if (tv) {
230 struct timeval ktv;
231
232 do_gettimeofday(&ktv);
233 if (compat_put_timeval(&ktv, tv))
234 return -EFAULT;
235 }
236 if (tz) {
237 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
238 return -EFAULT;
239 }
240
241 return 0;
242 }
243
COMPAT_SYSCALL_DEFINE2(settimeofday,struct compat_timeval __user *,tv,struct timezone __user *,tz)244 COMPAT_SYSCALL_DEFINE2(settimeofday, struct compat_timeval __user *, tv,
245 struct timezone __user *, tz)
246 {
247 struct timespec64 new_ts;
248 struct timeval user_tv;
249 struct timezone new_tz;
250
251 if (tv) {
252 if (compat_get_timeval(&user_tv, tv))
253 return -EFAULT;
254 new_ts.tv_sec = user_tv.tv_sec;
255 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
256 }
257 if (tz) {
258 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
259 return -EFAULT;
260 }
261
262 return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
263 }
264 #endif
265
SYSCALL_DEFINE1(adjtimex,struct timex __user *,txc_p)266 SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
267 {
268 struct timex txc; /* Local copy of parameter */
269 int ret;
270
271 /* Copy the user data space into the kernel copy
272 * structure. But bear in mind that the structures
273 * may change
274 */
275 if (copy_from_user(&txc, txc_p, sizeof(struct timex)))
276 return -EFAULT;
277 ret = do_adjtimex(&txc);
278 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
279 }
280
281 #ifdef CONFIG_COMPAT
282
COMPAT_SYSCALL_DEFINE1(adjtimex,struct compat_timex __user *,utp)283 COMPAT_SYSCALL_DEFINE1(adjtimex, struct compat_timex __user *, utp)
284 {
285 struct timex txc;
286 int err, ret;
287
288 err = compat_get_timex(&txc, utp);
289 if (err)
290 return err;
291
292 ret = do_adjtimex(&txc);
293
294 err = compat_put_timex(utp, &txc);
295 if (err)
296 return err;
297
298 return ret;
299 }
300 #endif
301
302 /*
303 * Convert jiffies to milliseconds and back.
304 *
305 * Avoid unnecessary multiplications/divisions in the
306 * two most common HZ cases:
307 */
jiffies_to_msecs(const unsigned long j)308 unsigned int jiffies_to_msecs(const unsigned long j)
309 {
310 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
311 return (MSEC_PER_SEC / HZ) * j;
312 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
313 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
314 #else
315 # if BITS_PER_LONG == 32
316 return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >>
317 HZ_TO_MSEC_SHR32;
318 # else
319 return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
320 # endif
321 #endif
322 }
323 EXPORT_SYMBOL(jiffies_to_msecs);
324
jiffies_to_usecs(const unsigned long j)325 unsigned int jiffies_to_usecs(const unsigned long j)
326 {
327 /*
328 * Hz usually doesn't go much further MSEC_PER_SEC.
329 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
330 */
331 BUILD_BUG_ON(HZ > USEC_PER_SEC);
332
333 #if !(USEC_PER_SEC % HZ)
334 return (USEC_PER_SEC / HZ) * j;
335 #else
336 # if BITS_PER_LONG == 32
337 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
338 # else
339 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
340 # endif
341 #endif
342 }
343 EXPORT_SYMBOL(jiffies_to_usecs);
344
345 /**
346 * timespec_trunc - Truncate timespec to a granularity
347 * @t: Timespec
348 * @gran: Granularity in ns.
349 *
350 * Truncate a timespec to a granularity. Always rounds down. gran must
351 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
352 */
timespec_trunc(struct timespec t,unsigned gran)353 struct timespec timespec_trunc(struct timespec t, unsigned gran)
354 {
355 /* Avoid division in the common cases 1 ns and 1 s. */
356 if (gran == 1) {
357 /* nothing */
358 } else if (gran == NSEC_PER_SEC) {
359 t.tv_nsec = 0;
360 } else if (gran > 1 && gran < NSEC_PER_SEC) {
361 t.tv_nsec -= t.tv_nsec % gran;
362 } else {
363 WARN(1, "illegal file time granularity: %u", gran);
364 }
365 return t;
366 }
367 EXPORT_SYMBOL(timespec_trunc);
368
369 /*
370 * mktime64 - Converts date to seconds.
371 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
372 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
373 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
374 *
375 * [For the Julian calendar (which was used in Russia before 1917,
376 * Britain & colonies before 1752, anywhere else before 1582,
377 * and is still in use by some communities) leave out the
378 * -year/100+year/400 terms, and add 10.]
379 *
380 * This algorithm was first published by Gauss (I think).
381 *
382 * A leap second can be indicated by calling this function with sec as
383 * 60 (allowable under ISO 8601). The leap second is treated the same
384 * as the following second since they don't exist in UNIX time.
385 *
386 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
387 * tomorrow - (allowable under ISO 8601) is supported.
388 */
mktime64(const unsigned int year0,const unsigned int mon0,const unsigned int day,const unsigned int hour,const unsigned int min,const unsigned int sec)389 time64_t mktime64(const unsigned int year0, const unsigned int mon0,
390 const unsigned int day, const unsigned int hour,
391 const unsigned int min, const unsigned int sec)
392 {
393 unsigned int mon = mon0, year = year0;
394
395 /* 1..12 -> 11,12,1..10 */
396 if (0 >= (int) (mon -= 2)) {
397 mon += 12; /* Puts Feb last since it has leap day */
398 year -= 1;
399 }
400
401 return ((((time64_t)
402 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
403 year*365 - 719499
404 )*24 + hour /* now have hours - midnight tomorrow handled here */
405 )*60 + min /* now have minutes */
406 )*60 + sec; /* finally seconds */
407 }
408 EXPORT_SYMBOL(mktime64);
409
410 /**
411 * set_normalized_timespec - set timespec sec and nsec parts and normalize
412 *
413 * @ts: pointer to timespec variable to be set
414 * @sec: seconds to set
415 * @nsec: nanoseconds to set
416 *
417 * Set seconds and nanoseconds field of a timespec variable and
418 * normalize to the timespec storage format
419 *
420 * Note: The tv_nsec part is always in the range of
421 * 0 <= tv_nsec < NSEC_PER_SEC
422 * For negative values only the tv_sec field is negative !
423 */
set_normalized_timespec(struct timespec * ts,time_t sec,s64 nsec)424 void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
425 {
426 while (nsec >= NSEC_PER_SEC) {
427 /*
428 * The following asm() prevents the compiler from
429 * optimising this loop into a modulo operation. See
430 * also __iter_div_u64_rem() in include/linux/time.h
431 */
432 asm("" : "+rm"(nsec));
433 nsec -= NSEC_PER_SEC;
434 ++sec;
435 }
436 while (nsec < 0) {
437 asm("" : "+rm"(nsec));
438 nsec += NSEC_PER_SEC;
439 --sec;
440 }
441 ts->tv_sec = sec;
442 ts->tv_nsec = nsec;
443 }
444 EXPORT_SYMBOL(set_normalized_timespec);
445
446 /**
447 * ns_to_timespec - Convert nanoseconds to timespec
448 * @nsec: the nanoseconds value to be converted
449 *
450 * Returns the timespec representation of the nsec parameter.
451 */
ns_to_timespec(const s64 nsec)452 struct timespec ns_to_timespec(const s64 nsec)
453 {
454 struct timespec ts;
455 s32 rem;
456
457 if (!nsec)
458 return (struct timespec) {0, 0};
459
460 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
461 if (unlikely(rem < 0)) {
462 ts.tv_sec--;
463 rem += NSEC_PER_SEC;
464 }
465 ts.tv_nsec = rem;
466
467 return ts;
468 }
469 EXPORT_SYMBOL(ns_to_timespec);
470
471 /**
472 * ns_to_timeval - Convert nanoseconds to timeval
473 * @nsec: the nanoseconds value to be converted
474 *
475 * Returns the timeval representation of the nsec parameter.
476 */
ns_to_timeval(const s64 nsec)477 struct timeval ns_to_timeval(const s64 nsec)
478 {
479 struct timespec ts = ns_to_timespec(nsec);
480 struct timeval tv;
481
482 tv.tv_sec = ts.tv_sec;
483 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
484
485 return tv;
486 }
487 EXPORT_SYMBOL(ns_to_timeval);
488
ns_to_kernel_old_timeval(const s64 nsec)489 struct __kernel_old_timeval ns_to_kernel_old_timeval(const s64 nsec)
490 {
491 struct timespec64 ts = ns_to_timespec64(nsec);
492 struct __kernel_old_timeval tv;
493
494 tv.tv_sec = ts.tv_sec;
495 tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000;
496
497 return tv;
498 }
499 EXPORT_SYMBOL(ns_to_kernel_old_timeval);
500
501 /**
502 * set_normalized_timespec - set timespec sec and nsec parts and normalize
503 *
504 * @ts: pointer to timespec variable to be set
505 * @sec: seconds to set
506 * @nsec: nanoseconds to set
507 *
508 * Set seconds and nanoseconds field of a timespec variable and
509 * normalize to the timespec storage format
510 *
511 * Note: The tv_nsec part is always in the range of
512 * 0 <= tv_nsec < NSEC_PER_SEC
513 * For negative values only the tv_sec field is negative !
514 */
set_normalized_timespec64(struct timespec64 * ts,time64_t sec,s64 nsec)515 void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
516 {
517 while (nsec >= NSEC_PER_SEC) {
518 /*
519 * The following asm() prevents the compiler from
520 * optimising this loop into a modulo operation. See
521 * also __iter_div_u64_rem() in include/linux/time.h
522 */
523 asm("" : "+rm"(nsec));
524 nsec -= NSEC_PER_SEC;
525 ++sec;
526 }
527 while (nsec < 0) {
528 asm("" : "+rm"(nsec));
529 nsec += NSEC_PER_SEC;
530 --sec;
531 }
532 ts->tv_sec = sec;
533 ts->tv_nsec = nsec;
534 }
535 EXPORT_SYMBOL(set_normalized_timespec64);
536
537 /**
538 * ns_to_timespec64 - Convert nanoseconds to timespec64
539 * @nsec: the nanoseconds value to be converted
540 *
541 * Returns the timespec64 representation of the nsec parameter.
542 */
ns_to_timespec64(const s64 nsec)543 struct timespec64 ns_to_timespec64(const s64 nsec)
544 {
545 struct timespec64 ts;
546 s32 rem;
547
548 if (!nsec)
549 return (struct timespec64) {0, 0};
550
551 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
552 if (unlikely(rem < 0)) {
553 ts.tv_sec--;
554 rem += NSEC_PER_SEC;
555 }
556 ts.tv_nsec = rem;
557
558 return ts;
559 }
560 EXPORT_SYMBOL(ns_to_timespec64);
561
562 /**
563 * msecs_to_jiffies: - convert milliseconds to jiffies
564 * @m: time in milliseconds
565 *
566 * conversion is done as follows:
567 *
568 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
569 *
570 * - 'too large' values [that would result in larger than
571 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
572 *
573 * - all other values are converted to jiffies by either multiplying
574 * the input value by a factor or dividing it with a factor and
575 * handling any 32-bit overflows.
576 * for the details see __msecs_to_jiffies()
577 *
578 * msecs_to_jiffies() checks for the passed in value being a constant
579 * via __builtin_constant_p() allowing gcc to eliminate most of the
580 * code, __msecs_to_jiffies() is called if the value passed does not
581 * allow constant folding and the actual conversion must be done at
582 * runtime.
583 * the _msecs_to_jiffies helpers are the HZ dependent conversion
584 * routines found in include/linux/jiffies.h
585 */
__msecs_to_jiffies(const unsigned int m)586 unsigned long __msecs_to_jiffies(const unsigned int m)
587 {
588 /*
589 * Negative value, means infinite timeout:
590 */
591 if ((int)m < 0)
592 return MAX_JIFFY_OFFSET;
593 return _msecs_to_jiffies(m);
594 }
595 EXPORT_SYMBOL(__msecs_to_jiffies);
596
__usecs_to_jiffies(const unsigned int u)597 unsigned long __usecs_to_jiffies(const unsigned int u)
598 {
599 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
600 return MAX_JIFFY_OFFSET;
601 return _usecs_to_jiffies(u);
602 }
603 EXPORT_SYMBOL(__usecs_to_jiffies);
604
605 /*
606 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
607 * that a remainder subtract here would not do the right thing as the
608 * resolution values don't fall on second boundries. I.e. the line:
609 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
610 * Note that due to the small error in the multiplier here, this
611 * rounding is incorrect for sufficiently large values of tv_nsec, but
612 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
613 * OK.
614 *
615 * Rather, we just shift the bits off the right.
616 *
617 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
618 * value to a scaled second value.
619 */
620 static unsigned long
__timespec64_to_jiffies(u64 sec,long nsec)621 __timespec64_to_jiffies(u64 sec, long nsec)
622 {
623 nsec = nsec + TICK_NSEC - 1;
624
625 if (sec >= MAX_SEC_IN_JIFFIES){
626 sec = MAX_SEC_IN_JIFFIES;
627 nsec = 0;
628 }
629 return ((sec * SEC_CONVERSION) +
630 (((u64)nsec * NSEC_CONVERSION) >>
631 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
632
633 }
634
635 static unsigned long
__timespec_to_jiffies(unsigned long sec,long nsec)636 __timespec_to_jiffies(unsigned long sec, long nsec)
637 {
638 return __timespec64_to_jiffies((u64)sec, nsec);
639 }
640
641 unsigned long
timespec64_to_jiffies(const struct timespec64 * value)642 timespec64_to_jiffies(const struct timespec64 *value)
643 {
644 return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
645 }
646 EXPORT_SYMBOL(timespec64_to_jiffies);
647
648 void
jiffies_to_timespec64(const unsigned long jiffies,struct timespec64 * value)649 jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
650 {
651 /*
652 * Convert jiffies to nanoseconds and separate with
653 * one divide.
654 */
655 u32 rem;
656 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
657 NSEC_PER_SEC, &rem);
658 value->tv_nsec = rem;
659 }
660 EXPORT_SYMBOL(jiffies_to_timespec64);
661
662 /*
663 * We could use a similar algorithm to timespec_to_jiffies (with a
664 * different multiplier for usec instead of nsec). But this has a
665 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
666 * usec value, since it's not necessarily integral.
667 *
668 * We could instead round in the intermediate scaled representation
669 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
670 * perilous: the scaling introduces a small positive error, which
671 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
672 * units to the intermediate before shifting) leads to accidental
673 * overflow and overestimates.
674 *
675 * At the cost of one additional multiplication by a constant, just
676 * use the timespec implementation.
677 */
678 unsigned long
timeval_to_jiffies(const struct timeval * value)679 timeval_to_jiffies(const struct timeval *value)
680 {
681 return __timespec_to_jiffies(value->tv_sec,
682 value->tv_usec * NSEC_PER_USEC);
683 }
684 EXPORT_SYMBOL(timeval_to_jiffies);
685
jiffies_to_timeval(const unsigned long jiffies,struct timeval * value)686 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
687 {
688 /*
689 * Convert jiffies to nanoseconds and separate with
690 * one divide.
691 */
692 u32 rem;
693
694 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
695 NSEC_PER_SEC, &rem);
696 value->tv_usec = rem / NSEC_PER_USEC;
697 }
698 EXPORT_SYMBOL(jiffies_to_timeval);
699
700 /*
701 * Convert jiffies/jiffies_64 to clock_t and back.
702 */
jiffies_to_clock_t(unsigned long x)703 clock_t jiffies_to_clock_t(unsigned long x)
704 {
705 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
706 # if HZ < USER_HZ
707 return x * (USER_HZ / HZ);
708 # else
709 return x / (HZ / USER_HZ);
710 # endif
711 #else
712 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
713 #endif
714 }
715 EXPORT_SYMBOL(jiffies_to_clock_t);
716
clock_t_to_jiffies(unsigned long x)717 unsigned long clock_t_to_jiffies(unsigned long x)
718 {
719 #if (HZ % USER_HZ)==0
720 if (x >= ~0UL / (HZ / USER_HZ))
721 return ~0UL;
722 return x * (HZ / USER_HZ);
723 #else
724 /* Don't worry about loss of precision here .. */
725 if (x >= ~0UL / HZ * USER_HZ)
726 return ~0UL;
727
728 /* .. but do try to contain it here */
729 return div_u64((u64)x * HZ, USER_HZ);
730 #endif
731 }
732 EXPORT_SYMBOL(clock_t_to_jiffies);
733
jiffies_64_to_clock_t(u64 x)734 u64 jiffies_64_to_clock_t(u64 x)
735 {
736 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
737 # if HZ < USER_HZ
738 x = div_u64(x * USER_HZ, HZ);
739 # elif HZ > USER_HZ
740 x = div_u64(x, HZ / USER_HZ);
741 # else
742 /* Nothing to do */
743 # endif
744 #else
745 /*
746 * There are better ways that don't overflow early,
747 * but even this doesn't overflow in hundreds of years
748 * in 64 bits, so..
749 */
750 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
751 #endif
752 return x;
753 }
754 EXPORT_SYMBOL(jiffies_64_to_clock_t);
755
nsec_to_clock_t(u64 x)756 u64 nsec_to_clock_t(u64 x)
757 {
758 #if (NSEC_PER_SEC % USER_HZ) == 0
759 return div_u64(x, NSEC_PER_SEC / USER_HZ);
760 #elif (USER_HZ % 512) == 0
761 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
762 #else
763 /*
764 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
765 * overflow after 64.99 years.
766 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
767 */
768 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
769 #endif
770 }
771
jiffies64_to_nsecs(u64 j)772 u64 jiffies64_to_nsecs(u64 j)
773 {
774 #if !(NSEC_PER_SEC % HZ)
775 return (NSEC_PER_SEC / HZ) * j;
776 # else
777 return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
778 #endif
779 }
780 EXPORT_SYMBOL(jiffies64_to_nsecs);
781
782 /**
783 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
784 *
785 * @n: nsecs in u64
786 *
787 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
788 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
789 * for scheduler, not for use in device drivers to calculate timeout value.
790 *
791 * note:
792 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
793 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
794 */
nsecs_to_jiffies64(u64 n)795 u64 nsecs_to_jiffies64(u64 n)
796 {
797 #if (NSEC_PER_SEC % HZ) == 0
798 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
799 return div_u64(n, NSEC_PER_SEC / HZ);
800 #elif (HZ % 512) == 0
801 /* overflow after 292 years if HZ = 1024 */
802 return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
803 #else
804 /*
805 * Generic case - optimized for cases where HZ is a multiple of 3.
806 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
807 */
808 return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
809 #endif
810 }
811 EXPORT_SYMBOL(nsecs_to_jiffies64);
812
813 /**
814 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
815 *
816 * @n: nsecs in u64
817 *
818 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
819 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
820 * for scheduler, not for use in device drivers to calculate timeout value.
821 *
822 * note:
823 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
824 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
825 */
nsecs_to_jiffies(u64 n)826 unsigned long nsecs_to_jiffies(u64 n)
827 {
828 return (unsigned long)nsecs_to_jiffies64(n);
829 }
830 EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
831
832 /*
833 * Add two timespec64 values and do a safety check for overflow.
834 * It's assumed that both values are valid (>= 0).
835 * And, each timespec64 is in normalized form.
836 */
timespec64_add_safe(const struct timespec64 lhs,const struct timespec64 rhs)837 struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
838 const struct timespec64 rhs)
839 {
840 struct timespec64 res;
841
842 set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
843 lhs.tv_nsec + rhs.tv_nsec);
844
845 if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
846 res.tv_sec = TIME64_MAX;
847 res.tv_nsec = 0;
848 }
849
850 return res;
851 }
852
get_timespec64(struct timespec64 * ts,const struct __kernel_timespec __user * uts)853 int get_timespec64(struct timespec64 *ts,
854 const struct __kernel_timespec __user *uts)
855 {
856 struct __kernel_timespec kts;
857 int ret;
858
859 ret = copy_from_user(&kts, uts, sizeof(kts));
860 if (ret)
861 return -EFAULT;
862
863 ts->tv_sec = kts.tv_sec;
864
865 /* Zero out the padding for 32 bit systems or in compat mode */
866 if (IS_ENABLED(CONFIG_64BIT_TIME) && (!IS_ENABLED(CONFIG_64BIT) || in_compat_syscall()))
867 kts.tv_nsec &= 0xFFFFFFFFUL;
868
869 ts->tv_nsec = kts.tv_nsec;
870
871 return 0;
872 }
873 EXPORT_SYMBOL_GPL(get_timespec64);
874
put_timespec64(const struct timespec64 * ts,struct __kernel_timespec __user * uts)875 int put_timespec64(const struct timespec64 *ts,
876 struct __kernel_timespec __user *uts)
877 {
878 struct __kernel_timespec kts = {
879 .tv_sec = ts->tv_sec,
880 .tv_nsec = ts->tv_nsec
881 };
882
883 return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
884 }
885 EXPORT_SYMBOL_GPL(put_timespec64);
886
__compat_get_timespec64(struct timespec64 * ts64,const struct compat_timespec __user * cts)887 int __compat_get_timespec64(struct timespec64 *ts64,
888 const struct compat_timespec __user *cts)
889 {
890 struct compat_timespec ts;
891 int ret;
892
893 ret = copy_from_user(&ts, cts, sizeof(ts));
894 if (ret)
895 return -EFAULT;
896
897 ts64->tv_sec = ts.tv_sec;
898 ts64->tv_nsec = ts.tv_nsec;
899
900 return 0;
901 }
902
__compat_put_timespec64(const struct timespec64 * ts64,struct compat_timespec __user * cts)903 int __compat_put_timespec64(const struct timespec64 *ts64,
904 struct compat_timespec __user *cts)
905 {
906 struct compat_timespec ts = {
907 .tv_sec = ts64->tv_sec,
908 .tv_nsec = ts64->tv_nsec
909 };
910 return copy_to_user(cts, &ts, sizeof(ts)) ? -EFAULT : 0;
911 }
912
compat_get_timespec64(struct timespec64 * ts,const void __user * uts)913 int compat_get_timespec64(struct timespec64 *ts, const void __user *uts)
914 {
915 if (COMPAT_USE_64BIT_TIME)
916 return copy_from_user(ts, uts, sizeof(*ts)) ? -EFAULT : 0;
917 else
918 return __compat_get_timespec64(ts, uts);
919 }
920 EXPORT_SYMBOL_GPL(compat_get_timespec64);
921
compat_put_timespec64(const struct timespec64 * ts,void __user * uts)922 int compat_put_timespec64(const struct timespec64 *ts, void __user *uts)
923 {
924 if (COMPAT_USE_64BIT_TIME)
925 return copy_to_user(uts, ts, sizeof(*ts)) ? -EFAULT : 0;
926 else
927 return __compat_put_timespec64(ts, uts);
928 }
929 EXPORT_SYMBOL_GPL(compat_put_timespec64);
930
get_itimerspec64(struct itimerspec64 * it,const struct __kernel_itimerspec __user * uit)931 int get_itimerspec64(struct itimerspec64 *it,
932 const struct __kernel_itimerspec __user *uit)
933 {
934 int ret;
935
936 ret = get_timespec64(&it->it_interval, &uit->it_interval);
937 if (ret)
938 return ret;
939
940 ret = get_timespec64(&it->it_value, &uit->it_value);
941
942 return ret;
943 }
944 EXPORT_SYMBOL_GPL(get_itimerspec64);
945
put_itimerspec64(const struct itimerspec64 * it,struct __kernel_itimerspec __user * uit)946 int put_itimerspec64(const struct itimerspec64 *it,
947 struct __kernel_itimerspec __user *uit)
948 {
949 int ret;
950
951 ret = put_timespec64(&it->it_interval, &uit->it_interval);
952 if (ret)
953 return ret;
954
955 ret = put_timespec64(&it->it_value, &uit->it_value);
956
957 return ret;
958 }
959 EXPORT_SYMBOL_GPL(put_itimerspec64);
960
get_compat_itimerspec64(struct itimerspec64 * its,const struct compat_itimerspec __user * uits)961 int get_compat_itimerspec64(struct itimerspec64 *its,
962 const struct compat_itimerspec __user *uits)
963 {
964
965 if (__compat_get_timespec64(&its->it_interval, &uits->it_interval) ||
966 __compat_get_timespec64(&its->it_value, &uits->it_value))
967 return -EFAULT;
968 return 0;
969 }
970 EXPORT_SYMBOL_GPL(get_compat_itimerspec64);
971
put_compat_itimerspec64(const struct itimerspec64 * its,struct compat_itimerspec __user * uits)972 int put_compat_itimerspec64(const struct itimerspec64 *its,
973 struct compat_itimerspec __user *uits)
974 {
975 if (__compat_put_timespec64(&its->it_interval, &uits->it_interval) ||
976 __compat_put_timespec64(&its->it_value, &uits->it_value))
977 return -EFAULT;
978 return 0;
979 }
980 EXPORT_SYMBOL_GPL(put_compat_itimerspec64);
981