1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * PCI Message Signaled Interrupt (MSI)
4 *
5 * Copyright (C) 2003-2004 Intel
6 * Copyright (C) Tom Long Nguyen (tom.l.nguyen@intel.com)
7 * Copyright (C) 2016 Christoph Hellwig.
8 */
9
10 #include <linux/err.h>
11 #include <linux/mm.h>
12 #include <linux/irq.h>
13 #include <linux/interrupt.h>
14 #include <linux/export.h>
15 #include <linux/ioport.h>
16 #include <linux/pci.h>
17 #include <linux/proc_fs.h>
18 #include <linux/msi.h>
19 #include <linux/smp.h>
20 #include <linux/errno.h>
21 #include <linux/io.h>
22 #include <linux/acpi_iort.h>
23 #include <linux/slab.h>
24 #include <linux/irqdomain.h>
25 #include <linux/of_irq.h>
26
27 #include "pci.h"
28
29 static int pci_msi_enable = 1;
30 int pci_msi_ignore_mask;
31
32 #define msix_table_size(flags) ((flags & PCI_MSIX_FLAGS_QSIZE) + 1)
33
34 #ifdef CONFIG_PCI_MSI_IRQ_DOMAIN
pci_msi_setup_msi_irqs(struct pci_dev * dev,int nvec,int type)35 static int pci_msi_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
36 {
37 struct irq_domain *domain;
38
39 domain = dev_get_msi_domain(&dev->dev);
40 if (domain && irq_domain_is_hierarchy(domain))
41 return msi_domain_alloc_irqs(domain, &dev->dev, nvec);
42
43 return arch_setup_msi_irqs(dev, nvec, type);
44 }
45
pci_msi_teardown_msi_irqs(struct pci_dev * dev)46 static void pci_msi_teardown_msi_irqs(struct pci_dev *dev)
47 {
48 struct irq_domain *domain;
49
50 domain = dev_get_msi_domain(&dev->dev);
51 if (domain && irq_domain_is_hierarchy(domain))
52 msi_domain_free_irqs(domain, &dev->dev);
53 else
54 arch_teardown_msi_irqs(dev);
55 }
56 #else
57 #define pci_msi_setup_msi_irqs arch_setup_msi_irqs
58 #define pci_msi_teardown_msi_irqs arch_teardown_msi_irqs
59 #endif
60
61 #ifdef CONFIG_PCI_MSI_ARCH_FALLBACKS
62 /* Arch hooks */
arch_setup_msi_irq(struct pci_dev * dev,struct msi_desc * desc)63 int __weak arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc)
64 {
65 struct msi_controller *chip = dev->bus->msi;
66 int err;
67
68 if (!chip || !chip->setup_irq)
69 return -EINVAL;
70
71 err = chip->setup_irq(chip, dev, desc);
72 if (err < 0)
73 return err;
74
75 irq_set_chip_data(desc->irq, chip);
76
77 return 0;
78 }
79
arch_teardown_msi_irq(unsigned int irq)80 void __weak arch_teardown_msi_irq(unsigned int irq)
81 {
82 struct msi_controller *chip = irq_get_chip_data(irq);
83
84 if (!chip || !chip->teardown_irq)
85 return;
86
87 chip->teardown_irq(chip, irq);
88 }
89
arch_setup_msi_irqs(struct pci_dev * dev,int nvec,int type)90 int __weak arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
91 {
92 struct msi_controller *chip = dev->bus->msi;
93 struct msi_desc *entry;
94 int ret;
95
96 if (chip && chip->setup_irqs)
97 return chip->setup_irqs(chip, dev, nvec, type);
98 /*
99 * If an architecture wants to support multiple MSI, it needs to
100 * override arch_setup_msi_irqs()
101 */
102 if (type == PCI_CAP_ID_MSI && nvec > 1)
103 return 1;
104
105 for_each_pci_msi_entry(entry, dev) {
106 ret = arch_setup_msi_irq(dev, entry);
107 if (ret < 0)
108 return ret;
109 if (ret > 0)
110 return -ENOSPC;
111 }
112
113 return 0;
114 }
115
116 /*
117 * We have a default implementation available as a separate non-weak
118 * function, as it is used by the Xen x86 PCI code
119 */
default_teardown_msi_irqs(struct pci_dev * dev)120 void default_teardown_msi_irqs(struct pci_dev *dev)
121 {
122 int i;
123 struct msi_desc *entry;
124
125 for_each_pci_msi_entry(entry, dev)
126 if (entry->irq)
127 for (i = 0; i < entry->nvec_used; i++)
128 arch_teardown_msi_irq(entry->irq + i);
129 }
130
arch_teardown_msi_irqs(struct pci_dev * dev)131 void __weak arch_teardown_msi_irqs(struct pci_dev *dev)
132 {
133 return default_teardown_msi_irqs(dev);
134 }
135 #endif /* CONFIG_PCI_MSI_ARCH_FALLBACKS */
136
default_restore_msi_irq(struct pci_dev * dev,int irq)137 static void default_restore_msi_irq(struct pci_dev *dev, int irq)
138 {
139 struct msi_desc *entry;
140
141 entry = NULL;
142 if (dev->msix_enabled) {
143 for_each_pci_msi_entry(entry, dev) {
144 if (irq == entry->irq)
145 break;
146 }
147 } else if (dev->msi_enabled) {
148 entry = irq_get_msi_desc(irq);
149 }
150
151 if (entry)
152 __pci_write_msi_msg(entry, &entry->msg);
153 }
154
arch_restore_msi_irqs(struct pci_dev * dev)155 void __weak arch_restore_msi_irqs(struct pci_dev *dev)
156 {
157 return default_restore_msi_irqs(dev);
158 }
159
msi_mask(unsigned x)160 static inline __attribute_const__ u32 msi_mask(unsigned x)
161 {
162 /* Don't shift by >= width of type */
163 if (x >= 5)
164 return 0xffffffff;
165 return (1 << (1 << x)) - 1;
166 }
167
168 /*
169 * PCI 2.3 does not specify mask bits for each MSI interrupt. Attempting to
170 * mask all MSI interrupts by clearing the MSI enable bit does not work
171 * reliably as devices without an INTx disable bit will then generate a
172 * level IRQ which will never be cleared.
173 */
__pci_msi_desc_mask_irq(struct msi_desc * desc,u32 mask,u32 flag)174 u32 __pci_msi_desc_mask_irq(struct msi_desc *desc, u32 mask, u32 flag)
175 {
176 u32 mask_bits = desc->masked;
177
178 if (pci_msi_ignore_mask || !desc->msi_attrib.maskbit)
179 return 0;
180
181 mask_bits &= ~mask;
182 mask_bits |= flag;
183 pci_write_config_dword(msi_desc_to_pci_dev(desc), desc->mask_pos,
184 mask_bits);
185
186 return mask_bits;
187 }
188
msi_mask_irq(struct msi_desc * desc,u32 mask,u32 flag)189 static void msi_mask_irq(struct msi_desc *desc, u32 mask, u32 flag)
190 {
191 desc->masked = __pci_msi_desc_mask_irq(desc, mask, flag);
192 }
193
pci_msix_desc_addr(struct msi_desc * desc)194 static void __iomem *pci_msix_desc_addr(struct msi_desc *desc)
195 {
196 if (desc->msi_attrib.is_virtual)
197 return NULL;
198
199 return desc->mask_base +
200 desc->msi_attrib.entry_nr * PCI_MSIX_ENTRY_SIZE;
201 }
202
203 /*
204 * This internal function does not flush PCI writes to the device.
205 * All users must ensure that they read from the device before either
206 * assuming that the device state is up to date, or returning out of this
207 * file. This saves a few milliseconds when initialising devices with lots
208 * of MSI-X interrupts.
209 */
__pci_msix_desc_mask_irq(struct msi_desc * desc,u32 flag)210 u32 __pci_msix_desc_mask_irq(struct msi_desc *desc, u32 flag)
211 {
212 u32 mask_bits = desc->masked;
213 void __iomem *desc_addr;
214
215 if (pci_msi_ignore_mask)
216 return 0;
217
218 desc_addr = pci_msix_desc_addr(desc);
219 if (!desc_addr)
220 return 0;
221
222 mask_bits &= ~PCI_MSIX_ENTRY_CTRL_MASKBIT;
223 if (flag & PCI_MSIX_ENTRY_CTRL_MASKBIT)
224 mask_bits |= PCI_MSIX_ENTRY_CTRL_MASKBIT;
225
226 writel(mask_bits, desc_addr + PCI_MSIX_ENTRY_VECTOR_CTRL);
227
228 return mask_bits;
229 }
230
msix_mask_irq(struct msi_desc * desc,u32 flag)231 static void msix_mask_irq(struct msi_desc *desc, u32 flag)
232 {
233 desc->masked = __pci_msix_desc_mask_irq(desc, flag);
234 }
235
msi_set_mask_bit(struct irq_data * data,u32 flag)236 static void msi_set_mask_bit(struct irq_data *data, u32 flag)
237 {
238 struct msi_desc *desc = irq_data_get_msi_desc(data);
239
240 if (desc->msi_attrib.is_msix) {
241 msix_mask_irq(desc, flag);
242 readl(desc->mask_base); /* Flush write to device */
243 } else {
244 unsigned offset = data->irq - desc->irq;
245 msi_mask_irq(desc, 1 << offset, flag << offset);
246 }
247 }
248
249 /**
250 * pci_msi_mask_irq - Generic IRQ chip callback to mask PCI/MSI interrupts
251 * @data: pointer to irqdata associated to that interrupt
252 */
pci_msi_mask_irq(struct irq_data * data)253 void pci_msi_mask_irq(struct irq_data *data)
254 {
255 msi_set_mask_bit(data, 1);
256 }
257 EXPORT_SYMBOL_GPL(pci_msi_mask_irq);
258
259 /**
260 * pci_msi_unmask_irq - Generic IRQ chip callback to unmask PCI/MSI interrupts
261 * @data: pointer to irqdata associated to that interrupt
262 */
pci_msi_unmask_irq(struct irq_data * data)263 void pci_msi_unmask_irq(struct irq_data *data)
264 {
265 msi_set_mask_bit(data, 0);
266 }
267 EXPORT_SYMBOL_GPL(pci_msi_unmask_irq);
268
default_restore_msi_irqs(struct pci_dev * dev)269 void default_restore_msi_irqs(struct pci_dev *dev)
270 {
271 struct msi_desc *entry;
272
273 for_each_pci_msi_entry(entry, dev)
274 default_restore_msi_irq(dev, entry->irq);
275 }
276
__pci_read_msi_msg(struct msi_desc * entry,struct msi_msg * msg)277 void __pci_read_msi_msg(struct msi_desc *entry, struct msi_msg *msg)
278 {
279 struct pci_dev *dev = msi_desc_to_pci_dev(entry);
280
281 BUG_ON(dev->current_state != PCI_D0);
282
283 if (entry->msi_attrib.is_msix) {
284 void __iomem *base = pci_msix_desc_addr(entry);
285
286 if (!base) {
287 WARN_ON(1);
288 return;
289 }
290
291 msg->address_lo = readl(base + PCI_MSIX_ENTRY_LOWER_ADDR);
292 msg->address_hi = readl(base + PCI_MSIX_ENTRY_UPPER_ADDR);
293 msg->data = readl(base + PCI_MSIX_ENTRY_DATA);
294 } else {
295 int pos = dev->msi_cap;
296 u16 data;
297
298 pci_read_config_dword(dev, pos + PCI_MSI_ADDRESS_LO,
299 &msg->address_lo);
300 if (entry->msi_attrib.is_64) {
301 pci_read_config_dword(dev, pos + PCI_MSI_ADDRESS_HI,
302 &msg->address_hi);
303 pci_read_config_word(dev, pos + PCI_MSI_DATA_64, &data);
304 } else {
305 msg->address_hi = 0;
306 pci_read_config_word(dev, pos + PCI_MSI_DATA_32, &data);
307 }
308 msg->data = data;
309 }
310 }
311
__pci_write_msi_msg(struct msi_desc * entry,struct msi_msg * msg)312 void __pci_write_msi_msg(struct msi_desc *entry, struct msi_msg *msg)
313 {
314 struct pci_dev *dev = msi_desc_to_pci_dev(entry);
315
316 if (dev->current_state != PCI_D0 || pci_dev_is_disconnected(dev)) {
317 /* Don't touch the hardware now */
318 } else if (entry->msi_attrib.is_msix) {
319 void __iomem *base = pci_msix_desc_addr(entry);
320
321 if (!base)
322 goto skip;
323
324 writel(msg->address_lo, base + PCI_MSIX_ENTRY_LOWER_ADDR);
325 writel(msg->address_hi, base + PCI_MSIX_ENTRY_UPPER_ADDR);
326 writel(msg->data, base + PCI_MSIX_ENTRY_DATA);
327 } else {
328 int pos = dev->msi_cap;
329 u16 msgctl;
330
331 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &msgctl);
332 msgctl &= ~PCI_MSI_FLAGS_QSIZE;
333 msgctl |= entry->msi_attrib.multiple << 4;
334 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, msgctl);
335
336 pci_write_config_dword(dev, pos + PCI_MSI_ADDRESS_LO,
337 msg->address_lo);
338 if (entry->msi_attrib.is_64) {
339 pci_write_config_dword(dev, pos + PCI_MSI_ADDRESS_HI,
340 msg->address_hi);
341 pci_write_config_word(dev, pos + PCI_MSI_DATA_64,
342 msg->data);
343 } else {
344 pci_write_config_word(dev, pos + PCI_MSI_DATA_32,
345 msg->data);
346 }
347 }
348
349 skip:
350 entry->msg = *msg;
351
352 if (entry->write_msi_msg)
353 entry->write_msi_msg(entry, entry->write_msi_msg_data);
354
355 }
356
pci_write_msi_msg(unsigned int irq,struct msi_msg * msg)357 void pci_write_msi_msg(unsigned int irq, struct msi_msg *msg)
358 {
359 struct msi_desc *entry = irq_get_msi_desc(irq);
360
361 __pci_write_msi_msg(entry, msg);
362 }
363 EXPORT_SYMBOL_GPL(pci_write_msi_msg);
364
free_msi_irqs(struct pci_dev * dev)365 static void free_msi_irqs(struct pci_dev *dev)
366 {
367 struct list_head *msi_list = dev_to_msi_list(&dev->dev);
368 struct msi_desc *entry, *tmp;
369 struct attribute **msi_attrs;
370 struct device_attribute *dev_attr;
371 int i, count = 0;
372
373 for_each_pci_msi_entry(entry, dev)
374 if (entry->irq)
375 for (i = 0; i < entry->nvec_used; i++)
376 BUG_ON(irq_has_action(entry->irq + i));
377
378 pci_msi_teardown_msi_irqs(dev);
379
380 list_for_each_entry_safe(entry, tmp, msi_list, list) {
381 if (entry->msi_attrib.is_msix) {
382 if (list_is_last(&entry->list, msi_list))
383 iounmap(entry->mask_base);
384 }
385
386 list_del(&entry->list);
387 free_msi_entry(entry);
388 }
389
390 if (dev->msi_irq_groups) {
391 sysfs_remove_groups(&dev->dev.kobj, dev->msi_irq_groups);
392 msi_attrs = dev->msi_irq_groups[0]->attrs;
393 while (msi_attrs[count]) {
394 dev_attr = container_of(msi_attrs[count],
395 struct device_attribute, attr);
396 kfree(dev_attr->attr.name);
397 kfree(dev_attr);
398 ++count;
399 }
400 kfree(msi_attrs);
401 kfree(dev->msi_irq_groups[0]);
402 kfree(dev->msi_irq_groups);
403 dev->msi_irq_groups = NULL;
404 }
405 }
406
pci_intx_for_msi(struct pci_dev * dev,int enable)407 static void pci_intx_for_msi(struct pci_dev *dev, int enable)
408 {
409 if (!(dev->dev_flags & PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG))
410 pci_intx(dev, enable);
411 }
412
__pci_restore_msi_state(struct pci_dev * dev)413 static void __pci_restore_msi_state(struct pci_dev *dev)
414 {
415 u16 control;
416 struct msi_desc *entry;
417
418 if (!dev->msi_enabled)
419 return;
420
421 entry = irq_get_msi_desc(dev->irq);
422
423 pci_intx_for_msi(dev, 0);
424 pci_msi_set_enable(dev, 0);
425 arch_restore_msi_irqs(dev);
426
427 pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control);
428 msi_mask_irq(entry, msi_mask(entry->msi_attrib.multi_cap),
429 entry->masked);
430 control &= ~PCI_MSI_FLAGS_QSIZE;
431 control |= (entry->msi_attrib.multiple << 4) | PCI_MSI_FLAGS_ENABLE;
432 pci_write_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, control);
433 }
434
__pci_restore_msix_state(struct pci_dev * dev)435 static void __pci_restore_msix_state(struct pci_dev *dev)
436 {
437 struct msi_desc *entry;
438
439 if (!dev->msix_enabled)
440 return;
441 BUG_ON(list_empty(dev_to_msi_list(&dev->dev)));
442
443 /* route the table */
444 pci_intx_for_msi(dev, 0);
445 pci_msix_clear_and_set_ctrl(dev, 0,
446 PCI_MSIX_FLAGS_ENABLE | PCI_MSIX_FLAGS_MASKALL);
447
448 arch_restore_msi_irqs(dev);
449 for_each_pci_msi_entry(entry, dev)
450 msix_mask_irq(entry, entry->masked);
451
452 pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_MASKALL, 0);
453 }
454
pci_restore_msi_state(struct pci_dev * dev)455 void pci_restore_msi_state(struct pci_dev *dev)
456 {
457 __pci_restore_msi_state(dev);
458 __pci_restore_msix_state(dev);
459 }
460 EXPORT_SYMBOL_GPL(pci_restore_msi_state);
461
msi_mode_show(struct device * dev,struct device_attribute * attr,char * buf)462 static ssize_t msi_mode_show(struct device *dev, struct device_attribute *attr,
463 char *buf)
464 {
465 struct msi_desc *entry;
466 unsigned long irq;
467 int retval;
468
469 retval = kstrtoul(attr->attr.name, 10, &irq);
470 if (retval)
471 return retval;
472
473 entry = irq_get_msi_desc(irq);
474 if (entry)
475 return sprintf(buf, "%s\n",
476 entry->msi_attrib.is_msix ? "msix" : "msi");
477
478 return -ENODEV;
479 }
480
populate_msi_sysfs(struct pci_dev * pdev)481 static int populate_msi_sysfs(struct pci_dev *pdev)
482 {
483 struct attribute **msi_attrs;
484 struct attribute *msi_attr;
485 struct device_attribute *msi_dev_attr;
486 struct attribute_group *msi_irq_group;
487 const struct attribute_group **msi_irq_groups;
488 struct msi_desc *entry;
489 int ret = -ENOMEM;
490 int num_msi = 0;
491 int count = 0;
492 int i;
493
494 /* Determine how many msi entries we have */
495 for_each_pci_msi_entry(entry, pdev)
496 num_msi += entry->nvec_used;
497 if (!num_msi)
498 return 0;
499
500 /* Dynamically create the MSI attributes for the PCI device */
501 msi_attrs = kcalloc(num_msi + 1, sizeof(void *), GFP_KERNEL);
502 if (!msi_attrs)
503 return -ENOMEM;
504 for_each_pci_msi_entry(entry, pdev) {
505 for (i = 0; i < entry->nvec_used; i++) {
506 msi_dev_attr = kzalloc(sizeof(*msi_dev_attr), GFP_KERNEL);
507 if (!msi_dev_attr)
508 goto error_attrs;
509 msi_attrs[count] = &msi_dev_attr->attr;
510
511 sysfs_attr_init(&msi_dev_attr->attr);
512 msi_dev_attr->attr.name = kasprintf(GFP_KERNEL, "%d",
513 entry->irq + i);
514 if (!msi_dev_attr->attr.name)
515 goto error_attrs;
516 msi_dev_attr->attr.mode = S_IRUGO;
517 msi_dev_attr->show = msi_mode_show;
518 ++count;
519 }
520 }
521
522 msi_irq_group = kzalloc(sizeof(*msi_irq_group), GFP_KERNEL);
523 if (!msi_irq_group)
524 goto error_attrs;
525 msi_irq_group->name = "msi_irqs";
526 msi_irq_group->attrs = msi_attrs;
527
528 msi_irq_groups = kcalloc(2, sizeof(void *), GFP_KERNEL);
529 if (!msi_irq_groups)
530 goto error_irq_group;
531 msi_irq_groups[0] = msi_irq_group;
532
533 ret = sysfs_create_groups(&pdev->dev.kobj, msi_irq_groups);
534 if (ret)
535 goto error_irq_groups;
536 pdev->msi_irq_groups = msi_irq_groups;
537
538 return 0;
539
540 error_irq_groups:
541 kfree(msi_irq_groups);
542 error_irq_group:
543 kfree(msi_irq_group);
544 error_attrs:
545 count = 0;
546 msi_attr = msi_attrs[count];
547 while (msi_attr) {
548 msi_dev_attr = container_of(msi_attr, struct device_attribute, attr);
549 kfree(msi_attr->name);
550 kfree(msi_dev_attr);
551 ++count;
552 msi_attr = msi_attrs[count];
553 }
554 kfree(msi_attrs);
555 return ret;
556 }
557
558 static struct msi_desc *
msi_setup_entry(struct pci_dev * dev,int nvec,struct irq_affinity * affd)559 msi_setup_entry(struct pci_dev *dev, int nvec, struct irq_affinity *affd)
560 {
561 struct irq_affinity_desc *masks = NULL;
562 struct msi_desc *entry;
563 u16 control;
564
565 if (affd)
566 masks = irq_create_affinity_masks(nvec, affd);
567
568 /* MSI Entry Initialization */
569 entry = alloc_msi_entry(&dev->dev, nvec, masks);
570 if (!entry)
571 goto out;
572
573 pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control);
574
575 entry->msi_attrib.is_msix = 0;
576 entry->msi_attrib.is_64 = !!(control & PCI_MSI_FLAGS_64BIT);
577 entry->msi_attrib.is_virtual = 0;
578 entry->msi_attrib.entry_nr = 0;
579 entry->msi_attrib.maskbit = !!(control & PCI_MSI_FLAGS_MASKBIT);
580 entry->msi_attrib.default_irq = dev->irq; /* Save IOAPIC IRQ */
581 entry->msi_attrib.multi_cap = (control & PCI_MSI_FLAGS_QMASK) >> 1;
582 entry->msi_attrib.multiple = ilog2(__roundup_pow_of_two(nvec));
583
584 if (control & PCI_MSI_FLAGS_64BIT)
585 entry->mask_pos = dev->msi_cap + PCI_MSI_MASK_64;
586 else
587 entry->mask_pos = dev->msi_cap + PCI_MSI_MASK_32;
588
589 /* Save the initial mask status */
590 if (entry->msi_attrib.maskbit)
591 pci_read_config_dword(dev, entry->mask_pos, &entry->masked);
592
593 out:
594 kfree(masks);
595 return entry;
596 }
597
msi_verify_entries(struct pci_dev * dev)598 static int msi_verify_entries(struct pci_dev *dev)
599 {
600 struct msi_desc *entry;
601
602 for_each_pci_msi_entry(entry, dev) {
603 if (!dev->no_64bit_msi || !entry->msg.address_hi)
604 continue;
605 pci_err(dev, "Device has broken 64-bit MSI but arch"
606 " tried to assign one above 4G\n");
607 return -EIO;
608 }
609 return 0;
610 }
611
612 /**
613 * msi_capability_init - configure device's MSI capability structure
614 * @dev: pointer to the pci_dev data structure of MSI device function
615 * @nvec: number of interrupts to allocate
616 * @affd: description of automatic IRQ affinity assignments (may be %NULL)
617 *
618 * Setup the MSI capability structure of the device with the requested
619 * number of interrupts. A return value of zero indicates the successful
620 * setup of an entry with the new MSI IRQ. A negative return value indicates
621 * an error, and a positive return value indicates the number of interrupts
622 * which could have been allocated.
623 */
msi_capability_init(struct pci_dev * dev,int nvec,struct irq_affinity * affd)624 static int msi_capability_init(struct pci_dev *dev, int nvec,
625 struct irq_affinity *affd)
626 {
627 struct msi_desc *entry;
628 int ret;
629 unsigned mask;
630
631 pci_msi_set_enable(dev, 0); /* Disable MSI during set up */
632
633 entry = msi_setup_entry(dev, nvec, affd);
634 if (!entry)
635 return -ENOMEM;
636
637 /* All MSIs are unmasked by default; mask them all */
638 mask = msi_mask(entry->msi_attrib.multi_cap);
639 msi_mask_irq(entry, mask, mask);
640
641 list_add_tail(&entry->list, dev_to_msi_list(&dev->dev));
642
643 /* Configure MSI capability structure */
644 ret = pci_msi_setup_msi_irqs(dev, nvec, PCI_CAP_ID_MSI);
645 if (ret) {
646 msi_mask_irq(entry, mask, ~mask);
647 free_msi_irqs(dev);
648 return ret;
649 }
650
651 ret = msi_verify_entries(dev);
652 if (ret) {
653 msi_mask_irq(entry, mask, ~mask);
654 free_msi_irqs(dev);
655 return ret;
656 }
657
658 ret = populate_msi_sysfs(dev);
659 if (ret) {
660 msi_mask_irq(entry, mask, ~mask);
661 free_msi_irqs(dev);
662 return ret;
663 }
664
665 /* Set MSI enabled bits */
666 pci_intx_for_msi(dev, 0);
667 pci_msi_set_enable(dev, 1);
668 dev->msi_enabled = 1;
669
670 pcibios_free_irq(dev);
671 dev->irq = entry->irq;
672 return 0;
673 }
674
msix_map_region(struct pci_dev * dev,unsigned nr_entries)675 static void __iomem *msix_map_region(struct pci_dev *dev, unsigned nr_entries)
676 {
677 resource_size_t phys_addr;
678 u32 table_offset;
679 unsigned long flags;
680 u8 bir;
681
682 pci_read_config_dword(dev, dev->msix_cap + PCI_MSIX_TABLE,
683 &table_offset);
684 bir = (u8)(table_offset & PCI_MSIX_TABLE_BIR);
685 flags = pci_resource_flags(dev, bir);
686 if (!flags || (flags & IORESOURCE_UNSET))
687 return NULL;
688
689 table_offset &= PCI_MSIX_TABLE_OFFSET;
690 phys_addr = pci_resource_start(dev, bir) + table_offset;
691
692 return ioremap(phys_addr, nr_entries * PCI_MSIX_ENTRY_SIZE);
693 }
694
msix_setup_entries(struct pci_dev * dev,void __iomem * base,struct msix_entry * entries,int nvec,struct irq_affinity * affd)695 static int msix_setup_entries(struct pci_dev *dev, void __iomem *base,
696 struct msix_entry *entries, int nvec,
697 struct irq_affinity *affd)
698 {
699 struct irq_affinity_desc *curmsk, *masks = NULL;
700 struct msi_desc *entry;
701 int ret, i;
702 int vec_count = pci_msix_vec_count(dev);
703
704 if (affd)
705 masks = irq_create_affinity_masks(nvec, affd);
706
707 for (i = 0, curmsk = masks; i < nvec; i++) {
708 entry = alloc_msi_entry(&dev->dev, 1, curmsk);
709 if (!entry) {
710 if (!i)
711 iounmap(base);
712 else
713 free_msi_irqs(dev);
714 /* No enough memory. Don't try again */
715 ret = -ENOMEM;
716 goto out;
717 }
718
719 entry->msi_attrib.is_msix = 1;
720 entry->msi_attrib.is_64 = 1;
721 if (entries)
722 entry->msi_attrib.entry_nr = entries[i].entry;
723 else
724 entry->msi_attrib.entry_nr = i;
725
726 entry->msi_attrib.is_virtual =
727 entry->msi_attrib.entry_nr >= vec_count;
728
729 entry->msi_attrib.default_irq = dev->irq;
730 entry->mask_base = base;
731
732 list_add_tail(&entry->list, dev_to_msi_list(&dev->dev));
733 if (masks)
734 curmsk++;
735 }
736 ret = 0;
737 out:
738 kfree(masks);
739 return ret;
740 }
741
msix_program_entries(struct pci_dev * dev,struct msix_entry * entries)742 static void msix_program_entries(struct pci_dev *dev,
743 struct msix_entry *entries)
744 {
745 struct msi_desc *entry;
746 int i = 0;
747 void __iomem *desc_addr;
748
749 for_each_pci_msi_entry(entry, dev) {
750 if (entries)
751 entries[i++].vector = entry->irq;
752
753 desc_addr = pci_msix_desc_addr(entry);
754 if (desc_addr)
755 entry->masked = readl(desc_addr +
756 PCI_MSIX_ENTRY_VECTOR_CTRL);
757 else
758 entry->masked = 0;
759
760 msix_mask_irq(entry, 1);
761 }
762 }
763
764 /**
765 * msix_capability_init - configure device's MSI-X capability
766 * @dev: pointer to the pci_dev data structure of MSI-X device function
767 * @entries: pointer to an array of struct msix_entry entries
768 * @nvec: number of @entries
769 * @affd: Optional pointer to enable automatic affinity assignment
770 *
771 * Setup the MSI-X capability structure of device function with a
772 * single MSI-X IRQ. A return of zero indicates the successful setup of
773 * requested MSI-X entries with allocated IRQs or non-zero for otherwise.
774 **/
msix_capability_init(struct pci_dev * dev,struct msix_entry * entries,int nvec,struct irq_affinity * affd)775 static int msix_capability_init(struct pci_dev *dev, struct msix_entry *entries,
776 int nvec, struct irq_affinity *affd)
777 {
778 int ret;
779 u16 control;
780 void __iomem *base;
781
782 /* Ensure MSI-X is disabled while it is set up */
783 pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_ENABLE, 0);
784
785 pci_read_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, &control);
786 /* Request & Map MSI-X table region */
787 base = msix_map_region(dev, msix_table_size(control));
788 if (!base)
789 return -ENOMEM;
790
791 ret = msix_setup_entries(dev, base, entries, nvec, affd);
792 if (ret)
793 return ret;
794
795 ret = pci_msi_setup_msi_irqs(dev, nvec, PCI_CAP_ID_MSIX);
796 if (ret)
797 goto out_avail;
798
799 /* Check if all MSI entries honor device restrictions */
800 ret = msi_verify_entries(dev);
801 if (ret)
802 goto out_free;
803
804 /*
805 * Some devices require MSI-X to be enabled before we can touch the
806 * MSI-X registers. We need to mask all the vectors to prevent
807 * interrupts coming in before they're fully set up.
808 */
809 pci_msix_clear_and_set_ctrl(dev, 0,
810 PCI_MSIX_FLAGS_MASKALL | PCI_MSIX_FLAGS_ENABLE);
811
812 msix_program_entries(dev, entries);
813
814 ret = populate_msi_sysfs(dev);
815 if (ret)
816 goto out_free;
817
818 /* Set MSI-X enabled bits and unmask the function */
819 pci_intx_for_msi(dev, 0);
820 dev->msix_enabled = 1;
821 pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_MASKALL, 0);
822
823 pcibios_free_irq(dev);
824 return 0;
825
826 out_avail:
827 if (ret < 0) {
828 /*
829 * If we had some success, report the number of IRQs
830 * we succeeded in setting up.
831 */
832 struct msi_desc *entry;
833 int avail = 0;
834
835 for_each_pci_msi_entry(entry, dev) {
836 if (entry->irq != 0)
837 avail++;
838 }
839 if (avail != 0)
840 ret = avail;
841 }
842
843 out_free:
844 free_msi_irqs(dev);
845
846 return ret;
847 }
848
849 /**
850 * pci_msi_supported - check whether MSI may be enabled on a device
851 * @dev: pointer to the pci_dev data structure of MSI device function
852 * @nvec: how many MSIs have been requested?
853 *
854 * Look at global flags, the device itself, and its parent buses
855 * to determine if MSI/-X are supported for the device. If MSI/-X is
856 * supported return 1, else return 0.
857 **/
pci_msi_supported(struct pci_dev * dev,int nvec)858 static int pci_msi_supported(struct pci_dev *dev, int nvec)
859 {
860 struct pci_bus *bus;
861
862 /* MSI must be globally enabled and supported by the device */
863 if (!pci_msi_enable)
864 return 0;
865
866 if (!dev || dev->no_msi)
867 return 0;
868
869 /*
870 * You can't ask to have 0 or less MSIs configured.
871 * a) it's stupid ..
872 * b) the list manipulation code assumes nvec >= 1.
873 */
874 if (nvec < 1)
875 return 0;
876
877 /*
878 * Any bridge which does NOT route MSI transactions from its
879 * secondary bus to its primary bus must set NO_MSI flag on
880 * the secondary pci_bus.
881 * We expect only arch-specific PCI host bus controller driver
882 * or quirks for specific PCI bridges to be setting NO_MSI.
883 */
884 for (bus = dev->bus; bus; bus = bus->parent)
885 if (bus->bus_flags & PCI_BUS_FLAGS_NO_MSI)
886 return 0;
887
888 return 1;
889 }
890
891 /**
892 * pci_msi_vec_count - Return the number of MSI vectors a device can send
893 * @dev: device to report about
894 *
895 * This function returns the number of MSI vectors a device requested via
896 * Multiple Message Capable register. It returns a negative errno if the
897 * device is not capable sending MSI interrupts. Otherwise, the call succeeds
898 * and returns a power of two, up to a maximum of 2^5 (32), according to the
899 * MSI specification.
900 **/
pci_msi_vec_count(struct pci_dev * dev)901 int pci_msi_vec_count(struct pci_dev *dev)
902 {
903 int ret;
904 u16 msgctl;
905
906 if (!dev->msi_cap)
907 return -EINVAL;
908
909 pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &msgctl);
910 ret = 1 << ((msgctl & PCI_MSI_FLAGS_QMASK) >> 1);
911
912 return ret;
913 }
914 EXPORT_SYMBOL(pci_msi_vec_count);
915
pci_msi_shutdown(struct pci_dev * dev)916 static void pci_msi_shutdown(struct pci_dev *dev)
917 {
918 struct msi_desc *desc;
919 u32 mask;
920
921 if (!pci_msi_enable || !dev || !dev->msi_enabled)
922 return;
923
924 BUG_ON(list_empty(dev_to_msi_list(&dev->dev)));
925 desc = first_pci_msi_entry(dev);
926
927 pci_msi_set_enable(dev, 0);
928 pci_intx_for_msi(dev, 1);
929 dev->msi_enabled = 0;
930
931 /* Return the device with MSI unmasked as initial states */
932 mask = msi_mask(desc->msi_attrib.multi_cap);
933 /* Keep cached state to be restored */
934 __pci_msi_desc_mask_irq(desc, mask, ~mask);
935
936 /* Restore dev->irq to its default pin-assertion IRQ */
937 dev->irq = desc->msi_attrib.default_irq;
938 pcibios_alloc_irq(dev);
939 }
940
pci_disable_msi(struct pci_dev * dev)941 void pci_disable_msi(struct pci_dev *dev)
942 {
943 if (!pci_msi_enable || !dev || !dev->msi_enabled)
944 return;
945
946 pci_msi_shutdown(dev);
947 free_msi_irqs(dev);
948 }
949 EXPORT_SYMBOL(pci_disable_msi);
950
951 /**
952 * pci_msix_vec_count - return the number of device's MSI-X table entries
953 * @dev: pointer to the pci_dev data structure of MSI-X device function
954 * This function returns the number of device's MSI-X table entries and
955 * therefore the number of MSI-X vectors device is capable of sending.
956 * It returns a negative errno if the device is not capable of sending MSI-X
957 * interrupts.
958 **/
pci_msix_vec_count(struct pci_dev * dev)959 int pci_msix_vec_count(struct pci_dev *dev)
960 {
961 u16 control;
962
963 if (!dev->msix_cap)
964 return -EINVAL;
965
966 pci_read_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, &control);
967 return msix_table_size(control);
968 }
969 EXPORT_SYMBOL(pci_msix_vec_count);
970
__pci_enable_msix(struct pci_dev * dev,struct msix_entry * entries,int nvec,struct irq_affinity * affd,int flags)971 static int __pci_enable_msix(struct pci_dev *dev, struct msix_entry *entries,
972 int nvec, struct irq_affinity *affd, int flags)
973 {
974 int nr_entries;
975 int i, j;
976
977 if (!pci_msi_supported(dev, nvec) || dev->current_state != PCI_D0)
978 return -EINVAL;
979
980 nr_entries = pci_msix_vec_count(dev);
981 if (nr_entries < 0)
982 return nr_entries;
983 if (nvec > nr_entries && !(flags & PCI_IRQ_VIRTUAL))
984 return nr_entries;
985
986 if (entries) {
987 /* Check for any invalid entries */
988 for (i = 0; i < nvec; i++) {
989 if (entries[i].entry >= nr_entries)
990 return -EINVAL; /* invalid entry */
991 for (j = i + 1; j < nvec; j++) {
992 if (entries[i].entry == entries[j].entry)
993 return -EINVAL; /* duplicate entry */
994 }
995 }
996 }
997
998 /* Check whether driver already requested for MSI IRQ */
999 if (dev->msi_enabled) {
1000 pci_info(dev, "can't enable MSI-X (MSI IRQ already assigned)\n");
1001 return -EINVAL;
1002 }
1003 return msix_capability_init(dev, entries, nvec, affd);
1004 }
1005
pci_msix_shutdown(struct pci_dev * dev)1006 static void pci_msix_shutdown(struct pci_dev *dev)
1007 {
1008 struct msi_desc *entry;
1009
1010 if (!pci_msi_enable || !dev || !dev->msix_enabled)
1011 return;
1012
1013 if (pci_dev_is_disconnected(dev)) {
1014 dev->msix_enabled = 0;
1015 return;
1016 }
1017
1018 /* Return the device with MSI-X masked as initial states */
1019 for_each_pci_msi_entry(entry, dev) {
1020 /* Keep cached states to be restored */
1021 __pci_msix_desc_mask_irq(entry, 1);
1022 }
1023
1024 pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_ENABLE, 0);
1025 pci_intx_for_msi(dev, 1);
1026 dev->msix_enabled = 0;
1027 pcibios_alloc_irq(dev);
1028 }
1029
pci_disable_msix(struct pci_dev * dev)1030 void pci_disable_msix(struct pci_dev *dev)
1031 {
1032 if (!pci_msi_enable || !dev || !dev->msix_enabled)
1033 return;
1034
1035 pci_msix_shutdown(dev);
1036 free_msi_irqs(dev);
1037 }
1038 EXPORT_SYMBOL(pci_disable_msix);
1039
pci_no_msi(void)1040 void pci_no_msi(void)
1041 {
1042 pci_msi_enable = 0;
1043 }
1044
1045 /**
1046 * pci_msi_enabled - is MSI enabled?
1047 *
1048 * Returns true if MSI has not been disabled by the command-line option
1049 * pci=nomsi.
1050 **/
pci_msi_enabled(void)1051 int pci_msi_enabled(void)
1052 {
1053 return pci_msi_enable;
1054 }
1055 EXPORT_SYMBOL(pci_msi_enabled);
1056
__pci_enable_msi_range(struct pci_dev * dev,int minvec,int maxvec,struct irq_affinity * affd)1057 static int __pci_enable_msi_range(struct pci_dev *dev, int minvec, int maxvec,
1058 struct irq_affinity *affd)
1059 {
1060 int nvec;
1061 int rc;
1062
1063 if (!pci_msi_supported(dev, minvec) || dev->current_state != PCI_D0)
1064 return -EINVAL;
1065
1066 /* Check whether driver already requested MSI-X IRQs */
1067 if (dev->msix_enabled) {
1068 pci_info(dev, "can't enable MSI (MSI-X already enabled)\n");
1069 return -EINVAL;
1070 }
1071
1072 if (maxvec < minvec)
1073 return -ERANGE;
1074
1075 if (WARN_ON_ONCE(dev->msi_enabled))
1076 return -EINVAL;
1077
1078 nvec = pci_msi_vec_count(dev);
1079 if (nvec < 0)
1080 return nvec;
1081 if (nvec < minvec)
1082 return -ENOSPC;
1083
1084 if (nvec > maxvec)
1085 nvec = maxvec;
1086
1087 for (;;) {
1088 if (affd) {
1089 nvec = irq_calc_affinity_vectors(minvec, nvec, affd);
1090 if (nvec < minvec)
1091 return -ENOSPC;
1092 }
1093
1094 rc = msi_capability_init(dev, nvec, affd);
1095 if (rc == 0)
1096 return nvec;
1097
1098 if (rc < 0)
1099 return rc;
1100 if (rc < minvec)
1101 return -ENOSPC;
1102
1103 nvec = rc;
1104 }
1105 }
1106
1107 /* deprecated, don't use */
pci_enable_msi(struct pci_dev * dev)1108 int pci_enable_msi(struct pci_dev *dev)
1109 {
1110 int rc = __pci_enable_msi_range(dev, 1, 1, NULL);
1111 if (rc < 0)
1112 return rc;
1113 return 0;
1114 }
1115 EXPORT_SYMBOL(pci_enable_msi);
1116
__pci_enable_msix_range(struct pci_dev * dev,struct msix_entry * entries,int minvec,int maxvec,struct irq_affinity * affd,int flags)1117 static int __pci_enable_msix_range(struct pci_dev *dev,
1118 struct msix_entry *entries, int minvec,
1119 int maxvec, struct irq_affinity *affd,
1120 int flags)
1121 {
1122 int rc, nvec = maxvec;
1123
1124 if (maxvec < minvec)
1125 return -ERANGE;
1126
1127 if (WARN_ON_ONCE(dev->msix_enabled))
1128 return -EINVAL;
1129
1130 for (;;) {
1131 if (affd) {
1132 nvec = irq_calc_affinity_vectors(minvec, nvec, affd);
1133 if (nvec < minvec)
1134 return -ENOSPC;
1135 }
1136
1137 rc = __pci_enable_msix(dev, entries, nvec, affd, flags);
1138 if (rc == 0)
1139 return nvec;
1140
1141 if (rc < 0)
1142 return rc;
1143 if (rc < minvec)
1144 return -ENOSPC;
1145
1146 nvec = rc;
1147 }
1148 }
1149
1150 /**
1151 * pci_enable_msix_range - configure device's MSI-X capability structure
1152 * @dev: pointer to the pci_dev data structure of MSI-X device function
1153 * @entries: pointer to an array of MSI-X entries
1154 * @minvec: minimum number of MSI-X IRQs requested
1155 * @maxvec: maximum number of MSI-X IRQs requested
1156 *
1157 * Setup the MSI-X capability structure of device function with a maximum
1158 * possible number of interrupts in the range between @minvec and @maxvec
1159 * upon its software driver call to request for MSI-X mode enabled on its
1160 * hardware device function. It returns a negative errno if an error occurs.
1161 * If it succeeds, it returns the actual number of interrupts allocated and
1162 * indicates the successful configuration of MSI-X capability structure
1163 * with new allocated MSI-X interrupts.
1164 **/
pci_enable_msix_range(struct pci_dev * dev,struct msix_entry * entries,int minvec,int maxvec)1165 int pci_enable_msix_range(struct pci_dev *dev, struct msix_entry *entries,
1166 int minvec, int maxvec)
1167 {
1168 return __pci_enable_msix_range(dev, entries, minvec, maxvec, NULL, 0);
1169 }
1170 EXPORT_SYMBOL(pci_enable_msix_range);
1171
1172 /**
1173 * pci_alloc_irq_vectors_affinity - allocate multiple IRQs for a device
1174 * @dev: PCI device to operate on
1175 * @min_vecs: minimum number of vectors required (must be >= 1)
1176 * @max_vecs: maximum (desired) number of vectors
1177 * @flags: flags or quirks for the allocation
1178 * @affd: optional description of the affinity requirements
1179 *
1180 * Allocate up to @max_vecs interrupt vectors for @dev, using MSI-X or MSI
1181 * vectors if available, and fall back to a single legacy vector
1182 * if neither is available. Return the number of vectors allocated,
1183 * (which might be smaller than @max_vecs) if successful, or a negative
1184 * error code on error. If less than @min_vecs interrupt vectors are
1185 * available for @dev the function will fail with -ENOSPC.
1186 *
1187 * To get the Linux IRQ number used for a vector that can be passed to
1188 * request_irq() use the pci_irq_vector() helper.
1189 */
pci_alloc_irq_vectors_affinity(struct pci_dev * dev,unsigned int min_vecs,unsigned int max_vecs,unsigned int flags,struct irq_affinity * affd)1190 int pci_alloc_irq_vectors_affinity(struct pci_dev *dev, unsigned int min_vecs,
1191 unsigned int max_vecs, unsigned int flags,
1192 struct irq_affinity *affd)
1193 {
1194 struct irq_affinity msi_default_affd = {0};
1195 int nvecs = -ENOSPC;
1196
1197 if (flags & PCI_IRQ_AFFINITY) {
1198 if (!affd)
1199 affd = &msi_default_affd;
1200 } else {
1201 if (WARN_ON(affd))
1202 affd = NULL;
1203 }
1204
1205 if (flags & PCI_IRQ_MSIX) {
1206 nvecs = __pci_enable_msix_range(dev, NULL, min_vecs, max_vecs,
1207 affd, flags);
1208 if (nvecs > 0)
1209 return nvecs;
1210 }
1211
1212 if (flags & PCI_IRQ_MSI) {
1213 nvecs = __pci_enable_msi_range(dev, min_vecs, max_vecs, affd);
1214 if (nvecs > 0)
1215 return nvecs;
1216 }
1217
1218 /* use legacy IRQ if allowed */
1219 if (flags & PCI_IRQ_LEGACY) {
1220 if (min_vecs == 1 && dev->irq) {
1221 /*
1222 * Invoke the affinity spreading logic to ensure that
1223 * the device driver can adjust queue configuration
1224 * for the single interrupt case.
1225 */
1226 if (affd)
1227 irq_create_affinity_masks(1, affd);
1228 pci_intx(dev, 1);
1229 return 1;
1230 }
1231 }
1232
1233 return nvecs;
1234 }
1235 EXPORT_SYMBOL(pci_alloc_irq_vectors_affinity);
1236
1237 /**
1238 * pci_free_irq_vectors - free previously allocated IRQs for a device
1239 * @dev: PCI device to operate on
1240 *
1241 * Undoes the allocations and enabling in pci_alloc_irq_vectors().
1242 */
pci_free_irq_vectors(struct pci_dev * dev)1243 void pci_free_irq_vectors(struct pci_dev *dev)
1244 {
1245 pci_disable_msix(dev);
1246 pci_disable_msi(dev);
1247 }
1248 EXPORT_SYMBOL(pci_free_irq_vectors);
1249
1250 /**
1251 * pci_irq_vector - return Linux IRQ number of a device vector
1252 * @dev: PCI device to operate on
1253 * @nr: device-relative interrupt vector index (0-based).
1254 */
pci_irq_vector(struct pci_dev * dev,unsigned int nr)1255 int pci_irq_vector(struct pci_dev *dev, unsigned int nr)
1256 {
1257 if (dev->msix_enabled) {
1258 struct msi_desc *entry;
1259 int i = 0;
1260
1261 for_each_pci_msi_entry(entry, dev) {
1262 if (i == nr)
1263 return entry->irq;
1264 i++;
1265 }
1266 WARN_ON_ONCE(1);
1267 return -EINVAL;
1268 }
1269
1270 if (dev->msi_enabled) {
1271 struct msi_desc *entry = first_pci_msi_entry(dev);
1272
1273 if (WARN_ON_ONCE(nr >= entry->nvec_used))
1274 return -EINVAL;
1275 } else {
1276 if (WARN_ON_ONCE(nr > 0))
1277 return -EINVAL;
1278 }
1279
1280 return dev->irq + nr;
1281 }
1282 EXPORT_SYMBOL(pci_irq_vector);
1283
1284 /**
1285 * pci_irq_get_affinity - return the affinity of a particular MSI vector
1286 * @dev: PCI device to operate on
1287 * @nr: device-relative interrupt vector index (0-based).
1288 */
pci_irq_get_affinity(struct pci_dev * dev,int nr)1289 const struct cpumask *pci_irq_get_affinity(struct pci_dev *dev, int nr)
1290 {
1291 if (dev->msix_enabled) {
1292 struct msi_desc *entry;
1293 int i = 0;
1294
1295 for_each_pci_msi_entry(entry, dev) {
1296 if (i == nr)
1297 return &entry->affinity->mask;
1298 i++;
1299 }
1300 WARN_ON_ONCE(1);
1301 return NULL;
1302 } else if (dev->msi_enabled) {
1303 struct msi_desc *entry = first_pci_msi_entry(dev);
1304
1305 if (WARN_ON_ONCE(!entry || !entry->affinity ||
1306 nr >= entry->nvec_used))
1307 return NULL;
1308
1309 return &entry->affinity[nr].mask;
1310 } else {
1311 return cpu_possible_mask;
1312 }
1313 }
1314 EXPORT_SYMBOL(pci_irq_get_affinity);
1315
msi_desc_to_pci_dev(struct msi_desc * desc)1316 struct pci_dev *msi_desc_to_pci_dev(struct msi_desc *desc)
1317 {
1318 return to_pci_dev(desc->dev);
1319 }
1320 EXPORT_SYMBOL(msi_desc_to_pci_dev);
1321
msi_desc_to_pci_sysdata(struct msi_desc * desc)1322 void *msi_desc_to_pci_sysdata(struct msi_desc *desc)
1323 {
1324 struct pci_dev *dev = msi_desc_to_pci_dev(desc);
1325
1326 return dev->bus->sysdata;
1327 }
1328 EXPORT_SYMBOL_GPL(msi_desc_to_pci_sysdata);
1329
1330 #ifdef CONFIG_PCI_MSI_IRQ_DOMAIN
1331 /**
1332 * pci_msi_domain_write_msg - Helper to write MSI message to PCI config space
1333 * @irq_data: Pointer to interrupt data of the MSI interrupt
1334 * @msg: Pointer to the message
1335 */
pci_msi_domain_write_msg(struct irq_data * irq_data,struct msi_msg * msg)1336 void pci_msi_domain_write_msg(struct irq_data *irq_data, struct msi_msg *msg)
1337 {
1338 struct msi_desc *desc = irq_data_get_msi_desc(irq_data);
1339
1340 /*
1341 * For MSI-X desc->irq is always equal to irq_data->irq. For
1342 * MSI only the first interrupt of MULTI MSI passes the test.
1343 */
1344 if (desc->irq == irq_data->irq)
1345 __pci_write_msi_msg(desc, msg);
1346 }
1347
1348 /**
1349 * pci_msi_domain_calc_hwirq - Generate a unique ID for an MSI source
1350 * @desc: Pointer to the MSI descriptor
1351 *
1352 * The ID number is only used within the irqdomain.
1353 */
pci_msi_domain_calc_hwirq(struct msi_desc * desc)1354 static irq_hw_number_t pci_msi_domain_calc_hwirq(struct msi_desc *desc)
1355 {
1356 struct pci_dev *dev = msi_desc_to_pci_dev(desc);
1357
1358 return (irq_hw_number_t)desc->msi_attrib.entry_nr |
1359 pci_dev_id(dev) << 11 |
1360 (pci_domain_nr(dev->bus) & 0xFFFFFFFF) << 27;
1361 }
1362
pci_msi_desc_is_multi_msi(struct msi_desc * desc)1363 static inline bool pci_msi_desc_is_multi_msi(struct msi_desc *desc)
1364 {
1365 return !desc->msi_attrib.is_msix && desc->nvec_used > 1;
1366 }
1367
1368 /**
1369 * pci_msi_domain_check_cap - Verify that @domain supports the capabilities
1370 * for @dev
1371 * @domain: The interrupt domain to check
1372 * @info: The domain info for verification
1373 * @dev: The device to check
1374 *
1375 * Returns:
1376 * 0 if the functionality is supported
1377 * 1 if Multi MSI is requested, but the domain does not support it
1378 * -ENOTSUPP otherwise
1379 */
pci_msi_domain_check_cap(struct irq_domain * domain,struct msi_domain_info * info,struct device * dev)1380 int pci_msi_domain_check_cap(struct irq_domain *domain,
1381 struct msi_domain_info *info, struct device *dev)
1382 {
1383 struct msi_desc *desc = first_pci_msi_entry(to_pci_dev(dev));
1384
1385 /* Special handling to support __pci_enable_msi_range() */
1386 if (pci_msi_desc_is_multi_msi(desc) &&
1387 !(info->flags & MSI_FLAG_MULTI_PCI_MSI))
1388 return 1;
1389 else if (desc->msi_attrib.is_msix && !(info->flags & MSI_FLAG_PCI_MSIX))
1390 return -ENOTSUPP;
1391
1392 return 0;
1393 }
1394
pci_msi_domain_handle_error(struct irq_domain * domain,struct msi_desc * desc,int error)1395 static int pci_msi_domain_handle_error(struct irq_domain *domain,
1396 struct msi_desc *desc, int error)
1397 {
1398 /* Special handling to support __pci_enable_msi_range() */
1399 if (pci_msi_desc_is_multi_msi(desc) && error == -ENOSPC)
1400 return 1;
1401
1402 return error;
1403 }
1404
pci_msi_domain_set_desc(msi_alloc_info_t * arg,struct msi_desc * desc)1405 static void pci_msi_domain_set_desc(msi_alloc_info_t *arg,
1406 struct msi_desc *desc)
1407 {
1408 arg->desc = desc;
1409 arg->hwirq = pci_msi_domain_calc_hwirq(desc);
1410 }
1411
1412 static struct msi_domain_ops pci_msi_domain_ops_default = {
1413 .set_desc = pci_msi_domain_set_desc,
1414 .msi_check = pci_msi_domain_check_cap,
1415 .handle_error = pci_msi_domain_handle_error,
1416 };
1417
pci_msi_domain_update_dom_ops(struct msi_domain_info * info)1418 static void pci_msi_domain_update_dom_ops(struct msi_domain_info *info)
1419 {
1420 struct msi_domain_ops *ops = info->ops;
1421
1422 if (ops == NULL) {
1423 info->ops = &pci_msi_domain_ops_default;
1424 } else {
1425 if (ops->set_desc == NULL)
1426 ops->set_desc = pci_msi_domain_set_desc;
1427 if (ops->msi_check == NULL)
1428 ops->msi_check = pci_msi_domain_check_cap;
1429 if (ops->handle_error == NULL)
1430 ops->handle_error = pci_msi_domain_handle_error;
1431 }
1432 }
1433
pci_msi_domain_update_chip_ops(struct msi_domain_info * info)1434 static void pci_msi_domain_update_chip_ops(struct msi_domain_info *info)
1435 {
1436 struct irq_chip *chip = info->chip;
1437
1438 BUG_ON(!chip);
1439 if (!chip->irq_write_msi_msg)
1440 chip->irq_write_msi_msg = pci_msi_domain_write_msg;
1441 if (!chip->irq_mask)
1442 chip->irq_mask = pci_msi_mask_irq;
1443 if (!chip->irq_unmask)
1444 chip->irq_unmask = pci_msi_unmask_irq;
1445 }
1446
1447 /**
1448 * pci_msi_create_irq_domain - Create a MSI interrupt domain
1449 * @fwnode: Optional fwnode of the interrupt controller
1450 * @info: MSI domain info
1451 * @parent: Parent irq domain
1452 *
1453 * Updates the domain and chip ops and creates a MSI interrupt domain.
1454 *
1455 * Returns:
1456 * A domain pointer or NULL in case of failure.
1457 */
pci_msi_create_irq_domain(struct fwnode_handle * fwnode,struct msi_domain_info * info,struct irq_domain * parent)1458 struct irq_domain *pci_msi_create_irq_domain(struct fwnode_handle *fwnode,
1459 struct msi_domain_info *info,
1460 struct irq_domain *parent)
1461 {
1462 struct irq_domain *domain;
1463
1464 if (WARN_ON(info->flags & MSI_FLAG_LEVEL_CAPABLE))
1465 info->flags &= ~MSI_FLAG_LEVEL_CAPABLE;
1466
1467 if (info->flags & MSI_FLAG_USE_DEF_DOM_OPS)
1468 pci_msi_domain_update_dom_ops(info);
1469 if (info->flags & MSI_FLAG_USE_DEF_CHIP_OPS)
1470 pci_msi_domain_update_chip_ops(info);
1471
1472 info->flags |= MSI_FLAG_ACTIVATE_EARLY;
1473 if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
1474 info->flags |= MSI_FLAG_MUST_REACTIVATE;
1475
1476 /* PCI-MSI is oneshot-safe */
1477 info->chip->flags |= IRQCHIP_ONESHOT_SAFE;
1478
1479 domain = msi_create_irq_domain(fwnode, info, parent);
1480 if (!domain)
1481 return NULL;
1482
1483 irq_domain_update_bus_token(domain, DOMAIN_BUS_PCI_MSI);
1484 return domain;
1485 }
1486 EXPORT_SYMBOL_GPL(pci_msi_create_irq_domain);
1487
1488 /*
1489 * Users of the generic MSI infrastructure expect a device to have a single ID,
1490 * so with DMA aliases we have to pick the least-worst compromise. Devices with
1491 * DMA phantom functions tend to still emit MSIs from the real function number,
1492 * so we ignore those and only consider topological aliases where either the
1493 * alias device or RID appears on a different bus number. We also make the
1494 * reasonable assumption that bridges are walked in an upstream direction (so
1495 * the last one seen wins), and the much braver assumption that the most likely
1496 * case is that of PCI->PCIe so we should always use the alias RID. This echoes
1497 * the logic from intel_irq_remapping's set_msi_sid(), which presumably works
1498 * well enough in practice; in the face of the horrible PCIe<->PCI-X conditions
1499 * for taking ownership all we can really do is close our eyes and hope...
1500 */
get_msi_id_cb(struct pci_dev * pdev,u16 alias,void * data)1501 static int get_msi_id_cb(struct pci_dev *pdev, u16 alias, void *data)
1502 {
1503 u32 *pa = data;
1504 u8 bus = PCI_BUS_NUM(*pa);
1505
1506 if (pdev->bus->number != bus || PCI_BUS_NUM(alias) != bus)
1507 *pa = alias;
1508
1509 return 0;
1510 }
1511
1512 /**
1513 * pci_msi_domain_get_msi_rid - Get the MSI requester id (RID)
1514 * @domain: The interrupt domain
1515 * @pdev: The PCI device.
1516 *
1517 * The RID for a device is formed from the alias, with a firmware
1518 * supplied mapping applied
1519 *
1520 * Returns: The RID.
1521 */
pci_msi_domain_get_msi_rid(struct irq_domain * domain,struct pci_dev * pdev)1522 u32 pci_msi_domain_get_msi_rid(struct irq_domain *domain, struct pci_dev *pdev)
1523 {
1524 struct device_node *of_node;
1525 u32 rid = pci_dev_id(pdev);
1526
1527 pci_for_each_dma_alias(pdev, get_msi_id_cb, &rid);
1528
1529 of_node = irq_domain_get_of_node(domain);
1530 rid = of_node ? of_msi_map_id(&pdev->dev, of_node, rid) :
1531 iort_msi_map_id(&pdev->dev, rid);
1532
1533 return rid;
1534 }
1535
1536 /**
1537 * pci_msi_get_device_domain - Get the MSI domain for a given PCI device
1538 * @pdev: The PCI device
1539 *
1540 * Use the firmware data to find a device-specific MSI domain
1541 * (i.e. not one that is set as a default).
1542 *
1543 * Returns: The corresponding MSI domain or NULL if none has been found.
1544 */
pci_msi_get_device_domain(struct pci_dev * pdev)1545 struct irq_domain *pci_msi_get_device_domain(struct pci_dev *pdev)
1546 {
1547 struct irq_domain *dom;
1548 u32 rid = pci_dev_id(pdev);
1549
1550 pci_for_each_dma_alias(pdev, get_msi_id_cb, &rid);
1551 dom = of_msi_map_get_device_domain(&pdev->dev, rid, DOMAIN_BUS_PCI_MSI);
1552 if (!dom)
1553 dom = iort_get_device_domain(&pdev->dev, rid,
1554 DOMAIN_BUS_PCI_MSI);
1555 return dom;
1556 }
1557
1558 /**
1559 * pci_dev_has_special_msi_domain - Check whether the device is handled by
1560 * a non-standard PCI-MSI domain
1561 * @pdev: The PCI device to check.
1562 *
1563 * Returns: True if the device irqdomain or the bus irqdomain is
1564 * non-standard PCI/MSI.
1565 */
pci_dev_has_special_msi_domain(struct pci_dev * pdev)1566 bool pci_dev_has_special_msi_domain(struct pci_dev *pdev)
1567 {
1568 struct irq_domain *dom = dev_get_msi_domain(&pdev->dev);
1569
1570 if (!dom)
1571 dom = dev_get_msi_domain(&pdev->bus->dev);
1572
1573 if (!dom)
1574 return true;
1575
1576 return dom->bus_token != DOMAIN_BUS_PCI_MSI;
1577 }
1578
1579 #endif /* CONFIG_PCI_MSI_IRQ_DOMAIN */
1580