1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright(c) 2017 Intel Corporation. All rights reserved.
4  *
5  * This code is based in part on work published here:
6  *
7  *	https://github.com/IAIK/KAISER
8  *
9  * The original work was written by and and signed off by for the Linux
10  * kernel by:
11  *
12  *   Signed-off-by: Richard Fellner <richard.fellner@student.tugraz.at>
13  *   Signed-off-by: Moritz Lipp <moritz.lipp@iaik.tugraz.at>
14  *   Signed-off-by: Daniel Gruss <daniel.gruss@iaik.tugraz.at>
15  *   Signed-off-by: Michael Schwarz <michael.schwarz@iaik.tugraz.at>
16  *
17  * Major changes to the original code by: Dave Hansen <dave.hansen@intel.com>
18  * Mostly rewritten by Thomas Gleixner <tglx@linutronix.de> and
19  *		       Andy Lutomirsky <luto@amacapital.net>
20  */
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/string.h>
24 #include <linux/types.h>
25 #include <linux/bug.h>
26 #include <linux/init.h>
27 #include <linux/spinlock.h>
28 #include <linux/mm.h>
29 #include <linux/uaccess.h>
30 #include <linux/cpu.h>
31 
32 #include <asm/cpufeature.h>
33 #include <asm/hypervisor.h>
34 #include <asm/vsyscall.h>
35 #include <asm/cmdline.h>
36 #include <asm/pti.h>
37 #include <asm/pgtable.h>
38 #include <asm/pgalloc.h>
39 #include <asm/tlbflush.h>
40 #include <asm/desc.h>
41 #include <asm/sections.h>
42 
43 #undef pr_fmt
44 #define pr_fmt(fmt)     "Kernel/User page tables isolation: " fmt
45 
46 /* Backporting helper */
47 #ifndef __GFP_NOTRACK
48 #define __GFP_NOTRACK	0
49 #endif
50 
51 /*
52  * Define the page-table levels we clone for user-space on 32
53  * and 64 bit.
54  */
55 #ifdef CONFIG_X86_64
56 #define	PTI_LEVEL_KERNEL_IMAGE	PTI_CLONE_PMD
57 #else
58 #define	PTI_LEVEL_KERNEL_IMAGE	PTI_CLONE_PTE
59 #endif
60 
pti_print_if_insecure(const char * reason)61 static void __init pti_print_if_insecure(const char *reason)
62 {
63 	if (boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
64 		pr_info("%s\n", reason);
65 }
66 
pti_print_if_secure(const char * reason)67 static void __init pti_print_if_secure(const char *reason)
68 {
69 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
70 		pr_info("%s\n", reason);
71 }
72 
73 static enum pti_mode {
74 	PTI_AUTO = 0,
75 	PTI_FORCE_OFF,
76 	PTI_FORCE_ON
77 } pti_mode;
78 
pti_check_boottime_disable(void)79 void __init pti_check_boottime_disable(void)
80 {
81 	char arg[5];
82 	int ret;
83 
84 	/* Assume mode is auto unless overridden. */
85 	pti_mode = PTI_AUTO;
86 
87 	if (hypervisor_is_type(X86_HYPER_XEN_PV)) {
88 		pti_mode = PTI_FORCE_OFF;
89 		pti_print_if_insecure("disabled on XEN PV.");
90 		return;
91 	}
92 
93 	ret = cmdline_find_option(boot_command_line, "pti", arg, sizeof(arg));
94 	if (ret > 0)  {
95 		if (ret == 3 && !strncmp(arg, "off", 3)) {
96 			pti_mode = PTI_FORCE_OFF;
97 			pti_print_if_insecure("disabled on command line.");
98 			return;
99 		}
100 		if (ret == 2 && !strncmp(arg, "on", 2)) {
101 			pti_mode = PTI_FORCE_ON;
102 			pti_print_if_secure("force enabled on command line.");
103 			goto enable;
104 		}
105 		if (ret == 4 && !strncmp(arg, "auto", 4)) {
106 			pti_mode = PTI_AUTO;
107 			goto autosel;
108 		}
109 	}
110 
111 	if (cmdline_find_option_bool(boot_command_line, "nopti") ||
112 	    cpu_mitigations_off()) {
113 		pti_mode = PTI_FORCE_OFF;
114 		pti_print_if_insecure("disabled on command line.");
115 		return;
116 	}
117 
118 autosel:
119 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
120 		return;
121 enable:
122 	setup_force_cpu_cap(X86_FEATURE_PTI);
123 }
124 
__pti_set_user_pgtbl(pgd_t * pgdp,pgd_t pgd)125 pgd_t __pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd)
126 {
127 	/*
128 	 * Changes to the high (kernel) portion of the kernelmode page
129 	 * tables are not automatically propagated to the usermode tables.
130 	 *
131 	 * Users should keep in mind that, unlike the kernelmode tables,
132 	 * there is no vmalloc_fault equivalent for the usermode tables.
133 	 * Top-level entries added to init_mm's usermode pgd after boot
134 	 * will not be automatically propagated to other mms.
135 	 */
136 	if (!pgdp_maps_userspace(pgdp))
137 		return pgd;
138 
139 	/*
140 	 * The user page tables get the full PGD, accessible from
141 	 * userspace:
142 	 */
143 	kernel_to_user_pgdp(pgdp)->pgd = pgd.pgd;
144 
145 	/*
146 	 * If this is normal user memory, make it NX in the kernel
147 	 * pagetables so that, if we somehow screw up and return to
148 	 * usermode with the kernel CR3 loaded, we'll get a page fault
149 	 * instead of allowing user code to execute with the wrong CR3.
150 	 *
151 	 * As exceptions, we don't set NX if:
152 	 *  - _PAGE_USER is not set.  This could be an executable
153 	 *     EFI runtime mapping or something similar, and the kernel
154 	 *     may execute from it
155 	 *  - we don't have NX support
156 	 *  - we're clearing the PGD (i.e. the new pgd is not present).
157 	 */
158 	if ((pgd.pgd & (_PAGE_USER|_PAGE_PRESENT)) == (_PAGE_USER|_PAGE_PRESENT) &&
159 	    (__supported_pte_mask & _PAGE_NX))
160 		pgd.pgd |= _PAGE_NX;
161 
162 	/* return the copy of the PGD we want the kernel to use: */
163 	return pgd;
164 }
165 
166 /*
167  * Walk the user copy of the page tables (optionally) trying to allocate
168  * page table pages on the way down.
169  *
170  * Returns a pointer to a P4D on success, or NULL on failure.
171  */
pti_user_pagetable_walk_p4d(unsigned long address)172 static p4d_t *pti_user_pagetable_walk_p4d(unsigned long address)
173 {
174 	pgd_t *pgd = kernel_to_user_pgdp(pgd_offset_k(address));
175 	gfp_t gfp = (GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
176 
177 	if (address < PAGE_OFFSET) {
178 		WARN_ONCE(1, "attempt to walk user address\n");
179 		return NULL;
180 	}
181 
182 	if (pgd_none(*pgd)) {
183 		unsigned long new_p4d_page = __get_free_page(gfp);
184 		if (WARN_ON_ONCE(!new_p4d_page))
185 			return NULL;
186 
187 		set_pgd(pgd, __pgd(_KERNPG_TABLE | __pa(new_p4d_page)));
188 	}
189 	BUILD_BUG_ON(pgd_large(*pgd) != 0);
190 
191 	return p4d_offset(pgd, address);
192 }
193 
194 /*
195  * Walk the user copy of the page tables (optionally) trying to allocate
196  * page table pages on the way down.
197  *
198  * Returns a pointer to a PMD on success, or NULL on failure.
199  */
pti_user_pagetable_walk_pmd(unsigned long address)200 static pmd_t *pti_user_pagetable_walk_pmd(unsigned long address)
201 {
202 	gfp_t gfp = (GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
203 	p4d_t *p4d;
204 	pud_t *pud;
205 
206 	p4d = pti_user_pagetable_walk_p4d(address);
207 	if (!p4d)
208 		return NULL;
209 
210 	BUILD_BUG_ON(p4d_large(*p4d) != 0);
211 	if (p4d_none(*p4d)) {
212 		unsigned long new_pud_page = __get_free_page(gfp);
213 		if (WARN_ON_ONCE(!new_pud_page))
214 			return NULL;
215 
216 		set_p4d(p4d, __p4d(_KERNPG_TABLE | __pa(new_pud_page)));
217 	}
218 
219 	pud = pud_offset(p4d, address);
220 	/* The user page tables do not use large mappings: */
221 	if (pud_large(*pud)) {
222 		WARN_ON(1);
223 		return NULL;
224 	}
225 	if (pud_none(*pud)) {
226 		unsigned long new_pmd_page = __get_free_page(gfp);
227 		if (WARN_ON_ONCE(!new_pmd_page))
228 			return NULL;
229 
230 		set_pud(pud, __pud(_KERNPG_TABLE | __pa(new_pmd_page)));
231 	}
232 
233 	return pmd_offset(pud, address);
234 }
235 
236 /*
237  * Walk the shadow copy of the page tables (optionally) trying to allocate
238  * page table pages on the way down.  Does not support large pages.
239  *
240  * Note: this is only used when mapping *new* kernel data into the
241  * user/shadow page tables.  It is never used for userspace data.
242  *
243  * Returns a pointer to a PTE on success, or NULL on failure.
244  */
pti_user_pagetable_walk_pte(unsigned long address)245 static pte_t *pti_user_pagetable_walk_pte(unsigned long address)
246 {
247 	gfp_t gfp = (GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
248 	pmd_t *pmd;
249 	pte_t *pte;
250 
251 	pmd = pti_user_pagetable_walk_pmd(address);
252 	if (!pmd)
253 		return NULL;
254 
255 	/* We can't do anything sensible if we hit a large mapping. */
256 	if (pmd_large(*pmd)) {
257 		WARN_ON(1);
258 		return NULL;
259 	}
260 
261 	if (pmd_none(*pmd)) {
262 		unsigned long new_pte_page = __get_free_page(gfp);
263 		if (!new_pte_page)
264 			return NULL;
265 
266 		set_pmd(pmd, __pmd(_KERNPG_TABLE | __pa(new_pte_page)));
267 	}
268 
269 	pte = pte_offset_kernel(pmd, address);
270 	if (pte_flags(*pte) & _PAGE_USER) {
271 		WARN_ONCE(1, "attempt to walk to user pte\n");
272 		return NULL;
273 	}
274 	return pte;
275 }
276 
277 #ifdef CONFIG_X86_VSYSCALL_EMULATION
pti_setup_vsyscall(void)278 static void __init pti_setup_vsyscall(void)
279 {
280 	pte_t *pte, *target_pte;
281 	unsigned int level;
282 
283 	pte = lookup_address(VSYSCALL_ADDR, &level);
284 	if (!pte || WARN_ON(level != PG_LEVEL_4K) || pte_none(*pte))
285 		return;
286 
287 	target_pte = pti_user_pagetable_walk_pte(VSYSCALL_ADDR);
288 	if (WARN_ON(!target_pte))
289 		return;
290 
291 	*target_pte = *pte;
292 	set_vsyscall_pgtable_user_bits(kernel_to_user_pgdp(swapper_pg_dir));
293 }
294 #else
pti_setup_vsyscall(void)295 static void __init pti_setup_vsyscall(void) { }
296 #endif
297 
298 enum pti_clone_level {
299 	PTI_CLONE_PMD,
300 	PTI_CLONE_PTE,
301 };
302 
303 static void
pti_clone_pgtable(unsigned long start,unsigned long end,enum pti_clone_level level)304 pti_clone_pgtable(unsigned long start, unsigned long end,
305 		  enum pti_clone_level level)
306 {
307 	unsigned long addr;
308 
309 	/*
310 	 * Clone the populated PMDs which cover start to end. These PMD areas
311 	 * can have holes.
312 	 */
313 	for (addr = start; addr < end;) {
314 		pte_t *pte, *target_pte;
315 		pmd_t *pmd, *target_pmd;
316 		pgd_t *pgd;
317 		p4d_t *p4d;
318 		pud_t *pud;
319 
320 		/* Overflow check */
321 		if (addr < start)
322 			break;
323 
324 		pgd = pgd_offset_k(addr);
325 		if (WARN_ON(pgd_none(*pgd)))
326 			return;
327 		p4d = p4d_offset(pgd, addr);
328 		if (WARN_ON(p4d_none(*p4d)))
329 			return;
330 
331 		pud = pud_offset(p4d, addr);
332 		if (pud_none(*pud)) {
333 			WARN_ON_ONCE(addr & ~PUD_MASK);
334 			addr = round_up(addr + 1, PUD_SIZE);
335 			continue;
336 		}
337 
338 		pmd = pmd_offset(pud, addr);
339 		if (pmd_none(*pmd)) {
340 			WARN_ON_ONCE(addr & ~PMD_MASK);
341 			addr = round_up(addr + 1, PMD_SIZE);
342 			continue;
343 		}
344 
345 		if (pmd_large(*pmd) || level == PTI_CLONE_PMD) {
346 			target_pmd = pti_user_pagetable_walk_pmd(addr);
347 			if (WARN_ON(!target_pmd))
348 				return;
349 
350 			/*
351 			 * Only clone present PMDs.  This ensures only setting
352 			 * _PAGE_GLOBAL on present PMDs.  This should only be
353 			 * called on well-known addresses anyway, so a non-
354 			 * present PMD would be a surprise.
355 			 */
356 			if (WARN_ON(!(pmd_flags(*pmd) & _PAGE_PRESENT)))
357 				return;
358 
359 			/*
360 			 * Setting 'target_pmd' below creates a mapping in both
361 			 * the user and kernel page tables.  It is effectively
362 			 * global, so set it as global in both copies.  Note:
363 			 * the X86_FEATURE_PGE check is not _required_ because
364 			 * the CPU ignores _PAGE_GLOBAL when PGE is not
365 			 * supported.  The check keeps consistentency with
366 			 * code that only set this bit when supported.
367 			 */
368 			if (boot_cpu_has(X86_FEATURE_PGE))
369 				*pmd = pmd_set_flags(*pmd, _PAGE_GLOBAL);
370 
371 			/*
372 			 * Copy the PMD.  That is, the kernelmode and usermode
373 			 * tables will share the last-level page tables of this
374 			 * address range
375 			 */
376 			*target_pmd = *pmd;
377 
378 			addr += PMD_SIZE;
379 
380 		} else if (level == PTI_CLONE_PTE) {
381 
382 			/* Walk the page-table down to the pte level */
383 			pte = pte_offset_kernel(pmd, addr);
384 			if (pte_none(*pte)) {
385 				addr += PAGE_SIZE;
386 				continue;
387 			}
388 
389 			/* Only clone present PTEs */
390 			if (WARN_ON(!(pte_flags(*pte) & _PAGE_PRESENT)))
391 				return;
392 
393 			/* Allocate PTE in the user page-table */
394 			target_pte = pti_user_pagetable_walk_pte(addr);
395 			if (WARN_ON(!target_pte))
396 				return;
397 
398 			/* Set GLOBAL bit in both PTEs */
399 			if (boot_cpu_has(X86_FEATURE_PGE))
400 				*pte = pte_set_flags(*pte, _PAGE_GLOBAL);
401 
402 			/* Clone the PTE */
403 			*target_pte = *pte;
404 
405 			addr += PAGE_SIZE;
406 
407 		} else {
408 			BUG();
409 		}
410 	}
411 }
412 
413 #ifdef CONFIG_X86_64
414 /*
415  * Clone a single p4d (i.e. a top-level entry on 4-level systems and a
416  * next-level entry on 5-level systems.
417  */
pti_clone_p4d(unsigned long addr)418 static void __init pti_clone_p4d(unsigned long addr)
419 {
420 	p4d_t *kernel_p4d, *user_p4d;
421 	pgd_t *kernel_pgd;
422 
423 	user_p4d = pti_user_pagetable_walk_p4d(addr);
424 	if (!user_p4d)
425 		return;
426 
427 	kernel_pgd = pgd_offset_k(addr);
428 	kernel_p4d = p4d_offset(kernel_pgd, addr);
429 	*user_p4d = *kernel_p4d;
430 }
431 
432 /*
433  * Clone the CPU_ENTRY_AREA and associated data into the user space visible
434  * page table.
435  */
pti_clone_user_shared(void)436 static void __init pti_clone_user_shared(void)
437 {
438 	unsigned int cpu;
439 
440 	pti_clone_p4d(CPU_ENTRY_AREA_BASE);
441 
442 	for_each_possible_cpu(cpu) {
443 		/*
444 		 * The SYSCALL64 entry code needs to be able to find the
445 		 * thread stack and needs one word of scratch space in which
446 		 * to spill a register.  All of this lives in the TSS, in
447 		 * the sp1 and sp2 slots.
448 		 *
449 		 * This is done for all possible CPUs during boot to ensure
450 		 * that it's propagated to all mms.  If we were to add one of
451 		 * these mappings during CPU hotplug, we would need to take
452 		 * some measure to make sure that every mm that subsequently
453 		 * ran on that CPU would have the relevant PGD entry in its
454 		 * pagetables.  The usual vmalloc_fault() mechanism would not
455 		 * work for page faults taken in entry_SYSCALL_64 before RSP
456 		 * is set up.
457 		 */
458 
459 		unsigned long va = (unsigned long)&per_cpu(cpu_tss_rw, cpu);
460 		phys_addr_t pa = per_cpu_ptr_to_phys((void *)va);
461 		pte_t *target_pte;
462 
463 		target_pte = pti_user_pagetable_walk_pte(va);
464 		if (WARN_ON(!target_pte))
465 			return;
466 
467 		*target_pte = pfn_pte(pa >> PAGE_SHIFT, PAGE_KERNEL);
468 	}
469 }
470 
471 #else /* CONFIG_X86_64 */
472 
473 /*
474  * On 32 bit PAE systems with 1GB of Kernel address space there is only
475  * one pgd/p4d for the whole kernel. Cloning that would map the whole
476  * address space into the user page-tables, making PTI useless. So clone
477  * the page-table on the PMD level to prevent that.
478  */
pti_clone_user_shared(void)479 static void __init pti_clone_user_shared(void)
480 {
481 	unsigned long start, end;
482 
483 	start = CPU_ENTRY_AREA_BASE;
484 	end   = start + (PAGE_SIZE * CPU_ENTRY_AREA_PAGES);
485 
486 	pti_clone_pgtable(start, end, PTI_CLONE_PMD);
487 }
488 #endif /* CONFIG_X86_64 */
489 
490 /*
491  * Clone the ESPFIX P4D into the user space visible page table
492  */
pti_setup_espfix64(void)493 static void __init pti_setup_espfix64(void)
494 {
495 #ifdef CONFIG_X86_ESPFIX64
496 	pti_clone_p4d(ESPFIX_BASE_ADDR);
497 #endif
498 }
499 
500 /*
501  * Clone the populated PMDs of the entry and irqentry text and force it RO.
502  */
pti_clone_entry_text(void)503 static void pti_clone_entry_text(void)
504 {
505 	pti_clone_pgtable((unsigned long) __entry_text_start,
506 			  (unsigned long) __irqentry_text_end,
507 			  PTI_CLONE_PMD);
508 }
509 
510 /*
511  * Global pages and PCIDs are both ways to make kernel TLB entries
512  * live longer, reduce TLB misses and improve kernel performance.
513  * But, leaving all kernel text Global makes it potentially accessible
514  * to Meltdown-style attacks which make it trivial to find gadgets or
515  * defeat KASLR.
516  *
517  * Only use global pages when it is really worth it.
518  */
pti_kernel_image_global_ok(void)519 static inline bool pti_kernel_image_global_ok(void)
520 {
521 	/*
522 	 * Systems with PCIDs get litlle benefit from global
523 	 * kernel text and are not worth the downsides.
524 	 */
525 	if (cpu_feature_enabled(X86_FEATURE_PCID))
526 		return false;
527 
528 	/*
529 	 * Only do global kernel image for pti=auto.  Do the most
530 	 * secure thing (not global) if pti=on specified.
531 	 */
532 	if (pti_mode != PTI_AUTO)
533 		return false;
534 
535 	/*
536 	 * K8 may not tolerate the cleared _PAGE_RW on the userspace
537 	 * global kernel image pages.  Do the safe thing (disable
538 	 * global kernel image).  This is unlikely to ever be
539 	 * noticed because PTI is disabled by default on AMD CPUs.
540 	 */
541 	if (boot_cpu_has(X86_FEATURE_K8))
542 		return false;
543 
544 	/*
545 	 * RANDSTRUCT derives its hardening benefits from the
546 	 * attacker's lack of knowledge about the layout of kernel
547 	 * data structures.  Keep the kernel image non-global in
548 	 * cases where RANDSTRUCT is in use to help keep the layout a
549 	 * secret.
550 	 */
551 	if (IS_ENABLED(CONFIG_GCC_PLUGIN_RANDSTRUCT))
552 		return false;
553 
554 	return true;
555 }
556 
557 /*
558  * This is the only user for these and it is not arch-generic
559  * like the other set_memory.h functions.  Just extern them.
560  */
561 extern int set_memory_nonglobal(unsigned long addr, int numpages);
562 extern int set_memory_global(unsigned long addr, int numpages);
563 
564 /*
565  * For some configurations, map all of kernel text into the user page
566  * tables.  This reduces TLB misses, especially on non-PCID systems.
567  */
pti_clone_kernel_text(void)568 static void pti_clone_kernel_text(void)
569 {
570 	/*
571 	 * rodata is part of the kernel image and is normally
572 	 * readable on the filesystem or on the web.  But, do not
573 	 * clone the areas past rodata, they might contain secrets.
574 	 */
575 	unsigned long start = PFN_ALIGN(_text);
576 	unsigned long end_clone  = (unsigned long)__end_rodata_aligned;
577 	unsigned long end_global = PFN_ALIGN((unsigned long)__stop___ex_table);
578 
579 	if (!pti_kernel_image_global_ok())
580 		return;
581 
582 	pr_debug("mapping partial kernel image into user address space\n");
583 
584 	/*
585 	 * Note that this will undo _some_ of the work that
586 	 * pti_set_kernel_image_nonglobal() did to clear the
587 	 * global bit.
588 	 */
589 	pti_clone_pgtable(start, end_clone, PTI_LEVEL_KERNEL_IMAGE);
590 
591 	/*
592 	 * pti_clone_pgtable() will set the global bit in any PMDs
593 	 * that it clones, but we also need to get any PTEs in
594 	 * the last level for areas that are not huge-page-aligned.
595 	 */
596 
597 	/* Set the global bit for normal non-__init kernel text: */
598 	set_memory_global(start, (end_global - start) >> PAGE_SHIFT);
599 }
600 
pti_set_kernel_image_nonglobal(void)601 static void pti_set_kernel_image_nonglobal(void)
602 {
603 	/*
604 	 * The identity map is created with PMDs, regardless of the
605 	 * actual length of the kernel.  We need to clear
606 	 * _PAGE_GLOBAL up to a PMD boundary, not just to the end
607 	 * of the image.
608 	 */
609 	unsigned long start = PFN_ALIGN(_text);
610 	unsigned long end = ALIGN((unsigned long)_end, PMD_PAGE_SIZE);
611 
612 	/*
613 	 * This clears _PAGE_GLOBAL from the entire kernel image.
614 	 * pti_clone_kernel_text() map put _PAGE_GLOBAL back for
615 	 * areas that are mapped to userspace.
616 	 */
617 	set_memory_nonglobal(start, (end - start) >> PAGE_SHIFT);
618 }
619 
620 /*
621  * Initialize kernel page table isolation
622  */
pti_init(void)623 void __init pti_init(void)
624 {
625 	if (!boot_cpu_has(X86_FEATURE_PTI))
626 		return;
627 
628 	pr_info("enabled\n");
629 
630 #ifdef CONFIG_X86_32
631 	/*
632 	 * We check for X86_FEATURE_PCID here. But the init-code will
633 	 * clear the feature flag on 32 bit because the feature is not
634 	 * supported on 32 bit anyway. To print the warning we need to
635 	 * check with cpuid directly again.
636 	 */
637 	if (cpuid_ecx(0x1) & BIT(17)) {
638 		/* Use printk to work around pr_fmt() */
639 		printk(KERN_WARNING "\n");
640 		printk(KERN_WARNING "************************************************************\n");
641 		printk(KERN_WARNING "** WARNING! WARNING! WARNING! WARNING! WARNING! WARNING!  **\n");
642 		printk(KERN_WARNING "**                                                        **\n");
643 		printk(KERN_WARNING "** You are using 32-bit PTI on a 64-bit PCID-capable CPU. **\n");
644 		printk(KERN_WARNING "** Your performance will increase dramatically if you     **\n");
645 		printk(KERN_WARNING "** switch to a 64-bit kernel!                             **\n");
646 		printk(KERN_WARNING "**                                                        **\n");
647 		printk(KERN_WARNING "** WARNING! WARNING! WARNING! WARNING! WARNING! WARNING!  **\n");
648 		printk(KERN_WARNING "************************************************************\n");
649 	}
650 #endif
651 
652 	pti_clone_user_shared();
653 
654 	/* Undo all global bits from the init pagetables in head_64.S: */
655 	pti_set_kernel_image_nonglobal();
656 	/* Replace some of the global bits just for shared entry text: */
657 	pti_clone_entry_text();
658 	pti_setup_espfix64();
659 	pti_setup_vsyscall();
660 }
661 
662 /*
663  * Finalize the kernel mappings in the userspace page-table. Some of the
664  * mappings for the kernel image might have changed since pti_init()
665  * cloned them. This is because parts of the kernel image have been
666  * mapped RO and/or NX.  These changes need to be cloned again to the
667  * userspace page-table.
668  */
pti_finalize(void)669 void pti_finalize(void)
670 {
671 	if (!boot_cpu_has(X86_FEATURE_PTI))
672 		return;
673 	/*
674 	 * We need to clone everything (again) that maps parts of the
675 	 * kernel image.
676 	 */
677 	pti_clone_entry_text();
678 	pti_clone_kernel_text();
679 
680 	debug_checkwx_user();
681 }
682