1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/coredump.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/oom.h>
34 #include <linux/numa.h>
35 #include <linux/page_owner.h>
36 
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
40 
41 /*
42  * By default, transparent hugepage support is disabled in order to avoid
43  * risking an increased memory footprint for applications that are not
44  * guaranteed to benefit from it. When transparent hugepage support is
45  * enabled, it is for all mappings, and khugepaged scans all mappings.
46  * Defrag is invoked by khugepaged hugepage allocations and by page faults
47  * for all hugepage allocations.
48  */
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
59 
60 static struct shrinker deferred_split_shrinker;
61 
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
64 
transparent_hugepage_enabled(struct vm_area_struct * vma)65 bool transparent_hugepage_enabled(struct vm_area_struct *vma)
66 {
67 	/* The addr is used to check if the vma size fits */
68 	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
69 
70 	if (!transhuge_vma_suitable(vma, addr))
71 		return false;
72 	if (vma_is_anonymous(vma))
73 		return __transparent_hugepage_enabled(vma);
74 	if (vma_is_shmem(vma))
75 		return shmem_huge_enabled(vma);
76 
77 	return false;
78 }
79 
get_huge_zero_page(void)80 static struct page *get_huge_zero_page(void)
81 {
82 	struct page *zero_page;
83 retry:
84 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
85 		return READ_ONCE(huge_zero_page);
86 
87 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
88 			HPAGE_PMD_ORDER);
89 	if (!zero_page) {
90 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
91 		return NULL;
92 	}
93 	count_vm_event(THP_ZERO_PAGE_ALLOC);
94 	preempt_disable();
95 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
96 		preempt_enable();
97 		__free_pages(zero_page, compound_order(zero_page));
98 		goto retry;
99 	}
100 
101 	/* We take additional reference here. It will be put back by shrinker */
102 	atomic_set(&huge_zero_refcount, 2);
103 	preempt_enable();
104 	return READ_ONCE(huge_zero_page);
105 }
106 
put_huge_zero_page(void)107 static void put_huge_zero_page(void)
108 {
109 	/*
110 	 * Counter should never go to zero here. Only shrinker can put
111 	 * last reference.
112 	 */
113 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
114 }
115 
mm_get_huge_zero_page(struct mm_struct * mm)116 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
117 {
118 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119 		return READ_ONCE(huge_zero_page);
120 
121 	if (!get_huge_zero_page())
122 		return NULL;
123 
124 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
125 		put_huge_zero_page();
126 
127 	return READ_ONCE(huge_zero_page);
128 }
129 
mm_put_huge_zero_page(struct mm_struct * mm)130 void mm_put_huge_zero_page(struct mm_struct *mm)
131 {
132 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
133 		put_huge_zero_page();
134 }
135 
shrink_huge_zero_page_count(struct shrinker * shrink,struct shrink_control * sc)136 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
137 					struct shrink_control *sc)
138 {
139 	/* we can free zero page only if last reference remains */
140 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
141 }
142 
shrink_huge_zero_page_scan(struct shrinker * shrink,struct shrink_control * sc)143 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
144 				       struct shrink_control *sc)
145 {
146 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
147 		struct page *zero_page = xchg(&huge_zero_page, NULL);
148 		BUG_ON(zero_page == NULL);
149 		__free_pages(zero_page, compound_order(zero_page));
150 		return HPAGE_PMD_NR;
151 	}
152 
153 	return 0;
154 }
155 
156 static struct shrinker huge_zero_page_shrinker = {
157 	.count_objects = shrink_huge_zero_page_count,
158 	.scan_objects = shrink_huge_zero_page_scan,
159 	.seeks = DEFAULT_SEEKS,
160 };
161 
162 #ifdef CONFIG_SYSFS
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)163 static ssize_t enabled_show(struct kobject *kobj,
164 			    struct kobj_attribute *attr, char *buf)
165 {
166 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
167 		return sprintf(buf, "[always] madvise never\n");
168 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
169 		return sprintf(buf, "always [madvise] never\n");
170 	else
171 		return sprintf(buf, "always madvise [never]\n");
172 }
173 
enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)174 static ssize_t enabled_store(struct kobject *kobj,
175 			     struct kobj_attribute *attr,
176 			     const char *buf, size_t count)
177 {
178 	ssize_t ret = count;
179 
180 	if (sysfs_streq(buf, "always")) {
181 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
182 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
183 	} else if (sysfs_streq(buf, "madvise")) {
184 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
185 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
186 	} else if (sysfs_streq(buf, "never")) {
187 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
188 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
189 	} else
190 		ret = -EINVAL;
191 
192 	if (ret > 0) {
193 		int err = start_stop_khugepaged();
194 		if (err)
195 			ret = err;
196 	}
197 	return ret;
198 }
199 static struct kobj_attribute enabled_attr =
200 	__ATTR(enabled, 0644, enabled_show, enabled_store);
201 
single_hugepage_flag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf,enum transparent_hugepage_flag flag)202 ssize_t single_hugepage_flag_show(struct kobject *kobj,
203 				struct kobj_attribute *attr, char *buf,
204 				enum transparent_hugepage_flag flag)
205 {
206 	return sprintf(buf, "%d\n",
207 		       !!test_bit(flag, &transparent_hugepage_flags));
208 }
209 
single_hugepage_flag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count,enum transparent_hugepage_flag flag)210 ssize_t single_hugepage_flag_store(struct kobject *kobj,
211 				 struct kobj_attribute *attr,
212 				 const char *buf, size_t count,
213 				 enum transparent_hugepage_flag flag)
214 {
215 	unsigned long value;
216 	int ret;
217 
218 	ret = kstrtoul(buf, 10, &value);
219 	if (ret < 0)
220 		return ret;
221 	if (value > 1)
222 		return -EINVAL;
223 
224 	if (value)
225 		set_bit(flag, &transparent_hugepage_flags);
226 	else
227 		clear_bit(flag, &transparent_hugepage_flags);
228 
229 	return count;
230 }
231 
defrag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)232 static ssize_t defrag_show(struct kobject *kobj,
233 			   struct kobj_attribute *attr, char *buf)
234 {
235 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
236 		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
237 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
238 		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
239 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
240 		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
241 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
242 		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
243 	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
244 }
245 
defrag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)246 static ssize_t defrag_store(struct kobject *kobj,
247 			    struct kobj_attribute *attr,
248 			    const char *buf, size_t count)
249 {
250 	if (sysfs_streq(buf, "always")) {
251 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
252 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
253 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
254 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
255 	} else if (sysfs_streq(buf, "defer+madvise")) {
256 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
257 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
258 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
259 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
260 	} else if (sysfs_streq(buf, "defer")) {
261 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
262 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
263 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
264 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
265 	} else if (sysfs_streq(buf, "madvise")) {
266 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
267 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
268 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
269 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
270 	} else if (sysfs_streq(buf, "never")) {
271 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
272 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
273 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
274 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
275 	} else
276 		return -EINVAL;
277 
278 	return count;
279 }
280 static struct kobj_attribute defrag_attr =
281 	__ATTR(defrag, 0644, defrag_show, defrag_store);
282 
use_zero_page_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)283 static ssize_t use_zero_page_show(struct kobject *kobj,
284 		struct kobj_attribute *attr, char *buf)
285 {
286 	return single_hugepage_flag_show(kobj, attr, buf,
287 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
288 }
use_zero_page_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)289 static ssize_t use_zero_page_store(struct kobject *kobj,
290 		struct kobj_attribute *attr, const char *buf, size_t count)
291 {
292 	return single_hugepage_flag_store(kobj, attr, buf, count,
293 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
294 }
295 static struct kobj_attribute use_zero_page_attr =
296 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
297 
hpage_pmd_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)298 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
299 		struct kobj_attribute *attr, char *buf)
300 {
301 	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
302 }
303 static struct kobj_attribute hpage_pmd_size_attr =
304 	__ATTR_RO(hpage_pmd_size);
305 
306 static struct attribute *hugepage_attr[] = {
307 	&enabled_attr.attr,
308 	&defrag_attr.attr,
309 	&use_zero_page_attr.attr,
310 	&hpage_pmd_size_attr.attr,
311 #ifdef CONFIG_SHMEM
312 	&shmem_enabled_attr.attr,
313 #endif
314 	NULL,
315 };
316 
317 static const struct attribute_group hugepage_attr_group = {
318 	.attrs = hugepage_attr,
319 };
320 
hugepage_init_sysfs(struct kobject ** hugepage_kobj)321 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
322 {
323 	int err;
324 
325 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
326 	if (unlikely(!*hugepage_kobj)) {
327 		pr_err("failed to create transparent hugepage kobject\n");
328 		return -ENOMEM;
329 	}
330 
331 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
332 	if (err) {
333 		pr_err("failed to register transparent hugepage group\n");
334 		goto delete_obj;
335 	}
336 
337 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
338 	if (err) {
339 		pr_err("failed to register transparent hugepage group\n");
340 		goto remove_hp_group;
341 	}
342 
343 	return 0;
344 
345 remove_hp_group:
346 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
347 delete_obj:
348 	kobject_put(*hugepage_kobj);
349 	return err;
350 }
351 
hugepage_exit_sysfs(struct kobject * hugepage_kobj)352 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
353 {
354 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
355 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
356 	kobject_put(hugepage_kobj);
357 }
358 #else
hugepage_init_sysfs(struct kobject ** hugepage_kobj)359 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
360 {
361 	return 0;
362 }
363 
hugepage_exit_sysfs(struct kobject * hugepage_kobj)364 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
365 {
366 }
367 #endif /* CONFIG_SYSFS */
368 
hugepage_init(void)369 static int __init hugepage_init(void)
370 {
371 	int err;
372 	struct kobject *hugepage_kobj;
373 
374 	if (!has_transparent_hugepage()) {
375 		transparent_hugepage_flags = 0;
376 		return -EINVAL;
377 	}
378 
379 	/*
380 	 * hugepages can't be allocated by the buddy allocator
381 	 */
382 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
383 	/*
384 	 * we use page->mapping and page->index in second tail page
385 	 * as list_head: assuming THP order >= 2
386 	 */
387 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
388 
389 	err = hugepage_init_sysfs(&hugepage_kobj);
390 	if (err)
391 		goto err_sysfs;
392 
393 	err = khugepaged_init();
394 	if (err)
395 		goto err_slab;
396 
397 	err = register_shrinker(&huge_zero_page_shrinker);
398 	if (err)
399 		goto err_hzp_shrinker;
400 	err = register_shrinker(&deferred_split_shrinker);
401 	if (err)
402 		goto err_split_shrinker;
403 
404 	/*
405 	 * By default disable transparent hugepages on smaller systems,
406 	 * where the extra memory used could hurt more than TLB overhead
407 	 * is likely to save.  The admin can still enable it through /sys.
408 	 */
409 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
410 		transparent_hugepage_flags = 0;
411 		return 0;
412 	}
413 
414 	err = start_stop_khugepaged();
415 	if (err)
416 		goto err_khugepaged;
417 
418 	return 0;
419 err_khugepaged:
420 	unregister_shrinker(&deferred_split_shrinker);
421 err_split_shrinker:
422 	unregister_shrinker(&huge_zero_page_shrinker);
423 err_hzp_shrinker:
424 	khugepaged_destroy();
425 err_slab:
426 	hugepage_exit_sysfs(hugepage_kobj);
427 err_sysfs:
428 	return err;
429 }
430 subsys_initcall(hugepage_init);
431 
setup_transparent_hugepage(char * str)432 static int __init setup_transparent_hugepage(char *str)
433 {
434 	int ret = 0;
435 	if (!str)
436 		goto out;
437 	if (!strcmp(str, "always")) {
438 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
439 			&transparent_hugepage_flags);
440 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
441 			  &transparent_hugepage_flags);
442 		ret = 1;
443 	} else if (!strcmp(str, "madvise")) {
444 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
445 			  &transparent_hugepage_flags);
446 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
447 			&transparent_hugepage_flags);
448 		ret = 1;
449 	} else if (!strcmp(str, "never")) {
450 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
451 			  &transparent_hugepage_flags);
452 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
453 			  &transparent_hugepage_flags);
454 		ret = 1;
455 	}
456 out:
457 	if (!ret)
458 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
459 	return ret;
460 }
461 __setup("transparent_hugepage=", setup_transparent_hugepage);
462 
maybe_pmd_mkwrite(pmd_t pmd,struct vm_area_struct * vma)463 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
464 {
465 	if (likely(vma->vm_flags & VM_WRITE))
466 		pmd = pmd_mkwrite(pmd);
467 	return pmd;
468 }
469 
470 #ifdef CONFIG_MEMCG
get_deferred_split_queue(struct page * page)471 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
472 {
473 	struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
474 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
475 
476 	if (memcg)
477 		return &memcg->deferred_split_queue;
478 	else
479 		return &pgdat->deferred_split_queue;
480 }
481 #else
get_deferred_split_queue(struct page * page)482 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
483 {
484 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
485 
486 	return &pgdat->deferred_split_queue;
487 }
488 #endif
489 
prep_transhuge_page(struct page * page)490 void prep_transhuge_page(struct page *page)
491 {
492 	/*
493 	 * we use page->mapping and page->indexlru in second tail page
494 	 * as list_head: assuming THP order >= 2
495 	 */
496 
497 	INIT_LIST_HEAD(page_deferred_list(page));
498 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
499 }
500 
is_transparent_hugepage(struct page * page)501 bool is_transparent_hugepage(struct page *page)
502 {
503 	if (!PageCompound(page))
504 		return false;
505 
506 	page = compound_head(page);
507 	return is_huge_zero_page(page) ||
508 	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
509 }
510 EXPORT_SYMBOL_GPL(is_transparent_hugepage);
511 
__thp_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,loff_t off,unsigned long flags,unsigned long size)512 static unsigned long __thp_get_unmapped_area(struct file *filp,
513 		unsigned long addr, unsigned long len,
514 		loff_t off, unsigned long flags, unsigned long size)
515 {
516 	loff_t off_end = off + len;
517 	loff_t off_align = round_up(off, size);
518 	unsigned long len_pad, ret;
519 
520 	if (off_end <= off_align || (off_end - off_align) < size)
521 		return 0;
522 
523 	len_pad = len + size;
524 	if (len_pad < len || (off + len_pad) < off)
525 		return 0;
526 
527 	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
528 					      off >> PAGE_SHIFT, flags);
529 
530 	/*
531 	 * The failure might be due to length padding. The caller will retry
532 	 * without the padding.
533 	 */
534 	if (IS_ERR_VALUE(ret))
535 		return 0;
536 
537 	/*
538 	 * Do not try to align to THP boundary if allocation at the address
539 	 * hint succeeds.
540 	 */
541 	if (ret == addr)
542 		return addr;
543 
544 	ret += (off - ret) & (size - 1);
545 	return ret;
546 }
547 
thp_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)548 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
549 		unsigned long len, unsigned long pgoff, unsigned long flags)
550 {
551 	unsigned long ret;
552 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
553 
554 	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
555 		goto out;
556 
557 	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
558 	if (ret)
559 		return ret;
560 out:
561 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
562 }
563 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
564 
__do_huge_pmd_anonymous_page(struct vm_fault * vmf,struct page * page,gfp_t gfp)565 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
566 			struct page *page, gfp_t gfp)
567 {
568 	struct vm_area_struct *vma = vmf->vma;
569 	pgtable_t pgtable;
570 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
571 	vm_fault_t ret = 0;
572 
573 	VM_BUG_ON_PAGE(!PageCompound(page), page);
574 
575 	if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
576 		put_page(page);
577 		count_vm_event(THP_FAULT_FALLBACK);
578 		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
579 		return VM_FAULT_FALLBACK;
580 	}
581 	cgroup_throttle_swaprate(page, gfp);
582 
583 	pgtable = pte_alloc_one(vma->vm_mm);
584 	if (unlikely(!pgtable)) {
585 		ret = VM_FAULT_OOM;
586 		goto release;
587 	}
588 
589 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
590 	/*
591 	 * The memory barrier inside __SetPageUptodate makes sure that
592 	 * clear_huge_page writes become visible before the set_pmd_at()
593 	 * write.
594 	 */
595 	__SetPageUptodate(page);
596 
597 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
598 	if (unlikely(!pmd_none(*vmf->pmd))) {
599 		goto unlock_release;
600 	} else {
601 		pmd_t entry;
602 
603 		ret = check_stable_address_space(vma->vm_mm);
604 		if (ret)
605 			goto unlock_release;
606 
607 		/* Deliver the page fault to userland */
608 		if (userfaultfd_missing(vma)) {
609 			vm_fault_t ret2;
610 
611 			spin_unlock(vmf->ptl);
612 			put_page(page);
613 			pte_free(vma->vm_mm, pgtable);
614 			ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
615 			VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
616 			return ret2;
617 		}
618 
619 		entry = mk_huge_pmd(page, vma->vm_page_prot);
620 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
621 		page_add_new_anon_rmap(page, vma, haddr, true);
622 		lru_cache_add_inactive_or_unevictable(page, vma);
623 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
624 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
625 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
626 		mm_inc_nr_ptes(vma->vm_mm);
627 		spin_unlock(vmf->ptl);
628 		count_vm_event(THP_FAULT_ALLOC);
629 		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
630 	}
631 
632 	return 0;
633 unlock_release:
634 	spin_unlock(vmf->ptl);
635 release:
636 	if (pgtable)
637 		pte_free(vma->vm_mm, pgtable);
638 	put_page(page);
639 	return ret;
640 
641 }
642 
643 /*
644  * always: directly stall for all thp allocations
645  * defer: wake kswapd and fail if not immediately available
646  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
647  *		  fail if not immediately available
648  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
649  *	    available
650  * never: never stall for any thp allocation
651  */
alloc_hugepage_direct_gfpmask(struct vm_area_struct * vma)652 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
653 {
654 	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
655 
656 	/* Always do synchronous compaction */
657 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
658 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
659 
660 	/* Kick kcompactd and fail quickly */
661 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
662 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
663 
664 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
665 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
666 		return GFP_TRANSHUGE_LIGHT |
667 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
668 					__GFP_KSWAPD_RECLAIM);
669 
670 	/* Only do synchronous compaction if madvised */
671 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
672 		return GFP_TRANSHUGE_LIGHT |
673 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
674 
675 	return GFP_TRANSHUGE_LIGHT;
676 }
677 
678 /* Caller must hold page table lock. */
set_huge_zero_page(pgtable_t pgtable,struct mm_struct * mm,struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd,struct page * zero_page)679 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
680 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
681 		struct page *zero_page)
682 {
683 	pmd_t entry;
684 	if (!pmd_none(*pmd))
685 		return false;
686 	entry = mk_pmd(zero_page, vma->vm_page_prot);
687 	entry = pmd_mkhuge(entry);
688 	if (pgtable)
689 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
690 	set_pmd_at(mm, haddr, pmd, entry);
691 	mm_inc_nr_ptes(mm);
692 	return true;
693 }
694 
do_huge_pmd_anonymous_page(struct vm_fault * vmf)695 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
696 {
697 	struct vm_area_struct *vma = vmf->vma;
698 	gfp_t gfp;
699 	struct page *page;
700 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
701 
702 	if (!transhuge_vma_suitable(vma, haddr))
703 		return VM_FAULT_FALLBACK;
704 	if (unlikely(anon_vma_prepare(vma)))
705 		return VM_FAULT_OOM;
706 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
707 		return VM_FAULT_OOM;
708 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
709 			!mm_forbids_zeropage(vma->vm_mm) &&
710 			transparent_hugepage_use_zero_page()) {
711 		pgtable_t pgtable;
712 		struct page *zero_page;
713 		vm_fault_t ret;
714 		pgtable = pte_alloc_one(vma->vm_mm);
715 		if (unlikely(!pgtable))
716 			return VM_FAULT_OOM;
717 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
718 		if (unlikely(!zero_page)) {
719 			pte_free(vma->vm_mm, pgtable);
720 			count_vm_event(THP_FAULT_FALLBACK);
721 			return VM_FAULT_FALLBACK;
722 		}
723 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
724 		ret = 0;
725 		if (pmd_none(*vmf->pmd)) {
726 			ret = check_stable_address_space(vma->vm_mm);
727 			if (ret) {
728 				spin_unlock(vmf->ptl);
729 				pte_free(vma->vm_mm, pgtable);
730 			} else if (userfaultfd_missing(vma)) {
731 				spin_unlock(vmf->ptl);
732 				pte_free(vma->vm_mm, pgtable);
733 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
734 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
735 			} else {
736 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
737 						   haddr, vmf->pmd, zero_page);
738 				spin_unlock(vmf->ptl);
739 			}
740 		} else {
741 			spin_unlock(vmf->ptl);
742 			pte_free(vma->vm_mm, pgtable);
743 		}
744 		return ret;
745 	}
746 	gfp = alloc_hugepage_direct_gfpmask(vma);
747 	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
748 	if (unlikely(!page)) {
749 		count_vm_event(THP_FAULT_FALLBACK);
750 		return VM_FAULT_FALLBACK;
751 	}
752 	prep_transhuge_page(page);
753 	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
754 }
755 
insert_pfn_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,pfn_t pfn,pgprot_t prot,bool write,pgtable_t pgtable)756 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
757 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
758 		pgtable_t pgtable)
759 {
760 	struct mm_struct *mm = vma->vm_mm;
761 	pmd_t entry;
762 	spinlock_t *ptl;
763 
764 	ptl = pmd_lock(mm, pmd);
765 	if (!pmd_none(*pmd)) {
766 		if (write) {
767 			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
768 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
769 				goto out_unlock;
770 			}
771 			entry = pmd_mkyoung(*pmd);
772 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
773 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
774 				update_mmu_cache_pmd(vma, addr, pmd);
775 		}
776 
777 		goto out_unlock;
778 	}
779 
780 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
781 	if (pfn_t_devmap(pfn))
782 		entry = pmd_mkdevmap(entry);
783 	if (write) {
784 		entry = pmd_mkyoung(pmd_mkdirty(entry));
785 		entry = maybe_pmd_mkwrite(entry, vma);
786 	}
787 
788 	if (pgtable) {
789 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
790 		mm_inc_nr_ptes(mm);
791 		pgtable = NULL;
792 	}
793 
794 	set_pmd_at(mm, addr, pmd, entry);
795 	update_mmu_cache_pmd(vma, addr, pmd);
796 
797 out_unlock:
798 	spin_unlock(ptl);
799 	if (pgtable)
800 		pte_free(mm, pgtable);
801 }
802 
803 /**
804  * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
805  * @vmf: Structure describing the fault
806  * @pfn: pfn to insert
807  * @pgprot: page protection to use
808  * @write: whether it's a write fault
809  *
810  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
811  * also consult the vmf_insert_mixed_prot() documentation when
812  * @pgprot != @vmf->vma->vm_page_prot.
813  *
814  * Return: vm_fault_t value.
815  */
vmf_insert_pfn_pmd_prot(struct vm_fault * vmf,pfn_t pfn,pgprot_t pgprot,bool write)816 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
817 				   pgprot_t pgprot, bool write)
818 {
819 	unsigned long addr = vmf->address & PMD_MASK;
820 	struct vm_area_struct *vma = vmf->vma;
821 	pgtable_t pgtable = NULL;
822 
823 	/*
824 	 * If we had pmd_special, we could avoid all these restrictions,
825 	 * but we need to be consistent with PTEs and architectures that
826 	 * can't support a 'special' bit.
827 	 */
828 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
829 			!pfn_t_devmap(pfn));
830 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
831 						(VM_PFNMAP|VM_MIXEDMAP));
832 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
833 
834 	if (addr < vma->vm_start || addr >= vma->vm_end)
835 		return VM_FAULT_SIGBUS;
836 
837 	if (arch_needs_pgtable_deposit()) {
838 		pgtable = pte_alloc_one(vma->vm_mm);
839 		if (!pgtable)
840 			return VM_FAULT_OOM;
841 	}
842 
843 	track_pfn_insert(vma, &pgprot, pfn);
844 
845 	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
846 	return VM_FAULT_NOPAGE;
847 }
848 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
849 
850 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
maybe_pud_mkwrite(pud_t pud,struct vm_area_struct * vma)851 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
852 {
853 	if (likely(vma->vm_flags & VM_WRITE))
854 		pud = pud_mkwrite(pud);
855 	return pud;
856 }
857 
insert_pfn_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,pfn_t pfn,pgprot_t prot,bool write)858 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
859 		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
860 {
861 	struct mm_struct *mm = vma->vm_mm;
862 	pud_t entry;
863 	spinlock_t *ptl;
864 
865 	ptl = pud_lock(mm, pud);
866 	if (!pud_none(*pud)) {
867 		if (write) {
868 			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
869 				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
870 				goto out_unlock;
871 			}
872 			entry = pud_mkyoung(*pud);
873 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
874 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
875 				update_mmu_cache_pud(vma, addr, pud);
876 		}
877 		goto out_unlock;
878 	}
879 
880 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
881 	if (pfn_t_devmap(pfn))
882 		entry = pud_mkdevmap(entry);
883 	if (write) {
884 		entry = pud_mkyoung(pud_mkdirty(entry));
885 		entry = maybe_pud_mkwrite(entry, vma);
886 	}
887 	set_pud_at(mm, addr, pud, entry);
888 	update_mmu_cache_pud(vma, addr, pud);
889 
890 out_unlock:
891 	spin_unlock(ptl);
892 }
893 
894 /**
895  * vmf_insert_pfn_pud_prot - insert a pud size pfn
896  * @vmf: Structure describing the fault
897  * @pfn: pfn to insert
898  * @pgprot: page protection to use
899  * @write: whether it's a write fault
900  *
901  * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
902  * also consult the vmf_insert_mixed_prot() documentation when
903  * @pgprot != @vmf->vma->vm_page_prot.
904  *
905  * Return: vm_fault_t value.
906  */
vmf_insert_pfn_pud_prot(struct vm_fault * vmf,pfn_t pfn,pgprot_t pgprot,bool write)907 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
908 				   pgprot_t pgprot, bool write)
909 {
910 	unsigned long addr = vmf->address & PUD_MASK;
911 	struct vm_area_struct *vma = vmf->vma;
912 
913 	/*
914 	 * If we had pud_special, we could avoid all these restrictions,
915 	 * but we need to be consistent with PTEs and architectures that
916 	 * can't support a 'special' bit.
917 	 */
918 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
919 			!pfn_t_devmap(pfn));
920 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
921 						(VM_PFNMAP|VM_MIXEDMAP));
922 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
923 
924 	if (addr < vma->vm_start || addr >= vma->vm_end)
925 		return VM_FAULT_SIGBUS;
926 
927 	track_pfn_insert(vma, &pgprot, pfn);
928 
929 	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
930 	return VM_FAULT_NOPAGE;
931 }
932 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
933 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
934 
touch_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,int flags)935 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
936 		pmd_t *pmd, int flags)
937 {
938 	pmd_t _pmd;
939 
940 	_pmd = pmd_mkyoung(*pmd);
941 	if (flags & FOLL_WRITE)
942 		_pmd = pmd_mkdirty(_pmd);
943 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
944 				pmd, _pmd, flags & FOLL_WRITE))
945 		update_mmu_cache_pmd(vma, addr, pmd);
946 }
947 
follow_devmap_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,int flags,struct dev_pagemap ** pgmap)948 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
949 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
950 {
951 	unsigned long pfn = pmd_pfn(*pmd);
952 	struct mm_struct *mm = vma->vm_mm;
953 	struct page *page;
954 
955 	assert_spin_locked(pmd_lockptr(mm, pmd));
956 
957 	/*
958 	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
959 	 * not be in this function with `flags & FOLL_COW` set.
960 	 */
961 	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
962 
963 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
964 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
965 			 (FOLL_PIN | FOLL_GET)))
966 		return NULL;
967 
968 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
969 		return NULL;
970 
971 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
972 		/* pass */;
973 	else
974 		return NULL;
975 
976 	if (flags & FOLL_TOUCH)
977 		touch_pmd(vma, addr, pmd, flags);
978 
979 	/*
980 	 * device mapped pages can only be returned if the
981 	 * caller will manage the page reference count.
982 	 */
983 	if (!(flags & (FOLL_GET | FOLL_PIN)))
984 		return ERR_PTR(-EEXIST);
985 
986 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
987 	*pgmap = get_dev_pagemap(pfn, *pgmap);
988 	if (!*pgmap)
989 		return ERR_PTR(-EFAULT);
990 	page = pfn_to_page(pfn);
991 	if (!try_grab_page(page, flags))
992 		page = ERR_PTR(-ENOMEM);
993 
994 	return page;
995 }
996 
copy_huge_pmd(struct mm_struct * dst_mm,struct mm_struct * src_mm,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,struct vm_area_struct * vma)997 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
998 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
999 		  struct vm_area_struct *vma)
1000 {
1001 	spinlock_t *dst_ptl, *src_ptl;
1002 	struct page *src_page;
1003 	pmd_t pmd;
1004 	pgtable_t pgtable = NULL;
1005 	int ret = -ENOMEM;
1006 
1007 	/* Skip if can be re-fill on fault */
1008 	if (!vma_is_anonymous(vma))
1009 		return 0;
1010 
1011 	pgtable = pte_alloc_one(dst_mm);
1012 	if (unlikely(!pgtable))
1013 		goto out;
1014 
1015 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1016 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1017 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1018 
1019 	ret = -EAGAIN;
1020 	pmd = *src_pmd;
1021 
1022 	/*
1023 	 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
1024 	 * does not have the VM_UFFD_WP, which means that the uffd
1025 	 * fork event is not enabled.
1026 	 */
1027 	if (!(vma->vm_flags & VM_UFFD_WP))
1028 		pmd = pmd_clear_uffd_wp(pmd);
1029 
1030 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1031 	if (unlikely(is_swap_pmd(pmd))) {
1032 		swp_entry_t entry = pmd_to_swp_entry(pmd);
1033 
1034 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1035 		if (is_write_migration_entry(entry)) {
1036 			make_migration_entry_read(&entry);
1037 			pmd = swp_entry_to_pmd(entry);
1038 			if (pmd_swp_soft_dirty(*src_pmd))
1039 				pmd = pmd_swp_mksoft_dirty(pmd);
1040 			set_pmd_at(src_mm, addr, src_pmd, pmd);
1041 		}
1042 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1043 		mm_inc_nr_ptes(dst_mm);
1044 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1045 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1046 		ret = 0;
1047 		goto out_unlock;
1048 	}
1049 #endif
1050 
1051 	if (unlikely(!pmd_trans_huge(pmd))) {
1052 		pte_free(dst_mm, pgtable);
1053 		goto out_unlock;
1054 	}
1055 	/*
1056 	 * When page table lock is held, the huge zero pmd should not be
1057 	 * under splitting since we don't split the page itself, only pmd to
1058 	 * a page table.
1059 	 */
1060 	if (is_huge_zero_pmd(pmd)) {
1061 		struct page *zero_page;
1062 		/*
1063 		 * get_huge_zero_page() will never allocate a new page here,
1064 		 * since we already have a zero page to copy. It just takes a
1065 		 * reference.
1066 		 */
1067 		zero_page = mm_get_huge_zero_page(dst_mm);
1068 		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1069 				zero_page);
1070 		ret = 0;
1071 		goto out_unlock;
1072 	}
1073 
1074 	src_page = pmd_page(pmd);
1075 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1076 
1077 	/*
1078 	 * If this page is a potentially pinned page, split and retry the fault
1079 	 * with smaller page size.  Normally this should not happen because the
1080 	 * userspace should use MADV_DONTFORK upon pinned regions.  This is a
1081 	 * best effort that the pinned pages won't be replaced by another
1082 	 * random page during the coming copy-on-write.
1083 	 */
1084 	if (unlikely(is_cow_mapping(vma->vm_flags) &&
1085 		     atomic_read(&src_mm->has_pinned) &&
1086 		     page_maybe_dma_pinned(src_page))) {
1087 		pte_free(dst_mm, pgtable);
1088 		spin_unlock(src_ptl);
1089 		spin_unlock(dst_ptl);
1090 		__split_huge_pmd(vma, src_pmd, addr, false, NULL);
1091 		return -EAGAIN;
1092 	}
1093 
1094 	get_page(src_page);
1095 	page_dup_rmap(src_page, true);
1096 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1097 	mm_inc_nr_ptes(dst_mm);
1098 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1099 
1100 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1101 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1102 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1103 
1104 	ret = 0;
1105 out_unlock:
1106 	spin_unlock(src_ptl);
1107 	spin_unlock(dst_ptl);
1108 out:
1109 	return ret;
1110 }
1111 
1112 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
touch_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,int flags)1113 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1114 		pud_t *pud, int flags)
1115 {
1116 	pud_t _pud;
1117 
1118 	_pud = pud_mkyoung(*pud);
1119 	if (flags & FOLL_WRITE)
1120 		_pud = pud_mkdirty(_pud);
1121 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1122 				pud, _pud, flags & FOLL_WRITE))
1123 		update_mmu_cache_pud(vma, addr, pud);
1124 }
1125 
follow_devmap_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,int flags,struct dev_pagemap ** pgmap)1126 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1127 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1128 {
1129 	unsigned long pfn = pud_pfn(*pud);
1130 	struct mm_struct *mm = vma->vm_mm;
1131 	struct page *page;
1132 
1133 	assert_spin_locked(pud_lockptr(mm, pud));
1134 
1135 	if (flags & FOLL_WRITE && !pud_write(*pud))
1136 		return NULL;
1137 
1138 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
1139 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1140 			 (FOLL_PIN | FOLL_GET)))
1141 		return NULL;
1142 
1143 	if (pud_present(*pud) && pud_devmap(*pud))
1144 		/* pass */;
1145 	else
1146 		return NULL;
1147 
1148 	if (flags & FOLL_TOUCH)
1149 		touch_pud(vma, addr, pud, flags);
1150 
1151 	/*
1152 	 * device mapped pages can only be returned if the
1153 	 * caller will manage the page reference count.
1154 	 *
1155 	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1156 	 */
1157 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1158 		return ERR_PTR(-EEXIST);
1159 
1160 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1161 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1162 	if (!*pgmap)
1163 		return ERR_PTR(-EFAULT);
1164 	page = pfn_to_page(pfn);
1165 	if (!try_grab_page(page, flags))
1166 		page = ERR_PTR(-ENOMEM);
1167 
1168 	return page;
1169 }
1170 
copy_huge_pud(struct mm_struct * dst_mm,struct mm_struct * src_mm,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,struct vm_area_struct * vma)1171 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1172 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1173 		  struct vm_area_struct *vma)
1174 {
1175 	spinlock_t *dst_ptl, *src_ptl;
1176 	pud_t pud;
1177 	int ret;
1178 
1179 	dst_ptl = pud_lock(dst_mm, dst_pud);
1180 	src_ptl = pud_lockptr(src_mm, src_pud);
1181 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1182 
1183 	ret = -EAGAIN;
1184 	pud = *src_pud;
1185 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1186 		goto out_unlock;
1187 
1188 	/*
1189 	 * When page table lock is held, the huge zero pud should not be
1190 	 * under splitting since we don't split the page itself, only pud to
1191 	 * a page table.
1192 	 */
1193 	if (is_huge_zero_pud(pud)) {
1194 		/* No huge zero pud yet */
1195 	}
1196 
1197 	/* Please refer to comments in copy_huge_pmd() */
1198 	if (unlikely(is_cow_mapping(vma->vm_flags) &&
1199 		     atomic_read(&src_mm->has_pinned) &&
1200 		     page_maybe_dma_pinned(pud_page(pud)))) {
1201 		spin_unlock(src_ptl);
1202 		spin_unlock(dst_ptl);
1203 		__split_huge_pud(vma, src_pud, addr);
1204 		return -EAGAIN;
1205 	}
1206 
1207 	pudp_set_wrprotect(src_mm, addr, src_pud);
1208 	pud = pud_mkold(pud_wrprotect(pud));
1209 	set_pud_at(dst_mm, addr, dst_pud, pud);
1210 
1211 	ret = 0;
1212 out_unlock:
1213 	spin_unlock(src_ptl);
1214 	spin_unlock(dst_ptl);
1215 	return ret;
1216 }
1217 
huge_pud_set_accessed(struct vm_fault * vmf,pud_t orig_pud)1218 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1219 {
1220 	pud_t entry;
1221 	unsigned long haddr;
1222 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1223 
1224 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1225 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1226 		goto unlock;
1227 
1228 	entry = pud_mkyoung(orig_pud);
1229 	if (write)
1230 		entry = pud_mkdirty(entry);
1231 	haddr = vmf->address & HPAGE_PUD_MASK;
1232 	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1233 		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1234 
1235 unlock:
1236 	spin_unlock(vmf->ptl);
1237 }
1238 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1239 
huge_pmd_set_accessed(struct vm_fault * vmf,pmd_t orig_pmd)1240 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1241 {
1242 	pmd_t entry;
1243 	unsigned long haddr;
1244 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1245 
1246 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1247 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1248 		goto unlock;
1249 
1250 	entry = pmd_mkyoung(orig_pmd);
1251 	if (write)
1252 		entry = pmd_mkdirty(entry);
1253 	haddr = vmf->address & HPAGE_PMD_MASK;
1254 	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1255 		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1256 
1257 unlock:
1258 	spin_unlock(vmf->ptl);
1259 }
1260 
do_huge_pmd_wp_page(struct vm_fault * vmf,pmd_t orig_pmd)1261 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1262 {
1263 	struct vm_area_struct *vma = vmf->vma;
1264 	struct page *page;
1265 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1266 
1267 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1268 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1269 
1270 	if (is_huge_zero_pmd(orig_pmd))
1271 		goto fallback;
1272 
1273 	spin_lock(vmf->ptl);
1274 
1275 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1276 		spin_unlock(vmf->ptl);
1277 		return 0;
1278 	}
1279 
1280 	page = pmd_page(orig_pmd);
1281 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1282 
1283 	/* Lock page for reuse_swap_page() */
1284 	if (!trylock_page(page)) {
1285 		get_page(page);
1286 		spin_unlock(vmf->ptl);
1287 		lock_page(page);
1288 		spin_lock(vmf->ptl);
1289 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1290 			spin_unlock(vmf->ptl);
1291 			unlock_page(page);
1292 			put_page(page);
1293 			return 0;
1294 		}
1295 		put_page(page);
1296 	}
1297 
1298 	/*
1299 	 * We can only reuse the page if nobody else maps the huge page or it's
1300 	 * part.
1301 	 */
1302 	if (reuse_swap_page(page, NULL)) {
1303 		pmd_t entry;
1304 		entry = pmd_mkyoung(orig_pmd);
1305 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1306 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1307 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1308 		unlock_page(page);
1309 		spin_unlock(vmf->ptl);
1310 		return VM_FAULT_WRITE;
1311 	}
1312 
1313 	unlock_page(page);
1314 	spin_unlock(vmf->ptl);
1315 fallback:
1316 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1317 	return VM_FAULT_FALLBACK;
1318 }
1319 
1320 /*
1321  * FOLL_FORCE can write to even unwritable pmd's, but only
1322  * after we've gone through a COW cycle and they are dirty.
1323  */
can_follow_write_pmd(pmd_t pmd,unsigned int flags)1324 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1325 {
1326 	return pmd_write(pmd) ||
1327 	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1328 }
1329 
follow_trans_huge_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,unsigned int flags)1330 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1331 				   unsigned long addr,
1332 				   pmd_t *pmd,
1333 				   unsigned int flags)
1334 {
1335 	struct mm_struct *mm = vma->vm_mm;
1336 	struct page *page = NULL;
1337 
1338 	assert_spin_locked(pmd_lockptr(mm, pmd));
1339 
1340 	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1341 		goto out;
1342 
1343 	/* Avoid dumping huge zero page */
1344 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1345 		return ERR_PTR(-EFAULT);
1346 
1347 	/* Full NUMA hinting faults to serialise migration in fault paths */
1348 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1349 		goto out;
1350 
1351 	page = pmd_page(*pmd);
1352 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1353 
1354 	if (!try_grab_page(page, flags))
1355 		return ERR_PTR(-ENOMEM);
1356 
1357 	if (flags & FOLL_TOUCH)
1358 		touch_pmd(vma, addr, pmd, flags);
1359 
1360 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1361 		/*
1362 		 * We don't mlock() pte-mapped THPs. This way we can avoid
1363 		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1364 		 *
1365 		 * For anon THP:
1366 		 *
1367 		 * In most cases the pmd is the only mapping of the page as we
1368 		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1369 		 * writable private mappings in populate_vma_page_range().
1370 		 *
1371 		 * The only scenario when we have the page shared here is if we
1372 		 * mlocking read-only mapping shared over fork(). We skip
1373 		 * mlocking such pages.
1374 		 *
1375 		 * For file THP:
1376 		 *
1377 		 * We can expect PageDoubleMap() to be stable under page lock:
1378 		 * for file pages we set it in page_add_file_rmap(), which
1379 		 * requires page to be locked.
1380 		 */
1381 
1382 		if (PageAnon(page) && compound_mapcount(page) != 1)
1383 			goto skip_mlock;
1384 		if (PageDoubleMap(page) || !page->mapping)
1385 			goto skip_mlock;
1386 		if (!trylock_page(page))
1387 			goto skip_mlock;
1388 		if (page->mapping && !PageDoubleMap(page))
1389 			mlock_vma_page(page);
1390 		unlock_page(page);
1391 	}
1392 skip_mlock:
1393 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1394 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1395 
1396 out:
1397 	return page;
1398 }
1399 
1400 /* NUMA hinting page fault entry point for trans huge pmds */
do_huge_pmd_numa_page(struct vm_fault * vmf,pmd_t pmd)1401 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1402 {
1403 	struct vm_area_struct *vma = vmf->vma;
1404 	struct anon_vma *anon_vma = NULL;
1405 	struct page *page;
1406 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1407 	int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1408 	int target_nid, last_cpupid = -1;
1409 	bool page_locked;
1410 	bool migrated = false;
1411 	bool was_writable;
1412 	int flags = 0;
1413 
1414 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1415 	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1416 		goto out_unlock;
1417 
1418 	/*
1419 	 * If there are potential migrations, wait for completion and retry
1420 	 * without disrupting NUMA hinting information. Do not relock and
1421 	 * check_same as the page may no longer be mapped.
1422 	 */
1423 	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1424 		page = pmd_page(*vmf->pmd);
1425 		if (!get_page_unless_zero(page))
1426 			goto out_unlock;
1427 		spin_unlock(vmf->ptl);
1428 		put_and_wait_on_page_locked(page);
1429 		goto out;
1430 	}
1431 
1432 	page = pmd_page(pmd);
1433 	BUG_ON(is_huge_zero_page(page));
1434 	page_nid = page_to_nid(page);
1435 	last_cpupid = page_cpupid_last(page);
1436 	count_vm_numa_event(NUMA_HINT_FAULTS);
1437 	if (page_nid == this_nid) {
1438 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1439 		flags |= TNF_FAULT_LOCAL;
1440 	}
1441 
1442 	/* See similar comment in do_numa_page for explanation */
1443 	if (!pmd_savedwrite(pmd))
1444 		flags |= TNF_NO_GROUP;
1445 
1446 	/*
1447 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1448 	 * page_table_lock if at all possible
1449 	 */
1450 	page_locked = trylock_page(page);
1451 	target_nid = mpol_misplaced(page, vma, haddr);
1452 	if (target_nid == NUMA_NO_NODE) {
1453 		/* If the page was locked, there are no parallel migrations */
1454 		if (page_locked)
1455 			goto clear_pmdnuma;
1456 	}
1457 
1458 	/* Migration could have started since the pmd_trans_migrating check */
1459 	if (!page_locked) {
1460 		page_nid = NUMA_NO_NODE;
1461 		if (!get_page_unless_zero(page))
1462 			goto out_unlock;
1463 		spin_unlock(vmf->ptl);
1464 		put_and_wait_on_page_locked(page);
1465 		goto out;
1466 	}
1467 
1468 	/*
1469 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1470 	 * to serialises splits
1471 	 */
1472 	get_page(page);
1473 	spin_unlock(vmf->ptl);
1474 	anon_vma = page_lock_anon_vma_read(page);
1475 
1476 	/* Confirm the PMD did not change while page_table_lock was released */
1477 	spin_lock(vmf->ptl);
1478 	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1479 		unlock_page(page);
1480 		put_page(page);
1481 		page_nid = NUMA_NO_NODE;
1482 		goto out_unlock;
1483 	}
1484 
1485 	/* Bail if we fail to protect against THP splits for any reason */
1486 	if (unlikely(!anon_vma)) {
1487 		put_page(page);
1488 		page_nid = NUMA_NO_NODE;
1489 		goto clear_pmdnuma;
1490 	}
1491 
1492 	/*
1493 	 * Since we took the NUMA fault, we must have observed the !accessible
1494 	 * bit. Make sure all other CPUs agree with that, to avoid them
1495 	 * modifying the page we're about to migrate.
1496 	 *
1497 	 * Must be done under PTL such that we'll observe the relevant
1498 	 * inc_tlb_flush_pending().
1499 	 *
1500 	 * We are not sure a pending tlb flush here is for a huge page
1501 	 * mapping or not. Hence use the tlb range variant
1502 	 */
1503 	if (mm_tlb_flush_pending(vma->vm_mm)) {
1504 		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1505 		/*
1506 		 * change_huge_pmd() released the pmd lock before
1507 		 * invalidating the secondary MMUs sharing the primary
1508 		 * MMU pagetables (with ->invalidate_range()). The
1509 		 * mmu_notifier_invalidate_range_end() (which
1510 		 * internally calls ->invalidate_range()) in
1511 		 * change_pmd_range() will run after us, so we can't
1512 		 * rely on it here and we need an explicit invalidate.
1513 		 */
1514 		mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1515 					      haddr + HPAGE_PMD_SIZE);
1516 	}
1517 
1518 	/*
1519 	 * Migrate the THP to the requested node, returns with page unlocked
1520 	 * and access rights restored.
1521 	 */
1522 	spin_unlock(vmf->ptl);
1523 
1524 	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1525 				vmf->pmd, pmd, vmf->address, page, target_nid);
1526 	if (migrated) {
1527 		flags |= TNF_MIGRATED;
1528 		page_nid = target_nid;
1529 	} else
1530 		flags |= TNF_MIGRATE_FAIL;
1531 
1532 	goto out;
1533 clear_pmdnuma:
1534 	BUG_ON(!PageLocked(page));
1535 	was_writable = pmd_savedwrite(pmd);
1536 	pmd = pmd_modify(pmd, vma->vm_page_prot);
1537 	pmd = pmd_mkyoung(pmd);
1538 	if (was_writable)
1539 		pmd = pmd_mkwrite(pmd);
1540 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1541 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1542 	unlock_page(page);
1543 out_unlock:
1544 	spin_unlock(vmf->ptl);
1545 
1546 out:
1547 	if (anon_vma)
1548 		page_unlock_anon_vma_read(anon_vma);
1549 
1550 	if (page_nid != NUMA_NO_NODE)
1551 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1552 				flags);
1553 
1554 	return 0;
1555 }
1556 
1557 /*
1558  * Return true if we do MADV_FREE successfully on entire pmd page.
1559  * Otherwise, return false.
1560  */
madvise_free_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long next)1561 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1562 		pmd_t *pmd, unsigned long addr, unsigned long next)
1563 {
1564 	spinlock_t *ptl;
1565 	pmd_t orig_pmd;
1566 	struct page *page;
1567 	struct mm_struct *mm = tlb->mm;
1568 	bool ret = false;
1569 
1570 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1571 
1572 	ptl = pmd_trans_huge_lock(pmd, vma);
1573 	if (!ptl)
1574 		goto out_unlocked;
1575 
1576 	orig_pmd = *pmd;
1577 	if (is_huge_zero_pmd(orig_pmd))
1578 		goto out;
1579 
1580 	if (unlikely(!pmd_present(orig_pmd))) {
1581 		VM_BUG_ON(thp_migration_supported() &&
1582 				  !is_pmd_migration_entry(orig_pmd));
1583 		goto out;
1584 	}
1585 
1586 	page = pmd_page(orig_pmd);
1587 	/*
1588 	 * If other processes are mapping this page, we couldn't discard
1589 	 * the page unless they all do MADV_FREE so let's skip the page.
1590 	 */
1591 	if (page_mapcount(page) != 1)
1592 		goto out;
1593 
1594 	if (!trylock_page(page))
1595 		goto out;
1596 
1597 	/*
1598 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1599 	 * will deactivate only them.
1600 	 */
1601 	if (next - addr != HPAGE_PMD_SIZE) {
1602 		get_page(page);
1603 		spin_unlock(ptl);
1604 		split_huge_page(page);
1605 		unlock_page(page);
1606 		put_page(page);
1607 		goto out_unlocked;
1608 	}
1609 
1610 	if (PageDirty(page))
1611 		ClearPageDirty(page);
1612 	unlock_page(page);
1613 
1614 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1615 		pmdp_invalidate(vma, addr, pmd);
1616 		orig_pmd = pmd_mkold(orig_pmd);
1617 		orig_pmd = pmd_mkclean(orig_pmd);
1618 
1619 		set_pmd_at(mm, addr, pmd, orig_pmd);
1620 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1621 	}
1622 
1623 	mark_page_lazyfree(page);
1624 	ret = true;
1625 out:
1626 	spin_unlock(ptl);
1627 out_unlocked:
1628 	return ret;
1629 }
1630 
zap_deposited_table(struct mm_struct * mm,pmd_t * pmd)1631 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1632 {
1633 	pgtable_t pgtable;
1634 
1635 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1636 	pte_free(mm, pgtable);
1637 	mm_dec_nr_ptes(mm);
1638 }
1639 
zap_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr)1640 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1641 		 pmd_t *pmd, unsigned long addr)
1642 {
1643 	pmd_t orig_pmd;
1644 	spinlock_t *ptl;
1645 
1646 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1647 
1648 	ptl = __pmd_trans_huge_lock(pmd, vma);
1649 	if (!ptl)
1650 		return 0;
1651 	/*
1652 	 * For architectures like ppc64 we look at deposited pgtable
1653 	 * when calling pmdp_huge_get_and_clear. So do the
1654 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1655 	 * operations.
1656 	 */
1657 	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1658 						tlb->fullmm);
1659 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1660 	if (vma_is_special_huge(vma)) {
1661 		if (arch_needs_pgtable_deposit())
1662 			zap_deposited_table(tlb->mm, pmd);
1663 		spin_unlock(ptl);
1664 		if (is_huge_zero_pmd(orig_pmd))
1665 			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1666 	} else if (is_huge_zero_pmd(orig_pmd)) {
1667 		zap_deposited_table(tlb->mm, pmd);
1668 		spin_unlock(ptl);
1669 		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1670 	} else {
1671 		struct page *page = NULL;
1672 		int flush_needed = 1;
1673 
1674 		if (pmd_present(orig_pmd)) {
1675 			page = pmd_page(orig_pmd);
1676 			page_remove_rmap(page, true);
1677 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1678 			VM_BUG_ON_PAGE(!PageHead(page), page);
1679 		} else if (thp_migration_supported()) {
1680 			swp_entry_t entry;
1681 
1682 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1683 			entry = pmd_to_swp_entry(orig_pmd);
1684 			page = pfn_to_page(swp_offset(entry));
1685 			flush_needed = 0;
1686 		} else
1687 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1688 
1689 		if (PageAnon(page)) {
1690 			zap_deposited_table(tlb->mm, pmd);
1691 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1692 		} else {
1693 			if (arch_needs_pgtable_deposit())
1694 				zap_deposited_table(tlb->mm, pmd);
1695 			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1696 		}
1697 
1698 		spin_unlock(ptl);
1699 		if (flush_needed)
1700 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1701 	}
1702 	return 1;
1703 }
1704 
1705 #ifndef pmd_move_must_withdraw
pmd_move_must_withdraw(spinlock_t * new_pmd_ptl,spinlock_t * old_pmd_ptl,struct vm_area_struct * vma)1706 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1707 					 spinlock_t *old_pmd_ptl,
1708 					 struct vm_area_struct *vma)
1709 {
1710 	/*
1711 	 * With split pmd lock we also need to move preallocated
1712 	 * PTE page table if new_pmd is on different PMD page table.
1713 	 *
1714 	 * We also don't deposit and withdraw tables for file pages.
1715 	 */
1716 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1717 }
1718 #endif
1719 
move_soft_dirty_pmd(pmd_t pmd)1720 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1721 {
1722 #ifdef CONFIG_MEM_SOFT_DIRTY
1723 	if (unlikely(is_pmd_migration_entry(pmd)))
1724 		pmd = pmd_swp_mksoft_dirty(pmd);
1725 	else if (pmd_present(pmd))
1726 		pmd = pmd_mksoft_dirty(pmd);
1727 #endif
1728 	return pmd;
1729 }
1730 
move_huge_pmd(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,pmd_t * old_pmd,pmd_t * new_pmd)1731 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1732 		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1733 {
1734 	spinlock_t *old_ptl, *new_ptl;
1735 	pmd_t pmd;
1736 	struct mm_struct *mm = vma->vm_mm;
1737 	bool force_flush = false;
1738 
1739 	/*
1740 	 * The destination pmd shouldn't be established, free_pgtables()
1741 	 * should have release it.
1742 	 */
1743 	if (WARN_ON(!pmd_none(*new_pmd))) {
1744 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1745 		return false;
1746 	}
1747 
1748 	/*
1749 	 * We don't have to worry about the ordering of src and dst
1750 	 * ptlocks because exclusive mmap_lock prevents deadlock.
1751 	 */
1752 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1753 	if (old_ptl) {
1754 		new_ptl = pmd_lockptr(mm, new_pmd);
1755 		if (new_ptl != old_ptl)
1756 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1757 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1758 		if (pmd_present(pmd))
1759 			force_flush = true;
1760 		VM_BUG_ON(!pmd_none(*new_pmd));
1761 
1762 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1763 			pgtable_t pgtable;
1764 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1765 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1766 		}
1767 		pmd = move_soft_dirty_pmd(pmd);
1768 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1769 		if (force_flush)
1770 			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1771 		if (new_ptl != old_ptl)
1772 			spin_unlock(new_ptl);
1773 		spin_unlock(old_ptl);
1774 		return true;
1775 	}
1776 	return false;
1777 }
1778 
1779 /*
1780  * Returns
1781  *  - 0 if PMD could not be locked
1782  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1783  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1784  */
change_huge_pmd(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,pgprot_t newprot,unsigned long cp_flags)1785 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1786 		unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1787 {
1788 	struct mm_struct *mm = vma->vm_mm;
1789 	spinlock_t *ptl;
1790 	pmd_t entry;
1791 	bool preserve_write;
1792 	int ret;
1793 	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1794 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1795 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1796 
1797 	ptl = __pmd_trans_huge_lock(pmd, vma);
1798 	if (!ptl)
1799 		return 0;
1800 
1801 	preserve_write = prot_numa && pmd_write(*pmd);
1802 	ret = 1;
1803 
1804 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1805 	if (is_swap_pmd(*pmd)) {
1806 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1807 
1808 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1809 		if (is_write_migration_entry(entry)) {
1810 			pmd_t newpmd;
1811 			/*
1812 			 * A protection check is difficult so
1813 			 * just be safe and disable write
1814 			 */
1815 			make_migration_entry_read(&entry);
1816 			newpmd = swp_entry_to_pmd(entry);
1817 			if (pmd_swp_soft_dirty(*pmd))
1818 				newpmd = pmd_swp_mksoft_dirty(newpmd);
1819 			set_pmd_at(mm, addr, pmd, newpmd);
1820 		}
1821 		goto unlock;
1822 	}
1823 #endif
1824 
1825 	/*
1826 	 * Avoid trapping faults against the zero page. The read-only
1827 	 * data is likely to be read-cached on the local CPU and
1828 	 * local/remote hits to the zero page are not interesting.
1829 	 */
1830 	if (prot_numa && is_huge_zero_pmd(*pmd))
1831 		goto unlock;
1832 
1833 	if (prot_numa && pmd_protnone(*pmd))
1834 		goto unlock;
1835 
1836 	/*
1837 	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1838 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1839 	 * which is also under mmap_read_lock(mm):
1840 	 *
1841 	 *	CPU0:				CPU1:
1842 	 *				change_huge_pmd(prot_numa=1)
1843 	 *				 pmdp_huge_get_and_clear_notify()
1844 	 * madvise_dontneed()
1845 	 *  zap_pmd_range()
1846 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1847 	 *   // skip the pmd
1848 	 *				 set_pmd_at();
1849 	 *				 // pmd is re-established
1850 	 *
1851 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1852 	 * which may break userspace.
1853 	 *
1854 	 * pmdp_invalidate() is required to make sure we don't miss
1855 	 * dirty/young flags set by hardware.
1856 	 */
1857 	entry = pmdp_invalidate(vma, addr, pmd);
1858 
1859 	entry = pmd_modify(entry, newprot);
1860 	if (preserve_write)
1861 		entry = pmd_mk_savedwrite(entry);
1862 	if (uffd_wp) {
1863 		entry = pmd_wrprotect(entry);
1864 		entry = pmd_mkuffd_wp(entry);
1865 	} else if (uffd_wp_resolve) {
1866 		/*
1867 		 * Leave the write bit to be handled by PF interrupt
1868 		 * handler, then things like COW could be properly
1869 		 * handled.
1870 		 */
1871 		entry = pmd_clear_uffd_wp(entry);
1872 	}
1873 	ret = HPAGE_PMD_NR;
1874 	set_pmd_at(mm, addr, pmd, entry);
1875 	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1876 unlock:
1877 	spin_unlock(ptl);
1878 	return ret;
1879 }
1880 
1881 /*
1882  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1883  *
1884  * Note that if it returns page table lock pointer, this routine returns without
1885  * unlocking page table lock. So callers must unlock it.
1886  */
__pmd_trans_huge_lock(pmd_t * pmd,struct vm_area_struct * vma)1887 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1888 {
1889 	spinlock_t *ptl;
1890 	ptl = pmd_lock(vma->vm_mm, pmd);
1891 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1892 			pmd_devmap(*pmd)))
1893 		return ptl;
1894 	spin_unlock(ptl);
1895 	return NULL;
1896 }
1897 
1898 /*
1899  * Returns true if a given pud maps a thp, false otherwise.
1900  *
1901  * Note that if it returns true, this routine returns without unlocking page
1902  * table lock. So callers must unlock it.
1903  */
__pud_trans_huge_lock(pud_t * pud,struct vm_area_struct * vma)1904 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1905 {
1906 	spinlock_t *ptl;
1907 
1908 	ptl = pud_lock(vma->vm_mm, pud);
1909 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1910 		return ptl;
1911 	spin_unlock(ptl);
1912 	return NULL;
1913 }
1914 
1915 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
zap_huge_pud(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr)1916 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1917 		 pud_t *pud, unsigned long addr)
1918 {
1919 	spinlock_t *ptl;
1920 
1921 	ptl = __pud_trans_huge_lock(pud, vma);
1922 	if (!ptl)
1923 		return 0;
1924 	/*
1925 	 * For architectures like ppc64 we look at deposited pgtable
1926 	 * when calling pudp_huge_get_and_clear. So do the
1927 	 * pgtable_trans_huge_withdraw after finishing pudp related
1928 	 * operations.
1929 	 */
1930 	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1931 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1932 	if (vma_is_special_huge(vma)) {
1933 		spin_unlock(ptl);
1934 		/* No zero page support yet */
1935 	} else {
1936 		/* No support for anonymous PUD pages yet */
1937 		BUG();
1938 	}
1939 	return 1;
1940 }
1941 
__split_huge_pud_locked(struct vm_area_struct * vma,pud_t * pud,unsigned long haddr)1942 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1943 		unsigned long haddr)
1944 {
1945 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1946 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1947 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1948 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1949 
1950 	count_vm_event(THP_SPLIT_PUD);
1951 
1952 	pudp_huge_clear_flush_notify(vma, haddr, pud);
1953 }
1954 
__split_huge_pud(struct vm_area_struct * vma,pud_t * pud,unsigned long address)1955 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1956 		unsigned long address)
1957 {
1958 	spinlock_t *ptl;
1959 	struct mmu_notifier_range range;
1960 
1961 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1962 				address & HPAGE_PUD_MASK,
1963 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1964 	mmu_notifier_invalidate_range_start(&range);
1965 	ptl = pud_lock(vma->vm_mm, pud);
1966 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1967 		goto out;
1968 	__split_huge_pud_locked(vma, pud, range.start);
1969 
1970 out:
1971 	spin_unlock(ptl);
1972 	/*
1973 	 * No need to double call mmu_notifier->invalidate_range() callback as
1974 	 * the above pudp_huge_clear_flush_notify() did already call it.
1975 	 */
1976 	mmu_notifier_invalidate_range_only_end(&range);
1977 }
1978 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1979 
__split_huge_zero_page_pmd(struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd)1980 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1981 		unsigned long haddr, pmd_t *pmd)
1982 {
1983 	struct mm_struct *mm = vma->vm_mm;
1984 	pgtable_t pgtable;
1985 	pmd_t _pmd;
1986 	int i;
1987 
1988 	/*
1989 	 * Leave pmd empty until pte is filled note that it is fine to delay
1990 	 * notification until mmu_notifier_invalidate_range_end() as we are
1991 	 * replacing a zero pmd write protected page with a zero pte write
1992 	 * protected page.
1993 	 *
1994 	 * See Documentation/vm/mmu_notifier.rst
1995 	 */
1996 	pmdp_huge_clear_flush(vma, haddr, pmd);
1997 
1998 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1999 	pmd_populate(mm, &_pmd, pgtable);
2000 
2001 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2002 		pte_t *pte, entry;
2003 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2004 		entry = pte_mkspecial(entry);
2005 		pte = pte_offset_map(&_pmd, haddr);
2006 		VM_BUG_ON(!pte_none(*pte));
2007 		set_pte_at(mm, haddr, pte, entry);
2008 		pte_unmap(pte);
2009 	}
2010 	smp_wmb(); /* make pte visible before pmd */
2011 	pmd_populate(mm, pmd, pgtable);
2012 }
2013 
__split_huge_pmd_locked(struct vm_area_struct * vma,pmd_t * pmd,unsigned long haddr,bool freeze)2014 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2015 		unsigned long haddr, bool freeze)
2016 {
2017 	struct mm_struct *mm = vma->vm_mm;
2018 	struct page *page;
2019 	pgtable_t pgtable;
2020 	pmd_t old_pmd, _pmd;
2021 	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2022 	unsigned long addr;
2023 	int i;
2024 
2025 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2026 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2027 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2028 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2029 				&& !pmd_devmap(*pmd));
2030 
2031 	count_vm_event(THP_SPLIT_PMD);
2032 
2033 	if (!vma_is_anonymous(vma)) {
2034 		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2035 		/*
2036 		 * We are going to unmap this huge page. So
2037 		 * just go ahead and zap it
2038 		 */
2039 		if (arch_needs_pgtable_deposit())
2040 			zap_deposited_table(mm, pmd);
2041 		if (vma_is_special_huge(vma))
2042 			return;
2043 		page = pmd_page(_pmd);
2044 		if (!PageDirty(page) && pmd_dirty(_pmd))
2045 			set_page_dirty(page);
2046 		if (!PageReferenced(page) && pmd_young(_pmd))
2047 			SetPageReferenced(page);
2048 		page_remove_rmap(page, true);
2049 		put_page(page);
2050 		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2051 		return;
2052 	} else if (pmd_trans_huge(*pmd) && is_huge_zero_pmd(*pmd)) {
2053 		/*
2054 		 * FIXME: Do we want to invalidate secondary mmu by calling
2055 		 * mmu_notifier_invalidate_range() see comments below inside
2056 		 * __split_huge_pmd() ?
2057 		 *
2058 		 * We are going from a zero huge page write protected to zero
2059 		 * small page also write protected so it does not seems useful
2060 		 * to invalidate secondary mmu at this time.
2061 		 */
2062 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2063 	}
2064 
2065 	/*
2066 	 * Up to this point the pmd is present and huge and userland has the
2067 	 * whole access to the hugepage during the split (which happens in
2068 	 * place). If we overwrite the pmd with the not-huge version pointing
2069 	 * to the pte here (which of course we could if all CPUs were bug
2070 	 * free), userland could trigger a small page size TLB miss on the
2071 	 * small sized TLB while the hugepage TLB entry is still established in
2072 	 * the huge TLB. Some CPU doesn't like that.
2073 	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2074 	 * 383 on page 105. Intel should be safe but is also warns that it's
2075 	 * only safe if the permission and cache attributes of the two entries
2076 	 * loaded in the two TLB is identical (which should be the case here).
2077 	 * But it is generally safer to never allow small and huge TLB entries
2078 	 * for the same virtual address to be loaded simultaneously. So instead
2079 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2080 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2081 	 * must remain set at all times on the pmd until the split is complete
2082 	 * for this pmd), then we flush the SMP TLB and finally we write the
2083 	 * non-huge version of the pmd entry with pmd_populate.
2084 	 */
2085 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2086 
2087 	pmd_migration = is_pmd_migration_entry(old_pmd);
2088 	if (unlikely(pmd_migration)) {
2089 		swp_entry_t entry;
2090 
2091 		entry = pmd_to_swp_entry(old_pmd);
2092 		page = pfn_to_page(swp_offset(entry));
2093 		write = is_write_migration_entry(entry);
2094 		young = false;
2095 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2096 		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2097 	} else {
2098 		page = pmd_page(old_pmd);
2099 		if (pmd_dirty(old_pmd))
2100 			SetPageDirty(page);
2101 		write = pmd_write(old_pmd);
2102 		young = pmd_young(old_pmd);
2103 		soft_dirty = pmd_soft_dirty(old_pmd);
2104 		uffd_wp = pmd_uffd_wp(old_pmd);
2105 	}
2106 	VM_BUG_ON_PAGE(!page_count(page), page);
2107 	page_ref_add(page, HPAGE_PMD_NR - 1);
2108 
2109 	/*
2110 	 * Withdraw the table only after we mark the pmd entry invalid.
2111 	 * This's critical for some architectures (Power).
2112 	 */
2113 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2114 	pmd_populate(mm, &_pmd, pgtable);
2115 
2116 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2117 		pte_t entry, *pte;
2118 		/*
2119 		 * Note that NUMA hinting access restrictions are not
2120 		 * transferred to avoid any possibility of altering
2121 		 * permissions across VMAs.
2122 		 */
2123 		if (freeze || pmd_migration) {
2124 			swp_entry_t swp_entry;
2125 			swp_entry = make_migration_entry(page + i, write);
2126 			entry = swp_entry_to_pte(swp_entry);
2127 			if (soft_dirty)
2128 				entry = pte_swp_mksoft_dirty(entry);
2129 			if (uffd_wp)
2130 				entry = pte_swp_mkuffd_wp(entry);
2131 		} else {
2132 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2133 			entry = maybe_mkwrite(entry, vma);
2134 			if (!write)
2135 				entry = pte_wrprotect(entry);
2136 			if (!young)
2137 				entry = pte_mkold(entry);
2138 			if (soft_dirty)
2139 				entry = pte_mksoft_dirty(entry);
2140 			if (uffd_wp)
2141 				entry = pte_mkuffd_wp(entry);
2142 		}
2143 		pte = pte_offset_map(&_pmd, addr);
2144 		BUG_ON(!pte_none(*pte));
2145 		set_pte_at(mm, addr, pte, entry);
2146 		if (!pmd_migration)
2147 			atomic_inc(&page[i]._mapcount);
2148 		pte_unmap(pte);
2149 	}
2150 
2151 	if (!pmd_migration) {
2152 		/*
2153 		 * Set PG_double_map before dropping compound_mapcount to avoid
2154 		 * false-negative page_mapped().
2155 		 */
2156 		if (compound_mapcount(page) > 1 &&
2157 		    !TestSetPageDoubleMap(page)) {
2158 			for (i = 0; i < HPAGE_PMD_NR; i++)
2159 				atomic_inc(&page[i]._mapcount);
2160 		}
2161 
2162 		lock_page_memcg(page);
2163 		if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2164 			/* Last compound_mapcount is gone. */
2165 			__dec_lruvec_page_state(page, NR_ANON_THPS);
2166 			if (TestClearPageDoubleMap(page)) {
2167 				/* No need in mapcount reference anymore */
2168 				for (i = 0; i < HPAGE_PMD_NR; i++)
2169 					atomic_dec(&page[i]._mapcount);
2170 			}
2171 		}
2172 		unlock_page_memcg(page);
2173 	}
2174 
2175 	smp_wmb(); /* make pte visible before pmd */
2176 	pmd_populate(mm, pmd, pgtable);
2177 
2178 	if (freeze) {
2179 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2180 			page_remove_rmap(page + i, false);
2181 			put_page(page + i);
2182 		}
2183 	}
2184 }
2185 
__split_huge_pmd(struct vm_area_struct * vma,pmd_t * pmd,unsigned long address,bool freeze,struct page * page)2186 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2187 		unsigned long address, bool freeze, struct page *page)
2188 {
2189 	spinlock_t *ptl;
2190 	struct mmu_notifier_range range;
2191 	bool was_locked = false;
2192 	pmd_t _pmd;
2193 
2194 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2195 				address & HPAGE_PMD_MASK,
2196 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2197 	mmu_notifier_invalidate_range_start(&range);
2198 	ptl = pmd_lock(vma->vm_mm, pmd);
2199 
2200 	/*
2201 	 * If caller asks to setup a migration entries, we need a page to check
2202 	 * pmd against. Otherwise we can end up replacing wrong page.
2203 	 */
2204 	VM_BUG_ON(freeze && !page);
2205 	if (page) {
2206 		VM_WARN_ON_ONCE(!PageLocked(page));
2207 		was_locked = true;
2208 		if (page != pmd_page(*pmd))
2209 			goto out;
2210 	}
2211 
2212 repeat:
2213 	if (pmd_trans_huge(*pmd)) {
2214 		if (!page) {
2215 			page = pmd_page(*pmd);
2216 			if (unlikely(!trylock_page(page))) {
2217 				get_page(page);
2218 				_pmd = *pmd;
2219 				spin_unlock(ptl);
2220 				lock_page(page);
2221 				spin_lock(ptl);
2222 				if (unlikely(!pmd_same(*pmd, _pmd))) {
2223 					unlock_page(page);
2224 					put_page(page);
2225 					page = NULL;
2226 					goto repeat;
2227 				}
2228 				put_page(page);
2229 			}
2230 		}
2231 		if (PageMlocked(page))
2232 			clear_page_mlock(page);
2233 	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2234 		goto out;
2235 	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2236 out:
2237 	spin_unlock(ptl);
2238 	if (!was_locked && page)
2239 		unlock_page(page);
2240 	/*
2241 	 * No need to double call mmu_notifier->invalidate_range() callback.
2242 	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2243 	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2244 	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2245 	 *    fault will trigger a flush_notify before pointing to a new page
2246 	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2247 	 *    page in the meantime)
2248 	 *  3) Split a huge pmd into pte pointing to the same page. No need
2249 	 *     to invalidate secondary tlb entry they are all still valid.
2250 	 *     any further changes to individual pte will notify. So no need
2251 	 *     to call mmu_notifier->invalidate_range()
2252 	 */
2253 	mmu_notifier_invalidate_range_only_end(&range);
2254 }
2255 
split_huge_pmd_address(struct vm_area_struct * vma,unsigned long address,bool freeze,struct page * page)2256 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2257 		bool freeze, struct page *page)
2258 {
2259 	pgd_t *pgd;
2260 	p4d_t *p4d;
2261 	pud_t *pud;
2262 	pmd_t *pmd;
2263 
2264 	pgd = pgd_offset(vma->vm_mm, address);
2265 	if (!pgd_present(*pgd))
2266 		return;
2267 
2268 	p4d = p4d_offset(pgd, address);
2269 	if (!p4d_present(*p4d))
2270 		return;
2271 
2272 	pud = pud_offset(p4d, address);
2273 	if (!pud_present(*pud))
2274 		return;
2275 
2276 	pmd = pmd_offset(pud, address);
2277 
2278 	__split_huge_pmd(vma, pmd, address, freeze, page);
2279 }
2280 
vma_adjust_trans_huge(struct vm_area_struct * vma,unsigned long start,unsigned long end,long adjust_next)2281 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2282 			     unsigned long start,
2283 			     unsigned long end,
2284 			     long adjust_next)
2285 {
2286 	/*
2287 	 * If the new start address isn't hpage aligned and it could
2288 	 * previously contain an hugepage: check if we need to split
2289 	 * an huge pmd.
2290 	 */
2291 	if (start & ~HPAGE_PMD_MASK &&
2292 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2293 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2294 		split_huge_pmd_address(vma, start, false, NULL);
2295 
2296 	/*
2297 	 * If the new end address isn't hpage aligned and it could
2298 	 * previously contain an hugepage: check if we need to split
2299 	 * an huge pmd.
2300 	 */
2301 	if (end & ~HPAGE_PMD_MASK &&
2302 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2303 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2304 		split_huge_pmd_address(vma, end, false, NULL);
2305 
2306 	/*
2307 	 * If we're also updating the vma->vm_next->vm_start, if the new
2308 	 * vm_next->vm_start isn't hpage aligned and it could previously
2309 	 * contain an hugepage: check if we need to split an huge pmd.
2310 	 */
2311 	if (adjust_next > 0) {
2312 		struct vm_area_struct *next = vma->vm_next;
2313 		unsigned long nstart = next->vm_start;
2314 		nstart += adjust_next;
2315 		if (nstart & ~HPAGE_PMD_MASK &&
2316 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2317 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2318 			split_huge_pmd_address(next, nstart, false, NULL);
2319 	}
2320 }
2321 
unmap_page(struct page * page)2322 static void unmap_page(struct page *page)
2323 {
2324 	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2325 		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2326 	bool unmap_success;
2327 
2328 	VM_BUG_ON_PAGE(!PageHead(page), page);
2329 
2330 	if (PageAnon(page))
2331 		ttu_flags |= TTU_SPLIT_FREEZE;
2332 
2333 	unmap_success = try_to_unmap(page, ttu_flags);
2334 	VM_BUG_ON_PAGE(!unmap_success, page);
2335 }
2336 
remap_page(struct page * page,unsigned int nr)2337 static void remap_page(struct page *page, unsigned int nr)
2338 {
2339 	int i;
2340 	if (PageTransHuge(page)) {
2341 		remove_migration_ptes(page, page, true);
2342 	} else {
2343 		for (i = 0; i < nr; i++)
2344 			remove_migration_ptes(page + i, page + i, true);
2345 	}
2346 }
2347 
__split_huge_page_tail(struct page * head,int tail,struct lruvec * lruvec,struct list_head * list)2348 static void __split_huge_page_tail(struct page *head, int tail,
2349 		struct lruvec *lruvec, struct list_head *list)
2350 {
2351 	struct page *page_tail = head + tail;
2352 
2353 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2354 
2355 	/*
2356 	 * Clone page flags before unfreezing refcount.
2357 	 *
2358 	 * After successful get_page_unless_zero() might follow flags change,
2359 	 * for exmaple lock_page() which set PG_waiters.
2360 	 */
2361 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2362 	page_tail->flags |= (head->flags &
2363 			((1L << PG_referenced) |
2364 			 (1L << PG_swapbacked) |
2365 			 (1L << PG_swapcache) |
2366 			 (1L << PG_mlocked) |
2367 			 (1L << PG_uptodate) |
2368 			 (1L << PG_active) |
2369 			 (1L << PG_workingset) |
2370 			 (1L << PG_locked) |
2371 			 (1L << PG_unevictable) |
2372 #ifdef CONFIG_64BIT
2373 			 (1L << PG_arch_2) |
2374 #endif
2375 			 (1L << PG_dirty)));
2376 
2377 	/* ->mapping in first tail page is compound_mapcount */
2378 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2379 			page_tail);
2380 	page_tail->mapping = head->mapping;
2381 	page_tail->index = head->index + tail;
2382 
2383 	/* Page flags must be visible before we make the page non-compound. */
2384 	smp_wmb();
2385 
2386 	/*
2387 	 * Clear PageTail before unfreezing page refcount.
2388 	 *
2389 	 * After successful get_page_unless_zero() might follow put_page()
2390 	 * which needs correct compound_head().
2391 	 */
2392 	clear_compound_head(page_tail);
2393 
2394 	/* Finally unfreeze refcount. Additional reference from page cache. */
2395 	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2396 					  PageSwapCache(head)));
2397 
2398 	if (page_is_young(head))
2399 		set_page_young(page_tail);
2400 	if (page_is_idle(head))
2401 		set_page_idle(page_tail);
2402 
2403 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2404 
2405 	/*
2406 	 * always add to the tail because some iterators expect new
2407 	 * pages to show after the currently processed elements - e.g.
2408 	 * migrate_pages
2409 	 */
2410 	lru_add_page_tail(head, page_tail, lruvec, list);
2411 }
2412 
__split_huge_page(struct page * page,struct list_head * list,pgoff_t end,unsigned long flags)2413 static void __split_huge_page(struct page *page, struct list_head *list,
2414 		pgoff_t end, unsigned long flags)
2415 {
2416 	struct page *head = compound_head(page);
2417 	pg_data_t *pgdat = page_pgdat(head);
2418 	struct lruvec *lruvec;
2419 	struct address_space *swap_cache = NULL;
2420 	unsigned long offset = 0;
2421 	unsigned int nr = thp_nr_pages(head);
2422 	int i;
2423 
2424 	lruvec = mem_cgroup_page_lruvec(head, pgdat);
2425 
2426 	/* complete memcg works before add pages to LRU */
2427 	mem_cgroup_split_huge_fixup(head);
2428 
2429 	if (PageAnon(head) && PageSwapCache(head)) {
2430 		swp_entry_t entry = { .val = page_private(head) };
2431 
2432 		offset = swp_offset(entry);
2433 		swap_cache = swap_address_space(entry);
2434 		xa_lock(&swap_cache->i_pages);
2435 	}
2436 
2437 	for (i = nr - 1; i >= 1; i--) {
2438 		__split_huge_page_tail(head, i, lruvec, list);
2439 		/* Some pages can be beyond i_size: drop them from page cache */
2440 		if (head[i].index >= end) {
2441 			ClearPageDirty(head + i);
2442 			__delete_from_page_cache(head + i, NULL);
2443 			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2444 				shmem_uncharge(head->mapping->host, 1);
2445 			put_page(head + i);
2446 		} else if (!PageAnon(page)) {
2447 			__xa_store(&head->mapping->i_pages, head[i].index,
2448 					head + i, 0);
2449 		} else if (swap_cache) {
2450 			__xa_store(&swap_cache->i_pages, offset + i,
2451 					head + i, 0);
2452 		}
2453 	}
2454 
2455 	ClearPageCompound(head);
2456 
2457 	split_page_owner(head, nr);
2458 
2459 	/* See comment in __split_huge_page_tail() */
2460 	if (PageAnon(head)) {
2461 		/* Additional pin to swap cache */
2462 		if (PageSwapCache(head)) {
2463 			page_ref_add(head, 2);
2464 			xa_unlock(&swap_cache->i_pages);
2465 		} else {
2466 			page_ref_inc(head);
2467 		}
2468 	} else {
2469 		/* Additional pin to page cache */
2470 		page_ref_add(head, 2);
2471 		xa_unlock(&head->mapping->i_pages);
2472 	}
2473 
2474 	spin_unlock_irqrestore(&pgdat->lru_lock, flags);
2475 
2476 	remap_page(head, nr);
2477 
2478 	if (PageSwapCache(head)) {
2479 		swp_entry_t entry = { .val = page_private(head) };
2480 
2481 		split_swap_cluster(entry);
2482 	}
2483 
2484 	for (i = 0; i < nr; i++) {
2485 		struct page *subpage = head + i;
2486 		if (subpage == page)
2487 			continue;
2488 		unlock_page(subpage);
2489 
2490 		/*
2491 		 * Subpages may be freed if there wasn't any mapping
2492 		 * like if add_to_swap() is running on a lru page that
2493 		 * had its mapping zapped. And freeing these pages
2494 		 * requires taking the lru_lock so we do the put_page
2495 		 * of the tail pages after the split is complete.
2496 		 */
2497 		put_page(subpage);
2498 	}
2499 }
2500 
total_mapcount(struct page * page)2501 int total_mapcount(struct page *page)
2502 {
2503 	int i, compound, nr, ret;
2504 
2505 	VM_BUG_ON_PAGE(PageTail(page), page);
2506 
2507 	if (likely(!PageCompound(page)))
2508 		return atomic_read(&page->_mapcount) + 1;
2509 
2510 	compound = compound_mapcount(page);
2511 	nr = compound_nr(page);
2512 	if (PageHuge(page))
2513 		return compound;
2514 	ret = compound;
2515 	for (i = 0; i < nr; i++)
2516 		ret += atomic_read(&page[i]._mapcount) + 1;
2517 	/* File pages has compound_mapcount included in _mapcount */
2518 	if (!PageAnon(page))
2519 		return ret - compound * nr;
2520 	if (PageDoubleMap(page))
2521 		ret -= nr;
2522 	return ret;
2523 }
2524 
2525 /*
2526  * This calculates accurately how many mappings a transparent hugepage
2527  * has (unlike page_mapcount() which isn't fully accurate). This full
2528  * accuracy is primarily needed to know if copy-on-write faults can
2529  * reuse the page and change the mapping to read-write instead of
2530  * copying them. At the same time this returns the total_mapcount too.
2531  *
2532  * The function returns the highest mapcount any one of the subpages
2533  * has. If the return value is one, even if different processes are
2534  * mapping different subpages of the transparent hugepage, they can
2535  * all reuse it, because each process is reusing a different subpage.
2536  *
2537  * The total_mapcount is instead counting all virtual mappings of the
2538  * subpages. If the total_mapcount is equal to "one", it tells the
2539  * caller all mappings belong to the same "mm" and in turn the
2540  * anon_vma of the transparent hugepage can become the vma->anon_vma
2541  * local one as no other process may be mapping any of the subpages.
2542  *
2543  * It would be more accurate to replace page_mapcount() with
2544  * page_trans_huge_mapcount(), however we only use
2545  * page_trans_huge_mapcount() in the copy-on-write faults where we
2546  * need full accuracy to avoid breaking page pinning, because
2547  * page_trans_huge_mapcount() is slower than page_mapcount().
2548  */
page_trans_huge_mapcount(struct page * page,int * total_mapcount)2549 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2550 {
2551 	int i, ret, _total_mapcount, mapcount;
2552 
2553 	/* hugetlbfs shouldn't call it */
2554 	VM_BUG_ON_PAGE(PageHuge(page), page);
2555 
2556 	if (likely(!PageTransCompound(page))) {
2557 		mapcount = atomic_read(&page->_mapcount) + 1;
2558 		if (total_mapcount)
2559 			*total_mapcount = mapcount;
2560 		return mapcount;
2561 	}
2562 
2563 	page = compound_head(page);
2564 
2565 	_total_mapcount = ret = 0;
2566 	for (i = 0; i < thp_nr_pages(page); i++) {
2567 		mapcount = atomic_read(&page[i]._mapcount) + 1;
2568 		ret = max(ret, mapcount);
2569 		_total_mapcount += mapcount;
2570 	}
2571 	if (PageDoubleMap(page)) {
2572 		ret -= 1;
2573 		_total_mapcount -= thp_nr_pages(page);
2574 	}
2575 	mapcount = compound_mapcount(page);
2576 	ret += mapcount;
2577 	_total_mapcount += mapcount;
2578 	if (total_mapcount)
2579 		*total_mapcount = _total_mapcount;
2580 	return ret;
2581 }
2582 
2583 /* Racy check whether the huge page can be split */
can_split_huge_page(struct page * page,int * pextra_pins)2584 bool can_split_huge_page(struct page *page, int *pextra_pins)
2585 {
2586 	int extra_pins;
2587 
2588 	/* Additional pins from page cache */
2589 	if (PageAnon(page))
2590 		extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
2591 	else
2592 		extra_pins = thp_nr_pages(page);
2593 	if (pextra_pins)
2594 		*pextra_pins = extra_pins;
2595 	return total_mapcount(page) == page_count(page) - extra_pins - 1;
2596 }
2597 
2598 /*
2599  * This function splits huge page into normal pages. @page can point to any
2600  * subpage of huge page to split. Split doesn't change the position of @page.
2601  *
2602  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2603  * The huge page must be locked.
2604  *
2605  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2606  *
2607  * Both head page and tail pages will inherit mapping, flags, and so on from
2608  * the hugepage.
2609  *
2610  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2611  * they are not mapped.
2612  *
2613  * Returns 0 if the hugepage is split successfully.
2614  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2615  * us.
2616  */
split_huge_page_to_list(struct page * page,struct list_head * list)2617 int split_huge_page_to_list(struct page *page, struct list_head *list)
2618 {
2619 	struct page *head = compound_head(page);
2620 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2621 	struct deferred_split *ds_queue = get_deferred_split_queue(head);
2622 	struct anon_vma *anon_vma = NULL;
2623 	struct address_space *mapping = NULL;
2624 	int count, mapcount, extra_pins, ret;
2625 	unsigned long flags;
2626 	pgoff_t end;
2627 
2628 	VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2629 	VM_BUG_ON_PAGE(!PageLocked(head), head);
2630 	VM_BUG_ON_PAGE(!PageCompound(head), head);
2631 
2632 	if (PageWriteback(head))
2633 		return -EBUSY;
2634 
2635 	if (PageAnon(head)) {
2636 		/*
2637 		 * The caller does not necessarily hold an mmap_lock that would
2638 		 * prevent the anon_vma disappearing so we first we take a
2639 		 * reference to it and then lock the anon_vma for write. This
2640 		 * is similar to page_lock_anon_vma_read except the write lock
2641 		 * is taken to serialise against parallel split or collapse
2642 		 * operations.
2643 		 */
2644 		anon_vma = page_get_anon_vma(head);
2645 		if (!anon_vma) {
2646 			ret = -EBUSY;
2647 			goto out;
2648 		}
2649 		end = -1;
2650 		mapping = NULL;
2651 		anon_vma_lock_write(anon_vma);
2652 	} else {
2653 		mapping = head->mapping;
2654 
2655 		/* Truncated ? */
2656 		if (!mapping) {
2657 			ret = -EBUSY;
2658 			goto out;
2659 		}
2660 
2661 		anon_vma = NULL;
2662 		i_mmap_lock_read(mapping);
2663 
2664 		/*
2665 		 *__split_huge_page() may need to trim off pages beyond EOF:
2666 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2667 		 * which cannot be nested inside the page tree lock. So note
2668 		 * end now: i_size itself may be changed at any moment, but
2669 		 * head page lock is good enough to serialize the trimming.
2670 		 */
2671 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2672 	}
2673 
2674 	/*
2675 	 * Racy check if we can split the page, before unmap_page() will
2676 	 * split PMDs
2677 	 */
2678 	if (!can_split_huge_page(head, &extra_pins)) {
2679 		ret = -EBUSY;
2680 		goto out_unlock;
2681 	}
2682 
2683 	unmap_page(head);
2684 	VM_BUG_ON_PAGE(compound_mapcount(head), head);
2685 
2686 	/* prevent PageLRU to go away from under us, and freeze lru stats */
2687 	spin_lock_irqsave(&pgdata->lru_lock, flags);
2688 
2689 	if (mapping) {
2690 		XA_STATE(xas, &mapping->i_pages, page_index(head));
2691 
2692 		/*
2693 		 * Check if the head page is present in page cache.
2694 		 * We assume all tail are present too, if head is there.
2695 		 */
2696 		xa_lock(&mapping->i_pages);
2697 		if (xas_load(&xas) != head)
2698 			goto fail;
2699 	}
2700 
2701 	/* Prevent deferred_split_scan() touching ->_refcount */
2702 	spin_lock(&ds_queue->split_queue_lock);
2703 	count = page_count(head);
2704 	mapcount = total_mapcount(head);
2705 	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2706 		if (!list_empty(page_deferred_list(head))) {
2707 			ds_queue->split_queue_len--;
2708 			list_del(page_deferred_list(head));
2709 		}
2710 		spin_unlock(&ds_queue->split_queue_lock);
2711 		if (mapping) {
2712 			if (PageSwapBacked(head))
2713 				__dec_node_page_state(head, NR_SHMEM_THPS);
2714 			else
2715 				__dec_node_page_state(head, NR_FILE_THPS);
2716 		}
2717 
2718 		__split_huge_page(page, list, end, flags);
2719 		ret = 0;
2720 	} else {
2721 		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2722 			pr_alert("total_mapcount: %u, page_count(): %u\n",
2723 					mapcount, count);
2724 			if (PageTail(page))
2725 				dump_page(head, NULL);
2726 			dump_page(page, "total_mapcount(head) > 0");
2727 			BUG();
2728 		}
2729 		spin_unlock(&ds_queue->split_queue_lock);
2730 fail:		if (mapping)
2731 			xa_unlock(&mapping->i_pages);
2732 		spin_unlock_irqrestore(&pgdata->lru_lock, flags);
2733 		remap_page(head, thp_nr_pages(head));
2734 		ret = -EBUSY;
2735 	}
2736 
2737 out_unlock:
2738 	if (anon_vma) {
2739 		anon_vma_unlock_write(anon_vma);
2740 		put_anon_vma(anon_vma);
2741 	}
2742 	if (mapping)
2743 		i_mmap_unlock_read(mapping);
2744 out:
2745 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2746 	return ret;
2747 }
2748 
free_transhuge_page(struct page * page)2749 void free_transhuge_page(struct page *page)
2750 {
2751 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2752 	unsigned long flags;
2753 
2754 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2755 	if (!list_empty(page_deferred_list(page))) {
2756 		ds_queue->split_queue_len--;
2757 		list_del(page_deferred_list(page));
2758 	}
2759 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2760 	free_compound_page(page);
2761 }
2762 
deferred_split_huge_page(struct page * page)2763 void deferred_split_huge_page(struct page *page)
2764 {
2765 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2766 #ifdef CONFIG_MEMCG
2767 	struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
2768 #endif
2769 	unsigned long flags;
2770 
2771 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2772 
2773 	/*
2774 	 * The try_to_unmap() in page reclaim path might reach here too,
2775 	 * this may cause a race condition to corrupt deferred split queue.
2776 	 * And, if page reclaim is already handling the same page, it is
2777 	 * unnecessary to handle it again in shrinker.
2778 	 *
2779 	 * Check PageSwapCache to determine if the page is being
2780 	 * handled by page reclaim since THP swap would add the page into
2781 	 * swap cache before calling try_to_unmap().
2782 	 */
2783 	if (PageSwapCache(page))
2784 		return;
2785 
2786 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2787 	if (list_empty(page_deferred_list(page))) {
2788 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2789 		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2790 		ds_queue->split_queue_len++;
2791 #ifdef CONFIG_MEMCG
2792 		if (memcg)
2793 			memcg_set_shrinker_bit(memcg, page_to_nid(page),
2794 					       deferred_split_shrinker.id);
2795 #endif
2796 	}
2797 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2798 }
2799 
deferred_split_count(struct shrinker * shrink,struct shrink_control * sc)2800 static unsigned long deferred_split_count(struct shrinker *shrink,
2801 		struct shrink_control *sc)
2802 {
2803 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2804 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2805 
2806 #ifdef CONFIG_MEMCG
2807 	if (sc->memcg)
2808 		ds_queue = &sc->memcg->deferred_split_queue;
2809 #endif
2810 	return READ_ONCE(ds_queue->split_queue_len);
2811 }
2812 
deferred_split_scan(struct shrinker * shrink,struct shrink_control * sc)2813 static unsigned long deferred_split_scan(struct shrinker *shrink,
2814 		struct shrink_control *sc)
2815 {
2816 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2817 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2818 	unsigned long flags;
2819 	LIST_HEAD(list), *pos, *next;
2820 	struct page *page;
2821 	int split = 0;
2822 
2823 #ifdef CONFIG_MEMCG
2824 	if (sc->memcg)
2825 		ds_queue = &sc->memcg->deferred_split_queue;
2826 #endif
2827 
2828 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2829 	/* Take pin on all head pages to avoid freeing them under us */
2830 	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2831 		page = list_entry((void *)pos, struct page, mapping);
2832 		page = compound_head(page);
2833 		if (get_page_unless_zero(page)) {
2834 			list_move(page_deferred_list(page), &list);
2835 		} else {
2836 			/* We lost race with put_compound_page() */
2837 			list_del_init(page_deferred_list(page));
2838 			ds_queue->split_queue_len--;
2839 		}
2840 		if (!--sc->nr_to_scan)
2841 			break;
2842 	}
2843 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2844 
2845 	list_for_each_safe(pos, next, &list) {
2846 		page = list_entry((void *)pos, struct page, mapping);
2847 		if (!trylock_page(page))
2848 			goto next;
2849 		/* split_huge_page() removes page from list on success */
2850 		if (!split_huge_page(page))
2851 			split++;
2852 		unlock_page(page);
2853 next:
2854 		put_page(page);
2855 	}
2856 
2857 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2858 	list_splice_tail(&list, &ds_queue->split_queue);
2859 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2860 
2861 	/*
2862 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2863 	 * This can happen if pages were freed under us.
2864 	 */
2865 	if (!split && list_empty(&ds_queue->split_queue))
2866 		return SHRINK_STOP;
2867 	return split;
2868 }
2869 
2870 static struct shrinker deferred_split_shrinker = {
2871 	.count_objects = deferred_split_count,
2872 	.scan_objects = deferred_split_scan,
2873 	.seeks = DEFAULT_SEEKS,
2874 	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2875 		 SHRINKER_NONSLAB,
2876 };
2877 
2878 #ifdef CONFIG_DEBUG_FS
split_huge_pages_set(void * data,u64 val)2879 static int split_huge_pages_set(void *data, u64 val)
2880 {
2881 	struct zone *zone;
2882 	struct page *page;
2883 	unsigned long pfn, max_zone_pfn;
2884 	unsigned long total = 0, split = 0;
2885 
2886 	if (val != 1)
2887 		return -EINVAL;
2888 
2889 	for_each_populated_zone(zone) {
2890 		max_zone_pfn = zone_end_pfn(zone);
2891 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2892 			if (!pfn_valid(pfn))
2893 				continue;
2894 
2895 			page = pfn_to_page(pfn);
2896 			if (!get_page_unless_zero(page))
2897 				continue;
2898 
2899 			if (zone != page_zone(page))
2900 				goto next;
2901 
2902 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2903 				goto next;
2904 
2905 			total++;
2906 			lock_page(page);
2907 			if (!split_huge_page(page))
2908 				split++;
2909 			unlock_page(page);
2910 next:
2911 			put_page(page);
2912 		}
2913 	}
2914 
2915 	pr_info("%lu of %lu THP split\n", split, total);
2916 
2917 	return 0;
2918 }
2919 DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2920 		"%llu\n");
2921 
split_huge_pages_debugfs(void)2922 static int __init split_huge_pages_debugfs(void)
2923 {
2924 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2925 			    &split_huge_pages_fops);
2926 	return 0;
2927 }
2928 late_initcall(split_huge_pages_debugfs);
2929 #endif
2930 
2931 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
set_pmd_migration_entry(struct page_vma_mapped_walk * pvmw,struct page * page)2932 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2933 		struct page *page)
2934 {
2935 	struct vm_area_struct *vma = pvmw->vma;
2936 	struct mm_struct *mm = vma->vm_mm;
2937 	unsigned long address = pvmw->address;
2938 	pmd_t pmdval;
2939 	swp_entry_t entry;
2940 	pmd_t pmdswp;
2941 
2942 	if (!(pvmw->pmd && !pvmw->pte))
2943 		return;
2944 
2945 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2946 	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
2947 	if (pmd_dirty(pmdval))
2948 		set_page_dirty(page);
2949 	entry = make_migration_entry(page, pmd_write(pmdval));
2950 	pmdswp = swp_entry_to_pmd(entry);
2951 	if (pmd_soft_dirty(pmdval))
2952 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2953 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2954 	page_remove_rmap(page, true);
2955 	put_page(page);
2956 }
2957 
remove_migration_pmd(struct page_vma_mapped_walk * pvmw,struct page * new)2958 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2959 {
2960 	struct vm_area_struct *vma = pvmw->vma;
2961 	struct mm_struct *mm = vma->vm_mm;
2962 	unsigned long address = pvmw->address;
2963 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
2964 	pmd_t pmde;
2965 	swp_entry_t entry;
2966 
2967 	if (!(pvmw->pmd && !pvmw->pte))
2968 		return;
2969 
2970 	entry = pmd_to_swp_entry(*pvmw->pmd);
2971 	get_page(new);
2972 	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2973 	if (pmd_swp_soft_dirty(*pvmw->pmd))
2974 		pmde = pmd_mksoft_dirty(pmde);
2975 	if (is_write_migration_entry(entry))
2976 		pmde = maybe_pmd_mkwrite(pmde, vma);
2977 
2978 	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2979 	if (PageAnon(new))
2980 		page_add_anon_rmap(new, vma, mmun_start, true);
2981 	else
2982 		page_add_file_rmap(new, true);
2983 	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2984 	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
2985 		mlock_vma_page(new);
2986 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
2987 }
2988 #endif
2989