1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * KVM guest address space mapping code
4 *
5 * Copyright IBM Corp. 2007, 2020
6 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
7 * David Hildenbrand <david@redhat.com>
8 * Janosch Frank <frankja@linux.vnet.ibm.com>
9 */
10
11 #include <linux/kernel.h>
12 #include <linux/pagewalk.h>
13 #include <linux/swap.h>
14 #include <linux/smp.h>
15 #include <linux/spinlock.h>
16 #include <linux/slab.h>
17 #include <linux/swapops.h>
18 #include <linux/ksm.h>
19 #include <linux/mman.h>
20 #include <linux/pgtable.h>
21
22 #include <asm/pgalloc.h>
23 #include <asm/gmap.h>
24 #include <asm/tlb.h>
25
26 #define GMAP_SHADOW_FAKE_TABLE 1ULL
27
28 /**
29 * gmap_alloc - allocate and initialize a guest address space
30 * @limit: maximum address of the gmap address space
31 *
32 * Returns a guest address space structure.
33 */
gmap_alloc(unsigned long limit)34 static struct gmap *gmap_alloc(unsigned long limit)
35 {
36 struct gmap *gmap;
37 struct page *page;
38 unsigned long *table;
39 unsigned long etype, atype;
40
41 if (limit < _REGION3_SIZE) {
42 limit = _REGION3_SIZE - 1;
43 atype = _ASCE_TYPE_SEGMENT;
44 etype = _SEGMENT_ENTRY_EMPTY;
45 } else if (limit < _REGION2_SIZE) {
46 limit = _REGION2_SIZE - 1;
47 atype = _ASCE_TYPE_REGION3;
48 etype = _REGION3_ENTRY_EMPTY;
49 } else if (limit < _REGION1_SIZE) {
50 limit = _REGION1_SIZE - 1;
51 atype = _ASCE_TYPE_REGION2;
52 etype = _REGION2_ENTRY_EMPTY;
53 } else {
54 limit = -1UL;
55 atype = _ASCE_TYPE_REGION1;
56 etype = _REGION1_ENTRY_EMPTY;
57 }
58 gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL_ACCOUNT);
59 if (!gmap)
60 goto out;
61 INIT_LIST_HEAD(&gmap->crst_list);
62 INIT_LIST_HEAD(&gmap->children);
63 INIT_LIST_HEAD(&gmap->pt_list);
64 INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL_ACCOUNT);
65 INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC | __GFP_ACCOUNT);
66 INIT_RADIX_TREE(&gmap->host_to_rmap, GFP_ATOMIC | __GFP_ACCOUNT);
67 spin_lock_init(&gmap->guest_table_lock);
68 spin_lock_init(&gmap->shadow_lock);
69 refcount_set(&gmap->ref_count, 1);
70 page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
71 if (!page)
72 goto out_free;
73 page->index = 0;
74 list_add(&page->lru, &gmap->crst_list);
75 table = page_to_virt(page);
76 crst_table_init(table, etype);
77 gmap->table = table;
78 gmap->asce = atype | _ASCE_TABLE_LENGTH |
79 _ASCE_USER_BITS | __pa(table);
80 gmap->asce_end = limit;
81 return gmap;
82
83 out_free:
84 kfree(gmap);
85 out:
86 return NULL;
87 }
88
89 /**
90 * gmap_create - create a guest address space
91 * @mm: pointer to the parent mm_struct
92 * @limit: maximum size of the gmap address space
93 *
94 * Returns a guest address space structure.
95 */
gmap_create(struct mm_struct * mm,unsigned long limit)96 struct gmap *gmap_create(struct mm_struct *mm, unsigned long limit)
97 {
98 struct gmap *gmap;
99 unsigned long gmap_asce;
100
101 gmap = gmap_alloc(limit);
102 if (!gmap)
103 return NULL;
104 gmap->mm = mm;
105 spin_lock(&mm->context.lock);
106 list_add_rcu(&gmap->list, &mm->context.gmap_list);
107 if (list_is_singular(&mm->context.gmap_list))
108 gmap_asce = gmap->asce;
109 else
110 gmap_asce = -1UL;
111 WRITE_ONCE(mm->context.gmap_asce, gmap_asce);
112 spin_unlock(&mm->context.lock);
113 return gmap;
114 }
115 EXPORT_SYMBOL_GPL(gmap_create);
116
gmap_flush_tlb(struct gmap * gmap)117 static void gmap_flush_tlb(struct gmap *gmap)
118 {
119 if (MACHINE_HAS_IDTE)
120 __tlb_flush_idte(gmap->asce);
121 else
122 __tlb_flush_global();
123 }
124
gmap_radix_tree_free(struct radix_tree_root * root)125 static void gmap_radix_tree_free(struct radix_tree_root *root)
126 {
127 struct radix_tree_iter iter;
128 unsigned long indices[16];
129 unsigned long index;
130 void __rcu **slot;
131 int i, nr;
132
133 /* A radix tree is freed by deleting all of its entries */
134 index = 0;
135 do {
136 nr = 0;
137 radix_tree_for_each_slot(slot, root, &iter, index) {
138 indices[nr] = iter.index;
139 if (++nr == 16)
140 break;
141 }
142 for (i = 0; i < nr; i++) {
143 index = indices[i];
144 radix_tree_delete(root, index);
145 }
146 } while (nr > 0);
147 }
148
gmap_rmap_radix_tree_free(struct radix_tree_root * root)149 static void gmap_rmap_radix_tree_free(struct radix_tree_root *root)
150 {
151 struct gmap_rmap *rmap, *rnext, *head;
152 struct radix_tree_iter iter;
153 unsigned long indices[16];
154 unsigned long index;
155 void __rcu **slot;
156 int i, nr;
157
158 /* A radix tree is freed by deleting all of its entries */
159 index = 0;
160 do {
161 nr = 0;
162 radix_tree_for_each_slot(slot, root, &iter, index) {
163 indices[nr] = iter.index;
164 if (++nr == 16)
165 break;
166 }
167 for (i = 0; i < nr; i++) {
168 index = indices[i];
169 head = radix_tree_delete(root, index);
170 gmap_for_each_rmap_safe(rmap, rnext, head)
171 kfree(rmap);
172 }
173 } while (nr > 0);
174 }
175
176 /**
177 * gmap_free - free a guest address space
178 * @gmap: pointer to the guest address space structure
179 *
180 * No locks required. There are no references to this gmap anymore.
181 */
gmap_free(struct gmap * gmap)182 static void gmap_free(struct gmap *gmap)
183 {
184 struct page *page, *next;
185
186 /* Flush tlb of all gmaps (if not already done for shadows) */
187 if (!(gmap_is_shadow(gmap) && gmap->removed))
188 gmap_flush_tlb(gmap);
189 /* Free all segment & region tables. */
190 list_for_each_entry_safe(page, next, &gmap->crst_list, lru)
191 __free_pages(page, CRST_ALLOC_ORDER);
192 gmap_radix_tree_free(&gmap->guest_to_host);
193 gmap_radix_tree_free(&gmap->host_to_guest);
194
195 /* Free additional data for a shadow gmap */
196 if (gmap_is_shadow(gmap)) {
197 /* Free all page tables. */
198 list_for_each_entry_safe(page, next, &gmap->pt_list, lru)
199 page_table_free_pgste(page);
200 gmap_rmap_radix_tree_free(&gmap->host_to_rmap);
201 /* Release reference to the parent */
202 gmap_put(gmap->parent);
203 }
204
205 kfree(gmap);
206 }
207
208 /**
209 * gmap_get - increase reference counter for guest address space
210 * @gmap: pointer to the guest address space structure
211 *
212 * Returns the gmap pointer
213 */
gmap_get(struct gmap * gmap)214 struct gmap *gmap_get(struct gmap *gmap)
215 {
216 refcount_inc(&gmap->ref_count);
217 return gmap;
218 }
219 EXPORT_SYMBOL_GPL(gmap_get);
220
221 /**
222 * gmap_put - decrease reference counter for guest address space
223 * @gmap: pointer to the guest address space structure
224 *
225 * If the reference counter reaches zero the guest address space is freed.
226 */
gmap_put(struct gmap * gmap)227 void gmap_put(struct gmap *gmap)
228 {
229 if (refcount_dec_and_test(&gmap->ref_count))
230 gmap_free(gmap);
231 }
232 EXPORT_SYMBOL_GPL(gmap_put);
233
234 /**
235 * gmap_remove - remove a guest address space but do not free it yet
236 * @gmap: pointer to the guest address space structure
237 */
gmap_remove(struct gmap * gmap)238 void gmap_remove(struct gmap *gmap)
239 {
240 struct gmap *sg, *next;
241 unsigned long gmap_asce;
242
243 /* Remove all shadow gmaps linked to this gmap */
244 if (!list_empty(&gmap->children)) {
245 spin_lock(&gmap->shadow_lock);
246 list_for_each_entry_safe(sg, next, &gmap->children, list) {
247 list_del(&sg->list);
248 gmap_put(sg);
249 }
250 spin_unlock(&gmap->shadow_lock);
251 }
252 /* Remove gmap from the pre-mm list */
253 spin_lock(&gmap->mm->context.lock);
254 list_del_rcu(&gmap->list);
255 if (list_empty(&gmap->mm->context.gmap_list))
256 gmap_asce = 0;
257 else if (list_is_singular(&gmap->mm->context.gmap_list))
258 gmap_asce = list_first_entry(&gmap->mm->context.gmap_list,
259 struct gmap, list)->asce;
260 else
261 gmap_asce = -1UL;
262 WRITE_ONCE(gmap->mm->context.gmap_asce, gmap_asce);
263 spin_unlock(&gmap->mm->context.lock);
264 synchronize_rcu();
265 /* Put reference */
266 gmap_put(gmap);
267 }
268 EXPORT_SYMBOL_GPL(gmap_remove);
269
270 /**
271 * gmap_enable - switch primary space to the guest address space
272 * @gmap: pointer to the guest address space structure
273 */
gmap_enable(struct gmap * gmap)274 void gmap_enable(struct gmap *gmap)
275 {
276 S390_lowcore.gmap = (unsigned long) gmap;
277 }
278 EXPORT_SYMBOL_GPL(gmap_enable);
279
280 /**
281 * gmap_disable - switch back to the standard primary address space
282 * @gmap: pointer to the guest address space structure
283 */
gmap_disable(struct gmap * gmap)284 void gmap_disable(struct gmap *gmap)
285 {
286 S390_lowcore.gmap = 0UL;
287 }
288 EXPORT_SYMBOL_GPL(gmap_disable);
289
290 /**
291 * gmap_get_enabled - get a pointer to the currently enabled gmap
292 *
293 * Returns a pointer to the currently enabled gmap. 0 if none is enabled.
294 */
gmap_get_enabled(void)295 struct gmap *gmap_get_enabled(void)
296 {
297 return (struct gmap *) S390_lowcore.gmap;
298 }
299 EXPORT_SYMBOL_GPL(gmap_get_enabled);
300
301 /*
302 * gmap_alloc_table is assumed to be called with mmap_lock held
303 */
gmap_alloc_table(struct gmap * gmap,unsigned long * table,unsigned long init,unsigned long gaddr)304 static int gmap_alloc_table(struct gmap *gmap, unsigned long *table,
305 unsigned long init, unsigned long gaddr)
306 {
307 struct page *page;
308 unsigned long *new;
309
310 /* since we dont free the gmap table until gmap_free we can unlock */
311 page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
312 if (!page)
313 return -ENOMEM;
314 new = page_to_virt(page);
315 crst_table_init(new, init);
316 spin_lock(&gmap->guest_table_lock);
317 if (*table & _REGION_ENTRY_INVALID) {
318 list_add(&page->lru, &gmap->crst_list);
319 *table = __pa(new) | _REGION_ENTRY_LENGTH |
320 (*table & _REGION_ENTRY_TYPE_MASK);
321 page->index = gaddr;
322 page = NULL;
323 }
324 spin_unlock(&gmap->guest_table_lock);
325 if (page)
326 __free_pages(page, CRST_ALLOC_ORDER);
327 return 0;
328 }
329
330 /**
331 * __gmap_segment_gaddr - find virtual address from segment pointer
332 * @entry: pointer to a segment table entry in the guest address space
333 *
334 * Returns the virtual address in the guest address space for the segment
335 */
__gmap_segment_gaddr(unsigned long * entry)336 static unsigned long __gmap_segment_gaddr(unsigned long *entry)
337 {
338 struct page *page;
339 unsigned long offset;
340
341 offset = (unsigned long) entry / sizeof(unsigned long);
342 offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE;
343 page = pmd_pgtable_page((pmd_t *) entry);
344 return page->index + offset;
345 }
346
347 /**
348 * __gmap_unlink_by_vmaddr - unlink a single segment via a host address
349 * @gmap: pointer to the guest address space structure
350 * @vmaddr: address in the host process address space
351 *
352 * Returns 1 if a TLB flush is required
353 */
__gmap_unlink_by_vmaddr(struct gmap * gmap,unsigned long vmaddr)354 static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr)
355 {
356 unsigned long *entry;
357 int flush = 0;
358
359 BUG_ON(gmap_is_shadow(gmap));
360 spin_lock(&gmap->guest_table_lock);
361 entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT);
362 if (entry) {
363 flush = (*entry != _SEGMENT_ENTRY_EMPTY);
364 *entry = _SEGMENT_ENTRY_EMPTY;
365 }
366 spin_unlock(&gmap->guest_table_lock);
367 return flush;
368 }
369
370 /**
371 * __gmap_unmap_by_gaddr - unmap a single segment via a guest address
372 * @gmap: pointer to the guest address space structure
373 * @gaddr: address in the guest address space
374 *
375 * Returns 1 if a TLB flush is required
376 */
__gmap_unmap_by_gaddr(struct gmap * gmap,unsigned long gaddr)377 static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr)
378 {
379 unsigned long vmaddr;
380
381 vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host,
382 gaddr >> PMD_SHIFT);
383 return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0;
384 }
385
386 /**
387 * gmap_unmap_segment - unmap segment from the guest address space
388 * @gmap: pointer to the guest address space structure
389 * @to: address in the guest address space
390 * @len: length of the memory area to unmap
391 *
392 * Returns 0 if the unmap succeeded, -EINVAL if not.
393 */
gmap_unmap_segment(struct gmap * gmap,unsigned long to,unsigned long len)394 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
395 {
396 unsigned long off;
397 int flush;
398
399 BUG_ON(gmap_is_shadow(gmap));
400 if ((to | len) & (PMD_SIZE - 1))
401 return -EINVAL;
402 if (len == 0 || to + len < to)
403 return -EINVAL;
404
405 flush = 0;
406 mmap_write_lock(gmap->mm);
407 for (off = 0; off < len; off += PMD_SIZE)
408 flush |= __gmap_unmap_by_gaddr(gmap, to + off);
409 mmap_write_unlock(gmap->mm);
410 if (flush)
411 gmap_flush_tlb(gmap);
412 return 0;
413 }
414 EXPORT_SYMBOL_GPL(gmap_unmap_segment);
415
416 /**
417 * gmap_map_segment - map a segment to the guest address space
418 * @gmap: pointer to the guest address space structure
419 * @from: source address in the parent address space
420 * @to: target address in the guest address space
421 * @len: length of the memory area to map
422 *
423 * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not.
424 */
gmap_map_segment(struct gmap * gmap,unsigned long from,unsigned long to,unsigned long len)425 int gmap_map_segment(struct gmap *gmap, unsigned long from,
426 unsigned long to, unsigned long len)
427 {
428 unsigned long off;
429 int flush;
430
431 BUG_ON(gmap_is_shadow(gmap));
432 if ((from | to | len) & (PMD_SIZE - 1))
433 return -EINVAL;
434 if (len == 0 || from + len < from || to + len < to ||
435 from + len - 1 > TASK_SIZE_MAX || to + len - 1 > gmap->asce_end)
436 return -EINVAL;
437
438 flush = 0;
439 mmap_write_lock(gmap->mm);
440 for (off = 0; off < len; off += PMD_SIZE) {
441 /* Remove old translation */
442 flush |= __gmap_unmap_by_gaddr(gmap, to + off);
443 /* Store new translation */
444 if (radix_tree_insert(&gmap->guest_to_host,
445 (to + off) >> PMD_SHIFT,
446 (void *) from + off))
447 break;
448 }
449 mmap_write_unlock(gmap->mm);
450 if (flush)
451 gmap_flush_tlb(gmap);
452 if (off >= len)
453 return 0;
454 gmap_unmap_segment(gmap, to, len);
455 return -ENOMEM;
456 }
457 EXPORT_SYMBOL_GPL(gmap_map_segment);
458
459 /**
460 * __gmap_translate - translate a guest address to a user space address
461 * @gmap: pointer to guest mapping meta data structure
462 * @gaddr: guest address
463 *
464 * Returns user space address which corresponds to the guest address or
465 * -EFAULT if no such mapping exists.
466 * This function does not establish potentially missing page table entries.
467 * The mmap_lock of the mm that belongs to the address space must be held
468 * when this function gets called.
469 *
470 * Note: Can also be called for shadow gmaps.
471 */
__gmap_translate(struct gmap * gmap,unsigned long gaddr)472 unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr)
473 {
474 unsigned long vmaddr;
475
476 vmaddr = (unsigned long)
477 radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT);
478 /* Note: guest_to_host is empty for a shadow gmap */
479 return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT;
480 }
481 EXPORT_SYMBOL_GPL(__gmap_translate);
482
483 /**
484 * gmap_translate - translate a guest address to a user space address
485 * @gmap: pointer to guest mapping meta data structure
486 * @gaddr: guest address
487 *
488 * Returns user space address which corresponds to the guest address or
489 * -EFAULT if no such mapping exists.
490 * This function does not establish potentially missing page table entries.
491 */
gmap_translate(struct gmap * gmap,unsigned long gaddr)492 unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr)
493 {
494 unsigned long rc;
495
496 mmap_read_lock(gmap->mm);
497 rc = __gmap_translate(gmap, gaddr);
498 mmap_read_unlock(gmap->mm);
499 return rc;
500 }
501 EXPORT_SYMBOL_GPL(gmap_translate);
502
503 /**
504 * gmap_unlink - disconnect a page table from the gmap shadow tables
505 * @mm: pointer to the parent mm_struct
506 * @table: pointer to the host page table
507 * @vmaddr: vm address associated with the host page table
508 */
gmap_unlink(struct mm_struct * mm,unsigned long * table,unsigned long vmaddr)509 void gmap_unlink(struct mm_struct *mm, unsigned long *table,
510 unsigned long vmaddr)
511 {
512 struct gmap *gmap;
513 int flush;
514
515 rcu_read_lock();
516 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
517 flush = __gmap_unlink_by_vmaddr(gmap, vmaddr);
518 if (flush)
519 gmap_flush_tlb(gmap);
520 }
521 rcu_read_unlock();
522 }
523
524 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *old, pmd_t new,
525 unsigned long gaddr);
526
527 /**
528 * __gmap_link - set up shadow page tables to connect a host to a guest address
529 * @gmap: pointer to guest mapping meta data structure
530 * @gaddr: guest address
531 * @vmaddr: vm address
532 *
533 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
534 * if the vm address is already mapped to a different guest segment.
535 * The mmap_lock of the mm that belongs to the address space must be held
536 * when this function gets called.
537 */
__gmap_link(struct gmap * gmap,unsigned long gaddr,unsigned long vmaddr)538 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr)
539 {
540 struct mm_struct *mm;
541 unsigned long *table;
542 spinlock_t *ptl;
543 pgd_t *pgd;
544 p4d_t *p4d;
545 pud_t *pud;
546 pmd_t *pmd;
547 u64 unprot;
548 int rc;
549
550 BUG_ON(gmap_is_shadow(gmap));
551 /* Create higher level tables in the gmap page table */
552 table = gmap->table;
553 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) {
554 table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
555 if ((*table & _REGION_ENTRY_INVALID) &&
556 gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY,
557 gaddr & _REGION1_MASK))
558 return -ENOMEM;
559 table = __va(*table & _REGION_ENTRY_ORIGIN);
560 }
561 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) {
562 table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
563 if ((*table & _REGION_ENTRY_INVALID) &&
564 gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY,
565 gaddr & _REGION2_MASK))
566 return -ENOMEM;
567 table = __va(*table & _REGION_ENTRY_ORIGIN);
568 }
569 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) {
570 table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
571 if ((*table & _REGION_ENTRY_INVALID) &&
572 gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY,
573 gaddr & _REGION3_MASK))
574 return -ENOMEM;
575 table = __va(*table & _REGION_ENTRY_ORIGIN);
576 }
577 table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
578 /* Walk the parent mm page table */
579 mm = gmap->mm;
580 pgd = pgd_offset(mm, vmaddr);
581 VM_BUG_ON(pgd_none(*pgd));
582 p4d = p4d_offset(pgd, vmaddr);
583 VM_BUG_ON(p4d_none(*p4d));
584 pud = pud_offset(p4d, vmaddr);
585 VM_BUG_ON(pud_none(*pud));
586 /* large puds cannot yet be handled */
587 if (pud_large(*pud))
588 return -EFAULT;
589 pmd = pmd_offset(pud, vmaddr);
590 VM_BUG_ON(pmd_none(*pmd));
591 /* Are we allowed to use huge pages? */
592 if (pmd_large(*pmd) && !gmap->mm->context.allow_gmap_hpage_1m)
593 return -EFAULT;
594 /* Link gmap segment table entry location to page table. */
595 rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
596 if (rc)
597 return rc;
598 ptl = pmd_lock(mm, pmd);
599 spin_lock(&gmap->guest_table_lock);
600 if (*table == _SEGMENT_ENTRY_EMPTY) {
601 rc = radix_tree_insert(&gmap->host_to_guest,
602 vmaddr >> PMD_SHIFT, table);
603 if (!rc) {
604 if (pmd_large(*pmd)) {
605 *table = (pmd_val(*pmd) &
606 _SEGMENT_ENTRY_HARDWARE_BITS_LARGE)
607 | _SEGMENT_ENTRY_GMAP_UC;
608 } else
609 *table = pmd_val(*pmd) &
610 _SEGMENT_ENTRY_HARDWARE_BITS;
611 }
612 } else if (*table & _SEGMENT_ENTRY_PROTECT &&
613 !(pmd_val(*pmd) & _SEGMENT_ENTRY_PROTECT)) {
614 unprot = (u64)*table;
615 unprot &= ~_SEGMENT_ENTRY_PROTECT;
616 unprot |= _SEGMENT_ENTRY_GMAP_UC;
617 gmap_pmdp_xchg(gmap, (pmd_t *)table, __pmd(unprot), gaddr);
618 }
619 spin_unlock(&gmap->guest_table_lock);
620 spin_unlock(ptl);
621 radix_tree_preload_end();
622 return rc;
623 }
624
625 /**
626 * gmap_fault - resolve a fault on a guest address
627 * @gmap: pointer to guest mapping meta data structure
628 * @gaddr: guest address
629 * @fault_flags: flags to pass down to handle_mm_fault()
630 *
631 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
632 * if the vm address is already mapped to a different guest segment.
633 */
gmap_fault(struct gmap * gmap,unsigned long gaddr,unsigned int fault_flags)634 int gmap_fault(struct gmap *gmap, unsigned long gaddr,
635 unsigned int fault_flags)
636 {
637 unsigned long vmaddr;
638 int rc;
639 bool unlocked;
640
641 mmap_read_lock(gmap->mm);
642
643 retry:
644 unlocked = false;
645 vmaddr = __gmap_translate(gmap, gaddr);
646 if (IS_ERR_VALUE(vmaddr)) {
647 rc = vmaddr;
648 goto out_up;
649 }
650 if (fixup_user_fault(gmap->mm, vmaddr, fault_flags,
651 &unlocked)) {
652 rc = -EFAULT;
653 goto out_up;
654 }
655 /*
656 * In the case that fixup_user_fault unlocked the mmap_lock during
657 * faultin redo __gmap_translate to not race with a map/unmap_segment.
658 */
659 if (unlocked)
660 goto retry;
661
662 rc = __gmap_link(gmap, gaddr, vmaddr);
663 out_up:
664 mmap_read_unlock(gmap->mm);
665 return rc;
666 }
667 EXPORT_SYMBOL_GPL(gmap_fault);
668
669 /*
670 * this function is assumed to be called with mmap_lock held
671 */
__gmap_zap(struct gmap * gmap,unsigned long gaddr)672 void __gmap_zap(struct gmap *gmap, unsigned long gaddr)
673 {
674 struct vm_area_struct *vma;
675 unsigned long vmaddr;
676 spinlock_t *ptl;
677 pte_t *ptep;
678
679 /* Find the vm address for the guest address */
680 vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host,
681 gaddr >> PMD_SHIFT);
682 if (vmaddr) {
683 vmaddr |= gaddr & ~PMD_MASK;
684
685 vma = vma_lookup(gmap->mm, vmaddr);
686 if (!vma || is_vm_hugetlb_page(vma))
687 return;
688
689 /* Get pointer to the page table entry */
690 ptep = get_locked_pte(gmap->mm, vmaddr, &ptl);
691 if (likely(ptep)) {
692 ptep_zap_unused(gmap->mm, vmaddr, ptep, 0);
693 pte_unmap_unlock(ptep, ptl);
694 }
695 }
696 }
697 EXPORT_SYMBOL_GPL(__gmap_zap);
698
gmap_discard(struct gmap * gmap,unsigned long from,unsigned long to)699 void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to)
700 {
701 unsigned long gaddr, vmaddr, size;
702 struct vm_area_struct *vma;
703
704 mmap_read_lock(gmap->mm);
705 for (gaddr = from; gaddr < to;
706 gaddr = (gaddr + PMD_SIZE) & PMD_MASK) {
707 /* Find the vm address for the guest address */
708 vmaddr = (unsigned long)
709 radix_tree_lookup(&gmap->guest_to_host,
710 gaddr >> PMD_SHIFT);
711 if (!vmaddr)
712 continue;
713 vmaddr |= gaddr & ~PMD_MASK;
714 /* Find vma in the parent mm */
715 vma = find_vma(gmap->mm, vmaddr);
716 if (!vma)
717 continue;
718 /*
719 * We do not discard pages that are backed by
720 * hugetlbfs, so we don't have to refault them.
721 */
722 if (is_vm_hugetlb_page(vma))
723 continue;
724 size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK));
725 zap_page_range_single(vma, vmaddr, size, NULL);
726 }
727 mmap_read_unlock(gmap->mm);
728 }
729 EXPORT_SYMBOL_GPL(gmap_discard);
730
731 static LIST_HEAD(gmap_notifier_list);
732 static DEFINE_SPINLOCK(gmap_notifier_lock);
733
734 /**
735 * gmap_register_pte_notifier - register a pte invalidation callback
736 * @nb: pointer to the gmap notifier block
737 */
gmap_register_pte_notifier(struct gmap_notifier * nb)738 void gmap_register_pte_notifier(struct gmap_notifier *nb)
739 {
740 spin_lock(&gmap_notifier_lock);
741 list_add_rcu(&nb->list, &gmap_notifier_list);
742 spin_unlock(&gmap_notifier_lock);
743 }
744 EXPORT_SYMBOL_GPL(gmap_register_pte_notifier);
745
746 /**
747 * gmap_unregister_pte_notifier - remove a pte invalidation callback
748 * @nb: pointer to the gmap notifier block
749 */
gmap_unregister_pte_notifier(struct gmap_notifier * nb)750 void gmap_unregister_pte_notifier(struct gmap_notifier *nb)
751 {
752 spin_lock(&gmap_notifier_lock);
753 list_del_rcu(&nb->list);
754 spin_unlock(&gmap_notifier_lock);
755 synchronize_rcu();
756 }
757 EXPORT_SYMBOL_GPL(gmap_unregister_pte_notifier);
758
759 /**
760 * gmap_call_notifier - call all registered invalidation callbacks
761 * @gmap: pointer to guest mapping meta data structure
762 * @start: start virtual address in the guest address space
763 * @end: end virtual address in the guest address space
764 */
gmap_call_notifier(struct gmap * gmap,unsigned long start,unsigned long end)765 static void gmap_call_notifier(struct gmap *gmap, unsigned long start,
766 unsigned long end)
767 {
768 struct gmap_notifier *nb;
769
770 list_for_each_entry(nb, &gmap_notifier_list, list)
771 nb->notifier_call(gmap, start, end);
772 }
773
774 /**
775 * gmap_table_walk - walk the gmap page tables
776 * @gmap: pointer to guest mapping meta data structure
777 * @gaddr: virtual address in the guest address space
778 * @level: page table level to stop at
779 *
780 * Returns a table entry pointer for the given guest address and @level
781 * @level=0 : returns a pointer to a page table table entry (or NULL)
782 * @level=1 : returns a pointer to a segment table entry (or NULL)
783 * @level=2 : returns a pointer to a region-3 table entry (or NULL)
784 * @level=3 : returns a pointer to a region-2 table entry (or NULL)
785 * @level=4 : returns a pointer to a region-1 table entry (or NULL)
786 *
787 * Returns NULL if the gmap page tables could not be walked to the
788 * requested level.
789 *
790 * Note: Can also be called for shadow gmaps.
791 */
gmap_table_walk(struct gmap * gmap,unsigned long gaddr,int level)792 static inline unsigned long *gmap_table_walk(struct gmap *gmap,
793 unsigned long gaddr, int level)
794 {
795 const int asce_type = gmap->asce & _ASCE_TYPE_MASK;
796 unsigned long *table = gmap->table;
797
798 if (gmap_is_shadow(gmap) && gmap->removed)
799 return NULL;
800
801 if (WARN_ON_ONCE(level > (asce_type >> 2) + 1))
802 return NULL;
803
804 if (asce_type != _ASCE_TYPE_REGION1 &&
805 gaddr & (-1UL << (31 + (asce_type >> 2) * 11)))
806 return NULL;
807
808 switch (asce_type) {
809 case _ASCE_TYPE_REGION1:
810 table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
811 if (level == 4)
812 break;
813 if (*table & _REGION_ENTRY_INVALID)
814 return NULL;
815 table = __va(*table & _REGION_ENTRY_ORIGIN);
816 fallthrough;
817 case _ASCE_TYPE_REGION2:
818 table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
819 if (level == 3)
820 break;
821 if (*table & _REGION_ENTRY_INVALID)
822 return NULL;
823 table = __va(*table & _REGION_ENTRY_ORIGIN);
824 fallthrough;
825 case _ASCE_TYPE_REGION3:
826 table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
827 if (level == 2)
828 break;
829 if (*table & _REGION_ENTRY_INVALID)
830 return NULL;
831 table = __va(*table & _REGION_ENTRY_ORIGIN);
832 fallthrough;
833 case _ASCE_TYPE_SEGMENT:
834 table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
835 if (level == 1)
836 break;
837 if (*table & _REGION_ENTRY_INVALID)
838 return NULL;
839 table = __va(*table & _SEGMENT_ENTRY_ORIGIN);
840 table += (gaddr & _PAGE_INDEX) >> _PAGE_SHIFT;
841 }
842 return table;
843 }
844
845 /**
846 * gmap_pte_op_walk - walk the gmap page table, get the page table lock
847 * and return the pte pointer
848 * @gmap: pointer to guest mapping meta data structure
849 * @gaddr: virtual address in the guest address space
850 * @ptl: pointer to the spinlock pointer
851 *
852 * Returns a pointer to the locked pte for a guest address, or NULL
853 */
gmap_pte_op_walk(struct gmap * gmap,unsigned long gaddr,spinlock_t ** ptl)854 static pte_t *gmap_pte_op_walk(struct gmap *gmap, unsigned long gaddr,
855 spinlock_t **ptl)
856 {
857 unsigned long *table;
858
859 BUG_ON(gmap_is_shadow(gmap));
860 /* Walk the gmap page table, lock and get pte pointer */
861 table = gmap_table_walk(gmap, gaddr, 1); /* get segment pointer */
862 if (!table || *table & _SEGMENT_ENTRY_INVALID)
863 return NULL;
864 return pte_alloc_map_lock(gmap->mm, (pmd_t *) table, gaddr, ptl);
865 }
866
867 /**
868 * gmap_pte_op_fixup - force a page in and connect the gmap page table
869 * @gmap: pointer to guest mapping meta data structure
870 * @gaddr: virtual address in the guest address space
871 * @vmaddr: address in the host process address space
872 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
873 *
874 * Returns 0 if the caller can retry __gmap_translate (might fail again),
875 * -ENOMEM if out of memory and -EFAULT if anything goes wrong while fixing
876 * up or connecting the gmap page table.
877 */
gmap_pte_op_fixup(struct gmap * gmap,unsigned long gaddr,unsigned long vmaddr,int prot)878 static int gmap_pte_op_fixup(struct gmap *gmap, unsigned long gaddr,
879 unsigned long vmaddr, int prot)
880 {
881 struct mm_struct *mm = gmap->mm;
882 unsigned int fault_flags;
883 bool unlocked = false;
884
885 BUG_ON(gmap_is_shadow(gmap));
886 fault_flags = (prot == PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
887 if (fixup_user_fault(mm, vmaddr, fault_flags, &unlocked))
888 return -EFAULT;
889 if (unlocked)
890 /* lost mmap_lock, caller has to retry __gmap_translate */
891 return 0;
892 /* Connect the page tables */
893 return __gmap_link(gmap, gaddr, vmaddr);
894 }
895
896 /**
897 * gmap_pte_op_end - release the page table lock
898 * @ptep: pointer to the locked pte
899 * @ptl: pointer to the page table spinlock
900 */
gmap_pte_op_end(pte_t * ptep,spinlock_t * ptl)901 static void gmap_pte_op_end(pte_t *ptep, spinlock_t *ptl)
902 {
903 pte_unmap_unlock(ptep, ptl);
904 }
905
906 /**
907 * gmap_pmd_op_walk - walk the gmap tables, get the guest table lock
908 * and return the pmd pointer
909 * @gmap: pointer to guest mapping meta data structure
910 * @gaddr: virtual address in the guest address space
911 *
912 * Returns a pointer to the pmd for a guest address, or NULL
913 */
gmap_pmd_op_walk(struct gmap * gmap,unsigned long gaddr)914 static inline pmd_t *gmap_pmd_op_walk(struct gmap *gmap, unsigned long gaddr)
915 {
916 pmd_t *pmdp;
917
918 BUG_ON(gmap_is_shadow(gmap));
919 pmdp = (pmd_t *) gmap_table_walk(gmap, gaddr, 1);
920 if (!pmdp)
921 return NULL;
922
923 /* without huge pages, there is no need to take the table lock */
924 if (!gmap->mm->context.allow_gmap_hpage_1m)
925 return pmd_none(*pmdp) ? NULL : pmdp;
926
927 spin_lock(&gmap->guest_table_lock);
928 if (pmd_none(*pmdp)) {
929 spin_unlock(&gmap->guest_table_lock);
930 return NULL;
931 }
932
933 /* 4k page table entries are locked via the pte (pte_alloc_map_lock). */
934 if (!pmd_large(*pmdp))
935 spin_unlock(&gmap->guest_table_lock);
936 return pmdp;
937 }
938
939 /**
940 * gmap_pmd_op_end - release the guest_table_lock if needed
941 * @gmap: pointer to the guest mapping meta data structure
942 * @pmdp: pointer to the pmd
943 */
gmap_pmd_op_end(struct gmap * gmap,pmd_t * pmdp)944 static inline void gmap_pmd_op_end(struct gmap *gmap, pmd_t *pmdp)
945 {
946 if (pmd_large(*pmdp))
947 spin_unlock(&gmap->guest_table_lock);
948 }
949
950 /*
951 * gmap_protect_pmd - remove access rights to memory and set pmd notification bits
952 * @pmdp: pointer to the pmd to be protected
953 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
954 * @bits: notification bits to set
955 *
956 * Returns:
957 * 0 if successfully protected
958 * -EAGAIN if a fixup is needed
959 * -EINVAL if unsupported notifier bits have been specified
960 *
961 * Expected to be called with sg->mm->mmap_lock in read and
962 * guest_table_lock held.
963 */
gmap_protect_pmd(struct gmap * gmap,unsigned long gaddr,pmd_t * pmdp,int prot,unsigned long bits)964 static int gmap_protect_pmd(struct gmap *gmap, unsigned long gaddr,
965 pmd_t *pmdp, int prot, unsigned long bits)
966 {
967 int pmd_i = pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID;
968 int pmd_p = pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT;
969 pmd_t new = *pmdp;
970
971 /* Fixup needed */
972 if ((pmd_i && (prot != PROT_NONE)) || (pmd_p && (prot == PROT_WRITE)))
973 return -EAGAIN;
974
975 if (prot == PROT_NONE && !pmd_i) {
976 new = set_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_INVALID));
977 gmap_pmdp_xchg(gmap, pmdp, new, gaddr);
978 }
979
980 if (prot == PROT_READ && !pmd_p) {
981 new = clear_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_INVALID));
982 new = set_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_PROTECT));
983 gmap_pmdp_xchg(gmap, pmdp, new, gaddr);
984 }
985
986 if (bits & GMAP_NOTIFY_MPROT)
987 set_pmd(pmdp, set_pmd_bit(*pmdp, __pgprot(_SEGMENT_ENTRY_GMAP_IN)));
988
989 /* Shadow GMAP protection needs split PMDs */
990 if (bits & GMAP_NOTIFY_SHADOW)
991 return -EINVAL;
992
993 return 0;
994 }
995
996 /*
997 * gmap_protect_pte - remove access rights to memory and set pgste bits
998 * @gmap: pointer to guest mapping meta data structure
999 * @gaddr: virtual address in the guest address space
1000 * @pmdp: pointer to the pmd associated with the pte
1001 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1002 * @bits: notification bits to set
1003 *
1004 * Returns 0 if successfully protected, -ENOMEM if out of memory and
1005 * -EAGAIN if a fixup is needed.
1006 *
1007 * Expected to be called with sg->mm->mmap_lock in read
1008 */
gmap_protect_pte(struct gmap * gmap,unsigned long gaddr,pmd_t * pmdp,int prot,unsigned long bits)1009 static int gmap_protect_pte(struct gmap *gmap, unsigned long gaddr,
1010 pmd_t *pmdp, int prot, unsigned long bits)
1011 {
1012 int rc;
1013 pte_t *ptep;
1014 spinlock_t *ptl;
1015 unsigned long pbits = 0;
1016
1017 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1018 return -EAGAIN;
1019
1020 ptep = pte_alloc_map_lock(gmap->mm, pmdp, gaddr, &ptl);
1021 if (!ptep)
1022 return -ENOMEM;
1023
1024 pbits |= (bits & GMAP_NOTIFY_MPROT) ? PGSTE_IN_BIT : 0;
1025 pbits |= (bits & GMAP_NOTIFY_SHADOW) ? PGSTE_VSIE_BIT : 0;
1026 /* Protect and unlock. */
1027 rc = ptep_force_prot(gmap->mm, gaddr, ptep, prot, pbits);
1028 gmap_pte_op_end(ptep, ptl);
1029 return rc;
1030 }
1031
1032 /*
1033 * gmap_protect_range - remove access rights to memory and set pgste bits
1034 * @gmap: pointer to guest mapping meta data structure
1035 * @gaddr: virtual address in the guest address space
1036 * @len: size of area
1037 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1038 * @bits: pgste notification bits to set
1039 *
1040 * Returns 0 if successfully protected, -ENOMEM if out of memory and
1041 * -EFAULT if gaddr is invalid (or mapping for shadows is missing).
1042 *
1043 * Called with sg->mm->mmap_lock in read.
1044 */
gmap_protect_range(struct gmap * gmap,unsigned long gaddr,unsigned long len,int prot,unsigned long bits)1045 static int gmap_protect_range(struct gmap *gmap, unsigned long gaddr,
1046 unsigned long len, int prot, unsigned long bits)
1047 {
1048 unsigned long vmaddr, dist;
1049 pmd_t *pmdp;
1050 int rc;
1051
1052 BUG_ON(gmap_is_shadow(gmap));
1053 while (len) {
1054 rc = -EAGAIN;
1055 pmdp = gmap_pmd_op_walk(gmap, gaddr);
1056 if (pmdp) {
1057 if (!pmd_large(*pmdp)) {
1058 rc = gmap_protect_pte(gmap, gaddr, pmdp, prot,
1059 bits);
1060 if (!rc) {
1061 len -= PAGE_SIZE;
1062 gaddr += PAGE_SIZE;
1063 }
1064 } else {
1065 rc = gmap_protect_pmd(gmap, gaddr, pmdp, prot,
1066 bits);
1067 if (!rc) {
1068 dist = HPAGE_SIZE - (gaddr & ~HPAGE_MASK);
1069 len = len < dist ? 0 : len - dist;
1070 gaddr = (gaddr & HPAGE_MASK) + HPAGE_SIZE;
1071 }
1072 }
1073 gmap_pmd_op_end(gmap, pmdp);
1074 }
1075 if (rc) {
1076 if (rc == -EINVAL)
1077 return rc;
1078
1079 /* -EAGAIN, fixup of userspace mm and gmap */
1080 vmaddr = __gmap_translate(gmap, gaddr);
1081 if (IS_ERR_VALUE(vmaddr))
1082 return vmaddr;
1083 rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, prot);
1084 if (rc)
1085 return rc;
1086 }
1087 }
1088 return 0;
1089 }
1090
1091 /**
1092 * gmap_mprotect_notify - change access rights for a range of ptes and
1093 * call the notifier if any pte changes again
1094 * @gmap: pointer to guest mapping meta data structure
1095 * @gaddr: virtual address in the guest address space
1096 * @len: size of area
1097 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1098 *
1099 * Returns 0 if for each page in the given range a gmap mapping exists,
1100 * the new access rights could be set and the notifier could be armed.
1101 * If the gmap mapping is missing for one or more pages -EFAULT is
1102 * returned. If no memory could be allocated -ENOMEM is returned.
1103 * This function establishes missing page table entries.
1104 */
gmap_mprotect_notify(struct gmap * gmap,unsigned long gaddr,unsigned long len,int prot)1105 int gmap_mprotect_notify(struct gmap *gmap, unsigned long gaddr,
1106 unsigned long len, int prot)
1107 {
1108 int rc;
1109
1110 if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK) || gmap_is_shadow(gmap))
1111 return -EINVAL;
1112 if (!MACHINE_HAS_ESOP && prot == PROT_READ)
1113 return -EINVAL;
1114 mmap_read_lock(gmap->mm);
1115 rc = gmap_protect_range(gmap, gaddr, len, prot, GMAP_NOTIFY_MPROT);
1116 mmap_read_unlock(gmap->mm);
1117 return rc;
1118 }
1119 EXPORT_SYMBOL_GPL(gmap_mprotect_notify);
1120
1121 /**
1122 * gmap_read_table - get an unsigned long value from a guest page table using
1123 * absolute addressing, without marking the page referenced.
1124 * @gmap: pointer to guest mapping meta data structure
1125 * @gaddr: virtual address in the guest address space
1126 * @val: pointer to the unsigned long value to return
1127 *
1128 * Returns 0 if the value was read, -ENOMEM if out of memory and -EFAULT
1129 * if reading using the virtual address failed. -EINVAL if called on a gmap
1130 * shadow.
1131 *
1132 * Called with gmap->mm->mmap_lock in read.
1133 */
gmap_read_table(struct gmap * gmap,unsigned long gaddr,unsigned long * val)1134 int gmap_read_table(struct gmap *gmap, unsigned long gaddr, unsigned long *val)
1135 {
1136 unsigned long address, vmaddr;
1137 spinlock_t *ptl;
1138 pte_t *ptep, pte;
1139 int rc;
1140
1141 if (gmap_is_shadow(gmap))
1142 return -EINVAL;
1143
1144 while (1) {
1145 rc = -EAGAIN;
1146 ptep = gmap_pte_op_walk(gmap, gaddr, &ptl);
1147 if (ptep) {
1148 pte = *ptep;
1149 if (pte_present(pte) && (pte_val(pte) & _PAGE_READ)) {
1150 address = pte_val(pte) & PAGE_MASK;
1151 address += gaddr & ~PAGE_MASK;
1152 *val = *(unsigned long *)__va(address);
1153 set_pte(ptep, set_pte_bit(*ptep, __pgprot(_PAGE_YOUNG)));
1154 /* Do *NOT* clear the _PAGE_INVALID bit! */
1155 rc = 0;
1156 }
1157 gmap_pte_op_end(ptep, ptl);
1158 }
1159 if (!rc)
1160 break;
1161 vmaddr = __gmap_translate(gmap, gaddr);
1162 if (IS_ERR_VALUE(vmaddr)) {
1163 rc = vmaddr;
1164 break;
1165 }
1166 rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, PROT_READ);
1167 if (rc)
1168 break;
1169 }
1170 return rc;
1171 }
1172 EXPORT_SYMBOL_GPL(gmap_read_table);
1173
1174 /**
1175 * gmap_insert_rmap - add a rmap to the host_to_rmap radix tree
1176 * @sg: pointer to the shadow guest address space structure
1177 * @vmaddr: vm address associated with the rmap
1178 * @rmap: pointer to the rmap structure
1179 *
1180 * Called with the sg->guest_table_lock
1181 */
gmap_insert_rmap(struct gmap * sg,unsigned long vmaddr,struct gmap_rmap * rmap)1182 static inline void gmap_insert_rmap(struct gmap *sg, unsigned long vmaddr,
1183 struct gmap_rmap *rmap)
1184 {
1185 struct gmap_rmap *temp;
1186 void __rcu **slot;
1187
1188 BUG_ON(!gmap_is_shadow(sg));
1189 slot = radix_tree_lookup_slot(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
1190 if (slot) {
1191 rmap->next = radix_tree_deref_slot_protected(slot,
1192 &sg->guest_table_lock);
1193 for (temp = rmap->next; temp; temp = temp->next) {
1194 if (temp->raddr == rmap->raddr) {
1195 kfree(rmap);
1196 return;
1197 }
1198 }
1199 radix_tree_replace_slot(&sg->host_to_rmap, slot, rmap);
1200 } else {
1201 rmap->next = NULL;
1202 radix_tree_insert(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT,
1203 rmap);
1204 }
1205 }
1206
1207 /**
1208 * gmap_protect_rmap - restrict access rights to memory (RO) and create an rmap
1209 * @sg: pointer to the shadow guest address space structure
1210 * @raddr: rmap address in the shadow gmap
1211 * @paddr: address in the parent guest address space
1212 * @len: length of the memory area to protect
1213 *
1214 * Returns 0 if successfully protected and the rmap was created, -ENOMEM
1215 * if out of memory and -EFAULT if paddr is invalid.
1216 */
gmap_protect_rmap(struct gmap * sg,unsigned long raddr,unsigned long paddr,unsigned long len)1217 static int gmap_protect_rmap(struct gmap *sg, unsigned long raddr,
1218 unsigned long paddr, unsigned long len)
1219 {
1220 struct gmap *parent;
1221 struct gmap_rmap *rmap;
1222 unsigned long vmaddr;
1223 spinlock_t *ptl;
1224 pte_t *ptep;
1225 int rc;
1226
1227 BUG_ON(!gmap_is_shadow(sg));
1228 parent = sg->parent;
1229 while (len) {
1230 vmaddr = __gmap_translate(parent, paddr);
1231 if (IS_ERR_VALUE(vmaddr))
1232 return vmaddr;
1233 rmap = kzalloc(sizeof(*rmap), GFP_KERNEL_ACCOUNT);
1234 if (!rmap)
1235 return -ENOMEM;
1236 rmap->raddr = raddr;
1237 rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
1238 if (rc) {
1239 kfree(rmap);
1240 return rc;
1241 }
1242 rc = -EAGAIN;
1243 ptep = gmap_pte_op_walk(parent, paddr, &ptl);
1244 if (ptep) {
1245 spin_lock(&sg->guest_table_lock);
1246 rc = ptep_force_prot(parent->mm, paddr, ptep, PROT_READ,
1247 PGSTE_VSIE_BIT);
1248 if (!rc)
1249 gmap_insert_rmap(sg, vmaddr, rmap);
1250 spin_unlock(&sg->guest_table_lock);
1251 gmap_pte_op_end(ptep, ptl);
1252 }
1253 radix_tree_preload_end();
1254 if (rc) {
1255 kfree(rmap);
1256 rc = gmap_pte_op_fixup(parent, paddr, vmaddr, PROT_READ);
1257 if (rc)
1258 return rc;
1259 continue;
1260 }
1261 paddr += PAGE_SIZE;
1262 len -= PAGE_SIZE;
1263 }
1264 return 0;
1265 }
1266
1267 #define _SHADOW_RMAP_MASK 0x7
1268 #define _SHADOW_RMAP_REGION1 0x5
1269 #define _SHADOW_RMAP_REGION2 0x4
1270 #define _SHADOW_RMAP_REGION3 0x3
1271 #define _SHADOW_RMAP_SEGMENT 0x2
1272 #define _SHADOW_RMAP_PGTABLE 0x1
1273
1274 /**
1275 * gmap_idte_one - invalidate a single region or segment table entry
1276 * @asce: region or segment table *origin* + table-type bits
1277 * @vaddr: virtual address to identify the table entry to flush
1278 *
1279 * The invalid bit of a single region or segment table entry is set
1280 * and the associated TLB entries depending on the entry are flushed.
1281 * The table-type of the @asce identifies the portion of the @vaddr
1282 * that is used as the invalidation index.
1283 */
gmap_idte_one(unsigned long asce,unsigned long vaddr)1284 static inline void gmap_idte_one(unsigned long asce, unsigned long vaddr)
1285 {
1286 asm volatile(
1287 " idte %0,0,%1"
1288 : : "a" (asce), "a" (vaddr) : "cc", "memory");
1289 }
1290
1291 /**
1292 * gmap_unshadow_page - remove a page from a shadow page table
1293 * @sg: pointer to the shadow guest address space structure
1294 * @raddr: rmap address in the shadow guest address space
1295 *
1296 * Called with the sg->guest_table_lock
1297 */
gmap_unshadow_page(struct gmap * sg,unsigned long raddr)1298 static void gmap_unshadow_page(struct gmap *sg, unsigned long raddr)
1299 {
1300 unsigned long *table;
1301
1302 BUG_ON(!gmap_is_shadow(sg));
1303 table = gmap_table_walk(sg, raddr, 0); /* get page table pointer */
1304 if (!table || *table & _PAGE_INVALID)
1305 return;
1306 gmap_call_notifier(sg, raddr, raddr + _PAGE_SIZE - 1);
1307 ptep_unshadow_pte(sg->mm, raddr, (pte_t *) table);
1308 }
1309
1310 /**
1311 * __gmap_unshadow_pgt - remove all entries from a shadow page table
1312 * @sg: pointer to the shadow guest address space structure
1313 * @raddr: rmap address in the shadow guest address space
1314 * @pgt: pointer to the start of a shadow page table
1315 *
1316 * Called with the sg->guest_table_lock
1317 */
__gmap_unshadow_pgt(struct gmap * sg,unsigned long raddr,unsigned long * pgt)1318 static void __gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr,
1319 unsigned long *pgt)
1320 {
1321 int i;
1322
1323 BUG_ON(!gmap_is_shadow(sg));
1324 for (i = 0; i < _PAGE_ENTRIES; i++, raddr += _PAGE_SIZE)
1325 pgt[i] = _PAGE_INVALID;
1326 }
1327
1328 /**
1329 * gmap_unshadow_pgt - remove a shadow page table from a segment entry
1330 * @sg: pointer to the shadow guest address space structure
1331 * @raddr: address in the shadow guest address space
1332 *
1333 * Called with the sg->guest_table_lock
1334 */
gmap_unshadow_pgt(struct gmap * sg,unsigned long raddr)1335 static void gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr)
1336 {
1337 unsigned long *ste;
1338 phys_addr_t sto, pgt;
1339 struct page *page;
1340
1341 BUG_ON(!gmap_is_shadow(sg));
1342 ste = gmap_table_walk(sg, raddr, 1); /* get segment pointer */
1343 if (!ste || !(*ste & _SEGMENT_ENTRY_ORIGIN))
1344 return;
1345 gmap_call_notifier(sg, raddr, raddr + _SEGMENT_SIZE - 1);
1346 sto = __pa(ste - ((raddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT));
1347 gmap_idte_one(sto | _ASCE_TYPE_SEGMENT, raddr);
1348 pgt = *ste & _SEGMENT_ENTRY_ORIGIN;
1349 *ste = _SEGMENT_ENTRY_EMPTY;
1350 __gmap_unshadow_pgt(sg, raddr, __va(pgt));
1351 /* Free page table */
1352 page = phys_to_page(pgt);
1353 list_del(&page->lru);
1354 page_table_free_pgste(page);
1355 }
1356
1357 /**
1358 * __gmap_unshadow_sgt - remove all entries from a shadow segment table
1359 * @sg: pointer to the shadow guest address space structure
1360 * @raddr: rmap address in the shadow guest address space
1361 * @sgt: pointer to the start of a shadow segment table
1362 *
1363 * Called with the sg->guest_table_lock
1364 */
__gmap_unshadow_sgt(struct gmap * sg,unsigned long raddr,unsigned long * sgt)1365 static void __gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr,
1366 unsigned long *sgt)
1367 {
1368 struct page *page;
1369 phys_addr_t pgt;
1370 int i;
1371
1372 BUG_ON(!gmap_is_shadow(sg));
1373 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _SEGMENT_SIZE) {
1374 if (!(sgt[i] & _SEGMENT_ENTRY_ORIGIN))
1375 continue;
1376 pgt = sgt[i] & _REGION_ENTRY_ORIGIN;
1377 sgt[i] = _SEGMENT_ENTRY_EMPTY;
1378 __gmap_unshadow_pgt(sg, raddr, __va(pgt));
1379 /* Free page table */
1380 page = phys_to_page(pgt);
1381 list_del(&page->lru);
1382 page_table_free_pgste(page);
1383 }
1384 }
1385
1386 /**
1387 * gmap_unshadow_sgt - remove a shadow segment table from a region-3 entry
1388 * @sg: pointer to the shadow guest address space structure
1389 * @raddr: rmap address in the shadow guest address space
1390 *
1391 * Called with the shadow->guest_table_lock
1392 */
gmap_unshadow_sgt(struct gmap * sg,unsigned long raddr)1393 static void gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr)
1394 {
1395 unsigned long r3o, *r3e;
1396 phys_addr_t sgt;
1397 struct page *page;
1398
1399 BUG_ON(!gmap_is_shadow(sg));
1400 r3e = gmap_table_walk(sg, raddr, 2); /* get region-3 pointer */
1401 if (!r3e || !(*r3e & _REGION_ENTRY_ORIGIN))
1402 return;
1403 gmap_call_notifier(sg, raddr, raddr + _REGION3_SIZE - 1);
1404 r3o = (unsigned long) (r3e - ((raddr & _REGION3_INDEX) >> _REGION3_SHIFT));
1405 gmap_idte_one(__pa(r3o) | _ASCE_TYPE_REGION3, raddr);
1406 sgt = *r3e & _REGION_ENTRY_ORIGIN;
1407 *r3e = _REGION3_ENTRY_EMPTY;
1408 __gmap_unshadow_sgt(sg, raddr, __va(sgt));
1409 /* Free segment table */
1410 page = phys_to_page(sgt);
1411 list_del(&page->lru);
1412 __free_pages(page, CRST_ALLOC_ORDER);
1413 }
1414
1415 /**
1416 * __gmap_unshadow_r3t - remove all entries from a shadow region-3 table
1417 * @sg: pointer to the shadow guest address space structure
1418 * @raddr: address in the shadow guest address space
1419 * @r3t: pointer to the start of a shadow region-3 table
1420 *
1421 * Called with the sg->guest_table_lock
1422 */
__gmap_unshadow_r3t(struct gmap * sg,unsigned long raddr,unsigned long * r3t)1423 static void __gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr,
1424 unsigned long *r3t)
1425 {
1426 struct page *page;
1427 phys_addr_t sgt;
1428 int i;
1429
1430 BUG_ON(!gmap_is_shadow(sg));
1431 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION3_SIZE) {
1432 if (!(r3t[i] & _REGION_ENTRY_ORIGIN))
1433 continue;
1434 sgt = r3t[i] & _REGION_ENTRY_ORIGIN;
1435 r3t[i] = _REGION3_ENTRY_EMPTY;
1436 __gmap_unshadow_sgt(sg, raddr, __va(sgt));
1437 /* Free segment table */
1438 page = phys_to_page(sgt);
1439 list_del(&page->lru);
1440 __free_pages(page, CRST_ALLOC_ORDER);
1441 }
1442 }
1443
1444 /**
1445 * gmap_unshadow_r3t - remove a shadow region-3 table from a region-2 entry
1446 * @sg: pointer to the shadow guest address space structure
1447 * @raddr: rmap address in the shadow guest address space
1448 *
1449 * Called with the sg->guest_table_lock
1450 */
gmap_unshadow_r3t(struct gmap * sg,unsigned long raddr)1451 static void gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr)
1452 {
1453 unsigned long r2o, *r2e;
1454 phys_addr_t r3t;
1455 struct page *page;
1456
1457 BUG_ON(!gmap_is_shadow(sg));
1458 r2e = gmap_table_walk(sg, raddr, 3); /* get region-2 pointer */
1459 if (!r2e || !(*r2e & _REGION_ENTRY_ORIGIN))
1460 return;
1461 gmap_call_notifier(sg, raddr, raddr + _REGION2_SIZE - 1);
1462 r2o = (unsigned long) (r2e - ((raddr & _REGION2_INDEX) >> _REGION2_SHIFT));
1463 gmap_idte_one(__pa(r2o) | _ASCE_TYPE_REGION2, raddr);
1464 r3t = *r2e & _REGION_ENTRY_ORIGIN;
1465 *r2e = _REGION2_ENTRY_EMPTY;
1466 __gmap_unshadow_r3t(sg, raddr, __va(r3t));
1467 /* Free region 3 table */
1468 page = phys_to_page(r3t);
1469 list_del(&page->lru);
1470 __free_pages(page, CRST_ALLOC_ORDER);
1471 }
1472
1473 /**
1474 * __gmap_unshadow_r2t - remove all entries from a shadow region-2 table
1475 * @sg: pointer to the shadow guest address space structure
1476 * @raddr: rmap address in the shadow guest address space
1477 * @r2t: pointer to the start of a shadow region-2 table
1478 *
1479 * Called with the sg->guest_table_lock
1480 */
__gmap_unshadow_r2t(struct gmap * sg,unsigned long raddr,unsigned long * r2t)1481 static void __gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr,
1482 unsigned long *r2t)
1483 {
1484 phys_addr_t r3t;
1485 struct page *page;
1486 int i;
1487
1488 BUG_ON(!gmap_is_shadow(sg));
1489 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION2_SIZE) {
1490 if (!(r2t[i] & _REGION_ENTRY_ORIGIN))
1491 continue;
1492 r3t = r2t[i] & _REGION_ENTRY_ORIGIN;
1493 r2t[i] = _REGION2_ENTRY_EMPTY;
1494 __gmap_unshadow_r3t(sg, raddr, __va(r3t));
1495 /* Free region 3 table */
1496 page = phys_to_page(r3t);
1497 list_del(&page->lru);
1498 __free_pages(page, CRST_ALLOC_ORDER);
1499 }
1500 }
1501
1502 /**
1503 * gmap_unshadow_r2t - remove a shadow region-2 table from a region-1 entry
1504 * @sg: pointer to the shadow guest address space structure
1505 * @raddr: rmap address in the shadow guest address space
1506 *
1507 * Called with the sg->guest_table_lock
1508 */
gmap_unshadow_r2t(struct gmap * sg,unsigned long raddr)1509 static void gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr)
1510 {
1511 unsigned long r1o, *r1e;
1512 struct page *page;
1513 phys_addr_t r2t;
1514
1515 BUG_ON(!gmap_is_shadow(sg));
1516 r1e = gmap_table_walk(sg, raddr, 4); /* get region-1 pointer */
1517 if (!r1e || !(*r1e & _REGION_ENTRY_ORIGIN))
1518 return;
1519 gmap_call_notifier(sg, raddr, raddr + _REGION1_SIZE - 1);
1520 r1o = (unsigned long) (r1e - ((raddr & _REGION1_INDEX) >> _REGION1_SHIFT));
1521 gmap_idte_one(__pa(r1o) | _ASCE_TYPE_REGION1, raddr);
1522 r2t = *r1e & _REGION_ENTRY_ORIGIN;
1523 *r1e = _REGION1_ENTRY_EMPTY;
1524 __gmap_unshadow_r2t(sg, raddr, __va(r2t));
1525 /* Free region 2 table */
1526 page = phys_to_page(r2t);
1527 list_del(&page->lru);
1528 __free_pages(page, CRST_ALLOC_ORDER);
1529 }
1530
1531 /**
1532 * __gmap_unshadow_r1t - remove all entries from a shadow region-1 table
1533 * @sg: pointer to the shadow guest address space structure
1534 * @raddr: rmap address in the shadow guest address space
1535 * @r1t: pointer to the start of a shadow region-1 table
1536 *
1537 * Called with the shadow->guest_table_lock
1538 */
__gmap_unshadow_r1t(struct gmap * sg,unsigned long raddr,unsigned long * r1t)1539 static void __gmap_unshadow_r1t(struct gmap *sg, unsigned long raddr,
1540 unsigned long *r1t)
1541 {
1542 unsigned long asce;
1543 struct page *page;
1544 phys_addr_t r2t;
1545 int i;
1546
1547 BUG_ON(!gmap_is_shadow(sg));
1548 asce = __pa(r1t) | _ASCE_TYPE_REGION1;
1549 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION1_SIZE) {
1550 if (!(r1t[i] & _REGION_ENTRY_ORIGIN))
1551 continue;
1552 r2t = r1t[i] & _REGION_ENTRY_ORIGIN;
1553 __gmap_unshadow_r2t(sg, raddr, __va(r2t));
1554 /* Clear entry and flush translation r1t -> r2t */
1555 gmap_idte_one(asce, raddr);
1556 r1t[i] = _REGION1_ENTRY_EMPTY;
1557 /* Free region 2 table */
1558 page = phys_to_page(r2t);
1559 list_del(&page->lru);
1560 __free_pages(page, CRST_ALLOC_ORDER);
1561 }
1562 }
1563
1564 /**
1565 * gmap_unshadow - remove a shadow page table completely
1566 * @sg: pointer to the shadow guest address space structure
1567 *
1568 * Called with sg->guest_table_lock
1569 */
gmap_unshadow(struct gmap * sg)1570 static void gmap_unshadow(struct gmap *sg)
1571 {
1572 unsigned long *table;
1573
1574 BUG_ON(!gmap_is_shadow(sg));
1575 if (sg->removed)
1576 return;
1577 sg->removed = 1;
1578 gmap_call_notifier(sg, 0, -1UL);
1579 gmap_flush_tlb(sg);
1580 table = __va(sg->asce & _ASCE_ORIGIN);
1581 switch (sg->asce & _ASCE_TYPE_MASK) {
1582 case _ASCE_TYPE_REGION1:
1583 __gmap_unshadow_r1t(sg, 0, table);
1584 break;
1585 case _ASCE_TYPE_REGION2:
1586 __gmap_unshadow_r2t(sg, 0, table);
1587 break;
1588 case _ASCE_TYPE_REGION3:
1589 __gmap_unshadow_r3t(sg, 0, table);
1590 break;
1591 case _ASCE_TYPE_SEGMENT:
1592 __gmap_unshadow_sgt(sg, 0, table);
1593 break;
1594 }
1595 }
1596
1597 /**
1598 * gmap_find_shadow - find a specific asce in the list of shadow tables
1599 * @parent: pointer to the parent gmap
1600 * @asce: ASCE for which the shadow table is created
1601 * @edat_level: edat level to be used for the shadow translation
1602 *
1603 * Returns the pointer to a gmap if a shadow table with the given asce is
1604 * already available, ERR_PTR(-EAGAIN) if another one is just being created,
1605 * otherwise NULL
1606 */
gmap_find_shadow(struct gmap * parent,unsigned long asce,int edat_level)1607 static struct gmap *gmap_find_shadow(struct gmap *parent, unsigned long asce,
1608 int edat_level)
1609 {
1610 struct gmap *sg;
1611
1612 list_for_each_entry(sg, &parent->children, list) {
1613 if (sg->orig_asce != asce || sg->edat_level != edat_level ||
1614 sg->removed)
1615 continue;
1616 if (!sg->initialized)
1617 return ERR_PTR(-EAGAIN);
1618 refcount_inc(&sg->ref_count);
1619 return sg;
1620 }
1621 return NULL;
1622 }
1623
1624 /**
1625 * gmap_shadow_valid - check if a shadow guest address space matches the
1626 * given properties and is still valid
1627 * @sg: pointer to the shadow guest address space structure
1628 * @asce: ASCE for which the shadow table is requested
1629 * @edat_level: edat level to be used for the shadow translation
1630 *
1631 * Returns 1 if the gmap shadow is still valid and matches the given
1632 * properties, the caller can continue using it. Returns 0 otherwise, the
1633 * caller has to request a new shadow gmap in this case.
1634 *
1635 */
gmap_shadow_valid(struct gmap * sg,unsigned long asce,int edat_level)1636 int gmap_shadow_valid(struct gmap *sg, unsigned long asce, int edat_level)
1637 {
1638 if (sg->removed)
1639 return 0;
1640 return sg->orig_asce == asce && sg->edat_level == edat_level;
1641 }
1642 EXPORT_SYMBOL_GPL(gmap_shadow_valid);
1643
1644 /**
1645 * gmap_shadow - create/find a shadow guest address space
1646 * @parent: pointer to the parent gmap
1647 * @asce: ASCE for which the shadow table is created
1648 * @edat_level: edat level to be used for the shadow translation
1649 *
1650 * The pages of the top level page table referred by the asce parameter
1651 * will be set to read-only and marked in the PGSTEs of the kvm process.
1652 * The shadow table will be removed automatically on any change to the
1653 * PTE mapping for the source table.
1654 *
1655 * Returns a guest address space structure, ERR_PTR(-ENOMEM) if out of memory,
1656 * ERR_PTR(-EAGAIN) if the caller has to retry and ERR_PTR(-EFAULT) if the
1657 * parent gmap table could not be protected.
1658 */
gmap_shadow(struct gmap * parent,unsigned long asce,int edat_level)1659 struct gmap *gmap_shadow(struct gmap *parent, unsigned long asce,
1660 int edat_level)
1661 {
1662 struct gmap *sg, *new;
1663 unsigned long limit;
1664 int rc;
1665
1666 BUG_ON(parent->mm->context.allow_gmap_hpage_1m);
1667 BUG_ON(gmap_is_shadow(parent));
1668 spin_lock(&parent->shadow_lock);
1669 sg = gmap_find_shadow(parent, asce, edat_level);
1670 spin_unlock(&parent->shadow_lock);
1671 if (sg)
1672 return sg;
1673 /* Create a new shadow gmap */
1674 limit = -1UL >> (33 - (((asce & _ASCE_TYPE_MASK) >> 2) * 11));
1675 if (asce & _ASCE_REAL_SPACE)
1676 limit = -1UL;
1677 new = gmap_alloc(limit);
1678 if (!new)
1679 return ERR_PTR(-ENOMEM);
1680 new->mm = parent->mm;
1681 new->parent = gmap_get(parent);
1682 new->orig_asce = asce;
1683 new->edat_level = edat_level;
1684 new->initialized = false;
1685 spin_lock(&parent->shadow_lock);
1686 /* Recheck if another CPU created the same shadow */
1687 sg = gmap_find_shadow(parent, asce, edat_level);
1688 if (sg) {
1689 spin_unlock(&parent->shadow_lock);
1690 gmap_free(new);
1691 return sg;
1692 }
1693 if (asce & _ASCE_REAL_SPACE) {
1694 /* only allow one real-space gmap shadow */
1695 list_for_each_entry(sg, &parent->children, list) {
1696 if (sg->orig_asce & _ASCE_REAL_SPACE) {
1697 spin_lock(&sg->guest_table_lock);
1698 gmap_unshadow(sg);
1699 spin_unlock(&sg->guest_table_lock);
1700 list_del(&sg->list);
1701 gmap_put(sg);
1702 break;
1703 }
1704 }
1705 }
1706 refcount_set(&new->ref_count, 2);
1707 list_add(&new->list, &parent->children);
1708 if (asce & _ASCE_REAL_SPACE) {
1709 /* nothing to protect, return right away */
1710 new->initialized = true;
1711 spin_unlock(&parent->shadow_lock);
1712 return new;
1713 }
1714 spin_unlock(&parent->shadow_lock);
1715 /* protect after insertion, so it will get properly invalidated */
1716 mmap_read_lock(parent->mm);
1717 rc = gmap_protect_range(parent, asce & _ASCE_ORIGIN,
1718 ((asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE,
1719 PROT_READ, GMAP_NOTIFY_SHADOW);
1720 mmap_read_unlock(parent->mm);
1721 spin_lock(&parent->shadow_lock);
1722 new->initialized = true;
1723 if (rc) {
1724 list_del(&new->list);
1725 gmap_free(new);
1726 new = ERR_PTR(rc);
1727 }
1728 spin_unlock(&parent->shadow_lock);
1729 return new;
1730 }
1731 EXPORT_SYMBOL_GPL(gmap_shadow);
1732
1733 /**
1734 * gmap_shadow_r2t - create an empty shadow region 2 table
1735 * @sg: pointer to the shadow guest address space structure
1736 * @saddr: faulting address in the shadow gmap
1737 * @r2t: parent gmap address of the region 2 table to get shadowed
1738 * @fake: r2t references contiguous guest memory block, not a r2t
1739 *
1740 * The r2t parameter specifies the address of the source table. The
1741 * four pages of the source table are made read-only in the parent gmap
1742 * address space. A write to the source table area @r2t will automatically
1743 * remove the shadow r2 table and all of its descendants.
1744 *
1745 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1746 * shadow table structure is incomplete, -ENOMEM if out of memory and
1747 * -EFAULT if an address in the parent gmap could not be resolved.
1748 *
1749 * Called with sg->mm->mmap_lock in read.
1750 */
gmap_shadow_r2t(struct gmap * sg,unsigned long saddr,unsigned long r2t,int fake)1751 int gmap_shadow_r2t(struct gmap *sg, unsigned long saddr, unsigned long r2t,
1752 int fake)
1753 {
1754 unsigned long raddr, origin, offset, len;
1755 unsigned long *table;
1756 phys_addr_t s_r2t;
1757 struct page *page;
1758 int rc;
1759
1760 BUG_ON(!gmap_is_shadow(sg));
1761 /* Allocate a shadow region second table */
1762 page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
1763 if (!page)
1764 return -ENOMEM;
1765 page->index = r2t & _REGION_ENTRY_ORIGIN;
1766 if (fake)
1767 page->index |= GMAP_SHADOW_FAKE_TABLE;
1768 s_r2t = page_to_phys(page);
1769 /* Install shadow region second table */
1770 spin_lock(&sg->guest_table_lock);
1771 table = gmap_table_walk(sg, saddr, 4); /* get region-1 pointer */
1772 if (!table) {
1773 rc = -EAGAIN; /* Race with unshadow */
1774 goto out_free;
1775 }
1776 if (!(*table & _REGION_ENTRY_INVALID)) {
1777 rc = 0; /* Already established */
1778 goto out_free;
1779 } else if (*table & _REGION_ENTRY_ORIGIN) {
1780 rc = -EAGAIN; /* Race with shadow */
1781 goto out_free;
1782 }
1783 crst_table_init(__va(s_r2t), _REGION2_ENTRY_EMPTY);
1784 /* mark as invalid as long as the parent table is not protected */
1785 *table = s_r2t | _REGION_ENTRY_LENGTH |
1786 _REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID;
1787 if (sg->edat_level >= 1)
1788 *table |= (r2t & _REGION_ENTRY_PROTECT);
1789 list_add(&page->lru, &sg->crst_list);
1790 if (fake) {
1791 /* nothing to protect for fake tables */
1792 *table &= ~_REGION_ENTRY_INVALID;
1793 spin_unlock(&sg->guest_table_lock);
1794 return 0;
1795 }
1796 spin_unlock(&sg->guest_table_lock);
1797 /* Make r2t read-only in parent gmap page table */
1798 raddr = (saddr & _REGION1_MASK) | _SHADOW_RMAP_REGION1;
1799 origin = r2t & _REGION_ENTRY_ORIGIN;
1800 offset = ((r2t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1801 len = ((r2t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1802 rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1803 spin_lock(&sg->guest_table_lock);
1804 if (!rc) {
1805 table = gmap_table_walk(sg, saddr, 4);
1806 if (!table || (*table & _REGION_ENTRY_ORIGIN) != s_r2t)
1807 rc = -EAGAIN; /* Race with unshadow */
1808 else
1809 *table &= ~_REGION_ENTRY_INVALID;
1810 } else {
1811 gmap_unshadow_r2t(sg, raddr);
1812 }
1813 spin_unlock(&sg->guest_table_lock);
1814 return rc;
1815 out_free:
1816 spin_unlock(&sg->guest_table_lock);
1817 __free_pages(page, CRST_ALLOC_ORDER);
1818 return rc;
1819 }
1820 EXPORT_SYMBOL_GPL(gmap_shadow_r2t);
1821
1822 /**
1823 * gmap_shadow_r3t - create a shadow region 3 table
1824 * @sg: pointer to the shadow guest address space structure
1825 * @saddr: faulting address in the shadow gmap
1826 * @r3t: parent gmap address of the region 3 table to get shadowed
1827 * @fake: r3t references contiguous guest memory block, not a r3t
1828 *
1829 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1830 * shadow table structure is incomplete, -ENOMEM if out of memory and
1831 * -EFAULT if an address in the parent gmap could not be resolved.
1832 *
1833 * Called with sg->mm->mmap_lock in read.
1834 */
gmap_shadow_r3t(struct gmap * sg,unsigned long saddr,unsigned long r3t,int fake)1835 int gmap_shadow_r3t(struct gmap *sg, unsigned long saddr, unsigned long r3t,
1836 int fake)
1837 {
1838 unsigned long raddr, origin, offset, len;
1839 unsigned long *table;
1840 phys_addr_t s_r3t;
1841 struct page *page;
1842 int rc;
1843
1844 BUG_ON(!gmap_is_shadow(sg));
1845 /* Allocate a shadow region second table */
1846 page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
1847 if (!page)
1848 return -ENOMEM;
1849 page->index = r3t & _REGION_ENTRY_ORIGIN;
1850 if (fake)
1851 page->index |= GMAP_SHADOW_FAKE_TABLE;
1852 s_r3t = page_to_phys(page);
1853 /* Install shadow region second table */
1854 spin_lock(&sg->guest_table_lock);
1855 table = gmap_table_walk(sg, saddr, 3); /* get region-2 pointer */
1856 if (!table) {
1857 rc = -EAGAIN; /* Race with unshadow */
1858 goto out_free;
1859 }
1860 if (!(*table & _REGION_ENTRY_INVALID)) {
1861 rc = 0; /* Already established */
1862 goto out_free;
1863 } else if (*table & _REGION_ENTRY_ORIGIN) {
1864 rc = -EAGAIN; /* Race with shadow */
1865 goto out_free;
1866 }
1867 crst_table_init(__va(s_r3t), _REGION3_ENTRY_EMPTY);
1868 /* mark as invalid as long as the parent table is not protected */
1869 *table = s_r3t | _REGION_ENTRY_LENGTH |
1870 _REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID;
1871 if (sg->edat_level >= 1)
1872 *table |= (r3t & _REGION_ENTRY_PROTECT);
1873 list_add(&page->lru, &sg->crst_list);
1874 if (fake) {
1875 /* nothing to protect for fake tables */
1876 *table &= ~_REGION_ENTRY_INVALID;
1877 spin_unlock(&sg->guest_table_lock);
1878 return 0;
1879 }
1880 spin_unlock(&sg->guest_table_lock);
1881 /* Make r3t read-only in parent gmap page table */
1882 raddr = (saddr & _REGION2_MASK) | _SHADOW_RMAP_REGION2;
1883 origin = r3t & _REGION_ENTRY_ORIGIN;
1884 offset = ((r3t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1885 len = ((r3t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1886 rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1887 spin_lock(&sg->guest_table_lock);
1888 if (!rc) {
1889 table = gmap_table_walk(sg, saddr, 3);
1890 if (!table || (*table & _REGION_ENTRY_ORIGIN) != s_r3t)
1891 rc = -EAGAIN; /* Race with unshadow */
1892 else
1893 *table &= ~_REGION_ENTRY_INVALID;
1894 } else {
1895 gmap_unshadow_r3t(sg, raddr);
1896 }
1897 spin_unlock(&sg->guest_table_lock);
1898 return rc;
1899 out_free:
1900 spin_unlock(&sg->guest_table_lock);
1901 __free_pages(page, CRST_ALLOC_ORDER);
1902 return rc;
1903 }
1904 EXPORT_SYMBOL_GPL(gmap_shadow_r3t);
1905
1906 /**
1907 * gmap_shadow_sgt - create a shadow segment table
1908 * @sg: pointer to the shadow guest address space structure
1909 * @saddr: faulting address in the shadow gmap
1910 * @sgt: parent gmap address of the segment table to get shadowed
1911 * @fake: sgt references contiguous guest memory block, not a sgt
1912 *
1913 * Returns: 0 if successfully shadowed or already shadowed, -EAGAIN if the
1914 * shadow table structure is incomplete, -ENOMEM if out of memory and
1915 * -EFAULT if an address in the parent gmap could not be resolved.
1916 *
1917 * Called with sg->mm->mmap_lock in read.
1918 */
gmap_shadow_sgt(struct gmap * sg,unsigned long saddr,unsigned long sgt,int fake)1919 int gmap_shadow_sgt(struct gmap *sg, unsigned long saddr, unsigned long sgt,
1920 int fake)
1921 {
1922 unsigned long raddr, origin, offset, len;
1923 unsigned long *table;
1924 phys_addr_t s_sgt;
1925 struct page *page;
1926 int rc;
1927
1928 BUG_ON(!gmap_is_shadow(sg) || (sgt & _REGION3_ENTRY_LARGE));
1929 /* Allocate a shadow segment table */
1930 page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
1931 if (!page)
1932 return -ENOMEM;
1933 page->index = sgt & _REGION_ENTRY_ORIGIN;
1934 if (fake)
1935 page->index |= GMAP_SHADOW_FAKE_TABLE;
1936 s_sgt = page_to_phys(page);
1937 /* Install shadow region second table */
1938 spin_lock(&sg->guest_table_lock);
1939 table = gmap_table_walk(sg, saddr, 2); /* get region-3 pointer */
1940 if (!table) {
1941 rc = -EAGAIN; /* Race with unshadow */
1942 goto out_free;
1943 }
1944 if (!(*table & _REGION_ENTRY_INVALID)) {
1945 rc = 0; /* Already established */
1946 goto out_free;
1947 } else if (*table & _REGION_ENTRY_ORIGIN) {
1948 rc = -EAGAIN; /* Race with shadow */
1949 goto out_free;
1950 }
1951 crst_table_init(__va(s_sgt), _SEGMENT_ENTRY_EMPTY);
1952 /* mark as invalid as long as the parent table is not protected */
1953 *table = s_sgt | _REGION_ENTRY_LENGTH |
1954 _REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID;
1955 if (sg->edat_level >= 1)
1956 *table |= sgt & _REGION_ENTRY_PROTECT;
1957 list_add(&page->lru, &sg->crst_list);
1958 if (fake) {
1959 /* nothing to protect for fake tables */
1960 *table &= ~_REGION_ENTRY_INVALID;
1961 spin_unlock(&sg->guest_table_lock);
1962 return 0;
1963 }
1964 spin_unlock(&sg->guest_table_lock);
1965 /* Make sgt read-only in parent gmap page table */
1966 raddr = (saddr & _REGION3_MASK) | _SHADOW_RMAP_REGION3;
1967 origin = sgt & _REGION_ENTRY_ORIGIN;
1968 offset = ((sgt & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1969 len = ((sgt & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1970 rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1971 spin_lock(&sg->guest_table_lock);
1972 if (!rc) {
1973 table = gmap_table_walk(sg, saddr, 2);
1974 if (!table || (*table & _REGION_ENTRY_ORIGIN) != s_sgt)
1975 rc = -EAGAIN; /* Race with unshadow */
1976 else
1977 *table &= ~_REGION_ENTRY_INVALID;
1978 } else {
1979 gmap_unshadow_sgt(sg, raddr);
1980 }
1981 spin_unlock(&sg->guest_table_lock);
1982 return rc;
1983 out_free:
1984 spin_unlock(&sg->guest_table_lock);
1985 __free_pages(page, CRST_ALLOC_ORDER);
1986 return rc;
1987 }
1988 EXPORT_SYMBOL_GPL(gmap_shadow_sgt);
1989
1990 /**
1991 * gmap_shadow_pgt_lookup - find a shadow page table
1992 * @sg: pointer to the shadow guest address space structure
1993 * @saddr: the address in the shadow aguest address space
1994 * @pgt: parent gmap address of the page table to get shadowed
1995 * @dat_protection: if the pgtable is marked as protected by dat
1996 * @fake: pgt references contiguous guest memory block, not a pgtable
1997 *
1998 * Returns 0 if the shadow page table was found and -EAGAIN if the page
1999 * table was not found.
2000 *
2001 * Called with sg->mm->mmap_lock in read.
2002 */
gmap_shadow_pgt_lookup(struct gmap * sg,unsigned long saddr,unsigned long * pgt,int * dat_protection,int * fake)2003 int gmap_shadow_pgt_lookup(struct gmap *sg, unsigned long saddr,
2004 unsigned long *pgt, int *dat_protection,
2005 int *fake)
2006 {
2007 unsigned long *table;
2008 struct page *page;
2009 int rc;
2010
2011 BUG_ON(!gmap_is_shadow(sg));
2012 spin_lock(&sg->guest_table_lock);
2013 table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
2014 if (table && !(*table & _SEGMENT_ENTRY_INVALID)) {
2015 /* Shadow page tables are full pages (pte+pgste) */
2016 page = pfn_to_page(*table >> PAGE_SHIFT);
2017 *pgt = page->index & ~GMAP_SHADOW_FAKE_TABLE;
2018 *dat_protection = !!(*table & _SEGMENT_ENTRY_PROTECT);
2019 *fake = !!(page->index & GMAP_SHADOW_FAKE_TABLE);
2020 rc = 0;
2021 } else {
2022 rc = -EAGAIN;
2023 }
2024 spin_unlock(&sg->guest_table_lock);
2025 return rc;
2026
2027 }
2028 EXPORT_SYMBOL_GPL(gmap_shadow_pgt_lookup);
2029
2030 /**
2031 * gmap_shadow_pgt - instantiate a shadow page table
2032 * @sg: pointer to the shadow guest address space structure
2033 * @saddr: faulting address in the shadow gmap
2034 * @pgt: parent gmap address of the page table to get shadowed
2035 * @fake: pgt references contiguous guest memory block, not a pgtable
2036 *
2037 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
2038 * shadow table structure is incomplete, -ENOMEM if out of memory,
2039 * -EFAULT if an address in the parent gmap could not be resolved and
2040 *
2041 * Called with gmap->mm->mmap_lock in read
2042 */
gmap_shadow_pgt(struct gmap * sg,unsigned long saddr,unsigned long pgt,int fake)2043 int gmap_shadow_pgt(struct gmap *sg, unsigned long saddr, unsigned long pgt,
2044 int fake)
2045 {
2046 unsigned long raddr, origin;
2047 unsigned long *table;
2048 struct page *page;
2049 phys_addr_t s_pgt;
2050 int rc;
2051
2052 BUG_ON(!gmap_is_shadow(sg) || (pgt & _SEGMENT_ENTRY_LARGE));
2053 /* Allocate a shadow page table */
2054 page = page_table_alloc_pgste(sg->mm);
2055 if (!page)
2056 return -ENOMEM;
2057 page->index = pgt & _SEGMENT_ENTRY_ORIGIN;
2058 if (fake)
2059 page->index |= GMAP_SHADOW_FAKE_TABLE;
2060 s_pgt = page_to_phys(page);
2061 /* Install shadow page table */
2062 spin_lock(&sg->guest_table_lock);
2063 table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
2064 if (!table) {
2065 rc = -EAGAIN; /* Race with unshadow */
2066 goto out_free;
2067 }
2068 if (!(*table & _SEGMENT_ENTRY_INVALID)) {
2069 rc = 0; /* Already established */
2070 goto out_free;
2071 } else if (*table & _SEGMENT_ENTRY_ORIGIN) {
2072 rc = -EAGAIN; /* Race with shadow */
2073 goto out_free;
2074 }
2075 /* mark as invalid as long as the parent table is not protected */
2076 *table = (unsigned long) s_pgt | _SEGMENT_ENTRY |
2077 (pgt & _SEGMENT_ENTRY_PROTECT) | _SEGMENT_ENTRY_INVALID;
2078 list_add(&page->lru, &sg->pt_list);
2079 if (fake) {
2080 /* nothing to protect for fake tables */
2081 *table &= ~_SEGMENT_ENTRY_INVALID;
2082 spin_unlock(&sg->guest_table_lock);
2083 return 0;
2084 }
2085 spin_unlock(&sg->guest_table_lock);
2086 /* Make pgt read-only in parent gmap page table (not the pgste) */
2087 raddr = (saddr & _SEGMENT_MASK) | _SHADOW_RMAP_SEGMENT;
2088 origin = pgt & _SEGMENT_ENTRY_ORIGIN & PAGE_MASK;
2089 rc = gmap_protect_rmap(sg, raddr, origin, PAGE_SIZE);
2090 spin_lock(&sg->guest_table_lock);
2091 if (!rc) {
2092 table = gmap_table_walk(sg, saddr, 1);
2093 if (!table || (*table & _SEGMENT_ENTRY_ORIGIN) != s_pgt)
2094 rc = -EAGAIN; /* Race with unshadow */
2095 else
2096 *table &= ~_SEGMENT_ENTRY_INVALID;
2097 } else {
2098 gmap_unshadow_pgt(sg, raddr);
2099 }
2100 spin_unlock(&sg->guest_table_lock);
2101 return rc;
2102 out_free:
2103 spin_unlock(&sg->guest_table_lock);
2104 page_table_free_pgste(page);
2105 return rc;
2106
2107 }
2108 EXPORT_SYMBOL_GPL(gmap_shadow_pgt);
2109
2110 /**
2111 * gmap_shadow_page - create a shadow page mapping
2112 * @sg: pointer to the shadow guest address space structure
2113 * @saddr: faulting address in the shadow gmap
2114 * @pte: pte in parent gmap address space to get shadowed
2115 *
2116 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
2117 * shadow table structure is incomplete, -ENOMEM if out of memory and
2118 * -EFAULT if an address in the parent gmap could not be resolved.
2119 *
2120 * Called with sg->mm->mmap_lock in read.
2121 */
gmap_shadow_page(struct gmap * sg,unsigned long saddr,pte_t pte)2122 int gmap_shadow_page(struct gmap *sg, unsigned long saddr, pte_t pte)
2123 {
2124 struct gmap *parent;
2125 struct gmap_rmap *rmap;
2126 unsigned long vmaddr, paddr;
2127 spinlock_t *ptl;
2128 pte_t *sptep, *tptep;
2129 int prot;
2130 int rc;
2131
2132 BUG_ON(!gmap_is_shadow(sg));
2133 parent = sg->parent;
2134 prot = (pte_val(pte) & _PAGE_PROTECT) ? PROT_READ : PROT_WRITE;
2135
2136 rmap = kzalloc(sizeof(*rmap), GFP_KERNEL_ACCOUNT);
2137 if (!rmap)
2138 return -ENOMEM;
2139 rmap->raddr = (saddr & PAGE_MASK) | _SHADOW_RMAP_PGTABLE;
2140
2141 while (1) {
2142 paddr = pte_val(pte) & PAGE_MASK;
2143 vmaddr = __gmap_translate(parent, paddr);
2144 if (IS_ERR_VALUE(vmaddr)) {
2145 rc = vmaddr;
2146 break;
2147 }
2148 rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
2149 if (rc)
2150 break;
2151 rc = -EAGAIN;
2152 sptep = gmap_pte_op_walk(parent, paddr, &ptl);
2153 if (sptep) {
2154 spin_lock(&sg->guest_table_lock);
2155 /* Get page table pointer */
2156 tptep = (pte_t *) gmap_table_walk(sg, saddr, 0);
2157 if (!tptep) {
2158 spin_unlock(&sg->guest_table_lock);
2159 gmap_pte_op_end(sptep, ptl);
2160 radix_tree_preload_end();
2161 break;
2162 }
2163 rc = ptep_shadow_pte(sg->mm, saddr, sptep, tptep, pte);
2164 if (rc > 0) {
2165 /* Success and a new mapping */
2166 gmap_insert_rmap(sg, vmaddr, rmap);
2167 rmap = NULL;
2168 rc = 0;
2169 }
2170 gmap_pte_op_end(sptep, ptl);
2171 spin_unlock(&sg->guest_table_lock);
2172 }
2173 radix_tree_preload_end();
2174 if (!rc)
2175 break;
2176 rc = gmap_pte_op_fixup(parent, paddr, vmaddr, prot);
2177 if (rc)
2178 break;
2179 }
2180 kfree(rmap);
2181 return rc;
2182 }
2183 EXPORT_SYMBOL_GPL(gmap_shadow_page);
2184
2185 /*
2186 * gmap_shadow_notify - handle notifications for shadow gmap
2187 *
2188 * Called with sg->parent->shadow_lock.
2189 */
gmap_shadow_notify(struct gmap * sg,unsigned long vmaddr,unsigned long gaddr)2190 static void gmap_shadow_notify(struct gmap *sg, unsigned long vmaddr,
2191 unsigned long gaddr)
2192 {
2193 struct gmap_rmap *rmap, *rnext, *head;
2194 unsigned long start, end, bits, raddr;
2195
2196 BUG_ON(!gmap_is_shadow(sg));
2197
2198 spin_lock(&sg->guest_table_lock);
2199 if (sg->removed) {
2200 spin_unlock(&sg->guest_table_lock);
2201 return;
2202 }
2203 /* Check for top level table */
2204 start = sg->orig_asce & _ASCE_ORIGIN;
2205 end = start + ((sg->orig_asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE;
2206 if (!(sg->orig_asce & _ASCE_REAL_SPACE) && gaddr >= start &&
2207 gaddr < end) {
2208 /* The complete shadow table has to go */
2209 gmap_unshadow(sg);
2210 spin_unlock(&sg->guest_table_lock);
2211 list_del(&sg->list);
2212 gmap_put(sg);
2213 return;
2214 }
2215 /* Remove the page table tree from on specific entry */
2216 head = radix_tree_delete(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
2217 gmap_for_each_rmap_safe(rmap, rnext, head) {
2218 bits = rmap->raddr & _SHADOW_RMAP_MASK;
2219 raddr = rmap->raddr ^ bits;
2220 switch (bits) {
2221 case _SHADOW_RMAP_REGION1:
2222 gmap_unshadow_r2t(sg, raddr);
2223 break;
2224 case _SHADOW_RMAP_REGION2:
2225 gmap_unshadow_r3t(sg, raddr);
2226 break;
2227 case _SHADOW_RMAP_REGION3:
2228 gmap_unshadow_sgt(sg, raddr);
2229 break;
2230 case _SHADOW_RMAP_SEGMENT:
2231 gmap_unshadow_pgt(sg, raddr);
2232 break;
2233 case _SHADOW_RMAP_PGTABLE:
2234 gmap_unshadow_page(sg, raddr);
2235 break;
2236 }
2237 kfree(rmap);
2238 }
2239 spin_unlock(&sg->guest_table_lock);
2240 }
2241
2242 /**
2243 * ptep_notify - call all invalidation callbacks for a specific pte.
2244 * @mm: pointer to the process mm_struct
2245 * @vmaddr: virtual address in the process address space
2246 * @pte: pointer to the page table entry
2247 * @bits: bits from the pgste that caused the notify call
2248 *
2249 * This function is assumed to be called with the page table lock held
2250 * for the pte to notify.
2251 */
ptep_notify(struct mm_struct * mm,unsigned long vmaddr,pte_t * pte,unsigned long bits)2252 void ptep_notify(struct mm_struct *mm, unsigned long vmaddr,
2253 pte_t *pte, unsigned long bits)
2254 {
2255 unsigned long offset, gaddr = 0;
2256 unsigned long *table;
2257 struct gmap *gmap, *sg, *next;
2258
2259 offset = ((unsigned long) pte) & (255 * sizeof(pte_t));
2260 offset = offset * (PAGE_SIZE / sizeof(pte_t));
2261 rcu_read_lock();
2262 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2263 spin_lock(&gmap->guest_table_lock);
2264 table = radix_tree_lookup(&gmap->host_to_guest,
2265 vmaddr >> PMD_SHIFT);
2266 if (table)
2267 gaddr = __gmap_segment_gaddr(table) + offset;
2268 spin_unlock(&gmap->guest_table_lock);
2269 if (!table)
2270 continue;
2271
2272 if (!list_empty(&gmap->children) && (bits & PGSTE_VSIE_BIT)) {
2273 spin_lock(&gmap->shadow_lock);
2274 list_for_each_entry_safe(sg, next,
2275 &gmap->children, list)
2276 gmap_shadow_notify(sg, vmaddr, gaddr);
2277 spin_unlock(&gmap->shadow_lock);
2278 }
2279 if (bits & PGSTE_IN_BIT)
2280 gmap_call_notifier(gmap, gaddr, gaddr + PAGE_SIZE - 1);
2281 }
2282 rcu_read_unlock();
2283 }
2284 EXPORT_SYMBOL_GPL(ptep_notify);
2285
pmdp_notify_gmap(struct gmap * gmap,pmd_t * pmdp,unsigned long gaddr)2286 static void pmdp_notify_gmap(struct gmap *gmap, pmd_t *pmdp,
2287 unsigned long gaddr)
2288 {
2289 set_pmd(pmdp, clear_pmd_bit(*pmdp, __pgprot(_SEGMENT_ENTRY_GMAP_IN)));
2290 gmap_call_notifier(gmap, gaddr, gaddr + HPAGE_SIZE - 1);
2291 }
2292
2293 /**
2294 * gmap_pmdp_xchg - exchange a gmap pmd with another
2295 * @gmap: pointer to the guest address space structure
2296 * @pmdp: pointer to the pmd entry
2297 * @new: replacement entry
2298 * @gaddr: the affected guest address
2299 *
2300 * This function is assumed to be called with the guest_table_lock
2301 * held.
2302 */
gmap_pmdp_xchg(struct gmap * gmap,pmd_t * pmdp,pmd_t new,unsigned long gaddr)2303 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *pmdp, pmd_t new,
2304 unsigned long gaddr)
2305 {
2306 gaddr &= HPAGE_MASK;
2307 pmdp_notify_gmap(gmap, pmdp, gaddr);
2308 new = clear_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_GMAP_IN));
2309 if (MACHINE_HAS_TLB_GUEST)
2310 __pmdp_idte(gaddr, (pmd_t *)pmdp, IDTE_GUEST_ASCE, gmap->asce,
2311 IDTE_GLOBAL);
2312 else if (MACHINE_HAS_IDTE)
2313 __pmdp_idte(gaddr, (pmd_t *)pmdp, 0, 0, IDTE_GLOBAL);
2314 else
2315 __pmdp_csp(pmdp);
2316 set_pmd(pmdp, new);
2317 }
2318
gmap_pmdp_clear(struct mm_struct * mm,unsigned long vmaddr,int purge)2319 static void gmap_pmdp_clear(struct mm_struct *mm, unsigned long vmaddr,
2320 int purge)
2321 {
2322 pmd_t *pmdp;
2323 struct gmap *gmap;
2324 unsigned long gaddr;
2325
2326 rcu_read_lock();
2327 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2328 spin_lock(&gmap->guest_table_lock);
2329 pmdp = (pmd_t *)radix_tree_delete(&gmap->host_to_guest,
2330 vmaddr >> PMD_SHIFT);
2331 if (pmdp) {
2332 gaddr = __gmap_segment_gaddr((unsigned long *)pmdp);
2333 pmdp_notify_gmap(gmap, pmdp, gaddr);
2334 WARN_ON(pmd_val(*pmdp) & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2335 _SEGMENT_ENTRY_GMAP_UC));
2336 if (purge)
2337 __pmdp_csp(pmdp);
2338 set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
2339 }
2340 spin_unlock(&gmap->guest_table_lock);
2341 }
2342 rcu_read_unlock();
2343 }
2344
2345 /**
2346 * gmap_pmdp_invalidate - invalidate all affected guest pmd entries without
2347 * flushing
2348 * @mm: pointer to the process mm_struct
2349 * @vmaddr: virtual address in the process address space
2350 */
gmap_pmdp_invalidate(struct mm_struct * mm,unsigned long vmaddr)2351 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr)
2352 {
2353 gmap_pmdp_clear(mm, vmaddr, 0);
2354 }
2355 EXPORT_SYMBOL_GPL(gmap_pmdp_invalidate);
2356
2357 /**
2358 * gmap_pmdp_csp - csp all affected guest pmd entries
2359 * @mm: pointer to the process mm_struct
2360 * @vmaddr: virtual address in the process address space
2361 */
gmap_pmdp_csp(struct mm_struct * mm,unsigned long vmaddr)2362 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr)
2363 {
2364 gmap_pmdp_clear(mm, vmaddr, 1);
2365 }
2366 EXPORT_SYMBOL_GPL(gmap_pmdp_csp);
2367
2368 /**
2369 * gmap_pmdp_idte_local - invalidate and clear a guest pmd entry
2370 * @mm: pointer to the process mm_struct
2371 * @vmaddr: virtual address in the process address space
2372 */
gmap_pmdp_idte_local(struct mm_struct * mm,unsigned long vmaddr)2373 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr)
2374 {
2375 unsigned long *entry, gaddr;
2376 struct gmap *gmap;
2377 pmd_t *pmdp;
2378
2379 rcu_read_lock();
2380 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2381 spin_lock(&gmap->guest_table_lock);
2382 entry = radix_tree_delete(&gmap->host_to_guest,
2383 vmaddr >> PMD_SHIFT);
2384 if (entry) {
2385 pmdp = (pmd_t *)entry;
2386 gaddr = __gmap_segment_gaddr(entry);
2387 pmdp_notify_gmap(gmap, pmdp, gaddr);
2388 WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2389 _SEGMENT_ENTRY_GMAP_UC));
2390 if (MACHINE_HAS_TLB_GUEST)
2391 __pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE,
2392 gmap->asce, IDTE_LOCAL);
2393 else if (MACHINE_HAS_IDTE)
2394 __pmdp_idte(gaddr, pmdp, 0, 0, IDTE_LOCAL);
2395 *entry = _SEGMENT_ENTRY_EMPTY;
2396 }
2397 spin_unlock(&gmap->guest_table_lock);
2398 }
2399 rcu_read_unlock();
2400 }
2401 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_local);
2402
2403 /**
2404 * gmap_pmdp_idte_global - invalidate and clear a guest pmd entry
2405 * @mm: pointer to the process mm_struct
2406 * @vmaddr: virtual address in the process address space
2407 */
gmap_pmdp_idte_global(struct mm_struct * mm,unsigned long vmaddr)2408 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr)
2409 {
2410 unsigned long *entry, gaddr;
2411 struct gmap *gmap;
2412 pmd_t *pmdp;
2413
2414 rcu_read_lock();
2415 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2416 spin_lock(&gmap->guest_table_lock);
2417 entry = radix_tree_delete(&gmap->host_to_guest,
2418 vmaddr >> PMD_SHIFT);
2419 if (entry) {
2420 pmdp = (pmd_t *)entry;
2421 gaddr = __gmap_segment_gaddr(entry);
2422 pmdp_notify_gmap(gmap, pmdp, gaddr);
2423 WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2424 _SEGMENT_ENTRY_GMAP_UC));
2425 if (MACHINE_HAS_TLB_GUEST)
2426 __pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE,
2427 gmap->asce, IDTE_GLOBAL);
2428 else if (MACHINE_HAS_IDTE)
2429 __pmdp_idte(gaddr, pmdp, 0, 0, IDTE_GLOBAL);
2430 else
2431 __pmdp_csp(pmdp);
2432 *entry = _SEGMENT_ENTRY_EMPTY;
2433 }
2434 spin_unlock(&gmap->guest_table_lock);
2435 }
2436 rcu_read_unlock();
2437 }
2438 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_global);
2439
2440 /**
2441 * gmap_test_and_clear_dirty_pmd - test and reset segment dirty status
2442 * @gmap: pointer to guest address space
2443 * @pmdp: pointer to the pmd to be tested
2444 * @gaddr: virtual address in the guest address space
2445 *
2446 * This function is assumed to be called with the guest_table_lock
2447 * held.
2448 */
gmap_test_and_clear_dirty_pmd(struct gmap * gmap,pmd_t * pmdp,unsigned long gaddr)2449 static bool gmap_test_and_clear_dirty_pmd(struct gmap *gmap, pmd_t *pmdp,
2450 unsigned long gaddr)
2451 {
2452 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
2453 return false;
2454
2455 /* Already protected memory, which did not change is clean */
2456 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT &&
2457 !(pmd_val(*pmdp) & _SEGMENT_ENTRY_GMAP_UC))
2458 return false;
2459
2460 /* Clear UC indication and reset protection */
2461 set_pmd(pmdp, clear_pmd_bit(*pmdp, __pgprot(_SEGMENT_ENTRY_GMAP_UC)));
2462 gmap_protect_pmd(gmap, gaddr, pmdp, PROT_READ, 0);
2463 return true;
2464 }
2465
2466 /**
2467 * gmap_sync_dirty_log_pmd - set bitmap based on dirty status of segment
2468 * @gmap: pointer to guest address space
2469 * @bitmap: dirty bitmap for this pmd
2470 * @gaddr: virtual address in the guest address space
2471 * @vmaddr: virtual address in the host address space
2472 *
2473 * This function is assumed to be called with the guest_table_lock
2474 * held.
2475 */
gmap_sync_dirty_log_pmd(struct gmap * gmap,unsigned long bitmap[4],unsigned long gaddr,unsigned long vmaddr)2476 void gmap_sync_dirty_log_pmd(struct gmap *gmap, unsigned long bitmap[4],
2477 unsigned long gaddr, unsigned long vmaddr)
2478 {
2479 int i;
2480 pmd_t *pmdp;
2481 pte_t *ptep;
2482 spinlock_t *ptl;
2483
2484 pmdp = gmap_pmd_op_walk(gmap, gaddr);
2485 if (!pmdp)
2486 return;
2487
2488 if (pmd_large(*pmdp)) {
2489 if (gmap_test_and_clear_dirty_pmd(gmap, pmdp, gaddr))
2490 bitmap_fill(bitmap, _PAGE_ENTRIES);
2491 } else {
2492 for (i = 0; i < _PAGE_ENTRIES; i++, vmaddr += PAGE_SIZE) {
2493 ptep = pte_alloc_map_lock(gmap->mm, pmdp, vmaddr, &ptl);
2494 if (!ptep)
2495 continue;
2496 if (ptep_test_and_clear_uc(gmap->mm, vmaddr, ptep))
2497 set_bit(i, bitmap);
2498 pte_unmap_unlock(ptep, ptl);
2499 }
2500 }
2501 gmap_pmd_op_end(gmap, pmdp);
2502 }
2503 EXPORT_SYMBOL_GPL(gmap_sync_dirty_log_pmd);
2504
2505 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
thp_split_walk_pmd_entry(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)2506 static int thp_split_walk_pmd_entry(pmd_t *pmd, unsigned long addr,
2507 unsigned long end, struct mm_walk *walk)
2508 {
2509 struct vm_area_struct *vma = walk->vma;
2510
2511 split_huge_pmd(vma, pmd, addr);
2512 return 0;
2513 }
2514
2515 static const struct mm_walk_ops thp_split_walk_ops = {
2516 .pmd_entry = thp_split_walk_pmd_entry,
2517 .walk_lock = PGWALK_WRLOCK_VERIFY,
2518 };
2519
thp_split_mm(struct mm_struct * mm)2520 static inline void thp_split_mm(struct mm_struct *mm)
2521 {
2522 struct vm_area_struct *vma;
2523 VMA_ITERATOR(vmi, mm, 0);
2524
2525 for_each_vma(vmi, vma) {
2526 vm_flags_mod(vma, VM_NOHUGEPAGE, VM_HUGEPAGE);
2527 walk_page_vma(vma, &thp_split_walk_ops, NULL);
2528 }
2529 mm->def_flags |= VM_NOHUGEPAGE;
2530 }
2531 #else
thp_split_mm(struct mm_struct * mm)2532 static inline void thp_split_mm(struct mm_struct *mm)
2533 {
2534 }
2535 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2536
2537 /*
2538 * Remove all empty zero pages from the mapping for lazy refaulting
2539 * - This must be called after mm->context.has_pgste is set, to avoid
2540 * future creation of zero pages
2541 * - This must be called after THP was disabled.
2542 *
2543 * mm contracts with s390, that even if mm were to remove a page table,
2544 * racing with the loop below and so causing pte_offset_map_lock() to fail,
2545 * it will never insert a page table containing empty zero pages once
2546 * mm_forbids_zeropage(mm) i.e. mm->context.has_pgste is set.
2547 */
__zap_zero_pages(pmd_t * pmd,unsigned long start,unsigned long end,struct mm_walk * walk)2548 static int __zap_zero_pages(pmd_t *pmd, unsigned long start,
2549 unsigned long end, struct mm_walk *walk)
2550 {
2551 unsigned long addr;
2552
2553 for (addr = start; addr != end; addr += PAGE_SIZE) {
2554 pte_t *ptep;
2555 spinlock_t *ptl;
2556
2557 ptep = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
2558 if (!ptep)
2559 break;
2560 if (is_zero_pfn(pte_pfn(*ptep)))
2561 ptep_xchg_direct(walk->mm, addr, ptep, __pte(_PAGE_INVALID));
2562 pte_unmap_unlock(ptep, ptl);
2563 }
2564 return 0;
2565 }
2566
2567 static const struct mm_walk_ops zap_zero_walk_ops = {
2568 .pmd_entry = __zap_zero_pages,
2569 .walk_lock = PGWALK_WRLOCK,
2570 };
2571
2572 /*
2573 * switch on pgstes for its userspace process (for kvm)
2574 */
s390_enable_sie(void)2575 int s390_enable_sie(void)
2576 {
2577 struct mm_struct *mm = current->mm;
2578
2579 /* Do we have pgstes? if yes, we are done */
2580 if (mm_has_pgste(mm))
2581 return 0;
2582 /* Fail if the page tables are 2K */
2583 if (!mm_alloc_pgste(mm))
2584 return -EINVAL;
2585 mmap_write_lock(mm);
2586 mm->context.has_pgste = 1;
2587 /* split thp mappings and disable thp for future mappings */
2588 thp_split_mm(mm);
2589 walk_page_range(mm, 0, TASK_SIZE, &zap_zero_walk_ops, NULL);
2590 mmap_write_unlock(mm);
2591 return 0;
2592 }
2593 EXPORT_SYMBOL_GPL(s390_enable_sie);
2594
gmap_mark_unmergeable(void)2595 int gmap_mark_unmergeable(void)
2596 {
2597 /*
2598 * Make sure to disable KSM (if enabled for the whole process or
2599 * individual VMAs). Note that nothing currently hinders user space
2600 * from re-enabling it.
2601 */
2602 return ksm_disable(current->mm);
2603 }
2604 EXPORT_SYMBOL_GPL(gmap_mark_unmergeable);
2605
2606 /*
2607 * Enable storage key handling from now on and initialize the storage
2608 * keys with the default key.
2609 */
__s390_enable_skey_pte(pte_t * pte,unsigned long addr,unsigned long next,struct mm_walk * walk)2610 static int __s390_enable_skey_pte(pte_t *pte, unsigned long addr,
2611 unsigned long next, struct mm_walk *walk)
2612 {
2613 /* Clear storage key */
2614 ptep_zap_key(walk->mm, addr, pte);
2615 return 0;
2616 }
2617
2618 /*
2619 * Give a chance to schedule after setting a key to 256 pages.
2620 * We only hold the mm lock, which is a rwsem and the kvm srcu.
2621 * Both can sleep.
2622 */
__s390_enable_skey_pmd(pmd_t * pmd,unsigned long addr,unsigned long next,struct mm_walk * walk)2623 static int __s390_enable_skey_pmd(pmd_t *pmd, unsigned long addr,
2624 unsigned long next, struct mm_walk *walk)
2625 {
2626 cond_resched();
2627 return 0;
2628 }
2629
__s390_enable_skey_hugetlb(pte_t * pte,unsigned long addr,unsigned long hmask,unsigned long next,struct mm_walk * walk)2630 static int __s390_enable_skey_hugetlb(pte_t *pte, unsigned long addr,
2631 unsigned long hmask, unsigned long next,
2632 struct mm_walk *walk)
2633 {
2634 pmd_t *pmd = (pmd_t *)pte;
2635 unsigned long start, end;
2636 struct page *page = pmd_page(*pmd);
2637
2638 /*
2639 * The write check makes sure we do not set a key on shared
2640 * memory. This is needed as the walker does not differentiate
2641 * between actual guest memory and the process executable or
2642 * shared libraries.
2643 */
2644 if (pmd_val(*pmd) & _SEGMENT_ENTRY_INVALID ||
2645 !(pmd_val(*pmd) & _SEGMENT_ENTRY_WRITE))
2646 return 0;
2647
2648 start = pmd_val(*pmd) & HPAGE_MASK;
2649 end = start + HPAGE_SIZE - 1;
2650 __storage_key_init_range(start, end);
2651 set_bit(PG_arch_1, &page->flags);
2652 cond_resched();
2653 return 0;
2654 }
2655
2656 static const struct mm_walk_ops enable_skey_walk_ops = {
2657 .hugetlb_entry = __s390_enable_skey_hugetlb,
2658 .pte_entry = __s390_enable_skey_pte,
2659 .pmd_entry = __s390_enable_skey_pmd,
2660 .walk_lock = PGWALK_WRLOCK,
2661 };
2662
s390_enable_skey(void)2663 int s390_enable_skey(void)
2664 {
2665 struct mm_struct *mm = current->mm;
2666 int rc = 0;
2667
2668 mmap_write_lock(mm);
2669 if (mm_uses_skeys(mm))
2670 goto out_up;
2671
2672 mm->context.uses_skeys = 1;
2673 rc = gmap_mark_unmergeable();
2674 if (rc) {
2675 mm->context.uses_skeys = 0;
2676 goto out_up;
2677 }
2678 walk_page_range(mm, 0, TASK_SIZE, &enable_skey_walk_ops, NULL);
2679
2680 out_up:
2681 mmap_write_unlock(mm);
2682 return rc;
2683 }
2684 EXPORT_SYMBOL_GPL(s390_enable_skey);
2685
2686 /*
2687 * Reset CMMA state, make all pages stable again.
2688 */
__s390_reset_cmma(pte_t * pte,unsigned long addr,unsigned long next,struct mm_walk * walk)2689 static int __s390_reset_cmma(pte_t *pte, unsigned long addr,
2690 unsigned long next, struct mm_walk *walk)
2691 {
2692 ptep_zap_unused(walk->mm, addr, pte, 1);
2693 return 0;
2694 }
2695
2696 static const struct mm_walk_ops reset_cmma_walk_ops = {
2697 .pte_entry = __s390_reset_cmma,
2698 .walk_lock = PGWALK_WRLOCK,
2699 };
2700
s390_reset_cmma(struct mm_struct * mm)2701 void s390_reset_cmma(struct mm_struct *mm)
2702 {
2703 mmap_write_lock(mm);
2704 walk_page_range(mm, 0, TASK_SIZE, &reset_cmma_walk_ops, NULL);
2705 mmap_write_unlock(mm);
2706 }
2707 EXPORT_SYMBOL_GPL(s390_reset_cmma);
2708
2709 #define GATHER_GET_PAGES 32
2710
2711 struct reset_walk_state {
2712 unsigned long next;
2713 unsigned long count;
2714 unsigned long pfns[GATHER_GET_PAGES];
2715 };
2716
s390_gather_pages(pte_t * ptep,unsigned long addr,unsigned long next,struct mm_walk * walk)2717 static int s390_gather_pages(pte_t *ptep, unsigned long addr,
2718 unsigned long next, struct mm_walk *walk)
2719 {
2720 struct reset_walk_state *p = walk->private;
2721 pte_t pte = READ_ONCE(*ptep);
2722
2723 if (pte_present(pte)) {
2724 /* we have a reference from the mapping, take an extra one */
2725 get_page(phys_to_page(pte_val(pte)));
2726 p->pfns[p->count] = phys_to_pfn(pte_val(pte));
2727 p->next = next;
2728 p->count++;
2729 }
2730 return p->count >= GATHER_GET_PAGES;
2731 }
2732
2733 static const struct mm_walk_ops gather_pages_ops = {
2734 .pte_entry = s390_gather_pages,
2735 .walk_lock = PGWALK_RDLOCK,
2736 };
2737
2738 /*
2739 * Call the Destroy secure page UVC on each page in the given array of PFNs.
2740 * Each page needs to have an extra reference, which will be released here.
2741 */
s390_uv_destroy_pfns(unsigned long count,unsigned long * pfns)2742 void s390_uv_destroy_pfns(unsigned long count, unsigned long *pfns)
2743 {
2744 unsigned long i;
2745
2746 for (i = 0; i < count; i++) {
2747 /* we always have an extra reference */
2748 uv_destroy_owned_page(pfn_to_phys(pfns[i]));
2749 /* get rid of the extra reference */
2750 put_page(pfn_to_page(pfns[i]));
2751 cond_resched();
2752 }
2753 }
2754 EXPORT_SYMBOL_GPL(s390_uv_destroy_pfns);
2755
2756 /**
2757 * __s390_uv_destroy_range - Call the destroy secure page UVC on each page
2758 * in the given range of the given address space.
2759 * @mm: the mm to operate on
2760 * @start: the start of the range
2761 * @end: the end of the range
2762 * @interruptible: if not 0, stop when a fatal signal is received
2763 *
2764 * Walk the given range of the given address space and call the destroy
2765 * secure page UVC on each page. Optionally exit early if a fatal signal is
2766 * pending.
2767 *
2768 * Return: 0 on success, -EINTR if the function stopped before completing
2769 */
__s390_uv_destroy_range(struct mm_struct * mm,unsigned long start,unsigned long end,bool interruptible)2770 int __s390_uv_destroy_range(struct mm_struct *mm, unsigned long start,
2771 unsigned long end, bool interruptible)
2772 {
2773 struct reset_walk_state state = { .next = start };
2774 int r = 1;
2775
2776 while (r > 0) {
2777 state.count = 0;
2778 mmap_read_lock(mm);
2779 r = walk_page_range(mm, state.next, end, &gather_pages_ops, &state);
2780 mmap_read_unlock(mm);
2781 cond_resched();
2782 s390_uv_destroy_pfns(state.count, state.pfns);
2783 if (interruptible && fatal_signal_pending(current))
2784 return -EINTR;
2785 }
2786 return 0;
2787 }
2788 EXPORT_SYMBOL_GPL(__s390_uv_destroy_range);
2789
2790 /**
2791 * s390_unlist_old_asce - Remove the topmost level of page tables from the
2792 * list of page tables of the gmap.
2793 * @gmap: the gmap whose table is to be removed
2794 *
2795 * On s390x, KVM keeps a list of all pages containing the page tables of the
2796 * gmap (the CRST list). This list is used at tear down time to free all
2797 * pages that are now not needed anymore.
2798 *
2799 * This function removes the topmost page of the tree (the one pointed to by
2800 * the ASCE) from the CRST list.
2801 *
2802 * This means that it will not be freed when the VM is torn down, and needs
2803 * to be handled separately by the caller, unless a leak is actually
2804 * intended. Notice that this function will only remove the page from the
2805 * list, the page will still be used as a top level page table (and ASCE).
2806 */
s390_unlist_old_asce(struct gmap * gmap)2807 void s390_unlist_old_asce(struct gmap *gmap)
2808 {
2809 struct page *old;
2810
2811 old = virt_to_page(gmap->table);
2812 spin_lock(&gmap->guest_table_lock);
2813 list_del(&old->lru);
2814 /*
2815 * Sometimes the topmost page might need to be "removed" multiple
2816 * times, for example if the VM is rebooted into secure mode several
2817 * times concurrently, or if s390_replace_asce fails after calling
2818 * s390_remove_old_asce and is attempted again later. In that case
2819 * the old asce has been removed from the list, and therefore it
2820 * will not be freed when the VM terminates, but the ASCE is still
2821 * in use and still pointed to.
2822 * A subsequent call to replace_asce will follow the pointer and try
2823 * to remove the same page from the list again.
2824 * Therefore it's necessary that the page of the ASCE has valid
2825 * pointers, so list_del can work (and do nothing) without
2826 * dereferencing stale or invalid pointers.
2827 */
2828 INIT_LIST_HEAD(&old->lru);
2829 spin_unlock(&gmap->guest_table_lock);
2830 }
2831 EXPORT_SYMBOL_GPL(s390_unlist_old_asce);
2832
2833 /**
2834 * s390_replace_asce - Try to replace the current ASCE of a gmap with a copy
2835 * @gmap: the gmap whose ASCE needs to be replaced
2836 *
2837 * If the ASCE is a SEGMENT type then this function will return -EINVAL,
2838 * otherwise the pointers in the host_to_guest radix tree will keep pointing
2839 * to the wrong pages, causing use-after-free and memory corruption.
2840 * If the allocation of the new top level page table fails, the ASCE is not
2841 * replaced.
2842 * In any case, the old ASCE is always removed from the gmap CRST list.
2843 * Therefore the caller has to make sure to save a pointer to it
2844 * beforehand, unless a leak is actually intended.
2845 */
s390_replace_asce(struct gmap * gmap)2846 int s390_replace_asce(struct gmap *gmap)
2847 {
2848 unsigned long asce;
2849 struct page *page;
2850 void *table;
2851
2852 s390_unlist_old_asce(gmap);
2853
2854 /* Replacing segment type ASCEs would cause serious issues */
2855 if ((gmap->asce & _ASCE_TYPE_MASK) == _ASCE_TYPE_SEGMENT)
2856 return -EINVAL;
2857
2858 page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
2859 if (!page)
2860 return -ENOMEM;
2861 page->index = 0;
2862 table = page_to_virt(page);
2863 memcpy(table, gmap->table, 1UL << (CRST_ALLOC_ORDER + PAGE_SHIFT));
2864
2865 /*
2866 * The caller has to deal with the old ASCE, but here we make sure
2867 * the new one is properly added to the CRST list, so that
2868 * it will be freed when the VM is torn down.
2869 */
2870 spin_lock(&gmap->guest_table_lock);
2871 list_add(&page->lru, &gmap->crst_list);
2872 spin_unlock(&gmap->guest_table_lock);
2873
2874 /* Set new table origin while preserving existing ASCE control bits */
2875 asce = (gmap->asce & ~_ASCE_ORIGIN) | __pa(table);
2876 WRITE_ONCE(gmap->asce, asce);
2877 WRITE_ONCE(gmap->mm->context.gmap_asce, asce);
2878 WRITE_ONCE(gmap->table, table);
2879
2880 return 0;
2881 }
2882 EXPORT_SYMBOL_GPL(s390_replace_asce);
2883