1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_SIGNAL_H
3 #define _LINUX_SCHED_SIGNAL_H
4 
5 #include <linux/rculist.h>
6 #include <linux/signal.h>
7 #include <linux/sched.h>
8 #include <linux/sched/jobctl.h>
9 #include <linux/sched/task.h>
10 #include <linux/cred.h>
11 #include <linux/refcount.h>
12 #include <linux/posix-timers.h>
13 #include <linux/mm_types.h>
14 #include <asm/ptrace.h>
15 
16 /*
17  * Types defining task->signal and task->sighand and APIs using them:
18  */
19 
20 struct sighand_struct {
21 	spinlock_t		siglock;
22 	refcount_t		count;
23 	wait_queue_head_t	signalfd_wqh;
24 	struct k_sigaction	action[_NSIG];
25 };
26 
27 /*
28  * Per-process accounting stats:
29  */
30 struct pacct_struct {
31 	int			ac_flag;
32 	long			ac_exitcode;
33 	unsigned long		ac_mem;
34 	u64			ac_utime, ac_stime;
35 	unsigned long		ac_minflt, ac_majflt;
36 };
37 
38 struct cpu_itimer {
39 	u64 expires;
40 	u64 incr;
41 };
42 
43 /*
44  * This is the atomic variant of task_cputime, which can be used for
45  * storing and updating task_cputime statistics without locking.
46  */
47 struct task_cputime_atomic {
48 	atomic64_t utime;
49 	atomic64_t stime;
50 	atomic64_t sum_exec_runtime;
51 };
52 
53 #define INIT_CPUTIME_ATOMIC \
54 	(struct task_cputime_atomic) {				\
55 		.utime = ATOMIC64_INIT(0),			\
56 		.stime = ATOMIC64_INIT(0),			\
57 		.sum_exec_runtime = ATOMIC64_INIT(0),		\
58 	}
59 /**
60  * struct thread_group_cputimer - thread group interval timer counts
61  * @cputime_atomic:	atomic thread group interval timers.
62  *
63  * This structure contains the version of task_cputime, above, that is
64  * used for thread group CPU timer calculations.
65  */
66 struct thread_group_cputimer {
67 	struct task_cputime_atomic cputime_atomic;
68 };
69 
70 struct multiprocess_signals {
71 	sigset_t signal;
72 	struct hlist_node node;
73 };
74 
75 /*
76  * NOTE! "signal_struct" does not have its own
77  * locking, because a shared signal_struct always
78  * implies a shared sighand_struct, so locking
79  * sighand_struct is always a proper superset of
80  * the locking of signal_struct.
81  */
82 struct signal_struct {
83 	refcount_t		sigcnt;
84 	atomic_t		live;
85 	int			nr_threads;
86 	struct list_head	thread_head;
87 
88 	wait_queue_head_t	wait_chldexit;	/* for wait4() */
89 
90 	/* current thread group signal load-balancing target: */
91 	struct task_struct	*curr_target;
92 
93 	/* shared signal handling: */
94 	struct sigpending	shared_pending;
95 
96 	/* For collecting multiprocess signals during fork */
97 	struct hlist_head	multiprocess;
98 
99 	/* thread group exit support */
100 	int			group_exit_code;
101 	/* overloaded:
102 	 * - notify group_exit_task when ->count is equal to notify_count
103 	 * - everyone except group_exit_task is stopped during signal delivery
104 	 *   of fatal signals, group_exit_task processes the signal.
105 	 */
106 	int			notify_count;
107 	struct task_struct	*group_exit_task;
108 
109 	/* thread group stop support, overloads group_exit_code too */
110 	int			group_stop_count;
111 	unsigned int		flags; /* see SIGNAL_* flags below */
112 
113 	/*
114 	 * PR_SET_CHILD_SUBREAPER marks a process, like a service
115 	 * manager, to re-parent orphan (double-forking) child processes
116 	 * to this process instead of 'init'. The service manager is
117 	 * able to receive SIGCHLD signals and is able to investigate
118 	 * the process until it calls wait(). All children of this
119 	 * process will inherit a flag if they should look for a
120 	 * child_subreaper process at exit.
121 	 */
122 	unsigned int		is_child_subreaper:1;
123 	unsigned int		has_child_subreaper:1;
124 
125 #ifdef CONFIG_POSIX_TIMERS
126 
127 	/* POSIX.1b Interval Timers */
128 	int			posix_timer_id;
129 	struct list_head	posix_timers;
130 
131 	/* ITIMER_REAL timer for the process */
132 	struct hrtimer real_timer;
133 	ktime_t it_real_incr;
134 
135 	/*
136 	 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
137 	 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
138 	 * values are defined to 0 and 1 respectively
139 	 */
140 	struct cpu_itimer it[2];
141 
142 	/*
143 	 * Thread group totals for process CPU timers.
144 	 * See thread_group_cputimer(), et al, for details.
145 	 */
146 	struct thread_group_cputimer cputimer;
147 
148 #endif
149 	/* Empty if CONFIG_POSIX_TIMERS=n */
150 	struct posix_cputimers posix_cputimers;
151 
152 	/* PID/PID hash table linkage. */
153 	struct pid *pids[PIDTYPE_MAX];
154 
155 #ifdef CONFIG_NO_HZ_FULL
156 	atomic_t tick_dep_mask;
157 #endif
158 
159 	struct pid *tty_old_pgrp;
160 
161 	/* boolean value for session group leader */
162 	int leader;
163 
164 	struct tty_struct *tty; /* NULL if no tty */
165 
166 #ifdef CONFIG_SCHED_AUTOGROUP
167 	struct autogroup *autogroup;
168 #endif
169 	/*
170 	 * Cumulative resource counters for dead threads in the group,
171 	 * and for reaped dead child processes forked by this group.
172 	 * Live threads maintain their own counters and add to these
173 	 * in __exit_signal, except for the group leader.
174 	 */
175 	seqlock_t stats_lock;
176 	u64 utime, stime, cutime, cstime;
177 	u64 gtime;
178 	u64 cgtime;
179 	struct prev_cputime prev_cputime;
180 	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
181 	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
182 	unsigned long inblock, oublock, cinblock, coublock;
183 	unsigned long maxrss, cmaxrss;
184 	struct task_io_accounting ioac;
185 
186 	/*
187 	 * Cumulative ns of schedule CPU time fo dead threads in the
188 	 * group, not including a zombie group leader, (This only differs
189 	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
190 	 * other than jiffies.)
191 	 */
192 	unsigned long long sum_sched_runtime;
193 
194 	/*
195 	 * We don't bother to synchronize most readers of this at all,
196 	 * because there is no reader checking a limit that actually needs
197 	 * to get both rlim_cur and rlim_max atomically, and either one
198 	 * alone is a single word that can safely be read normally.
199 	 * getrlimit/setrlimit use task_lock(current->group_leader) to
200 	 * protect this instead of the siglock, because they really
201 	 * have no need to disable irqs.
202 	 */
203 	struct rlimit rlim[RLIM_NLIMITS];
204 
205 #ifdef CONFIG_BSD_PROCESS_ACCT
206 	struct pacct_struct pacct;	/* per-process accounting information */
207 #endif
208 #ifdef CONFIG_TASKSTATS
209 	struct taskstats *stats;
210 #endif
211 #ifdef CONFIG_AUDIT
212 	unsigned audit_tty;
213 	struct tty_audit_buf *tty_audit_buf;
214 #endif
215 
216 	/*
217 	 * Thread is the potential origin of an oom condition; kill first on
218 	 * oom
219 	 */
220 	bool oom_flag_origin;
221 	short oom_score_adj;		/* OOM kill score adjustment */
222 	short oom_score_adj_min;	/* OOM kill score adjustment min value.
223 					 * Only settable by CAP_SYS_RESOURCE. */
224 	struct mm_struct *oom_mm;	/* recorded mm when the thread group got
225 					 * killed by the oom killer */
226 
227 	struct mutex cred_guard_mutex;	/* guard against foreign influences on
228 					 * credential calculations
229 					 * (notably. ptrace)
230 					 * Deprecated do not use in new code.
231 					 * Use exec_update_lock instead.
232 					 */
233 	struct rw_semaphore exec_update_lock;	/* Held while task_struct is
234 						 * being updated during exec,
235 						 * and may have inconsistent
236 						 * permissions.
237 						 */
238 } __randomize_layout;
239 
240 /*
241  * Bits in flags field of signal_struct.
242  */
243 #define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
244 #define SIGNAL_STOP_CONTINUED	0x00000002 /* SIGCONT since WCONTINUED reap */
245 #define SIGNAL_GROUP_EXIT	0x00000004 /* group exit in progress */
246 #define SIGNAL_GROUP_COREDUMP	0x00000008 /* coredump in progress */
247 /*
248  * Pending notifications to parent.
249  */
250 #define SIGNAL_CLD_STOPPED	0x00000010
251 #define SIGNAL_CLD_CONTINUED	0x00000020
252 #define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
253 
254 #define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */
255 
256 #define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \
257 			  SIGNAL_STOP_CONTINUED)
258 
signal_set_stop_flags(struct signal_struct * sig,unsigned int flags)259 static inline void signal_set_stop_flags(struct signal_struct *sig,
260 					 unsigned int flags)
261 {
262 	WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP));
263 	sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags;
264 }
265 
266 /* If true, all threads except ->group_exit_task have pending SIGKILL */
signal_group_exit(const struct signal_struct * sig)267 static inline int signal_group_exit(const struct signal_struct *sig)
268 {
269 	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
270 		(sig->group_exit_task != NULL);
271 }
272 
273 extern void flush_signals(struct task_struct *);
274 extern void ignore_signals(struct task_struct *);
275 extern void flush_signal_handlers(struct task_struct *, int force_default);
276 extern int dequeue_signal(struct task_struct *task,
277 			  sigset_t *mask, kernel_siginfo_t *info);
278 
kernel_dequeue_signal(void)279 static inline int kernel_dequeue_signal(void)
280 {
281 	struct task_struct *task = current;
282 	kernel_siginfo_t __info;
283 	int ret;
284 
285 	spin_lock_irq(&task->sighand->siglock);
286 	ret = dequeue_signal(task, &task->blocked, &__info);
287 	spin_unlock_irq(&task->sighand->siglock);
288 
289 	return ret;
290 }
291 
kernel_signal_stop(void)292 static inline void kernel_signal_stop(void)
293 {
294 	spin_lock_irq(&current->sighand->siglock);
295 	if (current->jobctl & JOBCTL_STOP_DEQUEUED)
296 		set_special_state(TASK_STOPPED);
297 	spin_unlock_irq(&current->sighand->siglock);
298 
299 	schedule();
300 }
301 #ifdef __ia64__
302 # define ___ARCH_SI_IA64(_a1, _a2, _a3) , _a1, _a2, _a3
303 #else
304 # define ___ARCH_SI_IA64(_a1, _a2, _a3)
305 #endif
306 
307 int force_sig_fault_to_task(int sig, int code, void __user *addr
308 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
309 	, struct task_struct *t);
310 int force_sig_fault(int sig, int code, void __user *addr
311 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr));
312 int send_sig_fault(int sig, int code, void __user *addr
313 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
314 	, struct task_struct *t);
315 
316 int force_sig_mceerr(int code, void __user *, short);
317 int send_sig_mceerr(int code, void __user *, short, struct task_struct *);
318 
319 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper);
320 int force_sig_pkuerr(void __user *addr, u32 pkey);
321 int force_sig_perf(void __user *addr, u32 type, u64 sig_data);
322 
323 int force_sig_ptrace_errno_trap(int errno, void __user *addr);
324 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno);
325 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
326 			struct task_struct *t);
327 int force_sig_seccomp(int syscall, int reason, bool force_coredump);
328 
329 extern int send_sig_info(int, struct kernel_siginfo *, struct task_struct *);
330 extern void force_sigsegv(int sig);
331 extern int force_sig_info(struct kernel_siginfo *);
332 extern int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp);
333 extern int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid);
334 extern int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, struct pid *,
335 				const struct cred *);
336 extern int kill_pgrp(struct pid *pid, int sig, int priv);
337 extern int kill_pid(struct pid *pid, int sig, int priv);
338 extern __must_check bool do_notify_parent(struct task_struct *, int);
339 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
340 extern void force_sig(int);
341 extern int send_sig(int, struct task_struct *, int);
342 extern int zap_other_threads(struct task_struct *p);
343 extern struct sigqueue *sigqueue_alloc(void);
344 extern void sigqueue_free(struct sigqueue *);
345 extern int send_sigqueue(struct sigqueue *, struct pid *, enum pid_type);
346 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
347 
restart_syscall(void)348 static inline int restart_syscall(void)
349 {
350 	set_tsk_thread_flag(current, TIF_SIGPENDING);
351 	return -ERESTARTNOINTR;
352 }
353 
task_sigpending(struct task_struct * p)354 static inline int task_sigpending(struct task_struct *p)
355 {
356 	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
357 }
358 
signal_pending(struct task_struct * p)359 static inline int signal_pending(struct task_struct *p)
360 {
361 	/*
362 	 * TIF_NOTIFY_SIGNAL isn't really a signal, but it requires the same
363 	 * behavior in terms of ensuring that we break out of wait loops
364 	 * so that notify signal callbacks can be processed.
365 	 */
366 	if (unlikely(test_tsk_thread_flag(p, TIF_NOTIFY_SIGNAL)))
367 		return 1;
368 	return task_sigpending(p);
369 }
370 
__fatal_signal_pending(struct task_struct * p)371 static inline int __fatal_signal_pending(struct task_struct *p)
372 {
373 	return unlikely(sigismember(&p->pending.signal, SIGKILL));
374 }
375 
fatal_signal_pending(struct task_struct * p)376 static inline int fatal_signal_pending(struct task_struct *p)
377 {
378 	return task_sigpending(p) && __fatal_signal_pending(p);
379 }
380 
signal_pending_state(unsigned int state,struct task_struct * p)381 static inline int signal_pending_state(unsigned int state, struct task_struct *p)
382 {
383 	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
384 		return 0;
385 	if (!signal_pending(p))
386 		return 0;
387 
388 	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
389 }
390 
391 /*
392  * This should only be used in fault handlers to decide whether we
393  * should stop the current fault routine to handle the signals
394  * instead, especially with the case where we've got interrupted with
395  * a VM_FAULT_RETRY.
396  */
fault_signal_pending(vm_fault_t fault_flags,struct pt_regs * regs)397 static inline bool fault_signal_pending(vm_fault_t fault_flags,
398 					struct pt_regs *regs)
399 {
400 	return unlikely((fault_flags & VM_FAULT_RETRY) &&
401 			(fatal_signal_pending(current) ||
402 			 (user_mode(regs) && signal_pending(current))));
403 }
404 
405 /*
406  * Reevaluate whether the task has signals pending delivery.
407  * Wake the task if so.
408  * This is required every time the blocked sigset_t changes.
409  * callers must hold sighand->siglock.
410  */
411 extern void recalc_sigpending_and_wake(struct task_struct *t);
412 extern void recalc_sigpending(void);
413 extern void calculate_sigpending(void);
414 
415 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
416 
signal_wake_up(struct task_struct * t,bool resume)417 static inline void signal_wake_up(struct task_struct *t, bool resume)
418 {
419 	signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
420 }
ptrace_signal_wake_up(struct task_struct * t,bool resume)421 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
422 {
423 	signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
424 }
425 
426 void task_join_group_stop(struct task_struct *task);
427 
428 #ifdef TIF_RESTORE_SIGMASK
429 /*
430  * Legacy restore_sigmask accessors.  These are inefficient on
431  * SMP architectures because they require atomic operations.
432  */
433 
434 /**
435  * set_restore_sigmask() - make sure saved_sigmask processing gets done
436  *
437  * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
438  * will run before returning to user mode, to process the flag.  For
439  * all callers, TIF_SIGPENDING is already set or it's no harm to set
440  * it.  TIF_RESTORE_SIGMASK need not be in the set of bits that the
441  * arch code will notice on return to user mode, in case those bits
442  * are scarce.  We set TIF_SIGPENDING here to ensure that the arch
443  * signal code always gets run when TIF_RESTORE_SIGMASK is set.
444  */
set_restore_sigmask(void)445 static inline void set_restore_sigmask(void)
446 {
447 	set_thread_flag(TIF_RESTORE_SIGMASK);
448 }
449 
clear_tsk_restore_sigmask(struct task_struct * task)450 static inline void clear_tsk_restore_sigmask(struct task_struct *task)
451 {
452 	clear_tsk_thread_flag(task, TIF_RESTORE_SIGMASK);
453 }
454 
clear_restore_sigmask(void)455 static inline void clear_restore_sigmask(void)
456 {
457 	clear_thread_flag(TIF_RESTORE_SIGMASK);
458 }
test_tsk_restore_sigmask(struct task_struct * task)459 static inline bool test_tsk_restore_sigmask(struct task_struct *task)
460 {
461 	return test_tsk_thread_flag(task, TIF_RESTORE_SIGMASK);
462 }
test_restore_sigmask(void)463 static inline bool test_restore_sigmask(void)
464 {
465 	return test_thread_flag(TIF_RESTORE_SIGMASK);
466 }
test_and_clear_restore_sigmask(void)467 static inline bool test_and_clear_restore_sigmask(void)
468 {
469 	return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
470 }
471 
472 #else	/* TIF_RESTORE_SIGMASK */
473 
474 /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
set_restore_sigmask(void)475 static inline void set_restore_sigmask(void)
476 {
477 	current->restore_sigmask = true;
478 }
clear_tsk_restore_sigmask(struct task_struct * task)479 static inline void clear_tsk_restore_sigmask(struct task_struct *task)
480 {
481 	task->restore_sigmask = false;
482 }
clear_restore_sigmask(void)483 static inline void clear_restore_sigmask(void)
484 {
485 	current->restore_sigmask = false;
486 }
test_restore_sigmask(void)487 static inline bool test_restore_sigmask(void)
488 {
489 	return current->restore_sigmask;
490 }
test_tsk_restore_sigmask(struct task_struct * task)491 static inline bool test_tsk_restore_sigmask(struct task_struct *task)
492 {
493 	return task->restore_sigmask;
494 }
test_and_clear_restore_sigmask(void)495 static inline bool test_and_clear_restore_sigmask(void)
496 {
497 	if (!current->restore_sigmask)
498 		return false;
499 	current->restore_sigmask = false;
500 	return true;
501 }
502 #endif
503 
restore_saved_sigmask(void)504 static inline void restore_saved_sigmask(void)
505 {
506 	if (test_and_clear_restore_sigmask())
507 		__set_current_blocked(&current->saved_sigmask);
508 }
509 
510 extern int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize);
511 
restore_saved_sigmask_unless(bool interrupted)512 static inline void restore_saved_sigmask_unless(bool interrupted)
513 {
514 	if (interrupted)
515 		WARN_ON(!signal_pending(current));
516 	else
517 		restore_saved_sigmask();
518 }
519 
sigmask_to_save(void)520 static inline sigset_t *sigmask_to_save(void)
521 {
522 	sigset_t *res = &current->blocked;
523 	if (unlikely(test_restore_sigmask()))
524 		res = &current->saved_sigmask;
525 	return res;
526 }
527 
kill_cad_pid(int sig,int priv)528 static inline int kill_cad_pid(int sig, int priv)
529 {
530 	return kill_pid(cad_pid, sig, priv);
531 }
532 
533 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
534 #define SEND_SIG_NOINFO ((struct kernel_siginfo *) 0)
535 #define SEND_SIG_PRIV	((struct kernel_siginfo *) 1)
536 
__on_sig_stack(unsigned long sp)537 static inline int __on_sig_stack(unsigned long sp)
538 {
539 #ifdef CONFIG_STACK_GROWSUP
540 	return sp >= current->sas_ss_sp &&
541 		sp - current->sas_ss_sp < current->sas_ss_size;
542 #else
543 	return sp > current->sas_ss_sp &&
544 		sp - current->sas_ss_sp <= current->sas_ss_size;
545 #endif
546 }
547 
548 /*
549  * True if we are on the alternate signal stack.
550  */
on_sig_stack(unsigned long sp)551 static inline int on_sig_stack(unsigned long sp)
552 {
553 	/*
554 	 * If the signal stack is SS_AUTODISARM then, by construction, we
555 	 * can't be on the signal stack unless user code deliberately set
556 	 * SS_AUTODISARM when we were already on it.
557 	 *
558 	 * This improves reliability: if user state gets corrupted such that
559 	 * the stack pointer points very close to the end of the signal stack,
560 	 * then this check will enable the signal to be handled anyway.
561 	 */
562 	if (current->sas_ss_flags & SS_AUTODISARM)
563 		return 0;
564 
565 	return __on_sig_stack(sp);
566 }
567 
sas_ss_flags(unsigned long sp)568 static inline int sas_ss_flags(unsigned long sp)
569 {
570 	if (!current->sas_ss_size)
571 		return SS_DISABLE;
572 
573 	return on_sig_stack(sp) ? SS_ONSTACK : 0;
574 }
575 
sas_ss_reset(struct task_struct * p)576 static inline void sas_ss_reset(struct task_struct *p)
577 {
578 	p->sas_ss_sp = 0;
579 	p->sas_ss_size = 0;
580 	p->sas_ss_flags = SS_DISABLE;
581 }
582 
sigsp(unsigned long sp,struct ksignal * ksig)583 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
584 {
585 	if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
586 #ifdef CONFIG_STACK_GROWSUP
587 		return current->sas_ss_sp;
588 #else
589 		return current->sas_ss_sp + current->sas_ss_size;
590 #endif
591 	return sp;
592 }
593 
594 extern void __cleanup_sighand(struct sighand_struct *);
595 extern void flush_itimer_signals(void);
596 
597 #define tasklist_empty() \
598 	list_empty(&init_task.tasks)
599 
600 #define next_task(p) \
601 	list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
602 
603 #define for_each_process(p) \
604 	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
605 
606 extern bool current_is_single_threaded(void);
607 
608 /*
609  * Careful: do_each_thread/while_each_thread is a double loop so
610  *          'break' will not work as expected - use goto instead.
611  */
612 #define do_each_thread(g, t) \
613 	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
614 
615 #define while_each_thread(g, t) \
616 	while ((t = next_thread(t)) != g)
617 
618 #define __for_each_thread(signal, t)	\
619 	list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
620 
621 #define for_each_thread(p, t)		\
622 	__for_each_thread((p)->signal, t)
623 
624 /* Careful: this is a double loop, 'break' won't work as expected. */
625 #define for_each_process_thread(p, t)	\
626 	for_each_process(p) for_each_thread(p, t)
627 
628 typedef int (*proc_visitor)(struct task_struct *p, void *data);
629 void walk_process_tree(struct task_struct *top, proc_visitor, void *);
630 
631 static inline
task_pid_type(struct task_struct * task,enum pid_type type)632 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
633 {
634 	struct pid *pid;
635 	if (type == PIDTYPE_PID)
636 		pid = task_pid(task);
637 	else
638 		pid = task->signal->pids[type];
639 	return pid;
640 }
641 
task_tgid(struct task_struct * task)642 static inline struct pid *task_tgid(struct task_struct *task)
643 {
644 	return task->signal->pids[PIDTYPE_TGID];
645 }
646 
647 /*
648  * Without tasklist or RCU lock it is not safe to dereference
649  * the result of task_pgrp/task_session even if task == current,
650  * we can race with another thread doing sys_setsid/sys_setpgid.
651  */
task_pgrp(struct task_struct * task)652 static inline struct pid *task_pgrp(struct task_struct *task)
653 {
654 	return task->signal->pids[PIDTYPE_PGID];
655 }
656 
task_session(struct task_struct * task)657 static inline struct pid *task_session(struct task_struct *task)
658 {
659 	return task->signal->pids[PIDTYPE_SID];
660 }
661 
get_nr_threads(struct task_struct * task)662 static inline int get_nr_threads(struct task_struct *task)
663 {
664 	return task->signal->nr_threads;
665 }
666 
thread_group_leader(struct task_struct * p)667 static inline bool thread_group_leader(struct task_struct *p)
668 {
669 	return p->exit_signal >= 0;
670 }
671 
672 static inline
same_thread_group(struct task_struct * p1,struct task_struct * p2)673 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
674 {
675 	return p1->signal == p2->signal;
676 }
677 
next_thread(const struct task_struct * p)678 static inline struct task_struct *next_thread(const struct task_struct *p)
679 {
680 	return list_entry_rcu(p->thread_group.next,
681 			      struct task_struct, thread_group);
682 }
683 
thread_group_empty(struct task_struct * p)684 static inline int thread_group_empty(struct task_struct *p)
685 {
686 	return list_empty(&p->thread_group);
687 }
688 
689 #define delay_group_leader(p) \
690 		(thread_group_leader(p) && !thread_group_empty(p))
691 
692 extern bool thread_group_exited(struct pid *pid);
693 
694 extern struct sighand_struct *__lock_task_sighand(struct task_struct *task,
695 							unsigned long *flags);
696 
lock_task_sighand(struct task_struct * task,unsigned long * flags)697 static inline struct sighand_struct *lock_task_sighand(struct task_struct *task,
698 						       unsigned long *flags)
699 {
700 	struct sighand_struct *ret;
701 
702 	ret = __lock_task_sighand(task, flags);
703 	(void)__cond_lock(&task->sighand->siglock, ret);
704 	return ret;
705 }
706 
unlock_task_sighand(struct task_struct * task,unsigned long * flags)707 static inline void unlock_task_sighand(struct task_struct *task,
708 						unsigned long *flags)
709 {
710 	spin_unlock_irqrestore(&task->sighand->siglock, *flags);
711 }
712 
713 #ifdef CONFIG_LOCKDEP
714 extern void lockdep_assert_task_sighand_held(struct task_struct *task);
715 #else
lockdep_assert_task_sighand_held(struct task_struct * task)716 static inline void lockdep_assert_task_sighand_held(struct task_struct *task) { }
717 #endif
718 
task_rlimit(const struct task_struct * task,unsigned int limit)719 static inline unsigned long task_rlimit(const struct task_struct *task,
720 		unsigned int limit)
721 {
722 	return READ_ONCE(task->signal->rlim[limit].rlim_cur);
723 }
724 
task_rlimit_max(const struct task_struct * task,unsigned int limit)725 static inline unsigned long task_rlimit_max(const struct task_struct *task,
726 		unsigned int limit)
727 {
728 	return READ_ONCE(task->signal->rlim[limit].rlim_max);
729 }
730 
rlimit(unsigned int limit)731 static inline unsigned long rlimit(unsigned int limit)
732 {
733 	return task_rlimit(current, limit);
734 }
735 
rlimit_max(unsigned int limit)736 static inline unsigned long rlimit_max(unsigned int limit)
737 {
738 	return task_rlimit_max(current, limit);
739 }
740 
741 #endif /* _LINUX_SCHED_SIGNAL_H */
742