1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_ingress.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153
154 #include "net-sysfs.h"
155
156 #define MAX_GRO_SKBS 8
157
158 /* This should be increased if a protocol with a bigger head is added. */
159 #define GRO_MAX_HEAD (MAX_HEADER + 128)
160
161 static DEFINE_SPINLOCK(ptype_lock);
162 static DEFINE_SPINLOCK(offload_lock);
163 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
164 struct list_head ptype_all __read_mostly; /* Taps */
165 static struct list_head offload_base __read_mostly;
166
167 static int netif_rx_internal(struct sk_buff *skb);
168 static int call_netdevice_notifiers_info(unsigned long val,
169 struct netdev_notifier_info *info);
170 static int call_netdevice_notifiers_extack(unsigned long val,
171 struct net_device *dev,
172 struct netlink_ext_ack *extack);
173 static struct napi_struct *napi_by_id(unsigned int napi_id);
174
175 /*
176 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
177 * semaphore.
178 *
179 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
180 *
181 * Writers must hold the rtnl semaphore while they loop through the
182 * dev_base_head list, and hold dev_base_lock for writing when they do the
183 * actual updates. This allows pure readers to access the list even
184 * while a writer is preparing to update it.
185 *
186 * To put it another way, dev_base_lock is held for writing only to
187 * protect against pure readers; the rtnl semaphore provides the
188 * protection against other writers.
189 *
190 * See, for example usages, register_netdevice() and
191 * unregister_netdevice(), which must be called with the rtnl
192 * semaphore held.
193 */
194 DEFINE_RWLOCK(dev_base_lock);
195 EXPORT_SYMBOL(dev_base_lock);
196
197 static DEFINE_MUTEX(ifalias_mutex);
198
199 /* protects napi_hash addition/deletion and napi_gen_id */
200 static DEFINE_SPINLOCK(napi_hash_lock);
201
202 static unsigned int napi_gen_id = NR_CPUS;
203 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
204
205 static DECLARE_RWSEM(devnet_rename_sem);
206
dev_base_seq_inc(struct net * net)207 static inline void dev_base_seq_inc(struct net *net)
208 {
209 while (++net->dev_base_seq == 0)
210 ;
211 }
212
dev_name_hash(struct net * net,const char * name)213 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
214 {
215 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
216
217 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
218 }
219
dev_index_hash(struct net * net,int ifindex)220 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
221 {
222 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
223 }
224
rps_lock(struct softnet_data * sd)225 static inline void rps_lock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228 spin_lock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231
rps_unlock(struct softnet_data * sd)232 static inline void rps_unlock(struct softnet_data *sd)
233 {
234 #ifdef CONFIG_RPS
235 spin_unlock(&sd->input_pkt_queue.lock);
236 #endif
237 }
238
netdev_name_node_alloc(struct net_device * dev,const char * name)239 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
240 const char *name)
241 {
242 struct netdev_name_node *name_node;
243
244 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
245 if (!name_node)
246 return NULL;
247 INIT_HLIST_NODE(&name_node->hlist);
248 name_node->dev = dev;
249 name_node->name = name;
250 return name_node;
251 }
252
253 static struct netdev_name_node *
netdev_name_node_head_alloc(struct net_device * dev)254 netdev_name_node_head_alloc(struct net_device *dev)
255 {
256 struct netdev_name_node *name_node;
257
258 name_node = netdev_name_node_alloc(dev, dev->name);
259 if (!name_node)
260 return NULL;
261 INIT_LIST_HEAD(&name_node->list);
262 return name_node;
263 }
264
netdev_name_node_free(struct netdev_name_node * name_node)265 static void netdev_name_node_free(struct netdev_name_node *name_node)
266 {
267 kfree(name_node);
268 }
269
netdev_name_node_add(struct net * net,struct netdev_name_node * name_node)270 static void netdev_name_node_add(struct net *net,
271 struct netdev_name_node *name_node)
272 {
273 hlist_add_head_rcu(&name_node->hlist,
274 dev_name_hash(net, name_node->name));
275 }
276
netdev_name_node_del(struct netdev_name_node * name_node)277 static void netdev_name_node_del(struct netdev_name_node *name_node)
278 {
279 hlist_del_rcu(&name_node->hlist);
280 }
281
netdev_name_node_lookup(struct net * net,const char * name)282 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
283 const char *name)
284 {
285 struct hlist_head *head = dev_name_hash(net, name);
286 struct netdev_name_node *name_node;
287
288 hlist_for_each_entry(name_node, head, hlist)
289 if (!strcmp(name_node->name, name))
290 return name_node;
291 return NULL;
292 }
293
netdev_name_node_lookup_rcu(struct net * net,const char * name)294 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
295 const char *name)
296 {
297 struct hlist_head *head = dev_name_hash(net, name);
298 struct netdev_name_node *name_node;
299
300 hlist_for_each_entry_rcu(name_node, head, hlist)
301 if (!strcmp(name_node->name, name))
302 return name_node;
303 return NULL;
304 }
305
netdev_name_node_alt_create(struct net_device * dev,const char * name)306 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
307 {
308 struct netdev_name_node *name_node;
309 struct net *net = dev_net(dev);
310
311 name_node = netdev_name_node_lookup(net, name);
312 if (name_node)
313 return -EEXIST;
314 name_node = netdev_name_node_alloc(dev, name);
315 if (!name_node)
316 return -ENOMEM;
317 netdev_name_node_add(net, name_node);
318 /* The node that holds dev->name acts as a head of per-device list. */
319 list_add_tail(&name_node->list, &dev->name_node->list);
320
321 return 0;
322 }
323 EXPORT_SYMBOL(netdev_name_node_alt_create);
324
__netdev_name_node_alt_destroy(struct netdev_name_node * name_node)325 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
326 {
327 list_del(&name_node->list);
328 netdev_name_node_del(name_node);
329 kfree(name_node->name);
330 netdev_name_node_free(name_node);
331 }
332
netdev_name_node_alt_destroy(struct net_device * dev,const char * name)333 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
334 {
335 struct netdev_name_node *name_node;
336 struct net *net = dev_net(dev);
337
338 name_node = netdev_name_node_lookup(net, name);
339 if (!name_node)
340 return -ENOENT;
341 /* lookup might have found our primary name or a name belonging
342 * to another device.
343 */
344 if (name_node == dev->name_node || name_node->dev != dev)
345 return -EINVAL;
346
347 __netdev_name_node_alt_destroy(name_node);
348
349 return 0;
350 }
351 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
352
netdev_name_node_alt_flush(struct net_device * dev)353 static void netdev_name_node_alt_flush(struct net_device *dev)
354 {
355 struct netdev_name_node *name_node, *tmp;
356
357 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
358 __netdev_name_node_alt_destroy(name_node);
359 }
360
361 /* Device list insertion */
list_netdevice(struct net_device * dev)362 static void list_netdevice(struct net_device *dev)
363 {
364 struct net *net = dev_net(dev);
365
366 ASSERT_RTNL();
367
368 write_lock_bh(&dev_base_lock);
369 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
370 netdev_name_node_add(net, dev->name_node);
371 hlist_add_head_rcu(&dev->index_hlist,
372 dev_index_hash(net, dev->ifindex));
373 write_unlock_bh(&dev_base_lock);
374
375 dev_base_seq_inc(net);
376 }
377
378 /* Device list removal
379 * caller must respect a RCU grace period before freeing/reusing dev
380 */
unlist_netdevice(struct net_device * dev)381 static void unlist_netdevice(struct net_device *dev)
382 {
383 ASSERT_RTNL();
384
385 /* Unlink dev from the device chain */
386 write_lock_bh(&dev_base_lock);
387 list_del_rcu(&dev->dev_list);
388 netdev_name_node_del(dev->name_node);
389 hlist_del_rcu(&dev->index_hlist);
390 write_unlock_bh(&dev_base_lock);
391
392 dev_base_seq_inc(dev_net(dev));
393 }
394
395 /*
396 * Our notifier list
397 */
398
399 static RAW_NOTIFIER_HEAD(netdev_chain);
400
401 /*
402 * Device drivers call our routines to queue packets here. We empty the
403 * queue in the local softnet handler.
404 */
405
406 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
407 EXPORT_PER_CPU_SYMBOL(softnet_data);
408
409 #ifdef CONFIG_LOCKDEP
410 /*
411 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
412 * according to dev->type
413 */
414 static const unsigned short netdev_lock_type[] = {
415 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
416 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
417 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
418 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
419 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
420 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
421 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
422 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
423 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
424 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
425 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
426 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
427 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
428 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
429 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
430
431 static const char *const netdev_lock_name[] = {
432 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
433 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
434 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
435 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
436 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
437 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
438 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
439 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
440 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
441 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
442 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
443 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
444 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
445 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
446 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
447
448 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
449 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
450
netdev_lock_pos(unsigned short dev_type)451 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
452 {
453 int i;
454
455 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
456 if (netdev_lock_type[i] == dev_type)
457 return i;
458 /* the last key is used by default */
459 return ARRAY_SIZE(netdev_lock_type) - 1;
460 }
461
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)462 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
463 unsigned short dev_type)
464 {
465 int i;
466
467 i = netdev_lock_pos(dev_type);
468 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
469 netdev_lock_name[i]);
470 }
471
netdev_set_addr_lockdep_class(struct net_device * dev)472 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
473 {
474 int i;
475
476 i = netdev_lock_pos(dev->type);
477 lockdep_set_class_and_name(&dev->addr_list_lock,
478 &netdev_addr_lock_key[i],
479 netdev_lock_name[i]);
480 }
481 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)482 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
483 unsigned short dev_type)
484 {
485 }
486
netdev_set_addr_lockdep_class(struct net_device * dev)487 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
488 {
489 }
490 #endif
491
492 /*******************************************************************************
493 *
494 * Protocol management and registration routines
495 *
496 *******************************************************************************/
497
498
499 /*
500 * Add a protocol ID to the list. Now that the input handler is
501 * smarter we can dispense with all the messy stuff that used to be
502 * here.
503 *
504 * BEWARE!!! Protocol handlers, mangling input packets,
505 * MUST BE last in hash buckets and checking protocol handlers
506 * MUST start from promiscuous ptype_all chain in net_bh.
507 * It is true now, do not change it.
508 * Explanation follows: if protocol handler, mangling packet, will
509 * be the first on list, it is not able to sense, that packet
510 * is cloned and should be copied-on-write, so that it will
511 * change it and subsequent readers will get broken packet.
512 * --ANK (980803)
513 */
514
ptype_head(const struct packet_type * pt)515 static inline struct list_head *ptype_head(const struct packet_type *pt)
516 {
517 if (pt->type == htons(ETH_P_ALL))
518 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
519 else
520 return pt->dev ? &pt->dev->ptype_specific :
521 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
522 }
523
524 /**
525 * dev_add_pack - add packet handler
526 * @pt: packet type declaration
527 *
528 * Add a protocol handler to the networking stack. The passed &packet_type
529 * is linked into kernel lists and may not be freed until it has been
530 * removed from the kernel lists.
531 *
532 * This call does not sleep therefore it can not
533 * guarantee all CPU's that are in middle of receiving packets
534 * will see the new packet type (until the next received packet).
535 */
536
dev_add_pack(struct packet_type * pt)537 void dev_add_pack(struct packet_type *pt)
538 {
539 struct list_head *head = ptype_head(pt);
540
541 spin_lock(&ptype_lock);
542 list_add_rcu(&pt->list, head);
543 spin_unlock(&ptype_lock);
544 }
545 EXPORT_SYMBOL(dev_add_pack);
546
547 /**
548 * __dev_remove_pack - remove packet handler
549 * @pt: packet type declaration
550 *
551 * Remove a protocol handler that was previously added to the kernel
552 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
553 * from the kernel lists and can be freed or reused once this function
554 * returns.
555 *
556 * The packet type might still be in use by receivers
557 * and must not be freed until after all the CPU's have gone
558 * through a quiescent state.
559 */
__dev_remove_pack(struct packet_type * pt)560 void __dev_remove_pack(struct packet_type *pt)
561 {
562 struct list_head *head = ptype_head(pt);
563 struct packet_type *pt1;
564
565 spin_lock(&ptype_lock);
566
567 list_for_each_entry(pt1, head, list) {
568 if (pt == pt1) {
569 list_del_rcu(&pt->list);
570 goto out;
571 }
572 }
573
574 pr_warn("dev_remove_pack: %p not found\n", pt);
575 out:
576 spin_unlock(&ptype_lock);
577 }
578 EXPORT_SYMBOL(__dev_remove_pack);
579
580 /**
581 * dev_remove_pack - remove packet handler
582 * @pt: packet type declaration
583 *
584 * Remove a protocol handler that was previously added to the kernel
585 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
586 * from the kernel lists and can be freed or reused once this function
587 * returns.
588 *
589 * This call sleeps to guarantee that no CPU is looking at the packet
590 * type after return.
591 */
dev_remove_pack(struct packet_type * pt)592 void dev_remove_pack(struct packet_type *pt)
593 {
594 __dev_remove_pack(pt);
595
596 synchronize_net();
597 }
598 EXPORT_SYMBOL(dev_remove_pack);
599
600
601 /**
602 * dev_add_offload - register offload handlers
603 * @po: protocol offload declaration
604 *
605 * Add protocol offload handlers to the networking stack. The passed
606 * &proto_offload is linked into kernel lists and may not be freed until
607 * it has been removed from the kernel lists.
608 *
609 * This call does not sleep therefore it can not
610 * guarantee all CPU's that are in middle of receiving packets
611 * will see the new offload handlers (until the next received packet).
612 */
dev_add_offload(struct packet_offload * po)613 void dev_add_offload(struct packet_offload *po)
614 {
615 struct packet_offload *elem;
616
617 spin_lock(&offload_lock);
618 list_for_each_entry(elem, &offload_base, list) {
619 if (po->priority < elem->priority)
620 break;
621 }
622 list_add_rcu(&po->list, elem->list.prev);
623 spin_unlock(&offload_lock);
624 }
625 EXPORT_SYMBOL(dev_add_offload);
626
627 /**
628 * __dev_remove_offload - remove offload handler
629 * @po: packet offload declaration
630 *
631 * Remove a protocol offload handler that was previously added to the
632 * kernel offload handlers by dev_add_offload(). The passed &offload_type
633 * is removed from the kernel lists and can be freed or reused once this
634 * function returns.
635 *
636 * The packet type might still be in use by receivers
637 * and must not be freed until after all the CPU's have gone
638 * through a quiescent state.
639 */
__dev_remove_offload(struct packet_offload * po)640 static void __dev_remove_offload(struct packet_offload *po)
641 {
642 struct list_head *head = &offload_base;
643 struct packet_offload *po1;
644
645 spin_lock(&offload_lock);
646
647 list_for_each_entry(po1, head, list) {
648 if (po == po1) {
649 list_del_rcu(&po->list);
650 goto out;
651 }
652 }
653
654 pr_warn("dev_remove_offload: %p not found\n", po);
655 out:
656 spin_unlock(&offload_lock);
657 }
658
659 /**
660 * dev_remove_offload - remove packet offload handler
661 * @po: packet offload declaration
662 *
663 * Remove a packet offload handler that was previously added to the kernel
664 * offload handlers by dev_add_offload(). The passed &offload_type is
665 * removed from the kernel lists and can be freed or reused once this
666 * function returns.
667 *
668 * This call sleeps to guarantee that no CPU is looking at the packet
669 * type after return.
670 */
dev_remove_offload(struct packet_offload * po)671 void dev_remove_offload(struct packet_offload *po)
672 {
673 __dev_remove_offload(po);
674
675 synchronize_net();
676 }
677 EXPORT_SYMBOL(dev_remove_offload);
678
679 /*******************************************************************************
680 *
681 * Device Interface Subroutines
682 *
683 *******************************************************************************/
684
685 /**
686 * dev_get_iflink - get 'iflink' value of a interface
687 * @dev: targeted interface
688 *
689 * Indicates the ifindex the interface is linked to.
690 * Physical interfaces have the same 'ifindex' and 'iflink' values.
691 */
692
dev_get_iflink(const struct net_device * dev)693 int dev_get_iflink(const struct net_device *dev)
694 {
695 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
696 return dev->netdev_ops->ndo_get_iflink(dev);
697
698 return dev->ifindex;
699 }
700 EXPORT_SYMBOL(dev_get_iflink);
701
702 /**
703 * dev_fill_metadata_dst - Retrieve tunnel egress information.
704 * @dev: targeted interface
705 * @skb: The packet.
706 *
707 * For better visibility of tunnel traffic OVS needs to retrieve
708 * egress tunnel information for a packet. Following API allows
709 * user to get this info.
710 */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)711 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
712 {
713 struct ip_tunnel_info *info;
714
715 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
716 return -EINVAL;
717
718 info = skb_tunnel_info_unclone(skb);
719 if (!info)
720 return -ENOMEM;
721 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
722 return -EINVAL;
723
724 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
725 }
726 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
727
dev_fwd_path(struct net_device_path_stack * stack)728 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
729 {
730 int k = stack->num_paths++;
731
732 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
733 return NULL;
734
735 return &stack->path[k];
736 }
737
dev_fill_forward_path(const struct net_device * dev,const u8 * daddr,struct net_device_path_stack * stack)738 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
739 struct net_device_path_stack *stack)
740 {
741 const struct net_device *last_dev;
742 struct net_device_path_ctx ctx = {
743 .dev = dev,
744 .daddr = daddr,
745 };
746 struct net_device_path *path;
747 int ret = 0;
748
749 stack->num_paths = 0;
750 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
751 last_dev = ctx.dev;
752 path = dev_fwd_path(stack);
753 if (!path)
754 return -1;
755
756 memset(path, 0, sizeof(struct net_device_path));
757 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
758 if (ret < 0)
759 return -1;
760
761 if (WARN_ON_ONCE(last_dev == ctx.dev))
762 return -1;
763 }
764 path = dev_fwd_path(stack);
765 if (!path)
766 return -1;
767 path->type = DEV_PATH_ETHERNET;
768 path->dev = ctx.dev;
769
770 return ret;
771 }
772 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
773
774 /**
775 * __dev_get_by_name - find a device by its name
776 * @net: the applicable net namespace
777 * @name: name to find
778 *
779 * Find an interface by name. Must be called under RTNL semaphore
780 * or @dev_base_lock. If the name is found a pointer to the device
781 * is returned. If the name is not found then %NULL is returned. The
782 * reference counters are not incremented so the caller must be
783 * careful with locks.
784 */
785
__dev_get_by_name(struct net * net,const char * name)786 struct net_device *__dev_get_by_name(struct net *net, const char *name)
787 {
788 struct netdev_name_node *node_name;
789
790 node_name = netdev_name_node_lookup(net, name);
791 return node_name ? node_name->dev : NULL;
792 }
793 EXPORT_SYMBOL(__dev_get_by_name);
794
795 /**
796 * dev_get_by_name_rcu - find a device by its name
797 * @net: the applicable net namespace
798 * @name: name to find
799 *
800 * Find an interface by name.
801 * If the name is found a pointer to the device is returned.
802 * If the name is not found then %NULL is returned.
803 * The reference counters are not incremented so the caller must be
804 * careful with locks. The caller must hold RCU lock.
805 */
806
dev_get_by_name_rcu(struct net * net,const char * name)807 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
808 {
809 struct netdev_name_node *node_name;
810
811 node_name = netdev_name_node_lookup_rcu(net, name);
812 return node_name ? node_name->dev : NULL;
813 }
814 EXPORT_SYMBOL(dev_get_by_name_rcu);
815
816 /**
817 * dev_get_by_name - find a device by its name
818 * @net: the applicable net namespace
819 * @name: name to find
820 *
821 * Find an interface by name. This can be called from any
822 * context and does its own locking. The returned handle has
823 * the usage count incremented and the caller must use dev_put() to
824 * release it when it is no longer needed. %NULL is returned if no
825 * matching device is found.
826 */
827
dev_get_by_name(struct net * net,const char * name)828 struct net_device *dev_get_by_name(struct net *net, const char *name)
829 {
830 struct net_device *dev;
831
832 rcu_read_lock();
833 dev = dev_get_by_name_rcu(net, name);
834 dev_hold(dev);
835 rcu_read_unlock();
836 return dev;
837 }
838 EXPORT_SYMBOL(dev_get_by_name);
839
840 /**
841 * __dev_get_by_index - find a device by its ifindex
842 * @net: the applicable net namespace
843 * @ifindex: index of device
844 *
845 * Search for an interface by index. Returns %NULL if the device
846 * is not found or a pointer to the device. The device has not
847 * had its reference counter increased so the caller must be careful
848 * about locking. The caller must hold either the RTNL semaphore
849 * or @dev_base_lock.
850 */
851
__dev_get_by_index(struct net * net,int ifindex)852 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
853 {
854 struct net_device *dev;
855 struct hlist_head *head = dev_index_hash(net, ifindex);
856
857 hlist_for_each_entry(dev, head, index_hlist)
858 if (dev->ifindex == ifindex)
859 return dev;
860
861 return NULL;
862 }
863 EXPORT_SYMBOL(__dev_get_by_index);
864
865 /**
866 * dev_get_by_index_rcu - find a device by its ifindex
867 * @net: the applicable net namespace
868 * @ifindex: index of device
869 *
870 * Search for an interface by index. Returns %NULL if the device
871 * is not found or a pointer to the device. The device has not
872 * had its reference counter increased so the caller must be careful
873 * about locking. The caller must hold RCU lock.
874 */
875
dev_get_by_index_rcu(struct net * net,int ifindex)876 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
877 {
878 struct net_device *dev;
879 struct hlist_head *head = dev_index_hash(net, ifindex);
880
881 hlist_for_each_entry_rcu(dev, head, index_hlist)
882 if (dev->ifindex == ifindex)
883 return dev;
884
885 return NULL;
886 }
887 EXPORT_SYMBOL(dev_get_by_index_rcu);
888
889
890 /**
891 * dev_get_by_index - find a device by its ifindex
892 * @net: the applicable net namespace
893 * @ifindex: index of device
894 *
895 * Search for an interface by index. Returns NULL if the device
896 * is not found or a pointer to the device. The device returned has
897 * had a reference added and the pointer is safe until the user calls
898 * dev_put to indicate they have finished with it.
899 */
900
dev_get_by_index(struct net * net,int ifindex)901 struct net_device *dev_get_by_index(struct net *net, int ifindex)
902 {
903 struct net_device *dev;
904
905 rcu_read_lock();
906 dev = dev_get_by_index_rcu(net, ifindex);
907 dev_hold(dev);
908 rcu_read_unlock();
909 return dev;
910 }
911 EXPORT_SYMBOL(dev_get_by_index);
912
913 /**
914 * dev_get_by_napi_id - find a device by napi_id
915 * @napi_id: ID of the NAPI struct
916 *
917 * Search for an interface by NAPI ID. Returns %NULL if the device
918 * is not found or a pointer to the device. The device has not had
919 * its reference counter increased so the caller must be careful
920 * about locking. The caller must hold RCU lock.
921 */
922
dev_get_by_napi_id(unsigned int napi_id)923 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
924 {
925 struct napi_struct *napi;
926
927 WARN_ON_ONCE(!rcu_read_lock_held());
928
929 if (napi_id < MIN_NAPI_ID)
930 return NULL;
931
932 napi = napi_by_id(napi_id);
933
934 return napi ? napi->dev : NULL;
935 }
936 EXPORT_SYMBOL(dev_get_by_napi_id);
937
938 /**
939 * netdev_get_name - get a netdevice name, knowing its ifindex.
940 * @net: network namespace
941 * @name: a pointer to the buffer where the name will be stored.
942 * @ifindex: the ifindex of the interface to get the name from.
943 */
netdev_get_name(struct net * net,char * name,int ifindex)944 int netdev_get_name(struct net *net, char *name, int ifindex)
945 {
946 struct net_device *dev;
947 int ret;
948
949 down_read(&devnet_rename_sem);
950 rcu_read_lock();
951
952 dev = dev_get_by_index_rcu(net, ifindex);
953 if (!dev) {
954 ret = -ENODEV;
955 goto out;
956 }
957
958 strcpy(name, dev->name);
959
960 ret = 0;
961 out:
962 rcu_read_unlock();
963 up_read(&devnet_rename_sem);
964 return ret;
965 }
966
967 /**
968 * dev_getbyhwaddr_rcu - find a device by its hardware address
969 * @net: the applicable net namespace
970 * @type: media type of device
971 * @ha: hardware address
972 *
973 * Search for an interface by MAC address. Returns NULL if the device
974 * is not found or a pointer to the device.
975 * The caller must hold RCU or RTNL.
976 * The returned device has not had its ref count increased
977 * and the caller must therefore be careful about locking
978 *
979 */
980
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)981 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
982 const char *ha)
983 {
984 struct net_device *dev;
985
986 for_each_netdev_rcu(net, dev)
987 if (dev->type == type &&
988 !memcmp(dev->dev_addr, ha, dev->addr_len))
989 return dev;
990
991 return NULL;
992 }
993 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
994
dev_getfirstbyhwtype(struct net * net,unsigned short type)995 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
996 {
997 struct net_device *dev, *ret = NULL;
998
999 rcu_read_lock();
1000 for_each_netdev_rcu(net, dev)
1001 if (dev->type == type) {
1002 dev_hold(dev);
1003 ret = dev;
1004 break;
1005 }
1006 rcu_read_unlock();
1007 return ret;
1008 }
1009 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1010
1011 /**
1012 * __dev_get_by_flags - find any device with given flags
1013 * @net: the applicable net namespace
1014 * @if_flags: IFF_* values
1015 * @mask: bitmask of bits in if_flags to check
1016 *
1017 * Search for any interface with the given flags. Returns NULL if a device
1018 * is not found or a pointer to the device. Must be called inside
1019 * rtnl_lock(), and result refcount is unchanged.
1020 */
1021
__dev_get_by_flags(struct net * net,unsigned short if_flags,unsigned short mask)1022 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1023 unsigned short mask)
1024 {
1025 struct net_device *dev, *ret;
1026
1027 ASSERT_RTNL();
1028
1029 ret = NULL;
1030 for_each_netdev(net, dev) {
1031 if (((dev->flags ^ if_flags) & mask) == 0) {
1032 ret = dev;
1033 break;
1034 }
1035 }
1036 return ret;
1037 }
1038 EXPORT_SYMBOL(__dev_get_by_flags);
1039
1040 /**
1041 * dev_valid_name - check if name is okay for network device
1042 * @name: name string
1043 *
1044 * Network device names need to be valid file names to
1045 * allow sysfs to work. We also disallow any kind of
1046 * whitespace.
1047 */
dev_valid_name(const char * name)1048 bool dev_valid_name(const char *name)
1049 {
1050 if (*name == '\0')
1051 return false;
1052 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1053 return false;
1054 if (!strcmp(name, ".") || !strcmp(name, ".."))
1055 return false;
1056
1057 while (*name) {
1058 if (*name == '/' || *name == ':' || isspace(*name))
1059 return false;
1060 name++;
1061 }
1062 return true;
1063 }
1064 EXPORT_SYMBOL(dev_valid_name);
1065
1066 /**
1067 * __dev_alloc_name - allocate a name for a device
1068 * @net: network namespace to allocate the device name in
1069 * @name: name format string
1070 * @buf: scratch buffer and result name string
1071 *
1072 * Passed a format string - eg "lt%d" it will try and find a suitable
1073 * id. It scans list of devices to build up a free map, then chooses
1074 * the first empty slot. The caller must hold the dev_base or rtnl lock
1075 * while allocating the name and adding the device in order to avoid
1076 * duplicates.
1077 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1078 * Returns the number of the unit assigned or a negative errno code.
1079 */
1080
__dev_alloc_name(struct net * net,const char * name,char * buf)1081 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1082 {
1083 int i = 0;
1084 const char *p;
1085 const int max_netdevices = 8*PAGE_SIZE;
1086 unsigned long *inuse;
1087 struct net_device *d;
1088
1089 if (!dev_valid_name(name))
1090 return -EINVAL;
1091
1092 p = strchr(name, '%');
1093 if (p) {
1094 /*
1095 * Verify the string as this thing may have come from
1096 * the user. There must be either one "%d" and no other "%"
1097 * characters.
1098 */
1099 if (p[1] != 'd' || strchr(p + 2, '%'))
1100 return -EINVAL;
1101
1102 /* Use one page as a bit array of possible slots */
1103 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1104 if (!inuse)
1105 return -ENOMEM;
1106
1107 for_each_netdev(net, d) {
1108 struct netdev_name_node *name_node;
1109 list_for_each_entry(name_node, &d->name_node->list, list) {
1110 if (!sscanf(name_node->name, name, &i))
1111 continue;
1112 if (i < 0 || i >= max_netdevices)
1113 continue;
1114
1115 /* avoid cases where sscanf is not exact inverse of printf */
1116 snprintf(buf, IFNAMSIZ, name, i);
1117 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1118 set_bit(i, inuse);
1119 }
1120 if (!sscanf(d->name, name, &i))
1121 continue;
1122 if (i < 0 || i >= max_netdevices)
1123 continue;
1124
1125 /* avoid cases where sscanf is not exact inverse of printf */
1126 snprintf(buf, IFNAMSIZ, name, i);
1127 if (!strncmp(buf, d->name, IFNAMSIZ))
1128 set_bit(i, inuse);
1129 }
1130
1131 i = find_first_zero_bit(inuse, max_netdevices);
1132 free_page((unsigned long) inuse);
1133 }
1134
1135 snprintf(buf, IFNAMSIZ, name, i);
1136 if (!__dev_get_by_name(net, buf))
1137 return i;
1138
1139 /* It is possible to run out of possible slots
1140 * when the name is long and there isn't enough space left
1141 * for the digits, or if all bits are used.
1142 */
1143 return -ENFILE;
1144 }
1145
dev_alloc_name_ns(struct net * net,struct net_device * dev,const char * name)1146 static int dev_alloc_name_ns(struct net *net,
1147 struct net_device *dev,
1148 const char *name)
1149 {
1150 char buf[IFNAMSIZ];
1151 int ret;
1152
1153 BUG_ON(!net);
1154 ret = __dev_alloc_name(net, name, buf);
1155 if (ret >= 0)
1156 strlcpy(dev->name, buf, IFNAMSIZ);
1157 return ret;
1158 }
1159
1160 /**
1161 * dev_alloc_name - allocate a name for a device
1162 * @dev: device
1163 * @name: name format string
1164 *
1165 * Passed a format string - eg "lt%d" it will try and find a suitable
1166 * id. It scans list of devices to build up a free map, then chooses
1167 * the first empty slot. The caller must hold the dev_base or rtnl lock
1168 * while allocating the name and adding the device in order to avoid
1169 * duplicates.
1170 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1171 * Returns the number of the unit assigned or a negative errno code.
1172 */
1173
dev_alloc_name(struct net_device * dev,const char * name)1174 int dev_alloc_name(struct net_device *dev, const char *name)
1175 {
1176 return dev_alloc_name_ns(dev_net(dev), dev, name);
1177 }
1178 EXPORT_SYMBOL(dev_alloc_name);
1179
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1180 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1181 const char *name)
1182 {
1183 BUG_ON(!net);
1184
1185 if (!dev_valid_name(name))
1186 return -EINVAL;
1187
1188 if (strchr(name, '%'))
1189 return dev_alloc_name_ns(net, dev, name);
1190 else if (__dev_get_by_name(net, name))
1191 return -EEXIST;
1192 else if (dev->name != name)
1193 strlcpy(dev->name, name, IFNAMSIZ);
1194
1195 return 0;
1196 }
1197
1198 /**
1199 * dev_change_name - change name of a device
1200 * @dev: device
1201 * @newname: name (or format string) must be at least IFNAMSIZ
1202 *
1203 * Change name of a device, can pass format strings "eth%d".
1204 * for wildcarding.
1205 */
dev_change_name(struct net_device * dev,const char * newname)1206 int dev_change_name(struct net_device *dev, const char *newname)
1207 {
1208 unsigned char old_assign_type;
1209 char oldname[IFNAMSIZ];
1210 int err = 0;
1211 int ret;
1212 struct net *net;
1213
1214 ASSERT_RTNL();
1215 BUG_ON(!dev_net(dev));
1216
1217 net = dev_net(dev);
1218
1219 /* Some auto-enslaved devices e.g. failover slaves are
1220 * special, as userspace might rename the device after
1221 * the interface had been brought up and running since
1222 * the point kernel initiated auto-enslavement. Allow
1223 * live name change even when these slave devices are
1224 * up and running.
1225 *
1226 * Typically, users of these auto-enslaving devices
1227 * don't actually care about slave name change, as
1228 * they are supposed to operate on master interface
1229 * directly.
1230 */
1231 if (dev->flags & IFF_UP &&
1232 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1233 return -EBUSY;
1234
1235 down_write(&devnet_rename_sem);
1236
1237 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1238 up_write(&devnet_rename_sem);
1239 return 0;
1240 }
1241
1242 memcpy(oldname, dev->name, IFNAMSIZ);
1243
1244 err = dev_get_valid_name(net, dev, newname);
1245 if (err < 0) {
1246 up_write(&devnet_rename_sem);
1247 return err;
1248 }
1249
1250 if (oldname[0] && !strchr(oldname, '%'))
1251 netdev_info(dev, "renamed from %s\n", oldname);
1252
1253 old_assign_type = dev->name_assign_type;
1254 dev->name_assign_type = NET_NAME_RENAMED;
1255
1256 rollback:
1257 ret = device_rename(&dev->dev, dev->name);
1258 if (ret) {
1259 memcpy(dev->name, oldname, IFNAMSIZ);
1260 dev->name_assign_type = old_assign_type;
1261 up_write(&devnet_rename_sem);
1262 return ret;
1263 }
1264
1265 up_write(&devnet_rename_sem);
1266
1267 netdev_adjacent_rename_links(dev, oldname);
1268
1269 write_lock_bh(&dev_base_lock);
1270 netdev_name_node_del(dev->name_node);
1271 write_unlock_bh(&dev_base_lock);
1272
1273 synchronize_rcu();
1274
1275 write_lock_bh(&dev_base_lock);
1276 netdev_name_node_add(net, dev->name_node);
1277 write_unlock_bh(&dev_base_lock);
1278
1279 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1280 ret = notifier_to_errno(ret);
1281
1282 if (ret) {
1283 /* err >= 0 after dev_alloc_name() or stores the first errno */
1284 if (err >= 0) {
1285 err = ret;
1286 down_write(&devnet_rename_sem);
1287 memcpy(dev->name, oldname, IFNAMSIZ);
1288 memcpy(oldname, newname, IFNAMSIZ);
1289 dev->name_assign_type = old_assign_type;
1290 old_assign_type = NET_NAME_RENAMED;
1291 goto rollback;
1292 } else {
1293 pr_err("%s: name change rollback failed: %d\n",
1294 dev->name, ret);
1295 }
1296 }
1297
1298 return err;
1299 }
1300
1301 /**
1302 * dev_set_alias - change ifalias of a device
1303 * @dev: device
1304 * @alias: name up to IFALIASZ
1305 * @len: limit of bytes to copy from info
1306 *
1307 * Set ifalias for a device,
1308 */
dev_set_alias(struct net_device * dev,const char * alias,size_t len)1309 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1310 {
1311 struct dev_ifalias *new_alias = NULL;
1312
1313 if (len >= IFALIASZ)
1314 return -EINVAL;
1315
1316 if (len) {
1317 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1318 if (!new_alias)
1319 return -ENOMEM;
1320
1321 memcpy(new_alias->ifalias, alias, len);
1322 new_alias->ifalias[len] = 0;
1323 }
1324
1325 mutex_lock(&ifalias_mutex);
1326 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1327 mutex_is_locked(&ifalias_mutex));
1328 mutex_unlock(&ifalias_mutex);
1329
1330 if (new_alias)
1331 kfree_rcu(new_alias, rcuhead);
1332
1333 return len;
1334 }
1335 EXPORT_SYMBOL(dev_set_alias);
1336
1337 /**
1338 * dev_get_alias - get ifalias of a device
1339 * @dev: device
1340 * @name: buffer to store name of ifalias
1341 * @len: size of buffer
1342 *
1343 * get ifalias for a device. Caller must make sure dev cannot go
1344 * away, e.g. rcu read lock or own a reference count to device.
1345 */
dev_get_alias(const struct net_device * dev,char * name,size_t len)1346 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1347 {
1348 const struct dev_ifalias *alias;
1349 int ret = 0;
1350
1351 rcu_read_lock();
1352 alias = rcu_dereference(dev->ifalias);
1353 if (alias)
1354 ret = snprintf(name, len, "%s", alias->ifalias);
1355 rcu_read_unlock();
1356
1357 return ret;
1358 }
1359
1360 /**
1361 * netdev_features_change - device changes features
1362 * @dev: device to cause notification
1363 *
1364 * Called to indicate a device has changed features.
1365 */
netdev_features_change(struct net_device * dev)1366 void netdev_features_change(struct net_device *dev)
1367 {
1368 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1369 }
1370 EXPORT_SYMBOL(netdev_features_change);
1371
1372 /**
1373 * netdev_state_change - device changes state
1374 * @dev: device to cause notification
1375 *
1376 * Called to indicate a device has changed state. This function calls
1377 * the notifier chains for netdev_chain and sends a NEWLINK message
1378 * to the routing socket.
1379 */
netdev_state_change(struct net_device * dev)1380 void netdev_state_change(struct net_device *dev)
1381 {
1382 if (dev->flags & IFF_UP) {
1383 struct netdev_notifier_change_info change_info = {
1384 .info.dev = dev,
1385 };
1386
1387 call_netdevice_notifiers_info(NETDEV_CHANGE,
1388 &change_info.info);
1389 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1390 }
1391 }
1392 EXPORT_SYMBOL(netdev_state_change);
1393
1394 /**
1395 * __netdev_notify_peers - notify network peers about existence of @dev,
1396 * to be called when rtnl lock is already held.
1397 * @dev: network device
1398 *
1399 * Generate traffic such that interested network peers are aware of
1400 * @dev, such as by generating a gratuitous ARP. This may be used when
1401 * a device wants to inform the rest of the network about some sort of
1402 * reconfiguration such as a failover event or virtual machine
1403 * migration.
1404 */
__netdev_notify_peers(struct net_device * dev)1405 void __netdev_notify_peers(struct net_device *dev)
1406 {
1407 ASSERT_RTNL();
1408 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1409 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1410 }
1411 EXPORT_SYMBOL(__netdev_notify_peers);
1412
1413 /**
1414 * netdev_notify_peers - notify network peers about existence of @dev
1415 * @dev: network device
1416 *
1417 * Generate traffic such that interested network peers are aware of
1418 * @dev, such as by generating a gratuitous ARP. This may be used when
1419 * a device wants to inform the rest of the network about some sort of
1420 * reconfiguration such as a failover event or virtual machine
1421 * migration.
1422 */
netdev_notify_peers(struct net_device * dev)1423 void netdev_notify_peers(struct net_device *dev)
1424 {
1425 rtnl_lock();
1426 __netdev_notify_peers(dev);
1427 rtnl_unlock();
1428 }
1429 EXPORT_SYMBOL(netdev_notify_peers);
1430
1431 static int napi_threaded_poll(void *data);
1432
napi_kthread_create(struct napi_struct * n)1433 static int napi_kthread_create(struct napi_struct *n)
1434 {
1435 int err = 0;
1436
1437 /* Create and wake up the kthread once to put it in
1438 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1439 * warning and work with loadavg.
1440 */
1441 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1442 n->dev->name, n->napi_id);
1443 if (IS_ERR(n->thread)) {
1444 err = PTR_ERR(n->thread);
1445 pr_err("kthread_run failed with err %d\n", err);
1446 n->thread = NULL;
1447 }
1448
1449 return err;
1450 }
1451
__dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1452 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1453 {
1454 const struct net_device_ops *ops = dev->netdev_ops;
1455 int ret;
1456
1457 ASSERT_RTNL();
1458
1459 if (!netif_device_present(dev)) {
1460 /* may be detached because parent is runtime-suspended */
1461 if (dev->dev.parent)
1462 pm_runtime_resume(dev->dev.parent);
1463 if (!netif_device_present(dev))
1464 return -ENODEV;
1465 }
1466
1467 /* Block netpoll from trying to do any rx path servicing.
1468 * If we don't do this there is a chance ndo_poll_controller
1469 * or ndo_poll may be running while we open the device
1470 */
1471 netpoll_poll_disable(dev);
1472
1473 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1474 ret = notifier_to_errno(ret);
1475 if (ret)
1476 return ret;
1477
1478 set_bit(__LINK_STATE_START, &dev->state);
1479
1480 if (ops->ndo_validate_addr)
1481 ret = ops->ndo_validate_addr(dev);
1482
1483 if (!ret && ops->ndo_open)
1484 ret = ops->ndo_open(dev);
1485
1486 netpoll_poll_enable(dev);
1487
1488 if (ret)
1489 clear_bit(__LINK_STATE_START, &dev->state);
1490 else {
1491 dev->flags |= IFF_UP;
1492 dev_set_rx_mode(dev);
1493 dev_activate(dev);
1494 add_device_randomness(dev->dev_addr, dev->addr_len);
1495 }
1496
1497 return ret;
1498 }
1499
1500 /**
1501 * dev_open - prepare an interface for use.
1502 * @dev: device to open
1503 * @extack: netlink extended ack
1504 *
1505 * Takes a device from down to up state. The device's private open
1506 * function is invoked and then the multicast lists are loaded. Finally
1507 * the device is moved into the up state and a %NETDEV_UP message is
1508 * sent to the netdev notifier chain.
1509 *
1510 * Calling this function on an active interface is a nop. On a failure
1511 * a negative errno code is returned.
1512 */
dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1513 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1514 {
1515 int ret;
1516
1517 if (dev->flags & IFF_UP)
1518 return 0;
1519
1520 ret = __dev_open(dev, extack);
1521 if (ret < 0)
1522 return ret;
1523
1524 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1525 call_netdevice_notifiers(NETDEV_UP, dev);
1526
1527 return ret;
1528 }
1529 EXPORT_SYMBOL(dev_open);
1530
__dev_close_many(struct list_head * head)1531 static void __dev_close_many(struct list_head *head)
1532 {
1533 struct net_device *dev;
1534
1535 ASSERT_RTNL();
1536 might_sleep();
1537
1538 list_for_each_entry(dev, head, close_list) {
1539 /* Temporarily disable netpoll until the interface is down */
1540 netpoll_poll_disable(dev);
1541
1542 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1543
1544 clear_bit(__LINK_STATE_START, &dev->state);
1545
1546 /* Synchronize to scheduled poll. We cannot touch poll list, it
1547 * can be even on different cpu. So just clear netif_running().
1548 *
1549 * dev->stop() will invoke napi_disable() on all of it's
1550 * napi_struct instances on this device.
1551 */
1552 smp_mb__after_atomic(); /* Commit netif_running(). */
1553 }
1554
1555 dev_deactivate_many(head);
1556
1557 list_for_each_entry(dev, head, close_list) {
1558 const struct net_device_ops *ops = dev->netdev_ops;
1559
1560 /*
1561 * Call the device specific close. This cannot fail.
1562 * Only if device is UP
1563 *
1564 * We allow it to be called even after a DETACH hot-plug
1565 * event.
1566 */
1567 if (ops->ndo_stop)
1568 ops->ndo_stop(dev);
1569
1570 dev->flags &= ~IFF_UP;
1571 netpoll_poll_enable(dev);
1572 }
1573 }
1574
__dev_close(struct net_device * dev)1575 static void __dev_close(struct net_device *dev)
1576 {
1577 LIST_HEAD(single);
1578
1579 list_add(&dev->close_list, &single);
1580 __dev_close_many(&single);
1581 list_del(&single);
1582 }
1583
dev_close_many(struct list_head * head,bool unlink)1584 void dev_close_many(struct list_head *head, bool unlink)
1585 {
1586 struct net_device *dev, *tmp;
1587
1588 /* Remove the devices that don't need to be closed */
1589 list_for_each_entry_safe(dev, tmp, head, close_list)
1590 if (!(dev->flags & IFF_UP))
1591 list_del_init(&dev->close_list);
1592
1593 __dev_close_many(head);
1594
1595 list_for_each_entry_safe(dev, tmp, head, close_list) {
1596 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1597 call_netdevice_notifiers(NETDEV_DOWN, dev);
1598 if (unlink)
1599 list_del_init(&dev->close_list);
1600 }
1601 }
1602 EXPORT_SYMBOL(dev_close_many);
1603
1604 /**
1605 * dev_close - shutdown an interface.
1606 * @dev: device to shutdown
1607 *
1608 * This function moves an active device into down state. A
1609 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1610 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1611 * chain.
1612 */
dev_close(struct net_device * dev)1613 void dev_close(struct net_device *dev)
1614 {
1615 if (dev->flags & IFF_UP) {
1616 LIST_HEAD(single);
1617
1618 list_add(&dev->close_list, &single);
1619 dev_close_many(&single, true);
1620 list_del(&single);
1621 }
1622 }
1623 EXPORT_SYMBOL(dev_close);
1624
1625
1626 /**
1627 * dev_disable_lro - disable Large Receive Offload on a device
1628 * @dev: device
1629 *
1630 * Disable Large Receive Offload (LRO) on a net device. Must be
1631 * called under RTNL. This is needed if received packets may be
1632 * forwarded to another interface.
1633 */
dev_disable_lro(struct net_device * dev)1634 void dev_disable_lro(struct net_device *dev)
1635 {
1636 struct net_device *lower_dev;
1637 struct list_head *iter;
1638
1639 dev->wanted_features &= ~NETIF_F_LRO;
1640 netdev_update_features(dev);
1641
1642 if (unlikely(dev->features & NETIF_F_LRO))
1643 netdev_WARN(dev, "failed to disable LRO!\n");
1644
1645 netdev_for_each_lower_dev(dev, lower_dev, iter)
1646 dev_disable_lro(lower_dev);
1647 }
1648 EXPORT_SYMBOL(dev_disable_lro);
1649
1650 /**
1651 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1652 * @dev: device
1653 *
1654 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1655 * called under RTNL. This is needed if Generic XDP is installed on
1656 * the device.
1657 */
dev_disable_gro_hw(struct net_device * dev)1658 static void dev_disable_gro_hw(struct net_device *dev)
1659 {
1660 dev->wanted_features &= ~NETIF_F_GRO_HW;
1661 netdev_update_features(dev);
1662
1663 if (unlikely(dev->features & NETIF_F_GRO_HW))
1664 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1665 }
1666
netdev_cmd_to_name(enum netdev_cmd cmd)1667 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1668 {
1669 #define N(val) \
1670 case NETDEV_##val: \
1671 return "NETDEV_" __stringify(val);
1672 switch (cmd) {
1673 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1674 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1675 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1676 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1677 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1678 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1679 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1680 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1681 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1682 N(PRE_CHANGEADDR)
1683 }
1684 #undef N
1685 return "UNKNOWN_NETDEV_EVENT";
1686 }
1687 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1688
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1689 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1690 struct net_device *dev)
1691 {
1692 struct netdev_notifier_info info = {
1693 .dev = dev,
1694 };
1695
1696 return nb->notifier_call(nb, val, &info);
1697 }
1698
call_netdevice_register_notifiers(struct notifier_block * nb,struct net_device * dev)1699 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1700 struct net_device *dev)
1701 {
1702 int err;
1703
1704 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1705 err = notifier_to_errno(err);
1706 if (err)
1707 return err;
1708
1709 if (!(dev->flags & IFF_UP))
1710 return 0;
1711
1712 call_netdevice_notifier(nb, NETDEV_UP, dev);
1713 return 0;
1714 }
1715
call_netdevice_unregister_notifiers(struct notifier_block * nb,struct net_device * dev)1716 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1717 struct net_device *dev)
1718 {
1719 if (dev->flags & IFF_UP) {
1720 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1721 dev);
1722 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1723 }
1724 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1725 }
1726
call_netdevice_register_net_notifiers(struct notifier_block * nb,struct net * net)1727 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1728 struct net *net)
1729 {
1730 struct net_device *dev;
1731 int err;
1732
1733 for_each_netdev(net, dev) {
1734 err = call_netdevice_register_notifiers(nb, dev);
1735 if (err)
1736 goto rollback;
1737 }
1738 return 0;
1739
1740 rollback:
1741 for_each_netdev_continue_reverse(net, dev)
1742 call_netdevice_unregister_notifiers(nb, dev);
1743 return err;
1744 }
1745
call_netdevice_unregister_net_notifiers(struct notifier_block * nb,struct net * net)1746 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1747 struct net *net)
1748 {
1749 struct net_device *dev;
1750
1751 for_each_netdev(net, dev)
1752 call_netdevice_unregister_notifiers(nb, dev);
1753 }
1754
1755 static int dev_boot_phase = 1;
1756
1757 /**
1758 * register_netdevice_notifier - register a network notifier block
1759 * @nb: notifier
1760 *
1761 * Register a notifier to be called when network device events occur.
1762 * The notifier passed is linked into the kernel structures and must
1763 * not be reused until it has been unregistered. A negative errno code
1764 * is returned on a failure.
1765 *
1766 * When registered all registration and up events are replayed
1767 * to the new notifier to allow device to have a race free
1768 * view of the network device list.
1769 */
1770
register_netdevice_notifier(struct notifier_block * nb)1771 int register_netdevice_notifier(struct notifier_block *nb)
1772 {
1773 struct net *net;
1774 int err;
1775
1776 /* Close race with setup_net() and cleanup_net() */
1777 down_write(&pernet_ops_rwsem);
1778 rtnl_lock();
1779 err = raw_notifier_chain_register(&netdev_chain, nb);
1780 if (err)
1781 goto unlock;
1782 if (dev_boot_phase)
1783 goto unlock;
1784 for_each_net(net) {
1785 err = call_netdevice_register_net_notifiers(nb, net);
1786 if (err)
1787 goto rollback;
1788 }
1789
1790 unlock:
1791 rtnl_unlock();
1792 up_write(&pernet_ops_rwsem);
1793 return err;
1794
1795 rollback:
1796 for_each_net_continue_reverse(net)
1797 call_netdevice_unregister_net_notifiers(nb, net);
1798
1799 raw_notifier_chain_unregister(&netdev_chain, nb);
1800 goto unlock;
1801 }
1802 EXPORT_SYMBOL(register_netdevice_notifier);
1803
1804 /**
1805 * unregister_netdevice_notifier - unregister a network notifier block
1806 * @nb: notifier
1807 *
1808 * Unregister a notifier previously registered by
1809 * register_netdevice_notifier(). The notifier is unlinked into the
1810 * kernel structures and may then be reused. A negative errno code
1811 * is returned on a failure.
1812 *
1813 * After unregistering unregister and down device events are synthesized
1814 * for all devices on the device list to the removed notifier to remove
1815 * the need for special case cleanup code.
1816 */
1817
unregister_netdevice_notifier(struct notifier_block * nb)1818 int unregister_netdevice_notifier(struct notifier_block *nb)
1819 {
1820 struct net *net;
1821 int err;
1822
1823 /* Close race with setup_net() and cleanup_net() */
1824 down_write(&pernet_ops_rwsem);
1825 rtnl_lock();
1826 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1827 if (err)
1828 goto unlock;
1829
1830 for_each_net(net)
1831 call_netdevice_unregister_net_notifiers(nb, net);
1832
1833 unlock:
1834 rtnl_unlock();
1835 up_write(&pernet_ops_rwsem);
1836 return err;
1837 }
1838 EXPORT_SYMBOL(unregister_netdevice_notifier);
1839
__register_netdevice_notifier_net(struct net * net,struct notifier_block * nb,bool ignore_call_fail)1840 static int __register_netdevice_notifier_net(struct net *net,
1841 struct notifier_block *nb,
1842 bool ignore_call_fail)
1843 {
1844 int err;
1845
1846 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1847 if (err)
1848 return err;
1849 if (dev_boot_phase)
1850 return 0;
1851
1852 err = call_netdevice_register_net_notifiers(nb, net);
1853 if (err && !ignore_call_fail)
1854 goto chain_unregister;
1855
1856 return 0;
1857
1858 chain_unregister:
1859 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1860 return err;
1861 }
1862
__unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1863 static int __unregister_netdevice_notifier_net(struct net *net,
1864 struct notifier_block *nb)
1865 {
1866 int err;
1867
1868 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1869 if (err)
1870 return err;
1871
1872 call_netdevice_unregister_net_notifiers(nb, net);
1873 return 0;
1874 }
1875
1876 /**
1877 * register_netdevice_notifier_net - register a per-netns network notifier block
1878 * @net: network namespace
1879 * @nb: notifier
1880 *
1881 * Register a notifier to be called when network device events occur.
1882 * The notifier passed is linked into the kernel structures and must
1883 * not be reused until it has been unregistered. A negative errno code
1884 * is returned on a failure.
1885 *
1886 * When registered all registration and up events are replayed
1887 * to the new notifier to allow device to have a race free
1888 * view of the network device list.
1889 */
1890
register_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1891 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1892 {
1893 int err;
1894
1895 rtnl_lock();
1896 err = __register_netdevice_notifier_net(net, nb, false);
1897 rtnl_unlock();
1898 return err;
1899 }
1900 EXPORT_SYMBOL(register_netdevice_notifier_net);
1901
1902 /**
1903 * unregister_netdevice_notifier_net - unregister a per-netns
1904 * network notifier block
1905 * @net: network namespace
1906 * @nb: notifier
1907 *
1908 * Unregister a notifier previously registered by
1909 * register_netdevice_notifier(). The notifier is unlinked into the
1910 * kernel structures and may then be reused. A negative errno code
1911 * is returned on a failure.
1912 *
1913 * After unregistering unregister and down device events are synthesized
1914 * for all devices on the device list to the removed notifier to remove
1915 * the need for special case cleanup code.
1916 */
1917
unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1918 int unregister_netdevice_notifier_net(struct net *net,
1919 struct notifier_block *nb)
1920 {
1921 int err;
1922
1923 rtnl_lock();
1924 err = __unregister_netdevice_notifier_net(net, nb);
1925 rtnl_unlock();
1926 return err;
1927 }
1928 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1929
register_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)1930 int register_netdevice_notifier_dev_net(struct net_device *dev,
1931 struct notifier_block *nb,
1932 struct netdev_net_notifier *nn)
1933 {
1934 int err;
1935
1936 rtnl_lock();
1937 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1938 if (!err) {
1939 nn->nb = nb;
1940 list_add(&nn->list, &dev->net_notifier_list);
1941 }
1942 rtnl_unlock();
1943 return err;
1944 }
1945 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1946
unregister_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)1947 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1948 struct notifier_block *nb,
1949 struct netdev_net_notifier *nn)
1950 {
1951 int err;
1952
1953 rtnl_lock();
1954 list_del(&nn->list);
1955 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1956 rtnl_unlock();
1957 return err;
1958 }
1959 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1960
move_netdevice_notifiers_dev_net(struct net_device * dev,struct net * net)1961 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1962 struct net *net)
1963 {
1964 struct netdev_net_notifier *nn;
1965
1966 list_for_each_entry(nn, &dev->net_notifier_list, list) {
1967 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1968 __register_netdevice_notifier_net(net, nn->nb, true);
1969 }
1970 }
1971
1972 /**
1973 * call_netdevice_notifiers_info - call all network notifier blocks
1974 * @val: value passed unmodified to notifier function
1975 * @info: notifier information data
1976 *
1977 * Call all network notifier blocks. Parameters and return value
1978 * are as for raw_notifier_call_chain().
1979 */
1980
call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)1981 static int call_netdevice_notifiers_info(unsigned long val,
1982 struct netdev_notifier_info *info)
1983 {
1984 struct net *net = dev_net(info->dev);
1985 int ret;
1986
1987 ASSERT_RTNL();
1988
1989 /* Run per-netns notifier block chain first, then run the global one.
1990 * Hopefully, one day, the global one is going to be removed after
1991 * all notifier block registrators get converted to be per-netns.
1992 */
1993 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1994 if (ret & NOTIFY_STOP_MASK)
1995 return ret;
1996 return raw_notifier_call_chain(&netdev_chain, val, info);
1997 }
1998
call_netdevice_notifiers_extack(unsigned long val,struct net_device * dev,struct netlink_ext_ack * extack)1999 static int call_netdevice_notifiers_extack(unsigned long val,
2000 struct net_device *dev,
2001 struct netlink_ext_ack *extack)
2002 {
2003 struct netdev_notifier_info info = {
2004 .dev = dev,
2005 .extack = extack,
2006 };
2007
2008 return call_netdevice_notifiers_info(val, &info);
2009 }
2010
2011 /**
2012 * call_netdevice_notifiers - call all network notifier blocks
2013 * @val: value passed unmodified to notifier function
2014 * @dev: net_device pointer passed unmodified to notifier function
2015 *
2016 * Call all network notifier blocks. Parameters and return value
2017 * are as for raw_notifier_call_chain().
2018 */
2019
call_netdevice_notifiers(unsigned long val,struct net_device * dev)2020 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2021 {
2022 return call_netdevice_notifiers_extack(val, dev, NULL);
2023 }
2024 EXPORT_SYMBOL(call_netdevice_notifiers);
2025
2026 /**
2027 * call_netdevice_notifiers_mtu - call all network notifier blocks
2028 * @val: value passed unmodified to notifier function
2029 * @dev: net_device pointer passed unmodified to notifier function
2030 * @arg: additional u32 argument passed to the notifier function
2031 *
2032 * Call all network notifier blocks. Parameters and return value
2033 * are as for raw_notifier_call_chain().
2034 */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)2035 static int call_netdevice_notifiers_mtu(unsigned long val,
2036 struct net_device *dev, u32 arg)
2037 {
2038 struct netdev_notifier_info_ext info = {
2039 .info.dev = dev,
2040 .ext.mtu = arg,
2041 };
2042
2043 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2044
2045 return call_netdevice_notifiers_info(val, &info.info);
2046 }
2047
2048 #ifdef CONFIG_NET_INGRESS
2049 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2050
net_inc_ingress_queue(void)2051 void net_inc_ingress_queue(void)
2052 {
2053 static_branch_inc(&ingress_needed_key);
2054 }
2055 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2056
net_dec_ingress_queue(void)2057 void net_dec_ingress_queue(void)
2058 {
2059 static_branch_dec(&ingress_needed_key);
2060 }
2061 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2062 #endif
2063
2064 #ifdef CONFIG_NET_EGRESS
2065 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2066
net_inc_egress_queue(void)2067 void net_inc_egress_queue(void)
2068 {
2069 static_branch_inc(&egress_needed_key);
2070 }
2071 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2072
net_dec_egress_queue(void)2073 void net_dec_egress_queue(void)
2074 {
2075 static_branch_dec(&egress_needed_key);
2076 }
2077 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2078 #endif
2079
2080 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2081 #ifdef CONFIG_JUMP_LABEL
2082 static atomic_t netstamp_needed_deferred;
2083 static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)2084 static void netstamp_clear(struct work_struct *work)
2085 {
2086 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2087 int wanted;
2088
2089 wanted = atomic_add_return(deferred, &netstamp_wanted);
2090 if (wanted > 0)
2091 static_branch_enable(&netstamp_needed_key);
2092 else
2093 static_branch_disable(&netstamp_needed_key);
2094 }
2095 static DECLARE_WORK(netstamp_work, netstamp_clear);
2096 #endif
2097
net_enable_timestamp(void)2098 void net_enable_timestamp(void)
2099 {
2100 #ifdef CONFIG_JUMP_LABEL
2101 int wanted;
2102
2103 while (1) {
2104 wanted = atomic_read(&netstamp_wanted);
2105 if (wanted <= 0)
2106 break;
2107 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2108 return;
2109 }
2110 atomic_inc(&netstamp_needed_deferred);
2111 schedule_work(&netstamp_work);
2112 #else
2113 static_branch_inc(&netstamp_needed_key);
2114 #endif
2115 }
2116 EXPORT_SYMBOL(net_enable_timestamp);
2117
net_disable_timestamp(void)2118 void net_disable_timestamp(void)
2119 {
2120 #ifdef CONFIG_JUMP_LABEL
2121 int wanted;
2122
2123 while (1) {
2124 wanted = atomic_read(&netstamp_wanted);
2125 if (wanted <= 1)
2126 break;
2127 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2128 return;
2129 }
2130 atomic_dec(&netstamp_needed_deferred);
2131 schedule_work(&netstamp_work);
2132 #else
2133 static_branch_dec(&netstamp_needed_key);
2134 #endif
2135 }
2136 EXPORT_SYMBOL(net_disable_timestamp);
2137
net_timestamp_set(struct sk_buff * skb)2138 static inline void net_timestamp_set(struct sk_buff *skb)
2139 {
2140 skb->tstamp = 0;
2141 if (static_branch_unlikely(&netstamp_needed_key))
2142 __net_timestamp(skb);
2143 }
2144
2145 #define net_timestamp_check(COND, SKB) \
2146 if (static_branch_unlikely(&netstamp_needed_key)) { \
2147 if ((COND) && !(SKB)->tstamp) \
2148 __net_timestamp(SKB); \
2149 } \
2150
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)2151 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2152 {
2153 return __is_skb_forwardable(dev, skb, true);
2154 }
2155 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2156
__dev_forward_skb2(struct net_device * dev,struct sk_buff * skb,bool check_mtu)2157 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2158 bool check_mtu)
2159 {
2160 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2161
2162 if (likely(!ret)) {
2163 skb->protocol = eth_type_trans(skb, dev);
2164 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2165 }
2166
2167 return ret;
2168 }
2169
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2170 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2171 {
2172 return __dev_forward_skb2(dev, skb, true);
2173 }
2174 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2175
2176 /**
2177 * dev_forward_skb - loopback an skb to another netif
2178 *
2179 * @dev: destination network device
2180 * @skb: buffer to forward
2181 *
2182 * return values:
2183 * NET_RX_SUCCESS (no congestion)
2184 * NET_RX_DROP (packet was dropped, but freed)
2185 *
2186 * dev_forward_skb can be used for injecting an skb from the
2187 * start_xmit function of one device into the receive queue
2188 * of another device.
2189 *
2190 * The receiving device may be in another namespace, so
2191 * we have to clear all information in the skb that could
2192 * impact namespace isolation.
2193 */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2194 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2195 {
2196 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2197 }
2198 EXPORT_SYMBOL_GPL(dev_forward_skb);
2199
dev_forward_skb_nomtu(struct net_device * dev,struct sk_buff * skb)2200 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2201 {
2202 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2203 }
2204
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)2205 static inline int deliver_skb(struct sk_buff *skb,
2206 struct packet_type *pt_prev,
2207 struct net_device *orig_dev)
2208 {
2209 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2210 return -ENOMEM;
2211 refcount_inc(&skb->users);
2212 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2213 }
2214
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)2215 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2216 struct packet_type **pt,
2217 struct net_device *orig_dev,
2218 __be16 type,
2219 struct list_head *ptype_list)
2220 {
2221 struct packet_type *ptype, *pt_prev = *pt;
2222
2223 list_for_each_entry_rcu(ptype, ptype_list, list) {
2224 if (ptype->type != type)
2225 continue;
2226 if (pt_prev)
2227 deliver_skb(skb, pt_prev, orig_dev);
2228 pt_prev = ptype;
2229 }
2230 *pt = pt_prev;
2231 }
2232
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)2233 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2234 {
2235 if (!ptype->af_packet_priv || !skb->sk)
2236 return false;
2237
2238 if (ptype->id_match)
2239 return ptype->id_match(ptype, skb->sk);
2240 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2241 return true;
2242
2243 return false;
2244 }
2245
2246 /**
2247 * dev_nit_active - return true if any network interface taps are in use
2248 *
2249 * @dev: network device to check for the presence of taps
2250 */
dev_nit_active(struct net_device * dev)2251 bool dev_nit_active(struct net_device *dev)
2252 {
2253 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2254 }
2255 EXPORT_SYMBOL_GPL(dev_nit_active);
2256
2257 /*
2258 * Support routine. Sends outgoing frames to any network
2259 * taps currently in use.
2260 */
2261
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)2262 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2263 {
2264 struct packet_type *ptype;
2265 struct sk_buff *skb2 = NULL;
2266 struct packet_type *pt_prev = NULL;
2267 struct list_head *ptype_list = &ptype_all;
2268
2269 rcu_read_lock();
2270 again:
2271 list_for_each_entry_rcu(ptype, ptype_list, list) {
2272 if (ptype->ignore_outgoing)
2273 continue;
2274
2275 /* Never send packets back to the socket
2276 * they originated from - MvS (miquels@drinkel.ow.org)
2277 */
2278 if (skb_loop_sk(ptype, skb))
2279 continue;
2280
2281 if (pt_prev) {
2282 deliver_skb(skb2, pt_prev, skb->dev);
2283 pt_prev = ptype;
2284 continue;
2285 }
2286
2287 /* need to clone skb, done only once */
2288 skb2 = skb_clone(skb, GFP_ATOMIC);
2289 if (!skb2)
2290 goto out_unlock;
2291
2292 net_timestamp_set(skb2);
2293
2294 /* skb->nh should be correctly
2295 * set by sender, so that the second statement is
2296 * just protection against buggy protocols.
2297 */
2298 skb_reset_mac_header(skb2);
2299
2300 if (skb_network_header(skb2) < skb2->data ||
2301 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2302 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2303 ntohs(skb2->protocol),
2304 dev->name);
2305 skb_reset_network_header(skb2);
2306 }
2307
2308 skb2->transport_header = skb2->network_header;
2309 skb2->pkt_type = PACKET_OUTGOING;
2310 pt_prev = ptype;
2311 }
2312
2313 if (ptype_list == &ptype_all) {
2314 ptype_list = &dev->ptype_all;
2315 goto again;
2316 }
2317 out_unlock:
2318 if (pt_prev) {
2319 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2320 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2321 else
2322 kfree_skb(skb2);
2323 }
2324 rcu_read_unlock();
2325 }
2326 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2327
2328 /**
2329 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2330 * @dev: Network device
2331 * @txq: number of queues available
2332 *
2333 * If real_num_tx_queues is changed the tc mappings may no longer be
2334 * valid. To resolve this verify the tc mapping remains valid and if
2335 * not NULL the mapping. With no priorities mapping to this
2336 * offset/count pair it will no longer be used. In the worst case TC0
2337 * is invalid nothing can be done so disable priority mappings. If is
2338 * expected that drivers will fix this mapping if they can before
2339 * calling netif_set_real_num_tx_queues.
2340 */
netif_setup_tc(struct net_device * dev,unsigned int txq)2341 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2342 {
2343 int i;
2344 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2345
2346 /* If TC0 is invalidated disable TC mapping */
2347 if (tc->offset + tc->count > txq) {
2348 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2349 dev->num_tc = 0;
2350 return;
2351 }
2352
2353 /* Invalidated prio to tc mappings set to TC0 */
2354 for (i = 1; i < TC_BITMASK + 1; i++) {
2355 int q = netdev_get_prio_tc_map(dev, i);
2356
2357 tc = &dev->tc_to_txq[q];
2358 if (tc->offset + tc->count > txq) {
2359 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2360 i, q);
2361 netdev_set_prio_tc_map(dev, i, 0);
2362 }
2363 }
2364 }
2365
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2366 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2367 {
2368 if (dev->num_tc) {
2369 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2370 int i;
2371
2372 /* walk through the TCs and see if it falls into any of them */
2373 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2374 if ((txq - tc->offset) < tc->count)
2375 return i;
2376 }
2377
2378 /* didn't find it, just return -1 to indicate no match */
2379 return -1;
2380 }
2381
2382 return 0;
2383 }
2384 EXPORT_SYMBOL(netdev_txq_to_tc);
2385
2386 #ifdef CONFIG_XPS
2387 static struct static_key xps_needed __read_mostly;
2388 static struct static_key xps_rxqs_needed __read_mostly;
2389 static DEFINE_MUTEX(xps_map_mutex);
2390 #define xmap_dereference(P) \
2391 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2392
remove_xps_queue(struct xps_dev_maps * dev_maps,struct xps_dev_maps * old_maps,int tci,u16 index)2393 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2394 struct xps_dev_maps *old_maps, int tci, u16 index)
2395 {
2396 struct xps_map *map = NULL;
2397 int pos;
2398
2399 if (dev_maps)
2400 map = xmap_dereference(dev_maps->attr_map[tci]);
2401 if (!map)
2402 return false;
2403
2404 for (pos = map->len; pos--;) {
2405 if (map->queues[pos] != index)
2406 continue;
2407
2408 if (map->len > 1) {
2409 map->queues[pos] = map->queues[--map->len];
2410 break;
2411 }
2412
2413 if (old_maps)
2414 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2415 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2416 kfree_rcu(map, rcu);
2417 return false;
2418 }
2419
2420 return true;
2421 }
2422
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2423 static bool remove_xps_queue_cpu(struct net_device *dev,
2424 struct xps_dev_maps *dev_maps,
2425 int cpu, u16 offset, u16 count)
2426 {
2427 int num_tc = dev_maps->num_tc;
2428 bool active = false;
2429 int tci;
2430
2431 for (tci = cpu * num_tc; num_tc--; tci++) {
2432 int i, j;
2433
2434 for (i = count, j = offset; i--; j++) {
2435 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2436 break;
2437 }
2438
2439 active |= i < 0;
2440 }
2441
2442 return active;
2443 }
2444
reset_xps_maps(struct net_device * dev,struct xps_dev_maps * dev_maps,enum xps_map_type type)2445 static void reset_xps_maps(struct net_device *dev,
2446 struct xps_dev_maps *dev_maps,
2447 enum xps_map_type type)
2448 {
2449 static_key_slow_dec_cpuslocked(&xps_needed);
2450 if (type == XPS_RXQS)
2451 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2452
2453 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2454
2455 kfree_rcu(dev_maps, rcu);
2456 }
2457
clean_xps_maps(struct net_device * dev,enum xps_map_type type,u16 offset,u16 count)2458 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2459 u16 offset, u16 count)
2460 {
2461 struct xps_dev_maps *dev_maps;
2462 bool active = false;
2463 int i, j;
2464
2465 dev_maps = xmap_dereference(dev->xps_maps[type]);
2466 if (!dev_maps)
2467 return;
2468
2469 for (j = 0; j < dev_maps->nr_ids; j++)
2470 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2471 if (!active)
2472 reset_xps_maps(dev, dev_maps, type);
2473
2474 if (type == XPS_CPUS) {
2475 for (i = offset + (count - 1); count--; i--)
2476 netdev_queue_numa_node_write(
2477 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2478 }
2479 }
2480
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2481 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2482 u16 count)
2483 {
2484 if (!static_key_false(&xps_needed))
2485 return;
2486
2487 cpus_read_lock();
2488 mutex_lock(&xps_map_mutex);
2489
2490 if (static_key_false(&xps_rxqs_needed))
2491 clean_xps_maps(dev, XPS_RXQS, offset, count);
2492
2493 clean_xps_maps(dev, XPS_CPUS, offset, count);
2494
2495 mutex_unlock(&xps_map_mutex);
2496 cpus_read_unlock();
2497 }
2498
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2499 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2500 {
2501 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2502 }
2503
expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2504 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2505 u16 index, bool is_rxqs_map)
2506 {
2507 struct xps_map *new_map;
2508 int alloc_len = XPS_MIN_MAP_ALLOC;
2509 int i, pos;
2510
2511 for (pos = 0; map && pos < map->len; pos++) {
2512 if (map->queues[pos] != index)
2513 continue;
2514 return map;
2515 }
2516
2517 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2518 if (map) {
2519 if (pos < map->alloc_len)
2520 return map;
2521
2522 alloc_len = map->alloc_len * 2;
2523 }
2524
2525 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2526 * map
2527 */
2528 if (is_rxqs_map)
2529 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2530 else
2531 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2532 cpu_to_node(attr_index));
2533 if (!new_map)
2534 return NULL;
2535
2536 for (i = 0; i < pos; i++)
2537 new_map->queues[i] = map->queues[i];
2538 new_map->alloc_len = alloc_len;
2539 new_map->len = pos;
2540
2541 return new_map;
2542 }
2543
2544 /* Copy xps maps at a given index */
xps_copy_dev_maps(struct xps_dev_maps * dev_maps,struct xps_dev_maps * new_dev_maps,int index,int tc,bool skip_tc)2545 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2546 struct xps_dev_maps *new_dev_maps, int index,
2547 int tc, bool skip_tc)
2548 {
2549 int i, tci = index * dev_maps->num_tc;
2550 struct xps_map *map;
2551
2552 /* copy maps belonging to foreign traffic classes */
2553 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2554 if (i == tc && skip_tc)
2555 continue;
2556
2557 /* fill in the new device map from the old device map */
2558 map = xmap_dereference(dev_maps->attr_map[tci]);
2559 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2560 }
2561 }
2562
2563 /* Must be called under cpus_read_lock */
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,enum xps_map_type type)2564 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2565 u16 index, enum xps_map_type type)
2566 {
2567 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2568 const unsigned long *online_mask = NULL;
2569 bool active = false, copy = false;
2570 int i, j, tci, numa_node_id = -2;
2571 int maps_sz, num_tc = 1, tc = 0;
2572 struct xps_map *map, *new_map;
2573 unsigned int nr_ids;
2574
2575 if (dev->num_tc) {
2576 /* Do not allow XPS on subordinate device directly */
2577 num_tc = dev->num_tc;
2578 if (num_tc < 0)
2579 return -EINVAL;
2580
2581 /* If queue belongs to subordinate dev use its map */
2582 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2583
2584 tc = netdev_txq_to_tc(dev, index);
2585 if (tc < 0)
2586 return -EINVAL;
2587 }
2588
2589 mutex_lock(&xps_map_mutex);
2590
2591 dev_maps = xmap_dereference(dev->xps_maps[type]);
2592 if (type == XPS_RXQS) {
2593 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2594 nr_ids = dev->num_rx_queues;
2595 } else {
2596 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2597 if (num_possible_cpus() > 1)
2598 online_mask = cpumask_bits(cpu_online_mask);
2599 nr_ids = nr_cpu_ids;
2600 }
2601
2602 if (maps_sz < L1_CACHE_BYTES)
2603 maps_sz = L1_CACHE_BYTES;
2604
2605 /* The old dev_maps could be larger or smaller than the one we're
2606 * setting up now, as dev->num_tc or nr_ids could have been updated in
2607 * between. We could try to be smart, but let's be safe instead and only
2608 * copy foreign traffic classes if the two map sizes match.
2609 */
2610 if (dev_maps &&
2611 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2612 copy = true;
2613
2614 /* allocate memory for queue storage */
2615 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2616 j < nr_ids;) {
2617 if (!new_dev_maps) {
2618 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2619 if (!new_dev_maps) {
2620 mutex_unlock(&xps_map_mutex);
2621 return -ENOMEM;
2622 }
2623
2624 new_dev_maps->nr_ids = nr_ids;
2625 new_dev_maps->num_tc = num_tc;
2626 }
2627
2628 tci = j * num_tc + tc;
2629 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2630
2631 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2632 if (!map)
2633 goto error;
2634
2635 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2636 }
2637
2638 if (!new_dev_maps)
2639 goto out_no_new_maps;
2640
2641 if (!dev_maps) {
2642 /* Increment static keys at most once per type */
2643 static_key_slow_inc_cpuslocked(&xps_needed);
2644 if (type == XPS_RXQS)
2645 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2646 }
2647
2648 for (j = 0; j < nr_ids; j++) {
2649 bool skip_tc = false;
2650
2651 tci = j * num_tc + tc;
2652 if (netif_attr_test_mask(j, mask, nr_ids) &&
2653 netif_attr_test_online(j, online_mask, nr_ids)) {
2654 /* add tx-queue to CPU/rx-queue maps */
2655 int pos = 0;
2656
2657 skip_tc = true;
2658
2659 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2660 while ((pos < map->len) && (map->queues[pos] != index))
2661 pos++;
2662
2663 if (pos == map->len)
2664 map->queues[map->len++] = index;
2665 #ifdef CONFIG_NUMA
2666 if (type == XPS_CPUS) {
2667 if (numa_node_id == -2)
2668 numa_node_id = cpu_to_node(j);
2669 else if (numa_node_id != cpu_to_node(j))
2670 numa_node_id = -1;
2671 }
2672 #endif
2673 }
2674
2675 if (copy)
2676 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2677 skip_tc);
2678 }
2679
2680 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2681
2682 /* Cleanup old maps */
2683 if (!dev_maps)
2684 goto out_no_old_maps;
2685
2686 for (j = 0; j < dev_maps->nr_ids; j++) {
2687 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2688 map = xmap_dereference(dev_maps->attr_map[tci]);
2689 if (!map)
2690 continue;
2691
2692 if (copy) {
2693 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2694 if (map == new_map)
2695 continue;
2696 }
2697
2698 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2699 kfree_rcu(map, rcu);
2700 }
2701 }
2702
2703 old_dev_maps = dev_maps;
2704
2705 out_no_old_maps:
2706 dev_maps = new_dev_maps;
2707 active = true;
2708
2709 out_no_new_maps:
2710 if (type == XPS_CPUS)
2711 /* update Tx queue numa node */
2712 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2713 (numa_node_id >= 0) ?
2714 numa_node_id : NUMA_NO_NODE);
2715
2716 if (!dev_maps)
2717 goto out_no_maps;
2718
2719 /* removes tx-queue from unused CPUs/rx-queues */
2720 for (j = 0; j < dev_maps->nr_ids; j++) {
2721 tci = j * dev_maps->num_tc;
2722
2723 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2724 if (i == tc &&
2725 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2726 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2727 continue;
2728
2729 active |= remove_xps_queue(dev_maps,
2730 copy ? old_dev_maps : NULL,
2731 tci, index);
2732 }
2733 }
2734
2735 if (old_dev_maps)
2736 kfree_rcu(old_dev_maps, rcu);
2737
2738 /* free map if not active */
2739 if (!active)
2740 reset_xps_maps(dev, dev_maps, type);
2741
2742 out_no_maps:
2743 mutex_unlock(&xps_map_mutex);
2744
2745 return 0;
2746 error:
2747 /* remove any maps that we added */
2748 for (j = 0; j < nr_ids; j++) {
2749 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2750 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2751 map = copy ?
2752 xmap_dereference(dev_maps->attr_map[tci]) :
2753 NULL;
2754 if (new_map && new_map != map)
2755 kfree(new_map);
2756 }
2757 }
2758
2759 mutex_unlock(&xps_map_mutex);
2760
2761 kfree(new_dev_maps);
2762 return -ENOMEM;
2763 }
2764 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2765
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)2766 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2767 u16 index)
2768 {
2769 int ret;
2770
2771 cpus_read_lock();
2772 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2773 cpus_read_unlock();
2774
2775 return ret;
2776 }
2777 EXPORT_SYMBOL(netif_set_xps_queue);
2778
2779 #endif
netdev_unbind_all_sb_channels(struct net_device * dev)2780 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2781 {
2782 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2783
2784 /* Unbind any subordinate channels */
2785 while (txq-- != &dev->_tx[0]) {
2786 if (txq->sb_dev)
2787 netdev_unbind_sb_channel(dev, txq->sb_dev);
2788 }
2789 }
2790
netdev_reset_tc(struct net_device * dev)2791 void netdev_reset_tc(struct net_device *dev)
2792 {
2793 #ifdef CONFIG_XPS
2794 netif_reset_xps_queues_gt(dev, 0);
2795 #endif
2796 netdev_unbind_all_sb_channels(dev);
2797
2798 /* Reset TC configuration of device */
2799 dev->num_tc = 0;
2800 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2801 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2802 }
2803 EXPORT_SYMBOL(netdev_reset_tc);
2804
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)2805 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2806 {
2807 if (tc >= dev->num_tc)
2808 return -EINVAL;
2809
2810 #ifdef CONFIG_XPS
2811 netif_reset_xps_queues(dev, offset, count);
2812 #endif
2813 dev->tc_to_txq[tc].count = count;
2814 dev->tc_to_txq[tc].offset = offset;
2815 return 0;
2816 }
2817 EXPORT_SYMBOL(netdev_set_tc_queue);
2818
netdev_set_num_tc(struct net_device * dev,u8 num_tc)2819 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2820 {
2821 if (num_tc > TC_MAX_QUEUE)
2822 return -EINVAL;
2823
2824 #ifdef CONFIG_XPS
2825 netif_reset_xps_queues_gt(dev, 0);
2826 #endif
2827 netdev_unbind_all_sb_channels(dev);
2828
2829 dev->num_tc = num_tc;
2830 return 0;
2831 }
2832 EXPORT_SYMBOL(netdev_set_num_tc);
2833
netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)2834 void netdev_unbind_sb_channel(struct net_device *dev,
2835 struct net_device *sb_dev)
2836 {
2837 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2838
2839 #ifdef CONFIG_XPS
2840 netif_reset_xps_queues_gt(sb_dev, 0);
2841 #endif
2842 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2843 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2844
2845 while (txq-- != &dev->_tx[0]) {
2846 if (txq->sb_dev == sb_dev)
2847 txq->sb_dev = NULL;
2848 }
2849 }
2850 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2851
netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)2852 int netdev_bind_sb_channel_queue(struct net_device *dev,
2853 struct net_device *sb_dev,
2854 u8 tc, u16 count, u16 offset)
2855 {
2856 /* Make certain the sb_dev and dev are already configured */
2857 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2858 return -EINVAL;
2859
2860 /* We cannot hand out queues we don't have */
2861 if ((offset + count) > dev->real_num_tx_queues)
2862 return -EINVAL;
2863
2864 /* Record the mapping */
2865 sb_dev->tc_to_txq[tc].count = count;
2866 sb_dev->tc_to_txq[tc].offset = offset;
2867
2868 /* Provide a way for Tx queue to find the tc_to_txq map or
2869 * XPS map for itself.
2870 */
2871 while (count--)
2872 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2873
2874 return 0;
2875 }
2876 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2877
netdev_set_sb_channel(struct net_device * dev,u16 channel)2878 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2879 {
2880 /* Do not use a multiqueue device to represent a subordinate channel */
2881 if (netif_is_multiqueue(dev))
2882 return -ENODEV;
2883
2884 /* We allow channels 1 - 32767 to be used for subordinate channels.
2885 * Channel 0 is meant to be "native" mode and used only to represent
2886 * the main root device. We allow writing 0 to reset the device back
2887 * to normal mode after being used as a subordinate channel.
2888 */
2889 if (channel > S16_MAX)
2890 return -EINVAL;
2891
2892 dev->num_tc = -channel;
2893
2894 return 0;
2895 }
2896 EXPORT_SYMBOL(netdev_set_sb_channel);
2897
2898 /*
2899 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2900 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2901 */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)2902 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2903 {
2904 bool disabling;
2905 int rc;
2906
2907 disabling = txq < dev->real_num_tx_queues;
2908
2909 if (txq < 1 || txq > dev->num_tx_queues)
2910 return -EINVAL;
2911
2912 if (dev->reg_state == NETREG_REGISTERED ||
2913 dev->reg_state == NETREG_UNREGISTERING) {
2914 ASSERT_RTNL();
2915
2916 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2917 txq);
2918 if (rc)
2919 return rc;
2920
2921 if (dev->num_tc)
2922 netif_setup_tc(dev, txq);
2923
2924 dev->real_num_tx_queues = txq;
2925
2926 if (disabling) {
2927 synchronize_net();
2928 qdisc_reset_all_tx_gt(dev, txq);
2929 #ifdef CONFIG_XPS
2930 netif_reset_xps_queues_gt(dev, txq);
2931 #endif
2932 }
2933 } else {
2934 dev->real_num_tx_queues = txq;
2935 }
2936
2937 return 0;
2938 }
2939 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2940
2941 #ifdef CONFIG_SYSFS
2942 /**
2943 * netif_set_real_num_rx_queues - set actual number of RX queues used
2944 * @dev: Network device
2945 * @rxq: Actual number of RX queues
2946 *
2947 * This must be called either with the rtnl_lock held or before
2948 * registration of the net device. Returns 0 on success, or a
2949 * negative error code. If called before registration, it always
2950 * succeeds.
2951 */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)2952 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2953 {
2954 int rc;
2955
2956 if (rxq < 1 || rxq > dev->num_rx_queues)
2957 return -EINVAL;
2958
2959 if (dev->reg_state == NETREG_REGISTERED) {
2960 ASSERT_RTNL();
2961
2962 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2963 rxq);
2964 if (rc)
2965 return rc;
2966 }
2967
2968 dev->real_num_rx_queues = rxq;
2969 return 0;
2970 }
2971 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2972 #endif
2973
2974 /**
2975 * netif_set_real_num_queues - set actual number of RX and TX queues used
2976 * @dev: Network device
2977 * @txq: Actual number of TX queues
2978 * @rxq: Actual number of RX queues
2979 *
2980 * Set the real number of both TX and RX queues.
2981 * Does nothing if the number of queues is already correct.
2982 */
netif_set_real_num_queues(struct net_device * dev,unsigned int txq,unsigned int rxq)2983 int netif_set_real_num_queues(struct net_device *dev,
2984 unsigned int txq, unsigned int rxq)
2985 {
2986 unsigned int old_rxq = dev->real_num_rx_queues;
2987 int err;
2988
2989 if (txq < 1 || txq > dev->num_tx_queues ||
2990 rxq < 1 || rxq > dev->num_rx_queues)
2991 return -EINVAL;
2992
2993 /* Start from increases, so the error path only does decreases -
2994 * decreases can't fail.
2995 */
2996 if (rxq > dev->real_num_rx_queues) {
2997 err = netif_set_real_num_rx_queues(dev, rxq);
2998 if (err)
2999 return err;
3000 }
3001 if (txq > dev->real_num_tx_queues) {
3002 err = netif_set_real_num_tx_queues(dev, txq);
3003 if (err)
3004 goto undo_rx;
3005 }
3006 if (rxq < dev->real_num_rx_queues)
3007 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3008 if (txq < dev->real_num_tx_queues)
3009 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3010
3011 return 0;
3012 undo_rx:
3013 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3014 return err;
3015 }
3016 EXPORT_SYMBOL(netif_set_real_num_queues);
3017
3018 /**
3019 * netif_get_num_default_rss_queues - default number of RSS queues
3020 *
3021 * This routine should set an upper limit on the number of RSS queues
3022 * used by default by multiqueue devices.
3023 */
netif_get_num_default_rss_queues(void)3024 int netif_get_num_default_rss_queues(void)
3025 {
3026 return is_kdump_kernel() ?
3027 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3028 }
3029 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3030
__netif_reschedule(struct Qdisc * q)3031 static void __netif_reschedule(struct Qdisc *q)
3032 {
3033 struct softnet_data *sd;
3034 unsigned long flags;
3035
3036 local_irq_save(flags);
3037 sd = this_cpu_ptr(&softnet_data);
3038 q->next_sched = NULL;
3039 *sd->output_queue_tailp = q;
3040 sd->output_queue_tailp = &q->next_sched;
3041 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3042 local_irq_restore(flags);
3043 }
3044
__netif_schedule(struct Qdisc * q)3045 void __netif_schedule(struct Qdisc *q)
3046 {
3047 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3048 __netif_reschedule(q);
3049 }
3050 EXPORT_SYMBOL(__netif_schedule);
3051
3052 struct dev_kfree_skb_cb {
3053 enum skb_free_reason reason;
3054 };
3055
get_kfree_skb_cb(const struct sk_buff * skb)3056 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3057 {
3058 return (struct dev_kfree_skb_cb *)skb->cb;
3059 }
3060
netif_schedule_queue(struct netdev_queue * txq)3061 void netif_schedule_queue(struct netdev_queue *txq)
3062 {
3063 rcu_read_lock();
3064 if (!netif_xmit_stopped(txq)) {
3065 struct Qdisc *q = rcu_dereference(txq->qdisc);
3066
3067 __netif_schedule(q);
3068 }
3069 rcu_read_unlock();
3070 }
3071 EXPORT_SYMBOL(netif_schedule_queue);
3072
netif_tx_wake_queue(struct netdev_queue * dev_queue)3073 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3074 {
3075 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3076 struct Qdisc *q;
3077
3078 rcu_read_lock();
3079 q = rcu_dereference(dev_queue->qdisc);
3080 __netif_schedule(q);
3081 rcu_read_unlock();
3082 }
3083 }
3084 EXPORT_SYMBOL(netif_tx_wake_queue);
3085
__dev_kfree_skb_irq(struct sk_buff * skb,enum skb_free_reason reason)3086 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3087 {
3088 unsigned long flags;
3089
3090 if (unlikely(!skb))
3091 return;
3092
3093 if (likely(refcount_read(&skb->users) == 1)) {
3094 smp_rmb();
3095 refcount_set(&skb->users, 0);
3096 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3097 return;
3098 }
3099 get_kfree_skb_cb(skb)->reason = reason;
3100 local_irq_save(flags);
3101 skb->next = __this_cpu_read(softnet_data.completion_queue);
3102 __this_cpu_write(softnet_data.completion_queue, skb);
3103 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3104 local_irq_restore(flags);
3105 }
3106 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3107
__dev_kfree_skb_any(struct sk_buff * skb,enum skb_free_reason reason)3108 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3109 {
3110 if (in_hardirq() || irqs_disabled())
3111 __dev_kfree_skb_irq(skb, reason);
3112 else
3113 dev_kfree_skb(skb);
3114 }
3115 EXPORT_SYMBOL(__dev_kfree_skb_any);
3116
3117
3118 /**
3119 * netif_device_detach - mark device as removed
3120 * @dev: network device
3121 *
3122 * Mark device as removed from system and therefore no longer available.
3123 */
netif_device_detach(struct net_device * dev)3124 void netif_device_detach(struct net_device *dev)
3125 {
3126 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3127 netif_running(dev)) {
3128 netif_tx_stop_all_queues(dev);
3129 }
3130 }
3131 EXPORT_SYMBOL(netif_device_detach);
3132
3133 /**
3134 * netif_device_attach - mark device as attached
3135 * @dev: network device
3136 *
3137 * Mark device as attached from system and restart if needed.
3138 */
netif_device_attach(struct net_device * dev)3139 void netif_device_attach(struct net_device *dev)
3140 {
3141 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3142 netif_running(dev)) {
3143 netif_tx_wake_all_queues(dev);
3144 __netdev_watchdog_up(dev);
3145 }
3146 }
3147 EXPORT_SYMBOL(netif_device_attach);
3148
3149 /*
3150 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3151 * to be used as a distribution range.
3152 */
skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)3153 static u16 skb_tx_hash(const struct net_device *dev,
3154 const struct net_device *sb_dev,
3155 struct sk_buff *skb)
3156 {
3157 u32 hash;
3158 u16 qoffset = 0;
3159 u16 qcount = dev->real_num_tx_queues;
3160
3161 if (dev->num_tc) {
3162 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3163
3164 qoffset = sb_dev->tc_to_txq[tc].offset;
3165 qcount = sb_dev->tc_to_txq[tc].count;
3166 if (unlikely(!qcount)) {
3167 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3168 sb_dev->name, qoffset, tc);
3169 qoffset = 0;
3170 qcount = dev->real_num_tx_queues;
3171 }
3172 }
3173
3174 if (skb_rx_queue_recorded(skb)) {
3175 hash = skb_get_rx_queue(skb);
3176 if (hash >= qoffset)
3177 hash -= qoffset;
3178 while (unlikely(hash >= qcount))
3179 hash -= qcount;
3180 return hash + qoffset;
3181 }
3182
3183 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3184 }
3185
skb_warn_bad_offload(const struct sk_buff * skb)3186 static void skb_warn_bad_offload(const struct sk_buff *skb)
3187 {
3188 static const netdev_features_t null_features;
3189 struct net_device *dev = skb->dev;
3190 const char *name = "";
3191
3192 if (!net_ratelimit())
3193 return;
3194
3195 if (dev) {
3196 if (dev->dev.parent)
3197 name = dev_driver_string(dev->dev.parent);
3198 else
3199 name = netdev_name(dev);
3200 }
3201 skb_dump(KERN_WARNING, skb, false);
3202 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3203 name, dev ? &dev->features : &null_features,
3204 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3205 }
3206
3207 /*
3208 * Invalidate hardware checksum when packet is to be mangled, and
3209 * complete checksum manually on outgoing path.
3210 */
skb_checksum_help(struct sk_buff * skb)3211 int skb_checksum_help(struct sk_buff *skb)
3212 {
3213 __wsum csum;
3214 int ret = 0, offset;
3215
3216 if (skb->ip_summed == CHECKSUM_COMPLETE)
3217 goto out_set_summed;
3218
3219 if (unlikely(skb_is_gso(skb))) {
3220 skb_warn_bad_offload(skb);
3221 return -EINVAL;
3222 }
3223
3224 /* Before computing a checksum, we should make sure no frag could
3225 * be modified by an external entity : checksum could be wrong.
3226 */
3227 if (skb_has_shared_frag(skb)) {
3228 ret = __skb_linearize(skb);
3229 if (ret)
3230 goto out;
3231 }
3232
3233 offset = skb_checksum_start_offset(skb);
3234 BUG_ON(offset >= skb_headlen(skb));
3235 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3236
3237 offset += skb->csum_offset;
3238 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3239
3240 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3241 if (ret)
3242 goto out;
3243
3244 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3245 out_set_summed:
3246 skb->ip_summed = CHECKSUM_NONE;
3247 out:
3248 return ret;
3249 }
3250 EXPORT_SYMBOL(skb_checksum_help);
3251
skb_crc32c_csum_help(struct sk_buff * skb)3252 int skb_crc32c_csum_help(struct sk_buff *skb)
3253 {
3254 __le32 crc32c_csum;
3255 int ret = 0, offset, start;
3256
3257 if (skb->ip_summed != CHECKSUM_PARTIAL)
3258 goto out;
3259
3260 if (unlikely(skb_is_gso(skb)))
3261 goto out;
3262
3263 /* Before computing a checksum, we should make sure no frag could
3264 * be modified by an external entity : checksum could be wrong.
3265 */
3266 if (unlikely(skb_has_shared_frag(skb))) {
3267 ret = __skb_linearize(skb);
3268 if (ret)
3269 goto out;
3270 }
3271 start = skb_checksum_start_offset(skb);
3272 offset = start + offsetof(struct sctphdr, checksum);
3273 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3274 ret = -EINVAL;
3275 goto out;
3276 }
3277
3278 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3279 if (ret)
3280 goto out;
3281
3282 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3283 skb->len - start, ~(__u32)0,
3284 crc32c_csum_stub));
3285 *(__le32 *)(skb->data + offset) = crc32c_csum;
3286 skb->ip_summed = CHECKSUM_NONE;
3287 skb->csum_not_inet = 0;
3288 out:
3289 return ret;
3290 }
3291
skb_network_protocol(struct sk_buff * skb,int * depth)3292 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3293 {
3294 __be16 type = skb->protocol;
3295
3296 /* Tunnel gso handlers can set protocol to ethernet. */
3297 if (type == htons(ETH_P_TEB)) {
3298 struct ethhdr *eth;
3299
3300 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3301 return 0;
3302
3303 eth = (struct ethhdr *)skb->data;
3304 type = eth->h_proto;
3305 }
3306
3307 return __vlan_get_protocol(skb, type, depth);
3308 }
3309
3310 /**
3311 * skb_mac_gso_segment - mac layer segmentation handler.
3312 * @skb: buffer to segment
3313 * @features: features for the output path (see dev->features)
3314 */
skb_mac_gso_segment(struct sk_buff * skb,netdev_features_t features)3315 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3316 netdev_features_t features)
3317 {
3318 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3319 struct packet_offload *ptype;
3320 int vlan_depth = skb->mac_len;
3321 __be16 type = skb_network_protocol(skb, &vlan_depth);
3322
3323 if (unlikely(!type))
3324 return ERR_PTR(-EINVAL);
3325
3326 __skb_pull(skb, vlan_depth);
3327
3328 rcu_read_lock();
3329 list_for_each_entry_rcu(ptype, &offload_base, list) {
3330 if (ptype->type == type && ptype->callbacks.gso_segment) {
3331 segs = ptype->callbacks.gso_segment(skb, features);
3332 break;
3333 }
3334 }
3335 rcu_read_unlock();
3336
3337 __skb_push(skb, skb->data - skb_mac_header(skb));
3338
3339 return segs;
3340 }
3341 EXPORT_SYMBOL(skb_mac_gso_segment);
3342
3343
3344 /* openvswitch calls this on rx path, so we need a different check.
3345 */
skb_needs_check(struct sk_buff * skb,bool tx_path)3346 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3347 {
3348 if (tx_path)
3349 return skb->ip_summed != CHECKSUM_PARTIAL &&
3350 skb->ip_summed != CHECKSUM_UNNECESSARY;
3351
3352 return skb->ip_summed == CHECKSUM_NONE;
3353 }
3354
3355 /**
3356 * __skb_gso_segment - Perform segmentation on skb.
3357 * @skb: buffer to segment
3358 * @features: features for the output path (see dev->features)
3359 * @tx_path: whether it is called in TX path
3360 *
3361 * This function segments the given skb and returns a list of segments.
3362 *
3363 * It may return NULL if the skb requires no segmentation. This is
3364 * only possible when GSO is used for verifying header integrity.
3365 *
3366 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3367 */
__skb_gso_segment(struct sk_buff * skb,netdev_features_t features,bool tx_path)3368 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3369 netdev_features_t features, bool tx_path)
3370 {
3371 struct sk_buff *segs;
3372
3373 if (unlikely(skb_needs_check(skb, tx_path))) {
3374 int err;
3375
3376 /* We're going to init ->check field in TCP or UDP header */
3377 err = skb_cow_head(skb, 0);
3378 if (err < 0)
3379 return ERR_PTR(err);
3380 }
3381
3382 /* Only report GSO partial support if it will enable us to
3383 * support segmentation on this frame without needing additional
3384 * work.
3385 */
3386 if (features & NETIF_F_GSO_PARTIAL) {
3387 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3388 struct net_device *dev = skb->dev;
3389
3390 partial_features |= dev->features & dev->gso_partial_features;
3391 if (!skb_gso_ok(skb, features | partial_features))
3392 features &= ~NETIF_F_GSO_PARTIAL;
3393 }
3394
3395 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3396 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3397
3398 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3399 SKB_GSO_CB(skb)->encap_level = 0;
3400
3401 skb_reset_mac_header(skb);
3402 skb_reset_mac_len(skb);
3403
3404 segs = skb_mac_gso_segment(skb, features);
3405
3406 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3407 skb_warn_bad_offload(skb);
3408
3409 return segs;
3410 }
3411 EXPORT_SYMBOL(__skb_gso_segment);
3412
3413 /* Take action when hardware reception checksum errors are detected. */
3414 #ifdef CONFIG_BUG
do_netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3415 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3416 {
3417 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3418 skb_dump(KERN_ERR, skb, true);
3419 dump_stack();
3420 }
3421
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3422 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3423 {
3424 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3425 }
3426 EXPORT_SYMBOL(netdev_rx_csum_fault);
3427 #endif
3428
3429 /* XXX: check that highmem exists at all on the given machine. */
illegal_highdma(struct net_device * dev,struct sk_buff * skb)3430 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3431 {
3432 #ifdef CONFIG_HIGHMEM
3433 int i;
3434
3435 if (!(dev->features & NETIF_F_HIGHDMA)) {
3436 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3437 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3438
3439 if (PageHighMem(skb_frag_page(frag)))
3440 return 1;
3441 }
3442 }
3443 #endif
3444 return 0;
3445 }
3446
3447 /* If MPLS offload request, verify we are testing hardware MPLS features
3448 * instead of standard features for the netdev.
3449 */
3450 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3451 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3452 netdev_features_t features,
3453 __be16 type)
3454 {
3455 if (eth_p_mpls(type))
3456 features &= skb->dev->mpls_features;
3457
3458 return features;
3459 }
3460 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3461 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3462 netdev_features_t features,
3463 __be16 type)
3464 {
3465 return features;
3466 }
3467 #endif
3468
harmonize_features(struct sk_buff * skb,netdev_features_t features)3469 static netdev_features_t harmonize_features(struct sk_buff *skb,
3470 netdev_features_t features)
3471 {
3472 __be16 type;
3473
3474 type = skb_network_protocol(skb, NULL);
3475 features = net_mpls_features(skb, features, type);
3476
3477 if (skb->ip_summed != CHECKSUM_NONE &&
3478 !can_checksum_protocol(features, type)) {
3479 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3480 }
3481 if (illegal_highdma(skb->dev, skb))
3482 features &= ~NETIF_F_SG;
3483
3484 return features;
3485 }
3486
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3487 netdev_features_t passthru_features_check(struct sk_buff *skb,
3488 struct net_device *dev,
3489 netdev_features_t features)
3490 {
3491 return features;
3492 }
3493 EXPORT_SYMBOL(passthru_features_check);
3494
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3495 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3496 struct net_device *dev,
3497 netdev_features_t features)
3498 {
3499 return vlan_features_check(skb, features);
3500 }
3501
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3502 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3503 struct net_device *dev,
3504 netdev_features_t features)
3505 {
3506 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3507
3508 if (gso_segs > dev->gso_max_segs)
3509 return features & ~NETIF_F_GSO_MASK;
3510
3511 if (!skb_shinfo(skb)->gso_type) {
3512 skb_warn_bad_offload(skb);
3513 return features & ~NETIF_F_GSO_MASK;
3514 }
3515
3516 /* Support for GSO partial features requires software
3517 * intervention before we can actually process the packets
3518 * so we need to strip support for any partial features now
3519 * and we can pull them back in after we have partially
3520 * segmented the frame.
3521 */
3522 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3523 features &= ~dev->gso_partial_features;
3524
3525 /* Make sure to clear the IPv4 ID mangling feature if the
3526 * IPv4 header has the potential to be fragmented.
3527 */
3528 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3529 struct iphdr *iph = skb->encapsulation ?
3530 inner_ip_hdr(skb) : ip_hdr(skb);
3531
3532 if (!(iph->frag_off & htons(IP_DF)))
3533 features &= ~NETIF_F_TSO_MANGLEID;
3534 }
3535
3536 return features;
3537 }
3538
netif_skb_features(struct sk_buff * skb)3539 netdev_features_t netif_skb_features(struct sk_buff *skb)
3540 {
3541 struct net_device *dev = skb->dev;
3542 netdev_features_t features = dev->features;
3543
3544 if (skb_is_gso(skb))
3545 features = gso_features_check(skb, dev, features);
3546
3547 /* If encapsulation offload request, verify we are testing
3548 * hardware encapsulation features instead of standard
3549 * features for the netdev
3550 */
3551 if (skb->encapsulation)
3552 features &= dev->hw_enc_features;
3553
3554 if (skb_vlan_tagged(skb))
3555 features = netdev_intersect_features(features,
3556 dev->vlan_features |
3557 NETIF_F_HW_VLAN_CTAG_TX |
3558 NETIF_F_HW_VLAN_STAG_TX);
3559
3560 if (dev->netdev_ops->ndo_features_check)
3561 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3562 features);
3563 else
3564 features &= dflt_features_check(skb, dev, features);
3565
3566 return harmonize_features(skb, features);
3567 }
3568 EXPORT_SYMBOL(netif_skb_features);
3569
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3570 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3571 struct netdev_queue *txq, bool more)
3572 {
3573 unsigned int len;
3574 int rc;
3575
3576 if (dev_nit_active(dev))
3577 dev_queue_xmit_nit(skb, dev);
3578
3579 len = skb->len;
3580 PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3581 trace_net_dev_start_xmit(skb, dev);
3582 rc = netdev_start_xmit(skb, dev, txq, more);
3583 trace_net_dev_xmit(skb, rc, dev, len);
3584
3585 return rc;
3586 }
3587
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3588 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3589 struct netdev_queue *txq, int *ret)
3590 {
3591 struct sk_buff *skb = first;
3592 int rc = NETDEV_TX_OK;
3593
3594 while (skb) {
3595 struct sk_buff *next = skb->next;
3596
3597 skb_mark_not_on_list(skb);
3598 rc = xmit_one(skb, dev, txq, next != NULL);
3599 if (unlikely(!dev_xmit_complete(rc))) {
3600 skb->next = next;
3601 goto out;
3602 }
3603
3604 skb = next;
3605 if (netif_tx_queue_stopped(txq) && skb) {
3606 rc = NETDEV_TX_BUSY;
3607 break;
3608 }
3609 }
3610
3611 out:
3612 *ret = rc;
3613 return skb;
3614 }
3615
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3616 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3617 netdev_features_t features)
3618 {
3619 if (skb_vlan_tag_present(skb) &&
3620 !vlan_hw_offload_capable(features, skb->vlan_proto))
3621 skb = __vlan_hwaccel_push_inside(skb);
3622 return skb;
3623 }
3624
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3625 int skb_csum_hwoffload_help(struct sk_buff *skb,
3626 const netdev_features_t features)
3627 {
3628 if (unlikely(skb_csum_is_sctp(skb)))
3629 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3630 skb_crc32c_csum_help(skb);
3631
3632 if (features & NETIF_F_HW_CSUM)
3633 return 0;
3634
3635 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3636 switch (skb->csum_offset) {
3637 case offsetof(struct tcphdr, check):
3638 case offsetof(struct udphdr, check):
3639 return 0;
3640 }
3641 }
3642
3643 return skb_checksum_help(skb);
3644 }
3645 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3646
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)3647 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3648 {
3649 netdev_features_t features;
3650
3651 features = netif_skb_features(skb);
3652 skb = validate_xmit_vlan(skb, features);
3653 if (unlikely(!skb))
3654 goto out_null;
3655
3656 skb = sk_validate_xmit_skb(skb, dev);
3657 if (unlikely(!skb))
3658 goto out_null;
3659
3660 if (netif_needs_gso(skb, features)) {
3661 struct sk_buff *segs;
3662
3663 segs = skb_gso_segment(skb, features);
3664 if (IS_ERR(segs)) {
3665 goto out_kfree_skb;
3666 } else if (segs) {
3667 consume_skb(skb);
3668 skb = segs;
3669 }
3670 } else {
3671 if (skb_needs_linearize(skb, features) &&
3672 __skb_linearize(skb))
3673 goto out_kfree_skb;
3674
3675 /* If packet is not checksummed and device does not
3676 * support checksumming for this protocol, complete
3677 * checksumming here.
3678 */
3679 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3680 if (skb->encapsulation)
3681 skb_set_inner_transport_header(skb,
3682 skb_checksum_start_offset(skb));
3683 else
3684 skb_set_transport_header(skb,
3685 skb_checksum_start_offset(skb));
3686 if (skb_csum_hwoffload_help(skb, features))
3687 goto out_kfree_skb;
3688 }
3689 }
3690
3691 skb = validate_xmit_xfrm(skb, features, again);
3692
3693 return skb;
3694
3695 out_kfree_skb:
3696 kfree_skb(skb);
3697 out_null:
3698 atomic_long_inc(&dev->tx_dropped);
3699 return NULL;
3700 }
3701
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)3702 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3703 {
3704 struct sk_buff *next, *head = NULL, *tail;
3705
3706 for (; skb != NULL; skb = next) {
3707 next = skb->next;
3708 skb_mark_not_on_list(skb);
3709
3710 /* in case skb wont be segmented, point to itself */
3711 skb->prev = skb;
3712
3713 skb = validate_xmit_skb(skb, dev, again);
3714 if (!skb)
3715 continue;
3716
3717 if (!head)
3718 head = skb;
3719 else
3720 tail->next = skb;
3721 /* If skb was segmented, skb->prev points to
3722 * the last segment. If not, it still contains skb.
3723 */
3724 tail = skb->prev;
3725 }
3726 return head;
3727 }
3728 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3729
qdisc_pkt_len_init(struct sk_buff * skb)3730 static void qdisc_pkt_len_init(struct sk_buff *skb)
3731 {
3732 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3733
3734 qdisc_skb_cb(skb)->pkt_len = skb->len;
3735
3736 /* To get more precise estimation of bytes sent on wire,
3737 * we add to pkt_len the headers size of all segments
3738 */
3739 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3740 unsigned int hdr_len;
3741 u16 gso_segs = shinfo->gso_segs;
3742
3743 /* mac layer + network layer */
3744 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3745
3746 /* + transport layer */
3747 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3748 const struct tcphdr *th;
3749 struct tcphdr _tcphdr;
3750
3751 th = skb_header_pointer(skb, skb_transport_offset(skb),
3752 sizeof(_tcphdr), &_tcphdr);
3753 if (likely(th))
3754 hdr_len += __tcp_hdrlen(th);
3755 } else {
3756 struct udphdr _udphdr;
3757
3758 if (skb_header_pointer(skb, skb_transport_offset(skb),
3759 sizeof(_udphdr), &_udphdr))
3760 hdr_len += sizeof(struct udphdr);
3761 }
3762
3763 if (shinfo->gso_type & SKB_GSO_DODGY)
3764 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3765 shinfo->gso_size);
3766
3767 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3768 }
3769 }
3770
dev_qdisc_enqueue(struct sk_buff * skb,struct Qdisc * q,struct sk_buff ** to_free,struct netdev_queue * txq)3771 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3772 struct sk_buff **to_free,
3773 struct netdev_queue *txq)
3774 {
3775 int rc;
3776
3777 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3778 if (rc == NET_XMIT_SUCCESS)
3779 trace_qdisc_enqueue(q, txq, skb);
3780 return rc;
3781 }
3782
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)3783 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3784 struct net_device *dev,
3785 struct netdev_queue *txq)
3786 {
3787 spinlock_t *root_lock = qdisc_lock(q);
3788 struct sk_buff *to_free = NULL;
3789 bool contended;
3790 int rc;
3791
3792 qdisc_calculate_pkt_len(skb, q);
3793
3794 if (q->flags & TCQ_F_NOLOCK) {
3795 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3796 qdisc_run_begin(q)) {
3797 /* Retest nolock_qdisc_is_empty() within the protection
3798 * of q->seqlock to protect from racing with requeuing.
3799 */
3800 if (unlikely(!nolock_qdisc_is_empty(q))) {
3801 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3802 __qdisc_run(q);
3803 qdisc_run_end(q);
3804
3805 goto no_lock_out;
3806 }
3807
3808 qdisc_bstats_cpu_update(q, skb);
3809 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3810 !nolock_qdisc_is_empty(q))
3811 __qdisc_run(q);
3812
3813 qdisc_run_end(q);
3814 return NET_XMIT_SUCCESS;
3815 }
3816
3817 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3818 qdisc_run(q);
3819
3820 no_lock_out:
3821 if (unlikely(to_free))
3822 kfree_skb_list(to_free);
3823 return rc;
3824 }
3825
3826 /*
3827 * Heuristic to force contended enqueues to serialize on a
3828 * separate lock before trying to get qdisc main lock.
3829 * This permits qdisc->running owner to get the lock more
3830 * often and dequeue packets faster.
3831 */
3832 contended = qdisc_is_running(q);
3833 if (unlikely(contended))
3834 spin_lock(&q->busylock);
3835
3836 spin_lock(root_lock);
3837 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3838 __qdisc_drop(skb, &to_free);
3839 rc = NET_XMIT_DROP;
3840 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3841 qdisc_run_begin(q)) {
3842 /*
3843 * This is a work-conserving queue; there are no old skbs
3844 * waiting to be sent out; and the qdisc is not running -
3845 * xmit the skb directly.
3846 */
3847
3848 qdisc_bstats_update(q, skb);
3849
3850 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3851 if (unlikely(contended)) {
3852 spin_unlock(&q->busylock);
3853 contended = false;
3854 }
3855 __qdisc_run(q);
3856 }
3857
3858 qdisc_run_end(q);
3859 rc = NET_XMIT_SUCCESS;
3860 } else {
3861 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3862 if (qdisc_run_begin(q)) {
3863 if (unlikely(contended)) {
3864 spin_unlock(&q->busylock);
3865 contended = false;
3866 }
3867 __qdisc_run(q);
3868 qdisc_run_end(q);
3869 }
3870 }
3871 spin_unlock(root_lock);
3872 if (unlikely(to_free))
3873 kfree_skb_list(to_free);
3874 if (unlikely(contended))
3875 spin_unlock(&q->busylock);
3876 return rc;
3877 }
3878
3879 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)3880 static void skb_update_prio(struct sk_buff *skb)
3881 {
3882 const struct netprio_map *map;
3883 const struct sock *sk;
3884 unsigned int prioidx;
3885
3886 if (skb->priority)
3887 return;
3888 map = rcu_dereference_bh(skb->dev->priomap);
3889 if (!map)
3890 return;
3891 sk = skb_to_full_sk(skb);
3892 if (!sk)
3893 return;
3894
3895 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3896
3897 if (prioidx < map->priomap_len)
3898 skb->priority = map->priomap[prioidx];
3899 }
3900 #else
3901 #define skb_update_prio(skb)
3902 #endif
3903
3904 /**
3905 * dev_loopback_xmit - loop back @skb
3906 * @net: network namespace this loopback is happening in
3907 * @sk: sk needed to be a netfilter okfn
3908 * @skb: buffer to transmit
3909 */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)3910 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3911 {
3912 skb_reset_mac_header(skb);
3913 __skb_pull(skb, skb_network_offset(skb));
3914 skb->pkt_type = PACKET_LOOPBACK;
3915 if (skb->ip_summed == CHECKSUM_NONE)
3916 skb->ip_summed = CHECKSUM_UNNECESSARY;
3917 WARN_ON(!skb_dst(skb));
3918 skb_dst_force(skb);
3919 netif_rx_ni(skb);
3920 return 0;
3921 }
3922 EXPORT_SYMBOL(dev_loopback_xmit);
3923
3924 #ifdef CONFIG_NET_EGRESS
3925 static struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)3926 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3927 {
3928 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3929 struct tcf_result cl_res;
3930
3931 if (!miniq)
3932 return skb;
3933
3934 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3935 qdisc_skb_cb(skb)->mru = 0;
3936 qdisc_skb_cb(skb)->post_ct = false;
3937 mini_qdisc_bstats_cpu_update(miniq, skb);
3938
3939 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3940 case TC_ACT_OK:
3941 case TC_ACT_RECLASSIFY:
3942 skb->tc_index = TC_H_MIN(cl_res.classid);
3943 break;
3944 case TC_ACT_SHOT:
3945 mini_qdisc_qstats_cpu_drop(miniq);
3946 *ret = NET_XMIT_DROP;
3947 kfree_skb(skb);
3948 return NULL;
3949 case TC_ACT_STOLEN:
3950 case TC_ACT_QUEUED:
3951 case TC_ACT_TRAP:
3952 *ret = NET_XMIT_SUCCESS;
3953 consume_skb(skb);
3954 return NULL;
3955 case TC_ACT_REDIRECT:
3956 /* No need to push/pop skb's mac_header here on egress! */
3957 skb_do_redirect(skb);
3958 *ret = NET_XMIT_SUCCESS;
3959 return NULL;
3960 default:
3961 break;
3962 }
3963
3964 return skb;
3965 }
3966 #endif /* CONFIG_NET_EGRESS */
3967
3968 #ifdef CONFIG_XPS
__get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)3969 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3970 struct xps_dev_maps *dev_maps, unsigned int tci)
3971 {
3972 int tc = netdev_get_prio_tc_map(dev, skb->priority);
3973 struct xps_map *map;
3974 int queue_index = -1;
3975
3976 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
3977 return queue_index;
3978
3979 tci *= dev_maps->num_tc;
3980 tci += tc;
3981
3982 map = rcu_dereference(dev_maps->attr_map[tci]);
3983 if (map) {
3984 if (map->len == 1)
3985 queue_index = map->queues[0];
3986 else
3987 queue_index = map->queues[reciprocal_scale(
3988 skb_get_hash(skb), map->len)];
3989 if (unlikely(queue_index >= dev->real_num_tx_queues))
3990 queue_index = -1;
3991 }
3992 return queue_index;
3993 }
3994 #endif
3995
get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)3996 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3997 struct sk_buff *skb)
3998 {
3999 #ifdef CONFIG_XPS
4000 struct xps_dev_maps *dev_maps;
4001 struct sock *sk = skb->sk;
4002 int queue_index = -1;
4003
4004 if (!static_key_false(&xps_needed))
4005 return -1;
4006
4007 rcu_read_lock();
4008 if (!static_key_false(&xps_rxqs_needed))
4009 goto get_cpus_map;
4010
4011 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4012 if (dev_maps) {
4013 int tci = sk_rx_queue_get(sk);
4014
4015 if (tci >= 0)
4016 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4017 tci);
4018 }
4019
4020 get_cpus_map:
4021 if (queue_index < 0) {
4022 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4023 if (dev_maps) {
4024 unsigned int tci = skb->sender_cpu - 1;
4025
4026 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4027 tci);
4028 }
4029 }
4030 rcu_read_unlock();
4031
4032 return queue_index;
4033 #else
4034 return -1;
4035 #endif
4036 }
4037
dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4038 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4039 struct net_device *sb_dev)
4040 {
4041 return 0;
4042 }
4043 EXPORT_SYMBOL(dev_pick_tx_zero);
4044
dev_pick_tx_cpu_id(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4045 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4046 struct net_device *sb_dev)
4047 {
4048 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4049 }
4050 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4051
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4052 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4053 struct net_device *sb_dev)
4054 {
4055 struct sock *sk = skb->sk;
4056 int queue_index = sk_tx_queue_get(sk);
4057
4058 sb_dev = sb_dev ? : dev;
4059
4060 if (queue_index < 0 || skb->ooo_okay ||
4061 queue_index >= dev->real_num_tx_queues) {
4062 int new_index = get_xps_queue(dev, sb_dev, skb);
4063
4064 if (new_index < 0)
4065 new_index = skb_tx_hash(dev, sb_dev, skb);
4066
4067 if (queue_index != new_index && sk &&
4068 sk_fullsock(sk) &&
4069 rcu_access_pointer(sk->sk_dst_cache))
4070 sk_tx_queue_set(sk, new_index);
4071
4072 queue_index = new_index;
4073 }
4074
4075 return queue_index;
4076 }
4077 EXPORT_SYMBOL(netdev_pick_tx);
4078
netdev_core_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4079 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4080 struct sk_buff *skb,
4081 struct net_device *sb_dev)
4082 {
4083 int queue_index = 0;
4084
4085 #ifdef CONFIG_XPS
4086 u32 sender_cpu = skb->sender_cpu - 1;
4087
4088 if (sender_cpu >= (u32)NR_CPUS)
4089 skb->sender_cpu = raw_smp_processor_id() + 1;
4090 #endif
4091
4092 if (dev->real_num_tx_queues != 1) {
4093 const struct net_device_ops *ops = dev->netdev_ops;
4094
4095 if (ops->ndo_select_queue)
4096 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4097 else
4098 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4099
4100 queue_index = netdev_cap_txqueue(dev, queue_index);
4101 }
4102
4103 skb_set_queue_mapping(skb, queue_index);
4104 return netdev_get_tx_queue(dev, queue_index);
4105 }
4106
4107 /**
4108 * __dev_queue_xmit - transmit a buffer
4109 * @skb: buffer to transmit
4110 * @sb_dev: suboordinate device used for L2 forwarding offload
4111 *
4112 * Queue a buffer for transmission to a network device. The caller must
4113 * have set the device and priority and built the buffer before calling
4114 * this function. The function can be called from an interrupt.
4115 *
4116 * A negative errno code is returned on a failure. A success does not
4117 * guarantee the frame will be transmitted as it may be dropped due
4118 * to congestion or traffic shaping.
4119 *
4120 * -----------------------------------------------------------------------------------
4121 * I notice this method can also return errors from the queue disciplines,
4122 * including NET_XMIT_DROP, which is a positive value. So, errors can also
4123 * be positive.
4124 *
4125 * Regardless of the return value, the skb is consumed, so it is currently
4126 * difficult to retry a send to this method. (You can bump the ref count
4127 * before sending to hold a reference for retry if you are careful.)
4128 *
4129 * When calling this method, interrupts MUST be enabled. This is because
4130 * the BH enable code must have IRQs enabled so that it will not deadlock.
4131 * --BLG
4132 */
__dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)4133 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4134 {
4135 struct net_device *dev = skb->dev;
4136 struct netdev_queue *txq;
4137 struct Qdisc *q;
4138 int rc = -ENOMEM;
4139 bool again = false;
4140
4141 skb_reset_mac_header(skb);
4142
4143 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4144 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4145
4146 /* Disable soft irqs for various locks below. Also
4147 * stops preemption for RCU.
4148 */
4149 rcu_read_lock_bh();
4150
4151 skb_update_prio(skb);
4152
4153 qdisc_pkt_len_init(skb);
4154 #ifdef CONFIG_NET_CLS_ACT
4155 skb->tc_at_ingress = 0;
4156 # ifdef CONFIG_NET_EGRESS
4157 if (static_branch_unlikely(&egress_needed_key)) {
4158 skb = sch_handle_egress(skb, &rc, dev);
4159 if (!skb)
4160 goto out;
4161 }
4162 # endif
4163 #endif
4164 /* If device/qdisc don't need skb->dst, release it right now while
4165 * its hot in this cpu cache.
4166 */
4167 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4168 skb_dst_drop(skb);
4169 else
4170 skb_dst_force(skb);
4171
4172 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4173 q = rcu_dereference_bh(txq->qdisc);
4174
4175 trace_net_dev_queue(skb);
4176 if (q->enqueue) {
4177 rc = __dev_xmit_skb(skb, q, dev, txq);
4178 goto out;
4179 }
4180
4181 /* The device has no queue. Common case for software devices:
4182 * loopback, all the sorts of tunnels...
4183
4184 * Really, it is unlikely that netif_tx_lock protection is necessary
4185 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4186 * counters.)
4187 * However, it is possible, that they rely on protection
4188 * made by us here.
4189
4190 * Check this and shot the lock. It is not prone from deadlocks.
4191 *Either shot noqueue qdisc, it is even simpler 8)
4192 */
4193 if (dev->flags & IFF_UP) {
4194 int cpu = smp_processor_id(); /* ok because BHs are off */
4195
4196 if (txq->xmit_lock_owner != cpu) {
4197 if (dev_xmit_recursion())
4198 goto recursion_alert;
4199
4200 skb = validate_xmit_skb(skb, dev, &again);
4201 if (!skb)
4202 goto out;
4203
4204 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4205 HARD_TX_LOCK(dev, txq, cpu);
4206
4207 if (!netif_xmit_stopped(txq)) {
4208 dev_xmit_recursion_inc();
4209 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4210 dev_xmit_recursion_dec();
4211 if (dev_xmit_complete(rc)) {
4212 HARD_TX_UNLOCK(dev, txq);
4213 goto out;
4214 }
4215 }
4216 HARD_TX_UNLOCK(dev, txq);
4217 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4218 dev->name);
4219 } else {
4220 /* Recursion is detected! It is possible,
4221 * unfortunately
4222 */
4223 recursion_alert:
4224 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4225 dev->name);
4226 }
4227 }
4228
4229 rc = -ENETDOWN;
4230 rcu_read_unlock_bh();
4231
4232 atomic_long_inc(&dev->tx_dropped);
4233 kfree_skb_list(skb);
4234 return rc;
4235 out:
4236 rcu_read_unlock_bh();
4237 return rc;
4238 }
4239
dev_queue_xmit(struct sk_buff * skb)4240 int dev_queue_xmit(struct sk_buff *skb)
4241 {
4242 return __dev_queue_xmit(skb, NULL);
4243 }
4244 EXPORT_SYMBOL(dev_queue_xmit);
4245
dev_queue_xmit_accel(struct sk_buff * skb,struct net_device * sb_dev)4246 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4247 {
4248 return __dev_queue_xmit(skb, sb_dev);
4249 }
4250 EXPORT_SYMBOL(dev_queue_xmit_accel);
4251
__dev_direct_xmit(struct sk_buff * skb,u16 queue_id)4252 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4253 {
4254 struct net_device *dev = skb->dev;
4255 struct sk_buff *orig_skb = skb;
4256 struct netdev_queue *txq;
4257 int ret = NETDEV_TX_BUSY;
4258 bool again = false;
4259
4260 if (unlikely(!netif_running(dev) ||
4261 !netif_carrier_ok(dev)))
4262 goto drop;
4263
4264 skb = validate_xmit_skb_list(skb, dev, &again);
4265 if (skb != orig_skb)
4266 goto drop;
4267
4268 skb_set_queue_mapping(skb, queue_id);
4269 txq = skb_get_tx_queue(dev, skb);
4270 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4271
4272 local_bh_disable();
4273
4274 dev_xmit_recursion_inc();
4275 HARD_TX_LOCK(dev, txq, smp_processor_id());
4276 if (!netif_xmit_frozen_or_drv_stopped(txq))
4277 ret = netdev_start_xmit(skb, dev, txq, false);
4278 HARD_TX_UNLOCK(dev, txq);
4279 dev_xmit_recursion_dec();
4280
4281 local_bh_enable();
4282 return ret;
4283 drop:
4284 atomic_long_inc(&dev->tx_dropped);
4285 kfree_skb_list(skb);
4286 return NET_XMIT_DROP;
4287 }
4288 EXPORT_SYMBOL(__dev_direct_xmit);
4289
4290 /*************************************************************************
4291 * Receiver routines
4292 *************************************************************************/
4293
4294 int netdev_max_backlog __read_mostly = 1000;
4295 EXPORT_SYMBOL(netdev_max_backlog);
4296
4297 int netdev_tstamp_prequeue __read_mostly = 1;
4298 int netdev_budget __read_mostly = 300;
4299 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4300 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4301 int weight_p __read_mostly = 64; /* old backlog weight */
4302 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4303 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4304 int dev_rx_weight __read_mostly = 64;
4305 int dev_tx_weight __read_mostly = 64;
4306 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4307 int gro_normal_batch __read_mostly = 8;
4308
4309 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)4310 static inline void ____napi_schedule(struct softnet_data *sd,
4311 struct napi_struct *napi)
4312 {
4313 struct task_struct *thread;
4314
4315 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4316 /* Paired with smp_mb__before_atomic() in
4317 * napi_enable()/dev_set_threaded().
4318 * Use READ_ONCE() to guarantee a complete
4319 * read on napi->thread. Only call
4320 * wake_up_process() when it's not NULL.
4321 */
4322 thread = READ_ONCE(napi->thread);
4323 if (thread) {
4324 /* Avoid doing set_bit() if the thread is in
4325 * INTERRUPTIBLE state, cause napi_thread_wait()
4326 * makes sure to proceed with napi polling
4327 * if the thread is explicitly woken from here.
4328 */
4329 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4330 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4331 wake_up_process(thread);
4332 return;
4333 }
4334 }
4335
4336 list_add_tail(&napi->poll_list, &sd->poll_list);
4337 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4338 }
4339
4340 #ifdef CONFIG_RPS
4341
4342 /* One global table that all flow-based protocols share. */
4343 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4344 EXPORT_SYMBOL(rps_sock_flow_table);
4345 u32 rps_cpu_mask __read_mostly;
4346 EXPORT_SYMBOL(rps_cpu_mask);
4347
4348 struct static_key_false rps_needed __read_mostly;
4349 EXPORT_SYMBOL(rps_needed);
4350 struct static_key_false rfs_needed __read_mostly;
4351 EXPORT_SYMBOL(rfs_needed);
4352
4353 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)4354 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4355 struct rps_dev_flow *rflow, u16 next_cpu)
4356 {
4357 if (next_cpu < nr_cpu_ids) {
4358 #ifdef CONFIG_RFS_ACCEL
4359 struct netdev_rx_queue *rxqueue;
4360 struct rps_dev_flow_table *flow_table;
4361 struct rps_dev_flow *old_rflow;
4362 u32 flow_id;
4363 u16 rxq_index;
4364 int rc;
4365
4366 /* Should we steer this flow to a different hardware queue? */
4367 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4368 !(dev->features & NETIF_F_NTUPLE))
4369 goto out;
4370 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4371 if (rxq_index == skb_get_rx_queue(skb))
4372 goto out;
4373
4374 rxqueue = dev->_rx + rxq_index;
4375 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4376 if (!flow_table)
4377 goto out;
4378 flow_id = skb_get_hash(skb) & flow_table->mask;
4379 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4380 rxq_index, flow_id);
4381 if (rc < 0)
4382 goto out;
4383 old_rflow = rflow;
4384 rflow = &flow_table->flows[flow_id];
4385 rflow->filter = rc;
4386 if (old_rflow->filter == rflow->filter)
4387 old_rflow->filter = RPS_NO_FILTER;
4388 out:
4389 #endif
4390 rflow->last_qtail =
4391 per_cpu(softnet_data, next_cpu).input_queue_head;
4392 }
4393
4394 rflow->cpu = next_cpu;
4395 return rflow;
4396 }
4397
4398 /*
4399 * get_rps_cpu is called from netif_receive_skb and returns the target
4400 * CPU from the RPS map of the receiving queue for a given skb.
4401 * rcu_read_lock must be held on entry.
4402 */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)4403 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4404 struct rps_dev_flow **rflowp)
4405 {
4406 const struct rps_sock_flow_table *sock_flow_table;
4407 struct netdev_rx_queue *rxqueue = dev->_rx;
4408 struct rps_dev_flow_table *flow_table;
4409 struct rps_map *map;
4410 int cpu = -1;
4411 u32 tcpu;
4412 u32 hash;
4413
4414 if (skb_rx_queue_recorded(skb)) {
4415 u16 index = skb_get_rx_queue(skb);
4416
4417 if (unlikely(index >= dev->real_num_rx_queues)) {
4418 WARN_ONCE(dev->real_num_rx_queues > 1,
4419 "%s received packet on queue %u, but number "
4420 "of RX queues is %u\n",
4421 dev->name, index, dev->real_num_rx_queues);
4422 goto done;
4423 }
4424 rxqueue += index;
4425 }
4426
4427 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4428
4429 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4430 map = rcu_dereference(rxqueue->rps_map);
4431 if (!flow_table && !map)
4432 goto done;
4433
4434 skb_reset_network_header(skb);
4435 hash = skb_get_hash(skb);
4436 if (!hash)
4437 goto done;
4438
4439 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4440 if (flow_table && sock_flow_table) {
4441 struct rps_dev_flow *rflow;
4442 u32 next_cpu;
4443 u32 ident;
4444
4445 /* First check into global flow table if there is a match */
4446 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4447 if ((ident ^ hash) & ~rps_cpu_mask)
4448 goto try_rps;
4449
4450 next_cpu = ident & rps_cpu_mask;
4451
4452 /* OK, now we know there is a match,
4453 * we can look at the local (per receive queue) flow table
4454 */
4455 rflow = &flow_table->flows[hash & flow_table->mask];
4456 tcpu = rflow->cpu;
4457
4458 /*
4459 * If the desired CPU (where last recvmsg was done) is
4460 * different from current CPU (one in the rx-queue flow
4461 * table entry), switch if one of the following holds:
4462 * - Current CPU is unset (>= nr_cpu_ids).
4463 * - Current CPU is offline.
4464 * - The current CPU's queue tail has advanced beyond the
4465 * last packet that was enqueued using this table entry.
4466 * This guarantees that all previous packets for the flow
4467 * have been dequeued, thus preserving in order delivery.
4468 */
4469 if (unlikely(tcpu != next_cpu) &&
4470 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4471 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4472 rflow->last_qtail)) >= 0)) {
4473 tcpu = next_cpu;
4474 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4475 }
4476
4477 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4478 *rflowp = rflow;
4479 cpu = tcpu;
4480 goto done;
4481 }
4482 }
4483
4484 try_rps:
4485
4486 if (map) {
4487 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4488 if (cpu_online(tcpu)) {
4489 cpu = tcpu;
4490 goto done;
4491 }
4492 }
4493
4494 done:
4495 return cpu;
4496 }
4497
4498 #ifdef CONFIG_RFS_ACCEL
4499
4500 /**
4501 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4502 * @dev: Device on which the filter was set
4503 * @rxq_index: RX queue index
4504 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4505 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4506 *
4507 * Drivers that implement ndo_rx_flow_steer() should periodically call
4508 * this function for each installed filter and remove the filters for
4509 * which it returns %true.
4510 */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)4511 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4512 u32 flow_id, u16 filter_id)
4513 {
4514 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4515 struct rps_dev_flow_table *flow_table;
4516 struct rps_dev_flow *rflow;
4517 bool expire = true;
4518 unsigned int cpu;
4519
4520 rcu_read_lock();
4521 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4522 if (flow_table && flow_id <= flow_table->mask) {
4523 rflow = &flow_table->flows[flow_id];
4524 cpu = READ_ONCE(rflow->cpu);
4525 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4526 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4527 rflow->last_qtail) <
4528 (int)(10 * flow_table->mask)))
4529 expire = false;
4530 }
4531 rcu_read_unlock();
4532 return expire;
4533 }
4534 EXPORT_SYMBOL(rps_may_expire_flow);
4535
4536 #endif /* CONFIG_RFS_ACCEL */
4537
4538 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)4539 static void rps_trigger_softirq(void *data)
4540 {
4541 struct softnet_data *sd = data;
4542
4543 ____napi_schedule(sd, &sd->backlog);
4544 sd->received_rps++;
4545 }
4546
4547 #endif /* CONFIG_RPS */
4548
4549 /*
4550 * Check if this softnet_data structure is another cpu one
4551 * If yes, queue it to our IPI list and return 1
4552 * If no, return 0
4553 */
rps_ipi_queued(struct softnet_data * sd)4554 static int rps_ipi_queued(struct softnet_data *sd)
4555 {
4556 #ifdef CONFIG_RPS
4557 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4558
4559 if (sd != mysd) {
4560 sd->rps_ipi_next = mysd->rps_ipi_list;
4561 mysd->rps_ipi_list = sd;
4562
4563 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4564 return 1;
4565 }
4566 #endif /* CONFIG_RPS */
4567 return 0;
4568 }
4569
4570 #ifdef CONFIG_NET_FLOW_LIMIT
4571 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4572 #endif
4573
skb_flow_limit(struct sk_buff * skb,unsigned int qlen)4574 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4575 {
4576 #ifdef CONFIG_NET_FLOW_LIMIT
4577 struct sd_flow_limit *fl;
4578 struct softnet_data *sd;
4579 unsigned int old_flow, new_flow;
4580
4581 if (qlen < (netdev_max_backlog >> 1))
4582 return false;
4583
4584 sd = this_cpu_ptr(&softnet_data);
4585
4586 rcu_read_lock();
4587 fl = rcu_dereference(sd->flow_limit);
4588 if (fl) {
4589 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4590 old_flow = fl->history[fl->history_head];
4591 fl->history[fl->history_head] = new_flow;
4592
4593 fl->history_head++;
4594 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4595
4596 if (likely(fl->buckets[old_flow]))
4597 fl->buckets[old_flow]--;
4598
4599 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4600 fl->count++;
4601 rcu_read_unlock();
4602 return true;
4603 }
4604 }
4605 rcu_read_unlock();
4606 #endif
4607 return false;
4608 }
4609
4610 /*
4611 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4612 * queue (may be a remote CPU queue).
4613 */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)4614 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4615 unsigned int *qtail)
4616 {
4617 struct softnet_data *sd;
4618 unsigned long flags;
4619 unsigned int qlen;
4620
4621 sd = &per_cpu(softnet_data, cpu);
4622
4623 local_irq_save(flags);
4624
4625 rps_lock(sd);
4626 if (!netif_running(skb->dev))
4627 goto drop;
4628 qlen = skb_queue_len(&sd->input_pkt_queue);
4629 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4630 if (qlen) {
4631 enqueue:
4632 __skb_queue_tail(&sd->input_pkt_queue, skb);
4633 input_queue_tail_incr_save(sd, qtail);
4634 rps_unlock(sd);
4635 local_irq_restore(flags);
4636 return NET_RX_SUCCESS;
4637 }
4638
4639 /* Schedule NAPI for backlog device
4640 * We can use non atomic operation since we own the queue lock
4641 */
4642 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4643 if (!rps_ipi_queued(sd))
4644 ____napi_schedule(sd, &sd->backlog);
4645 }
4646 goto enqueue;
4647 }
4648
4649 drop:
4650 sd->dropped++;
4651 rps_unlock(sd);
4652
4653 local_irq_restore(flags);
4654
4655 atomic_long_inc(&skb->dev->rx_dropped);
4656 kfree_skb(skb);
4657 return NET_RX_DROP;
4658 }
4659
netif_get_rxqueue(struct sk_buff * skb)4660 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4661 {
4662 struct net_device *dev = skb->dev;
4663 struct netdev_rx_queue *rxqueue;
4664
4665 rxqueue = dev->_rx;
4666
4667 if (skb_rx_queue_recorded(skb)) {
4668 u16 index = skb_get_rx_queue(skb);
4669
4670 if (unlikely(index >= dev->real_num_rx_queues)) {
4671 WARN_ONCE(dev->real_num_rx_queues > 1,
4672 "%s received packet on queue %u, but number "
4673 "of RX queues is %u\n",
4674 dev->name, index, dev->real_num_rx_queues);
4675
4676 return rxqueue; /* Return first rxqueue */
4677 }
4678 rxqueue += index;
4679 }
4680 return rxqueue;
4681 }
4682
bpf_prog_run_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4683 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4684 struct bpf_prog *xdp_prog)
4685 {
4686 void *orig_data, *orig_data_end, *hard_start;
4687 struct netdev_rx_queue *rxqueue;
4688 bool orig_bcast, orig_host;
4689 u32 mac_len, frame_sz;
4690 __be16 orig_eth_type;
4691 struct ethhdr *eth;
4692 u32 metalen, act;
4693 int off;
4694
4695 /* The XDP program wants to see the packet starting at the MAC
4696 * header.
4697 */
4698 mac_len = skb->data - skb_mac_header(skb);
4699 hard_start = skb->data - skb_headroom(skb);
4700
4701 /* SKB "head" area always have tailroom for skb_shared_info */
4702 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4703 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4704
4705 rxqueue = netif_get_rxqueue(skb);
4706 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4707 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4708 skb_headlen(skb) + mac_len, true);
4709
4710 orig_data_end = xdp->data_end;
4711 orig_data = xdp->data;
4712 eth = (struct ethhdr *)xdp->data;
4713 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4714 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4715 orig_eth_type = eth->h_proto;
4716
4717 act = bpf_prog_run_xdp(xdp_prog, xdp);
4718
4719 /* check if bpf_xdp_adjust_head was used */
4720 off = xdp->data - orig_data;
4721 if (off) {
4722 if (off > 0)
4723 __skb_pull(skb, off);
4724 else if (off < 0)
4725 __skb_push(skb, -off);
4726
4727 skb->mac_header += off;
4728 skb_reset_network_header(skb);
4729 }
4730
4731 /* check if bpf_xdp_adjust_tail was used */
4732 off = xdp->data_end - orig_data_end;
4733 if (off != 0) {
4734 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4735 skb->len += off; /* positive on grow, negative on shrink */
4736 }
4737
4738 /* check if XDP changed eth hdr such SKB needs update */
4739 eth = (struct ethhdr *)xdp->data;
4740 if ((orig_eth_type != eth->h_proto) ||
4741 (orig_host != ether_addr_equal_64bits(eth->h_dest,
4742 skb->dev->dev_addr)) ||
4743 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4744 __skb_push(skb, ETH_HLEN);
4745 skb->pkt_type = PACKET_HOST;
4746 skb->protocol = eth_type_trans(skb, skb->dev);
4747 }
4748
4749 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4750 * before calling us again on redirect path. We do not call do_redirect
4751 * as we leave that up to the caller.
4752 *
4753 * Caller is responsible for managing lifetime of skb (i.e. calling
4754 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4755 */
4756 switch (act) {
4757 case XDP_REDIRECT:
4758 case XDP_TX:
4759 __skb_push(skb, mac_len);
4760 break;
4761 case XDP_PASS:
4762 metalen = xdp->data - xdp->data_meta;
4763 if (metalen)
4764 skb_metadata_set(skb, metalen);
4765 break;
4766 }
4767
4768 return act;
4769 }
4770
netif_receive_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4771 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4772 struct xdp_buff *xdp,
4773 struct bpf_prog *xdp_prog)
4774 {
4775 u32 act = XDP_DROP;
4776
4777 /* Reinjected packets coming from act_mirred or similar should
4778 * not get XDP generic processing.
4779 */
4780 if (skb_is_redirected(skb))
4781 return XDP_PASS;
4782
4783 /* XDP packets must be linear and must have sufficient headroom
4784 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4785 * native XDP provides, thus we need to do it here as well.
4786 */
4787 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4788 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4789 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4790 int troom = skb->tail + skb->data_len - skb->end;
4791
4792 /* In case we have to go down the path and also linearize,
4793 * then lets do the pskb_expand_head() work just once here.
4794 */
4795 if (pskb_expand_head(skb,
4796 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4797 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4798 goto do_drop;
4799 if (skb_linearize(skb))
4800 goto do_drop;
4801 }
4802
4803 act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4804 switch (act) {
4805 case XDP_REDIRECT:
4806 case XDP_TX:
4807 case XDP_PASS:
4808 break;
4809 default:
4810 bpf_warn_invalid_xdp_action(act);
4811 fallthrough;
4812 case XDP_ABORTED:
4813 trace_xdp_exception(skb->dev, xdp_prog, act);
4814 fallthrough;
4815 case XDP_DROP:
4816 do_drop:
4817 kfree_skb(skb);
4818 break;
4819 }
4820
4821 return act;
4822 }
4823
4824 /* When doing generic XDP we have to bypass the qdisc layer and the
4825 * network taps in order to match in-driver-XDP behavior.
4826 */
generic_xdp_tx(struct sk_buff * skb,struct bpf_prog * xdp_prog)4827 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4828 {
4829 struct net_device *dev = skb->dev;
4830 struct netdev_queue *txq;
4831 bool free_skb = true;
4832 int cpu, rc;
4833
4834 txq = netdev_core_pick_tx(dev, skb, NULL);
4835 cpu = smp_processor_id();
4836 HARD_TX_LOCK(dev, txq, cpu);
4837 if (!netif_xmit_stopped(txq)) {
4838 rc = netdev_start_xmit(skb, dev, txq, 0);
4839 if (dev_xmit_complete(rc))
4840 free_skb = false;
4841 }
4842 HARD_TX_UNLOCK(dev, txq);
4843 if (free_skb) {
4844 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4845 kfree_skb(skb);
4846 }
4847 }
4848
4849 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4850
do_xdp_generic(struct bpf_prog * xdp_prog,struct sk_buff * skb)4851 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4852 {
4853 if (xdp_prog) {
4854 struct xdp_buff xdp;
4855 u32 act;
4856 int err;
4857
4858 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4859 if (act != XDP_PASS) {
4860 switch (act) {
4861 case XDP_REDIRECT:
4862 err = xdp_do_generic_redirect(skb->dev, skb,
4863 &xdp, xdp_prog);
4864 if (err)
4865 goto out_redir;
4866 break;
4867 case XDP_TX:
4868 generic_xdp_tx(skb, xdp_prog);
4869 break;
4870 }
4871 return XDP_DROP;
4872 }
4873 }
4874 return XDP_PASS;
4875 out_redir:
4876 kfree_skb(skb);
4877 return XDP_DROP;
4878 }
4879 EXPORT_SYMBOL_GPL(do_xdp_generic);
4880
netif_rx_internal(struct sk_buff * skb)4881 static int netif_rx_internal(struct sk_buff *skb)
4882 {
4883 int ret;
4884
4885 net_timestamp_check(netdev_tstamp_prequeue, skb);
4886
4887 trace_netif_rx(skb);
4888
4889 #ifdef CONFIG_RPS
4890 if (static_branch_unlikely(&rps_needed)) {
4891 struct rps_dev_flow voidflow, *rflow = &voidflow;
4892 int cpu;
4893
4894 preempt_disable();
4895 rcu_read_lock();
4896
4897 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4898 if (cpu < 0)
4899 cpu = smp_processor_id();
4900
4901 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4902
4903 rcu_read_unlock();
4904 preempt_enable();
4905 } else
4906 #endif
4907 {
4908 unsigned int qtail;
4909
4910 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4911 put_cpu();
4912 }
4913 return ret;
4914 }
4915
4916 /**
4917 * netif_rx - post buffer to the network code
4918 * @skb: buffer to post
4919 *
4920 * This function receives a packet from a device driver and queues it for
4921 * the upper (protocol) levels to process. It always succeeds. The buffer
4922 * may be dropped during processing for congestion control or by the
4923 * protocol layers.
4924 *
4925 * return values:
4926 * NET_RX_SUCCESS (no congestion)
4927 * NET_RX_DROP (packet was dropped)
4928 *
4929 */
4930
netif_rx(struct sk_buff * skb)4931 int netif_rx(struct sk_buff *skb)
4932 {
4933 int ret;
4934
4935 trace_netif_rx_entry(skb);
4936
4937 ret = netif_rx_internal(skb);
4938 trace_netif_rx_exit(ret);
4939
4940 return ret;
4941 }
4942 EXPORT_SYMBOL(netif_rx);
4943
netif_rx_ni(struct sk_buff * skb)4944 int netif_rx_ni(struct sk_buff *skb)
4945 {
4946 int err;
4947
4948 trace_netif_rx_ni_entry(skb);
4949
4950 preempt_disable();
4951 err = netif_rx_internal(skb);
4952 if (local_softirq_pending())
4953 do_softirq();
4954 preempt_enable();
4955 trace_netif_rx_ni_exit(err);
4956
4957 return err;
4958 }
4959 EXPORT_SYMBOL(netif_rx_ni);
4960
netif_rx_any_context(struct sk_buff * skb)4961 int netif_rx_any_context(struct sk_buff *skb)
4962 {
4963 /*
4964 * If invoked from contexts which do not invoke bottom half
4965 * processing either at return from interrupt or when softrqs are
4966 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4967 * directly.
4968 */
4969 if (in_interrupt())
4970 return netif_rx(skb);
4971 else
4972 return netif_rx_ni(skb);
4973 }
4974 EXPORT_SYMBOL(netif_rx_any_context);
4975
net_tx_action(struct softirq_action * h)4976 static __latent_entropy void net_tx_action(struct softirq_action *h)
4977 {
4978 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4979
4980 if (sd->completion_queue) {
4981 struct sk_buff *clist;
4982
4983 local_irq_disable();
4984 clist = sd->completion_queue;
4985 sd->completion_queue = NULL;
4986 local_irq_enable();
4987
4988 while (clist) {
4989 struct sk_buff *skb = clist;
4990
4991 clist = clist->next;
4992
4993 WARN_ON(refcount_read(&skb->users));
4994 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4995 trace_consume_skb(skb);
4996 else
4997 trace_kfree_skb(skb, net_tx_action);
4998
4999 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5000 __kfree_skb(skb);
5001 else
5002 __kfree_skb_defer(skb);
5003 }
5004 }
5005
5006 if (sd->output_queue) {
5007 struct Qdisc *head;
5008
5009 local_irq_disable();
5010 head = sd->output_queue;
5011 sd->output_queue = NULL;
5012 sd->output_queue_tailp = &sd->output_queue;
5013 local_irq_enable();
5014
5015 rcu_read_lock();
5016
5017 while (head) {
5018 struct Qdisc *q = head;
5019 spinlock_t *root_lock = NULL;
5020
5021 head = head->next_sched;
5022
5023 /* We need to make sure head->next_sched is read
5024 * before clearing __QDISC_STATE_SCHED
5025 */
5026 smp_mb__before_atomic();
5027
5028 if (!(q->flags & TCQ_F_NOLOCK)) {
5029 root_lock = qdisc_lock(q);
5030 spin_lock(root_lock);
5031 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5032 &q->state))) {
5033 /* There is a synchronize_net() between
5034 * STATE_DEACTIVATED flag being set and
5035 * qdisc_reset()/some_qdisc_is_busy() in
5036 * dev_deactivate(), so we can safely bail out
5037 * early here to avoid data race between
5038 * qdisc_deactivate() and some_qdisc_is_busy()
5039 * for lockless qdisc.
5040 */
5041 clear_bit(__QDISC_STATE_SCHED, &q->state);
5042 continue;
5043 }
5044
5045 clear_bit(__QDISC_STATE_SCHED, &q->state);
5046 qdisc_run(q);
5047 if (root_lock)
5048 spin_unlock(root_lock);
5049 }
5050
5051 rcu_read_unlock();
5052 }
5053
5054 xfrm_dev_backlog(sd);
5055 }
5056
5057 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5058 /* This hook is defined here for ATM LANE */
5059 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5060 unsigned char *addr) __read_mostly;
5061 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5062 #endif
5063
5064 static inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)5065 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5066 struct net_device *orig_dev, bool *another)
5067 {
5068 #ifdef CONFIG_NET_CLS_ACT
5069 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5070 struct tcf_result cl_res;
5071
5072 /* If there's at least one ingress present somewhere (so
5073 * we get here via enabled static key), remaining devices
5074 * that are not configured with an ingress qdisc will bail
5075 * out here.
5076 */
5077 if (!miniq)
5078 return skb;
5079
5080 if (*pt_prev) {
5081 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5082 *pt_prev = NULL;
5083 }
5084
5085 qdisc_skb_cb(skb)->pkt_len = skb->len;
5086 qdisc_skb_cb(skb)->mru = 0;
5087 qdisc_skb_cb(skb)->post_ct = false;
5088 skb->tc_at_ingress = 1;
5089 mini_qdisc_bstats_cpu_update(miniq, skb);
5090
5091 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5092 case TC_ACT_OK:
5093 case TC_ACT_RECLASSIFY:
5094 skb->tc_index = TC_H_MIN(cl_res.classid);
5095 break;
5096 case TC_ACT_SHOT:
5097 mini_qdisc_qstats_cpu_drop(miniq);
5098 kfree_skb(skb);
5099 return NULL;
5100 case TC_ACT_STOLEN:
5101 case TC_ACT_QUEUED:
5102 case TC_ACT_TRAP:
5103 consume_skb(skb);
5104 return NULL;
5105 case TC_ACT_REDIRECT:
5106 /* skb_mac_header check was done by cls/act_bpf, so
5107 * we can safely push the L2 header back before
5108 * redirecting to another netdev
5109 */
5110 __skb_push(skb, skb->mac_len);
5111 if (skb_do_redirect(skb) == -EAGAIN) {
5112 __skb_pull(skb, skb->mac_len);
5113 *another = true;
5114 break;
5115 }
5116 return NULL;
5117 case TC_ACT_CONSUMED:
5118 return NULL;
5119 default:
5120 break;
5121 }
5122 #endif /* CONFIG_NET_CLS_ACT */
5123 return skb;
5124 }
5125
5126 /**
5127 * netdev_is_rx_handler_busy - check if receive handler is registered
5128 * @dev: device to check
5129 *
5130 * Check if a receive handler is already registered for a given device.
5131 * Return true if there one.
5132 *
5133 * The caller must hold the rtnl_mutex.
5134 */
netdev_is_rx_handler_busy(struct net_device * dev)5135 bool netdev_is_rx_handler_busy(struct net_device *dev)
5136 {
5137 ASSERT_RTNL();
5138 return dev && rtnl_dereference(dev->rx_handler);
5139 }
5140 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5141
5142 /**
5143 * netdev_rx_handler_register - register receive handler
5144 * @dev: device to register a handler for
5145 * @rx_handler: receive handler to register
5146 * @rx_handler_data: data pointer that is used by rx handler
5147 *
5148 * Register a receive handler for a device. This handler will then be
5149 * called from __netif_receive_skb. A negative errno code is returned
5150 * on a failure.
5151 *
5152 * The caller must hold the rtnl_mutex.
5153 *
5154 * For a general description of rx_handler, see enum rx_handler_result.
5155 */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)5156 int netdev_rx_handler_register(struct net_device *dev,
5157 rx_handler_func_t *rx_handler,
5158 void *rx_handler_data)
5159 {
5160 if (netdev_is_rx_handler_busy(dev))
5161 return -EBUSY;
5162
5163 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5164 return -EINVAL;
5165
5166 /* Note: rx_handler_data must be set before rx_handler */
5167 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5168 rcu_assign_pointer(dev->rx_handler, rx_handler);
5169
5170 return 0;
5171 }
5172 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5173
5174 /**
5175 * netdev_rx_handler_unregister - unregister receive handler
5176 * @dev: device to unregister a handler from
5177 *
5178 * Unregister a receive handler from a device.
5179 *
5180 * The caller must hold the rtnl_mutex.
5181 */
netdev_rx_handler_unregister(struct net_device * dev)5182 void netdev_rx_handler_unregister(struct net_device *dev)
5183 {
5184
5185 ASSERT_RTNL();
5186 RCU_INIT_POINTER(dev->rx_handler, NULL);
5187 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5188 * section has a guarantee to see a non NULL rx_handler_data
5189 * as well.
5190 */
5191 synchronize_net();
5192 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5193 }
5194 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5195
5196 /*
5197 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5198 * the special handling of PFMEMALLOC skbs.
5199 */
skb_pfmemalloc_protocol(struct sk_buff * skb)5200 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5201 {
5202 switch (skb->protocol) {
5203 case htons(ETH_P_ARP):
5204 case htons(ETH_P_IP):
5205 case htons(ETH_P_IPV6):
5206 case htons(ETH_P_8021Q):
5207 case htons(ETH_P_8021AD):
5208 return true;
5209 default:
5210 return false;
5211 }
5212 }
5213
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)5214 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5215 int *ret, struct net_device *orig_dev)
5216 {
5217 if (nf_hook_ingress_active(skb)) {
5218 int ingress_retval;
5219
5220 if (*pt_prev) {
5221 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5222 *pt_prev = NULL;
5223 }
5224
5225 rcu_read_lock();
5226 ingress_retval = nf_hook_ingress(skb);
5227 rcu_read_unlock();
5228 return ingress_retval;
5229 }
5230 return 0;
5231 }
5232
__netif_receive_skb_core(struct sk_buff ** pskb,bool pfmemalloc,struct packet_type ** ppt_prev)5233 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5234 struct packet_type **ppt_prev)
5235 {
5236 struct packet_type *ptype, *pt_prev;
5237 rx_handler_func_t *rx_handler;
5238 struct sk_buff *skb = *pskb;
5239 struct net_device *orig_dev;
5240 bool deliver_exact = false;
5241 int ret = NET_RX_DROP;
5242 __be16 type;
5243
5244 net_timestamp_check(!netdev_tstamp_prequeue, skb);
5245
5246 trace_netif_receive_skb(skb);
5247
5248 orig_dev = skb->dev;
5249
5250 skb_reset_network_header(skb);
5251 if (!skb_transport_header_was_set(skb))
5252 skb_reset_transport_header(skb);
5253 skb_reset_mac_len(skb);
5254
5255 pt_prev = NULL;
5256
5257 another_round:
5258 skb->skb_iif = skb->dev->ifindex;
5259
5260 __this_cpu_inc(softnet_data.processed);
5261
5262 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5263 int ret2;
5264
5265 migrate_disable();
5266 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5267 migrate_enable();
5268
5269 if (ret2 != XDP_PASS) {
5270 ret = NET_RX_DROP;
5271 goto out;
5272 }
5273 }
5274
5275 if (eth_type_vlan(skb->protocol)) {
5276 skb = skb_vlan_untag(skb);
5277 if (unlikely(!skb))
5278 goto out;
5279 }
5280
5281 if (skb_skip_tc_classify(skb))
5282 goto skip_classify;
5283
5284 if (pfmemalloc)
5285 goto skip_taps;
5286
5287 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5288 if (pt_prev)
5289 ret = deliver_skb(skb, pt_prev, orig_dev);
5290 pt_prev = ptype;
5291 }
5292
5293 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5294 if (pt_prev)
5295 ret = deliver_skb(skb, pt_prev, orig_dev);
5296 pt_prev = ptype;
5297 }
5298
5299 skip_taps:
5300 #ifdef CONFIG_NET_INGRESS
5301 if (static_branch_unlikely(&ingress_needed_key)) {
5302 bool another = false;
5303
5304 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5305 &another);
5306 if (another)
5307 goto another_round;
5308 if (!skb)
5309 goto out;
5310
5311 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5312 goto out;
5313 }
5314 #endif
5315 skb_reset_redirect(skb);
5316 skip_classify:
5317 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5318 goto drop;
5319
5320 if (skb_vlan_tag_present(skb)) {
5321 if (pt_prev) {
5322 ret = deliver_skb(skb, pt_prev, orig_dev);
5323 pt_prev = NULL;
5324 }
5325 if (vlan_do_receive(&skb))
5326 goto another_round;
5327 else if (unlikely(!skb))
5328 goto out;
5329 }
5330
5331 rx_handler = rcu_dereference(skb->dev->rx_handler);
5332 if (rx_handler) {
5333 if (pt_prev) {
5334 ret = deliver_skb(skb, pt_prev, orig_dev);
5335 pt_prev = NULL;
5336 }
5337 switch (rx_handler(&skb)) {
5338 case RX_HANDLER_CONSUMED:
5339 ret = NET_RX_SUCCESS;
5340 goto out;
5341 case RX_HANDLER_ANOTHER:
5342 goto another_round;
5343 case RX_HANDLER_EXACT:
5344 deliver_exact = true;
5345 break;
5346 case RX_HANDLER_PASS:
5347 break;
5348 default:
5349 BUG();
5350 }
5351 }
5352
5353 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5354 check_vlan_id:
5355 if (skb_vlan_tag_get_id(skb)) {
5356 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5357 * find vlan device.
5358 */
5359 skb->pkt_type = PACKET_OTHERHOST;
5360 } else if (eth_type_vlan(skb->protocol)) {
5361 /* Outer header is 802.1P with vlan 0, inner header is
5362 * 802.1Q or 802.1AD and vlan_do_receive() above could
5363 * not find vlan dev for vlan id 0.
5364 */
5365 __vlan_hwaccel_clear_tag(skb);
5366 skb = skb_vlan_untag(skb);
5367 if (unlikely(!skb))
5368 goto out;
5369 if (vlan_do_receive(&skb))
5370 /* After stripping off 802.1P header with vlan 0
5371 * vlan dev is found for inner header.
5372 */
5373 goto another_round;
5374 else if (unlikely(!skb))
5375 goto out;
5376 else
5377 /* We have stripped outer 802.1P vlan 0 header.
5378 * But could not find vlan dev.
5379 * check again for vlan id to set OTHERHOST.
5380 */
5381 goto check_vlan_id;
5382 }
5383 /* Note: we might in the future use prio bits
5384 * and set skb->priority like in vlan_do_receive()
5385 * For the time being, just ignore Priority Code Point
5386 */
5387 __vlan_hwaccel_clear_tag(skb);
5388 }
5389
5390 type = skb->protocol;
5391
5392 /* deliver only exact match when indicated */
5393 if (likely(!deliver_exact)) {
5394 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5395 &ptype_base[ntohs(type) &
5396 PTYPE_HASH_MASK]);
5397 }
5398
5399 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5400 &orig_dev->ptype_specific);
5401
5402 if (unlikely(skb->dev != orig_dev)) {
5403 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5404 &skb->dev->ptype_specific);
5405 }
5406
5407 if (pt_prev) {
5408 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5409 goto drop;
5410 *ppt_prev = pt_prev;
5411 } else {
5412 drop:
5413 if (!deliver_exact)
5414 atomic_long_inc(&skb->dev->rx_dropped);
5415 else
5416 atomic_long_inc(&skb->dev->rx_nohandler);
5417 kfree_skb(skb);
5418 /* Jamal, now you will not able to escape explaining
5419 * me how you were going to use this. :-)
5420 */
5421 ret = NET_RX_DROP;
5422 }
5423
5424 out:
5425 /* The invariant here is that if *ppt_prev is not NULL
5426 * then skb should also be non-NULL.
5427 *
5428 * Apparently *ppt_prev assignment above holds this invariant due to
5429 * skb dereferencing near it.
5430 */
5431 *pskb = skb;
5432 return ret;
5433 }
5434
__netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)5435 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5436 {
5437 struct net_device *orig_dev = skb->dev;
5438 struct packet_type *pt_prev = NULL;
5439 int ret;
5440
5441 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5442 if (pt_prev)
5443 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5444 skb->dev, pt_prev, orig_dev);
5445 return ret;
5446 }
5447
5448 /**
5449 * netif_receive_skb_core - special purpose version of netif_receive_skb
5450 * @skb: buffer to process
5451 *
5452 * More direct receive version of netif_receive_skb(). It should
5453 * only be used by callers that have a need to skip RPS and Generic XDP.
5454 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5455 *
5456 * This function may only be called from softirq context and interrupts
5457 * should be enabled.
5458 *
5459 * Return values (usually ignored):
5460 * NET_RX_SUCCESS: no congestion
5461 * NET_RX_DROP: packet was dropped
5462 */
netif_receive_skb_core(struct sk_buff * skb)5463 int netif_receive_skb_core(struct sk_buff *skb)
5464 {
5465 int ret;
5466
5467 rcu_read_lock();
5468 ret = __netif_receive_skb_one_core(skb, false);
5469 rcu_read_unlock();
5470
5471 return ret;
5472 }
5473 EXPORT_SYMBOL(netif_receive_skb_core);
5474
__netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)5475 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5476 struct packet_type *pt_prev,
5477 struct net_device *orig_dev)
5478 {
5479 struct sk_buff *skb, *next;
5480
5481 if (!pt_prev)
5482 return;
5483 if (list_empty(head))
5484 return;
5485 if (pt_prev->list_func != NULL)
5486 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5487 ip_list_rcv, head, pt_prev, orig_dev);
5488 else
5489 list_for_each_entry_safe(skb, next, head, list) {
5490 skb_list_del_init(skb);
5491 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5492 }
5493 }
5494
__netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)5495 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5496 {
5497 /* Fast-path assumptions:
5498 * - There is no RX handler.
5499 * - Only one packet_type matches.
5500 * If either of these fails, we will end up doing some per-packet
5501 * processing in-line, then handling the 'last ptype' for the whole
5502 * sublist. This can't cause out-of-order delivery to any single ptype,
5503 * because the 'last ptype' must be constant across the sublist, and all
5504 * other ptypes are handled per-packet.
5505 */
5506 /* Current (common) ptype of sublist */
5507 struct packet_type *pt_curr = NULL;
5508 /* Current (common) orig_dev of sublist */
5509 struct net_device *od_curr = NULL;
5510 struct list_head sublist;
5511 struct sk_buff *skb, *next;
5512
5513 INIT_LIST_HEAD(&sublist);
5514 list_for_each_entry_safe(skb, next, head, list) {
5515 struct net_device *orig_dev = skb->dev;
5516 struct packet_type *pt_prev = NULL;
5517
5518 skb_list_del_init(skb);
5519 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5520 if (!pt_prev)
5521 continue;
5522 if (pt_curr != pt_prev || od_curr != orig_dev) {
5523 /* dispatch old sublist */
5524 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5525 /* start new sublist */
5526 INIT_LIST_HEAD(&sublist);
5527 pt_curr = pt_prev;
5528 od_curr = orig_dev;
5529 }
5530 list_add_tail(&skb->list, &sublist);
5531 }
5532
5533 /* dispatch final sublist */
5534 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5535 }
5536
__netif_receive_skb(struct sk_buff * skb)5537 static int __netif_receive_skb(struct sk_buff *skb)
5538 {
5539 int ret;
5540
5541 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5542 unsigned int noreclaim_flag;
5543
5544 /*
5545 * PFMEMALLOC skbs are special, they should
5546 * - be delivered to SOCK_MEMALLOC sockets only
5547 * - stay away from userspace
5548 * - have bounded memory usage
5549 *
5550 * Use PF_MEMALLOC as this saves us from propagating the allocation
5551 * context down to all allocation sites.
5552 */
5553 noreclaim_flag = memalloc_noreclaim_save();
5554 ret = __netif_receive_skb_one_core(skb, true);
5555 memalloc_noreclaim_restore(noreclaim_flag);
5556 } else
5557 ret = __netif_receive_skb_one_core(skb, false);
5558
5559 return ret;
5560 }
5561
__netif_receive_skb_list(struct list_head * head)5562 static void __netif_receive_skb_list(struct list_head *head)
5563 {
5564 unsigned long noreclaim_flag = 0;
5565 struct sk_buff *skb, *next;
5566 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5567
5568 list_for_each_entry_safe(skb, next, head, list) {
5569 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5570 struct list_head sublist;
5571
5572 /* Handle the previous sublist */
5573 list_cut_before(&sublist, head, &skb->list);
5574 if (!list_empty(&sublist))
5575 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5576 pfmemalloc = !pfmemalloc;
5577 /* See comments in __netif_receive_skb */
5578 if (pfmemalloc)
5579 noreclaim_flag = memalloc_noreclaim_save();
5580 else
5581 memalloc_noreclaim_restore(noreclaim_flag);
5582 }
5583 }
5584 /* Handle the remaining sublist */
5585 if (!list_empty(head))
5586 __netif_receive_skb_list_core(head, pfmemalloc);
5587 /* Restore pflags */
5588 if (pfmemalloc)
5589 memalloc_noreclaim_restore(noreclaim_flag);
5590 }
5591
generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)5592 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5593 {
5594 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5595 struct bpf_prog *new = xdp->prog;
5596 int ret = 0;
5597
5598 switch (xdp->command) {
5599 case XDP_SETUP_PROG:
5600 rcu_assign_pointer(dev->xdp_prog, new);
5601 if (old)
5602 bpf_prog_put(old);
5603
5604 if (old && !new) {
5605 static_branch_dec(&generic_xdp_needed_key);
5606 } else if (new && !old) {
5607 static_branch_inc(&generic_xdp_needed_key);
5608 dev_disable_lro(dev);
5609 dev_disable_gro_hw(dev);
5610 }
5611 break;
5612
5613 default:
5614 ret = -EINVAL;
5615 break;
5616 }
5617
5618 return ret;
5619 }
5620
netif_receive_skb_internal(struct sk_buff * skb)5621 static int netif_receive_skb_internal(struct sk_buff *skb)
5622 {
5623 int ret;
5624
5625 net_timestamp_check(netdev_tstamp_prequeue, skb);
5626
5627 if (skb_defer_rx_timestamp(skb))
5628 return NET_RX_SUCCESS;
5629
5630 rcu_read_lock();
5631 #ifdef CONFIG_RPS
5632 if (static_branch_unlikely(&rps_needed)) {
5633 struct rps_dev_flow voidflow, *rflow = &voidflow;
5634 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5635
5636 if (cpu >= 0) {
5637 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5638 rcu_read_unlock();
5639 return ret;
5640 }
5641 }
5642 #endif
5643 ret = __netif_receive_skb(skb);
5644 rcu_read_unlock();
5645 return ret;
5646 }
5647
netif_receive_skb_list_internal(struct list_head * head)5648 static void netif_receive_skb_list_internal(struct list_head *head)
5649 {
5650 struct sk_buff *skb, *next;
5651 struct list_head sublist;
5652
5653 INIT_LIST_HEAD(&sublist);
5654 list_for_each_entry_safe(skb, next, head, list) {
5655 net_timestamp_check(netdev_tstamp_prequeue, skb);
5656 skb_list_del_init(skb);
5657 if (!skb_defer_rx_timestamp(skb))
5658 list_add_tail(&skb->list, &sublist);
5659 }
5660 list_splice_init(&sublist, head);
5661
5662 rcu_read_lock();
5663 #ifdef CONFIG_RPS
5664 if (static_branch_unlikely(&rps_needed)) {
5665 list_for_each_entry_safe(skb, next, head, list) {
5666 struct rps_dev_flow voidflow, *rflow = &voidflow;
5667 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5668
5669 if (cpu >= 0) {
5670 /* Will be handled, remove from list */
5671 skb_list_del_init(skb);
5672 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5673 }
5674 }
5675 }
5676 #endif
5677 __netif_receive_skb_list(head);
5678 rcu_read_unlock();
5679 }
5680
5681 /**
5682 * netif_receive_skb - process receive buffer from network
5683 * @skb: buffer to process
5684 *
5685 * netif_receive_skb() is the main receive data processing function.
5686 * It always succeeds. The buffer may be dropped during processing
5687 * for congestion control or by the protocol layers.
5688 *
5689 * This function may only be called from softirq context and interrupts
5690 * should be enabled.
5691 *
5692 * Return values (usually ignored):
5693 * NET_RX_SUCCESS: no congestion
5694 * NET_RX_DROP: packet was dropped
5695 */
netif_receive_skb(struct sk_buff * skb)5696 int netif_receive_skb(struct sk_buff *skb)
5697 {
5698 int ret;
5699
5700 trace_netif_receive_skb_entry(skb);
5701
5702 ret = netif_receive_skb_internal(skb);
5703 trace_netif_receive_skb_exit(ret);
5704
5705 return ret;
5706 }
5707 EXPORT_SYMBOL(netif_receive_skb);
5708
5709 /**
5710 * netif_receive_skb_list - process many receive buffers from network
5711 * @head: list of skbs to process.
5712 *
5713 * Since return value of netif_receive_skb() is normally ignored, and
5714 * wouldn't be meaningful for a list, this function returns void.
5715 *
5716 * This function may only be called from softirq context and interrupts
5717 * should be enabled.
5718 */
netif_receive_skb_list(struct list_head * head)5719 void netif_receive_skb_list(struct list_head *head)
5720 {
5721 struct sk_buff *skb;
5722
5723 if (list_empty(head))
5724 return;
5725 if (trace_netif_receive_skb_list_entry_enabled()) {
5726 list_for_each_entry(skb, head, list)
5727 trace_netif_receive_skb_list_entry(skb);
5728 }
5729 netif_receive_skb_list_internal(head);
5730 trace_netif_receive_skb_list_exit(0);
5731 }
5732 EXPORT_SYMBOL(netif_receive_skb_list);
5733
5734 static DEFINE_PER_CPU(struct work_struct, flush_works);
5735
5736 /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)5737 static void flush_backlog(struct work_struct *work)
5738 {
5739 struct sk_buff *skb, *tmp;
5740 struct softnet_data *sd;
5741
5742 local_bh_disable();
5743 sd = this_cpu_ptr(&softnet_data);
5744
5745 local_irq_disable();
5746 rps_lock(sd);
5747 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5748 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5749 __skb_unlink(skb, &sd->input_pkt_queue);
5750 dev_kfree_skb_irq(skb);
5751 input_queue_head_incr(sd);
5752 }
5753 }
5754 rps_unlock(sd);
5755 local_irq_enable();
5756
5757 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5758 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5759 __skb_unlink(skb, &sd->process_queue);
5760 kfree_skb(skb);
5761 input_queue_head_incr(sd);
5762 }
5763 }
5764 local_bh_enable();
5765 }
5766
flush_required(int cpu)5767 static bool flush_required(int cpu)
5768 {
5769 #if IS_ENABLED(CONFIG_RPS)
5770 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5771 bool do_flush;
5772
5773 local_irq_disable();
5774 rps_lock(sd);
5775
5776 /* as insertion into process_queue happens with the rps lock held,
5777 * process_queue access may race only with dequeue
5778 */
5779 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5780 !skb_queue_empty_lockless(&sd->process_queue);
5781 rps_unlock(sd);
5782 local_irq_enable();
5783
5784 return do_flush;
5785 #endif
5786 /* without RPS we can't safely check input_pkt_queue: during a
5787 * concurrent remote skb_queue_splice() we can detect as empty both
5788 * input_pkt_queue and process_queue even if the latter could end-up
5789 * containing a lot of packets.
5790 */
5791 return true;
5792 }
5793
flush_all_backlogs(void)5794 static void flush_all_backlogs(void)
5795 {
5796 static cpumask_t flush_cpus;
5797 unsigned int cpu;
5798
5799 /* since we are under rtnl lock protection we can use static data
5800 * for the cpumask and avoid allocating on stack the possibly
5801 * large mask
5802 */
5803 ASSERT_RTNL();
5804
5805 cpus_read_lock();
5806
5807 cpumask_clear(&flush_cpus);
5808 for_each_online_cpu(cpu) {
5809 if (flush_required(cpu)) {
5810 queue_work_on(cpu, system_highpri_wq,
5811 per_cpu_ptr(&flush_works, cpu));
5812 cpumask_set_cpu(cpu, &flush_cpus);
5813 }
5814 }
5815
5816 /* we can have in flight packet[s] on the cpus we are not flushing,
5817 * synchronize_net() in unregister_netdevice_many() will take care of
5818 * them
5819 */
5820 for_each_cpu(cpu, &flush_cpus)
5821 flush_work(per_cpu_ptr(&flush_works, cpu));
5822
5823 cpus_read_unlock();
5824 }
5825
5826 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
gro_normal_list(struct napi_struct * napi)5827 static void gro_normal_list(struct napi_struct *napi)
5828 {
5829 if (!napi->rx_count)
5830 return;
5831 netif_receive_skb_list_internal(&napi->rx_list);
5832 INIT_LIST_HEAD(&napi->rx_list);
5833 napi->rx_count = 0;
5834 }
5835
5836 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5837 * pass the whole batch up to the stack.
5838 */
gro_normal_one(struct napi_struct * napi,struct sk_buff * skb,int segs)5839 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5840 {
5841 list_add_tail(&skb->list, &napi->rx_list);
5842 napi->rx_count += segs;
5843 if (napi->rx_count >= gro_normal_batch)
5844 gro_normal_list(napi);
5845 }
5846
napi_gro_complete(struct napi_struct * napi,struct sk_buff * skb)5847 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5848 {
5849 struct packet_offload *ptype;
5850 __be16 type = skb->protocol;
5851 struct list_head *head = &offload_base;
5852 int err = -ENOENT;
5853
5854 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5855
5856 if (NAPI_GRO_CB(skb)->count == 1) {
5857 skb_shinfo(skb)->gso_size = 0;
5858 goto out;
5859 }
5860
5861 rcu_read_lock();
5862 list_for_each_entry_rcu(ptype, head, list) {
5863 if (ptype->type != type || !ptype->callbacks.gro_complete)
5864 continue;
5865
5866 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5867 ipv6_gro_complete, inet_gro_complete,
5868 skb, 0);
5869 break;
5870 }
5871 rcu_read_unlock();
5872
5873 if (err) {
5874 WARN_ON(&ptype->list == head);
5875 kfree_skb(skb);
5876 return NET_RX_SUCCESS;
5877 }
5878
5879 out:
5880 gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5881 return NET_RX_SUCCESS;
5882 }
5883
__napi_gro_flush_chain(struct napi_struct * napi,u32 index,bool flush_old)5884 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5885 bool flush_old)
5886 {
5887 struct list_head *head = &napi->gro_hash[index].list;
5888 struct sk_buff *skb, *p;
5889
5890 list_for_each_entry_safe_reverse(skb, p, head, list) {
5891 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5892 return;
5893 skb_list_del_init(skb);
5894 napi_gro_complete(napi, skb);
5895 napi->gro_hash[index].count--;
5896 }
5897
5898 if (!napi->gro_hash[index].count)
5899 __clear_bit(index, &napi->gro_bitmask);
5900 }
5901
5902 /* napi->gro_hash[].list contains packets ordered by age.
5903 * youngest packets at the head of it.
5904 * Complete skbs in reverse order to reduce latencies.
5905 */
napi_gro_flush(struct napi_struct * napi,bool flush_old)5906 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5907 {
5908 unsigned long bitmask = napi->gro_bitmask;
5909 unsigned int i, base = ~0U;
5910
5911 while ((i = ffs(bitmask)) != 0) {
5912 bitmask >>= i;
5913 base += i;
5914 __napi_gro_flush_chain(napi, base, flush_old);
5915 }
5916 }
5917 EXPORT_SYMBOL(napi_gro_flush);
5918
gro_list_prepare(const struct list_head * head,const struct sk_buff * skb)5919 static void gro_list_prepare(const struct list_head *head,
5920 const struct sk_buff *skb)
5921 {
5922 unsigned int maclen = skb->dev->hard_header_len;
5923 u32 hash = skb_get_hash_raw(skb);
5924 struct sk_buff *p;
5925
5926 list_for_each_entry(p, head, list) {
5927 unsigned long diffs;
5928
5929 NAPI_GRO_CB(p)->flush = 0;
5930
5931 if (hash != skb_get_hash_raw(p)) {
5932 NAPI_GRO_CB(p)->same_flow = 0;
5933 continue;
5934 }
5935
5936 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5937 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5938 if (skb_vlan_tag_present(p))
5939 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5940 diffs |= skb_metadata_differs(p, skb);
5941 if (maclen == ETH_HLEN)
5942 diffs |= compare_ether_header(skb_mac_header(p),
5943 skb_mac_header(skb));
5944 else if (!diffs)
5945 diffs = memcmp(skb_mac_header(p),
5946 skb_mac_header(skb),
5947 maclen);
5948
5949 /* in most common scenarions 'slow_gro' is 0
5950 * otherwise we are already on some slower paths
5951 * either skip all the infrequent tests altogether or
5952 * avoid trying too hard to skip each of them individually
5953 */
5954 if (!diffs && unlikely(skb->slow_gro | p->slow_gro)) {
5955 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5956 struct tc_skb_ext *skb_ext;
5957 struct tc_skb_ext *p_ext;
5958 #endif
5959
5960 diffs |= p->sk != skb->sk;
5961 diffs |= skb_metadata_dst_cmp(p, skb);
5962 diffs |= skb_get_nfct(p) ^ skb_get_nfct(skb);
5963
5964 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5965 skb_ext = skb_ext_find(skb, TC_SKB_EXT);
5966 p_ext = skb_ext_find(p, TC_SKB_EXT);
5967
5968 diffs |= (!!p_ext) ^ (!!skb_ext);
5969 if (!diffs && unlikely(skb_ext))
5970 diffs |= p_ext->chain ^ skb_ext->chain;
5971 #endif
5972 }
5973
5974 NAPI_GRO_CB(p)->same_flow = !diffs;
5975 }
5976 }
5977
skb_gro_reset_offset(struct sk_buff * skb,u32 nhoff)5978 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
5979 {
5980 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5981 const skb_frag_t *frag0 = &pinfo->frags[0];
5982
5983 NAPI_GRO_CB(skb)->data_offset = 0;
5984 NAPI_GRO_CB(skb)->frag0 = NULL;
5985 NAPI_GRO_CB(skb)->frag0_len = 0;
5986
5987 if (!skb_headlen(skb) && pinfo->nr_frags &&
5988 !PageHighMem(skb_frag_page(frag0)) &&
5989 (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
5990 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5991 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5992 skb_frag_size(frag0),
5993 skb->end - skb->tail);
5994 }
5995 }
5996
gro_pull_from_frag0(struct sk_buff * skb,int grow)5997 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5998 {
5999 struct skb_shared_info *pinfo = skb_shinfo(skb);
6000
6001 BUG_ON(skb->end - skb->tail < grow);
6002
6003 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
6004
6005 skb->data_len -= grow;
6006 skb->tail += grow;
6007
6008 skb_frag_off_add(&pinfo->frags[0], grow);
6009 skb_frag_size_sub(&pinfo->frags[0], grow);
6010
6011 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
6012 skb_frag_unref(skb, 0);
6013 memmove(pinfo->frags, pinfo->frags + 1,
6014 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
6015 }
6016 }
6017
gro_flush_oldest(struct napi_struct * napi,struct list_head * head)6018 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
6019 {
6020 struct sk_buff *oldest;
6021
6022 oldest = list_last_entry(head, struct sk_buff, list);
6023
6024 /* We are called with head length >= MAX_GRO_SKBS, so this is
6025 * impossible.
6026 */
6027 if (WARN_ON_ONCE(!oldest))
6028 return;
6029
6030 /* Do not adjust napi->gro_hash[].count, caller is adding a new
6031 * SKB to the chain.
6032 */
6033 skb_list_del_init(oldest);
6034 napi_gro_complete(napi, oldest);
6035 }
6036
dev_gro_receive(struct napi_struct * napi,struct sk_buff * skb)6037 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6038 {
6039 u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
6040 struct gro_list *gro_list = &napi->gro_hash[bucket];
6041 struct list_head *head = &offload_base;
6042 struct packet_offload *ptype;
6043 __be16 type = skb->protocol;
6044 struct sk_buff *pp = NULL;
6045 enum gro_result ret;
6046 int same_flow;
6047 int grow;
6048
6049 if (netif_elide_gro(skb->dev))
6050 goto normal;
6051
6052 gro_list_prepare(&gro_list->list, skb);
6053
6054 rcu_read_lock();
6055 list_for_each_entry_rcu(ptype, head, list) {
6056 if (ptype->type != type || !ptype->callbacks.gro_receive)
6057 continue;
6058
6059 skb_set_network_header(skb, skb_gro_offset(skb));
6060 skb_reset_mac_len(skb);
6061 NAPI_GRO_CB(skb)->same_flow = 0;
6062 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6063 NAPI_GRO_CB(skb)->free = 0;
6064 NAPI_GRO_CB(skb)->encap_mark = 0;
6065 NAPI_GRO_CB(skb)->recursion_counter = 0;
6066 NAPI_GRO_CB(skb)->is_fou = 0;
6067 NAPI_GRO_CB(skb)->is_atomic = 1;
6068 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6069
6070 /* Setup for GRO checksum validation */
6071 switch (skb->ip_summed) {
6072 case CHECKSUM_COMPLETE:
6073 NAPI_GRO_CB(skb)->csum = skb->csum;
6074 NAPI_GRO_CB(skb)->csum_valid = 1;
6075 NAPI_GRO_CB(skb)->csum_cnt = 0;
6076 break;
6077 case CHECKSUM_UNNECESSARY:
6078 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6079 NAPI_GRO_CB(skb)->csum_valid = 0;
6080 break;
6081 default:
6082 NAPI_GRO_CB(skb)->csum_cnt = 0;
6083 NAPI_GRO_CB(skb)->csum_valid = 0;
6084 }
6085
6086 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6087 ipv6_gro_receive, inet_gro_receive,
6088 &gro_list->list, skb);
6089 break;
6090 }
6091 rcu_read_unlock();
6092
6093 if (&ptype->list == head)
6094 goto normal;
6095
6096 if (PTR_ERR(pp) == -EINPROGRESS) {
6097 ret = GRO_CONSUMED;
6098 goto ok;
6099 }
6100
6101 same_flow = NAPI_GRO_CB(skb)->same_flow;
6102 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6103
6104 if (pp) {
6105 skb_list_del_init(pp);
6106 napi_gro_complete(napi, pp);
6107 gro_list->count--;
6108 }
6109
6110 if (same_flow)
6111 goto ok;
6112
6113 if (NAPI_GRO_CB(skb)->flush)
6114 goto normal;
6115
6116 if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6117 gro_flush_oldest(napi, &gro_list->list);
6118 else
6119 gro_list->count++;
6120
6121 NAPI_GRO_CB(skb)->count = 1;
6122 NAPI_GRO_CB(skb)->age = jiffies;
6123 NAPI_GRO_CB(skb)->last = skb;
6124 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6125 list_add(&skb->list, &gro_list->list);
6126 ret = GRO_HELD;
6127
6128 pull:
6129 grow = skb_gro_offset(skb) - skb_headlen(skb);
6130 if (grow > 0)
6131 gro_pull_from_frag0(skb, grow);
6132 ok:
6133 if (gro_list->count) {
6134 if (!test_bit(bucket, &napi->gro_bitmask))
6135 __set_bit(bucket, &napi->gro_bitmask);
6136 } else if (test_bit(bucket, &napi->gro_bitmask)) {
6137 __clear_bit(bucket, &napi->gro_bitmask);
6138 }
6139
6140 return ret;
6141
6142 normal:
6143 ret = GRO_NORMAL;
6144 goto pull;
6145 }
6146
gro_find_receive_by_type(__be16 type)6147 struct packet_offload *gro_find_receive_by_type(__be16 type)
6148 {
6149 struct list_head *offload_head = &offload_base;
6150 struct packet_offload *ptype;
6151
6152 list_for_each_entry_rcu(ptype, offload_head, list) {
6153 if (ptype->type != type || !ptype->callbacks.gro_receive)
6154 continue;
6155 return ptype;
6156 }
6157 return NULL;
6158 }
6159 EXPORT_SYMBOL(gro_find_receive_by_type);
6160
gro_find_complete_by_type(__be16 type)6161 struct packet_offload *gro_find_complete_by_type(__be16 type)
6162 {
6163 struct list_head *offload_head = &offload_base;
6164 struct packet_offload *ptype;
6165
6166 list_for_each_entry_rcu(ptype, offload_head, list) {
6167 if (ptype->type != type || !ptype->callbacks.gro_complete)
6168 continue;
6169 return ptype;
6170 }
6171 return NULL;
6172 }
6173 EXPORT_SYMBOL(gro_find_complete_by_type);
6174
napi_skb_finish(struct napi_struct * napi,struct sk_buff * skb,gro_result_t ret)6175 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6176 struct sk_buff *skb,
6177 gro_result_t ret)
6178 {
6179 switch (ret) {
6180 case GRO_NORMAL:
6181 gro_normal_one(napi, skb, 1);
6182 break;
6183
6184 case GRO_MERGED_FREE:
6185 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6186 napi_skb_free_stolen_head(skb);
6187 else if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
6188 __kfree_skb(skb);
6189 else
6190 __kfree_skb_defer(skb);
6191 break;
6192
6193 case GRO_HELD:
6194 case GRO_MERGED:
6195 case GRO_CONSUMED:
6196 break;
6197 }
6198
6199 return ret;
6200 }
6201
napi_gro_receive(struct napi_struct * napi,struct sk_buff * skb)6202 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6203 {
6204 gro_result_t ret;
6205
6206 skb_mark_napi_id(skb, napi);
6207 trace_napi_gro_receive_entry(skb);
6208
6209 skb_gro_reset_offset(skb, 0);
6210
6211 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6212 trace_napi_gro_receive_exit(ret);
6213
6214 return ret;
6215 }
6216 EXPORT_SYMBOL(napi_gro_receive);
6217
napi_reuse_skb(struct napi_struct * napi,struct sk_buff * skb)6218 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6219 {
6220 if (unlikely(skb->pfmemalloc)) {
6221 consume_skb(skb);
6222 return;
6223 }
6224 __skb_pull(skb, skb_headlen(skb));
6225 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6226 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6227 __vlan_hwaccel_clear_tag(skb);
6228 skb->dev = napi->dev;
6229 skb->skb_iif = 0;
6230
6231 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6232 skb->pkt_type = PACKET_HOST;
6233
6234 skb->encapsulation = 0;
6235 skb_shinfo(skb)->gso_type = 0;
6236 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6237 if (unlikely(skb->slow_gro)) {
6238 skb_orphan(skb);
6239 skb_ext_reset(skb);
6240 nf_reset_ct(skb);
6241 skb->slow_gro = 0;
6242 }
6243
6244 napi->skb = skb;
6245 }
6246
napi_get_frags(struct napi_struct * napi)6247 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6248 {
6249 struct sk_buff *skb = napi->skb;
6250
6251 if (!skb) {
6252 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6253 if (skb) {
6254 napi->skb = skb;
6255 skb_mark_napi_id(skb, napi);
6256 }
6257 }
6258 return skb;
6259 }
6260 EXPORT_SYMBOL(napi_get_frags);
6261
napi_frags_finish(struct napi_struct * napi,struct sk_buff * skb,gro_result_t ret)6262 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6263 struct sk_buff *skb,
6264 gro_result_t ret)
6265 {
6266 switch (ret) {
6267 case GRO_NORMAL:
6268 case GRO_HELD:
6269 __skb_push(skb, ETH_HLEN);
6270 skb->protocol = eth_type_trans(skb, skb->dev);
6271 if (ret == GRO_NORMAL)
6272 gro_normal_one(napi, skb, 1);
6273 break;
6274
6275 case GRO_MERGED_FREE:
6276 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6277 napi_skb_free_stolen_head(skb);
6278 else
6279 napi_reuse_skb(napi, skb);
6280 break;
6281
6282 case GRO_MERGED:
6283 case GRO_CONSUMED:
6284 break;
6285 }
6286
6287 return ret;
6288 }
6289
6290 /* Upper GRO stack assumes network header starts at gro_offset=0
6291 * Drivers could call both napi_gro_frags() and napi_gro_receive()
6292 * We copy ethernet header into skb->data to have a common layout.
6293 */
napi_frags_skb(struct napi_struct * napi)6294 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6295 {
6296 struct sk_buff *skb = napi->skb;
6297 const struct ethhdr *eth;
6298 unsigned int hlen = sizeof(*eth);
6299
6300 napi->skb = NULL;
6301
6302 skb_reset_mac_header(skb);
6303 skb_gro_reset_offset(skb, hlen);
6304
6305 if (unlikely(skb_gro_header_hard(skb, hlen))) {
6306 eth = skb_gro_header_slow(skb, hlen, 0);
6307 if (unlikely(!eth)) {
6308 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6309 __func__, napi->dev->name);
6310 napi_reuse_skb(napi, skb);
6311 return NULL;
6312 }
6313 } else {
6314 eth = (const struct ethhdr *)skb->data;
6315 gro_pull_from_frag0(skb, hlen);
6316 NAPI_GRO_CB(skb)->frag0 += hlen;
6317 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6318 }
6319 __skb_pull(skb, hlen);
6320
6321 /*
6322 * This works because the only protocols we care about don't require
6323 * special handling.
6324 * We'll fix it up properly in napi_frags_finish()
6325 */
6326 skb->protocol = eth->h_proto;
6327
6328 return skb;
6329 }
6330
napi_gro_frags(struct napi_struct * napi)6331 gro_result_t napi_gro_frags(struct napi_struct *napi)
6332 {
6333 gro_result_t ret;
6334 struct sk_buff *skb = napi_frags_skb(napi);
6335
6336 trace_napi_gro_frags_entry(skb);
6337
6338 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6339 trace_napi_gro_frags_exit(ret);
6340
6341 return ret;
6342 }
6343 EXPORT_SYMBOL(napi_gro_frags);
6344
6345 /* Compute the checksum from gro_offset and return the folded value
6346 * after adding in any pseudo checksum.
6347 */
__skb_gro_checksum_complete(struct sk_buff * skb)6348 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6349 {
6350 __wsum wsum;
6351 __sum16 sum;
6352
6353 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6354
6355 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6356 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6357 /* See comments in __skb_checksum_complete(). */
6358 if (likely(!sum)) {
6359 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6360 !skb->csum_complete_sw)
6361 netdev_rx_csum_fault(skb->dev, skb);
6362 }
6363
6364 NAPI_GRO_CB(skb)->csum = wsum;
6365 NAPI_GRO_CB(skb)->csum_valid = 1;
6366
6367 return sum;
6368 }
6369 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6370
net_rps_send_ipi(struct softnet_data * remsd)6371 static void net_rps_send_ipi(struct softnet_data *remsd)
6372 {
6373 #ifdef CONFIG_RPS
6374 while (remsd) {
6375 struct softnet_data *next = remsd->rps_ipi_next;
6376
6377 if (cpu_online(remsd->cpu))
6378 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6379 remsd = next;
6380 }
6381 #endif
6382 }
6383
6384 /*
6385 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6386 * Note: called with local irq disabled, but exits with local irq enabled.
6387 */
net_rps_action_and_irq_enable(struct softnet_data * sd)6388 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6389 {
6390 #ifdef CONFIG_RPS
6391 struct softnet_data *remsd = sd->rps_ipi_list;
6392
6393 if (remsd) {
6394 sd->rps_ipi_list = NULL;
6395
6396 local_irq_enable();
6397
6398 /* Send pending IPI's to kick RPS processing on remote cpus. */
6399 net_rps_send_ipi(remsd);
6400 } else
6401 #endif
6402 local_irq_enable();
6403 }
6404
sd_has_rps_ipi_waiting(struct softnet_data * sd)6405 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6406 {
6407 #ifdef CONFIG_RPS
6408 return sd->rps_ipi_list != NULL;
6409 #else
6410 return false;
6411 #endif
6412 }
6413
process_backlog(struct napi_struct * napi,int quota)6414 static int process_backlog(struct napi_struct *napi, int quota)
6415 {
6416 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6417 bool again = true;
6418 int work = 0;
6419
6420 /* Check if we have pending ipi, its better to send them now,
6421 * not waiting net_rx_action() end.
6422 */
6423 if (sd_has_rps_ipi_waiting(sd)) {
6424 local_irq_disable();
6425 net_rps_action_and_irq_enable(sd);
6426 }
6427
6428 napi->weight = dev_rx_weight;
6429 while (again) {
6430 struct sk_buff *skb;
6431
6432 while ((skb = __skb_dequeue(&sd->process_queue))) {
6433 rcu_read_lock();
6434 __netif_receive_skb(skb);
6435 rcu_read_unlock();
6436 input_queue_head_incr(sd);
6437 if (++work >= quota)
6438 return work;
6439
6440 }
6441
6442 local_irq_disable();
6443 rps_lock(sd);
6444 if (skb_queue_empty(&sd->input_pkt_queue)) {
6445 /*
6446 * Inline a custom version of __napi_complete().
6447 * only current cpu owns and manipulates this napi,
6448 * and NAPI_STATE_SCHED is the only possible flag set
6449 * on backlog.
6450 * We can use a plain write instead of clear_bit(),
6451 * and we dont need an smp_mb() memory barrier.
6452 */
6453 napi->state = 0;
6454 again = false;
6455 } else {
6456 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6457 &sd->process_queue);
6458 }
6459 rps_unlock(sd);
6460 local_irq_enable();
6461 }
6462
6463 return work;
6464 }
6465
6466 /**
6467 * __napi_schedule - schedule for receive
6468 * @n: entry to schedule
6469 *
6470 * The entry's receive function will be scheduled to run.
6471 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6472 */
__napi_schedule(struct napi_struct * n)6473 void __napi_schedule(struct napi_struct *n)
6474 {
6475 unsigned long flags;
6476
6477 local_irq_save(flags);
6478 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6479 local_irq_restore(flags);
6480 }
6481 EXPORT_SYMBOL(__napi_schedule);
6482
6483 /**
6484 * napi_schedule_prep - check if napi can be scheduled
6485 * @n: napi context
6486 *
6487 * Test if NAPI routine is already running, and if not mark
6488 * it as running. This is used as a condition variable to
6489 * insure only one NAPI poll instance runs. We also make
6490 * sure there is no pending NAPI disable.
6491 */
napi_schedule_prep(struct napi_struct * n)6492 bool napi_schedule_prep(struct napi_struct *n)
6493 {
6494 unsigned long val, new;
6495
6496 do {
6497 val = READ_ONCE(n->state);
6498 if (unlikely(val & NAPIF_STATE_DISABLE))
6499 return false;
6500 new = val | NAPIF_STATE_SCHED;
6501
6502 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6503 * This was suggested by Alexander Duyck, as compiler
6504 * emits better code than :
6505 * if (val & NAPIF_STATE_SCHED)
6506 * new |= NAPIF_STATE_MISSED;
6507 */
6508 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6509 NAPIF_STATE_MISSED;
6510 } while (cmpxchg(&n->state, val, new) != val);
6511
6512 return !(val & NAPIF_STATE_SCHED);
6513 }
6514 EXPORT_SYMBOL(napi_schedule_prep);
6515
6516 /**
6517 * __napi_schedule_irqoff - schedule for receive
6518 * @n: entry to schedule
6519 *
6520 * Variant of __napi_schedule() assuming hard irqs are masked.
6521 *
6522 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6523 * because the interrupt disabled assumption might not be true
6524 * due to force-threaded interrupts and spinlock substitution.
6525 */
__napi_schedule_irqoff(struct napi_struct * n)6526 void __napi_schedule_irqoff(struct napi_struct *n)
6527 {
6528 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6529 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6530 else
6531 __napi_schedule(n);
6532 }
6533 EXPORT_SYMBOL(__napi_schedule_irqoff);
6534
napi_complete_done(struct napi_struct * n,int work_done)6535 bool napi_complete_done(struct napi_struct *n, int work_done)
6536 {
6537 unsigned long flags, val, new, timeout = 0;
6538 bool ret = true;
6539
6540 /*
6541 * 1) Don't let napi dequeue from the cpu poll list
6542 * just in case its running on a different cpu.
6543 * 2) If we are busy polling, do nothing here, we have
6544 * the guarantee we will be called later.
6545 */
6546 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6547 NAPIF_STATE_IN_BUSY_POLL)))
6548 return false;
6549
6550 if (work_done) {
6551 if (n->gro_bitmask)
6552 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6553 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6554 }
6555 if (n->defer_hard_irqs_count > 0) {
6556 n->defer_hard_irqs_count--;
6557 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6558 if (timeout)
6559 ret = false;
6560 }
6561 if (n->gro_bitmask) {
6562 /* When the NAPI instance uses a timeout and keeps postponing
6563 * it, we need to bound somehow the time packets are kept in
6564 * the GRO layer
6565 */
6566 napi_gro_flush(n, !!timeout);
6567 }
6568
6569 gro_normal_list(n);
6570
6571 if (unlikely(!list_empty(&n->poll_list))) {
6572 /* If n->poll_list is not empty, we need to mask irqs */
6573 local_irq_save(flags);
6574 list_del_init(&n->poll_list);
6575 local_irq_restore(flags);
6576 }
6577
6578 do {
6579 val = READ_ONCE(n->state);
6580
6581 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6582
6583 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6584 NAPIF_STATE_SCHED_THREADED |
6585 NAPIF_STATE_PREFER_BUSY_POLL);
6586
6587 /* If STATE_MISSED was set, leave STATE_SCHED set,
6588 * because we will call napi->poll() one more time.
6589 * This C code was suggested by Alexander Duyck to help gcc.
6590 */
6591 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6592 NAPIF_STATE_SCHED;
6593 } while (cmpxchg(&n->state, val, new) != val);
6594
6595 if (unlikely(val & NAPIF_STATE_MISSED)) {
6596 __napi_schedule(n);
6597 return false;
6598 }
6599
6600 if (timeout)
6601 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6602 HRTIMER_MODE_REL_PINNED);
6603 return ret;
6604 }
6605 EXPORT_SYMBOL(napi_complete_done);
6606
6607 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)6608 static struct napi_struct *napi_by_id(unsigned int napi_id)
6609 {
6610 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6611 struct napi_struct *napi;
6612
6613 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6614 if (napi->napi_id == napi_id)
6615 return napi;
6616
6617 return NULL;
6618 }
6619
6620 #if defined(CONFIG_NET_RX_BUSY_POLL)
6621
__busy_poll_stop(struct napi_struct * napi,bool skip_schedule)6622 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6623 {
6624 if (!skip_schedule) {
6625 gro_normal_list(napi);
6626 __napi_schedule(napi);
6627 return;
6628 }
6629
6630 if (napi->gro_bitmask) {
6631 /* flush too old packets
6632 * If HZ < 1000, flush all packets.
6633 */
6634 napi_gro_flush(napi, HZ >= 1000);
6635 }
6636
6637 gro_normal_list(napi);
6638 clear_bit(NAPI_STATE_SCHED, &napi->state);
6639 }
6640
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock,bool prefer_busy_poll,u16 budget)6641 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6642 u16 budget)
6643 {
6644 bool skip_schedule = false;
6645 unsigned long timeout;
6646 int rc;
6647
6648 /* Busy polling means there is a high chance device driver hard irq
6649 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6650 * set in napi_schedule_prep().
6651 * Since we are about to call napi->poll() once more, we can safely
6652 * clear NAPI_STATE_MISSED.
6653 *
6654 * Note: x86 could use a single "lock and ..." instruction
6655 * to perform these two clear_bit()
6656 */
6657 clear_bit(NAPI_STATE_MISSED, &napi->state);
6658 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6659
6660 local_bh_disable();
6661
6662 if (prefer_busy_poll) {
6663 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6664 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6665 if (napi->defer_hard_irqs_count && timeout) {
6666 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6667 skip_schedule = true;
6668 }
6669 }
6670
6671 /* All we really want here is to re-enable device interrupts.
6672 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6673 */
6674 rc = napi->poll(napi, budget);
6675 /* We can't gro_normal_list() here, because napi->poll() might have
6676 * rearmed the napi (napi_complete_done()) in which case it could
6677 * already be running on another CPU.
6678 */
6679 trace_napi_poll(napi, rc, budget);
6680 netpoll_poll_unlock(have_poll_lock);
6681 if (rc == budget)
6682 __busy_poll_stop(napi, skip_schedule);
6683 local_bh_enable();
6684 }
6685
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6686 void napi_busy_loop(unsigned int napi_id,
6687 bool (*loop_end)(void *, unsigned long),
6688 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6689 {
6690 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6691 int (*napi_poll)(struct napi_struct *napi, int budget);
6692 void *have_poll_lock = NULL;
6693 struct napi_struct *napi;
6694
6695 restart:
6696 napi_poll = NULL;
6697
6698 rcu_read_lock();
6699
6700 napi = napi_by_id(napi_id);
6701 if (!napi)
6702 goto out;
6703
6704 preempt_disable();
6705 for (;;) {
6706 int work = 0;
6707
6708 local_bh_disable();
6709 if (!napi_poll) {
6710 unsigned long val = READ_ONCE(napi->state);
6711
6712 /* If multiple threads are competing for this napi,
6713 * we avoid dirtying napi->state as much as we can.
6714 */
6715 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6716 NAPIF_STATE_IN_BUSY_POLL)) {
6717 if (prefer_busy_poll)
6718 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6719 goto count;
6720 }
6721 if (cmpxchg(&napi->state, val,
6722 val | NAPIF_STATE_IN_BUSY_POLL |
6723 NAPIF_STATE_SCHED) != val) {
6724 if (prefer_busy_poll)
6725 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6726 goto count;
6727 }
6728 have_poll_lock = netpoll_poll_lock(napi);
6729 napi_poll = napi->poll;
6730 }
6731 work = napi_poll(napi, budget);
6732 trace_napi_poll(napi, work, budget);
6733 gro_normal_list(napi);
6734 count:
6735 if (work > 0)
6736 __NET_ADD_STATS(dev_net(napi->dev),
6737 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6738 local_bh_enable();
6739
6740 if (!loop_end || loop_end(loop_end_arg, start_time))
6741 break;
6742
6743 if (unlikely(need_resched())) {
6744 if (napi_poll)
6745 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6746 preempt_enable();
6747 rcu_read_unlock();
6748 cond_resched();
6749 if (loop_end(loop_end_arg, start_time))
6750 return;
6751 goto restart;
6752 }
6753 cpu_relax();
6754 }
6755 if (napi_poll)
6756 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6757 preempt_enable();
6758 out:
6759 rcu_read_unlock();
6760 }
6761 EXPORT_SYMBOL(napi_busy_loop);
6762
6763 #endif /* CONFIG_NET_RX_BUSY_POLL */
6764
napi_hash_add(struct napi_struct * napi)6765 static void napi_hash_add(struct napi_struct *napi)
6766 {
6767 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6768 return;
6769
6770 spin_lock(&napi_hash_lock);
6771
6772 /* 0..NR_CPUS range is reserved for sender_cpu use */
6773 do {
6774 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6775 napi_gen_id = MIN_NAPI_ID;
6776 } while (napi_by_id(napi_gen_id));
6777 napi->napi_id = napi_gen_id;
6778
6779 hlist_add_head_rcu(&napi->napi_hash_node,
6780 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6781
6782 spin_unlock(&napi_hash_lock);
6783 }
6784
6785 /* Warning : caller is responsible to make sure rcu grace period
6786 * is respected before freeing memory containing @napi
6787 */
napi_hash_del(struct napi_struct * napi)6788 static void napi_hash_del(struct napi_struct *napi)
6789 {
6790 spin_lock(&napi_hash_lock);
6791
6792 hlist_del_init_rcu(&napi->napi_hash_node);
6793
6794 spin_unlock(&napi_hash_lock);
6795 }
6796
napi_watchdog(struct hrtimer * timer)6797 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6798 {
6799 struct napi_struct *napi;
6800
6801 napi = container_of(timer, struct napi_struct, timer);
6802
6803 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6804 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6805 */
6806 if (!napi_disable_pending(napi) &&
6807 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6808 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6809 __napi_schedule_irqoff(napi);
6810 }
6811
6812 return HRTIMER_NORESTART;
6813 }
6814
init_gro_hash(struct napi_struct * napi)6815 static void init_gro_hash(struct napi_struct *napi)
6816 {
6817 int i;
6818
6819 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6820 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6821 napi->gro_hash[i].count = 0;
6822 }
6823 napi->gro_bitmask = 0;
6824 }
6825
dev_set_threaded(struct net_device * dev,bool threaded)6826 int dev_set_threaded(struct net_device *dev, bool threaded)
6827 {
6828 struct napi_struct *napi;
6829 int err = 0;
6830
6831 if (dev->threaded == threaded)
6832 return 0;
6833
6834 if (threaded) {
6835 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6836 if (!napi->thread) {
6837 err = napi_kthread_create(napi);
6838 if (err) {
6839 threaded = false;
6840 break;
6841 }
6842 }
6843 }
6844 }
6845
6846 dev->threaded = threaded;
6847
6848 /* Make sure kthread is created before THREADED bit
6849 * is set.
6850 */
6851 smp_mb__before_atomic();
6852
6853 /* Setting/unsetting threaded mode on a napi might not immediately
6854 * take effect, if the current napi instance is actively being
6855 * polled. In this case, the switch between threaded mode and
6856 * softirq mode will happen in the next round of napi_schedule().
6857 * This should not cause hiccups/stalls to the live traffic.
6858 */
6859 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6860 if (threaded)
6861 set_bit(NAPI_STATE_THREADED, &napi->state);
6862 else
6863 clear_bit(NAPI_STATE_THREADED, &napi->state);
6864 }
6865
6866 return err;
6867 }
6868 EXPORT_SYMBOL(dev_set_threaded);
6869
netif_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)6870 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6871 int (*poll)(struct napi_struct *, int), int weight)
6872 {
6873 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6874 return;
6875
6876 INIT_LIST_HEAD(&napi->poll_list);
6877 INIT_HLIST_NODE(&napi->napi_hash_node);
6878 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6879 napi->timer.function = napi_watchdog;
6880 init_gro_hash(napi);
6881 napi->skb = NULL;
6882 INIT_LIST_HEAD(&napi->rx_list);
6883 napi->rx_count = 0;
6884 napi->poll = poll;
6885 if (weight > NAPI_POLL_WEIGHT)
6886 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6887 weight);
6888 napi->weight = weight;
6889 napi->dev = dev;
6890 #ifdef CONFIG_NETPOLL
6891 napi->poll_owner = -1;
6892 #endif
6893 set_bit(NAPI_STATE_SCHED, &napi->state);
6894 set_bit(NAPI_STATE_NPSVC, &napi->state);
6895 list_add_rcu(&napi->dev_list, &dev->napi_list);
6896 napi_hash_add(napi);
6897 /* Create kthread for this napi if dev->threaded is set.
6898 * Clear dev->threaded if kthread creation failed so that
6899 * threaded mode will not be enabled in napi_enable().
6900 */
6901 if (dev->threaded && napi_kthread_create(napi))
6902 dev->threaded = 0;
6903 }
6904 EXPORT_SYMBOL(netif_napi_add);
6905
napi_disable(struct napi_struct * n)6906 void napi_disable(struct napi_struct *n)
6907 {
6908 might_sleep();
6909 set_bit(NAPI_STATE_DISABLE, &n->state);
6910
6911 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6912 msleep(1);
6913 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6914 msleep(1);
6915
6916 hrtimer_cancel(&n->timer);
6917
6918 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6919 clear_bit(NAPI_STATE_DISABLE, &n->state);
6920 clear_bit(NAPI_STATE_THREADED, &n->state);
6921 }
6922 EXPORT_SYMBOL(napi_disable);
6923
6924 /**
6925 * napi_enable - enable NAPI scheduling
6926 * @n: NAPI context
6927 *
6928 * Resume NAPI from being scheduled on this context.
6929 * Must be paired with napi_disable.
6930 */
napi_enable(struct napi_struct * n)6931 void napi_enable(struct napi_struct *n)
6932 {
6933 unsigned long val, new;
6934
6935 do {
6936 val = READ_ONCE(n->state);
6937 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6938
6939 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6940 if (n->dev->threaded && n->thread)
6941 new |= NAPIF_STATE_THREADED;
6942 } while (cmpxchg(&n->state, val, new) != val);
6943 }
6944 EXPORT_SYMBOL(napi_enable);
6945
flush_gro_hash(struct napi_struct * napi)6946 static void flush_gro_hash(struct napi_struct *napi)
6947 {
6948 int i;
6949
6950 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6951 struct sk_buff *skb, *n;
6952
6953 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6954 kfree_skb(skb);
6955 napi->gro_hash[i].count = 0;
6956 }
6957 }
6958
6959 /* Must be called in process context */
__netif_napi_del(struct napi_struct * napi)6960 void __netif_napi_del(struct napi_struct *napi)
6961 {
6962 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6963 return;
6964
6965 napi_hash_del(napi);
6966 list_del_rcu(&napi->dev_list);
6967 napi_free_frags(napi);
6968
6969 flush_gro_hash(napi);
6970 napi->gro_bitmask = 0;
6971
6972 if (napi->thread) {
6973 kthread_stop(napi->thread);
6974 napi->thread = NULL;
6975 }
6976 }
6977 EXPORT_SYMBOL(__netif_napi_del);
6978
__napi_poll(struct napi_struct * n,bool * repoll)6979 static int __napi_poll(struct napi_struct *n, bool *repoll)
6980 {
6981 int work, weight;
6982
6983 weight = n->weight;
6984
6985 /* This NAPI_STATE_SCHED test is for avoiding a race
6986 * with netpoll's poll_napi(). Only the entity which
6987 * obtains the lock and sees NAPI_STATE_SCHED set will
6988 * actually make the ->poll() call. Therefore we avoid
6989 * accidentally calling ->poll() when NAPI is not scheduled.
6990 */
6991 work = 0;
6992 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6993 work = n->poll(n, weight);
6994 trace_napi_poll(n, work, weight);
6995 }
6996
6997 if (unlikely(work > weight))
6998 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6999 n->poll, work, weight);
7000
7001 if (likely(work < weight))
7002 return work;
7003
7004 /* Drivers must not modify the NAPI state if they
7005 * consume the entire weight. In such cases this code
7006 * still "owns" the NAPI instance and therefore can
7007 * move the instance around on the list at-will.
7008 */
7009 if (unlikely(napi_disable_pending(n))) {
7010 napi_complete(n);
7011 return work;
7012 }
7013
7014 /* The NAPI context has more processing work, but busy-polling
7015 * is preferred. Exit early.
7016 */
7017 if (napi_prefer_busy_poll(n)) {
7018 if (napi_complete_done(n, work)) {
7019 /* If timeout is not set, we need to make sure
7020 * that the NAPI is re-scheduled.
7021 */
7022 napi_schedule(n);
7023 }
7024 return work;
7025 }
7026
7027 if (n->gro_bitmask) {
7028 /* flush too old packets
7029 * If HZ < 1000, flush all packets.
7030 */
7031 napi_gro_flush(n, HZ >= 1000);
7032 }
7033
7034 gro_normal_list(n);
7035
7036 /* Some drivers may have called napi_schedule
7037 * prior to exhausting their budget.
7038 */
7039 if (unlikely(!list_empty(&n->poll_list))) {
7040 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7041 n->dev ? n->dev->name : "backlog");
7042 return work;
7043 }
7044
7045 *repoll = true;
7046
7047 return work;
7048 }
7049
napi_poll(struct napi_struct * n,struct list_head * repoll)7050 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7051 {
7052 bool do_repoll = false;
7053 void *have;
7054 int work;
7055
7056 list_del_init(&n->poll_list);
7057
7058 have = netpoll_poll_lock(n);
7059
7060 work = __napi_poll(n, &do_repoll);
7061
7062 if (do_repoll)
7063 list_add_tail(&n->poll_list, repoll);
7064
7065 netpoll_poll_unlock(have);
7066
7067 return work;
7068 }
7069
napi_thread_wait(struct napi_struct * napi)7070 static int napi_thread_wait(struct napi_struct *napi)
7071 {
7072 bool woken = false;
7073
7074 set_current_state(TASK_INTERRUPTIBLE);
7075
7076 while (!kthread_should_stop()) {
7077 /* Testing SCHED_THREADED bit here to make sure the current
7078 * kthread owns this napi and could poll on this napi.
7079 * Testing SCHED bit is not enough because SCHED bit might be
7080 * set by some other busy poll thread or by napi_disable().
7081 */
7082 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7083 WARN_ON(!list_empty(&napi->poll_list));
7084 __set_current_state(TASK_RUNNING);
7085 return 0;
7086 }
7087
7088 schedule();
7089 /* woken being true indicates this thread owns this napi. */
7090 woken = true;
7091 set_current_state(TASK_INTERRUPTIBLE);
7092 }
7093 __set_current_state(TASK_RUNNING);
7094
7095 return -1;
7096 }
7097
napi_threaded_poll(void * data)7098 static int napi_threaded_poll(void *data)
7099 {
7100 struct napi_struct *napi = data;
7101 void *have;
7102
7103 while (!napi_thread_wait(napi)) {
7104 for (;;) {
7105 bool repoll = false;
7106
7107 local_bh_disable();
7108
7109 have = netpoll_poll_lock(napi);
7110 __napi_poll(napi, &repoll);
7111 netpoll_poll_unlock(have);
7112
7113 local_bh_enable();
7114
7115 if (!repoll)
7116 break;
7117
7118 cond_resched();
7119 }
7120 }
7121 return 0;
7122 }
7123
net_rx_action(struct softirq_action * h)7124 static __latent_entropy void net_rx_action(struct softirq_action *h)
7125 {
7126 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7127 unsigned long time_limit = jiffies +
7128 usecs_to_jiffies(netdev_budget_usecs);
7129 int budget = netdev_budget;
7130 LIST_HEAD(list);
7131 LIST_HEAD(repoll);
7132
7133 local_irq_disable();
7134 list_splice_init(&sd->poll_list, &list);
7135 local_irq_enable();
7136
7137 for (;;) {
7138 struct napi_struct *n;
7139
7140 if (list_empty(&list)) {
7141 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7142 return;
7143 break;
7144 }
7145
7146 n = list_first_entry(&list, struct napi_struct, poll_list);
7147 budget -= napi_poll(n, &repoll);
7148
7149 /* If softirq window is exhausted then punt.
7150 * Allow this to run for 2 jiffies since which will allow
7151 * an average latency of 1.5/HZ.
7152 */
7153 if (unlikely(budget <= 0 ||
7154 time_after_eq(jiffies, time_limit))) {
7155 sd->time_squeeze++;
7156 break;
7157 }
7158 }
7159
7160 local_irq_disable();
7161
7162 list_splice_tail_init(&sd->poll_list, &list);
7163 list_splice_tail(&repoll, &list);
7164 list_splice(&list, &sd->poll_list);
7165 if (!list_empty(&sd->poll_list))
7166 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7167
7168 net_rps_action_and_irq_enable(sd);
7169 }
7170
7171 struct netdev_adjacent {
7172 struct net_device *dev;
7173
7174 /* upper master flag, there can only be one master device per list */
7175 bool master;
7176
7177 /* lookup ignore flag */
7178 bool ignore;
7179
7180 /* counter for the number of times this device was added to us */
7181 u16 ref_nr;
7182
7183 /* private field for the users */
7184 void *private;
7185
7186 struct list_head list;
7187 struct rcu_head rcu;
7188 };
7189
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)7190 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7191 struct list_head *adj_list)
7192 {
7193 struct netdev_adjacent *adj;
7194
7195 list_for_each_entry(adj, adj_list, list) {
7196 if (adj->dev == adj_dev)
7197 return adj;
7198 }
7199 return NULL;
7200 }
7201
____netdev_has_upper_dev(struct net_device * upper_dev,struct netdev_nested_priv * priv)7202 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7203 struct netdev_nested_priv *priv)
7204 {
7205 struct net_device *dev = (struct net_device *)priv->data;
7206
7207 return upper_dev == dev;
7208 }
7209
7210 /**
7211 * netdev_has_upper_dev - Check if device is linked to an upper device
7212 * @dev: device
7213 * @upper_dev: upper device to check
7214 *
7215 * Find out if a device is linked to specified upper device and return true
7216 * in case it is. Note that this checks only immediate upper device,
7217 * not through a complete stack of devices. The caller must hold the RTNL lock.
7218 */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7219 bool netdev_has_upper_dev(struct net_device *dev,
7220 struct net_device *upper_dev)
7221 {
7222 struct netdev_nested_priv priv = {
7223 .data = (void *)upper_dev,
7224 };
7225
7226 ASSERT_RTNL();
7227
7228 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7229 &priv);
7230 }
7231 EXPORT_SYMBOL(netdev_has_upper_dev);
7232
7233 /**
7234 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7235 * @dev: device
7236 * @upper_dev: upper device to check
7237 *
7238 * Find out if a device is linked to specified upper device and return true
7239 * in case it is. Note that this checks the entire upper device chain.
7240 * The caller must hold rcu lock.
7241 */
7242
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)7243 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7244 struct net_device *upper_dev)
7245 {
7246 struct netdev_nested_priv priv = {
7247 .data = (void *)upper_dev,
7248 };
7249
7250 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7251 &priv);
7252 }
7253 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7254
7255 /**
7256 * netdev_has_any_upper_dev - Check if device is linked to some device
7257 * @dev: device
7258 *
7259 * Find out if a device is linked to an upper device and return true in case
7260 * it is. The caller must hold the RTNL lock.
7261 */
netdev_has_any_upper_dev(struct net_device * dev)7262 bool netdev_has_any_upper_dev(struct net_device *dev)
7263 {
7264 ASSERT_RTNL();
7265
7266 return !list_empty(&dev->adj_list.upper);
7267 }
7268 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7269
7270 /**
7271 * netdev_master_upper_dev_get - Get master upper device
7272 * @dev: device
7273 *
7274 * Find a master upper device and return pointer to it or NULL in case
7275 * it's not there. The caller must hold the RTNL lock.
7276 */
netdev_master_upper_dev_get(struct net_device * dev)7277 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7278 {
7279 struct netdev_adjacent *upper;
7280
7281 ASSERT_RTNL();
7282
7283 if (list_empty(&dev->adj_list.upper))
7284 return NULL;
7285
7286 upper = list_first_entry(&dev->adj_list.upper,
7287 struct netdev_adjacent, list);
7288 if (likely(upper->master))
7289 return upper->dev;
7290 return NULL;
7291 }
7292 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7293
__netdev_master_upper_dev_get(struct net_device * dev)7294 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7295 {
7296 struct netdev_adjacent *upper;
7297
7298 ASSERT_RTNL();
7299
7300 if (list_empty(&dev->adj_list.upper))
7301 return NULL;
7302
7303 upper = list_first_entry(&dev->adj_list.upper,
7304 struct netdev_adjacent, list);
7305 if (likely(upper->master) && !upper->ignore)
7306 return upper->dev;
7307 return NULL;
7308 }
7309
7310 /**
7311 * netdev_has_any_lower_dev - Check if device is linked to some device
7312 * @dev: device
7313 *
7314 * Find out if a device is linked to a lower device and return true in case
7315 * it is. The caller must hold the RTNL lock.
7316 */
netdev_has_any_lower_dev(struct net_device * dev)7317 static bool netdev_has_any_lower_dev(struct net_device *dev)
7318 {
7319 ASSERT_RTNL();
7320
7321 return !list_empty(&dev->adj_list.lower);
7322 }
7323
netdev_adjacent_get_private(struct list_head * adj_list)7324 void *netdev_adjacent_get_private(struct list_head *adj_list)
7325 {
7326 struct netdev_adjacent *adj;
7327
7328 adj = list_entry(adj_list, struct netdev_adjacent, list);
7329
7330 return adj->private;
7331 }
7332 EXPORT_SYMBOL(netdev_adjacent_get_private);
7333
7334 /**
7335 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7336 * @dev: device
7337 * @iter: list_head ** of the current position
7338 *
7339 * Gets the next device from the dev's upper list, starting from iter
7340 * position. The caller must hold RCU read lock.
7341 */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)7342 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7343 struct list_head **iter)
7344 {
7345 struct netdev_adjacent *upper;
7346
7347 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7348
7349 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7350
7351 if (&upper->list == &dev->adj_list.upper)
7352 return NULL;
7353
7354 *iter = &upper->list;
7355
7356 return upper->dev;
7357 }
7358 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7359
__netdev_next_upper_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7360 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7361 struct list_head **iter,
7362 bool *ignore)
7363 {
7364 struct netdev_adjacent *upper;
7365
7366 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7367
7368 if (&upper->list == &dev->adj_list.upper)
7369 return NULL;
7370
7371 *iter = &upper->list;
7372 *ignore = upper->ignore;
7373
7374 return upper->dev;
7375 }
7376
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)7377 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7378 struct list_head **iter)
7379 {
7380 struct netdev_adjacent *upper;
7381
7382 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7383
7384 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7385
7386 if (&upper->list == &dev->adj_list.upper)
7387 return NULL;
7388
7389 *iter = &upper->list;
7390
7391 return upper->dev;
7392 }
7393
__netdev_walk_all_upper_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7394 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7395 int (*fn)(struct net_device *dev,
7396 struct netdev_nested_priv *priv),
7397 struct netdev_nested_priv *priv)
7398 {
7399 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7400 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7401 int ret, cur = 0;
7402 bool ignore;
7403
7404 now = dev;
7405 iter = &dev->adj_list.upper;
7406
7407 while (1) {
7408 if (now != dev) {
7409 ret = fn(now, priv);
7410 if (ret)
7411 return ret;
7412 }
7413
7414 next = NULL;
7415 while (1) {
7416 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7417 if (!udev)
7418 break;
7419 if (ignore)
7420 continue;
7421
7422 next = udev;
7423 niter = &udev->adj_list.upper;
7424 dev_stack[cur] = now;
7425 iter_stack[cur++] = iter;
7426 break;
7427 }
7428
7429 if (!next) {
7430 if (!cur)
7431 return 0;
7432 next = dev_stack[--cur];
7433 niter = iter_stack[cur];
7434 }
7435
7436 now = next;
7437 iter = niter;
7438 }
7439
7440 return 0;
7441 }
7442
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7443 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7444 int (*fn)(struct net_device *dev,
7445 struct netdev_nested_priv *priv),
7446 struct netdev_nested_priv *priv)
7447 {
7448 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7449 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7450 int ret, cur = 0;
7451
7452 now = dev;
7453 iter = &dev->adj_list.upper;
7454
7455 while (1) {
7456 if (now != dev) {
7457 ret = fn(now, priv);
7458 if (ret)
7459 return ret;
7460 }
7461
7462 next = NULL;
7463 while (1) {
7464 udev = netdev_next_upper_dev_rcu(now, &iter);
7465 if (!udev)
7466 break;
7467
7468 next = udev;
7469 niter = &udev->adj_list.upper;
7470 dev_stack[cur] = now;
7471 iter_stack[cur++] = iter;
7472 break;
7473 }
7474
7475 if (!next) {
7476 if (!cur)
7477 return 0;
7478 next = dev_stack[--cur];
7479 niter = iter_stack[cur];
7480 }
7481
7482 now = next;
7483 iter = niter;
7484 }
7485
7486 return 0;
7487 }
7488 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7489
__netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7490 static bool __netdev_has_upper_dev(struct net_device *dev,
7491 struct net_device *upper_dev)
7492 {
7493 struct netdev_nested_priv priv = {
7494 .flags = 0,
7495 .data = (void *)upper_dev,
7496 };
7497
7498 ASSERT_RTNL();
7499
7500 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7501 &priv);
7502 }
7503
7504 /**
7505 * netdev_lower_get_next_private - Get the next ->private from the
7506 * lower neighbour list
7507 * @dev: device
7508 * @iter: list_head ** of the current position
7509 *
7510 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7511 * list, starting from iter position. The caller must hold either hold the
7512 * RTNL lock or its own locking that guarantees that the neighbour lower
7513 * list will remain unchanged.
7514 */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)7515 void *netdev_lower_get_next_private(struct net_device *dev,
7516 struct list_head **iter)
7517 {
7518 struct netdev_adjacent *lower;
7519
7520 lower = list_entry(*iter, struct netdev_adjacent, list);
7521
7522 if (&lower->list == &dev->adj_list.lower)
7523 return NULL;
7524
7525 *iter = lower->list.next;
7526
7527 return lower->private;
7528 }
7529 EXPORT_SYMBOL(netdev_lower_get_next_private);
7530
7531 /**
7532 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7533 * lower neighbour list, RCU
7534 * variant
7535 * @dev: device
7536 * @iter: list_head ** of the current position
7537 *
7538 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7539 * list, starting from iter position. The caller must hold RCU read lock.
7540 */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)7541 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7542 struct list_head **iter)
7543 {
7544 struct netdev_adjacent *lower;
7545
7546 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7547
7548 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7549
7550 if (&lower->list == &dev->adj_list.lower)
7551 return NULL;
7552
7553 *iter = &lower->list;
7554
7555 return lower->private;
7556 }
7557 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7558
7559 /**
7560 * netdev_lower_get_next - Get the next device from the lower neighbour
7561 * list
7562 * @dev: device
7563 * @iter: list_head ** of the current position
7564 *
7565 * Gets the next netdev_adjacent from the dev's lower neighbour
7566 * list, starting from iter position. The caller must hold RTNL lock or
7567 * its own locking that guarantees that the neighbour lower
7568 * list will remain unchanged.
7569 */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)7570 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7571 {
7572 struct netdev_adjacent *lower;
7573
7574 lower = list_entry(*iter, struct netdev_adjacent, list);
7575
7576 if (&lower->list == &dev->adj_list.lower)
7577 return NULL;
7578
7579 *iter = lower->list.next;
7580
7581 return lower->dev;
7582 }
7583 EXPORT_SYMBOL(netdev_lower_get_next);
7584
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)7585 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7586 struct list_head **iter)
7587 {
7588 struct netdev_adjacent *lower;
7589
7590 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7591
7592 if (&lower->list == &dev->adj_list.lower)
7593 return NULL;
7594
7595 *iter = &lower->list;
7596
7597 return lower->dev;
7598 }
7599
__netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7600 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7601 struct list_head **iter,
7602 bool *ignore)
7603 {
7604 struct netdev_adjacent *lower;
7605
7606 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7607
7608 if (&lower->list == &dev->adj_list.lower)
7609 return NULL;
7610
7611 *iter = &lower->list;
7612 *ignore = lower->ignore;
7613
7614 return lower->dev;
7615 }
7616
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7617 int netdev_walk_all_lower_dev(struct net_device *dev,
7618 int (*fn)(struct net_device *dev,
7619 struct netdev_nested_priv *priv),
7620 struct netdev_nested_priv *priv)
7621 {
7622 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7623 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7624 int ret, cur = 0;
7625
7626 now = dev;
7627 iter = &dev->adj_list.lower;
7628
7629 while (1) {
7630 if (now != dev) {
7631 ret = fn(now, priv);
7632 if (ret)
7633 return ret;
7634 }
7635
7636 next = NULL;
7637 while (1) {
7638 ldev = netdev_next_lower_dev(now, &iter);
7639 if (!ldev)
7640 break;
7641
7642 next = ldev;
7643 niter = &ldev->adj_list.lower;
7644 dev_stack[cur] = now;
7645 iter_stack[cur++] = iter;
7646 break;
7647 }
7648
7649 if (!next) {
7650 if (!cur)
7651 return 0;
7652 next = dev_stack[--cur];
7653 niter = iter_stack[cur];
7654 }
7655
7656 now = next;
7657 iter = niter;
7658 }
7659
7660 return 0;
7661 }
7662 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7663
__netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7664 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7665 int (*fn)(struct net_device *dev,
7666 struct netdev_nested_priv *priv),
7667 struct netdev_nested_priv *priv)
7668 {
7669 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7670 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7671 int ret, cur = 0;
7672 bool ignore;
7673
7674 now = dev;
7675 iter = &dev->adj_list.lower;
7676
7677 while (1) {
7678 if (now != dev) {
7679 ret = fn(now, priv);
7680 if (ret)
7681 return ret;
7682 }
7683
7684 next = NULL;
7685 while (1) {
7686 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7687 if (!ldev)
7688 break;
7689 if (ignore)
7690 continue;
7691
7692 next = ldev;
7693 niter = &ldev->adj_list.lower;
7694 dev_stack[cur] = now;
7695 iter_stack[cur++] = iter;
7696 break;
7697 }
7698
7699 if (!next) {
7700 if (!cur)
7701 return 0;
7702 next = dev_stack[--cur];
7703 niter = iter_stack[cur];
7704 }
7705
7706 now = next;
7707 iter = niter;
7708 }
7709
7710 return 0;
7711 }
7712
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)7713 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7714 struct list_head **iter)
7715 {
7716 struct netdev_adjacent *lower;
7717
7718 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7719 if (&lower->list == &dev->adj_list.lower)
7720 return NULL;
7721
7722 *iter = &lower->list;
7723
7724 return lower->dev;
7725 }
7726 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7727
__netdev_upper_depth(struct net_device * dev)7728 static u8 __netdev_upper_depth(struct net_device *dev)
7729 {
7730 struct net_device *udev;
7731 struct list_head *iter;
7732 u8 max_depth = 0;
7733 bool ignore;
7734
7735 for (iter = &dev->adj_list.upper,
7736 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7737 udev;
7738 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7739 if (ignore)
7740 continue;
7741 if (max_depth < udev->upper_level)
7742 max_depth = udev->upper_level;
7743 }
7744
7745 return max_depth;
7746 }
7747
__netdev_lower_depth(struct net_device * dev)7748 static u8 __netdev_lower_depth(struct net_device *dev)
7749 {
7750 struct net_device *ldev;
7751 struct list_head *iter;
7752 u8 max_depth = 0;
7753 bool ignore;
7754
7755 for (iter = &dev->adj_list.lower,
7756 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7757 ldev;
7758 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7759 if (ignore)
7760 continue;
7761 if (max_depth < ldev->lower_level)
7762 max_depth = ldev->lower_level;
7763 }
7764
7765 return max_depth;
7766 }
7767
__netdev_update_upper_level(struct net_device * dev,struct netdev_nested_priv * __unused)7768 static int __netdev_update_upper_level(struct net_device *dev,
7769 struct netdev_nested_priv *__unused)
7770 {
7771 dev->upper_level = __netdev_upper_depth(dev) + 1;
7772 return 0;
7773 }
7774
__netdev_update_lower_level(struct net_device * dev,struct netdev_nested_priv * priv)7775 static int __netdev_update_lower_level(struct net_device *dev,
7776 struct netdev_nested_priv *priv)
7777 {
7778 dev->lower_level = __netdev_lower_depth(dev) + 1;
7779
7780 #ifdef CONFIG_LOCKDEP
7781 if (!priv)
7782 return 0;
7783
7784 if (priv->flags & NESTED_SYNC_IMM)
7785 dev->nested_level = dev->lower_level - 1;
7786 if (priv->flags & NESTED_SYNC_TODO)
7787 net_unlink_todo(dev);
7788 #endif
7789 return 0;
7790 }
7791
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7792 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7793 int (*fn)(struct net_device *dev,
7794 struct netdev_nested_priv *priv),
7795 struct netdev_nested_priv *priv)
7796 {
7797 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7798 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7799 int ret, cur = 0;
7800
7801 now = dev;
7802 iter = &dev->adj_list.lower;
7803
7804 while (1) {
7805 if (now != dev) {
7806 ret = fn(now, priv);
7807 if (ret)
7808 return ret;
7809 }
7810
7811 next = NULL;
7812 while (1) {
7813 ldev = netdev_next_lower_dev_rcu(now, &iter);
7814 if (!ldev)
7815 break;
7816
7817 next = ldev;
7818 niter = &ldev->adj_list.lower;
7819 dev_stack[cur] = now;
7820 iter_stack[cur++] = iter;
7821 break;
7822 }
7823
7824 if (!next) {
7825 if (!cur)
7826 return 0;
7827 next = dev_stack[--cur];
7828 niter = iter_stack[cur];
7829 }
7830
7831 now = next;
7832 iter = niter;
7833 }
7834
7835 return 0;
7836 }
7837 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7838
7839 /**
7840 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7841 * lower neighbour list, RCU
7842 * variant
7843 * @dev: device
7844 *
7845 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7846 * list. The caller must hold RCU read lock.
7847 */
netdev_lower_get_first_private_rcu(struct net_device * dev)7848 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7849 {
7850 struct netdev_adjacent *lower;
7851
7852 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7853 struct netdev_adjacent, list);
7854 if (lower)
7855 return lower->private;
7856 return NULL;
7857 }
7858 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7859
7860 /**
7861 * netdev_master_upper_dev_get_rcu - Get master upper device
7862 * @dev: device
7863 *
7864 * Find a master upper device and return pointer to it or NULL in case
7865 * it's not there. The caller must hold the RCU read lock.
7866 */
netdev_master_upper_dev_get_rcu(struct net_device * dev)7867 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7868 {
7869 struct netdev_adjacent *upper;
7870
7871 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7872 struct netdev_adjacent, list);
7873 if (upper && likely(upper->master))
7874 return upper->dev;
7875 return NULL;
7876 }
7877 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7878
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7879 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7880 struct net_device *adj_dev,
7881 struct list_head *dev_list)
7882 {
7883 char linkname[IFNAMSIZ+7];
7884
7885 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7886 "upper_%s" : "lower_%s", adj_dev->name);
7887 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7888 linkname);
7889 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)7890 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7891 char *name,
7892 struct list_head *dev_list)
7893 {
7894 char linkname[IFNAMSIZ+7];
7895
7896 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7897 "upper_%s" : "lower_%s", name);
7898 sysfs_remove_link(&(dev->dev.kobj), linkname);
7899 }
7900
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7901 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7902 struct net_device *adj_dev,
7903 struct list_head *dev_list)
7904 {
7905 return (dev_list == &dev->adj_list.upper ||
7906 dev_list == &dev->adj_list.lower) &&
7907 net_eq(dev_net(dev), dev_net(adj_dev));
7908 }
7909
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)7910 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7911 struct net_device *adj_dev,
7912 struct list_head *dev_list,
7913 void *private, bool master)
7914 {
7915 struct netdev_adjacent *adj;
7916 int ret;
7917
7918 adj = __netdev_find_adj(adj_dev, dev_list);
7919
7920 if (adj) {
7921 adj->ref_nr += 1;
7922 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7923 dev->name, adj_dev->name, adj->ref_nr);
7924
7925 return 0;
7926 }
7927
7928 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7929 if (!adj)
7930 return -ENOMEM;
7931
7932 adj->dev = adj_dev;
7933 adj->master = master;
7934 adj->ref_nr = 1;
7935 adj->private = private;
7936 adj->ignore = false;
7937 dev_hold(adj_dev);
7938
7939 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7940 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7941
7942 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7943 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7944 if (ret)
7945 goto free_adj;
7946 }
7947
7948 /* Ensure that master link is always the first item in list. */
7949 if (master) {
7950 ret = sysfs_create_link(&(dev->dev.kobj),
7951 &(adj_dev->dev.kobj), "master");
7952 if (ret)
7953 goto remove_symlinks;
7954
7955 list_add_rcu(&adj->list, dev_list);
7956 } else {
7957 list_add_tail_rcu(&adj->list, dev_list);
7958 }
7959
7960 return 0;
7961
7962 remove_symlinks:
7963 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7964 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7965 free_adj:
7966 kfree(adj);
7967 dev_put(adj_dev);
7968
7969 return ret;
7970 }
7971
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)7972 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7973 struct net_device *adj_dev,
7974 u16 ref_nr,
7975 struct list_head *dev_list)
7976 {
7977 struct netdev_adjacent *adj;
7978
7979 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7980 dev->name, adj_dev->name, ref_nr);
7981
7982 adj = __netdev_find_adj(adj_dev, dev_list);
7983
7984 if (!adj) {
7985 pr_err("Adjacency does not exist for device %s from %s\n",
7986 dev->name, adj_dev->name);
7987 WARN_ON(1);
7988 return;
7989 }
7990
7991 if (adj->ref_nr > ref_nr) {
7992 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7993 dev->name, adj_dev->name, ref_nr,
7994 adj->ref_nr - ref_nr);
7995 adj->ref_nr -= ref_nr;
7996 return;
7997 }
7998
7999 if (adj->master)
8000 sysfs_remove_link(&(dev->dev.kobj), "master");
8001
8002 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8003 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8004
8005 list_del_rcu(&adj->list);
8006 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8007 adj_dev->name, dev->name, adj_dev->name);
8008 dev_put(adj_dev);
8009 kfree_rcu(adj, rcu);
8010 }
8011
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)8012 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8013 struct net_device *upper_dev,
8014 struct list_head *up_list,
8015 struct list_head *down_list,
8016 void *private, bool master)
8017 {
8018 int ret;
8019
8020 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8021 private, master);
8022 if (ret)
8023 return ret;
8024
8025 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8026 private, false);
8027 if (ret) {
8028 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8029 return ret;
8030 }
8031
8032 return 0;
8033 }
8034
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)8035 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8036 struct net_device *upper_dev,
8037 u16 ref_nr,
8038 struct list_head *up_list,
8039 struct list_head *down_list)
8040 {
8041 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8042 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8043 }
8044
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)8045 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8046 struct net_device *upper_dev,
8047 void *private, bool master)
8048 {
8049 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8050 &dev->adj_list.upper,
8051 &upper_dev->adj_list.lower,
8052 private, master);
8053 }
8054
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)8055 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8056 struct net_device *upper_dev)
8057 {
8058 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8059 &dev->adj_list.upper,
8060 &upper_dev->adj_list.lower);
8061 }
8062
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netdev_nested_priv * priv,struct netlink_ext_ack * extack)8063 static int __netdev_upper_dev_link(struct net_device *dev,
8064 struct net_device *upper_dev, bool master,
8065 void *upper_priv, void *upper_info,
8066 struct netdev_nested_priv *priv,
8067 struct netlink_ext_ack *extack)
8068 {
8069 struct netdev_notifier_changeupper_info changeupper_info = {
8070 .info = {
8071 .dev = dev,
8072 .extack = extack,
8073 },
8074 .upper_dev = upper_dev,
8075 .master = master,
8076 .linking = true,
8077 .upper_info = upper_info,
8078 };
8079 struct net_device *master_dev;
8080 int ret = 0;
8081
8082 ASSERT_RTNL();
8083
8084 if (dev == upper_dev)
8085 return -EBUSY;
8086
8087 /* To prevent loops, check if dev is not upper device to upper_dev. */
8088 if (__netdev_has_upper_dev(upper_dev, dev))
8089 return -EBUSY;
8090
8091 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8092 return -EMLINK;
8093
8094 if (!master) {
8095 if (__netdev_has_upper_dev(dev, upper_dev))
8096 return -EEXIST;
8097 } else {
8098 master_dev = __netdev_master_upper_dev_get(dev);
8099 if (master_dev)
8100 return master_dev == upper_dev ? -EEXIST : -EBUSY;
8101 }
8102
8103 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8104 &changeupper_info.info);
8105 ret = notifier_to_errno(ret);
8106 if (ret)
8107 return ret;
8108
8109 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8110 master);
8111 if (ret)
8112 return ret;
8113
8114 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8115 &changeupper_info.info);
8116 ret = notifier_to_errno(ret);
8117 if (ret)
8118 goto rollback;
8119
8120 __netdev_update_upper_level(dev, NULL);
8121 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8122
8123 __netdev_update_lower_level(upper_dev, priv);
8124 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8125 priv);
8126
8127 return 0;
8128
8129 rollback:
8130 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8131
8132 return ret;
8133 }
8134
8135 /**
8136 * netdev_upper_dev_link - Add a link to the upper device
8137 * @dev: device
8138 * @upper_dev: new upper device
8139 * @extack: netlink extended ack
8140 *
8141 * Adds a link to device which is upper to this one. The caller must hold
8142 * the RTNL lock. On a failure a negative errno code is returned.
8143 * On success the reference counts are adjusted and the function
8144 * returns zero.
8145 */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)8146 int netdev_upper_dev_link(struct net_device *dev,
8147 struct net_device *upper_dev,
8148 struct netlink_ext_ack *extack)
8149 {
8150 struct netdev_nested_priv priv = {
8151 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8152 .data = NULL,
8153 };
8154
8155 return __netdev_upper_dev_link(dev, upper_dev, false,
8156 NULL, NULL, &priv, extack);
8157 }
8158 EXPORT_SYMBOL(netdev_upper_dev_link);
8159
8160 /**
8161 * netdev_master_upper_dev_link - Add a master link to the upper device
8162 * @dev: device
8163 * @upper_dev: new upper device
8164 * @upper_priv: upper device private
8165 * @upper_info: upper info to be passed down via notifier
8166 * @extack: netlink extended ack
8167 *
8168 * Adds a link to device which is upper to this one. In this case, only
8169 * one master upper device can be linked, although other non-master devices
8170 * might be linked as well. The caller must hold the RTNL lock.
8171 * On a failure a negative errno code is returned. On success the reference
8172 * counts are adjusted and the function returns zero.
8173 */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)8174 int netdev_master_upper_dev_link(struct net_device *dev,
8175 struct net_device *upper_dev,
8176 void *upper_priv, void *upper_info,
8177 struct netlink_ext_ack *extack)
8178 {
8179 struct netdev_nested_priv priv = {
8180 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8181 .data = NULL,
8182 };
8183
8184 return __netdev_upper_dev_link(dev, upper_dev, true,
8185 upper_priv, upper_info, &priv, extack);
8186 }
8187 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8188
__netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev,struct netdev_nested_priv * priv)8189 static void __netdev_upper_dev_unlink(struct net_device *dev,
8190 struct net_device *upper_dev,
8191 struct netdev_nested_priv *priv)
8192 {
8193 struct netdev_notifier_changeupper_info changeupper_info = {
8194 .info = {
8195 .dev = dev,
8196 },
8197 .upper_dev = upper_dev,
8198 .linking = false,
8199 };
8200
8201 ASSERT_RTNL();
8202
8203 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8204
8205 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8206 &changeupper_info.info);
8207
8208 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8209
8210 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8211 &changeupper_info.info);
8212
8213 __netdev_update_upper_level(dev, NULL);
8214 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8215
8216 __netdev_update_lower_level(upper_dev, priv);
8217 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8218 priv);
8219 }
8220
8221 /**
8222 * netdev_upper_dev_unlink - Removes a link to upper device
8223 * @dev: device
8224 * @upper_dev: new upper device
8225 *
8226 * Removes a link to device which is upper to this one. The caller must hold
8227 * the RTNL lock.
8228 */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)8229 void netdev_upper_dev_unlink(struct net_device *dev,
8230 struct net_device *upper_dev)
8231 {
8232 struct netdev_nested_priv priv = {
8233 .flags = NESTED_SYNC_TODO,
8234 .data = NULL,
8235 };
8236
8237 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8238 }
8239 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8240
__netdev_adjacent_dev_set(struct net_device * upper_dev,struct net_device * lower_dev,bool val)8241 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8242 struct net_device *lower_dev,
8243 bool val)
8244 {
8245 struct netdev_adjacent *adj;
8246
8247 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8248 if (adj)
8249 adj->ignore = val;
8250
8251 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8252 if (adj)
8253 adj->ignore = val;
8254 }
8255
netdev_adjacent_dev_disable(struct net_device * upper_dev,struct net_device * lower_dev)8256 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8257 struct net_device *lower_dev)
8258 {
8259 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8260 }
8261
netdev_adjacent_dev_enable(struct net_device * upper_dev,struct net_device * lower_dev)8262 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8263 struct net_device *lower_dev)
8264 {
8265 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8266 }
8267
netdev_adjacent_change_prepare(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev,struct netlink_ext_ack * extack)8268 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8269 struct net_device *new_dev,
8270 struct net_device *dev,
8271 struct netlink_ext_ack *extack)
8272 {
8273 struct netdev_nested_priv priv = {
8274 .flags = 0,
8275 .data = NULL,
8276 };
8277 int err;
8278
8279 if (!new_dev)
8280 return 0;
8281
8282 if (old_dev && new_dev != old_dev)
8283 netdev_adjacent_dev_disable(dev, old_dev);
8284 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8285 extack);
8286 if (err) {
8287 if (old_dev && new_dev != old_dev)
8288 netdev_adjacent_dev_enable(dev, old_dev);
8289 return err;
8290 }
8291
8292 return 0;
8293 }
8294 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8295
netdev_adjacent_change_commit(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8296 void netdev_adjacent_change_commit(struct net_device *old_dev,
8297 struct net_device *new_dev,
8298 struct net_device *dev)
8299 {
8300 struct netdev_nested_priv priv = {
8301 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8302 .data = NULL,
8303 };
8304
8305 if (!new_dev || !old_dev)
8306 return;
8307
8308 if (new_dev == old_dev)
8309 return;
8310
8311 netdev_adjacent_dev_enable(dev, old_dev);
8312 __netdev_upper_dev_unlink(old_dev, dev, &priv);
8313 }
8314 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8315
netdev_adjacent_change_abort(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8316 void netdev_adjacent_change_abort(struct net_device *old_dev,
8317 struct net_device *new_dev,
8318 struct net_device *dev)
8319 {
8320 struct netdev_nested_priv priv = {
8321 .flags = 0,
8322 .data = NULL,
8323 };
8324
8325 if (!new_dev)
8326 return;
8327
8328 if (old_dev && new_dev != old_dev)
8329 netdev_adjacent_dev_enable(dev, old_dev);
8330
8331 __netdev_upper_dev_unlink(new_dev, dev, &priv);
8332 }
8333 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8334
8335 /**
8336 * netdev_bonding_info_change - Dispatch event about slave change
8337 * @dev: device
8338 * @bonding_info: info to dispatch
8339 *
8340 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8341 * The caller must hold the RTNL lock.
8342 */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)8343 void netdev_bonding_info_change(struct net_device *dev,
8344 struct netdev_bonding_info *bonding_info)
8345 {
8346 struct netdev_notifier_bonding_info info = {
8347 .info.dev = dev,
8348 };
8349
8350 memcpy(&info.bonding_info, bonding_info,
8351 sizeof(struct netdev_bonding_info));
8352 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8353 &info.info);
8354 }
8355 EXPORT_SYMBOL(netdev_bonding_info_change);
8356
8357 /**
8358 * netdev_get_xmit_slave - Get the xmit slave of master device
8359 * @dev: device
8360 * @skb: The packet
8361 * @all_slaves: assume all the slaves are active
8362 *
8363 * The reference counters are not incremented so the caller must be
8364 * careful with locks. The caller must hold RCU lock.
8365 * %NULL is returned if no slave is found.
8366 */
8367
netdev_get_xmit_slave(struct net_device * dev,struct sk_buff * skb,bool all_slaves)8368 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8369 struct sk_buff *skb,
8370 bool all_slaves)
8371 {
8372 const struct net_device_ops *ops = dev->netdev_ops;
8373
8374 if (!ops->ndo_get_xmit_slave)
8375 return NULL;
8376 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8377 }
8378 EXPORT_SYMBOL(netdev_get_xmit_slave);
8379
netdev_sk_get_lower_dev(struct net_device * dev,struct sock * sk)8380 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8381 struct sock *sk)
8382 {
8383 const struct net_device_ops *ops = dev->netdev_ops;
8384
8385 if (!ops->ndo_sk_get_lower_dev)
8386 return NULL;
8387 return ops->ndo_sk_get_lower_dev(dev, sk);
8388 }
8389
8390 /**
8391 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8392 * @dev: device
8393 * @sk: the socket
8394 *
8395 * %NULL is returned if no lower device is found.
8396 */
8397
netdev_sk_get_lowest_dev(struct net_device * dev,struct sock * sk)8398 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8399 struct sock *sk)
8400 {
8401 struct net_device *lower;
8402
8403 lower = netdev_sk_get_lower_dev(dev, sk);
8404 while (lower) {
8405 dev = lower;
8406 lower = netdev_sk_get_lower_dev(dev, sk);
8407 }
8408
8409 return dev;
8410 }
8411 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8412
netdev_adjacent_add_links(struct net_device * dev)8413 static void netdev_adjacent_add_links(struct net_device *dev)
8414 {
8415 struct netdev_adjacent *iter;
8416
8417 struct net *net = dev_net(dev);
8418
8419 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8420 if (!net_eq(net, dev_net(iter->dev)))
8421 continue;
8422 netdev_adjacent_sysfs_add(iter->dev, dev,
8423 &iter->dev->adj_list.lower);
8424 netdev_adjacent_sysfs_add(dev, iter->dev,
8425 &dev->adj_list.upper);
8426 }
8427
8428 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8429 if (!net_eq(net, dev_net(iter->dev)))
8430 continue;
8431 netdev_adjacent_sysfs_add(iter->dev, dev,
8432 &iter->dev->adj_list.upper);
8433 netdev_adjacent_sysfs_add(dev, iter->dev,
8434 &dev->adj_list.lower);
8435 }
8436 }
8437
netdev_adjacent_del_links(struct net_device * dev)8438 static void netdev_adjacent_del_links(struct net_device *dev)
8439 {
8440 struct netdev_adjacent *iter;
8441
8442 struct net *net = dev_net(dev);
8443
8444 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8445 if (!net_eq(net, dev_net(iter->dev)))
8446 continue;
8447 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8448 &iter->dev->adj_list.lower);
8449 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8450 &dev->adj_list.upper);
8451 }
8452
8453 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8454 if (!net_eq(net, dev_net(iter->dev)))
8455 continue;
8456 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8457 &iter->dev->adj_list.upper);
8458 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8459 &dev->adj_list.lower);
8460 }
8461 }
8462
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)8463 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8464 {
8465 struct netdev_adjacent *iter;
8466
8467 struct net *net = dev_net(dev);
8468
8469 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8470 if (!net_eq(net, dev_net(iter->dev)))
8471 continue;
8472 netdev_adjacent_sysfs_del(iter->dev, oldname,
8473 &iter->dev->adj_list.lower);
8474 netdev_adjacent_sysfs_add(iter->dev, dev,
8475 &iter->dev->adj_list.lower);
8476 }
8477
8478 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8479 if (!net_eq(net, dev_net(iter->dev)))
8480 continue;
8481 netdev_adjacent_sysfs_del(iter->dev, oldname,
8482 &iter->dev->adj_list.upper);
8483 netdev_adjacent_sysfs_add(iter->dev, dev,
8484 &iter->dev->adj_list.upper);
8485 }
8486 }
8487
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)8488 void *netdev_lower_dev_get_private(struct net_device *dev,
8489 struct net_device *lower_dev)
8490 {
8491 struct netdev_adjacent *lower;
8492
8493 if (!lower_dev)
8494 return NULL;
8495 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8496 if (!lower)
8497 return NULL;
8498
8499 return lower->private;
8500 }
8501 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8502
8503
8504 /**
8505 * netdev_lower_state_changed - Dispatch event about lower device state change
8506 * @lower_dev: device
8507 * @lower_state_info: state to dispatch
8508 *
8509 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8510 * The caller must hold the RTNL lock.
8511 */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)8512 void netdev_lower_state_changed(struct net_device *lower_dev,
8513 void *lower_state_info)
8514 {
8515 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8516 .info.dev = lower_dev,
8517 };
8518
8519 ASSERT_RTNL();
8520 changelowerstate_info.lower_state_info = lower_state_info;
8521 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8522 &changelowerstate_info.info);
8523 }
8524 EXPORT_SYMBOL(netdev_lower_state_changed);
8525
dev_change_rx_flags(struct net_device * dev,int flags)8526 static void dev_change_rx_flags(struct net_device *dev, int flags)
8527 {
8528 const struct net_device_ops *ops = dev->netdev_ops;
8529
8530 if (ops->ndo_change_rx_flags)
8531 ops->ndo_change_rx_flags(dev, flags);
8532 }
8533
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)8534 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8535 {
8536 unsigned int old_flags = dev->flags;
8537 kuid_t uid;
8538 kgid_t gid;
8539
8540 ASSERT_RTNL();
8541
8542 dev->flags |= IFF_PROMISC;
8543 dev->promiscuity += inc;
8544 if (dev->promiscuity == 0) {
8545 /*
8546 * Avoid overflow.
8547 * If inc causes overflow, untouch promisc and return error.
8548 */
8549 if (inc < 0)
8550 dev->flags &= ~IFF_PROMISC;
8551 else {
8552 dev->promiscuity -= inc;
8553 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8554 dev->name);
8555 return -EOVERFLOW;
8556 }
8557 }
8558 if (dev->flags != old_flags) {
8559 pr_info("device %s %s promiscuous mode\n",
8560 dev->name,
8561 dev->flags & IFF_PROMISC ? "entered" : "left");
8562 if (audit_enabled) {
8563 current_uid_gid(&uid, &gid);
8564 audit_log(audit_context(), GFP_ATOMIC,
8565 AUDIT_ANOM_PROMISCUOUS,
8566 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8567 dev->name, (dev->flags & IFF_PROMISC),
8568 (old_flags & IFF_PROMISC),
8569 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8570 from_kuid(&init_user_ns, uid),
8571 from_kgid(&init_user_ns, gid),
8572 audit_get_sessionid(current));
8573 }
8574
8575 dev_change_rx_flags(dev, IFF_PROMISC);
8576 }
8577 if (notify)
8578 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8579 return 0;
8580 }
8581
8582 /**
8583 * dev_set_promiscuity - update promiscuity count on a device
8584 * @dev: device
8585 * @inc: modifier
8586 *
8587 * Add or remove promiscuity from a device. While the count in the device
8588 * remains above zero the interface remains promiscuous. Once it hits zero
8589 * the device reverts back to normal filtering operation. A negative inc
8590 * value is used to drop promiscuity on the device.
8591 * Return 0 if successful or a negative errno code on error.
8592 */
dev_set_promiscuity(struct net_device * dev,int inc)8593 int dev_set_promiscuity(struct net_device *dev, int inc)
8594 {
8595 unsigned int old_flags = dev->flags;
8596 int err;
8597
8598 err = __dev_set_promiscuity(dev, inc, true);
8599 if (err < 0)
8600 return err;
8601 if (dev->flags != old_flags)
8602 dev_set_rx_mode(dev);
8603 return err;
8604 }
8605 EXPORT_SYMBOL(dev_set_promiscuity);
8606
__dev_set_allmulti(struct net_device * dev,int inc,bool notify)8607 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8608 {
8609 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8610
8611 ASSERT_RTNL();
8612
8613 dev->flags |= IFF_ALLMULTI;
8614 dev->allmulti += inc;
8615 if (dev->allmulti == 0) {
8616 /*
8617 * Avoid overflow.
8618 * If inc causes overflow, untouch allmulti and return error.
8619 */
8620 if (inc < 0)
8621 dev->flags &= ~IFF_ALLMULTI;
8622 else {
8623 dev->allmulti -= inc;
8624 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8625 dev->name);
8626 return -EOVERFLOW;
8627 }
8628 }
8629 if (dev->flags ^ old_flags) {
8630 dev_change_rx_flags(dev, IFF_ALLMULTI);
8631 dev_set_rx_mode(dev);
8632 if (notify)
8633 __dev_notify_flags(dev, old_flags,
8634 dev->gflags ^ old_gflags);
8635 }
8636 return 0;
8637 }
8638
8639 /**
8640 * dev_set_allmulti - update allmulti count on a device
8641 * @dev: device
8642 * @inc: modifier
8643 *
8644 * Add or remove reception of all multicast frames to a device. While the
8645 * count in the device remains above zero the interface remains listening
8646 * to all interfaces. Once it hits zero the device reverts back to normal
8647 * filtering operation. A negative @inc value is used to drop the counter
8648 * when releasing a resource needing all multicasts.
8649 * Return 0 if successful or a negative errno code on error.
8650 */
8651
dev_set_allmulti(struct net_device * dev,int inc)8652 int dev_set_allmulti(struct net_device *dev, int inc)
8653 {
8654 return __dev_set_allmulti(dev, inc, true);
8655 }
8656 EXPORT_SYMBOL(dev_set_allmulti);
8657
8658 /*
8659 * Upload unicast and multicast address lists to device and
8660 * configure RX filtering. When the device doesn't support unicast
8661 * filtering it is put in promiscuous mode while unicast addresses
8662 * are present.
8663 */
__dev_set_rx_mode(struct net_device * dev)8664 void __dev_set_rx_mode(struct net_device *dev)
8665 {
8666 const struct net_device_ops *ops = dev->netdev_ops;
8667
8668 /* dev_open will call this function so the list will stay sane. */
8669 if (!(dev->flags&IFF_UP))
8670 return;
8671
8672 if (!netif_device_present(dev))
8673 return;
8674
8675 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8676 /* Unicast addresses changes may only happen under the rtnl,
8677 * therefore calling __dev_set_promiscuity here is safe.
8678 */
8679 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8680 __dev_set_promiscuity(dev, 1, false);
8681 dev->uc_promisc = true;
8682 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8683 __dev_set_promiscuity(dev, -1, false);
8684 dev->uc_promisc = false;
8685 }
8686 }
8687
8688 if (ops->ndo_set_rx_mode)
8689 ops->ndo_set_rx_mode(dev);
8690 }
8691
dev_set_rx_mode(struct net_device * dev)8692 void dev_set_rx_mode(struct net_device *dev)
8693 {
8694 netif_addr_lock_bh(dev);
8695 __dev_set_rx_mode(dev);
8696 netif_addr_unlock_bh(dev);
8697 }
8698
8699 /**
8700 * dev_get_flags - get flags reported to userspace
8701 * @dev: device
8702 *
8703 * Get the combination of flag bits exported through APIs to userspace.
8704 */
dev_get_flags(const struct net_device * dev)8705 unsigned int dev_get_flags(const struct net_device *dev)
8706 {
8707 unsigned int flags;
8708
8709 flags = (dev->flags & ~(IFF_PROMISC |
8710 IFF_ALLMULTI |
8711 IFF_RUNNING |
8712 IFF_LOWER_UP |
8713 IFF_DORMANT)) |
8714 (dev->gflags & (IFF_PROMISC |
8715 IFF_ALLMULTI));
8716
8717 if (netif_running(dev)) {
8718 if (netif_oper_up(dev))
8719 flags |= IFF_RUNNING;
8720 if (netif_carrier_ok(dev))
8721 flags |= IFF_LOWER_UP;
8722 if (netif_dormant(dev))
8723 flags |= IFF_DORMANT;
8724 }
8725
8726 return flags;
8727 }
8728 EXPORT_SYMBOL(dev_get_flags);
8729
__dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8730 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8731 struct netlink_ext_ack *extack)
8732 {
8733 unsigned int old_flags = dev->flags;
8734 int ret;
8735
8736 ASSERT_RTNL();
8737
8738 /*
8739 * Set the flags on our device.
8740 */
8741
8742 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8743 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8744 IFF_AUTOMEDIA)) |
8745 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8746 IFF_ALLMULTI));
8747
8748 /*
8749 * Load in the correct multicast list now the flags have changed.
8750 */
8751
8752 if ((old_flags ^ flags) & IFF_MULTICAST)
8753 dev_change_rx_flags(dev, IFF_MULTICAST);
8754
8755 dev_set_rx_mode(dev);
8756
8757 /*
8758 * Have we downed the interface. We handle IFF_UP ourselves
8759 * according to user attempts to set it, rather than blindly
8760 * setting it.
8761 */
8762
8763 ret = 0;
8764 if ((old_flags ^ flags) & IFF_UP) {
8765 if (old_flags & IFF_UP)
8766 __dev_close(dev);
8767 else
8768 ret = __dev_open(dev, extack);
8769 }
8770
8771 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8772 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8773 unsigned int old_flags = dev->flags;
8774
8775 dev->gflags ^= IFF_PROMISC;
8776
8777 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8778 if (dev->flags != old_flags)
8779 dev_set_rx_mode(dev);
8780 }
8781
8782 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8783 * is important. Some (broken) drivers set IFF_PROMISC, when
8784 * IFF_ALLMULTI is requested not asking us and not reporting.
8785 */
8786 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8787 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8788
8789 dev->gflags ^= IFF_ALLMULTI;
8790 __dev_set_allmulti(dev, inc, false);
8791 }
8792
8793 return ret;
8794 }
8795
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges)8796 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8797 unsigned int gchanges)
8798 {
8799 unsigned int changes = dev->flags ^ old_flags;
8800
8801 if (gchanges)
8802 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8803
8804 if (changes & IFF_UP) {
8805 if (dev->flags & IFF_UP)
8806 call_netdevice_notifiers(NETDEV_UP, dev);
8807 else
8808 call_netdevice_notifiers(NETDEV_DOWN, dev);
8809 }
8810
8811 if (dev->flags & IFF_UP &&
8812 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8813 struct netdev_notifier_change_info change_info = {
8814 .info = {
8815 .dev = dev,
8816 },
8817 .flags_changed = changes,
8818 };
8819
8820 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8821 }
8822 }
8823
8824 /**
8825 * dev_change_flags - change device settings
8826 * @dev: device
8827 * @flags: device state flags
8828 * @extack: netlink extended ack
8829 *
8830 * Change settings on device based state flags. The flags are
8831 * in the userspace exported format.
8832 */
dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8833 int dev_change_flags(struct net_device *dev, unsigned int flags,
8834 struct netlink_ext_ack *extack)
8835 {
8836 int ret;
8837 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8838
8839 ret = __dev_change_flags(dev, flags, extack);
8840 if (ret < 0)
8841 return ret;
8842
8843 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8844 __dev_notify_flags(dev, old_flags, changes);
8845 return ret;
8846 }
8847 EXPORT_SYMBOL(dev_change_flags);
8848
__dev_set_mtu(struct net_device * dev,int new_mtu)8849 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8850 {
8851 const struct net_device_ops *ops = dev->netdev_ops;
8852
8853 if (ops->ndo_change_mtu)
8854 return ops->ndo_change_mtu(dev, new_mtu);
8855
8856 /* Pairs with all the lockless reads of dev->mtu in the stack */
8857 WRITE_ONCE(dev->mtu, new_mtu);
8858 return 0;
8859 }
8860 EXPORT_SYMBOL(__dev_set_mtu);
8861
dev_validate_mtu(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8862 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8863 struct netlink_ext_ack *extack)
8864 {
8865 /* MTU must be positive, and in range */
8866 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8867 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8868 return -EINVAL;
8869 }
8870
8871 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8872 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8873 return -EINVAL;
8874 }
8875 return 0;
8876 }
8877
8878 /**
8879 * dev_set_mtu_ext - Change maximum transfer unit
8880 * @dev: device
8881 * @new_mtu: new transfer unit
8882 * @extack: netlink extended ack
8883 *
8884 * Change the maximum transfer size of the network device.
8885 */
dev_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8886 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8887 struct netlink_ext_ack *extack)
8888 {
8889 int err, orig_mtu;
8890
8891 if (new_mtu == dev->mtu)
8892 return 0;
8893
8894 err = dev_validate_mtu(dev, new_mtu, extack);
8895 if (err)
8896 return err;
8897
8898 if (!netif_device_present(dev))
8899 return -ENODEV;
8900
8901 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8902 err = notifier_to_errno(err);
8903 if (err)
8904 return err;
8905
8906 orig_mtu = dev->mtu;
8907 err = __dev_set_mtu(dev, new_mtu);
8908
8909 if (!err) {
8910 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8911 orig_mtu);
8912 err = notifier_to_errno(err);
8913 if (err) {
8914 /* setting mtu back and notifying everyone again,
8915 * so that they have a chance to revert changes.
8916 */
8917 __dev_set_mtu(dev, orig_mtu);
8918 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8919 new_mtu);
8920 }
8921 }
8922 return err;
8923 }
8924
dev_set_mtu(struct net_device * dev,int new_mtu)8925 int dev_set_mtu(struct net_device *dev, int new_mtu)
8926 {
8927 struct netlink_ext_ack extack;
8928 int err;
8929
8930 memset(&extack, 0, sizeof(extack));
8931 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8932 if (err && extack._msg)
8933 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8934 return err;
8935 }
8936 EXPORT_SYMBOL(dev_set_mtu);
8937
8938 /**
8939 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8940 * @dev: device
8941 * @new_len: new tx queue length
8942 */
dev_change_tx_queue_len(struct net_device * dev,unsigned long new_len)8943 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8944 {
8945 unsigned int orig_len = dev->tx_queue_len;
8946 int res;
8947
8948 if (new_len != (unsigned int)new_len)
8949 return -ERANGE;
8950
8951 if (new_len != orig_len) {
8952 dev->tx_queue_len = new_len;
8953 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8954 res = notifier_to_errno(res);
8955 if (res)
8956 goto err_rollback;
8957 res = dev_qdisc_change_tx_queue_len(dev);
8958 if (res)
8959 goto err_rollback;
8960 }
8961
8962 return 0;
8963
8964 err_rollback:
8965 netdev_err(dev, "refused to change device tx_queue_len\n");
8966 dev->tx_queue_len = orig_len;
8967 return res;
8968 }
8969
8970 /**
8971 * dev_set_group - Change group this device belongs to
8972 * @dev: device
8973 * @new_group: group this device should belong to
8974 */
dev_set_group(struct net_device * dev,int new_group)8975 void dev_set_group(struct net_device *dev, int new_group)
8976 {
8977 dev->group = new_group;
8978 }
8979 EXPORT_SYMBOL(dev_set_group);
8980
8981 /**
8982 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8983 * @dev: device
8984 * @addr: new address
8985 * @extack: netlink extended ack
8986 */
dev_pre_changeaddr_notify(struct net_device * dev,const char * addr,struct netlink_ext_ack * extack)8987 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8988 struct netlink_ext_ack *extack)
8989 {
8990 struct netdev_notifier_pre_changeaddr_info info = {
8991 .info.dev = dev,
8992 .info.extack = extack,
8993 .dev_addr = addr,
8994 };
8995 int rc;
8996
8997 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8998 return notifier_to_errno(rc);
8999 }
9000 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9001
9002 /**
9003 * dev_set_mac_address - Change Media Access Control Address
9004 * @dev: device
9005 * @sa: new address
9006 * @extack: netlink extended ack
9007 *
9008 * Change the hardware (MAC) address of the device
9009 */
dev_set_mac_address(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)9010 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9011 struct netlink_ext_ack *extack)
9012 {
9013 const struct net_device_ops *ops = dev->netdev_ops;
9014 int err;
9015
9016 if (!ops->ndo_set_mac_address)
9017 return -EOPNOTSUPP;
9018 if (sa->sa_family != dev->type)
9019 return -EINVAL;
9020 if (!netif_device_present(dev))
9021 return -ENODEV;
9022 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9023 if (err)
9024 return err;
9025 err = ops->ndo_set_mac_address(dev, sa);
9026 if (err)
9027 return err;
9028 dev->addr_assign_type = NET_ADDR_SET;
9029 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9030 add_device_randomness(dev->dev_addr, dev->addr_len);
9031 return 0;
9032 }
9033 EXPORT_SYMBOL(dev_set_mac_address);
9034
9035 static DECLARE_RWSEM(dev_addr_sem);
9036
dev_set_mac_address_user(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)9037 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9038 struct netlink_ext_ack *extack)
9039 {
9040 int ret;
9041
9042 down_write(&dev_addr_sem);
9043 ret = dev_set_mac_address(dev, sa, extack);
9044 up_write(&dev_addr_sem);
9045 return ret;
9046 }
9047 EXPORT_SYMBOL(dev_set_mac_address_user);
9048
dev_get_mac_address(struct sockaddr * sa,struct net * net,char * dev_name)9049 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9050 {
9051 size_t size = sizeof(sa->sa_data);
9052 struct net_device *dev;
9053 int ret = 0;
9054
9055 down_read(&dev_addr_sem);
9056 rcu_read_lock();
9057
9058 dev = dev_get_by_name_rcu(net, dev_name);
9059 if (!dev) {
9060 ret = -ENODEV;
9061 goto unlock;
9062 }
9063 if (!dev->addr_len)
9064 memset(sa->sa_data, 0, size);
9065 else
9066 memcpy(sa->sa_data, dev->dev_addr,
9067 min_t(size_t, size, dev->addr_len));
9068 sa->sa_family = dev->type;
9069
9070 unlock:
9071 rcu_read_unlock();
9072 up_read(&dev_addr_sem);
9073 return ret;
9074 }
9075 EXPORT_SYMBOL(dev_get_mac_address);
9076
9077 /**
9078 * dev_change_carrier - Change device carrier
9079 * @dev: device
9080 * @new_carrier: new value
9081 *
9082 * Change device carrier
9083 */
dev_change_carrier(struct net_device * dev,bool new_carrier)9084 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9085 {
9086 const struct net_device_ops *ops = dev->netdev_ops;
9087
9088 if (!ops->ndo_change_carrier)
9089 return -EOPNOTSUPP;
9090 if (!netif_device_present(dev))
9091 return -ENODEV;
9092 return ops->ndo_change_carrier(dev, new_carrier);
9093 }
9094 EXPORT_SYMBOL(dev_change_carrier);
9095
9096 /**
9097 * dev_get_phys_port_id - Get device physical port ID
9098 * @dev: device
9099 * @ppid: port ID
9100 *
9101 * Get device physical port ID
9102 */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)9103 int dev_get_phys_port_id(struct net_device *dev,
9104 struct netdev_phys_item_id *ppid)
9105 {
9106 const struct net_device_ops *ops = dev->netdev_ops;
9107
9108 if (!ops->ndo_get_phys_port_id)
9109 return -EOPNOTSUPP;
9110 return ops->ndo_get_phys_port_id(dev, ppid);
9111 }
9112 EXPORT_SYMBOL(dev_get_phys_port_id);
9113
9114 /**
9115 * dev_get_phys_port_name - Get device physical port name
9116 * @dev: device
9117 * @name: port name
9118 * @len: limit of bytes to copy to name
9119 *
9120 * Get device physical port name
9121 */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)9122 int dev_get_phys_port_name(struct net_device *dev,
9123 char *name, size_t len)
9124 {
9125 const struct net_device_ops *ops = dev->netdev_ops;
9126 int err;
9127
9128 if (ops->ndo_get_phys_port_name) {
9129 err = ops->ndo_get_phys_port_name(dev, name, len);
9130 if (err != -EOPNOTSUPP)
9131 return err;
9132 }
9133 return devlink_compat_phys_port_name_get(dev, name, len);
9134 }
9135 EXPORT_SYMBOL(dev_get_phys_port_name);
9136
9137 /**
9138 * dev_get_port_parent_id - Get the device's port parent identifier
9139 * @dev: network device
9140 * @ppid: pointer to a storage for the port's parent identifier
9141 * @recurse: allow/disallow recursion to lower devices
9142 *
9143 * Get the devices's port parent identifier
9144 */
dev_get_port_parent_id(struct net_device * dev,struct netdev_phys_item_id * ppid,bool recurse)9145 int dev_get_port_parent_id(struct net_device *dev,
9146 struct netdev_phys_item_id *ppid,
9147 bool recurse)
9148 {
9149 const struct net_device_ops *ops = dev->netdev_ops;
9150 struct netdev_phys_item_id first = { };
9151 struct net_device *lower_dev;
9152 struct list_head *iter;
9153 int err;
9154
9155 if (ops->ndo_get_port_parent_id) {
9156 err = ops->ndo_get_port_parent_id(dev, ppid);
9157 if (err != -EOPNOTSUPP)
9158 return err;
9159 }
9160
9161 err = devlink_compat_switch_id_get(dev, ppid);
9162 if (!err || err != -EOPNOTSUPP)
9163 return err;
9164
9165 if (!recurse)
9166 return -EOPNOTSUPP;
9167
9168 netdev_for_each_lower_dev(dev, lower_dev, iter) {
9169 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9170 if (err)
9171 break;
9172 if (!first.id_len)
9173 first = *ppid;
9174 else if (memcmp(&first, ppid, sizeof(*ppid)))
9175 return -EOPNOTSUPP;
9176 }
9177
9178 return err;
9179 }
9180 EXPORT_SYMBOL(dev_get_port_parent_id);
9181
9182 /**
9183 * netdev_port_same_parent_id - Indicate if two network devices have
9184 * the same port parent identifier
9185 * @a: first network device
9186 * @b: second network device
9187 */
netdev_port_same_parent_id(struct net_device * a,struct net_device * b)9188 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9189 {
9190 struct netdev_phys_item_id a_id = { };
9191 struct netdev_phys_item_id b_id = { };
9192
9193 if (dev_get_port_parent_id(a, &a_id, true) ||
9194 dev_get_port_parent_id(b, &b_id, true))
9195 return false;
9196
9197 return netdev_phys_item_id_same(&a_id, &b_id);
9198 }
9199 EXPORT_SYMBOL(netdev_port_same_parent_id);
9200
9201 /**
9202 * dev_change_proto_down - update protocol port state information
9203 * @dev: device
9204 * @proto_down: new value
9205 *
9206 * This info can be used by switch drivers to set the phys state of the
9207 * port.
9208 */
dev_change_proto_down(struct net_device * dev,bool proto_down)9209 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9210 {
9211 const struct net_device_ops *ops = dev->netdev_ops;
9212
9213 if (!ops->ndo_change_proto_down)
9214 return -EOPNOTSUPP;
9215 if (!netif_device_present(dev))
9216 return -ENODEV;
9217 return ops->ndo_change_proto_down(dev, proto_down);
9218 }
9219 EXPORT_SYMBOL(dev_change_proto_down);
9220
9221 /**
9222 * dev_change_proto_down_generic - generic implementation for
9223 * ndo_change_proto_down that sets carrier according to
9224 * proto_down.
9225 *
9226 * @dev: device
9227 * @proto_down: new value
9228 */
dev_change_proto_down_generic(struct net_device * dev,bool proto_down)9229 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9230 {
9231 if (proto_down)
9232 netif_carrier_off(dev);
9233 else
9234 netif_carrier_on(dev);
9235 dev->proto_down = proto_down;
9236 return 0;
9237 }
9238 EXPORT_SYMBOL(dev_change_proto_down_generic);
9239
9240 /**
9241 * dev_change_proto_down_reason - proto down reason
9242 *
9243 * @dev: device
9244 * @mask: proto down mask
9245 * @value: proto down value
9246 */
dev_change_proto_down_reason(struct net_device * dev,unsigned long mask,u32 value)9247 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9248 u32 value)
9249 {
9250 int b;
9251
9252 if (!mask) {
9253 dev->proto_down_reason = value;
9254 } else {
9255 for_each_set_bit(b, &mask, 32) {
9256 if (value & (1 << b))
9257 dev->proto_down_reason |= BIT(b);
9258 else
9259 dev->proto_down_reason &= ~BIT(b);
9260 }
9261 }
9262 }
9263 EXPORT_SYMBOL(dev_change_proto_down_reason);
9264
9265 struct bpf_xdp_link {
9266 struct bpf_link link;
9267 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9268 int flags;
9269 };
9270
dev_xdp_mode(struct net_device * dev,u32 flags)9271 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9272 {
9273 if (flags & XDP_FLAGS_HW_MODE)
9274 return XDP_MODE_HW;
9275 if (flags & XDP_FLAGS_DRV_MODE)
9276 return XDP_MODE_DRV;
9277 if (flags & XDP_FLAGS_SKB_MODE)
9278 return XDP_MODE_SKB;
9279 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9280 }
9281
dev_xdp_bpf_op(struct net_device * dev,enum bpf_xdp_mode mode)9282 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9283 {
9284 switch (mode) {
9285 case XDP_MODE_SKB:
9286 return generic_xdp_install;
9287 case XDP_MODE_DRV:
9288 case XDP_MODE_HW:
9289 return dev->netdev_ops->ndo_bpf;
9290 default:
9291 return NULL;
9292 }
9293 }
9294
dev_xdp_link(struct net_device * dev,enum bpf_xdp_mode mode)9295 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9296 enum bpf_xdp_mode mode)
9297 {
9298 return dev->xdp_state[mode].link;
9299 }
9300
dev_xdp_prog(struct net_device * dev,enum bpf_xdp_mode mode)9301 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9302 enum bpf_xdp_mode mode)
9303 {
9304 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9305
9306 if (link)
9307 return link->link.prog;
9308 return dev->xdp_state[mode].prog;
9309 }
9310
dev_xdp_prog_count(struct net_device * dev)9311 u8 dev_xdp_prog_count(struct net_device *dev)
9312 {
9313 u8 count = 0;
9314 int i;
9315
9316 for (i = 0; i < __MAX_XDP_MODE; i++)
9317 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9318 count++;
9319 return count;
9320 }
9321 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9322
dev_xdp_prog_id(struct net_device * dev,enum bpf_xdp_mode mode)9323 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9324 {
9325 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9326
9327 return prog ? prog->aux->id : 0;
9328 }
9329
dev_xdp_set_link(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_xdp_link * link)9330 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9331 struct bpf_xdp_link *link)
9332 {
9333 dev->xdp_state[mode].link = link;
9334 dev->xdp_state[mode].prog = NULL;
9335 }
9336
dev_xdp_set_prog(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_prog * prog)9337 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9338 struct bpf_prog *prog)
9339 {
9340 dev->xdp_state[mode].link = NULL;
9341 dev->xdp_state[mode].prog = prog;
9342 }
9343
dev_xdp_install(struct net_device * dev,enum bpf_xdp_mode mode,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)9344 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9345 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9346 u32 flags, struct bpf_prog *prog)
9347 {
9348 struct netdev_bpf xdp;
9349 int err;
9350
9351 memset(&xdp, 0, sizeof(xdp));
9352 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9353 xdp.extack = extack;
9354 xdp.flags = flags;
9355 xdp.prog = prog;
9356
9357 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9358 * "moved" into driver), so they don't increment it on their own, but
9359 * they do decrement refcnt when program is detached or replaced.
9360 * Given net_device also owns link/prog, we need to bump refcnt here
9361 * to prevent drivers from underflowing it.
9362 */
9363 if (prog)
9364 bpf_prog_inc(prog);
9365 err = bpf_op(dev, &xdp);
9366 if (err) {
9367 if (prog)
9368 bpf_prog_put(prog);
9369 return err;
9370 }
9371
9372 if (mode != XDP_MODE_HW)
9373 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9374
9375 return 0;
9376 }
9377
dev_xdp_uninstall(struct net_device * dev)9378 static void dev_xdp_uninstall(struct net_device *dev)
9379 {
9380 struct bpf_xdp_link *link;
9381 struct bpf_prog *prog;
9382 enum bpf_xdp_mode mode;
9383 bpf_op_t bpf_op;
9384
9385 ASSERT_RTNL();
9386
9387 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9388 prog = dev_xdp_prog(dev, mode);
9389 if (!prog)
9390 continue;
9391
9392 bpf_op = dev_xdp_bpf_op(dev, mode);
9393 if (!bpf_op)
9394 continue;
9395
9396 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9397
9398 /* auto-detach link from net device */
9399 link = dev_xdp_link(dev, mode);
9400 if (link)
9401 link->dev = NULL;
9402 else
9403 bpf_prog_put(prog);
9404
9405 dev_xdp_set_link(dev, mode, NULL);
9406 }
9407 }
9408
dev_xdp_attach(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog,u32 flags)9409 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9410 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9411 struct bpf_prog *old_prog, u32 flags)
9412 {
9413 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9414 struct bpf_prog *cur_prog;
9415 struct net_device *upper;
9416 struct list_head *iter;
9417 enum bpf_xdp_mode mode;
9418 bpf_op_t bpf_op;
9419 int err;
9420
9421 ASSERT_RTNL();
9422
9423 /* either link or prog attachment, never both */
9424 if (link && (new_prog || old_prog))
9425 return -EINVAL;
9426 /* link supports only XDP mode flags */
9427 if (link && (flags & ~XDP_FLAGS_MODES)) {
9428 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9429 return -EINVAL;
9430 }
9431 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9432 if (num_modes > 1) {
9433 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9434 return -EINVAL;
9435 }
9436 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9437 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9438 NL_SET_ERR_MSG(extack,
9439 "More than one program loaded, unset mode is ambiguous");
9440 return -EINVAL;
9441 }
9442 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9443 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9444 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9445 return -EINVAL;
9446 }
9447
9448 mode = dev_xdp_mode(dev, flags);
9449 /* can't replace attached link */
9450 if (dev_xdp_link(dev, mode)) {
9451 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9452 return -EBUSY;
9453 }
9454
9455 /* don't allow if an upper device already has a program */
9456 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9457 if (dev_xdp_prog_count(upper) > 0) {
9458 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9459 return -EEXIST;
9460 }
9461 }
9462
9463 cur_prog = dev_xdp_prog(dev, mode);
9464 /* can't replace attached prog with link */
9465 if (link && cur_prog) {
9466 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9467 return -EBUSY;
9468 }
9469 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9470 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9471 return -EEXIST;
9472 }
9473
9474 /* put effective new program into new_prog */
9475 if (link)
9476 new_prog = link->link.prog;
9477
9478 if (new_prog) {
9479 bool offload = mode == XDP_MODE_HW;
9480 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9481 ? XDP_MODE_DRV : XDP_MODE_SKB;
9482
9483 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9484 NL_SET_ERR_MSG(extack, "XDP program already attached");
9485 return -EBUSY;
9486 }
9487 if (!offload && dev_xdp_prog(dev, other_mode)) {
9488 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9489 return -EEXIST;
9490 }
9491 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9492 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9493 return -EINVAL;
9494 }
9495 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9496 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9497 return -EINVAL;
9498 }
9499 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9500 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9501 return -EINVAL;
9502 }
9503 }
9504
9505 /* don't call drivers if the effective program didn't change */
9506 if (new_prog != cur_prog) {
9507 bpf_op = dev_xdp_bpf_op(dev, mode);
9508 if (!bpf_op) {
9509 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9510 return -EOPNOTSUPP;
9511 }
9512
9513 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9514 if (err)
9515 return err;
9516 }
9517
9518 if (link)
9519 dev_xdp_set_link(dev, mode, link);
9520 else
9521 dev_xdp_set_prog(dev, mode, new_prog);
9522 if (cur_prog)
9523 bpf_prog_put(cur_prog);
9524
9525 return 0;
9526 }
9527
dev_xdp_attach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9528 static int dev_xdp_attach_link(struct net_device *dev,
9529 struct netlink_ext_ack *extack,
9530 struct bpf_xdp_link *link)
9531 {
9532 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9533 }
9534
dev_xdp_detach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9535 static int dev_xdp_detach_link(struct net_device *dev,
9536 struct netlink_ext_ack *extack,
9537 struct bpf_xdp_link *link)
9538 {
9539 enum bpf_xdp_mode mode;
9540 bpf_op_t bpf_op;
9541
9542 ASSERT_RTNL();
9543
9544 mode = dev_xdp_mode(dev, link->flags);
9545 if (dev_xdp_link(dev, mode) != link)
9546 return -EINVAL;
9547
9548 bpf_op = dev_xdp_bpf_op(dev, mode);
9549 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9550 dev_xdp_set_link(dev, mode, NULL);
9551 return 0;
9552 }
9553
bpf_xdp_link_release(struct bpf_link * link)9554 static void bpf_xdp_link_release(struct bpf_link *link)
9555 {
9556 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9557
9558 rtnl_lock();
9559
9560 /* if racing with net_device's tear down, xdp_link->dev might be
9561 * already NULL, in which case link was already auto-detached
9562 */
9563 if (xdp_link->dev) {
9564 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9565 xdp_link->dev = NULL;
9566 }
9567
9568 rtnl_unlock();
9569 }
9570
bpf_xdp_link_detach(struct bpf_link * link)9571 static int bpf_xdp_link_detach(struct bpf_link *link)
9572 {
9573 bpf_xdp_link_release(link);
9574 return 0;
9575 }
9576
bpf_xdp_link_dealloc(struct bpf_link * link)9577 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9578 {
9579 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9580
9581 kfree(xdp_link);
9582 }
9583
bpf_xdp_link_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)9584 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9585 struct seq_file *seq)
9586 {
9587 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9588 u32 ifindex = 0;
9589
9590 rtnl_lock();
9591 if (xdp_link->dev)
9592 ifindex = xdp_link->dev->ifindex;
9593 rtnl_unlock();
9594
9595 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9596 }
9597
bpf_xdp_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)9598 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9599 struct bpf_link_info *info)
9600 {
9601 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9602 u32 ifindex = 0;
9603
9604 rtnl_lock();
9605 if (xdp_link->dev)
9606 ifindex = xdp_link->dev->ifindex;
9607 rtnl_unlock();
9608
9609 info->xdp.ifindex = ifindex;
9610 return 0;
9611 }
9612
bpf_xdp_link_update(struct bpf_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog)9613 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9614 struct bpf_prog *old_prog)
9615 {
9616 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9617 enum bpf_xdp_mode mode;
9618 bpf_op_t bpf_op;
9619 int err = 0;
9620
9621 rtnl_lock();
9622
9623 /* link might have been auto-released already, so fail */
9624 if (!xdp_link->dev) {
9625 err = -ENOLINK;
9626 goto out_unlock;
9627 }
9628
9629 if (old_prog && link->prog != old_prog) {
9630 err = -EPERM;
9631 goto out_unlock;
9632 }
9633 old_prog = link->prog;
9634 if (old_prog == new_prog) {
9635 /* no-op, don't disturb drivers */
9636 bpf_prog_put(new_prog);
9637 goto out_unlock;
9638 }
9639
9640 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9641 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9642 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9643 xdp_link->flags, new_prog);
9644 if (err)
9645 goto out_unlock;
9646
9647 old_prog = xchg(&link->prog, new_prog);
9648 bpf_prog_put(old_prog);
9649
9650 out_unlock:
9651 rtnl_unlock();
9652 return err;
9653 }
9654
9655 static const struct bpf_link_ops bpf_xdp_link_lops = {
9656 .release = bpf_xdp_link_release,
9657 .dealloc = bpf_xdp_link_dealloc,
9658 .detach = bpf_xdp_link_detach,
9659 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9660 .fill_link_info = bpf_xdp_link_fill_link_info,
9661 .update_prog = bpf_xdp_link_update,
9662 };
9663
bpf_xdp_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)9664 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9665 {
9666 struct net *net = current->nsproxy->net_ns;
9667 struct bpf_link_primer link_primer;
9668 struct bpf_xdp_link *link;
9669 struct net_device *dev;
9670 int err, fd;
9671
9672 rtnl_lock();
9673 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9674 if (!dev) {
9675 rtnl_unlock();
9676 return -EINVAL;
9677 }
9678
9679 link = kzalloc(sizeof(*link), GFP_USER);
9680 if (!link) {
9681 err = -ENOMEM;
9682 goto unlock;
9683 }
9684
9685 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9686 link->dev = dev;
9687 link->flags = attr->link_create.flags;
9688
9689 err = bpf_link_prime(&link->link, &link_primer);
9690 if (err) {
9691 kfree(link);
9692 goto unlock;
9693 }
9694
9695 err = dev_xdp_attach_link(dev, NULL, link);
9696 rtnl_unlock();
9697
9698 if (err) {
9699 link->dev = NULL;
9700 bpf_link_cleanup(&link_primer);
9701 goto out_put_dev;
9702 }
9703
9704 fd = bpf_link_settle(&link_primer);
9705 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9706 dev_put(dev);
9707 return fd;
9708
9709 unlock:
9710 rtnl_unlock();
9711
9712 out_put_dev:
9713 dev_put(dev);
9714 return err;
9715 }
9716
9717 /**
9718 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9719 * @dev: device
9720 * @extack: netlink extended ack
9721 * @fd: new program fd or negative value to clear
9722 * @expected_fd: old program fd that userspace expects to replace or clear
9723 * @flags: xdp-related flags
9724 *
9725 * Set or clear a bpf program for a device
9726 */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,int expected_fd,u32 flags)9727 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9728 int fd, int expected_fd, u32 flags)
9729 {
9730 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9731 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9732 int err;
9733
9734 ASSERT_RTNL();
9735
9736 if (fd >= 0) {
9737 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9738 mode != XDP_MODE_SKB);
9739 if (IS_ERR(new_prog))
9740 return PTR_ERR(new_prog);
9741 }
9742
9743 if (expected_fd >= 0) {
9744 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9745 mode != XDP_MODE_SKB);
9746 if (IS_ERR(old_prog)) {
9747 err = PTR_ERR(old_prog);
9748 old_prog = NULL;
9749 goto err_out;
9750 }
9751 }
9752
9753 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9754
9755 err_out:
9756 if (err && new_prog)
9757 bpf_prog_put(new_prog);
9758 if (old_prog)
9759 bpf_prog_put(old_prog);
9760 return err;
9761 }
9762
9763 /**
9764 * dev_new_index - allocate an ifindex
9765 * @net: the applicable net namespace
9766 *
9767 * Returns a suitable unique value for a new device interface
9768 * number. The caller must hold the rtnl semaphore or the
9769 * dev_base_lock to be sure it remains unique.
9770 */
dev_new_index(struct net * net)9771 static int dev_new_index(struct net *net)
9772 {
9773 int ifindex = net->ifindex;
9774
9775 for (;;) {
9776 if (++ifindex <= 0)
9777 ifindex = 1;
9778 if (!__dev_get_by_index(net, ifindex))
9779 return net->ifindex = ifindex;
9780 }
9781 }
9782
9783 /* Delayed registration/unregisteration */
9784 static LIST_HEAD(net_todo_list);
9785 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9786
net_set_todo(struct net_device * dev)9787 static void net_set_todo(struct net_device *dev)
9788 {
9789 list_add_tail(&dev->todo_list, &net_todo_list);
9790 dev_net(dev)->dev_unreg_count++;
9791 }
9792
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)9793 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9794 struct net_device *upper, netdev_features_t features)
9795 {
9796 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9797 netdev_features_t feature;
9798 int feature_bit;
9799
9800 for_each_netdev_feature(upper_disables, feature_bit) {
9801 feature = __NETIF_F_BIT(feature_bit);
9802 if (!(upper->wanted_features & feature)
9803 && (features & feature)) {
9804 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9805 &feature, upper->name);
9806 features &= ~feature;
9807 }
9808 }
9809
9810 return features;
9811 }
9812
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)9813 static void netdev_sync_lower_features(struct net_device *upper,
9814 struct net_device *lower, netdev_features_t features)
9815 {
9816 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9817 netdev_features_t feature;
9818 int feature_bit;
9819
9820 for_each_netdev_feature(upper_disables, feature_bit) {
9821 feature = __NETIF_F_BIT(feature_bit);
9822 if (!(features & feature) && (lower->features & feature)) {
9823 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9824 &feature, lower->name);
9825 lower->wanted_features &= ~feature;
9826 __netdev_update_features(lower);
9827
9828 if (unlikely(lower->features & feature))
9829 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9830 &feature, lower->name);
9831 else
9832 netdev_features_change(lower);
9833 }
9834 }
9835 }
9836
netdev_fix_features(struct net_device * dev,netdev_features_t features)9837 static netdev_features_t netdev_fix_features(struct net_device *dev,
9838 netdev_features_t features)
9839 {
9840 /* Fix illegal checksum combinations */
9841 if ((features & NETIF_F_HW_CSUM) &&
9842 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9843 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9844 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9845 }
9846
9847 /* TSO requires that SG is present as well. */
9848 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9849 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9850 features &= ~NETIF_F_ALL_TSO;
9851 }
9852
9853 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9854 !(features & NETIF_F_IP_CSUM)) {
9855 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9856 features &= ~NETIF_F_TSO;
9857 features &= ~NETIF_F_TSO_ECN;
9858 }
9859
9860 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9861 !(features & NETIF_F_IPV6_CSUM)) {
9862 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9863 features &= ~NETIF_F_TSO6;
9864 }
9865
9866 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9867 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9868 features &= ~NETIF_F_TSO_MANGLEID;
9869
9870 /* TSO ECN requires that TSO is present as well. */
9871 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9872 features &= ~NETIF_F_TSO_ECN;
9873
9874 /* Software GSO depends on SG. */
9875 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9876 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9877 features &= ~NETIF_F_GSO;
9878 }
9879
9880 /* GSO partial features require GSO partial be set */
9881 if ((features & dev->gso_partial_features) &&
9882 !(features & NETIF_F_GSO_PARTIAL)) {
9883 netdev_dbg(dev,
9884 "Dropping partially supported GSO features since no GSO partial.\n");
9885 features &= ~dev->gso_partial_features;
9886 }
9887
9888 if (!(features & NETIF_F_RXCSUM)) {
9889 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9890 * successfully merged by hardware must also have the
9891 * checksum verified by hardware. If the user does not
9892 * want to enable RXCSUM, logically, we should disable GRO_HW.
9893 */
9894 if (features & NETIF_F_GRO_HW) {
9895 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9896 features &= ~NETIF_F_GRO_HW;
9897 }
9898 }
9899
9900 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9901 if (features & NETIF_F_RXFCS) {
9902 if (features & NETIF_F_LRO) {
9903 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9904 features &= ~NETIF_F_LRO;
9905 }
9906
9907 if (features & NETIF_F_GRO_HW) {
9908 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9909 features &= ~NETIF_F_GRO_HW;
9910 }
9911 }
9912
9913 if (features & NETIF_F_HW_TLS_TX) {
9914 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9915 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9916 bool hw_csum = features & NETIF_F_HW_CSUM;
9917
9918 if (!ip_csum && !hw_csum) {
9919 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9920 features &= ~NETIF_F_HW_TLS_TX;
9921 }
9922 }
9923
9924 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9925 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9926 features &= ~NETIF_F_HW_TLS_RX;
9927 }
9928
9929 return features;
9930 }
9931
__netdev_update_features(struct net_device * dev)9932 int __netdev_update_features(struct net_device *dev)
9933 {
9934 struct net_device *upper, *lower;
9935 netdev_features_t features;
9936 struct list_head *iter;
9937 int err = -1;
9938
9939 ASSERT_RTNL();
9940
9941 features = netdev_get_wanted_features(dev);
9942
9943 if (dev->netdev_ops->ndo_fix_features)
9944 features = dev->netdev_ops->ndo_fix_features(dev, features);
9945
9946 /* driver might be less strict about feature dependencies */
9947 features = netdev_fix_features(dev, features);
9948
9949 /* some features can't be enabled if they're off on an upper device */
9950 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9951 features = netdev_sync_upper_features(dev, upper, features);
9952
9953 if (dev->features == features)
9954 goto sync_lower;
9955
9956 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9957 &dev->features, &features);
9958
9959 if (dev->netdev_ops->ndo_set_features)
9960 err = dev->netdev_ops->ndo_set_features(dev, features);
9961 else
9962 err = 0;
9963
9964 if (unlikely(err < 0)) {
9965 netdev_err(dev,
9966 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9967 err, &features, &dev->features);
9968 /* return non-0 since some features might have changed and
9969 * it's better to fire a spurious notification than miss it
9970 */
9971 return -1;
9972 }
9973
9974 sync_lower:
9975 /* some features must be disabled on lower devices when disabled
9976 * on an upper device (think: bonding master or bridge)
9977 */
9978 netdev_for_each_lower_dev(dev, lower, iter)
9979 netdev_sync_lower_features(dev, lower, features);
9980
9981 if (!err) {
9982 netdev_features_t diff = features ^ dev->features;
9983
9984 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9985 /* udp_tunnel_{get,drop}_rx_info both need
9986 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9987 * device, or they won't do anything.
9988 * Thus we need to update dev->features
9989 * *before* calling udp_tunnel_get_rx_info,
9990 * but *after* calling udp_tunnel_drop_rx_info.
9991 */
9992 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9993 dev->features = features;
9994 udp_tunnel_get_rx_info(dev);
9995 } else {
9996 udp_tunnel_drop_rx_info(dev);
9997 }
9998 }
9999
10000 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10001 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10002 dev->features = features;
10003 err |= vlan_get_rx_ctag_filter_info(dev);
10004 } else {
10005 vlan_drop_rx_ctag_filter_info(dev);
10006 }
10007 }
10008
10009 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10010 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10011 dev->features = features;
10012 err |= vlan_get_rx_stag_filter_info(dev);
10013 } else {
10014 vlan_drop_rx_stag_filter_info(dev);
10015 }
10016 }
10017
10018 dev->features = features;
10019 }
10020
10021 return err < 0 ? 0 : 1;
10022 }
10023
10024 /**
10025 * netdev_update_features - recalculate device features
10026 * @dev: the device to check
10027 *
10028 * Recalculate dev->features set and send notifications if it
10029 * has changed. Should be called after driver or hardware dependent
10030 * conditions might have changed that influence the features.
10031 */
netdev_update_features(struct net_device * dev)10032 void netdev_update_features(struct net_device *dev)
10033 {
10034 if (__netdev_update_features(dev))
10035 netdev_features_change(dev);
10036 }
10037 EXPORT_SYMBOL(netdev_update_features);
10038
10039 /**
10040 * netdev_change_features - recalculate device features
10041 * @dev: the device to check
10042 *
10043 * Recalculate dev->features set and send notifications even
10044 * if they have not changed. Should be called instead of
10045 * netdev_update_features() if also dev->vlan_features might
10046 * have changed to allow the changes to be propagated to stacked
10047 * VLAN devices.
10048 */
netdev_change_features(struct net_device * dev)10049 void netdev_change_features(struct net_device *dev)
10050 {
10051 __netdev_update_features(dev);
10052 netdev_features_change(dev);
10053 }
10054 EXPORT_SYMBOL(netdev_change_features);
10055
10056 /**
10057 * netif_stacked_transfer_operstate - transfer operstate
10058 * @rootdev: the root or lower level device to transfer state from
10059 * @dev: the device to transfer operstate to
10060 *
10061 * Transfer operational state from root to device. This is normally
10062 * called when a stacking relationship exists between the root
10063 * device and the device(a leaf device).
10064 */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)10065 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10066 struct net_device *dev)
10067 {
10068 if (rootdev->operstate == IF_OPER_DORMANT)
10069 netif_dormant_on(dev);
10070 else
10071 netif_dormant_off(dev);
10072
10073 if (rootdev->operstate == IF_OPER_TESTING)
10074 netif_testing_on(dev);
10075 else
10076 netif_testing_off(dev);
10077
10078 if (netif_carrier_ok(rootdev))
10079 netif_carrier_on(dev);
10080 else
10081 netif_carrier_off(dev);
10082 }
10083 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10084
netif_alloc_rx_queues(struct net_device * dev)10085 static int netif_alloc_rx_queues(struct net_device *dev)
10086 {
10087 unsigned int i, count = dev->num_rx_queues;
10088 struct netdev_rx_queue *rx;
10089 size_t sz = count * sizeof(*rx);
10090 int err = 0;
10091
10092 BUG_ON(count < 1);
10093
10094 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10095 if (!rx)
10096 return -ENOMEM;
10097
10098 dev->_rx = rx;
10099
10100 for (i = 0; i < count; i++) {
10101 rx[i].dev = dev;
10102
10103 /* XDP RX-queue setup */
10104 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10105 if (err < 0)
10106 goto err_rxq_info;
10107 }
10108 return 0;
10109
10110 err_rxq_info:
10111 /* Rollback successful reg's and free other resources */
10112 while (i--)
10113 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10114 kvfree(dev->_rx);
10115 dev->_rx = NULL;
10116 return err;
10117 }
10118
netif_free_rx_queues(struct net_device * dev)10119 static void netif_free_rx_queues(struct net_device *dev)
10120 {
10121 unsigned int i, count = dev->num_rx_queues;
10122
10123 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10124 if (!dev->_rx)
10125 return;
10126
10127 for (i = 0; i < count; i++)
10128 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10129
10130 kvfree(dev->_rx);
10131 }
10132
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)10133 static void netdev_init_one_queue(struct net_device *dev,
10134 struct netdev_queue *queue, void *_unused)
10135 {
10136 /* Initialize queue lock */
10137 spin_lock_init(&queue->_xmit_lock);
10138 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10139 queue->xmit_lock_owner = -1;
10140 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10141 queue->dev = dev;
10142 #ifdef CONFIG_BQL
10143 dql_init(&queue->dql, HZ);
10144 #endif
10145 }
10146
netif_free_tx_queues(struct net_device * dev)10147 static void netif_free_tx_queues(struct net_device *dev)
10148 {
10149 kvfree(dev->_tx);
10150 }
10151
netif_alloc_netdev_queues(struct net_device * dev)10152 static int netif_alloc_netdev_queues(struct net_device *dev)
10153 {
10154 unsigned int count = dev->num_tx_queues;
10155 struct netdev_queue *tx;
10156 size_t sz = count * sizeof(*tx);
10157
10158 if (count < 1 || count > 0xffff)
10159 return -EINVAL;
10160
10161 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10162 if (!tx)
10163 return -ENOMEM;
10164
10165 dev->_tx = tx;
10166
10167 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10168 spin_lock_init(&dev->tx_global_lock);
10169
10170 return 0;
10171 }
10172
netif_tx_stop_all_queues(struct net_device * dev)10173 void netif_tx_stop_all_queues(struct net_device *dev)
10174 {
10175 unsigned int i;
10176
10177 for (i = 0; i < dev->num_tx_queues; i++) {
10178 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10179
10180 netif_tx_stop_queue(txq);
10181 }
10182 }
10183 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10184
10185 /**
10186 * register_netdevice - register a network device
10187 * @dev: device to register
10188 *
10189 * Take a completed network device structure and add it to the kernel
10190 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10191 * chain. 0 is returned on success. A negative errno code is returned
10192 * on a failure to set up the device, or if the name is a duplicate.
10193 *
10194 * Callers must hold the rtnl semaphore. You may want
10195 * register_netdev() instead of this.
10196 *
10197 * BUGS:
10198 * The locking appears insufficient to guarantee two parallel registers
10199 * will not get the same name.
10200 */
10201
register_netdevice(struct net_device * dev)10202 int register_netdevice(struct net_device *dev)
10203 {
10204 int ret;
10205 struct net *net = dev_net(dev);
10206
10207 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10208 NETDEV_FEATURE_COUNT);
10209 BUG_ON(dev_boot_phase);
10210 ASSERT_RTNL();
10211
10212 might_sleep();
10213
10214 /* When net_device's are persistent, this will be fatal. */
10215 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10216 BUG_ON(!net);
10217
10218 ret = ethtool_check_ops(dev->ethtool_ops);
10219 if (ret)
10220 return ret;
10221
10222 spin_lock_init(&dev->addr_list_lock);
10223 netdev_set_addr_lockdep_class(dev);
10224
10225 ret = dev_get_valid_name(net, dev, dev->name);
10226 if (ret < 0)
10227 goto out;
10228
10229 ret = -ENOMEM;
10230 dev->name_node = netdev_name_node_head_alloc(dev);
10231 if (!dev->name_node)
10232 goto out;
10233
10234 /* Init, if this function is available */
10235 if (dev->netdev_ops->ndo_init) {
10236 ret = dev->netdev_ops->ndo_init(dev);
10237 if (ret) {
10238 if (ret > 0)
10239 ret = -EIO;
10240 goto err_free_name;
10241 }
10242 }
10243
10244 if (((dev->hw_features | dev->features) &
10245 NETIF_F_HW_VLAN_CTAG_FILTER) &&
10246 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10247 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10248 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10249 ret = -EINVAL;
10250 goto err_uninit;
10251 }
10252
10253 ret = -EBUSY;
10254 if (!dev->ifindex)
10255 dev->ifindex = dev_new_index(net);
10256 else if (__dev_get_by_index(net, dev->ifindex))
10257 goto err_uninit;
10258
10259 /* Transfer changeable features to wanted_features and enable
10260 * software offloads (GSO and GRO).
10261 */
10262 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10263 dev->features |= NETIF_F_SOFT_FEATURES;
10264
10265 if (dev->udp_tunnel_nic_info) {
10266 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10267 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10268 }
10269
10270 dev->wanted_features = dev->features & dev->hw_features;
10271
10272 if (!(dev->flags & IFF_LOOPBACK))
10273 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10274
10275 /* If IPv4 TCP segmentation offload is supported we should also
10276 * allow the device to enable segmenting the frame with the option
10277 * of ignoring a static IP ID value. This doesn't enable the
10278 * feature itself but allows the user to enable it later.
10279 */
10280 if (dev->hw_features & NETIF_F_TSO)
10281 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10282 if (dev->vlan_features & NETIF_F_TSO)
10283 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10284 if (dev->mpls_features & NETIF_F_TSO)
10285 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10286 if (dev->hw_enc_features & NETIF_F_TSO)
10287 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10288
10289 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10290 */
10291 dev->vlan_features |= NETIF_F_HIGHDMA;
10292
10293 /* Make NETIF_F_SG inheritable to tunnel devices.
10294 */
10295 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10296
10297 /* Make NETIF_F_SG inheritable to MPLS.
10298 */
10299 dev->mpls_features |= NETIF_F_SG;
10300
10301 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10302 ret = notifier_to_errno(ret);
10303 if (ret)
10304 goto err_uninit;
10305
10306 ret = netdev_register_kobject(dev);
10307 if (ret) {
10308 dev->reg_state = NETREG_UNREGISTERED;
10309 goto err_uninit;
10310 }
10311 dev->reg_state = NETREG_REGISTERED;
10312
10313 __netdev_update_features(dev);
10314
10315 /*
10316 * Default initial state at registry is that the
10317 * device is present.
10318 */
10319
10320 set_bit(__LINK_STATE_PRESENT, &dev->state);
10321
10322 linkwatch_init_dev(dev);
10323
10324 dev_init_scheduler(dev);
10325 dev_hold(dev);
10326 list_netdevice(dev);
10327 add_device_randomness(dev->dev_addr, dev->addr_len);
10328
10329 /* If the device has permanent device address, driver should
10330 * set dev_addr and also addr_assign_type should be set to
10331 * NET_ADDR_PERM (default value).
10332 */
10333 if (dev->addr_assign_type == NET_ADDR_PERM)
10334 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10335
10336 /* Notify protocols, that a new device appeared. */
10337 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10338 ret = notifier_to_errno(ret);
10339 if (ret) {
10340 /* Expect explicit free_netdev() on failure */
10341 dev->needs_free_netdev = false;
10342 unregister_netdevice_queue(dev, NULL);
10343 goto out;
10344 }
10345 /*
10346 * Prevent userspace races by waiting until the network
10347 * device is fully setup before sending notifications.
10348 */
10349 if (!dev->rtnl_link_ops ||
10350 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10351 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10352
10353 out:
10354 return ret;
10355
10356 err_uninit:
10357 if (dev->netdev_ops->ndo_uninit)
10358 dev->netdev_ops->ndo_uninit(dev);
10359 if (dev->priv_destructor)
10360 dev->priv_destructor(dev);
10361 err_free_name:
10362 netdev_name_node_free(dev->name_node);
10363 goto out;
10364 }
10365 EXPORT_SYMBOL(register_netdevice);
10366
10367 /**
10368 * init_dummy_netdev - init a dummy network device for NAPI
10369 * @dev: device to init
10370 *
10371 * This takes a network device structure and initialize the minimum
10372 * amount of fields so it can be used to schedule NAPI polls without
10373 * registering a full blown interface. This is to be used by drivers
10374 * that need to tie several hardware interfaces to a single NAPI
10375 * poll scheduler due to HW limitations.
10376 */
init_dummy_netdev(struct net_device * dev)10377 int init_dummy_netdev(struct net_device *dev)
10378 {
10379 /* Clear everything. Note we don't initialize spinlocks
10380 * are they aren't supposed to be taken by any of the
10381 * NAPI code and this dummy netdev is supposed to be
10382 * only ever used for NAPI polls
10383 */
10384 memset(dev, 0, sizeof(struct net_device));
10385
10386 /* make sure we BUG if trying to hit standard
10387 * register/unregister code path
10388 */
10389 dev->reg_state = NETREG_DUMMY;
10390
10391 /* NAPI wants this */
10392 INIT_LIST_HEAD(&dev->napi_list);
10393
10394 /* a dummy interface is started by default */
10395 set_bit(__LINK_STATE_PRESENT, &dev->state);
10396 set_bit(__LINK_STATE_START, &dev->state);
10397
10398 /* napi_busy_loop stats accounting wants this */
10399 dev_net_set(dev, &init_net);
10400
10401 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10402 * because users of this 'device' dont need to change
10403 * its refcount.
10404 */
10405
10406 return 0;
10407 }
10408 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10409
10410
10411 /**
10412 * register_netdev - register a network device
10413 * @dev: device to register
10414 *
10415 * Take a completed network device structure and add it to the kernel
10416 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10417 * chain. 0 is returned on success. A negative errno code is returned
10418 * on a failure to set up the device, or if the name is a duplicate.
10419 *
10420 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10421 * and expands the device name if you passed a format string to
10422 * alloc_netdev.
10423 */
register_netdev(struct net_device * dev)10424 int register_netdev(struct net_device *dev)
10425 {
10426 int err;
10427
10428 if (rtnl_lock_killable())
10429 return -EINTR;
10430 err = register_netdevice(dev);
10431 rtnl_unlock();
10432 return err;
10433 }
10434 EXPORT_SYMBOL(register_netdev);
10435
netdev_refcnt_read(const struct net_device * dev)10436 int netdev_refcnt_read(const struct net_device *dev)
10437 {
10438 #ifdef CONFIG_PCPU_DEV_REFCNT
10439 int i, refcnt = 0;
10440
10441 for_each_possible_cpu(i)
10442 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10443 return refcnt;
10444 #else
10445 return refcount_read(&dev->dev_refcnt);
10446 #endif
10447 }
10448 EXPORT_SYMBOL(netdev_refcnt_read);
10449
10450 int netdev_unregister_timeout_secs __read_mostly = 10;
10451
10452 #define WAIT_REFS_MIN_MSECS 1
10453 #define WAIT_REFS_MAX_MSECS 250
10454 /**
10455 * netdev_wait_allrefs - wait until all references are gone.
10456 * @dev: target net_device
10457 *
10458 * This is called when unregistering network devices.
10459 *
10460 * Any protocol or device that holds a reference should register
10461 * for netdevice notification, and cleanup and put back the
10462 * reference if they receive an UNREGISTER event.
10463 * We can get stuck here if buggy protocols don't correctly
10464 * call dev_put.
10465 */
netdev_wait_allrefs(struct net_device * dev)10466 static void netdev_wait_allrefs(struct net_device *dev)
10467 {
10468 unsigned long rebroadcast_time, warning_time;
10469 int wait = 0, refcnt;
10470
10471 linkwatch_forget_dev(dev);
10472
10473 rebroadcast_time = warning_time = jiffies;
10474 refcnt = netdev_refcnt_read(dev);
10475
10476 while (refcnt != 1) {
10477 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10478 rtnl_lock();
10479
10480 /* Rebroadcast unregister notification */
10481 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10482
10483 __rtnl_unlock();
10484 rcu_barrier();
10485 rtnl_lock();
10486
10487 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10488 &dev->state)) {
10489 /* We must not have linkwatch events
10490 * pending on unregister. If this
10491 * happens, we simply run the queue
10492 * unscheduled, resulting in a noop
10493 * for this device.
10494 */
10495 linkwatch_run_queue();
10496 }
10497
10498 __rtnl_unlock();
10499
10500 rebroadcast_time = jiffies;
10501 }
10502
10503 if (!wait) {
10504 rcu_barrier();
10505 wait = WAIT_REFS_MIN_MSECS;
10506 } else {
10507 msleep(wait);
10508 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10509 }
10510
10511 refcnt = netdev_refcnt_read(dev);
10512
10513 if (refcnt != 1 &&
10514 time_after(jiffies, warning_time +
10515 netdev_unregister_timeout_secs * HZ)) {
10516 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10517 dev->name, refcnt);
10518 warning_time = jiffies;
10519 }
10520 }
10521 }
10522
10523 /* The sequence is:
10524 *
10525 * rtnl_lock();
10526 * ...
10527 * register_netdevice(x1);
10528 * register_netdevice(x2);
10529 * ...
10530 * unregister_netdevice(y1);
10531 * unregister_netdevice(y2);
10532 * ...
10533 * rtnl_unlock();
10534 * free_netdev(y1);
10535 * free_netdev(y2);
10536 *
10537 * We are invoked by rtnl_unlock().
10538 * This allows us to deal with problems:
10539 * 1) We can delete sysfs objects which invoke hotplug
10540 * without deadlocking with linkwatch via keventd.
10541 * 2) Since we run with the RTNL semaphore not held, we can sleep
10542 * safely in order to wait for the netdev refcnt to drop to zero.
10543 *
10544 * We must not return until all unregister events added during
10545 * the interval the lock was held have been completed.
10546 */
netdev_run_todo(void)10547 void netdev_run_todo(void)
10548 {
10549 struct list_head list;
10550 #ifdef CONFIG_LOCKDEP
10551 struct list_head unlink_list;
10552
10553 list_replace_init(&net_unlink_list, &unlink_list);
10554
10555 while (!list_empty(&unlink_list)) {
10556 struct net_device *dev = list_first_entry(&unlink_list,
10557 struct net_device,
10558 unlink_list);
10559 list_del_init(&dev->unlink_list);
10560 dev->nested_level = dev->lower_level - 1;
10561 }
10562 #endif
10563
10564 /* Snapshot list, allow later requests */
10565 list_replace_init(&net_todo_list, &list);
10566
10567 __rtnl_unlock();
10568
10569
10570 /* Wait for rcu callbacks to finish before next phase */
10571 if (!list_empty(&list))
10572 rcu_barrier();
10573
10574 while (!list_empty(&list)) {
10575 struct net_device *dev
10576 = list_first_entry(&list, struct net_device, todo_list);
10577 list_del(&dev->todo_list);
10578
10579 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10580 pr_err("network todo '%s' but state %d\n",
10581 dev->name, dev->reg_state);
10582 dump_stack();
10583 continue;
10584 }
10585
10586 dev->reg_state = NETREG_UNREGISTERED;
10587
10588 netdev_wait_allrefs(dev);
10589
10590 /* paranoia */
10591 BUG_ON(netdev_refcnt_read(dev) != 1);
10592 BUG_ON(!list_empty(&dev->ptype_all));
10593 BUG_ON(!list_empty(&dev->ptype_specific));
10594 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10595 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10596 #if IS_ENABLED(CONFIG_DECNET)
10597 WARN_ON(dev->dn_ptr);
10598 #endif
10599 if (dev->priv_destructor)
10600 dev->priv_destructor(dev);
10601 if (dev->needs_free_netdev)
10602 free_netdev(dev);
10603
10604 /* Report a network device has been unregistered */
10605 rtnl_lock();
10606 dev_net(dev)->dev_unreg_count--;
10607 __rtnl_unlock();
10608 wake_up(&netdev_unregistering_wq);
10609
10610 /* Free network device */
10611 kobject_put(&dev->dev.kobj);
10612 }
10613 }
10614
10615 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10616 * all the same fields in the same order as net_device_stats, with only
10617 * the type differing, but rtnl_link_stats64 may have additional fields
10618 * at the end for newer counters.
10619 */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)10620 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10621 const struct net_device_stats *netdev_stats)
10622 {
10623 #if BITS_PER_LONG == 64
10624 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10625 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10626 /* zero out counters that only exist in rtnl_link_stats64 */
10627 memset((char *)stats64 + sizeof(*netdev_stats), 0,
10628 sizeof(*stats64) - sizeof(*netdev_stats));
10629 #else
10630 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10631 const unsigned long *src = (const unsigned long *)netdev_stats;
10632 u64 *dst = (u64 *)stats64;
10633
10634 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10635 for (i = 0; i < n; i++)
10636 dst[i] = src[i];
10637 /* zero out counters that only exist in rtnl_link_stats64 */
10638 memset((char *)stats64 + n * sizeof(u64), 0,
10639 sizeof(*stats64) - n * sizeof(u64));
10640 #endif
10641 }
10642 EXPORT_SYMBOL(netdev_stats_to_stats64);
10643
10644 /**
10645 * dev_get_stats - get network device statistics
10646 * @dev: device to get statistics from
10647 * @storage: place to store stats
10648 *
10649 * Get network statistics from device. Return @storage.
10650 * The device driver may provide its own method by setting
10651 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10652 * otherwise the internal statistics structure is used.
10653 */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)10654 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10655 struct rtnl_link_stats64 *storage)
10656 {
10657 const struct net_device_ops *ops = dev->netdev_ops;
10658
10659 if (ops->ndo_get_stats64) {
10660 memset(storage, 0, sizeof(*storage));
10661 ops->ndo_get_stats64(dev, storage);
10662 } else if (ops->ndo_get_stats) {
10663 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10664 } else {
10665 netdev_stats_to_stats64(storage, &dev->stats);
10666 }
10667 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10668 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10669 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10670 return storage;
10671 }
10672 EXPORT_SYMBOL(dev_get_stats);
10673
10674 /**
10675 * dev_fetch_sw_netstats - get per-cpu network device statistics
10676 * @s: place to store stats
10677 * @netstats: per-cpu network stats to read from
10678 *
10679 * Read per-cpu network statistics and populate the related fields in @s.
10680 */
dev_fetch_sw_netstats(struct rtnl_link_stats64 * s,const struct pcpu_sw_netstats __percpu * netstats)10681 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10682 const struct pcpu_sw_netstats __percpu *netstats)
10683 {
10684 int cpu;
10685
10686 for_each_possible_cpu(cpu) {
10687 const struct pcpu_sw_netstats *stats;
10688 struct pcpu_sw_netstats tmp;
10689 unsigned int start;
10690
10691 stats = per_cpu_ptr(netstats, cpu);
10692 do {
10693 start = u64_stats_fetch_begin_irq(&stats->syncp);
10694 tmp.rx_packets = stats->rx_packets;
10695 tmp.rx_bytes = stats->rx_bytes;
10696 tmp.tx_packets = stats->tx_packets;
10697 tmp.tx_bytes = stats->tx_bytes;
10698 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10699
10700 s->rx_packets += tmp.rx_packets;
10701 s->rx_bytes += tmp.rx_bytes;
10702 s->tx_packets += tmp.tx_packets;
10703 s->tx_bytes += tmp.tx_bytes;
10704 }
10705 }
10706 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10707
10708 /**
10709 * dev_get_tstats64 - ndo_get_stats64 implementation
10710 * @dev: device to get statistics from
10711 * @s: place to store stats
10712 *
10713 * Populate @s from dev->stats and dev->tstats. Can be used as
10714 * ndo_get_stats64() callback.
10715 */
dev_get_tstats64(struct net_device * dev,struct rtnl_link_stats64 * s)10716 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10717 {
10718 netdev_stats_to_stats64(s, &dev->stats);
10719 dev_fetch_sw_netstats(s, dev->tstats);
10720 }
10721 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10722
dev_ingress_queue_create(struct net_device * dev)10723 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10724 {
10725 struct netdev_queue *queue = dev_ingress_queue(dev);
10726
10727 #ifdef CONFIG_NET_CLS_ACT
10728 if (queue)
10729 return queue;
10730 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10731 if (!queue)
10732 return NULL;
10733 netdev_init_one_queue(dev, queue, NULL);
10734 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10735 queue->qdisc_sleeping = &noop_qdisc;
10736 rcu_assign_pointer(dev->ingress_queue, queue);
10737 #endif
10738 return queue;
10739 }
10740
10741 static const struct ethtool_ops default_ethtool_ops;
10742
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)10743 void netdev_set_default_ethtool_ops(struct net_device *dev,
10744 const struct ethtool_ops *ops)
10745 {
10746 if (dev->ethtool_ops == &default_ethtool_ops)
10747 dev->ethtool_ops = ops;
10748 }
10749 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10750
netdev_freemem(struct net_device * dev)10751 void netdev_freemem(struct net_device *dev)
10752 {
10753 char *addr = (char *)dev - dev->padded;
10754
10755 kvfree(addr);
10756 }
10757
10758 /**
10759 * alloc_netdev_mqs - allocate network device
10760 * @sizeof_priv: size of private data to allocate space for
10761 * @name: device name format string
10762 * @name_assign_type: origin of device name
10763 * @setup: callback to initialize device
10764 * @txqs: the number of TX subqueues to allocate
10765 * @rxqs: the number of RX subqueues to allocate
10766 *
10767 * Allocates a struct net_device with private data area for driver use
10768 * and performs basic initialization. Also allocates subqueue structs
10769 * for each queue on the device.
10770 */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)10771 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10772 unsigned char name_assign_type,
10773 void (*setup)(struct net_device *),
10774 unsigned int txqs, unsigned int rxqs)
10775 {
10776 struct net_device *dev;
10777 unsigned int alloc_size;
10778 struct net_device *p;
10779
10780 BUG_ON(strlen(name) >= sizeof(dev->name));
10781
10782 if (txqs < 1) {
10783 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10784 return NULL;
10785 }
10786
10787 if (rxqs < 1) {
10788 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10789 return NULL;
10790 }
10791
10792 alloc_size = sizeof(struct net_device);
10793 if (sizeof_priv) {
10794 /* ensure 32-byte alignment of private area */
10795 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10796 alloc_size += sizeof_priv;
10797 }
10798 /* ensure 32-byte alignment of whole construct */
10799 alloc_size += NETDEV_ALIGN - 1;
10800
10801 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10802 if (!p)
10803 return NULL;
10804
10805 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10806 dev->padded = (char *)dev - (char *)p;
10807
10808 #ifdef CONFIG_PCPU_DEV_REFCNT
10809 dev->pcpu_refcnt = alloc_percpu(int);
10810 if (!dev->pcpu_refcnt)
10811 goto free_dev;
10812 dev_hold(dev);
10813 #else
10814 refcount_set(&dev->dev_refcnt, 1);
10815 #endif
10816
10817 if (dev_addr_init(dev))
10818 goto free_pcpu;
10819
10820 dev_mc_init(dev);
10821 dev_uc_init(dev);
10822
10823 dev_net_set(dev, &init_net);
10824
10825 dev->gso_max_size = GSO_MAX_SIZE;
10826 dev->gso_max_segs = GSO_MAX_SEGS;
10827 dev->upper_level = 1;
10828 dev->lower_level = 1;
10829 #ifdef CONFIG_LOCKDEP
10830 dev->nested_level = 0;
10831 INIT_LIST_HEAD(&dev->unlink_list);
10832 #endif
10833
10834 INIT_LIST_HEAD(&dev->napi_list);
10835 INIT_LIST_HEAD(&dev->unreg_list);
10836 INIT_LIST_HEAD(&dev->close_list);
10837 INIT_LIST_HEAD(&dev->link_watch_list);
10838 INIT_LIST_HEAD(&dev->adj_list.upper);
10839 INIT_LIST_HEAD(&dev->adj_list.lower);
10840 INIT_LIST_HEAD(&dev->ptype_all);
10841 INIT_LIST_HEAD(&dev->ptype_specific);
10842 INIT_LIST_HEAD(&dev->net_notifier_list);
10843 #ifdef CONFIG_NET_SCHED
10844 hash_init(dev->qdisc_hash);
10845 #endif
10846 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10847 setup(dev);
10848
10849 if (!dev->tx_queue_len) {
10850 dev->priv_flags |= IFF_NO_QUEUE;
10851 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10852 }
10853
10854 dev->num_tx_queues = txqs;
10855 dev->real_num_tx_queues = txqs;
10856 if (netif_alloc_netdev_queues(dev))
10857 goto free_all;
10858
10859 dev->num_rx_queues = rxqs;
10860 dev->real_num_rx_queues = rxqs;
10861 if (netif_alloc_rx_queues(dev))
10862 goto free_all;
10863
10864 strcpy(dev->name, name);
10865 dev->name_assign_type = name_assign_type;
10866 dev->group = INIT_NETDEV_GROUP;
10867 if (!dev->ethtool_ops)
10868 dev->ethtool_ops = &default_ethtool_ops;
10869
10870 nf_hook_ingress_init(dev);
10871
10872 return dev;
10873
10874 free_all:
10875 free_netdev(dev);
10876 return NULL;
10877
10878 free_pcpu:
10879 #ifdef CONFIG_PCPU_DEV_REFCNT
10880 free_percpu(dev->pcpu_refcnt);
10881 free_dev:
10882 #endif
10883 netdev_freemem(dev);
10884 return NULL;
10885 }
10886 EXPORT_SYMBOL(alloc_netdev_mqs);
10887
10888 /**
10889 * free_netdev - free network device
10890 * @dev: device
10891 *
10892 * This function does the last stage of destroying an allocated device
10893 * interface. The reference to the device object is released. If this
10894 * is the last reference then it will be freed.Must be called in process
10895 * context.
10896 */
free_netdev(struct net_device * dev)10897 void free_netdev(struct net_device *dev)
10898 {
10899 struct napi_struct *p, *n;
10900
10901 might_sleep();
10902
10903 /* When called immediately after register_netdevice() failed the unwind
10904 * handling may still be dismantling the device. Handle that case by
10905 * deferring the free.
10906 */
10907 if (dev->reg_state == NETREG_UNREGISTERING) {
10908 ASSERT_RTNL();
10909 dev->needs_free_netdev = true;
10910 return;
10911 }
10912
10913 netif_free_tx_queues(dev);
10914 netif_free_rx_queues(dev);
10915
10916 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10917
10918 /* Flush device addresses */
10919 dev_addr_flush(dev);
10920
10921 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10922 netif_napi_del(p);
10923
10924 #ifdef CONFIG_PCPU_DEV_REFCNT
10925 free_percpu(dev->pcpu_refcnt);
10926 dev->pcpu_refcnt = NULL;
10927 #endif
10928 free_percpu(dev->xdp_bulkq);
10929 dev->xdp_bulkq = NULL;
10930
10931 /* Compatibility with error handling in drivers */
10932 if (dev->reg_state == NETREG_UNINITIALIZED) {
10933 netdev_freemem(dev);
10934 return;
10935 }
10936
10937 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10938 dev->reg_state = NETREG_RELEASED;
10939
10940 /* will free via device release */
10941 put_device(&dev->dev);
10942 }
10943 EXPORT_SYMBOL(free_netdev);
10944
10945 /**
10946 * synchronize_net - Synchronize with packet receive processing
10947 *
10948 * Wait for packets currently being received to be done.
10949 * Does not block later packets from starting.
10950 */
synchronize_net(void)10951 void synchronize_net(void)
10952 {
10953 might_sleep();
10954 if (rtnl_is_locked())
10955 synchronize_rcu_expedited();
10956 else
10957 synchronize_rcu();
10958 }
10959 EXPORT_SYMBOL(synchronize_net);
10960
10961 /**
10962 * unregister_netdevice_queue - remove device from the kernel
10963 * @dev: device
10964 * @head: list
10965 *
10966 * This function shuts down a device interface and removes it
10967 * from the kernel tables.
10968 * If head not NULL, device is queued to be unregistered later.
10969 *
10970 * Callers must hold the rtnl semaphore. You may want
10971 * unregister_netdev() instead of this.
10972 */
10973
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)10974 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10975 {
10976 ASSERT_RTNL();
10977
10978 if (head) {
10979 list_move_tail(&dev->unreg_list, head);
10980 } else {
10981 LIST_HEAD(single);
10982
10983 list_add(&dev->unreg_list, &single);
10984 unregister_netdevice_many(&single);
10985 }
10986 }
10987 EXPORT_SYMBOL(unregister_netdevice_queue);
10988
10989 /**
10990 * unregister_netdevice_many - unregister many devices
10991 * @head: list of devices
10992 *
10993 * Note: As most callers use a stack allocated list_head,
10994 * we force a list_del() to make sure stack wont be corrupted later.
10995 */
unregister_netdevice_many(struct list_head * head)10996 void unregister_netdevice_many(struct list_head *head)
10997 {
10998 struct net_device *dev, *tmp;
10999 LIST_HEAD(close_head);
11000
11001 BUG_ON(dev_boot_phase);
11002 ASSERT_RTNL();
11003
11004 if (list_empty(head))
11005 return;
11006
11007 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11008 /* Some devices call without registering
11009 * for initialization unwind. Remove those
11010 * devices and proceed with the remaining.
11011 */
11012 if (dev->reg_state == NETREG_UNINITIALIZED) {
11013 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11014 dev->name, dev);
11015
11016 WARN_ON(1);
11017 list_del(&dev->unreg_list);
11018 continue;
11019 }
11020 dev->dismantle = true;
11021 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11022 }
11023
11024 /* If device is running, close it first. */
11025 list_for_each_entry(dev, head, unreg_list)
11026 list_add_tail(&dev->close_list, &close_head);
11027 dev_close_many(&close_head, true);
11028
11029 list_for_each_entry(dev, head, unreg_list) {
11030 /* And unlink it from device chain. */
11031 unlist_netdevice(dev);
11032
11033 dev->reg_state = NETREG_UNREGISTERING;
11034 }
11035 flush_all_backlogs();
11036
11037 synchronize_net();
11038
11039 list_for_each_entry(dev, head, unreg_list) {
11040 struct sk_buff *skb = NULL;
11041
11042 /* Shutdown queueing discipline. */
11043 dev_shutdown(dev);
11044
11045 dev_xdp_uninstall(dev);
11046
11047 /* Notify protocols, that we are about to destroy
11048 * this device. They should clean all the things.
11049 */
11050 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11051
11052 if (!dev->rtnl_link_ops ||
11053 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11054 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11055 GFP_KERNEL, NULL, 0);
11056
11057 /*
11058 * Flush the unicast and multicast chains
11059 */
11060 dev_uc_flush(dev);
11061 dev_mc_flush(dev);
11062
11063 netdev_name_node_alt_flush(dev);
11064 netdev_name_node_free(dev->name_node);
11065
11066 if (dev->netdev_ops->ndo_uninit)
11067 dev->netdev_ops->ndo_uninit(dev);
11068
11069 if (skb)
11070 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
11071
11072 /* Notifier chain MUST detach us all upper devices. */
11073 WARN_ON(netdev_has_any_upper_dev(dev));
11074 WARN_ON(netdev_has_any_lower_dev(dev));
11075
11076 /* Remove entries from kobject tree */
11077 netdev_unregister_kobject(dev);
11078 #ifdef CONFIG_XPS
11079 /* Remove XPS queueing entries */
11080 netif_reset_xps_queues_gt(dev, 0);
11081 #endif
11082 }
11083
11084 synchronize_net();
11085
11086 list_for_each_entry(dev, head, unreg_list) {
11087 dev_put(dev);
11088 net_set_todo(dev);
11089 }
11090
11091 list_del(head);
11092 }
11093 EXPORT_SYMBOL(unregister_netdevice_many);
11094
11095 /**
11096 * unregister_netdev - remove device from the kernel
11097 * @dev: device
11098 *
11099 * This function shuts down a device interface and removes it
11100 * from the kernel tables.
11101 *
11102 * This is just a wrapper for unregister_netdevice that takes
11103 * the rtnl semaphore. In general you want to use this and not
11104 * unregister_netdevice.
11105 */
unregister_netdev(struct net_device * dev)11106 void unregister_netdev(struct net_device *dev)
11107 {
11108 rtnl_lock();
11109 unregister_netdevice(dev);
11110 rtnl_unlock();
11111 }
11112 EXPORT_SYMBOL(unregister_netdev);
11113
11114 /**
11115 * __dev_change_net_namespace - move device to different nethost namespace
11116 * @dev: device
11117 * @net: network namespace
11118 * @pat: If not NULL name pattern to try if the current device name
11119 * is already taken in the destination network namespace.
11120 * @new_ifindex: If not zero, specifies device index in the target
11121 * namespace.
11122 *
11123 * This function shuts down a device interface and moves it
11124 * to a new network namespace. On success 0 is returned, on
11125 * a failure a netagive errno code is returned.
11126 *
11127 * Callers must hold the rtnl semaphore.
11128 */
11129
__dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat,int new_ifindex)11130 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11131 const char *pat, int new_ifindex)
11132 {
11133 struct net *net_old = dev_net(dev);
11134 int err, new_nsid;
11135
11136 ASSERT_RTNL();
11137
11138 /* Don't allow namespace local devices to be moved. */
11139 err = -EINVAL;
11140 if (dev->features & NETIF_F_NETNS_LOCAL)
11141 goto out;
11142
11143 /* Ensure the device has been registrered */
11144 if (dev->reg_state != NETREG_REGISTERED)
11145 goto out;
11146
11147 /* Get out if there is nothing todo */
11148 err = 0;
11149 if (net_eq(net_old, net))
11150 goto out;
11151
11152 /* Pick the destination device name, and ensure
11153 * we can use it in the destination network namespace.
11154 */
11155 err = -EEXIST;
11156 if (__dev_get_by_name(net, dev->name)) {
11157 /* We get here if we can't use the current device name */
11158 if (!pat)
11159 goto out;
11160 err = dev_get_valid_name(net, dev, pat);
11161 if (err < 0)
11162 goto out;
11163 }
11164
11165 /* Check that new_ifindex isn't used yet. */
11166 err = -EBUSY;
11167 if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11168 goto out;
11169
11170 /*
11171 * And now a mini version of register_netdevice unregister_netdevice.
11172 */
11173
11174 /* If device is running close it first. */
11175 dev_close(dev);
11176
11177 /* And unlink it from device chain */
11178 unlist_netdevice(dev);
11179
11180 synchronize_net();
11181
11182 /* Shutdown queueing discipline. */
11183 dev_shutdown(dev);
11184
11185 /* Notify protocols, that we are about to destroy
11186 * this device. They should clean all the things.
11187 *
11188 * Note that dev->reg_state stays at NETREG_REGISTERED.
11189 * This is wanted because this way 8021q and macvlan know
11190 * the device is just moving and can keep their slaves up.
11191 */
11192 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11193 rcu_barrier();
11194
11195 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11196 /* If there is an ifindex conflict assign a new one */
11197 if (!new_ifindex) {
11198 if (__dev_get_by_index(net, dev->ifindex))
11199 new_ifindex = dev_new_index(net);
11200 else
11201 new_ifindex = dev->ifindex;
11202 }
11203
11204 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11205 new_ifindex);
11206
11207 /*
11208 * Flush the unicast and multicast chains
11209 */
11210 dev_uc_flush(dev);
11211 dev_mc_flush(dev);
11212
11213 /* Send a netdev-removed uevent to the old namespace */
11214 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11215 netdev_adjacent_del_links(dev);
11216
11217 /* Move per-net netdevice notifiers that are following the netdevice */
11218 move_netdevice_notifiers_dev_net(dev, net);
11219
11220 /* Actually switch the network namespace */
11221 dev_net_set(dev, net);
11222 dev->ifindex = new_ifindex;
11223
11224 /* Send a netdev-add uevent to the new namespace */
11225 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11226 netdev_adjacent_add_links(dev);
11227
11228 /* Fixup kobjects */
11229 err = device_rename(&dev->dev, dev->name);
11230 WARN_ON(err);
11231
11232 /* Adapt owner in case owning user namespace of target network
11233 * namespace is different from the original one.
11234 */
11235 err = netdev_change_owner(dev, net_old, net);
11236 WARN_ON(err);
11237
11238 /* Add the device back in the hashes */
11239 list_netdevice(dev);
11240
11241 /* Notify protocols, that a new device appeared. */
11242 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11243
11244 /*
11245 * Prevent userspace races by waiting until the network
11246 * device is fully setup before sending notifications.
11247 */
11248 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11249
11250 synchronize_net();
11251 err = 0;
11252 out:
11253 return err;
11254 }
11255 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11256
dev_cpu_dead(unsigned int oldcpu)11257 static int dev_cpu_dead(unsigned int oldcpu)
11258 {
11259 struct sk_buff **list_skb;
11260 struct sk_buff *skb;
11261 unsigned int cpu;
11262 struct softnet_data *sd, *oldsd, *remsd = NULL;
11263
11264 local_irq_disable();
11265 cpu = smp_processor_id();
11266 sd = &per_cpu(softnet_data, cpu);
11267 oldsd = &per_cpu(softnet_data, oldcpu);
11268
11269 /* Find end of our completion_queue. */
11270 list_skb = &sd->completion_queue;
11271 while (*list_skb)
11272 list_skb = &(*list_skb)->next;
11273 /* Append completion queue from offline CPU. */
11274 *list_skb = oldsd->completion_queue;
11275 oldsd->completion_queue = NULL;
11276
11277 /* Append output queue from offline CPU. */
11278 if (oldsd->output_queue) {
11279 *sd->output_queue_tailp = oldsd->output_queue;
11280 sd->output_queue_tailp = oldsd->output_queue_tailp;
11281 oldsd->output_queue = NULL;
11282 oldsd->output_queue_tailp = &oldsd->output_queue;
11283 }
11284 /* Append NAPI poll list from offline CPU, with one exception :
11285 * process_backlog() must be called by cpu owning percpu backlog.
11286 * We properly handle process_queue & input_pkt_queue later.
11287 */
11288 while (!list_empty(&oldsd->poll_list)) {
11289 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11290 struct napi_struct,
11291 poll_list);
11292
11293 list_del_init(&napi->poll_list);
11294 if (napi->poll == process_backlog)
11295 napi->state = 0;
11296 else
11297 ____napi_schedule(sd, napi);
11298 }
11299
11300 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11301 local_irq_enable();
11302
11303 #ifdef CONFIG_RPS
11304 remsd = oldsd->rps_ipi_list;
11305 oldsd->rps_ipi_list = NULL;
11306 #endif
11307 /* send out pending IPI's on offline CPU */
11308 net_rps_send_ipi(remsd);
11309
11310 /* Process offline CPU's input_pkt_queue */
11311 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11312 netif_rx_ni(skb);
11313 input_queue_head_incr(oldsd);
11314 }
11315 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11316 netif_rx_ni(skb);
11317 input_queue_head_incr(oldsd);
11318 }
11319
11320 return 0;
11321 }
11322
11323 /**
11324 * netdev_increment_features - increment feature set by one
11325 * @all: current feature set
11326 * @one: new feature set
11327 * @mask: mask feature set
11328 *
11329 * Computes a new feature set after adding a device with feature set
11330 * @one to the master device with current feature set @all. Will not
11331 * enable anything that is off in @mask. Returns the new feature set.
11332 */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)11333 netdev_features_t netdev_increment_features(netdev_features_t all,
11334 netdev_features_t one, netdev_features_t mask)
11335 {
11336 if (mask & NETIF_F_HW_CSUM)
11337 mask |= NETIF_F_CSUM_MASK;
11338 mask |= NETIF_F_VLAN_CHALLENGED;
11339
11340 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11341 all &= one | ~NETIF_F_ALL_FOR_ALL;
11342
11343 /* If one device supports hw checksumming, set for all. */
11344 if (all & NETIF_F_HW_CSUM)
11345 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11346
11347 return all;
11348 }
11349 EXPORT_SYMBOL(netdev_increment_features);
11350
netdev_create_hash(void)11351 static struct hlist_head * __net_init netdev_create_hash(void)
11352 {
11353 int i;
11354 struct hlist_head *hash;
11355
11356 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11357 if (hash != NULL)
11358 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11359 INIT_HLIST_HEAD(&hash[i]);
11360
11361 return hash;
11362 }
11363
11364 /* Initialize per network namespace state */
netdev_init(struct net * net)11365 static int __net_init netdev_init(struct net *net)
11366 {
11367 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11368 8 * sizeof_field(struct napi_struct, gro_bitmask));
11369
11370 if (net != &init_net)
11371 INIT_LIST_HEAD(&net->dev_base_head);
11372
11373 net->dev_name_head = netdev_create_hash();
11374 if (net->dev_name_head == NULL)
11375 goto err_name;
11376
11377 net->dev_index_head = netdev_create_hash();
11378 if (net->dev_index_head == NULL)
11379 goto err_idx;
11380
11381 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11382
11383 return 0;
11384
11385 err_idx:
11386 kfree(net->dev_name_head);
11387 err_name:
11388 return -ENOMEM;
11389 }
11390
11391 /**
11392 * netdev_drivername - network driver for the device
11393 * @dev: network device
11394 *
11395 * Determine network driver for device.
11396 */
netdev_drivername(const struct net_device * dev)11397 const char *netdev_drivername(const struct net_device *dev)
11398 {
11399 const struct device_driver *driver;
11400 const struct device *parent;
11401 const char *empty = "";
11402
11403 parent = dev->dev.parent;
11404 if (!parent)
11405 return empty;
11406
11407 driver = parent->driver;
11408 if (driver && driver->name)
11409 return driver->name;
11410 return empty;
11411 }
11412
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)11413 static void __netdev_printk(const char *level, const struct net_device *dev,
11414 struct va_format *vaf)
11415 {
11416 if (dev && dev->dev.parent) {
11417 dev_printk_emit(level[1] - '0',
11418 dev->dev.parent,
11419 "%s %s %s%s: %pV",
11420 dev_driver_string(dev->dev.parent),
11421 dev_name(dev->dev.parent),
11422 netdev_name(dev), netdev_reg_state(dev),
11423 vaf);
11424 } else if (dev) {
11425 printk("%s%s%s: %pV",
11426 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11427 } else {
11428 printk("%s(NULL net_device): %pV", level, vaf);
11429 }
11430 }
11431
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)11432 void netdev_printk(const char *level, const struct net_device *dev,
11433 const char *format, ...)
11434 {
11435 struct va_format vaf;
11436 va_list args;
11437
11438 va_start(args, format);
11439
11440 vaf.fmt = format;
11441 vaf.va = &args;
11442
11443 __netdev_printk(level, dev, &vaf);
11444
11445 va_end(args);
11446 }
11447 EXPORT_SYMBOL(netdev_printk);
11448
11449 #define define_netdev_printk_level(func, level) \
11450 void func(const struct net_device *dev, const char *fmt, ...) \
11451 { \
11452 struct va_format vaf; \
11453 va_list args; \
11454 \
11455 va_start(args, fmt); \
11456 \
11457 vaf.fmt = fmt; \
11458 vaf.va = &args; \
11459 \
11460 __netdev_printk(level, dev, &vaf); \
11461 \
11462 va_end(args); \
11463 } \
11464 EXPORT_SYMBOL(func);
11465
11466 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11467 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11468 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11469 define_netdev_printk_level(netdev_err, KERN_ERR);
11470 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11471 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11472 define_netdev_printk_level(netdev_info, KERN_INFO);
11473
netdev_exit(struct net * net)11474 static void __net_exit netdev_exit(struct net *net)
11475 {
11476 kfree(net->dev_name_head);
11477 kfree(net->dev_index_head);
11478 if (net != &init_net)
11479 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11480 }
11481
11482 static struct pernet_operations __net_initdata netdev_net_ops = {
11483 .init = netdev_init,
11484 .exit = netdev_exit,
11485 };
11486
default_device_exit(struct net * net)11487 static void __net_exit default_device_exit(struct net *net)
11488 {
11489 struct net_device *dev, *aux;
11490 /*
11491 * Push all migratable network devices back to the
11492 * initial network namespace
11493 */
11494 rtnl_lock();
11495 for_each_netdev_safe(net, dev, aux) {
11496 int err;
11497 char fb_name[IFNAMSIZ];
11498
11499 /* Ignore unmoveable devices (i.e. loopback) */
11500 if (dev->features & NETIF_F_NETNS_LOCAL)
11501 continue;
11502
11503 /* Leave virtual devices for the generic cleanup */
11504 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11505 continue;
11506
11507 /* Push remaining network devices to init_net */
11508 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11509 if (__dev_get_by_name(&init_net, fb_name))
11510 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11511 err = dev_change_net_namespace(dev, &init_net, fb_name);
11512 if (err) {
11513 pr_emerg("%s: failed to move %s to init_net: %d\n",
11514 __func__, dev->name, err);
11515 BUG();
11516 }
11517 }
11518 rtnl_unlock();
11519 }
11520
rtnl_lock_unregistering(struct list_head * net_list)11521 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11522 {
11523 /* Return with the rtnl_lock held when there are no network
11524 * devices unregistering in any network namespace in net_list.
11525 */
11526 struct net *net;
11527 bool unregistering;
11528 DEFINE_WAIT_FUNC(wait, woken_wake_function);
11529
11530 add_wait_queue(&netdev_unregistering_wq, &wait);
11531 for (;;) {
11532 unregistering = false;
11533 rtnl_lock();
11534 list_for_each_entry(net, net_list, exit_list) {
11535 if (net->dev_unreg_count > 0) {
11536 unregistering = true;
11537 break;
11538 }
11539 }
11540 if (!unregistering)
11541 break;
11542 __rtnl_unlock();
11543
11544 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11545 }
11546 remove_wait_queue(&netdev_unregistering_wq, &wait);
11547 }
11548
default_device_exit_batch(struct list_head * net_list)11549 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11550 {
11551 /* At exit all network devices most be removed from a network
11552 * namespace. Do this in the reverse order of registration.
11553 * Do this across as many network namespaces as possible to
11554 * improve batching efficiency.
11555 */
11556 struct net_device *dev;
11557 struct net *net;
11558 LIST_HEAD(dev_kill_list);
11559
11560 /* To prevent network device cleanup code from dereferencing
11561 * loopback devices or network devices that have been freed
11562 * wait here for all pending unregistrations to complete,
11563 * before unregistring the loopback device and allowing the
11564 * network namespace be freed.
11565 *
11566 * The netdev todo list containing all network devices
11567 * unregistrations that happen in default_device_exit_batch
11568 * will run in the rtnl_unlock() at the end of
11569 * default_device_exit_batch.
11570 */
11571 rtnl_lock_unregistering(net_list);
11572 list_for_each_entry(net, net_list, exit_list) {
11573 for_each_netdev_reverse(net, dev) {
11574 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11575 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11576 else
11577 unregister_netdevice_queue(dev, &dev_kill_list);
11578 }
11579 }
11580 unregister_netdevice_many(&dev_kill_list);
11581 rtnl_unlock();
11582 }
11583
11584 static struct pernet_operations __net_initdata default_device_ops = {
11585 .exit = default_device_exit,
11586 .exit_batch = default_device_exit_batch,
11587 };
11588
11589 /*
11590 * Initialize the DEV module. At boot time this walks the device list and
11591 * unhooks any devices that fail to initialise (normally hardware not
11592 * present) and leaves us with a valid list of present and active devices.
11593 *
11594 */
11595
11596 /*
11597 * This is called single threaded during boot, so no need
11598 * to take the rtnl semaphore.
11599 */
net_dev_init(void)11600 static int __init net_dev_init(void)
11601 {
11602 int i, rc = -ENOMEM;
11603
11604 BUG_ON(!dev_boot_phase);
11605
11606 if (dev_proc_init())
11607 goto out;
11608
11609 if (netdev_kobject_init())
11610 goto out;
11611
11612 INIT_LIST_HEAD(&ptype_all);
11613 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11614 INIT_LIST_HEAD(&ptype_base[i]);
11615
11616 INIT_LIST_HEAD(&offload_base);
11617
11618 if (register_pernet_subsys(&netdev_net_ops))
11619 goto out;
11620
11621 /*
11622 * Initialise the packet receive queues.
11623 */
11624
11625 for_each_possible_cpu(i) {
11626 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11627 struct softnet_data *sd = &per_cpu(softnet_data, i);
11628
11629 INIT_WORK(flush, flush_backlog);
11630
11631 skb_queue_head_init(&sd->input_pkt_queue);
11632 skb_queue_head_init(&sd->process_queue);
11633 #ifdef CONFIG_XFRM_OFFLOAD
11634 skb_queue_head_init(&sd->xfrm_backlog);
11635 #endif
11636 INIT_LIST_HEAD(&sd->poll_list);
11637 sd->output_queue_tailp = &sd->output_queue;
11638 #ifdef CONFIG_RPS
11639 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11640 sd->cpu = i;
11641 #endif
11642
11643 init_gro_hash(&sd->backlog);
11644 sd->backlog.poll = process_backlog;
11645 sd->backlog.weight = weight_p;
11646 }
11647
11648 dev_boot_phase = 0;
11649
11650 /* The loopback device is special if any other network devices
11651 * is present in a network namespace the loopback device must
11652 * be present. Since we now dynamically allocate and free the
11653 * loopback device ensure this invariant is maintained by
11654 * keeping the loopback device as the first device on the
11655 * list of network devices. Ensuring the loopback devices
11656 * is the first device that appears and the last network device
11657 * that disappears.
11658 */
11659 if (register_pernet_device(&loopback_net_ops))
11660 goto out;
11661
11662 if (register_pernet_device(&default_device_ops))
11663 goto out;
11664
11665 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11666 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11667
11668 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11669 NULL, dev_cpu_dead);
11670 WARN_ON(rc < 0);
11671 rc = 0;
11672 out:
11673 return rc;
11674 }
11675
11676 subsys_initcall(net_dev_init);
11677