1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012-2015 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7 #include <linux/compiler.h>
8 #include <linux/kvm_host.h>
9
10 #include <asm/kprobes.h>
11 #include <asm/kvm_asm.h>
12 #include <asm/kvm_emulate.h>
13 #include <asm/kvm_hyp.h>
14
15 /*
16 * Non-VHE: Both host and guest must save everything.
17 *
18 * VHE: Host and guest must save mdscr_el1 and sp_el0 (and the PC and pstate,
19 * which are handled as part of the el2 return state) on every switch.
20 * tpidr_el0 and tpidrro_el0 only need to be switched when going
21 * to host userspace or a different VCPU. EL1 registers only need to be
22 * switched when potentially going to run a different VCPU. The latter two
23 * classes are handled as part of kvm_arch_vcpu_load and kvm_arch_vcpu_put.
24 */
25
__sysreg_save_common_state(struct kvm_cpu_context * ctxt)26 static void __hyp_text __sysreg_save_common_state(struct kvm_cpu_context *ctxt)
27 {
28 ctxt->sys_regs[MDSCR_EL1] = read_sysreg(mdscr_el1);
29
30 /*
31 * The host arm64 Linux uses sp_el0 to point to 'current' and it must
32 * therefore be saved/restored on every entry/exit to/from the guest.
33 */
34 ctxt->gp_regs.regs.sp = read_sysreg(sp_el0);
35 }
36
__sysreg_save_user_state(struct kvm_cpu_context * ctxt)37 static void __hyp_text __sysreg_save_user_state(struct kvm_cpu_context *ctxt)
38 {
39 ctxt->sys_regs[TPIDR_EL0] = read_sysreg(tpidr_el0);
40 ctxt->sys_regs[TPIDRRO_EL0] = read_sysreg(tpidrro_el0);
41 }
42
__sysreg_save_el1_state(struct kvm_cpu_context * ctxt)43 static void __hyp_text __sysreg_save_el1_state(struct kvm_cpu_context *ctxt)
44 {
45 ctxt->sys_regs[CSSELR_EL1] = read_sysreg(csselr_el1);
46 ctxt->sys_regs[SCTLR_EL1] = read_sysreg_el1(SYS_SCTLR);
47 ctxt->sys_regs[ACTLR_EL1] = read_sysreg(actlr_el1);
48 ctxt->sys_regs[CPACR_EL1] = read_sysreg_el1(SYS_CPACR);
49 ctxt->sys_regs[TTBR0_EL1] = read_sysreg_el1(SYS_TTBR0);
50 ctxt->sys_regs[TTBR1_EL1] = read_sysreg_el1(SYS_TTBR1);
51 ctxt->sys_regs[TCR_EL1] = read_sysreg_el1(SYS_TCR);
52 ctxt->sys_regs[ESR_EL1] = read_sysreg_el1(SYS_ESR);
53 ctxt->sys_regs[AFSR0_EL1] = read_sysreg_el1(SYS_AFSR0);
54 ctxt->sys_regs[AFSR1_EL1] = read_sysreg_el1(SYS_AFSR1);
55 ctxt->sys_regs[FAR_EL1] = read_sysreg_el1(SYS_FAR);
56 ctxt->sys_regs[MAIR_EL1] = read_sysreg_el1(SYS_MAIR);
57 ctxt->sys_regs[VBAR_EL1] = read_sysreg_el1(SYS_VBAR);
58 ctxt->sys_regs[CONTEXTIDR_EL1] = read_sysreg_el1(SYS_CONTEXTIDR);
59 ctxt->sys_regs[AMAIR_EL1] = read_sysreg_el1(SYS_AMAIR);
60 ctxt->sys_regs[CNTKCTL_EL1] = read_sysreg_el1(SYS_CNTKCTL);
61 ctxt->sys_regs[PAR_EL1] = read_sysreg(par_el1);
62 ctxt->sys_regs[TPIDR_EL1] = read_sysreg(tpidr_el1);
63
64 ctxt->gp_regs.sp_el1 = read_sysreg(sp_el1);
65 ctxt->gp_regs.elr_el1 = read_sysreg_el1(SYS_ELR);
66 ctxt->gp_regs.spsr[KVM_SPSR_EL1]= read_sysreg_el1(SYS_SPSR);
67 }
68
__sysreg_save_el2_return_state(struct kvm_cpu_context * ctxt)69 static void __hyp_text __sysreg_save_el2_return_state(struct kvm_cpu_context *ctxt)
70 {
71 ctxt->gp_regs.regs.pc = read_sysreg_el2(SYS_ELR);
72 ctxt->gp_regs.regs.pstate = read_sysreg_el2(SYS_SPSR);
73
74 if (cpus_have_const_cap(ARM64_HAS_RAS_EXTN))
75 ctxt->sys_regs[DISR_EL1] = read_sysreg_s(SYS_VDISR_EL2);
76 }
77
__sysreg_save_state_nvhe(struct kvm_cpu_context * ctxt)78 void __hyp_text __sysreg_save_state_nvhe(struct kvm_cpu_context *ctxt)
79 {
80 __sysreg_save_el1_state(ctxt);
81 __sysreg_save_common_state(ctxt);
82 __sysreg_save_user_state(ctxt);
83 __sysreg_save_el2_return_state(ctxt);
84 }
85
sysreg_save_host_state_vhe(struct kvm_cpu_context * ctxt)86 void sysreg_save_host_state_vhe(struct kvm_cpu_context *ctxt)
87 {
88 __sysreg_save_common_state(ctxt);
89 }
90 NOKPROBE_SYMBOL(sysreg_save_host_state_vhe);
91
sysreg_save_guest_state_vhe(struct kvm_cpu_context * ctxt)92 void sysreg_save_guest_state_vhe(struct kvm_cpu_context *ctxt)
93 {
94 __sysreg_save_common_state(ctxt);
95 __sysreg_save_el2_return_state(ctxt);
96 }
97 NOKPROBE_SYMBOL(sysreg_save_guest_state_vhe);
98
__sysreg_restore_common_state(struct kvm_cpu_context * ctxt)99 static void __hyp_text __sysreg_restore_common_state(struct kvm_cpu_context *ctxt)
100 {
101 write_sysreg(ctxt->sys_regs[MDSCR_EL1], mdscr_el1);
102
103 /*
104 * The host arm64 Linux uses sp_el0 to point to 'current' and it must
105 * therefore be saved/restored on every entry/exit to/from the guest.
106 */
107 write_sysreg(ctxt->gp_regs.regs.sp, sp_el0);
108 }
109
__sysreg_restore_user_state(struct kvm_cpu_context * ctxt)110 static void __hyp_text __sysreg_restore_user_state(struct kvm_cpu_context *ctxt)
111 {
112 write_sysreg(ctxt->sys_regs[TPIDR_EL0], tpidr_el0);
113 write_sysreg(ctxt->sys_regs[TPIDRRO_EL0], tpidrro_el0);
114 }
115
__sysreg_restore_el1_state(struct kvm_cpu_context * ctxt)116 static void __hyp_text __sysreg_restore_el1_state(struct kvm_cpu_context *ctxt)
117 {
118 write_sysreg(ctxt->sys_regs[MPIDR_EL1], vmpidr_el2);
119 write_sysreg(ctxt->sys_regs[CSSELR_EL1], csselr_el1);
120 write_sysreg_el1(ctxt->sys_regs[SCTLR_EL1], SYS_SCTLR);
121 write_sysreg(ctxt->sys_regs[ACTLR_EL1], actlr_el1);
122 write_sysreg_el1(ctxt->sys_regs[CPACR_EL1], SYS_CPACR);
123 write_sysreg_el1(ctxt->sys_regs[TTBR0_EL1], SYS_TTBR0);
124 write_sysreg_el1(ctxt->sys_regs[TTBR1_EL1], SYS_TTBR1);
125 write_sysreg_el1(ctxt->sys_regs[TCR_EL1], SYS_TCR);
126 write_sysreg_el1(ctxt->sys_regs[ESR_EL1], SYS_ESR);
127 write_sysreg_el1(ctxt->sys_regs[AFSR0_EL1], SYS_AFSR0);
128 write_sysreg_el1(ctxt->sys_regs[AFSR1_EL1], SYS_AFSR1);
129 write_sysreg_el1(ctxt->sys_regs[FAR_EL1], SYS_FAR);
130 write_sysreg_el1(ctxt->sys_regs[MAIR_EL1], SYS_MAIR);
131 write_sysreg_el1(ctxt->sys_regs[VBAR_EL1], SYS_VBAR);
132 write_sysreg_el1(ctxt->sys_regs[CONTEXTIDR_EL1],SYS_CONTEXTIDR);
133 write_sysreg_el1(ctxt->sys_regs[AMAIR_EL1], SYS_AMAIR);
134 write_sysreg_el1(ctxt->sys_regs[CNTKCTL_EL1], SYS_CNTKCTL);
135 write_sysreg(ctxt->sys_regs[PAR_EL1], par_el1);
136 write_sysreg(ctxt->sys_regs[TPIDR_EL1], tpidr_el1);
137
138 write_sysreg(ctxt->gp_regs.sp_el1, sp_el1);
139 write_sysreg_el1(ctxt->gp_regs.elr_el1, SYS_ELR);
140 write_sysreg_el1(ctxt->gp_regs.spsr[KVM_SPSR_EL1],SYS_SPSR);
141 }
142
143 static void __hyp_text
__sysreg_restore_el2_return_state(struct kvm_cpu_context * ctxt)144 __sysreg_restore_el2_return_state(struct kvm_cpu_context *ctxt)
145 {
146 u64 pstate = ctxt->gp_regs.regs.pstate;
147 u64 mode = pstate & PSR_AA32_MODE_MASK;
148
149 /*
150 * Safety check to ensure we're setting the CPU up to enter the guest
151 * in a less privileged mode.
152 *
153 * If we are attempting a return to EL2 or higher in AArch64 state,
154 * program SPSR_EL2 with M=EL2h and the IL bit set which ensures that
155 * we'll take an illegal exception state exception immediately after
156 * the ERET to the guest. Attempts to return to AArch32 Hyp will
157 * result in an illegal exception return because EL2's execution state
158 * is determined by SCR_EL3.RW.
159 */
160 if (!(mode & PSR_MODE32_BIT) && mode >= PSR_MODE_EL2t)
161 pstate = PSR_MODE_EL2h | PSR_IL_BIT;
162
163 write_sysreg_el2(ctxt->gp_regs.regs.pc, SYS_ELR);
164 write_sysreg_el2(pstate, SYS_SPSR);
165
166 if (cpus_have_const_cap(ARM64_HAS_RAS_EXTN))
167 write_sysreg_s(ctxt->sys_regs[DISR_EL1], SYS_VDISR_EL2);
168 }
169
__sysreg_restore_state_nvhe(struct kvm_cpu_context * ctxt)170 void __hyp_text __sysreg_restore_state_nvhe(struct kvm_cpu_context *ctxt)
171 {
172 __sysreg_restore_el1_state(ctxt);
173 __sysreg_restore_common_state(ctxt);
174 __sysreg_restore_user_state(ctxt);
175 __sysreg_restore_el2_return_state(ctxt);
176 }
177
sysreg_restore_host_state_vhe(struct kvm_cpu_context * ctxt)178 void sysreg_restore_host_state_vhe(struct kvm_cpu_context *ctxt)
179 {
180 __sysreg_restore_common_state(ctxt);
181 }
182 NOKPROBE_SYMBOL(sysreg_restore_host_state_vhe);
183
sysreg_restore_guest_state_vhe(struct kvm_cpu_context * ctxt)184 void sysreg_restore_guest_state_vhe(struct kvm_cpu_context *ctxt)
185 {
186 __sysreg_restore_common_state(ctxt);
187 __sysreg_restore_el2_return_state(ctxt);
188 }
189 NOKPROBE_SYMBOL(sysreg_restore_guest_state_vhe);
190
__sysreg32_save_state(struct kvm_vcpu * vcpu)191 void __hyp_text __sysreg32_save_state(struct kvm_vcpu *vcpu)
192 {
193 u64 *spsr, *sysreg;
194
195 if (!vcpu_el1_is_32bit(vcpu))
196 return;
197
198 spsr = vcpu->arch.ctxt.gp_regs.spsr;
199 sysreg = vcpu->arch.ctxt.sys_regs;
200
201 spsr[KVM_SPSR_ABT] = read_sysreg(spsr_abt);
202 spsr[KVM_SPSR_UND] = read_sysreg(spsr_und);
203 spsr[KVM_SPSR_IRQ] = read_sysreg(spsr_irq);
204 spsr[KVM_SPSR_FIQ] = read_sysreg(spsr_fiq);
205
206 sysreg[DACR32_EL2] = read_sysreg(dacr32_el2);
207 sysreg[IFSR32_EL2] = read_sysreg(ifsr32_el2);
208
209 if (has_vhe() || vcpu->arch.flags & KVM_ARM64_DEBUG_DIRTY)
210 sysreg[DBGVCR32_EL2] = read_sysreg(dbgvcr32_el2);
211 }
212
__sysreg32_restore_state(struct kvm_vcpu * vcpu)213 void __hyp_text __sysreg32_restore_state(struct kvm_vcpu *vcpu)
214 {
215 u64 *spsr, *sysreg;
216
217 if (!vcpu_el1_is_32bit(vcpu))
218 return;
219
220 spsr = vcpu->arch.ctxt.gp_regs.spsr;
221 sysreg = vcpu->arch.ctxt.sys_regs;
222
223 write_sysreg(spsr[KVM_SPSR_ABT], spsr_abt);
224 write_sysreg(spsr[KVM_SPSR_UND], spsr_und);
225 write_sysreg(spsr[KVM_SPSR_IRQ], spsr_irq);
226 write_sysreg(spsr[KVM_SPSR_FIQ], spsr_fiq);
227
228 write_sysreg(sysreg[DACR32_EL2], dacr32_el2);
229 write_sysreg(sysreg[IFSR32_EL2], ifsr32_el2);
230
231 if (has_vhe() || vcpu->arch.flags & KVM_ARM64_DEBUG_DIRTY)
232 write_sysreg(sysreg[DBGVCR32_EL2], dbgvcr32_el2);
233 }
234
235 /**
236 * kvm_vcpu_load_sysregs - Load guest system registers to the physical CPU
237 *
238 * @vcpu: The VCPU pointer
239 *
240 * Load system registers that do not affect the host's execution, for
241 * example EL1 system registers on a VHE system where the host kernel
242 * runs at EL2. This function is called from KVM's vcpu_load() function
243 * and loading system register state early avoids having to load them on
244 * every entry to the VM.
245 */
kvm_vcpu_load_sysregs(struct kvm_vcpu * vcpu)246 void kvm_vcpu_load_sysregs(struct kvm_vcpu *vcpu)
247 {
248 struct kvm_cpu_context *host_ctxt = vcpu->arch.host_cpu_context;
249 struct kvm_cpu_context *guest_ctxt = &vcpu->arch.ctxt;
250
251 if (!has_vhe())
252 return;
253
254 __sysreg_save_user_state(host_ctxt);
255
256 /*
257 * Load guest EL1 and user state
258 *
259 * We must restore the 32-bit state before the sysregs, thanks
260 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
261 */
262 __sysreg32_restore_state(vcpu);
263 __sysreg_restore_user_state(guest_ctxt);
264 __sysreg_restore_el1_state(guest_ctxt);
265
266 vcpu->arch.sysregs_loaded_on_cpu = true;
267
268 activate_traps_vhe_load(vcpu);
269 }
270
271 /**
272 * kvm_vcpu_put_sysregs - Restore host system registers to the physical CPU
273 *
274 * @vcpu: The VCPU pointer
275 *
276 * Save guest system registers that do not affect the host's execution, for
277 * example EL1 system registers on a VHE system where the host kernel
278 * runs at EL2. This function is called from KVM's vcpu_put() function
279 * and deferring saving system register state until we're no longer running the
280 * VCPU avoids having to save them on every exit from the VM.
281 */
kvm_vcpu_put_sysregs(struct kvm_vcpu * vcpu)282 void kvm_vcpu_put_sysregs(struct kvm_vcpu *vcpu)
283 {
284 struct kvm_cpu_context *host_ctxt = vcpu->arch.host_cpu_context;
285 struct kvm_cpu_context *guest_ctxt = &vcpu->arch.ctxt;
286
287 if (!has_vhe())
288 return;
289
290 deactivate_traps_vhe_put();
291
292 __sysreg_save_el1_state(guest_ctxt);
293 __sysreg_save_user_state(guest_ctxt);
294 __sysreg32_save_state(vcpu);
295
296 /* Restore host user state */
297 __sysreg_restore_user_state(host_ctxt);
298
299 vcpu->arch.sysregs_loaded_on_cpu = false;
300 }
301
__kvm_enable_ssbs(void)302 void __hyp_text __kvm_enable_ssbs(void)
303 {
304 u64 tmp;
305
306 asm volatile(
307 "mrs %0, sctlr_el2\n"
308 "orr %0, %0, %1\n"
309 "msr sctlr_el2, %0"
310 : "=&r" (tmp) : "L" (SCTLR_ELx_DSSBS));
311 }
312