1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* include/asm-generic/tlb.h
3  *
4  *	Generic TLB shootdown code
5  *
6  * Copyright 2001 Red Hat, Inc.
7  * Based on code from mm/memory.c Copyright Linus Torvalds and others.
8  *
9  * Copyright 2011 Red Hat, Inc., Peter Zijlstra
10  */
11 #ifndef _ASM_GENERIC__TLB_H
12 #define _ASM_GENERIC__TLB_H
13 
14 #include <linux/mmu_notifier.h>
15 #include <linux/swap.h>
16 #include <asm/pgalloc.h>
17 #include <asm/tlbflush.h>
18 #include <asm/cacheflush.h>
19 
20 /*
21  * Blindly accessing user memory from NMI context can be dangerous
22  * if we're in the middle of switching the current user task or switching
23  * the loaded mm.
24  */
25 #ifndef nmi_uaccess_okay
26 # define nmi_uaccess_okay() true
27 #endif
28 
29 #ifdef CONFIG_MMU
30 
31 /*
32  * Generic MMU-gather implementation.
33  *
34  * The mmu_gather data structure is used by the mm code to implement the
35  * correct and efficient ordering of freeing pages and TLB invalidations.
36  *
37  * This correct ordering is:
38  *
39  *  1) unhook page
40  *  2) TLB invalidate page
41  *  3) free page
42  *
43  * That is, we must never free a page before we have ensured there are no live
44  * translations left to it. Otherwise it might be possible to observe (or
45  * worse, change) the page content after it has been reused.
46  *
47  * The mmu_gather API consists of:
48  *
49  *  - tlb_gather_mmu() / tlb_finish_mmu(); start and finish a mmu_gather
50  *
51  *    Finish in particular will issue a (final) TLB invalidate and free
52  *    all (remaining) queued pages.
53  *
54  *  - tlb_start_vma() / tlb_end_vma(); marks the start / end of a VMA
55  *
56  *    Defaults to flushing at tlb_end_vma() to reset the range; helps when
57  *    there's large holes between the VMAs.
58  *
59  *  - tlb_remove_page() / __tlb_remove_page()
60  *  - tlb_remove_page_size() / __tlb_remove_page_size()
61  *
62  *    __tlb_remove_page_size() is the basic primitive that queues a page for
63  *    freeing. __tlb_remove_page() assumes PAGE_SIZE. Both will return a
64  *    boolean indicating if the queue is (now) full and a call to
65  *    tlb_flush_mmu() is required.
66  *
67  *    tlb_remove_page() and tlb_remove_page_size() imply the call to
68  *    tlb_flush_mmu() when required and has no return value.
69  *
70  *  - tlb_change_page_size()
71  *
72  *    call before __tlb_remove_page*() to set the current page-size; implies a
73  *    possible tlb_flush_mmu() call.
74  *
75  *  - tlb_flush_mmu() / tlb_flush_mmu_tlbonly()
76  *
77  *    tlb_flush_mmu_tlbonly() - does the TLB invalidate (and resets
78  *                              related state, like the range)
79  *
80  *    tlb_flush_mmu() - in addition to the above TLB invalidate, also frees
81  *			whatever pages are still batched.
82  *
83  *  - mmu_gather::fullmm
84  *
85  *    A flag set by tlb_gather_mmu() to indicate we're going to free
86  *    the entire mm; this allows a number of optimizations.
87  *
88  *    - We can ignore tlb_{start,end}_vma(); because we don't
89  *      care about ranges. Everything will be shot down.
90  *
91  *    - (RISC) architectures that use ASIDs can cycle to a new ASID
92  *      and delay the invalidation until ASID space runs out.
93  *
94  *  - mmu_gather::need_flush_all
95  *
96  *    A flag that can be set by the arch code if it wants to force
97  *    flush the entire TLB irrespective of the range. For instance
98  *    x86-PAE needs this when changing top-level entries.
99  *
100  * And allows the architecture to provide and implement tlb_flush():
101  *
102  * tlb_flush() may, in addition to the above mentioned mmu_gather fields, make
103  * use of:
104  *
105  *  - mmu_gather::start / mmu_gather::end
106  *
107  *    which provides the range that needs to be flushed to cover the pages to
108  *    be freed.
109  *
110  *  - mmu_gather::freed_tables
111  *
112  *    set when we freed page table pages
113  *
114  *  - tlb_get_unmap_shift() / tlb_get_unmap_size()
115  *
116  *    returns the smallest TLB entry size unmapped in this range.
117  *
118  * If an architecture does not provide tlb_flush() a default implementation
119  * based on flush_tlb_range() will be used, unless MMU_GATHER_NO_RANGE is
120  * specified, in which case we'll default to flush_tlb_mm().
121  *
122  * Additionally there are a few opt-in features:
123  *
124  *  HAVE_MMU_GATHER_PAGE_SIZE
125  *
126  *  This ensures we call tlb_flush() every time tlb_change_page_size() actually
127  *  changes the size and provides mmu_gather::page_size to tlb_flush().
128  *
129  *  HAVE_RCU_TABLE_FREE
130  *
131  *  This provides tlb_remove_table(), to be used instead of tlb_remove_page()
132  *  for page directores (__p*_free_tlb()). This provides separate freeing of
133  *  the page-table pages themselves in a semi-RCU fashion (see comment below).
134  *  Useful if your architecture doesn't use IPIs for remote TLB invalidates
135  *  and therefore doesn't naturally serialize with software page-table walkers.
136  *
137  *  When used, an architecture is expected to provide __tlb_remove_table()
138  *  which does the actual freeing of these pages.
139  *
140  *  HAVE_RCU_TABLE_NO_INVALIDATE
141  *
142  *  This makes HAVE_RCU_TABLE_FREE avoid calling tlb_flush_mmu_tlbonly() before
143  *  freeing the page-table pages. This can be avoided if you use
144  *  HAVE_RCU_TABLE_FREE and your architecture does _NOT_ use the Linux
145  *  page-tables natively.
146  *
147  *  MMU_GATHER_NO_RANGE
148  *
149  *  Use this if your architecture lacks an efficient flush_tlb_range().
150  */
151 
152 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
153 /*
154  * Semi RCU freeing of the page directories.
155  *
156  * This is needed by some architectures to implement software pagetable walkers.
157  *
158  * gup_fast() and other software pagetable walkers do a lockless page-table
159  * walk and therefore needs some synchronization with the freeing of the page
160  * directories. The chosen means to accomplish that is by disabling IRQs over
161  * the walk.
162  *
163  * Architectures that use IPIs to flush TLBs will then automagically DTRT,
164  * since we unlink the page, flush TLBs, free the page. Since the disabling of
165  * IRQs delays the completion of the TLB flush we can never observe an already
166  * freed page.
167  *
168  * Architectures that do not have this (PPC) need to delay the freeing by some
169  * other means, this is that means.
170  *
171  * What we do is batch the freed directory pages (tables) and RCU free them.
172  * We use the sched RCU variant, as that guarantees that IRQ/preempt disabling
173  * holds off grace periods.
174  *
175  * However, in order to batch these pages we need to allocate storage, this
176  * allocation is deep inside the MM code and can thus easily fail on memory
177  * pressure. To guarantee progress we fall back to single table freeing, see
178  * the implementation of tlb_remove_table_one().
179  *
180  */
181 struct mmu_table_batch {
182 	struct rcu_head		rcu;
183 	unsigned int		nr;
184 	void			*tables[0];
185 };
186 
187 #define MAX_TABLE_BATCH		\
188 	((PAGE_SIZE - sizeof(struct mmu_table_batch)) / sizeof(void *))
189 
190 extern void tlb_remove_table(struct mmu_gather *tlb, void *table);
191 
192 #endif
193 
194 #ifndef CONFIG_HAVE_MMU_GATHER_NO_GATHER
195 /*
196  * If we can't allocate a page to make a big batch of page pointers
197  * to work on, then just handle a few from the on-stack structure.
198  */
199 #define MMU_GATHER_BUNDLE	8
200 
201 struct mmu_gather_batch {
202 	struct mmu_gather_batch	*next;
203 	unsigned int		nr;
204 	unsigned int		max;
205 	struct page		*pages[0];
206 };
207 
208 #define MAX_GATHER_BATCH	\
209 	((PAGE_SIZE - sizeof(struct mmu_gather_batch)) / sizeof(void *))
210 
211 /*
212  * Limit the maximum number of mmu_gather batches to reduce a risk of soft
213  * lockups for non-preemptible kernels on huge machines when a lot of memory
214  * is zapped during unmapping.
215  * 10K pages freed at once should be safe even without a preemption point.
216  */
217 #define MAX_GATHER_BATCH_COUNT	(10000UL/MAX_GATHER_BATCH)
218 
219 extern bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page,
220 				   int page_size);
221 #endif
222 
223 /*
224  * struct mmu_gather is an opaque type used by the mm code for passing around
225  * any data needed by arch specific code for tlb_remove_page.
226  */
227 struct mmu_gather {
228 	struct mm_struct	*mm;
229 
230 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
231 	struct mmu_table_batch	*batch;
232 #endif
233 
234 	unsigned long		start;
235 	unsigned long		end;
236 	/*
237 	 * we are in the middle of an operation to clear
238 	 * a full mm and can make some optimizations
239 	 */
240 	unsigned int		fullmm : 1;
241 
242 	/*
243 	 * we have performed an operation which
244 	 * requires a complete flush of the tlb
245 	 */
246 	unsigned int		need_flush_all : 1;
247 
248 	/*
249 	 * we have removed page directories
250 	 */
251 	unsigned int		freed_tables : 1;
252 
253 	/*
254 	 * at which levels have we cleared entries?
255 	 */
256 	unsigned int		cleared_ptes : 1;
257 	unsigned int		cleared_pmds : 1;
258 	unsigned int		cleared_puds : 1;
259 	unsigned int		cleared_p4ds : 1;
260 
261 	/*
262 	 * tracks VM_EXEC | VM_HUGETLB in tlb_start_vma
263 	 */
264 	unsigned int		vma_exec : 1;
265 	unsigned int		vma_huge : 1;
266 
267 	unsigned int		batch_count;
268 
269 #ifndef CONFIG_HAVE_MMU_GATHER_NO_GATHER
270 	struct mmu_gather_batch *active;
271 	struct mmu_gather_batch	local;
272 	struct page		*__pages[MMU_GATHER_BUNDLE];
273 
274 #ifdef CONFIG_HAVE_MMU_GATHER_PAGE_SIZE
275 	unsigned int page_size;
276 #endif
277 #endif
278 };
279 
280 void arch_tlb_gather_mmu(struct mmu_gather *tlb,
281 	struct mm_struct *mm, unsigned long start, unsigned long end);
282 void tlb_flush_mmu(struct mmu_gather *tlb);
283 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
284 			 unsigned long start, unsigned long end, bool force);
285 
__tlb_adjust_range(struct mmu_gather * tlb,unsigned long address,unsigned int range_size)286 static inline void __tlb_adjust_range(struct mmu_gather *tlb,
287 				      unsigned long address,
288 				      unsigned int range_size)
289 {
290 	tlb->start = min(tlb->start, address);
291 	tlb->end = max(tlb->end, address + range_size);
292 }
293 
__tlb_reset_range(struct mmu_gather * tlb)294 static inline void __tlb_reset_range(struct mmu_gather *tlb)
295 {
296 	if (tlb->fullmm) {
297 		tlb->start = tlb->end = ~0;
298 	} else {
299 		tlb->start = TASK_SIZE;
300 		tlb->end = 0;
301 	}
302 	tlb->freed_tables = 0;
303 	tlb->cleared_ptes = 0;
304 	tlb->cleared_pmds = 0;
305 	tlb->cleared_puds = 0;
306 	tlb->cleared_p4ds = 0;
307 	/*
308 	 * Do not reset mmu_gather::vma_* fields here, we do not
309 	 * call into tlb_start_vma() again to set them if there is an
310 	 * intermediate flush.
311 	 */
312 }
313 
314 #ifdef CONFIG_MMU_GATHER_NO_RANGE
315 
316 #if defined(tlb_flush) || defined(tlb_start_vma) || defined(tlb_end_vma)
317 #error MMU_GATHER_NO_RANGE relies on default tlb_flush(), tlb_start_vma() and tlb_end_vma()
318 #endif
319 
320 /*
321  * When an architecture does not have efficient means of range flushing TLBs
322  * there is no point in doing intermediate flushes on tlb_end_vma() to keep the
323  * range small. We equally don't have to worry about page granularity or other
324  * things.
325  *
326  * All we need to do is issue a full flush for any !0 range.
327  */
tlb_flush(struct mmu_gather * tlb)328 static inline void tlb_flush(struct mmu_gather *tlb)
329 {
330 	if (tlb->end)
331 		flush_tlb_mm(tlb->mm);
332 }
333 
334 static inline void
tlb_update_vma_flags(struct mmu_gather * tlb,struct vm_area_struct * vma)335 tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) { }
336 
337 #define tlb_end_vma tlb_end_vma
tlb_end_vma(struct mmu_gather * tlb,struct vm_area_struct * vma)338 static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma) { }
339 
340 #else /* CONFIG_MMU_GATHER_NO_RANGE */
341 
342 #ifndef tlb_flush
343 
344 #if defined(tlb_start_vma) || defined(tlb_end_vma)
345 #error Default tlb_flush() relies on default tlb_start_vma() and tlb_end_vma()
346 #endif
347 
348 /*
349  * When an architecture does not provide its own tlb_flush() implementation
350  * but does have a reasonably efficient flush_vma_range() implementation
351  * use that.
352  */
tlb_flush(struct mmu_gather * tlb)353 static inline void tlb_flush(struct mmu_gather *tlb)
354 {
355 	if (tlb->fullmm || tlb->need_flush_all) {
356 		flush_tlb_mm(tlb->mm);
357 	} else if (tlb->end) {
358 		struct vm_area_struct vma = {
359 			.vm_mm = tlb->mm,
360 			.vm_flags = (tlb->vma_exec ? VM_EXEC    : 0) |
361 				    (tlb->vma_huge ? VM_HUGETLB : 0),
362 		};
363 
364 		flush_tlb_range(&vma, tlb->start, tlb->end);
365 	}
366 }
367 
368 static inline void
tlb_update_vma_flags(struct mmu_gather * tlb,struct vm_area_struct * vma)369 tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma)
370 {
371 	/*
372 	 * flush_tlb_range() implementations that look at VM_HUGETLB (tile,
373 	 * mips-4k) flush only large pages.
374 	 *
375 	 * flush_tlb_range() implementations that flush I-TLB also flush D-TLB
376 	 * (tile, xtensa, arm), so it's ok to just add VM_EXEC to an existing
377 	 * range.
378 	 *
379 	 * We rely on tlb_end_vma() to issue a flush, such that when we reset
380 	 * these values the batch is empty.
381 	 */
382 	tlb->vma_huge = !!(vma->vm_flags & VM_HUGETLB);
383 	tlb->vma_exec = !!(vma->vm_flags & VM_EXEC);
384 }
385 
386 #else
387 
388 static inline void
tlb_update_vma_flags(struct mmu_gather * tlb,struct vm_area_struct * vma)389 tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) { }
390 
391 #endif
392 
393 #endif /* CONFIG_MMU_GATHER_NO_RANGE */
394 
tlb_flush_mmu_tlbonly(struct mmu_gather * tlb)395 static inline void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
396 {
397 	if (!tlb->end)
398 		return;
399 
400 	tlb_flush(tlb);
401 	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
402 	__tlb_reset_range(tlb);
403 }
404 
tlb_remove_page_size(struct mmu_gather * tlb,struct page * page,int page_size)405 static inline void tlb_remove_page_size(struct mmu_gather *tlb,
406 					struct page *page, int page_size)
407 {
408 	if (__tlb_remove_page_size(tlb, page, page_size))
409 		tlb_flush_mmu(tlb);
410 }
411 
__tlb_remove_page(struct mmu_gather * tlb,struct page * page)412 static inline bool __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
413 {
414 	return __tlb_remove_page_size(tlb, page, PAGE_SIZE);
415 }
416 
417 /* tlb_remove_page
418  *	Similar to __tlb_remove_page but will call tlb_flush_mmu() itself when
419  *	required.
420  */
tlb_remove_page(struct mmu_gather * tlb,struct page * page)421 static inline void tlb_remove_page(struct mmu_gather *tlb, struct page *page)
422 {
423 	return tlb_remove_page_size(tlb, page, PAGE_SIZE);
424 }
425 
tlb_change_page_size(struct mmu_gather * tlb,unsigned int page_size)426 static inline void tlb_change_page_size(struct mmu_gather *tlb,
427 						     unsigned int page_size)
428 {
429 #ifdef CONFIG_HAVE_MMU_GATHER_PAGE_SIZE
430 	if (tlb->page_size && tlb->page_size != page_size) {
431 		if (!tlb->fullmm)
432 			tlb_flush_mmu(tlb);
433 	}
434 
435 	tlb->page_size = page_size;
436 #endif
437 }
438 
tlb_get_unmap_shift(struct mmu_gather * tlb)439 static inline unsigned long tlb_get_unmap_shift(struct mmu_gather *tlb)
440 {
441 	if (tlb->cleared_ptes)
442 		return PAGE_SHIFT;
443 	if (tlb->cleared_pmds)
444 		return PMD_SHIFT;
445 	if (tlb->cleared_puds)
446 		return PUD_SHIFT;
447 	if (tlb->cleared_p4ds)
448 		return P4D_SHIFT;
449 
450 	return PAGE_SHIFT;
451 }
452 
tlb_get_unmap_size(struct mmu_gather * tlb)453 static inline unsigned long tlb_get_unmap_size(struct mmu_gather *tlb)
454 {
455 	return 1UL << tlb_get_unmap_shift(tlb);
456 }
457 
458 /*
459  * In the case of tlb vma handling, we can optimise these away in the
460  * case where we're doing a full MM flush.  When we're doing a munmap,
461  * the vmas are adjusted to only cover the region to be torn down.
462  */
463 #ifndef tlb_start_vma
tlb_start_vma(struct mmu_gather * tlb,struct vm_area_struct * vma)464 static inline void tlb_start_vma(struct mmu_gather *tlb, struct vm_area_struct *vma)
465 {
466 	if (tlb->fullmm)
467 		return;
468 
469 	tlb_update_vma_flags(tlb, vma);
470 	flush_cache_range(vma, vma->vm_start, vma->vm_end);
471 }
472 #endif
473 
474 #ifndef tlb_end_vma
tlb_end_vma(struct mmu_gather * tlb,struct vm_area_struct * vma)475 static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma)
476 {
477 	if (tlb->fullmm)
478 		return;
479 
480 	/*
481 	 * Do a TLB flush and reset the range at VMA boundaries; this avoids
482 	 * the ranges growing with the unused space between consecutive VMAs,
483 	 * but also the mmu_gather::vma_* flags from tlb_start_vma() rely on
484 	 * this.
485 	 */
486 	tlb_flush_mmu_tlbonly(tlb);
487 }
488 #endif
489 
490 #ifndef __tlb_remove_tlb_entry
491 #define __tlb_remove_tlb_entry(tlb, ptep, address) do { } while (0)
492 #endif
493 
494 /**
495  * tlb_remove_tlb_entry - remember a pte unmapping for later tlb invalidation.
496  *
497  * Record the fact that pte's were really unmapped by updating the range,
498  * so we can later optimise away the tlb invalidate.   This helps when
499  * userspace is unmapping already-unmapped pages, which happens quite a lot.
500  */
501 #define tlb_remove_tlb_entry(tlb, ptep, address)		\
502 	do {							\
503 		__tlb_adjust_range(tlb, address, PAGE_SIZE);	\
504 		tlb->cleared_ptes = 1;				\
505 		__tlb_remove_tlb_entry(tlb, ptep, address);	\
506 	} while (0)
507 
508 #define tlb_remove_huge_tlb_entry(h, tlb, ptep, address)	\
509 	do {							\
510 		unsigned long _sz = huge_page_size(h);		\
511 		__tlb_adjust_range(tlb, address, _sz);		\
512 		if (_sz == PMD_SIZE)				\
513 			tlb->cleared_pmds = 1;			\
514 		else if (_sz == PUD_SIZE)			\
515 			tlb->cleared_puds = 1;			\
516 		__tlb_remove_tlb_entry(tlb, ptep, address);	\
517 	} while (0)
518 
519 /**
520  * tlb_remove_pmd_tlb_entry - remember a pmd mapping for later tlb invalidation
521  * This is a nop so far, because only x86 needs it.
522  */
523 #ifndef __tlb_remove_pmd_tlb_entry
524 #define __tlb_remove_pmd_tlb_entry(tlb, pmdp, address) do {} while (0)
525 #endif
526 
527 #define tlb_remove_pmd_tlb_entry(tlb, pmdp, address)			\
528 	do {								\
529 		__tlb_adjust_range(tlb, address, HPAGE_PMD_SIZE);	\
530 		tlb->cleared_pmds = 1;					\
531 		__tlb_remove_pmd_tlb_entry(tlb, pmdp, address);		\
532 	} while (0)
533 
534 /**
535  * tlb_remove_pud_tlb_entry - remember a pud mapping for later tlb
536  * invalidation. This is a nop so far, because only x86 needs it.
537  */
538 #ifndef __tlb_remove_pud_tlb_entry
539 #define __tlb_remove_pud_tlb_entry(tlb, pudp, address) do {} while (0)
540 #endif
541 
542 #define tlb_remove_pud_tlb_entry(tlb, pudp, address)			\
543 	do {								\
544 		__tlb_adjust_range(tlb, address, HPAGE_PUD_SIZE);	\
545 		tlb->cleared_puds = 1;					\
546 		__tlb_remove_pud_tlb_entry(tlb, pudp, address);		\
547 	} while (0)
548 
549 /*
550  * For things like page tables caches (ie caching addresses "inside" the
551  * page tables, like x86 does), for legacy reasons, flushing an
552  * individual page had better flush the page table caches behind it. This
553  * is definitely how x86 works, for example. And if you have an
554  * architected non-legacy page table cache (which I'm not aware of
555  * anybody actually doing), you're going to have some architecturally
556  * explicit flushing for that, likely *separate* from a regular TLB entry
557  * flush, and thus you'd need more than just some range expansion..
558  *
559  * So if we ever find an architecture
560  * that would want something that odd, I think it is up to that
561  * architecture to do its own odd thing, not cause pain for others
562  * http://lkml.kernel.org/r/CA+55aFzBggoXtNXQeng5d_mRoDnaMBE5Y+URs+PHR67nUpMtaw@mail.gmail.com
563  *
564  * For now w.r.t page table cache, mark the range_size as PAGE_SIZE
565  */
566 
567 #ifndef pte_free_tlb
568 #define pte_free_tlb(tlb, ptep, address)			\
569 	do {							\
570 		__tlb_adjust_range(tlb, address, PAGE_SIZE);	\
571 		tlb->freed_tables = 1;				\
572 		tlb->cleared_pmds = 1;				\
573 		__pte_free_tlb(tlb, ptep, address);		\
574 	} while (0)
575 #endif
576 
577 #ifndef pmd_free_tlb
578 #define pmd_free_tlb(tlb, pmdp, address)			\
579 	do {							\
580 		__tlb_adjust_range(tlb, address, PAGE_SIZE);	\
581 		tlb->freed_tables = 1;				\
582 		tlb->cleared_puds = 1;				\
583 		__pmd_free_tlb(tlb, pmdp, address);		\
584 	} while (0)
585 #endif
586 
587 #ifndef __ARCH_HAS_4LEVEL_HACK
588 #ifndef pud_free_tlb
589 #define pud_free_tlb(tlb, pudp, address)			\
590 	do {							\
591 		__tlb_adjust_range(tlb, address, PAGE_SIZE);	\
592 		tlb->freed_tables = 1;				\
593 		tlb->cleared_p4ds = 1;				\
594 		__pud_free_tlb(tlb, pudp, address);		\
595 	} while (0)
596 #endif
597 #endif
598 
599 #ifndef __ARCH_HAS_5LEVEL_HACK
600 #ifndef p4d_free_tlb
601 #define p4d_free_tlb(tlb, pudp, address)			\
602 	do {							\
603 		__tlb_adjust_range(tlb, address, PAGE_SIZE);	\
604 		tlb->freed_tables = 1;				\
605 		__p4d_free_tlb(tlb, pudp, address);		\
606 	} while (0)
607 #endif
608 #endif
609 
610 #endif /* CONFIG_MMU */
611 
612 #endif /* _ASM_GENERIC__TLB_H */
613