1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2002-2005, Instant802 Networks, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2013-2014 Intel Mobile Communications GmbH
6 * Copyright (C) 2015 - 2017 Intel Deutschland GmbH
7 * Copyright (C) 2018-2021 Intel Corporation
8 */
9
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/etherdevice.h>
13 #include <linux/netdevice.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/skbuff.h>
17 #include <linux/if_arp.h>
18 #include <linux/timer.h>
19 #include <linux/rtnetlink.h>
20
21 #include <net/codel.h>
22 #include <net/mac80211.h>
23 #include "ieee80211_i.h"
24 #include "driver-ops.h"
25 #include "rate.h"
26 #include "sta_info.h"
27 #include "debugfs_sta.h"
28 #include "mesh.h"
29 #include "wme.h"
30
31 /**
32 * DOC: STA information lifetime rules
33 *
34 * STA info structures (&struct sta_info) are managed in a hash table
35 * for faster lookup and a list for iteration. They are managed using
36 * RCU, i.e. access to the list and hash table is protected by RCU.
37 *
38 * Upon allocating a STA info structure with sta_info_alloc(), the caller
39 * owns that structure. It must then insert it into the hash table using
40 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter
41 * case (which acquires an rcu read section but must not be called from
42 * within one) will the pointer still be valid after the call. Note that
43 * the caller may not do much with the STA info before inserting it, in
44 * particular, it may not start any mesh peer link management or add
45 * encryption keys.
46 *
47 * When the insertion fails (sta_info_insert()) returns non-zero), the
48 * structure will have been freed by sta_info_insert()!
49 *
50 * Station entries are added by mac80211 when you establish a link with a
51 * peer. This means different things for the different type of interfaces
52 * we support. For a regular station this mean we add the AP sta when we
53 * receive an association response from the AP. For IBSS this occurs when
54 * get to know about a peer on the same IBSS. For WDS we add the sta for
55 * the peer immediately upon device open. When using AP mode we add stations
56 * for each respective station upon request from userspace through nl80211.
57 *
58 * In order to remove a STA info structure, various sta_info_destroy_*()
59 * calls are available.
60 *
61 * There is no concept of ownership on a STA entry, each structure is
62 * owned by the global hash table/list until it is removed. All users of
63 * the structure need to be RCU protected so that the structure won't be
64 * freed before they are done using it.
65 */
66
67 static const struct rhashtable_params sta_rht_params = {
68 .nelem_hint = 3, /* start small */
69 .automatic_shrinking = true,
70 .head_offset = offsetof(struct sta_info, hash_node),
71 .key_offset = offsetof(struct sta_info, addr),
72 .key_len = ETH_ALEN,
73 .max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE,
74 };
75
76 /* Caller must hold local->sta_mtx */
sta_info_hash_del(struct ieee80211_local * local,struct sta_info * sta)77 static int sta_info_hash_del(struct ieee80211_local *local,
78 struct sta_info *sta)
79 {
80 return rhltable_remove(&local->sta_hash, &sta->hash_node,
81 sta_rht_params);
82 }
83
__cleanup_single_sta(struct sta_info * sta)84 static void __cleanup_single_sta(struct sta_info *sta)
85 {
86 int ac, i;
87 struct tid_ampdu_tx *tid_tx;
88 struct ieee80211_sub_if_data *sdata = sta->sdata;
89 struct ieee80211_local *local = sdata->local;
90 struct ps_data *ps;
91
92 if (test_sta_flag(sta, WLAN_STA_PS_STA) ||
93 test_sta_flag(sta, WLAN_STA_PS_DRIVER) ||
94 test_sta_flag(sta, WLAN_STA_PS_DELIVER)) {
95 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
96 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
97 ps = &sdata->bss->ps;
98 else if (ieee80211_vif_is_mesh(&sdata->vif))
99 ps = &sdata->u.mesh.ps;
100 else
101 return;
102
103 clear_sta_flag(sta, WLAN_STA_PS_STA);
104 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
105 clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
106
107 atomic_dec(&ps->num_sta_ps);
108 }
109
110 if (sta->sta.txq[0]) {
111 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
112 struct txq_info *txqi;
113
114 if (!sta->sta.txq[i])
115 continue;
116
117 txqi = to_txq_info(sta->sta.txq[i]);
118
119 ieee80211_txq_purge(local, txqi);
120 }
121 }
122
123 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
124 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]);
125 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]);
126 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]);
127 }
128
129 if (ieee80211_vif_is_mesh(&sdata->vif))
130 mesh_sta_cleanup(sta);
131
132 cancel_work_sync(&sta->drv_deliver_wk);
133
134 /*
135 * Destroy aggregation state here. It would be nice to wait for the
136 * driver to finish aggregation stop and then clean up, but for now
137 * drivers have to handle aggregation stop being requested, followed
138 * directly by station destruction.
139 */
140 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
141 kfree(sta->ampdu_mlme.tid_start_tx[i]);
142 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]);
143 if (!tid_tx)
144 continue;
145 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending);
146 kfree(tid_tx);
147 }
148 }
149
cleanup_single_sta(struct sta_info * sta)150 static void cleanup_single_sta(struct sta_info *sta)
151 {
152 struct ieee80211_sub_if_data *sdata = sta->sdata;
153 struct ieee80211_local *local = sdata->local;
154
155 __cleanup_single_sta(sta);
156 sta_info_free(local, sta);
157 }
158
sta_info_hash_lookup(struct ieee80211_local * local,const u8 * addr)159 struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local,
160 const u8 *addr)
161 {
162 return rhltable_lookup(&local->sta_hash, addr, sta_rht_params);
163 }
164
165 /* protected by RCU */
sta_info_get(struct ieee80211_sub_if_data * sdata,const u8 * addr)166 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata,
167 const u8 *addr)
168 {
169 struct ieee80211_local *local = sdata->local;
170 struct rhlist_head *tmp;
171 struct sta_info *sta;
172
173 rcu_read_lock();
174 for_each_sta_info(local, addr, sta, tmp) {
175 if (sta->sdata == sdata) {
176 rcu_read_unlock();
177 /* this is safe as the caller must already hold
178 * another rcu read section or the mutex
179 */
180 return sta;
181 }
182 }
183 rcu_read_unlock();
184 return NULL;
185 }
186
187 /*
188 * Get sta info either from the specified interface
189 * or from one of its vlans
190 */
sta_info_get_bss(struct ieee80211_sub_if_data * sdata,const u8 * addr)191 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata,
192 const u8 *addr)
193 {
194 struct ieee80211_local *local = sdata->local;
195 struct rhlist_head *tmp;
196 struct sta_info *sta;
197
198 rcu_read_lock();
199 for_each_sta_info(local, addr, sta, tmp) {
200 if (sta->sdata == sdata ||
201 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) {
202 rcu_read_unlock();
203 /* this is safe as the caller must already hold
204 * another rcu read section or the mutex
205 */
206 return sta;
207 }
208 }
209 rcu_read_unlock();
210 return NULL;
211 }
212
sta_info_get_by_addrs(struct ieee80211_local * local,const u8 * sta_addr,const u8 * vif_addr)213 struct sta_info *sta_info_get_by_addrs(struct ieee80211_local *local,
214 const u8 *sta_addr, const u8 *vif_addr)
215 {
216 struct rhlist_head *tmp;
217 struct sta_info *sta;
218
219 for_each_sta_info(local, sta_addr, sta, tmp) {
220 if (ether_addr_equal(vif_addr, sta->sdata->vif.addr))
221 return sta;
222 }
223
224 return NULL;
225 }
226
sta_info_get_by_idx(struct ieee80211_sub_if_data * sdata,int idx)227 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata,
228 int idx)
229 {
230 struct ieee80211_local *local = sdata->local;
231 struct sta_info *sta;
232 int i = 0;
233
234 list_for_each_entry_rcu(sta, &local->sta_list, list,
235 lockdep_is_held(&local->sta_mtx)) {
236 if (sdata != sta->sdata)
237 continue;
238 if (i < idx) {
239 ++i;
240 continue;
241 }
242 return sta;
243 }
244
245 return NULL;
246 }
247
248 /**
249 * sta_info_free - free STA
250 *
251 * @local: pointer to the global information
252 * @sta: STA info to free
253 *
254 * This function must undo everything done by sta_info_alloc()
255 * that may happen before sta_info_insert(). It may only be
256 * called when sta_info_insert() has not been attempted (and
257 * if that fails, the station is freed anyway.)
258 */
sta_info_free(struct ieee80211_local * local,struct sta_info * sta)259 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta)
260 {
261 /*
262 * If we had used sta_info_pre_move_state() then we might not
263 * have gone through the state transitions down again, so do
264 * it here now (and warn if it's inserted).
265 *
266 * This will clear state such as fast TX/RX that may have been
267 * allocated during state transitions.
268 */
269 while (sta->sta_state > IEEE80211_STA_NONE) {
270 int ret;
271
272 WARN_ON_ONCE(test_sta_flag(sta, WLAN_STA_INSERTED));
273
274 ret = sta_info_move_state(sta, sta->sta_state - 1);
275 if (WARN_ONCE(ret, "sta_info_move_state() returned %d\n", ret))
276 break;
277 }
278
279 if (sta->rate_ctrl)
280 rate_control_free_sta(sta);
281
282 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr);
283
284 if (sta->sta.txq[0])
285 kfree(to_txq_info(sta->sta.txq[0]));
286 kfree(rcu_dereference_raw(sta->sta.rates));
287 #ifdef CONFIG_MAC80211_MESH
288 kfree(sta->mesh);
289 #endif
290 free_percpu(sta->pcpu_rx_stats);
291 kfree(sta);
292 }
293
294 /* Caller must hold local->sta_mtx */
sta_info_hash_add(struct ieee80211_local * local,struct sta_info * sta)295 static int sta_info_hash_add(struct ieee80211_local *local,
296 struct sta_info *sta)
297 {
298 return rhltable_insert(&local->sta_hash, &sta->hash_node,
299 sta_rht_params);
300 }
301
sta_deliver_ps_frames(struct work_struct * wk)302 static void sta_deliver_ps_frames(struct work_struct *wk)
303 {
304 struct sta_info *sta;
305
306 sta = container_of(wk, struct sta_info, drv_deliver_wk);
307
308 if (sta->dead)
309 return;
310
311 local_bh_disable();
312 if (!test_sta_flag(sta, WLAN_STA_PS_STA))
313 ieee80211_sta_ps_deliver_wakeup(sta);
314 else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL))
315 ieee80211_sta_ps_deliver_poll_response(sta);
316 else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD))
317 ieee80211_sta_ps_deliver_uapsd(sta);
318 local_bh_enable();
319 }
320
sta_prepare_rate_control(struct ieee80211_local * local,struct sta_info * sta,gfp_t gfp)321 static int sta_prepare_rate_control(struct ieee80211_local *local,
322 struct sta_info *sta, gfp_t gfp)
323 {
324 if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL))
325 return 0;
326
327 sta->rate_ctrl = local->rate_ctrl;
328 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl,
329 sta, gfp);
330 if (!sta->rate_ctrl_priv)
331 return -ENOMEM;
332
333 return 0;
334 }
335
sta_info_alloc(struct ieee80211_sub_if_data * sdata,const u8 * addr,gfp_t gfp)336 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata,
337 const u8 *addr, gfp_t gfp)
338 {
339 struct ieee80211_local *local = sdata->local;
340 struct ieee80211_hw *hw = &local->hw;
341 struct sta_info *sta;
342 int i;
343
344 sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp);
345 if (!sta)
346 return NULL;
347
348 if (ieee80211_hw_check(hw, USES_RSS)) {
349 sta->pcpu_rx_stats =
350 alloc_percpu_gfp(struct ieee80211_sta_rx_stats, gfp);
351 if (!sta->pcpu_rx_stats)
352 goto free;
353 }
354
355 spin_lock_init(&sta->lock);
356 spin_lock_init(&sta->ps_lock);
357 INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames);
358 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work);
359 mutex_init(&sta->ampdu_mlme.mtx);
360 #ifdef CONFIG_MAC80211_MESH
361 if (ieee80211_vif_is_mesh(&sdata->vif)) {
362 sta->mesh = kzalloc(sizeof(*sta->mesh), gfp);
363 if (!sta->mesh)
364 goto free;
365 sta->mesh->plink_sta = sta;
366 spin_lock_init(&sta->mesh->plink_lock);
367 if (ieee80211_vif_is_mesh(&sdata->vif) &&
368 !sdata->u.mesh.user_mpm)
369 timer_setup(&sta->mesh->plink_timer, mesh_plink_timer,
370 0);
371 sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE;
372 }
373 #endif
374
375 memcpy(sta->addr, addr, ETH_ALEN);
376 memcpy(sta->sta.addr, addr, ETH_ALEN);
377 sta->sta.max_rx_aggregation_subframes =
378 local->hw.max_rx_aggregation_subframes;
379
380 /* Extended Key ID needs to install keys for keyid 0 and 1 Rx-only.
381 * The Tx path starts to use a key as soon as the key slot ptk_idx
382 * references to is not NULL. To not use the initial Rx-only key
383 * prematurely for Tx initialize ptk_idx to an impossible PTK keyid
384 * which always will refer to a NULL key.
385 */
386 BUILD_BUG_ON(ARRAY_SIZE(sta->ptk) <= INVALID_PTK_KEYIDX);
387 sta->ptk_idx = INVALID_PTK_KEYIDX;
388
389 sta->local = local;
390 sta->sdata = sdata;
391 sta->rx_stats.last_rx = jiffies;
392
393 u64_stats_init(&sta->rx_stats.syncp);
394
395 ieee80211_init_frag_cache(&sta->frags);
396
397 sta->sta_state = IEEE80211_STA_NONE;
398
399 /* Mark TID as unreserved */
400 sta->reserved_tid = IEEE80211_TID_UNRESERVED;
401
402 sta->last_connected = ktime_get_seconds();
403 ewma_signal_init(&sta->rx_stats_avg.signal);
404 ewma_avg_signal_init(&sta->status_stats.avg_ack_signal);
405 for (i = 0; i < ARRAY_SIZE(sta->rx_stats_avg.chain_signal); i++)
406 ewma_signal_init(&sta->rx_stats_avg.chain_signal[i]);
407
408 if (local->ops->wake_tx_queue) {
409 void *txq_data;
410 int size = sizeof(struct txq_info) +
411 ALIGN(hw->txq_data_size, sizeof(void *));
412
413 txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp);
414 if (!txq_data)
415 goto free;
416
417 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
418 struct txq_info *txq = txq_data + i * size;
419
420 /* might not do anything for the bufferable MMPDU TXQ */
421 ieee80211_txq_init(sdata, sta, txq, i);
422 }
423 }
424
425 if (sta_prepare_rate_control(local, sta, gfp))
426 goto free_txq;
427
428
429 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
430 skb_queue_head_init(&sta->ps_tx_buf[i]);
431 skb_queue_head_init(&sta->tx_filtered[i]);
432 init_airtime_info(&sta->airtime[i], &local->airtime[i]);
433 }
434
435 for (i = 0; i < IEEE80211_NUM_TIDS; i++)
436 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX);
437
438 for (i = 0; i < NUM_NL80211_BANDS; i++) {
439 u32 mandatory = 0;
440 int r;
441
442 if (!hw->wiphy->bands[i])
443 continue;
444
445 switch (i) {
446 case NL80211_BAND_2GHZ:
447 /*
448 * We use both here, even if we cannot really know for
449 * sure the station will support both, but the only use
450 * for this is when we don't know anything yet and send
451 * management frames, and then we'll pick the lowest
452 * possible rate anyway.
453 * If we don't include _G here, we cannot find a rate
454 * in P2P, and thus trigger the WARN_ONCE() in rate.c
455 */
456 mandatory = IEEE80211_RATE_MANDATORY_B |
457 IEEE80211_RATE_MANDATORY_G;
458 break;
459 case NL80211_BAND_5GHZ:
460 mandatory = IEEE80211_RATE_MANDATORY_A;
461 break;
462 case NL80211_BAND_60GHZ:
463 WARN_ON(1);
464 mandatory = 0;
465 break;
466 }
467
468 for (r = 0; r < hw->wiphy->bands[i]->n_bitrates; r++) {
469 struct ieee80211_rate *rate;
470
471 rate = &hw->wiphy->bands[i]->bitrates[r];
472
473 if (!(rate->flags & mandatory))
474 continue;
475 sta->sta.supp_rates[i] |= BIT(r);
476 }
477 }
478
479 sta->sta.smps_mode = IEEE80211_SMPS_OFF;
480 if (sdata->vif.type == NL80211_IFTYPE_AP ||
481 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
482 struct ieee80211_supported_band *sband;
483 u8 smps;
484
485 sband = ieee80211_get_sband(sdata);
486 if (!sband)
487 goto free_txq;
488
489 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >>
490 IEEE80211_HT_CAP_SM_PS_SHIFT;
491 /*
492 * Assume that hostapd advertises our caps in the beacon and
493 * this is the known_smps_mode for a station that just assciated
494 */
495 switch (smps) {
496 case WLAN_HT_SMPS_CONTROL_DISABLED:
497 sta->known_smps_mode = IEEE80211_SMPS_OFF;
498 break;
499 case WLAN_HT_SMPS_CONTROL_STATIC:
500 sta->known_smps_mode = IEEE80211_SMPS_STATIC;
501 break;
502 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
503 sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC;
504 break;
505 default:
506 WARN_ON(1);
507 }
508 }
509
510 sta->sta.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA;
511
512 sta->cparams.ce_threshold = CODEL_DISABLED_THRESHOLD;
513 sta->cparams.target = MS2TIME(20);
514 sta->cparams.interval = MS2TIME(100);
515 sta->cparams.ecn = true;
516
517 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr);
518
519 return sta;
520
521 free_txq:
522 if (sta->sta.txq[0])
523 kfree(to_txq_info(sta->sta.txq[0]));
524 free:
525 free_percpu(sta->pcpu_rx_stats);
526 #ifdef CONFIG_MAC80211_MESH
527 kfree(sta->mesh);
528 #endif
529 kfree(sta);
530 return NULL;
531 }
532
sta_info_insert_check(struct sta_info * sta)533 static int sta_info_insert_check(struct sta_info *sta)
534 {
535 struct ieee80211_sub_if_data *sdata = sta->sdata;
536
537 /*
538 * Can't be a WARN_ON because it can be triggered through a race:
539 * something inserts a STA (on one CPU) without holding the RTNL
540 * and another CPU turns off the net device.
541 */
542 if (unlikely(!ieee80211_sdata_running(sdata)))
543 return -ENETDOWN;
544
545 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) ||
546 !is_valid_ether_addr(sta->sta.addr)))
547 return -EINVAL;
548
549 /* The RCU read lock is required by rhashtable due to
550 * asynchronous resize/rehash. We also require the mutex
551 * for correctness.
552 */
553 rcu_read_lock();
554 lockdep_assert_held(&sdata->local->sta_mtx);
555 if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) &&
556 ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) {
557 rcu_read_unlock();
558 return -ENOTUNIQ;
559 }
560 rcu_read_unlock();
561
562 return 0;
563 }
564
sta_info_insert_drv_state(struct ieee80211_local * local,struct ieee80211_sub_if_data * sdata,struct sta_info * sta)565 static int sta_info_insert_drv_state(struct ieee80211_local *local,
566 struct ieee80211_sub_if_data *sdata,
567 struct sta_info *sta)
568 {
569 enum ieee80211_sta_state state;
570 int err = 0;
571
572 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) {
573 err = drv_sta_state(local, sdata, sta, state, state + 1);
574 if (err)
575 break;
576 }
577
578 if (!err) {
579 /*
580 * Drivers using legacy sta_add/sta_remove callbacks only
581 * get uploaded set to true after sta_add is called.
582 */
583 if (!local->ops->sta_add)
584 sta->uploaded = true;
585 return 0;
586 }
587
588 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
589 sdata_info(sdata,
590 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n",
591 sta->sta.addr, state + 1, err);
592 err = 0;
593 }
594
595 /* unwind on error */
596 for (; state > IEEE80211_STA_NOTEXIST; state--)
597 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1));
598
599 return err;
600 }
601
602 static void
ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data * sdata)603 ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata)
604 {
605 struct ieee80211_local *local = sdata->local;
606 bool allow_p2p_go_ps = sdata->vif.p2p;
607 struct sta_info *sta;
608
609 rcu_read_lock();
610 list_for_each_entry_rcu(sta, &local->sta_list, list) {
611 if (sdata != sta->sdata ||
612 !test_sta_flag(sta, WLAN_STA_ASSOC))
613 continue;
614 if (!sta->sta.support_p2p_ps) {
615 allow_p2p_go_ps = false;
616 break;
617 }
618 }
619 rcu_read_unlock();
620
621 if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) {
622 sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps;
623 ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_P2P_PS);
624 }
625 }
626
627 /*
628 * should be called with sta_mtx locked
629 * this function replaces the mutex lock
630 * with a RCU lock
631 */
sta_info_insert_finish(struct sta_info * sta)632 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU)
633 {
634 struct ieee80211_local *local = sta->local;
635 struct ieee80211_sub_if_data *sdata = sta->sdata;
636 struct station_info *sinfo = NULL;
637 int err = 0;
638
639 lockdep_assert_held(&local->sta_mtx);
640
641 /* check if STA exists already */
642 if (sta_info_get_bss(sdata, sta->sta.addr)) {
643 err = -EEXIST;
644 goto out_err;
645 }
646
647 sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL);
648 if (!sinfo) {
649 err = -ENOMEM;
650 goto out_err;
651 }
652
653 local->num_sta++;
654 local->sta_generation++;
655 smp_mb();
656
657 /* simplify things and don't accept BA sessions yet */
658 set_sta_flag(sta, WLAN_STA_BLOCK_BA);
659
660 /* make the station visible */
661 err = sta_info_hash_add(local, sta);
662 if (err)
663 goto out_drop_sta;
664
665 list_add_tail_rcu(&sta->list, &local->sta_list);
666
667 /* notify driver */
668 err = sta_info_insert_drv_state(local, sdata, sta);
669 if (err)
670 goto out_remove;
671
672 set_sta_flag(sta, WLAN_STA_INSERTED);
673
674 if (sta->sta_state >= IEEE80211_STA_ASSOC) {
675 ieee80211_recalc_min_chandef(sta->sdata);
676 if (!sta->sta.support_p2p_ps)
677 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
678 }
679
680 /* accept BA sessions now */
681 clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
682
683 ieee80211_sta_debugfs_add(sta);
684 rate_control_add_sta_debugfs(sta);
685
686 sinfo->generation = local->sta_generation;
687 cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
688 kfree(sinfo);
689
690 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr);
691
692 /* move reference to rcu-protected */
693 rcu_read_lock();
694 mutex_unlock(&local->sta_mtx);
695
696 if (ieee80211_vif_is_mesh(&sdata->vif))
697 mesh_accept_plinks_update(sdata);
698
699 return 0;
700 out_remove:
701 sta_info_hash_del(local, sta);
702 list_del_rcu(&sta->list);
703 out_drop_sta:
704 local->num_sta--;
705 synchronize_net();
706 cleanup_single_sta(sta);
707 out_err:
708 mutex_unlock(&local->sta_mtx);
709 kfree(sinfo);
710 rcu_read_lock();
711 return err;
712 }
713
sta_info_insert_rcu(struct sta_info * sta)714 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU)
715 {
716 struct ieee80211_local *local = sta->local;
717 int err;
718
719 might_sleep();
720
721 mutex_lock(&local->sta_mtx);
722
723 err = sta_info_insert_check(sta);
724 if (err) {
725 sta_info_free(local, sta);
726 mutex_unlock(&local->sta_mtx);
727 rcu_read_lock();
728 return err;
729 }
730
731 return sta_info_insert_finish(sta);
732 }
733
sta_info_insert(struct sta_info * sta)734 int sta_info_insert(struct sta_info *sta)
735 {
736 int err = sta_info_insert_rcu(sta);
737
738 rcu_read_unlock();
739
740 return err;
741 }
742
__bss_tim_set(u8 * tim,u16 id)743 static inline void __bss_tim_set(u8 *tim, u16 id)
744 {
745 /*
746 * This format has been mandated by the IEEE specifications,
747 * so this line may not be changed to use the __set_bit() format.
748 */
749 tim[id / 8] |= (1 << (id % 8));
750 }
751
__bss_tim_clear(u8 * tim,u16 id)752 static inline void __bss_tim_clear(u8 *tim, u16 id)
753 {
754 /*
755 * This format has been mandated by the IEEE specifications,
756 * so this line may not be changed to use the __clear_bit() format.
757 */
758 tim[id / 8] &= ~(1 << (id % 8));
759 }
760
__bss_tim_get(u8 * tim,u16 id)761 static inline bool __bss_tim_get(u8 *tim, u16 id)
762 {
763 /*
764 * This format has been mandated by the IEEE specifications,
765 * so this line may not be changed to use the test_bit() format.
766 */
767 return tim[id / 8] & (1 << (id % 8));
768 }
769
ieee80211_tids_for_ac(int ac)770 static unsigned long ieee80211_tids_for_ac(int ac)
771 {
772 /* If we ever support TIDs > 7, this obviously needs to be adjusted */
773 switch (ac) {
774 case IEEE80211_AC_VO:
775 return BIT(6) | BIT(7);
776 case IEEE80211_AC_VI:
777 return BIT(4) | BIT(5);
778 case IEEE80211_AC_BE:
779 return BIT(0) | BIT(3);
780 case IEEE80211_AC_BK:
781 return BIT(1) | BIT(2);
782 default:
783 WARN_ON(1);
784 return 0;
785 }
786 }
787
__sta_info_recalc_tim(struct sta_info * sta,bool ignore_pending)788 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending)
789 {
790 struct ieee80211_local *local = sta->local;
791 struct ps_data *ps;
792 bool indicate_tim = false;
793 u8 ignore_for_tim = sta->sta.uapsd_queues;
794 int ac;
795 u16 id = sta->sta.aid;
796
797 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
798 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
799 if (WARN_ON_ONCE(!sta->sdata->bss))
800 return;
801
802 ps = &sta->sdata->bss->ps;
803 #ifdef CONFIG_MAC80211_MESH
804 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) {
805 ps = &sta->sdata->u.mesh.ps;
806 #endif
807 } else {
808 return;
809 }
810
811 /* No need to do anything if the driver does all */
812 if (ieee80211_hw_check(&local->hw, AP_LINK_PS) && !local->ops->set_tim)
813 return;
814
815 if (sta->dead)
816 goto done;
817
818 /*
819 * If all ACs are delivery-enabled then we should build
820 * the TIM bit for all ACs anyway; if only some are then
821 * we ignore those and build the TIM bit using only the
822 * non-enabled ones.
823 */
824 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1)
825 ignore_for_tim = 0;
826
827 if (ignore_pending)
828 ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1;
829
830 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
831 unsigned long tids;
832
833 if (ignore_for_tim & ieee80211_ac_to_qos_mask[ac])
834 continue;
835
836 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) ||
837 !skb_queue_empty(&sta->ps_tx_buf[ac]);
838 if (indicate_tim)
839 break;
840
841 tids = ieee80211_tids_for_ac(ac);
842
843 indicate_tim |=
844 sta->driver_buffered_tids & tids;
845 indicate_tim |=
846 sta->txq_buffered_tids & tids;
847 }
848
849 done:
850 spin_lock_bh(&local->tim_lock);
851
852 if (indicate_tim == __bss_tim_get(ps->tim, id))
853 goto out_unlock;
854
855 if (indicate_tim)
856 __bss_tim_set(ps->tim, id);
857 else
858 __bss_tim_clear(ps->tim, id);
859
860 if (local->ops->set_tim && !WARN_ON(sta->dead)) {
861 local->tim_in_locked_section = true;
862 drv_set_tim(local, &sta->sta, indicate_tim);
863 local->tim_in_locked_section = false;
864 }
865
866 out_unlock:
867 spin_unlock_bh(&local->tim_lock);
868 }
869
sta_info_recalc_tim(struct sta_info * sta)870 void sta_info_recalc_tim(struct sta_info *sta)
871 {
872 __sta_info_recalc_tim(sta, false);
873 }
874
sta_info_buffer_expired(struct sta_info * sta,struct sk_buff * skb)875 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb)
876 {
877 struct ieee80211_tx_info *info;
878 int timeout;
879
880 if (!skb)
881 return false;
882
883 info = IEEE80211_SKB_CB(skb);
884
885 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */
886 timeout = (sta->listen_interval *
887 sta->sdata->vif.bss_conf.beacon_int *
888 32 / 15625) * HZ;
889 if (timeout < STA_TX_BUFFER_EXPIRE)
890 timeout = STA_TX_BUFFER_EXPIRE;
891 return time_after(jiffies, info->control.jiffies + timeout);
892 }
893
894
sta_info_cleanup_expire_buffered_ac(struct ieee80211_local * local,struct sta_info * sta,int ac)895 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local,
896 struct sta_info *sta, int ac)
897 {
898 unsigned long flags;
899 struct sk_buff *skb;
900
901 /*
902 * First check for frames that should expire on the filtered
903 * queue. Frames here were rejected by the driver and are on
904 * a separate queue to avoid reordering with normal PS-buffered
905 * frames. They also aren't accounted for right now in the
906 * total_ps_buffered counter.
907 */
908 for (;;) {
909 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
910 skb = skb_peek(&sta->tx_filtered[ac]);
911 if (sta_info_buffer_expired(sta, skb))
912 skb = __skb_dequeue(&sta->tx_filtered[ac]);
913 else
914 skb = NULL;
915 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
916
917 /*
918 * Frames are queued in order, so if this one
919 * hasn't expired yet we can stop testing. If
920 * we actually reached the end of the queue we
921 * also need to stop, of course.
922 */
923 if (!skb)
924 break;
925 ieee80211_free_txskb(&local->hw, skb);
926 }
927
928 /*
929 * Now also check the normal PS-buffered queue, this will
930 * only find something if the filtered queue was emptied
931 * since the filtered frames are all before the normal PS
932 * buffered frames.
933 */
934 for (;;) {
935 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
936 skb = skb_peek(&sta->ps_tx_buf[ac]);
937 if (sta_info_buffer_expired(sta, skb))
938 skb = __skb_dequeue(&sta->ps_tx_buf[ac]);
939 else
940 skb = NULL;
941 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
942
943 /*
944 * frames are queued in order, so if this one
945 * hasn't expired yet (or we reached the end of
946 * the queue) we can stop testing
947 */
948 if (!skb)
949 break;
950
951 local->total_ps_buffered--;
952 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n",
953 sta->sta.addr);
954 ieee80211_free_txskb(&local->hw, skb);
955 }
956
957 /*
958 * Finally, recalculate the TIM bit for this station -- it might
959 * now be clear because the station was too slow to retrieve its
960 * frames.
961 */
962 sta_info_recalc_tim(sta);
963
964 /*
965 * Return whether there are any frames still buffered, this is
966 * used to check whether the cleanup timer still needs to run,
967 * if there are no frames we don't need to rearm the timer.
968 */
969 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) &&
970 skb_queue_empty(&sta->tx_filtered[ac]));
971 }
972
sta_info_cleanup_expire_buffered(struct ieee80211_local * local,struct sta_info * sta)973 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local,
974 struct sta_info *sta)
975 {
976 bool have_buffered = false;
977 int ac;
978
979 /* This is only necessary for stations on BSS/MBSS interfaces */
980 if (!sta->sdata->bss &&
981 !ieee80211_vif_is_mesh(&sta->sdata->vif))
982 return false;
983
984 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
985 have_buffered |=
986 sta_info_cleanup_expire_buffered_ac(local, sta, ac);
987
988 return have_buffered;
989 }
990
__sta_info_destroy_part1(struct sta_info * sta)991 static int __must_check __sta_info_destroy_part1(struct sta_info *sta)
992 {
993 struct ieee80211_local *local;
994 struct ieee80211_sub_if_data *sdata;
995 int ret;
996
997 might_sleep();
998
999 if (!sta)
1000 return -ENOENT;
1001
1002 local = sta->local;
1003 sdata = sta->sdata;
1004
1005 lockdep_assert_held(&local->sta_mtx);
1006
1007 /*
1008 * Before removing the station from the driver and
1009 * rate control, it might still start new aggregation
1010 * sessions -- block that to make sure the tear-down
1011 * will be sufficient.
1012 */
1013 set_sta_flag(sta, WLAN_STA_BLOCK_BA);
1014 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA);
1015
1016 /*
1017 * Before removing the station from the driver there might be pending
1018 * rx frames on RSS queues sent prior to the disassociation - wait for
1019 * all such frames to be processed.
1020 */
1021 drv_sync_rx_queues(local, sta);
1022
1023 ret = sta_info_hash_del(local, sta);
1024 if (WARN_ON(ret))
1025 return ret;
1026
1027 /*
1028 * for TDLS peers, make sure to return to the base channel before
1029 * removal.
1030 */
1031 if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) {
1032 drv_tdls_cancel_channel_switch(local, sdata, &sta->sta);
1033 clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL);
1034 }
1035
1036 list_del_rcu(&sta->list);
1037 sta->removed = true;
1038
1039 drv_sta_pre_rcu_remove(local, sta->sdata, sta);
1040
1041 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1042 rcu_access_pointer(sdata->u.vlan.sta) == sta)
1043 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL);
1044
1045 return 0;
1046 }
1047
__sta_info_destroy_part2(struct sta_info * sta)1048 static void __sta_info_destroy_part2(struct sta_info *sta)
1049 {
1050 struct ieee80211_local *local = sta->local;
1051 struct ieee80211_sub_if_data *sdata = sta->sdata;
1052 struct station_info *sinfo;
1053 int ret;
1054
1055 /*
1056 * NOTE: This assumes at least synchronize_net() was done
1057 * after _part1 and before _part2!
1058 */
1059
1060 might_sleep();
1061 lockdep_assert_held(&local->sta_mtx);
1062
1063 if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
1064 ret = sta_info_move_state(sta, IEEE80211_STA_ASSOC);
1065 WARN_ON_ONCE(ret);
1066 }
1067
1068 /* now keys can no longer be reached */
1069 ieee80211_free_sta_keys(local, sta);
1070
1071 /* disable TIM bit - last chance to tell driver */
1072 __sta_info_recalc_tim(sta, true);
1073
1074 sta->dead = true;
1075
1076 local->num_sta--;
1077 local->sta_generation++;
1078
1079 while (sta->sta_state > IEEE80211_STA_NONE) {
1080 ret = sta_info_move_state(sta, sta->sta_state - 1);
1081 if (ret) {
1082 WARN_ON_ONCE(1);
1083 break;
1084 }
1085 }
1086
1087 if (sta->uploaded) {
1088 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE,
1089 IEEE80211_STA_NOTEXIST);
1090 WARN_ON_ONCE(ret != 0);
1091 }
1092
1093 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr);
1094
1095 sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL);
1096 if (sinfo)
1097 sta_set_sinfo(sta, sinfo, true);
1098 cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
1099 kfree(sinfo);
1100
1101 ieee80211_sta_debugfs_remove(sta);
1102
1103 ieee80211_destroy_frag_cache(&sta->frags);
1104
1105 cleanup_single_sta(sta);
1106 }
1107
__sta_info_destroy(struct sta_info * sta)1108 int __must_check __sta_info_destroy(struct sta_info *sta)
1109 {
1110 int err = __sta_info_destroy_part1(sta);
1111
1112 if (err)
1113 return err;
1114
1115 synchronize_net();
1116
1117 __sta_info_destroy_part2(sta);
1118
1119 return 0;
1120 }
1121
sta_info_destroy_addr(struct ieee80211_sub_if_data * sdata,const u8 * addr)1122 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr)
1123 {
1124 struct sta_info *sta;
1125 int ret;
1126
1127 mutex_lock(&sdata->local->sta_mtx);
1128 sta = sta_info_get(sdata, addr);
1129 ret = __sta_info_destroy(sta);
1130 mutex_unlock(&sdata->local->sta_mtx);
1131
1132 return ret;
1133 }
1134
sta_info_destroy_addr_bss(struct ieee80211_sub_if_data * sdata,const u8 * addr)1135 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata,
1136 const u8 *addr)
1137 {
1138 struct sta_info *sta;
1139 int ret;
1140
1141 mutex_lock(&sdata->local->sta_mtx);
1142 sta = sta_info_get_bss(sdata, addr);
1143 ret = __sta_info_destroy(sta);
1144 mutex_unlock(&sdata->local->sta_mtx);
1145
1146 return ret;
1147 }
1148
sta_info_cleanup(struct timer_list * t)1149 static void sta_info_cleanup(struct timer_list *t)
1150 {
1151 struct ieee80211_local *local = from_timer(local, t, sta_cleanup);
1152 struct sta_info *sta;
1153 bool timer_needed = false;
1154
1155 rcu_read_lock();
1156 list_for_each_entry_rcu(sta, &local->sta_list, list)
1157 if (sta_info_cleanup_expire_buffered(local, sta))
1158 timer_needed = true;
1159 rcu_read_unlock();
1160
1161 if (local->quiescing)
1162 return;
1163
1164 if (!timer_needed)
1165 return;
1166
1167 mod_timer(&local->sta_cleanup,
1168 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL));
1169 }
1170
sta_info_init(struct ieee80211_local * local)1171 int sta_info_init(struct ieee80211_local *local)
1172 {
1173 int err;
1174
1175 err = rhltable_init(&local->sta_hash, &sta_rht_params);
1176 if (err)
1177 return err;
1178
1179 spin_lock_init(&local->tim_lock);
1180 mutex_init(&local->sta_mtx);
1181 INIT_LIST_HEAD(&local->sta_list);
1182
1183 timer_setup(&local->sta_cleanup, sta_info_cleanup, 0);
1184 return 0;
1185 }
1186
sta_info_stop(struct ieee80211_local * local)1187 void sta_info_stop(struct ieee80211_local *local)
1188 {
1189 del_timer_sync(&local->sta_cleanup);
1190 rhltable_destroy(&local->sta_hash);
1191 }
1192
1193
__sta_info_flush(struct ieee80211_sub_if_data * sdata,bool vlans)1194 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans)
1195 {
1196 struct ieee80211_local *local = sdata->local;
1197 struct sta_info *sta, *tmp;
1198 LIST_HEAD(free_list);
1199 int ret = 0;
1200
1201 might_sleep();
1202
1203 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP);
1204 WARN_ON(vlans && !sdata->bss);
1205
1206 mutex_lock(&local->sta_mtx);
1207 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1208 if (sdata == sta->sdata ||
1209 (vlans && sdata->bss == sta->sdata->bss)) {
1210 if (!WARN_ON(__sta_info_destroy_part1(sta)))
1211 list_add(&sta->free_list, &free_list);
1212 ret++;
1213 }
1214 }
1215
1216 if (!list_empty(&free_list)) {
1217 synchronize_net();
1218 list_for_each_entry_safe(sta, tmp, &free_list, free_list)
1219 __sta_info_destroy_part2(sta);
1220 }
1221 mutex_unlock(&local->sta_mtx);
1222
1223 return ret;
1224 }
1225
ieee80211_sta_expire(struct ieee80211_sub_if_data * sdata,unsigned long exp_time)1226 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata,
1227 unsigned long exp_time)
1228 {
1229 struct ieee80211_local *local = sdata->local;
1230 struct sta_info *sta, *tmp;
1231
1232 mutex_lock(&local->sta_mtx);
1233
1234 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1235 unsigned long last_active = ieee80211_sta_last_active(sta);
1236
1237 if (sdata != sta->sdata)
1238 continue;
1239
1240 if (time_is_before_jiffies(last_active + exp_time)) {
1241 sta_dbg(sta->sdata, "expiring inactive STA %pM\n",
1242 sta->sta.addr);
1243
1244 if (ieee80211_vif_is_mesh(&sdata->vif) &&
1245 test_sta_flag(sta, WLAN_STA_PS_STA))
1246 atomic_dec(&sdata->u.mesh.ps.num_sta_ps);
1247
1248 WARN_ON(__sta_info_destroy(sta));
1249 }
1250 }
1251
1252 mutex_unlock(&local->sta_mtx);
1253 }
1254
ieee80211_find_sta_by_ifaddr(struct ieee80211_hw * hw,const u8 * addr,const u8 * localaddr)1255 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw,
1256 const u8 *addr,
1257 const u8 *localaddr)
1258 {
1259 struct ieee80211_local *local = hw_to_local(hw);
1260 struct rhlist_head *tmp;
1261 struct sta_info *sta;
1262
1263 /*
1264 * Just return a random station if localaddr is NULL
1265 * ... first in list.
1266 */
1267 for_each_sta_info(local, addr, sta, tmp) {
1268 if (localaddr &&
1269 !ether_addr_equal(sta->sdata->vif.addr, localaddr))
1270 continue;
1271 if (!sta->uploaded)
1272 return NULL;
1273 return &sta->sta;
1274 }
1275
1276 return NULL;
1277 }
1278 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr);
1279
ieee80211_find_sta(struct ieee80211_vif * vif,const u8 * addr)1280 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif,
1281 const u8 *addr)
1282 {
1283 struct sta_info *sta;
1284
1285 if (!vif)
1286 return NULL;
1287
1288 sta = sta_info_get_bss(vif_to_sdata(vif), addr);
1289 if (!sta)
1290 return NULL;
1291
1292 if (!sta->uploaded)
1293 return NULL;
1294
1295 return &sta->sta;
1296 }
1297 EXPORT_SYMBOL(ieee80211_find_sta);
1298
1299 /* powersave support code */
ieee80211_sta_ps_deliver_wakeup(struct sta_info * sta)1300 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta)
1301 {
1302 struct ieee80211_sub_if_data *sdata = sta->sdata;
1303 struct ieee80211_local *local = sdata->local;
1304 struct sk_buff_head pending;
1305 int filtered = 0, buffered = 0, ac, i;
1306 unsigned long flags;
1307 struct ps_data *ps;
1308
1309 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1310 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
1311 u.ap);
1312
1313 if (sdata->vif.type == NL80211_IFTYPE_AP)
1314 ps = &sdata->bss->ps;
1315 else if (ieee80211_vif_is_mesh(&sdata->vif))
1316 ps = &sdata->u.mesh.ps;
1317 else
1318 return;
1319
1320 clear_sta_flag(sta, WLAN_STA_SP);
1321
1322 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1);
1323 sta->driver_buffered_tids = 0;
1324 sta->txq_buffered_tids = 0;
1325
1326 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1327 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta);
1328
1329 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
1330 if (!sta->sta.txq[i] || !txq_has_queue(sta->sta.txq[i]))
1331 continue;
1332
1333 schedule_and_wake_txq(local, to_txq_info(sta->sta.txq[i]));
1334 }
1335
1336 skb_queue_head_init(&pending);
1337
1338 /* sync with ieee80211_tx_h_unicast_ps_buf */
1339 spin_lock(&sta->ps_lock);
1340 /* Send all buffered frames to the station */
1341 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1342 int count = skb_queue_len(&pending), tmp;
1343
1344 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
1345 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending);
1346 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
1347 tmp = skb_queue_len(&pending);
1348 filtered += tmp - count;
1349 count = tmp;
1350
1351 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
1352 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending);
1353 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
1354 tmp = skb_queue_len(&pending);
1355 buffered += tmp - count;
1356 }
1357
1358 ieee80211_add_pending_skbs(local, &pending);
1359
1360 /* now we're no longer in the deliver code */
1361 clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
1362
1363 /* The station might have polled and then woken up before we responded,
1364 * so clear these flags now to avoid them sticking around.
1365 */
1366 clear_sta_flag(sta, WLAN_STA_PSPOLL);
1367 clear_sta_flag(sta, WLAN_STA_UAPSD);
1368 spin_unlock(&sta->ps_lock);
1369
1370 atomic_dec(&ps->num_sta_ps);
1371
1372 local->total_ps_buffered -= buffered;
1373
1374 sta_info_recalc_tim(sta);
1375
1376 ps_dbg(sdata,
1377 "STA %pM aid %d sending %d filtered/%d PS frames since STA woke up\n",
1378 sta->sta.addr, sta->sta.aid, filtered, buffered);
1379
1380 ieee80211_check_fast_xmit(sta);
1381 }
1382
ieee80211_send_null_response(struct sta_info * sta,int tid,enum ieee80211_frame_release_type reason,bool call_driver,bool more_data)1383 static void ieee80211_send_null_response(struct sta_info *sta, int tid,
1384 enum ieee80211_frame_release_type reason,
1385 bool call_driver, bool more_data)
1386 {
1387 struct ieee80211_sub_if_data *sdata = sta->sdata;
1388 struct ieee80211_local *local = sdata->local;
1389 struct ieee80211_qos_hdr *nullfunc;
1390 struct sk_buff *skb;
1391 int size = sizeof(*nullfunc);
1392 __le16 fc;
1393 bool qos = sta->sta.wme;
1394 struct ieee80211_tx_info *info;
1395 struct ieee80211_chanctx_conf *chanctx_conf;
1396
1397 if (qos) {
1398 fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1399 IEEE80211_STYPE_QOS_NULLFUNC |
1400 IEEE80211_FCTL_FROMDS);
1401 } else {
1402 size -= 2;
1403 fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1404 IEEE80211_STYPE_NULLFUNC |
1405 IEEE80211_FCTL_FROMDS);
1406 }
1407
1408 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size);
1409 if (!skb)
1410 return;
1411
1412 skb_reserve(skb, local->hw.extra_tx_headroom);
1413
1414 nullfunc = skb_put(skb, size);
1415 nullfunc->frame_control = fc;
1416 nullfunc->duration_id = 0;
1417 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN);
1418 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN);
1419 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN);
1420 nullfunc->seq_ctrl = 0;
1421
1422 skb->priority = tid;
1423 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]);
1424 if (qos) {
1425 nullfunc->qos_ctrl = cpu_to_le16(tid);
1426
1427 if (reason == IEEE80211_FRAME_RELEASE_UAPSD) {
1428 nullfunc->qos_ctrl |=
1429 cpu_to_le16(IEEE80211_QOS_CTL_EOSP);
1430 if (more_data)
1431 nullfunc->frame_control |=
1432 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1433 }
1434 }
1435
1436 info = IEEE80211_SKB_CB(skb);
1437
1438 /*
1439 * Tell TX path to send this frame even though the
1440 * STA may still remain is PS mode after this frame
1441 * exchange. Also set EOSP to indicate this packet
1442 * ends the poll/service period.
1443 */
1444 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER |
1445 IEEE80211_TX_STATUS_EOSP |
1446 IEEE80211_TX_CTL_REQ_TX_STATUS;
1447
1448 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1449
1450 if (call_driver)
1451 drv_allow_buffered_frames(local, sta, BIT(tid), 1,
1452 reason, false);
1453
1454 skb->dev = sdata->dev;
1455
1456 rcu_read_lock();
1457 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1458 if (WARN_ON(!chanctx_conf)) {
1459 rcu_read_unlock();
1460 kfree_skb(skb);
1461 return;
1462 }
1463
1464 info->band = chanctx_conf->def.chan->band;
1465 ieee80211_xmit(sdata, sta, skb);
1466 rcu_read_unlock();
1467 }
1468
find_highest_prio_tid(unsigned long tids)1469 static int find_highest_prio_tid(unsigned long tids)
1470 {
1471 /* lower 3 TIDs aren't ordered perfectly */
1472 if (tids & 0xF8)
1473 return fls(tids) - 1;
1474 /* TID 0 is BE just like TID 3 */
1475 if (tids & BIT(0))
1476 return 0;
1477 return fls(tids) - 1;
1478 }
1479
1480 /* Indicates if the MORE_DATA bit should be set in the last
1481 * frame obtained by ieee80211_sta_ps_get_frames.
1482 * Note that driver_release_tids is relevant only if
1483 * reason = IEEE80211_FRAME_RELEASE_PSPOLL
1484 */
1485 static bool
ieee80211_sta_ps_more_data(struct sta_info * sta,u8 ignored_acs,enum ieee80211_frame_release_type reason,unsigned long driver_release_tids)1486 ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs,
1487 enum ieee80211_frame_release_type reason,
1488 unsigned long driver_release_tids)
1489 {
1490 int ac;
1491
1492 /* If the driver has data on more than one TID then
1493 * certainly there's more data if we release just a
1494 * single frame now (from a single TID). This will
1495 * only happen for PS-Poll.
1496 */
1497 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL &&
1498 hweight16(driver_release_tids) > 1)
1499 return true;
1500
1501 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1502 if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1503 continue;
1504
1505 if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1506 !skb_queue_empty(&sta->ps_tx_buf[ac]))
1507 return true;
1508 }
1509
1510 return false;
1511 }
1512
1513 static void
ieee80211_sta_ps_get_frames(struct sta_info * sta,int n_frames,u8 ignored_acs,enum ieee80211_frame_release_type reason,struct sk_buff_head * frames,unsigned long * driver_release_tids)1514 ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs,
1515 enum ieee80211_frame_release_type reason,
1516 struct sk_buff_head *frames,
1517 unsigned long *driver_release_tids)
1518 {
1519 struct ieee80211_sub_if_data *sdata = sta->sdata;
1520 struct ieee80211_local *local = sdata->local;
1521 int ac;
1522
1523 /* Get response frame(s) and more data bit for the last one. */
1524 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1525 unsigned long tids;
1526
1527 if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1528 continue;
1529
1530 tids = ieee80211_tids_for_ac(ac);
1531
1532 /* if we already have frames from software, then we can't also
1533 * release from hardware queues
1534 */
1535 if (skb_queue_empty(frames)) {
1536 *driver_release_tids |=
1537 sta->driver_buffered_tids & tids;
1538 *driver_release_tids |= sta->txq_buffered_tids & tids;
1539 }
1540
1541 if (!*driver_release_tids) {
1542 struct sk_buff *skb;
1543
1544 while (n_frames > 0) {
1545 skb = skb_dequeue(&sta->tx_filtered[ac]);
1546 if (!skb) {
1547 skb = skb_dequeue(
1548 &sta->ps_tx_buf[ac]);
1549 if (skb)
1550 local->total_ps_buffered--;
1551 }
1552 if (!skb)
1553 break;
1554 n_frames--;
1555 __skb_queue_tail(frames, skb);
1556 }
1557 }
1558
1559 /* If we have more frames buffered on this AC, then abort the
1560 * loop since we can't send more data from other ACs before
1561 * the buffered frames from this.
1562 */
1563 if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1564 !skb_queue_empty(&sta->ps_tx_buf[ac]))
1565 break;
1566 }
1567 }
1568
1569 static void
ieee80211_sta_ps_deliver_response(struct sta_info * sta,int n_frames,u8 ignored_acs,enum ieee80211_frame_release_type reason)1570 ieee80211_sta_ps_deliver_response(struct sta_info *sta,
1571 int n_frames, u8 ignored_acs,
1572 enum ieee80211_frame_release_type reason)
1573 {
1574 struct ieee80211_sub_if_data *sdata = sta->sdata;
1575 struct ieee80211_local *local = sdata->local;
1576 unsigned long driver_release_tids = 0;
1577 struct sk_buff_head frames;
1578 bool more_data;
1579
1580 /* Service or PS-Poll period starts */
1581 set_sta_flag(sta, WLAN_STA_SP);
1582
1583 __skb_queue_head_init(&frames);
1584
1585 ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason,
1586 &frames, &driver_release_tids);
1587
1588 more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids);
1589
1590 if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL)
1591 driver_release_tids =
1592 BIT(find_highest_prio_tid(driver_release_tids));
1593
1594 if (skb_queue_empty(&frames) && !driver_release_tids) {
1595 int tid, ac;
1596
1597 /*
1598 * For PS-Poll, this can only happen due to a race condition
1599 * when we set the TIM bit and the station notices it, but
1600 * before it can poll for the frame we expire it.
1601 *
1602 * For uAPSD, this is said in the standard (11.2.1.5 h):
1603 * At each unscheduled SP for a non-AP STA, the AP shall
1604 * attempt to transmit at least one MSDU or MMPDU, but no
1605 * more than the value specified in the Max SP Length field
1606 * in the QoS Capability element from delivery-enabled ACs,
1607 * that are destined for the non-AP STA.
1608 *
1609 * Since we have no other MSDU/MMPDU, transmit a QoS null frame.
1610 */
1611
1612 /* This will evaluate to 1, 3, 5 or 7. */
1613 for (ac = IEEE80211_AC_VO; ac < IEEE80211_NUM_ACS; ac++)
1614 if (!(ignored_acs & ieee80211_ac_to_qos_mask[ac]))
1615 break;
1616 tid = 7 - 2 * ac;
1617
1618 ieee80211_send_null_response(sta, tid, reason, true, false);
1619 } else if (!driver_release_tids) {
1620 struct sk_buff_head pending;
1621 struct sk_buff *skb;
1622 int num = 0;
1623 u16 tids = 0;
1624 bool need_null = false;
1625
1626 skb_queue_head_init(&pending);
1627
1628 while ((skb = __skb_dequeue(&frames))) {
1629 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1630 struct ieee80211_hdr *hdr = (void *) skb->data;
1631 u8 *qoshdr = NULL;
1632
1633 num++;
1634
1635 /*
1636 * Tell TX path to send this frame even though the
1637 * STA may still remain is PS mode after this frame
1638 * exchange.
1639 */
1640 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER;
1641 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1642
1643 /*
1644 * Use MoreData flag to indicate whether there are
1645 * more buffered frames for this STA
1646 */
1647 if (more_data || !skb_queue_empty(&frames))
1648 hdr->frame_control |=
1649 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1650 else
1651 hdr->frame_control &=
1652 cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
1653
1654 if (ieee80211_is_data_qos(hdr->frame_control) ||
1655 ieee80211_is_qos_nullfunc(hdr->frame_control))
1656 qoshdr = ieee80211_get_qos_ctl(hdr);
1657
1658 tids |= BIT(skb->priority);
1659
1660 __skb_queue_tail(&pending, skb);
1661
1662 /* end service period after last frame or add one */
1663 if (!skb_queue_empty(&frames))
1664 continue;
1665
1666 if (reason != IEEE80211_FRAME_RELEASE_UAPSD) {
1667 /* for PS-Poll, there's only one frame */
1668 info->flags |= IEEE80211_TX_STATUS_EOSP |
1669 IEEE80211_TX_CTL_REQ_TX_STATUS;
1670 break;
1671 }
1672
1673 /* For uAPSD, things are a bit more complicated. If the
1674 * last frame has a QoS header (i.e. is a QoS-data or
1675 * QoS-nulldata frame) then just set the EOSP bit there
1676 * and be done.
1677 * If the frame doesn't have a QoS header (which means
1678 * it should be a bufferable MMPDU) then we can't set
1679 * the EOSP bit in the QoS header; add a QoS-nulldata
1680 * frame to the list to send it after the MMPDU.
1681 *
1682 * Note that this code is only in the mac80211-release
1683 * code path, we assume that the driver will not buffer
1684 * anything but QoS-data frames, or if it does, will
1685 * create the QoS-nulldata frame by itself if needed.
1686 *
1687 * Cf. 802.11-2012 10.2.1.10 (c).
1688 */
1689 if (qoshdr) {
1690 *qoshdr |= IEEE80211_QOS_CTL_EOSP;
1691
1692 info->flags |= IEEE80211_TX_STATUS_EOSP |
1693 IEEE80211_TX_CTL_REQ_TX_STATUS;
1694 } else {
1695 /* The standard isn't completely clear on this
1696 * as it says the more-data bit should be set
1697 * if there are more BUs. The QoS-Null frame
1698 * we're about to send isn't buffered yet, we
1699 * only create it below, but let's pretend it
1700 * was buffered just in case some clients only
1701 * expect more-data=0 when eosp=1.
1702 */
1703 hdr->frame_control |=
1704 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1705 need_null = true;
1706 num++;
1707 }
1708 break;
1709 }
1710
1711 drv_allow_buffered_frames(local, sta, tids, num,
1712 reason, more_data);
1713
1714 ieee80211_add_pending_skbs(local, &pending);
1715
1716 if (need_null)
1717 ieee80211_send_null_response(
1718 sta, find_highest_prio_tid(tids),
1719 reason, false, false);
1720
1721 sta_info_recalc_tim(sta);
1722 } else {
1723 int tid;
1724
1725 /*
1726 * We need to release a frame that is buffered somewhere in the
1727 * driver ... it'll have to handle that.
1728 * Note that the driver also has to check the number of frames
1729 * on the TIDs we're releasing from - if there are more than
1730 * n_frames it has to set the more-data bit (if we didn't ask
1731 * it to set it anyway due to other buffered frames); if there
1732 * are fewer than n_frames it has to make sure to adjust that
1733 * to allow the service period to end properly.
1734 */
1735 drv_release_buffered_frames(local, sta, driver_release_tids,
1736 n_frames, reason, more_data);
1737
1738 /*
1739 * Note that we don't recalculate the TIM bit here as it would
1740 * most likely have no effect at all unless the driver told us
1741 * that the TID(s) became empty before returning here from the
1742 * release function.
1743 * Either way, however, when the driver tells us that the TID(s)
1744 * became empty or we find that a txq became empty, we'll do the
1745 * TIM recalculation.
1746 */
1747
1748 if (!sta->sta.txq[0])
1749 return;
1750
1751 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1752 if (!sta->sta.txq[tid] ||
1753 !(driver_release_tids & BIT(tid)) ||
1754 txq_has_queue(sta->sta.txq[tid]))
1755 continue;
1756
1757 sta_info_recalc_tim(sta);
1758 break;
1759 }
1760 }
1761 }
1762
ieee80211_sta_ps_deliver_poll_response(struct sta_info * sta)1763 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta)
1764 {
1765 u8 ignore_for_response = sta->sta.uapsd_queues;
1766
1767 /*
1768 * If all ACs are delivery-enabled then we should reply
1769 * from any of them, if only some are enabled we reply
1770 * only from the non-enabled ones.
1771 */
1772 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1)
1773 ignore_for_response = 0;
1774
1775 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response,
1776 IEEE80211_FRAME_RELEASE_PSPOLL);
1777 }
1778
ieee80211_sta_ps_deliver_uapsd(struct sta_info * sta)1779 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta)
1780 {
1781 int n_frames = sta->sta.max_sp;
1782 u8 delivery_enabled = sta->sta.uapsd_queues;
1783
1784 /*
1785 * If we ever grow support for TSPEC this might happen if
1786 * the TSPEC update from hostapd comes in between a trigger
1787 * frame setting WLAN_STA_UAPSD in the RX path and this
1788 * actually getting called.
1789 */
1790 if (!delivery_enabled)
1791 return;
1792
1793 switch (sta->sta.max_sp) {
1794 case 1:
1795 n_frames = 2;
1796 break;
1797 case 2:
1798 n_frames = 4;
1799 break;
1800 case 3:
1801 n_frames = 6;
1802 break;
1803 case 0:
1804 /* XXX: what is a good value? */
1805 n_frames = 128;
1806 break;
1807 }
1808
1809 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled,
1810 IEEE80211_FRAME_RELEASE_UAPSD);
1811 }
1812
ieee80211_sta_block_awake(struct ieee80211_hw * hw,struct ieee80211_sta * pubsta,bool block)1813 void ieee80211_sta_block_awake(struct ieee80211_hw *hw,
1814 struct ieee80211_sta *pubsta, bool block)
1815 {
1816 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1817
1818 trace_api_sta_block_awake(sta->local, pubsta, block);
1819
1820 if (block) {
1821 set_sta_flag(sta, WLAN_STA_PS_DRIVER);
1822 ieee80211_clear_fast_xmit(sta);
1823 return;
1824 }
1825
1826 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1827 return;
1828
1829 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) {
1830 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1831 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1832 ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1833 } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) ||
1834 test_sta_flag(sta, WLAN_STA_UAPSD)) {
1835 /* must be asleep in this case */
1836 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1837 ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1838 } else {
1839 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1840 ieee80211_check_fast_xmit(sta);
1841 }
1842 }
1843 EXPORT_SYMBOL(ieee80211_sta_block_awake);
1844
ieee80211_sta_eosp(struct ieee80211_sta * pubsta)1845 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta)
1846 {
1847 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1848 struct ieee80211_local *local = sta->local;
1849
1850 trace_api_eosp(local, pubsta);
1851
1852 clear_sta_flag(sta, WLAN_STA_SP);
1853 }
1854 EXPORT_SYMBOL(ieee80211_sta_eosp);
1855
ieee80211_send_eosp_nullfunc(struct ieee80211_sta * pubsta,int tid)1856 void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid)
1857 {
1858 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1859 enum ieee80211_frame_release_type reason;
1860 bool more_data;
1861
1862 trace_api_send_eosp_nullfunc(sta->local, pubsta, tid);
1863
1864 reason = IEEE80211_FRAME_RELEASE_UAPSD;
1865 more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues,
1866 reason, 0);
1867
1868 ieee80211_send_null_response(sta, tid, reason, false, more_data);
1869 }
1870 EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc);
1871
ieee80211_sta_set_buffered(struct ieee80211_sta * pubsta,u8 tid,bool buffered)1872 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta,
1873 u8 tid, bool buffered)
1874 {
1875 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1876
1877 if (WARN_ON(tid >= IEEE80211_NUM_TIDS))
1878 return;
1879
1880 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered);
1881
1882 if (buffered)
1883 set_bit(tid, &sta->driver_buffered_tids);
1884 else
1885 clear_bit(tid, &sta->driver_buffered_tids);
1886
1887 sta_info_recalc_tim(sta);
1888 }
1889 EXPORT_SYMBOL(ieee80211_sta_set_buffered);
1890
ieee80211_register_airtime(struct ieee80211_txq * txq,u32 tx_airtime,u32 rx_airtime)1891 void ieee80211_register_airtime(struct ieee80211_txq *txq,
1892 u32 tx_airtime, u32 rx_airtime)
1893 {
1894 struct ieee80211_sub_if_data *sdata = vif_to_sdata(txq->vif);
1895 struct ieee80211_local *local = sdata->local;
1896 u64 weight_sum, weight_sum_reciprocal;
1897 struct airtime_sched_info *air_sched;
1898 struct airtime_info *air_info;
1899 u32 airtime = 0;
1900
1901 air_sched = &local->airtime[txq->ac];
1902 air_info = to_airtime_info(txq);
1903
1904 if (local->airtime_flags & AIRTIME_USE_TX)
1905 airtime += tx_airtime;
1906 if (local->airtime_flags & AIRTIME_USE_RX)
1907 airtime += rx_airtime;
1908
1909 /* Weights scale so the unit weight is 256 */
1910 airtime <<= 8;
1911
1912 spin_lock_bh(&air_sched->lock);
1913
1914 air_info->tx_airtime += tx_airtime;
1915 air_info->rx_airtime += rx_airtime;
1916
1917 if (air_sched->weight_sum) {
1918 weight_sum = air_sched->weight_sum;
1919 weight_sum_reciprocal = air_sched->weight_sum_reciprocal;
1920 } else {
1921 weight_sum = air_info->weight;
1922 weight_sum_reciprocal = air_info->weight_reciprocal;
1923 }
1924
1925 /* Round the calculation of global vt */
1926 air_sched->v_t += (u64)((airtime + (weight_sum >> 1)) *
1927 weight_sum_reciprocal) >> IEEE80211_RECIPROCAL_SHIFT_64;
1928 air_info->v_t += (u32)((airtime + (air_info->weight >> 1)) *
1929 air_info->weight_reciprocal) >> IEEE80211_RECIPROCAL_SHIFT_32;
1930 ieee80211_resort_txq(&local->hw, txq);
1931
1932 spin_unlock_bh(&air_sched->lock);
1933 }
1934
ieee80211_sta_register_airtime(struct ieee80211_sta * pubsta,u8 tid,u32 tx_airtime,u32 rx_airtime)1935 void ieee80211_sta_register_airtime(struct ieee80211_sta *pubsta, u8 tid,
1936 u32 tx_airtime, u32 rx_airtime)
1937 {
1938 struct ieee80211_txq *txq = pubsta->txq[tid];
1939
1940 if (!txq)
1941 return;
1942
1943 ieee80211_register_airtime(txq, tx_airtime, rx_airtime);
1944 }
1945 EXPORT_SYMBOL(ieee80211_sta_register_airtime);
1946
ieee80211_sta_update_pending_airtime(struct ieee80211_local * local,struct sta_info * sta,u8 ac,u16 tx_airtime,bool tx_completed)1947 void ieee80211_sta_update_pending_airtime(struct ieee80211_local *local,
1948 struct sta_info *sta, u8 ac,
1949 u16 tx_airtime, bool tx_completed)
1950 {
1951 int tx_pending;
1952
1953 if (!wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_AQL))
1954 return;
1955
1956 if (!tx_completed) {
1957 if (sta)
1958 atomic_add(tx_airtime,
1959 &sta->airtime[ac].aql_tx_pending);
1960
1961 atomic_add(tx_airtime, &local->aql_total_pending_airtime);
1962 return;
1963 }
1964
1965 if (sta) {
1966 tx_pending = atomic_sub_return(tx_airtime,
1967 &sta->airtime[ac].aql_tx_pending);
1968 if (tx_pending < 0)
1969 atomic_cmpxchg(&sta->airtime[ac].aql_tx_pending,
1970 tx_pending, 0);
1971 }
1972
1973 tx_pending = atomic_sub_return(tx_airtime,
1974 &local->aql_total_pending_airtime);
1975 if (WARN_ONCE(tx_pending < 0,
1976 "Device %s AC %d pending airtime underflow: %u, %u",
1977 wiphy_name(local->hw.wiphy), ac, tx_pending,
1978 tx_airtime))
1979 atomic_cmpxchg(&local->aql_total_pending_airtime,
1980 tx_pending, 0);
1981 }
1982
sta_info_move_state(struct sta_info * sta,enum ieee80211_sta_state new_state)1983 int sta_info_move_state(struct sta_info *sta,
1984 enum ieee80211_sta_state new_state)
1985 {
1986 might_sleep();
1987
1988 if (sta->sta_state == new_state)
1989 return 0;
1990
1991 /* check allowed transitions first */
1992
1993 switch (new_state) {
1994 case IEEE80211_STA_NONE:
1995 if (sta->sta_state != IEEE80211_STA_AUTH)
1996 return -EINVAL;
1997 break;
1998 case IEEE80211_STA_AUTH:
1999 if (sta->sta_state != IEEE80211_STA_NONE &&
2000 sta->sta_state != IEEE80211_STA_ASSOC)
2001 return -EINVAL;
2002 break;
2003 case IEEE80211_STA_ASSOC:
2004 if (sta->sta_state != IEEE80211_STA_AUTH &&
2005 sta->sta_state != IEEE80211_STA_AUTHORIZED)
2006 return -EINVAL;
2007 break;
2008 case IEEE80211_STA_AUTHORIZED:
2009 if (sta->sta_state != IEEE80211_STA_ASSOC)
2010 return -EINVAL;
2011 break;
2012 default:
2013 WARN(1, "invalid state %d", new_state);
2014 return -EINVAL;
2015 }
2016
2017 sta_dbg(sta->sdata, "moving STA %pM to state %d\n",
2018 sta->sta.addr, new_state);
2019
2020 /*
2021 * notify the driver before the actual changes so it can
2022 * fail the transition
2023 */
2024 if (test_sta_flag(sta, WLAN_STA_INSERTED)) {
2025 int err = drv_sta_state(sta->local, sta->sdata, sta,
2026 sta->sta_state, new_state);
2027 if (err)
2028 return err;
2029 }
2030
2031 /* reflect the change in all state variables */
2032
2033 switch (new_state) {
2034 case IEEE80211_STA_NONE:
2035 if (sta->sta_state == IEEE80211_STA_AUTH)
2036 clear_bit(WLAN_STA_AUTH, &sta->_flags);
2037 break;
2038 case IEEE80211_STA_AUTH:
2039 if (sta->sta_state == IEEE80211_STA_NONE) {
2040 set_bit(WLAN_STA_AUTH, &sta->_flags);
2041 } else if (sta->sta_state == IEEE80211_STA_ASSOC) {
2042 clear_bit(WLAN_STA_ASSOC, &sta->_flags);
2043 ieee80211_recalc_min_chandef(sta->sdata);
2044 if (!sta->sta.support_p2p_ps)
2045 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
2046 }
2047 break;
2048 case IEEE80211_STA_ASSOC:
2049 if (sta->sta_state == IEEE80211_STA_AUTH) {
2050 set_bit(WLAN_STA_ASSOC, &sta->_flags);
2051 sta->assoc_at = ktime_get_boottime_ns();
2052 ieee80211_recalc_min_chandef(sta->sdata);
2053 if (!sta->sta.support_p2p_ps)
2054 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
2055 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
2056 ieee80211_vif_dec_num_mcast(sta->sdata);
2057 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
2058 ieee80211_clear_fast_xmit(sta);
2059 ieee80211_clear_fast_rx(sta);
2060 }
2061 break;
2062 case IEEE80211_STA_AUTHORIZED:
2063 if (sta->sta_state == IEEE80211_STA_ASSOC) {
2064 ieee80211_vif_inc_num_mcast(sta->sdata);
2065 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
2066 ieee80211_check_fast_xmit(sta);
2067 ieee80211_check_fast_rx(sta);
2068 }
2069 if (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN ||
2070 sta->sdata->vif.type == NL80211_IFTYPE_AP)
2071 cfg80211_send_layer2_update(sta->sdata->dev,
2072 sta->sta.addr);
2073 break;
2074 default:
2075 break;
2076 }
2077
2078 sta->sta_state = new_state;
2079
2080 return 0;
2081 }
2082
sta_info_tx_streams(struct sta_info * sta)2083 u8 sta_info_tx_streams(struct sta_info *sta)
2084 {
2085 struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap;
2086 u8 rx_streams;
2087
2088 if (!sta->sta.ht_cap.ht_supported)
2089 return 1;
2090
2091 if (sta->sta.vht_cap.vht_supported) {
2092 int i;
2093 u16 tx_mcs_map =
2094 le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map);
2095
2096 for (i = 7; i >= 0; i--)
2097 if ((tx_mcs_map & (0x3 << (i * 2))) !=
2098 IEEE80211_VHT_MCS_NOT_SUPPORTED)
2099 return i + 1;
2100 }
2101
2102 if (ht_cap->mcs.rx_mask[3])
2103 rx_streams = 4;
2104 else if (ht_cap->mcs.rx_mask[2])
2105 rx_streams = 3;
2106 else if (ht_cap->mcs.rx_mask[1])
2107 rx_streams = 2;
2108 else
2109 rx_streams = 1;
2110
2111 if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF))
2112 return rx_streams;
2113
2114 return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK)
2115 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1;
2116 }
2117
2118 static struct ieee80211_sta_rx_stats *
sta_get_last_rx_stats(struct sta_info * sta)2119 sta_get_last_rx_stats(struct sta_info *sta)
2120 {
2121 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
2122 int cpu;
2123
2124 if (!sta->pcpu_rx_stats)
2125 return stats;
2126
2127 for_each_possible_cpu(cpu) {
2128 struct ieee80211_sta_rx_stats *cpustats;
2129
2130 cpustats = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2131
2132 if (time_after(cpustats->last_rx, stats->last_rx))
2133 stats = cpustats;
2134 }
2135
2136 return stats;
2137 }
2138
sta_stats_decode_rate(struct ieee80211_local * local,u32 rate,struct rate_info * rinfo)2139 static void sta_stats_decode_rate(struct ieee80211_local *local, u32 rate,
2140 struct rate_info *rinfo)
2141 {
2142 rinfo->bw = STA_STATS_GET(BW, rate);
2143
2144 switch (STA_STATS_GET(TYPE, rate)) {
2145 case STA_STATS_RATE_TYPE_VHT:
2146 rinfo->flags = RATE_INFO_FLAGS_VHT_MCS;
2147 rinfo->mcs = STA_STATS_GET(VHT_MCS, rate);
2148 rinfo->nss = STA_STATS_GET(VHT_NSS, rate);
2149 if (STA_STATS_GET(SGI, rate))
2150 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
2151 break;
2152 case STA_STATS_RATE_TYPE_HT:
2153 rinfo->flags = RATE_INFO_FLAGS_MCS;
2154 rinfo->mcs = STA_STATS_GET(HT_MCS, rate);
2155 if (STA_STATS_GET(SGI, rate))
2156 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
2157 break;
2158 case STA_STATS_RATE_TYPE_LEGACY: {
2159 struct ieee80211_supported_band *sband;
2160 u16 brate;
2161 unsigned int shift;
2162 int band = STA_STATS_GET(LEGACY_BAND, rate);
2163 int rate_idx = STA_STATS_GET(LEGACY_IDX, rate);
2164
2165 sband = local->hw.wiphy->bands[band];
2166
2167 if (WARN_ON_ONCE(!sband->bitrates))
2168 break;
2169
2170 brate = sband->bitrates[rate_idx].bitrate;
2171 if (rinfo->bw == RATE_INFO_BW_5)
2172 shift = 2;
2173 else if (rinfo->bw == RATE_INFO_BW_10)
2174 shift = 1;
2175 else
2176 shift = 0;
2177 rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift);
2178 break;
2179 }
2180 case STA_STATS_RATE_TYPE_HE:
2181 rinfo->flags = RATE_INFO_FLAGS_HE_MCS;
2182 rinfo->mcs = STA_STATS_GET(HE_MCS, rate);
2183 rinfo->nss = STA_STATS_GET(HE_NSS, rate);
2184 rinfo->he_gi = STA_STATS_GET(HE_GI, rate);
2185 rinfo->he_ru_alloc = STA_STATS_GET(HE_RU, rate);
2186 rinfo->he_dcm = STA_STATS_GET(HE_DCM, rate);
2187 break;
2188 }
2189 }
2190
sta_set_rate_info_rx(struct sta_info * sta,struct rate_info * rinfo)2191 static int sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo)
2192 {
2193 u16 rate = READ_ONCE(sta_get_last_rx_stats(sta)->last_rate);
2194
2195 if (rate == STA_STATS_RATE_INVALID)
2196 return -EINVAL;
2197
2198 sta_stats_decode_rate(sta->local, rate, rinfo);
2199 return 0;
2200 }
2201
sta_get_tidstats_msdu(struct ieee80211_sta_rx_stats * rxstats,int tid)2202 static inline u64 sta_get_tidstats_msdu(struct ieee80211_sta_rx_stats *rxstats,
2203 int tid)
2204 {
2205 unsigned int start;
2206 u64 value;
2207
2208 do {
2209 start = u64_stats_fetch_begin(&rxstats->syncp);
2210 value = rxstats->msdu[tid];
2211 } while (u64_stats_fetch_retry(&rxstats->syncp, start));
2212
2213 return value;
2214 }
2215
sta_set_tidstats(struct sta_info * sta,struct cfg80211_tid_stats * tidstats,int tid)2216 static void sta_set_tidstats(struct sta_info *sta,
2217 struct cfg80211_tid_stats *tidstats,
2218 int tid)
2219 {
2220 struct ieee80211_local *local = sta->local;
2221 int cpu;
2222
2223 if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) {
2224 tidstats->rx_msdu += sta_get_tidstats_msdu(&sta->rx_stats, tid);
2225
2226 if (sta->pcpu_rx_stats) {
2227 for_each_possible_cpu(cpu) {
2228 struct ieee80211_sta_rx_stats *cpurxs;
2229
2230 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2231 tidstats->rx_msdu +=
2232 sta_get_tidstats_msdu(cpurxs, tid);
2233 }
2234 }
2235
2236 tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU);
2237 }
2238
2239 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) {
2240 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU);
2241 tidstats->tx_msdu = sta->tx_stats.msdu[tid];
2242 }
2243
2244 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) &&
2245 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2246 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES);
2247 tidstats->tx_msdu_retries = sta->status_stats.msdu_retries[tid];
2248 }
2249
2250 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) &&
2251 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2252 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED);
2253 tidstats->tx_msdu_failed = sta->status_stats.msdu_failed[tid];
2254 }
2255
2256 if (local->ops->wake_tx_queue && tid < IEEE80211_NUM_TIDS) {
2257 spin_lock_bh(&local->fq.lock);
2258 rcu_read_lock();
2259
2260 tidstats->filled |= BIT(NL80211_TID_STATS_TXQ_STATS);
2261 ieee80211_fill_txq_stats(&tidstats->txq_stats,
2262 to_txq_info(sta->sta.txq[tid]));
2263
2264 rcu_read_unlock();
2265 spin_unlock_bh(&local->fq.lock);
2266 }
2267 }
2268
sta_get_stats_bytes(struct ieee80211_sta_rx_stats * rxstats)2269 static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats)
2270 {
2271 unsigned int start;
2272 u64 value;
2273
2274 do {
2275 start = u64_stats_fetch_begin(&rxstats->syncp);
2276 value = rxstats->bytes;
2277 } while (u64_stats_fetch_retry(&rxstats->syncp, start));
2278
2279 return value;
2280 }
2281
sta_set_sinfo(struct sta_info * sta,struct station_info * sinfo,bool tidstats)2282 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo,
2283 bool tidstats)
2284 {
2285 struct ieee80211_sub_if_data *sdata = sta->sdata;
2286 struct ieee80211_local *local = sdata->local;
2287 u32 thr = 0;
2288 int i, ac, cpu;
2289 struct ieee80211_sta_rx_stats *last_rxstats;
2290
2291 last_rxstats = sta_get_last_rx_stats(sta);
2292
2293 sinfo->generation = sdata->local->sta_generation;
2294
2295 /* do before driver, so beacon filtering drivers have a
2296 * chance to e.g. just add the number of filtered beacons
2297 * (or just modify the value entirely, of course)
2298 */
2299 if (sdata->vif.type == NL80211_IFTYPE_STATION)
2300 sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal;
2301
2302 drv_sta_statistics(local, sdata, &sta->sta, sinfo);
2303 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_INACTIVE_TIME) |
2304 BIT_ULL(NL80211_STA_INFO_STA_FLAGS) |
2305 BIT_ULL(NL80211_STA_INFO_BSS_PARAM) |
2306 BIT_ULL(NL80211_STA_INFO_CONNECTED_TIME) |
2307 BIT_ULL(NL80211_STA_INFO_ASSOC_AT_BOOTTIME) |
2308 BIT_ULL(NL80211_STA_INFO_RX_DROP_MISC);
2309
2310 if (sdata->vif.type == NL80211_IFTYPE_STATION) {
2311 sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count;
2312 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_LOSS);
2313 }
2314
2315 sinfo->connected_time = ktime_get_seconds() - sta->last_connected;
2316 sinfo->assoc_at = sta->assoc_at;
2317 sinfo->inactive_time =
2318 jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta));
2319
2320 if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_TX_BYTES64) |
2321 BIT_ULL(NL80211_STA_INFO_TX_BYTES)))) {
2322 sinfo->tx_bytes = 0;
2323 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2324 sinfo->tx_bytes += sta->tx_stats.bytes[ac];
2325 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BYTES64);
2326 }
2327
2328 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_PACKETS))) {
2329 sinfo->tx_packets = 0;
2330 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2331 sinfo->tx_packets += sta->tx_stats.packets[ac];
2332 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_PACKETS);
2333 }
2334
2335 if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_RX_BYTES64) |
2336 BIT_ULL(NL80211_STA_INFO_RX_BYTES)))) {
2337 sinfo->rx_bytes += sta_get_stats_bytes(&sta->rx_stats);
2338
2339 if (sta->pcpu_rx_stats) {
2340 for_each_possible_cpu(cpu) {
2341 struct ieee80211_sta_rx_stats *cpurxs;
2342
2343 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2344 sinfo->rx_bytes += sta_get_stats_bytes(cpurxs);
2345 }
2346 }
2347
2348 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BYTES64);
2349 }
2350
2351 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_PACKETS))) {
2352 sinfo->rx_packets = sta->rx_stats.packets;
2353 if (sta->pcpu_rx_stats) {
2354 for_each_possible_cpu(cpu) {
2355 struct ieee80211_sta_rx_stats *cpurxs;
2356
2357 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2358 sinfo->rx_packets += cpurxs->packets;
2359 }
2360 }
2361 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_PACKETS);
2362 }
2363
2364 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_RETRIES))) {
2365 sinfo->tx_retries = sta->status_stats.retry_count;
2366 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_RETRIES);
2367 }
2368
2369 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_FAILED))) {
2370 sinfo->tx_failed = sta->status_stats.retry_failed;
2371 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_FAILED);
2372 }
2373
2374 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_DURATION))) {
2375 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2376 sinfo->rx_duration += sta->airtime[ac].rx_airtime;
2377 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_DURATION);
2378 }
2379
2380 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_DURATION))) {
2381 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2382 sinfo->tx_duration += sta->airtime[ac].tx_airtime;
2383 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_DURATION);
2384 }
2385
2386 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT))) {
2387 sinfo->airtime_weight = sta->airtime[0].weight;
2388 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT);
2389 }
2390
2391 sinfo->rx_dropped_misc = sta->rx_stats.dropped;
2392 if (sta->pcpu_rx_stats) {
2393 for_each_possible_cpu(cpu) {
2394 struct ieee80211_sta_rx_stats *cpurxs;
2395
2396 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2397 sinfo->rx_dropped_misc += cpurxs->dropped;
2398 }
2399 }
2400
2401 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2402 !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) {
2403 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_RX) |
2404 BIT_ULL(NL80211_STA_INFO_BEACON_SIGNAL_AVG);
2405 sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif);
2406 }
2407
2408 if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) ||
2409 ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) {
2410 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL))) {
2411 sinfo->signal = (s8)last_rxstats->last_signal;
2412 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL);
2413 }
2414
2415 if (!sta->pcpu_rx_stats &&
2416 !(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG))) {
2417 sinfo->signal_avg =
2418 -ewma_signal_read(&sta->rx_stats_avg.signal);
2419 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG);
2420 }
2421 }
2422
2423 /* for the average - if pcpu_rx_stats isn't set - rxstats must point to
2424 * the sta->rx_stats struct, so the check here is fine with and without
2425 * pcpu statistics
2426 */
2427 if (last_rxstats->chains &&
2428 !(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL) |
2429 BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) {
2430 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL);
2431 if (!sta->pcpu_rx_stats)
2432 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG);
2433
2434 sinfo->chains = last_rxstats->chains;
2435
2436 for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) {
2437 sinfo->chain_signal[i] =
2438 last_rxstats->chain_signal_last[i];
2439 sinfo->chain_signal_avg[i] =
2440 -ewma_signal_read(&sta->rx_stats_avg.chain_signal[i]);
2441 }
2442 }
2443
2444 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_BITRATE))) {
2445 sta_set_rate_info_tx(sta, &sta->tx_stats.last_rate,
2446 &sinfo->txrate);
2447 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE);
2448 }
2449
2450 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_BITRATE))) {
2451 if (sta_set_rate_info_rx(sta, &sinfo->rxrate) == 0)
2452 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BITRATE);
2453 }
2454
2455 if (tidstats && !cfg80211_sinfo_alloc_tid_stats(sinfo, GFP_KERNEL)) {
2456 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
2457 sta_set_tidstats(sta, &sinfo->pertid[i], i);
2458 }
2459
2460 if (ieee80211_vif_is_mesh(&sdata->vif)) {
2461 #ifdef CONFIG_MAC80211_MESH
2462 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_LLID) |
2463 BIT_ULL(NL80211_STA_INFO_PLID) |
2464 BIT_ULL(NL80211_STA_INFO_PLINK_STATE) |
2465 BIT_ULL(NL80211_STA_INFO_LOCAL_PM) |
2466 BIT_ULL(NL80211_STA_INFO_PEER_PM) |
2467 BIT_ULL(NL80211_STA_INFO_NONPEER_PM) |
2468 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_GATE) |
2469 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_AS);
2470
2471 sinfo->llid = sta->mesh->llid;
2472 sinfo->plid = sta->mesh->plid;
2473 sinfo->plink_state = sta->mesh->plink_state;
2474 if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) {
2475 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_T_OFFSET);
2476 sinfo->t_offset = sta->mesh->t_offset;
2477 }
2478 sinfo->local_pm = sta->mesh->local_pm;
2479 sinfo->peer_pm = sta->mesh->peer_pm;
2480 sinfo->nonpeer_pm = sta->mesh->nonpeer_pm;
2481 sinfo->connected_to_gate = sta->mesh->connected_to_gate;
2482 sinfo->connected_to_as = sta->mesh->connected_to_as;
2483 #endif
2484 }
2485
2486 sinfo->bss_param.flags = 0;
2487 if (sdata->vif.bss_conf.use_cts_prot)
2488 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT;
2489 if (sdata->vif.bss_conf.use_short_preamble)
2490 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE;
2491 if (sdata->vif.bss_conf.use_short_slot)
2492 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME;
2493 sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period;
2494 sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int;
2495
2496 sinfo->sta_flags.set = 0;
2497 sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) |
2498 BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) |
2499 BIT(NL80211_STA_FLAG_WME) |
2500 BIT(NL80211_STA_FLAG_MFP) |
2501 BIT(NL80211_STA_FLAG_AUTHENTICATED) |
2502 BIT(NL80211_STA_FLAG_ASSOCIATED) |
2503 BIT(NL80211_STA_FLAG_TDLS_PEER);
2504 if (test_sta_flag(sta, WLAN_STA_AUTHORIZED))
2505 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED);
2506 if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE))
2507 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE);
2508 if (sta->sta.wme)
2509 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME);
2510 if (test_sta_flag(sta, WLAN_STA_MFP))
2511 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP);
2512 if (test_sta_flag(sta, WLAN_STA_AUTH))
2513 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED);
2514 if (test_sta_flag(sta, WLAN_STA_ASSOC))
2515 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED);
2516 if (test_sta_flag(sta, WLAN_STA_TDLS_PEER))
2517 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER);
2518
2519 thr = sta_get_expected_throughput(sta);
2520
2521 if (thr != 0) {
2522 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_EXPECTED_THROUGHPUT);
2523 sinfo->expected_throughput = thr;
2524 }
2525
2526 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL)) &&
2527 sta->status_stats.ack_signal_filled) {
2528 sinfo->ack_signal = sta->status_stats.last_ack_signal;
2529 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL);
2530 }
2531
2532 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG)) &&
2533 sta->status_stats.ack_signal_filled) {
2534 sinfo->avg_ack_signal =
2535 -(s8)ewma_avg_signal_read(
2536 &sta->status_stats.avg_ack_signal);
2537 sinfo->filled |=
2538 BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG);
2539 }
2540
2541 if (ieee80211_vif_is_mesh(&sdata->vif)) {
2542 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_LINK_METRIC);
2543 sinfo->airtime_link_metric =
2544 airtime_link_metric_get(local, sta);
2545 }
2546 }
2547
sta_get_expected_throughput(struct sta_info * sta)2548 u32 sta_get_expected_throughput(struct sta_info *sta)
2549 {
2550 struct ieee80211_sub_if_data *sdata = sta->sdata;
2551 struct ieee80211_local *local = sdata->local;
2552 struct rate_control_ref *ref = NULL;
2553 u32 thr = 0;
2554
2555 if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL))
2556 ref = local->rate_ctrl;
2557
2558 /* check if the driver has a SW RC implementation */
2559 if (ref && ref->ops->get_expected_throughput)
2560 thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv);
2561 else
2562 thr = drv_get_expected_throughput(local, sta);
2563
2564 return thr;
2565 }
2566
ieee80211_sta_last_active(struct sta_info * sta)2567 unsigned long ieee80211_sta_last_active(struct sta_info *sta)
2568 {
2569 struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta);
2570
2571 if (!sta->status_stats.last_ack ||
2572 time_after(stats->last_rx, sta->status_stats.last_ack))
2573 return stats->last_rx;
2574 return sta->status_stats.last_ack;
2575 }
2576
sta_update_codel_params(struct sta_info * sta,u32 thr)2577 static void sta_update_codel_params(struct sta_info *sta, u32 thr)
2578 {
2579 if (!sta->sdata->local->ops->wake_tx_queue)
2580 return;
2581
2582 if (thr && thr < STA_SLOW_THRESHOLD * sta->local->num_sta) {
2583 sta->cparams.target = MS2TIME(50);
2584 sta->cparams.interval = MS2TIME(300);
2585 sta->cparams.ecn = false;
2586 } else {
2587 sta->cparams.target = MS2TIME(20);
2588 sta->cparams.interval = MS2TIME(100);
2589 sta->cparams.ecn = true;
2590 }
2591 }
2592
ieee80211_sta_set_expected_throughput(struct ieee80211_sta * pubsta,u32 thr)2593 void ieee80211_sta_set_expected_throughput(struct ieee80211_sta *pubsta,
2594 u32 thr)
2595 {
2596 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
2597
2598 sta_update_codel_params(sta, thr);
2599 }
2600