1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Procedures for creating, accessing and interpreting the device tree.
4  *
5  * Paul Mackerras	August 1996.
6  * Copyright (C) 1996-2005 Paul Mackerras.
7  *
8  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9  *    {engebret|bergner}@us.ibm.com
10  *
11  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12  *
13  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14  *  Grant Likely.
15  */
16 
17 #define pr_fmt(fmt)	"OF: " fmt
18 
19 #include <linux/bitmap.h>
20 #include <linux/console.h>
21 #include <linux/ctype.h>
22 #include <linux/cpu.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/of_graph.h>
27 #include <linux/spinlock.h>
28 #include <linux/slab.h>
29 #include <linux/string.h>
30 #include <linux/proc_fs.h>
31 
32 #include "of_private.h"
33 
34 LIST_HEAD(aliases_lookup);
35 
36 struct device_node *of_root;
37 EXPORT_SYMBOL(of_root);
38 struct device_node *of_chosen;
39 struct device_node *of_aliases;
40 struct device_node *of_stdout;
41 static const char *of_stdout_options;
42 
43 struct kset *of_kset;
44 
45 /*
46  * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
47  * This mutex must be held whenever modifications are being made to the
48  * device tree. The of_{attach,detach}_node() and
49  * of_{add,remove,update}_property() helpers make sure this happens.
50  */
51 DEFINE_MUTEX(of_mutex);
52 
53 /* use when traversing tree through the child, sibling,
54  * or parent members of struct device_node.
55  */
56 DEFINE_RAW_SPINLOCK(devtree_lock);
57 
of_node_name_eq(const struct device_node * np,const char * name)58 bool of_node_name_eq(const struct device_node *np, const char *name)
59 {
60 	const char *node_name;
61 	size_t len;
62 
63 	if (!np)
64 		return false;
65 
66 	node_name = kbasename(np->full_name);
67 	len = strchrnul(node_name, '@') - node_name;
68 
69 	return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
70 }
71 EXPORT_SYMBOL(of_node_name_eq);
72 
of_node_name_prefix(const struct device_node * np,const char * prefix)73 bool of_node_name_prefix(const struct device_node *np, const char *prefix)
74 {
75 	if (!np)
76 		return false;
77 
78 	return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
79 }
80 EXPORT_SYMBOL(of_node_name_prefix);
81 
__of_node_is_type(const struct device_node * np,const char * type)82 static bool __of_node_is_type(const struct device_node *np, const char *type)
83 {
84 	const char *match = __of_get_property(np, "device_type", NULL);
85 
86 	return np && match && type && !strcmp(match, type);
87 }
88 
of_n_addr_cells(struct device_node * np)89 int of_n_addr_cells(struct device_node *np)
90 {
91 	u32 cells;
92 
93 	do {
94 		if (np->parent)
95 			np = np->parent;
96 		if (!of_property_read_u32(np, "#address-cells", &cells))
97 			return cells;
98 	} while (np->parent);
99 	/* No #address-cells property for the root node */
100 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
101 }
102 EXPORT_SYMBOL(of_n_addr_cells);
103 
of_n_size_cells(struct device_node * np)104 int of_n_size_cells(struct device_node *np)
105 {
106 	u32 cells;
107 
108 	do {
109 		if (np->parent)
110 			np = np->parent;
111 		if (!of_property_read_u32(np, "#size-cells", &cells))
112 			return cells;
113 	} while (np->parent);
114 	/* No #size-cells property for the root node */
115 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
116 }
117 EXPORT_SYMBOL(of_n_size_cells);
118 
119 #ifdef CONFIG_NUMA
of_node_to_nid(struct device_node * np)120 int __weak of_node_to_nid(struct device_node *np)
121 {
122 	return NUMA_NO_NODE;
123 }
124 #endif
125 
126 /*
127  * Assumptions behind phandle_cache implementation:
128  *   - phandle property values are in a contiguous range of 1..n
129  *
130  * If the assumptions do not hold, then
131  *   - the phandle lookup overhead reduction provided by the cache
132  *     will likely be less
133  */
134 
135 static struct device_node **phandle_cache;
136 static u32 phandle_cache_mask;
137 
138 /*
139  * Caller must hold devtree_lock.
140  */
__of_free_phandle_cache(void)141 static void __of_free_phandle_cache(void)
142 {
143 	u32 cache_entries = phandle_cache_mask + 1;
144 	u32 k;
145 
146 	if (!phandle_cache)
147 		return;
148 
149 	for (k = 0; k < cache_entries; k++)
150 		of_node_put(phandle_cache[k]);
151 
152 	kfree(phandle_cache);
153 	phandle_cache = NULL;
154 }
155 
of_free_phandle_cache(void)156 int of_free_phandle_cache(void)
157 {
158 	unsigned long flags;
159 
160 	raw_spin_lock_irqsave(&devtree_lock, flags);
161 
162 	__of_free_phandle_cache();
163 
164 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
165 
166 	return 0;
167 }
168 #if !defined(CONFIG_MODULES)
169 late_initcall_sync(of_free_phandle_cache);
170 #endif
171 
172 /*
173  * Caller must hold devtree_lock.
174  */
__of_free_phandle_cache_entry(phandle handle)175 void __of_free_phandle_cache_entry(phandle handle)
176 {
177 	phandle masked_handle;
178 	struct device_node *np;
179 
180 	if (!handle)
181 		return;
182 
183 	masked_handle = handle & phandle_cache_mask;
184 
185 	if (phandle_cache) {
186 		np = phandle_cache[masked_handle];
187 		if (np && handle == np->phandle) {
188 			of_node_put(np);
189 			phandle_cache[masked_handle] = NULL;
190 		}
191 	}
192 }
193 
of_populate_phandle_cache(void)194 void of_populate_phandle_cache(void)
195 {
196 	unsigned long flags;
197 	u32 cache_entries;
198 	struct device_node *np;
199 	u32 phandles = 0;
200 
201 	raw_spin_lock_irqsave(&devtree_lock, flags);
202 
203 	__of_free_phandle_cache();
204 
205 	for_each_of_allnodes(np)
206 		if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL)
207 			phandles++;
208 
209 	if (!phandles)
210 		goto out;
211 
212 	cache_entries = roundup_pow_of_two(phandles);
213 	phandle_cache_mask = cache_entries - 1;
214 
215 	phandle_cache = kcalloc(cache_entries, sizeof(*phandle_cache),
216 				GFP_ATOMIC);
217 	if (!phandle_cache)
218 		goto out;
219 
220 	for_each_of_allnodes(np)
221 		if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL) {
222 			of_node_get(np);
223 			phandle_cache[np->phandle & phandle_cache_mask] = np;
224 		}
225 
226 out:
227 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
228 }
229 
of_core_init(void)230 void __init of_core_init(void)
231 {
232 	struct device_node *np;
233 
234 	of_populate_phandle_cache();
235 
236 	/* Create the kset, and register existing nodes */
237 	mutex_lock(&of_mutex);
238 	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
239 	if (!of_kset) {
240 		mutex_unlock(&of_mutex);
241 		pr_err("failed to register existing nodes\n");
242 		return;
243 	}
244 	for_each_of_allnodes(np)
245 		__of_attach_node_sysfs(np);
246 	mutex_unlock(&of_mutex);
247 
248 	/* Symlink in /proc as required by userspace ABI */
249 	if (of_root)
250 		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
251 }
252 
__of_find_property(const struct device_node * np,const char * name,int * lenp)253 static struct property *__of_find_property(const struct device_node *np,
254 					   const char *name, int *lenp)
255 {
256 	struct property *pp;
257 
258 	if (!np)
259 		return NULL;
260 
261 	for (pp = np->properties; pp; pp = pp->next) {
262 		if (of_prop_cmp(pp->name, name) == 0) {
263 			if (lenp)
264 				*lenp = pp->length;
265 			break;
266 		}
267 	}
268 
269 	return pp;
270 }
271 
of_find_property(const struct device_node * np,const char * name,int * lenp)272 struct property *of_find_property(const struct device_node *np,
273 				  const char *name,
274 				  int *lenp)
275 {
276 	struct property *pp;
277 	unsigned long flags;
278 
279 	raw_spin_lock_irqsave(&devtree_lock, flags);
280 	pp = __of_find_property(np, name, lenp);
281 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
282 
283 	return pp;
284 }
285 EXPORT_SYMBOL(of_find_property);
286 
__of_find_all_nodes(struct device_node * prev)287 struct device_node *__of_find_all_nodes(struct device_node *prev)
288 {
289 	struct device_node *np;
290 	if (!prev) {
291 		np = of_root;
292 	} else if (prev->child) {
293 		np = prev->child;
294 	} else {
295 		/* Walk back up looking for a sibling, or the end of the structure */
296 		np = prev;
297 		while (np->parent && !np->sibling)
298 			np = np->parent;
299 		np = np->sibling; /* Might be null at the end of the tree */
300 	}
301 	return np;
302 }
303 
304 /**
305  * of_find_all_nodes - Get next node in global list
306  * @prev:	Previous node or NULL to start iteration
307  *		of_node_put() will be called on it
308  *
309  * Returns a node pointer with refcount incremented, use
310  * of_node_put() on it when done.
311  */
of_find_all_nodes(struct device_node * prev)312 struct device_node *of_find_all_nodes(struct device_node *prev)
313 {
314 	struct device_node *np;
315 	unsigned long flags;
316 
317 	raw_spin_lock_irqsave(&devtree_lock, flags);
318 	np = __of_find_all_nodes(prev);
319 	of_node_get(np);
320 	of_node_put(prev);
321 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
322 	return np;
323 }
324 EXPORT_SYMBOL(of_find_all_nodes);
325 
326 /*
327  * Find a property with a given name for a given node
328  * and return the value.
329  */
__of_get_property(const struct device_node * np,const char * name,int * lenp)330 const void *__of_get_property(const struct device_node *np,
331 			      const char *name, int *lenp)
332 {
333 	struct property *pp = __of_find_property(np, name, lenp);
334 
335 	return pp ? pp->value : NULL;
336 }
337 
338 /*
339  * Find a property with a given name for a given node
340  * and return the value.
341  */
of_get_property(const struct device_node * np,const char * name,int * lenp)342 const void *of_get_property(const struct device_node *np, const char *name,
343 			    int *lenp)
344 {
345 	struct property *pp = of_find_property(np, name, lenp);
346 
347 	return pp ? pp->value : NULL;
348 }
349 EXPORT_SYMBOL(of_get_property);
350 
351 /*
352  * arch_match_cpu_phys_id - Match the given logical CPU and physical id
353  *
354  * @cpu: logical cpu index of a core/thread
355  * @phys_id: physical identifier of a core/thread
356  *
357  * CPU logical to physical index mapping is architecture specific.
358  * However this __weak function provides a default match of physical
359  * id to logical cpu index. phys_id provided here is usually values read
360  * from the device tree which must match the hardware internal registers.
361  *
362  * Returns true if the physical identifier and the logical cpu index
363  * correspond to the same core/thread, false otherwise.
364  */
arch_match_cpu_phys_id(int cpu,u64 phys_id)365 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
366 {
367 	return (u32)phys_id == cpu;
368 }
369 
370 /**
371  * Checks if the given "prop_name" property holds the physical id of the
372  * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
373  * NULL, local thread number within the core is returned in it.
374  */
__of_find_n_match_cpu_property(struct device_node * cpun,const char * prop_name,int cpu,unsigned int * thread)375 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
376 			const char *prop_name, int cpu, unsigned int *thread)
377 {
378 	const __be32 *cell;
379 	int ac, prop_len, tid;
380 	u64 hwid;
381 
382 	ac = of_n_addr_cells(cpun);
383 	cell = of_get_property(cpun, prop_name, &prop_len);
384 	if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0))
385 		return true;
386 	if (!cell || !ac)
387 		return false;
388 	prop_len /= sizeof(*cell) * ac;
389 	for (tid = 0; tid < prop_len; tid++) {
390 		hwid = of_read_number(cell, ac);
391 		if (arch_match_cpu_phys_id(cpu, hwid)) {
392 			if (thread)
393 				*thread = tid;
394 			return true;
395 		}
396 		cell += ac;
397 	}
398 	return false;
399 }
400 
401 /*
402  * arch_find_n_match_cpu_physical_id - See if the given device node is
403  * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
404  * else false.  If 'thread' is non-NULL, the local thread number within the
405  * core is returned in it.
406  */
arch_find_n_match_cpu_physical_id(struct device_node * cpun,int cpu,unsigned int * thread)407 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
408 					      int cpu, unsigned int *thread)
409 {
410 	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
411 	 * for thread ids on PowerPC. If it doesn't exist fallback to
412 	 * standard "reg" property.
413 	 */
414 	if (IS_ENABLED(CONFIG_PPC) &&
415 	    __of_find_n_match_cpu_property(cpun,
416 					   "ibm,ppc-interrupt-server#s",
417 					   cpu, thread))
418 		return true;
419 
420 	return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
421 }
422 
423 /**
424  * of_get_cpu_node - Get device node associated with the given logical CPU
425  *
426  * @cpu: CPU number(logical index) for which device node is required
427  * @thread: if not NULL, local thread number within the physical core is
428  *          returned
429  *
430  * The main purpose of this function is to retrieve the device node for the
431  * given logical CPU index. It should be used to initialize the of_node in
432  * cpu device. Once of_node in cpu device is populated, all the further
433  * references can use that instead.
434  *
435  * CPU logical to physical index mapping is architecture specific and is built
436  * before booting secondary cores. This function uses arch_match_cpu_phys_id
437  * which can be overridden by architecture specific implementation.
438  *
439  * Returns a node pointer for the logical cpu with refcount incremented, use
440  * of_node_put() on it when done. Returns NULL if not found.
441  */
of_get_cpu_node(int cpu,unsigned int * thread)442 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
443 {
444 	struct device_node *cpun;
445 
446 	for_each_of_cpu_node(cpun) {
447 		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
448 			return cpun;
449 	}
450 	return NULL;
451 }
452 EXPORT_SYMBOL(of_get_cpu_node);
453 
454 /**
455  * of_cpu_node_to_id: Get the logical CPU number for a given device_node
456  *
457  * @cpu_node: Pointer to the device_node for CPU.
458  *
459  * Returns the logical CPU number of the given CPU device_node.
460  * Returns -ENODEV if the CPU is not found.
461  */
of_cpu_node_to_id(struct device_node * cpu_node)462 int of_cpu_node_to_id(struct device_node *cpu_node)
463 {
464 	int cpu;
465 	bool found = false;
466 	struct device_node *np;
467 
468 	for_each_possible_cpu(cpu) {
469 		np = of_cpu_device_node_get(cpu);
470 		found = (cpu_node == np);
471 		of_node_put(np);
472 		if (found)
473 			return cpu;
474 	}
475 
476 	return -ENODEV;
477 }
478 EXPORT_SYMBOL(of_cpu_node_to_id);
479 
480 /**
481  * __of_device_is_compatible() - Check if the node matches given constraints
482  * @device: pointer to node
483  * @compat: required compatible string, NULL or "" for any match
484  * @type: required device_type value, NULL or "" for any match
485  * @name: required node name, NULL or "" for any match
486  *
487  * Checks if the given @compat, @type and @name strings match the
488  * properties of the given @device. A constraints can be skipped by
489  * passing NULL or an empty string as the constraint.
490  *
491  * Returns 0 for no match, and a positive integer on match. The return
492  * value is a relative score with larger values indicating better
493  * matches. The score is weighted for the most specific compatible value
494  * to get the highest score. Matching type is next, followed by matching
495  * name. Practically speaking, this results in the following priority
496  * order for matches:
497  *
498  * 1. specific compatible && type && name
499  * 2. specific compatible && type
500  * 3. specific compatible && name
501  * 4. specific compatible
502  * 5. general compatible && type && name
503  * 6. general compatible && type
504  * 7. general compatible && name
505  * 8. general compatible
506  * 9. type && name
507  * 10. type
508  * 11. name
509  */
__of_device_is_compatible(const struct device_node * device,const char * compat,const char * type,const char * name)510 static int __of_device_is_compatible(const struct device_node *device,
511 				     const char *compat, const char *type, const char *name)
512 {
513 	struct property *prop;
514 	const char *cp;
515 	int index = 0, score = 0;
516 
517 	/* Compatible match has highest priority */
518 	if (compat && compat[0]) {
519 		prop = __of_find_property(device, "compatible", NULL);
520 		for (cp = of_prop_next_string(prop, NULL); cp;
521 		     cp = of_prop_next_string(prop, cp), index++) {
522 			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
523 				score = INT_MAX/2 - (index << 2);
524 				break;
525 			}
526 		}
527 		if (!score)
528 			return 0;
529 	}
530 
531 	/* Matching type is better than matching name */
532 	if (type && type[0]) {
533 		if (!__of_node_is_type(device, type))
534 			return 0;
535 		score += 2;
536 	}
537 
538 	/* Matching name is a bit better than not */
539 	if (name && name[0]) {
540 		if (!of_node_name_eq(device, name))
541 			return 0;
542 		score++;
543 	}
544 
545 	return score;
546 }
547 
548 /** Checks if the given "compat" string matches one of the strings in
549  * the device's "compatible" property
550  */
of_device_is_compatible(const struct device_node * device,const char * compat)551 int of_device_is_compatible(const struct device_node *device,
552 		const char *compat)
553 {
554 	unsigned long flags;
555 	int res;
556 
557 	raw_spin_lock_irqsave(&devtree_lock, flags);
558 	res = __of_device_is_compatible(device, compat, NULL, NULL);
559 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
560 	return res;
561 }
562 EXPORT_SYMBOL(of_device_is_compatible);
563 
564 /** Checks if the device is compatible with any of the entries in
565  *  a NULL terminated array of strings. Returns the best match
566  *  score or 0.
567  */
of_device_compatible_match(struct device_node * device,const char * const * compat)568 int of_device_compatible_match(struct device_node *device,
569 			       const char *const *compat)
570 {
571 	unsigned int tmp, score = 0;
572 
573 	if (!compat)
574 		return 0;
575 
576 	while (*compat) {
577 		tmp = of_device_is_compatible(device, *compat);
578 		if (tmp > score)
579 			score = tmp;
580 		compat++;
581 	}
582 
583 	return score;
584 }
585 
586 /**
587  * of_machine_is_compatible - Test root of device tree for a given compatible value
588  * @compat: compatible string to look for in root node's compatible property.
589  *
590  * Returns a positive integer if the root node has the given value in its
591  * compatible property.
592  */
of_machine_is_compatible(const char * compat)593 int of_machine_is_compatible(const char *compat)
594 {
595 	struct device_node *root;
596 	int rc = 0;
597 
598 	root = of_find_node_by_path("/");
599 	if (root) {
600 		rc = of_device_is_compatible(root, compat);
601 		of_node_put(root);
602 	}
603 	return rc;
604 }
605 EXPORT_SYMBOL(of_machine_is_compatible);
606 
607 /**
608  *  __of_device_is_available - check if a device is available for use
609  *
610  *  @device: Node to check for availability, with locks already held
611  *
612  *  Returns true if the status property is absent or set to "okay" or "ok",
613  *  false otherwise
614  */
__of_device_is_available(const struct device_node * device)615 static bool __of_device_is_available(const struct device_node *device)
616 {
617 	const char *status;
618 	int statlen;
619 
620 	if (!device)
621 		return false;
622 
623 	status = __of_get_property(device, "status", &statlen);
624 	if (status == NULL)
625 		return true;
626 
627 	if (statlen > 0) {
628 		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
629 			return true;
630 	}
631 
632 	return false;
633 }
634 
635 /**
636  *  of_device_is_available - check if a device is available for use
637  *
638  *  @device: Node to check for availability
639  *
640  *  Returns true if the status property is absent or set to "okay" or "ok",
641  *  false otherwise
642  */
of_device_is_available(const struct device_node * device)643 bool of_device_is_available(const struct device_node *device)
644 {
645 	unsigned long flags;
646 	bool res;
647 
648 	raw_spin_lock_irqsave(&devtree_lock, flags);
649 	res = __of_device_is_available(device);
650 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
651 	return res;
652 
653 }
654 EXPORT_SYMBOL(of_device_is_available);
655 
656 /**
657  *  of_device_is_big_endian - check if a device has BE registers
658  *
659  *  @device: Node to check for endianness
660  *
661  *  Returns true if the device has a "big-endian" property, or if the kernel
662  *  was compiled for BE *and* the device has a "native-endian" property.
663  *  Returns false otherwise.
664  *
665  *  Callers would nominally use ioread32be/iowrite32be if
666  *  of_device_is_big_endian() == true, or readl/writel otherwise.
667  */
of_device_is_big_endian(const struct device_node * device)668 bool of_device_is_big_endian(const struct device_node *device)
669 {
670 	if (of_property_read_bool(device, "big-endian"))
671 		return true;
672 	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
673 	    of_property_read_bool(device, "native-endian"))
674 		return true;
675 	return false;
676 }
677 EXPORT_SYMBOL(of_device_is_big_endian);
678 
679 /**
680  *	of_get_parent - Get a node's parent if any
681  *	@node:	Node to get parent
682  *
683  *	Returns a node pointer with refcount incremented, use
684  *	of_node_put() on it when done.
685  */
of_get_parent(const struct device_node * node)686 struct device_node *of_get_parent(const struct device_node *node)
687 {
688 	struct device_node *np;
689 	unsigned long flags;
690 
691 	if (!node)
692 		return NULL;
693 
694 	raw_spin_lock_irqsave(&devtree_lock, flags);
695 	np = of_node_get(node->parent);
696 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
697 	return np;
698 }
699 EXPORT_SYMBOL(of_get_parent);
700 
701 /**
702  *	of_get_next_parent - Iterate to a node's parent
703  *	@node:	Node to get parent of
704  *
705  *	This is like of_get_parent() except that it drops the
706  *	refcount on the passed node, making it suitable for iterating
707  *	through a node's parents.
708  *
709  *	Returns a node pointer with refcount incremented, use
710  *	of_node_put() on it when done.
711  */
of_get_next_parent(struct device_node * node)712 struct device_node *of_get_next_parent(struct device_node *node)
713 {
714 	struct device_node *parent;
715 	unsigned long flags;
716 
717 	if (!node)
718 		return NULL;
719 
720 	raw_spin_lock_irqsave(&devtree_lock, flags);
721 	parent = of_node_get(node->parent);
722 	of_node_put(node);
723 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
724 	return parent;
725 }
726 EXPORT_SYMBOL(of_get_next_parent);
727 
__of_get_next_child(const struct device_node * node,struct device_node * prev)728 static struct device_node *__of_get_next_child(const struct device_node *node,
729 						struct device_node *prev)
730 {
731 	struct device_node *next;
732 
733 	if (!node)
734 		return NULL;
735 
736 	next = prev ? prev->sibling : node->child;
737 	for (; next; next = next->sibling)
738 		if (of_node_get(next))
739 			break;
740 	of_node_put(prev);
741 	return next;
742 }
743 #define __for_each_child_of_node(parent, child) \
744 	for (child = __of_get_next_child(parent, NULL); child != NULL; \
745 	     child = __of_get_next_child(parent, child))
746 
747 /**
748  *	of_get_next_child - Iterate a node childs
749  *	@node:	parent node
750  *	@prev:	previous child of the parent node, or NULL to get first
751  *
752  *	Returns a node pointer with refcount incremented, use of_node_put() on
753  *	it when done. Returns NULL when prev is the last child. Decrements the
754  *	refcount of prev.
755  */
of_get_next_child(const struct device_node * node,struct device_node * prev)756 struct device_node *of_get_next_child(const struct device_node *node,
757 	struct device_node *prev)
758 {
759 	struct device_node *next;
760 	unsigned long flags;
761 
762 	raw_spin_lock_irqsave(&devtree_lock, flags);
763 	next = __of_get_next_child(node, prev);
764 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
765 	return next;
766 }
767 EXPORT_SYMBOL(of_get_next_child);
768 
769 /**
770  *	of_get_next_available_child - Find the next available child node
771  *	@node:	parent node
772  *	@prev:	previous child of the parent node, or NULL to get first
773  *
774  *      This function is like of_get_next_child(), except that it
775  *      automatically skips any disabled nodes (i.e. status = "disabled").
776  */
of_get_next_available_child(const struct device_node * node,struct device_node * prev)777 struct device_node *of_get_next_available_child(const struct device_node *node,
778 	struct device_node *prev)
779 {
780 	struct device_node *next;
781 	unsigned long flags;
782 
783 	if (!node)
784 		return NULL;
785 
786 	raw_spin_lock_irqsave(&devtree_lock, flags);
787 	next = prev ? prev->sibling : node->child;
788 	for (; next; next = next->sibling) {
789 		if (!__of_device_is_available(next))
790 			continue;
791 		if (of_node_get(next))
792 			break;
793 	}
794 	of_node_put(prev);
795 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
796 	return next;
797 }
798 EXPORT_SYMBOL(of_get_next_available_child);
799 
800 /**
801  *	of_get_next_cpu_node - Iterate on cpu nodes
802  *	@prev:	previous child of the /cpus node, or NULL to get first
803  *
804  *	Returns a cpu node pointer with refcount incremented, use of_node_put()
805  *	on it when done. Returns NULL when prev is the last child. Decrements
806  *	the refcount of prev.
807  */
of_get_next_cpu_node(struct device_node * prev)808 struct device_node *of_get_next_cpu_node(struct device_node *prev)
809 {
810 	struct device_node *next = NULL;
811 	unsigned long flags;
812 	struct device_node *node;
813 
814 	if (!prev)
815 		node = of_find_node_by_path("/cpus");
816 
817 	raw_spin_lock_irqsave(&devtree_lock, flags);
818 	if (prev)
819 		next = prev->sibling;
820 	else if (node) {
821 		next = node->child;
822 		of_node_put(node);
823 	}
824 	for (; next; next = next->sibling) {
825 		if (!(of_node_name_eq(next, "cpu") ||
826 		      __of_node_is_type(next, "cpu")))
827 			continue;
828 		if (of_node_get(next))
829 			break;
830 	}
831 	of_node_put(prev);
832 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
833 	return next;
834 }
835 EXPORT_SYMBOL(of_get_next_cpu_node);
836 
837 /**
838  * of_get_compatible_child - Find compatible child node
839  * @parent:	parent node
840  * @compatible:	compatible string
841  *
842  * Lookup child node whose compatible property contains the given compatible
843  * string.
844  *
845  * Returns a node pointer with refcount incremented, use of_node_put() on it
846  * when done; or NULL if not found.
847  */
of_get_compatible_child(const struct device_node * parent,const char * compatible)848 struct device_node *of_get_compatible_child(const struct device_node *parent,
849 				const char *compatible)
850 {
851 	struct device_node *child;
852 
853 	for_each_child_of_node(parent, child) {
854 		if (of_device_is_compatible(child, compatible))
855 			break;
856 	}
857 
858 	return child;
859 }
860 EXPORT_SYMBOL(of_get_compatible_child);
861 
862 /**
863  *	of_get_child_by_name - Find the child node by name for a given parent
864  *	@node:	parent node
865  *	@name:	child name to look for.
866  *
867  *      This function looks for child node for given matching name
868  *
869  *	Returns a node pointer if found, with refcount incremented, use
870  *	of_node_put() on it when done.
871  *	Returns NULL if node is not found.
872  */
of_get_child_by_name(const struct device_node * node,const char * name)873 struct device_node *of_get_child_by_name(const struct device_node *node,
874 				const char *name)
875 {
876 	struct device_node *child;
877 
878 	for_each_child_of_node(node, child)
879 		if (of_node_name_eq(child, name))
880 			break;
881 	return child;
882 }
883 EXPORT_SYMBOL(of_get_child_by_name);
884 
__of_find_node_by_path(struct device_node * parent,const char * path)885 struct device_node *__of_find_node_by_path(struct device_node *parent,
886 						const char *path)
887 {
888 	struct device_node *child;
889 	int len;
890 
891 	len = strcspn(path, "/:");
892 	if (!len)
893 		return NULL;
894 
895 	__for_each_child_of_node(parent, child) {
896 		const char *name = kbasename(child->full_name);
897 		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
898 			return child;
899 	}
900 	return NULL;
901 }
902 
__of_find_node_by_full_path(struct device_node * node,const char * path)903 struct device_node *__of_find_node_by_full_path(struct device_node *node,
904 						const char *path)
905 {
906 	const char *separator = strchr(path, ':');
907 
908 	while (node && *path == '/') {
909 		struct device_node *tmp = node;
910 
911 		path++; /* Increment past '/' delimiter */
912 		node = __of_find_node_by_path(node, path);
913 		of_node_put(tmp);
914 		path = strchrnul(path, '/');
915 		if (separator && separator < path)
916 			break;
917 	}
918 	return node;
919 }
920 
921 /**
922  *	of_find_node_opts_by_path - Find a node matching a full OF path
923  *	@path: Either the full path to match, or if the path does not
924  *	       start with '/', the name of a property of the /aliases
925  *	       node (an alias).  In the case of an alias, the node
926  *	       matching the alias' value will be returned.
927  *	@opts: Address of a pointer into which to store the start of
928  *	       an options string appended to the end of the path with
929  *	       a ':' separator.
930  *
931  *	Valid paths:
932  *		/foo/bar	Full path
933  *		foo		Valid alias
934  *		foo/bar		Valid alias + relative path
935  *
936  *	Returns a node pointer with refcount incremented, use
937  *	of_node_put() on it when done.
938  */
of_find_node_opts_by_path(const char * path,const char ** opts)939 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
940 {
941 	struct device_node *np = NULL;
942 	struct property *pp;
943 	unsigned long flags;
944 	const char *separator = strchr(path, ':');
945 
946 	if (opts)
947 		*opts = separator ? separator + 1 : NULL;
948 
949 	if (strcmp(path, "/") == 0)
950 		return of_node_get(of_root);
951 
952 	/* The path could begin with an alias */
953 	if (*path != '/') {
954 		int len;
955 		const char *p = separator;
956 
957 		if (!p)
958 			p = strchrnul(path, '/');
959 		len = p - path;
960 
961 		/* of_aliases must not be NULL */
962 		if (!of_aliases)
963 			return NULL;
964 
965 		for_each_property_of_node(of_aliases, pp) {
966 			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
967 				np = of_find_node_by_path(pp->value);
968 				break;
969 			}
970 		}
971 		if (!np)
972 			return NULL;
973 		path = p;
974 	}
975 
976 	/* Step down the tree matching path components */
977 	raw_spin_lock_irqsave(&devtree_lock, flags);
978 	if (!np)
979 		np = of_node_get(of_root);
980 	np = __of_find_node_by_full_path(np, path);
981 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
982 	return np;
983 }
984 EXPORT_SYMBOL(of_find_node_opts_by_path);
985 
986 /**
987  *	of_find_node_by_name - Find a node by its "name" property
988  *	@from:	The node to start searching from or NULL; the node
989  *		you pass will not be searched, only the next one
990  *		will. Typically, you pass what the previous call
991  *		returned. of_node_put() will be called on @from.
992  *	@name:	The name string to match against
993  *
994  *	Returns a node pointer with refcount incremented, use
995  *	of_node_put() on it when done.
996  */
of_find_node_by_name(struct device_node * from,const char * name)997 struct device_node *of_find_node_by_name(struct device_node *from,
998 	const char *name)
999 {
1000 	struct device_node *np;
1001 	unsigned long flags;
1002 
1003 	raw_spin_lock_irqsave(&devtree_lock, flags);
1004 	for_each_of_allnodes_from(from, np)
1005 		if (of_node_name_eq(np, name) && of_node_get(np))
1006 			break;
1007 	of_node_put(from);
1008 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1009 	return np;
1010 }
1011 EXPORT_SYMBOL(of_find_node_by_name);
1012 
1013 /**
1014  *	of_find_node_by_type - Find a node by its "device_type" property
1015  *	@from:	The node to start searching from, or NULL to start searching
1016  *		the entire device tree. The node you pass will not be
1017  *		searched, only the next one will; typically, you pass
1018  *		what the previous call returned. of_node_put() will be
1019  *		called on from for you.
1020  *	@type:	The type string to match against
1021  *
1022  *	Returns a node pointer with refcount incremented, use
1023  *	of_node_put() on it when done.
1024  */
of_find_node_by_type(struct device_node * from,const char * type)1025 struct device_node *of_find_node_by_type(struct device_node *from,
1026 	const char *type)
1027 {
1028 	struct device_node *np;
1029 	unsigned long flags;
1030 
1031 	raw_spin_lock_irqsave(&devtree_lock, flags);
1032 	for_each_of_allnodes_from(from, np)
1033 		if (__of_node_is_type(np, type) && of_node_get(np))
1034 			break;
1035 	of_node_put(from);
1036 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1037 	return np;
1038 }
1039 EXPORT_SYMBOL(of_find_node_by_type);
1040 
1041 /**
1042  *	of_find_compatible_node - Find a node based on type and one of the
1043  *                                tokens in its "compatible" property
1044  *	@from:		The node to start searching from or NULL, the node
1045  *			you pass will not be searched, only the next one
1046  *			will; typically, you pass what the previous call
1047  *			returned. of_node_put() will be called on it
1048  *	@type:		The type string to match "device_type" or NULL to ignore
1049  *	@compatible:	The string to match to one of the tokens in the device
1050  *			"compatible" list.
1051  *
1052  *	Returns a node pointer with refcount incremented, use
1053  *	of_node_put() on it when done.
1054  */
of_find_compatible_node(struct device_node * from,const char * type,const char * compatible)1055 struct device_node *of_find_compatible_node(struct device_node *from,
1056 	const char *type, const char *compatible)
1057 {
1058 	struct device_node *np;
1059 	unsigned long flags;
1060 
1061 	raw_spin_lock_irqsave(&devtree_lock, flags);
1062 	for_each_of_allnodes_from(from, np)
1063 		if (__of_device_is_compatible(np, compatible, type, NULL) &&
1064 		    of_node_get(np))
1065 			break;
1066 	of_node_put(from);
1067 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1068 	return np;
1069 }
1070 EXPORT_SYMBOL(of_find_compatible_node);
1071 
1072 /**
1073  *	of_find_node_with_property - Find a node which has a property with
1074  *                                   the given name.
1075  *	@from:		The node to start searching from or NULL, the node
1076  *			you pass will not be searched, only the next one
1077  *			will; typically, you pass what the previous call
1078  *			returned. of_node_put() will be called on it
1079  *	@prop_name:	The name of the property to look for.
1080  *
1081  *	Returns a node pointer with refcount incremented, use
1082  *	of_node_put() on it when done.
1083  */
of_find_node_with_property(struct device_node * from,const char * prop_name)1084 struct device_node *of_find_node_with_property(struct device_node *from,
1085 	const char *prop_name)
1086 {
1087 	struct device_node *np;
1088 	struct property *pp;
1089 	unsigned long flags;
1090 
1091 	raw_spin_lock_irqsave(&devtree_lock, flags);
1092 	for_each_of_allnodes_from(from, np) {
1093 		for (pp = np->properties; pp; pp = pp->next) {
1094 			if (of_prop_cmp(pp->name, prop_name) == 0) {
1095 				of_node_get(np);
1096 				goto out;
1097 			}
1098 		}
1099 	}
1100 out:
1101 	of_node_put(from);
1102 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1103 	return np;
1104 }
1105 EXPORT_SYMBOL(of_find_node_with_property);
1106 
1107 static
__of_match_node(const struct of_device_id * matches,const struct device_node * node)1108 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1109 					   const struct device_node *node)
1110 {
1111 	const struct of_device_id *best_match = NULL;
1112 	int score, best_score = 0;
1113 
1114 	if (!matches)
1115 		return NULL;
1116 
1117 	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1118 		score = __of_device_is_compatible(node, matches->compatible,
1119 						  matches->type, matches->name);
1120 		if (score > best_score) {
1121 			best_match = matches;
1122 			best_score = score;
1123 		}
1124 	}
1125 
1126 	return best_match;
1127 }
1128 
1129 /**
1130  * of_match_node - Tell if a device_node has a matching of_match structure
1131  *	@matches:	array of of device match structures to search in
1132  *	@node:		the of device structure to match against
1133  *
1134  *	Low level utility function used by device matching.
1135  */
of_match_node(const struct of_device_id * matches,const struct device_node * node)1136 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1137 					 const struct device_node *node)
1138 {
1139 	const struct of_device_id *match;
1140 	unsigned long flags;
1141 
1142 	raw_spin_lock_irqsave(&devtree_lock, flags);
1143 	match = __of_match_node(matches, node);
1144 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1145 	return match;
1146 }
1147 EXPORT_SYMBOL(of_match_node);
1148 
1149 /**
1150  *	of_find_matching_node_and_match - Find a node based on an of_device_id
1151  *					  match table.
1152  *	@from:		The node to start searching from or NULL, the node
1153  *			you pass will not be searched, only the next one
1154  *			will; typically, you pass what the previous call
1155  *			returned. of_node_put() will be called on it
1156  *	@matches:	array of of device match structures to search in
1157  *	@match		Updated to point at the matches entry which matched
1158  *
1159  *	Returns a node pointer with refcount incremented, use
1160  *	of_node_put() on it when done.
1161  */
of_find_matching_node_and_match(struct device_node * from,const struct of_device_id * matches,const struct of_device_id ** match)1162 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1163 					const struct of_device_id *matches,
1164 					const struct of_device_id **match)
1165 {
1166 	struct device_node *np;
1167 	const struct of_device_id *m;
1168 	unsigned long flags;
1169 
1170 	if (match)
1171 		*match = NULL;
1172 
1173 	raw_spin_lock_irqsave(&devtree_lock, flags);
1174 	for_each_of_allnodes_from(from, np) {
1175 		m = __of_match_node(matches, np);
1176 		if (m && of_node_get(np)) {
1177 			if (match)
1178 				*match = m;
1179 			break;
1180 		}
1181 	}
1182 	of_node_put(from);
1183 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1184 	return np;
1185 }
1186 EXPORT_SYMBOL(of_find_matching_node_and_match);
1187 
1188 /**
1189  * of_modalias_node - Lookup appropriate modalias for a device node
1190  * @node:	pointer to a device tree node
1191  * @modalias:	Pointer to buffer that modalias value will be copied into
1192  * @len:	Length of modalias value
1193  *
1194  * Based on the value of the compatible property, this routine will attempt
1195  * to choose an appropriate modalias value for a particular device tree node.
1196  * It does this by stripping the manufacturer prefix (as delimited by a ',')
1197  * from the first entry in the compatible list property.
1198  *
1199  * This routine returns 0 on success, <0 on failure.
1200  */
of_modalias_node(struct device_node * node,char * modalias,int len)1201 int of_modalias_node(struct device_node *node, char *modalias, int len)
1202 {
1203 	const char *compatible, *p;
1204 	int cplen;
1205 
1206 	compatible = of_get_property(node, "compatible", &cplen);
1207 	if (!compatible || strlen(compatible) > cplen)
1208 		return -ENODEV;
1209 	p = strchr(compatible, ',');
1210 	strlcpy(modalias, p ? p + 1 : compatible, len);
1211 	return 0;
1212 }
1213 EXPORT_SYMBOL_GPL(of_modalias_node);
1214 
1215 /**
1216  * of_find_node_by_phandle - Find a node given a phandle
1217  * @handle:	phandle of the node to find
1218  *
1219  * Returns a node pointer with refcount incremented, use
1220  * of_node_put() on it when done.
1221  */
of_find_node_by_phandle(phandle handle)1222 struct device_node *of_find_node_by_phandle(phandle handle)
1223 {
1224 	struct device_node *np = NULL;
1225 	unsigned long flags;
1226 	phandle masked_handle;
1227 
1228 	if (!handle)
1229 		return NULL;
1230 
1231 	raw_spin_lock_irqsave(&devtree_lock, flags);
1232 
1233 	masked_handle = handle & phandle_cache_mask;
1234 
1235 	if (phandle_cache) {
1236 		if (phandle_cache[masked_handle] &&
1237 		    handle == phandle_cache[masked_handle]->phandle)
1238 			np = phandle_cache[masked_handle];
1239 		if (np && of_node_check_flag(np, OF_DETACHED)) {
1240 			WARN_ON(1); /* did not uncache np on node removal */
1241 			of_node_put(np);
1242 			phandle_cache[masked_handle] = NULL;
1243 			np = NULL;
1244 		}
1245 	}
1246 
1247 	if (!np) {
1248 		for_each_of_allnodes(np)
1249 			if (np->phandle == handle &&
1250 			    !of_node_check_flag(np, OF_DETACHED)) {
1251 				if (phandle_cache) {
1252 					/* will put when removed from cache */
1253 					of_node_get(np);
1254 					phandle_cache[masked_handle] = np;
1255 				}
1256 				break;
1257 			}
1258 	}
1259 
1260 	of_node_get(np);
1261 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1262 	return np;
1263 }
1264 EXPORT_SYMBOL(of_find_node_by_phandle);
1265 
of_print_phandle_args(const char * msg,const struct of_phandle_args * args)1266 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1267 {
1268 	int i;
1269 	printk("%s %pOF", msg, args->np);
1270 	for (i = 0; i < args->args_count; i++) {
1271 		const char delim = i ? ',' : ':';
1272 
1273 		pr_cont("%c%08x", delim, args->args[i]);
1274 	}
1275 	pr_cont("\n");
1276 }
1277 
of_phandle_iterator_init(struct of_phandle_iterator * it,const struct device_node * np,const char * list_name,const char * cells_name,int cell_count)1278 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1279 		const struct device_node *np,
1280 		const char *list_name,
1281 		const char *cells_name,
1282 		int cell_count)
1283 {
1284 	const __be32 *list;
1285 	int size;
1286 
1287 	memset(it, 0, sizeof(*it));
1288 
1289 	/*
1290 	 * one of cell_count or cells_name must be provided to determine the
1291 	 * argument length.
1292 	 */
1293 	if (cell_count < 0 && !cells_name)
1294 		return -EINVAL;
1295 
1296 	list = of_get_property(np, list_name, &size);
1297 	if (!list)
1298 		return -ENOENT;
1299 
1300 	it->cells_name = cells_name;
1301 	it->cell_count = cell_count;
1302 	it->parent = np;
1303 	it->list_end = list + size / sizeof(*list);
1304 	it->phandle_end = list;
1305 	it->cur = list;
1306 
1307 	return 0;
1308 }
1309 EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1310 
of_phandle_iterator_next(struct of_phandle_iterator * it)1311 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1312 {
1313 	uint32_t count = 0;
1314 
1315 	if (it->node) {
1316 		of_node_put(it->node);
1317 		it->node = NULL;
1318 	}
1319 
1320 	if (!it->cur || it->phandle_end >= it->list_end)
1321 		return -ENOENT;
1322 
1323 	it->cur = it->phandle_end;
1324 
1325 	/* If phandle is 0, then it is an empty entry with no arguments. */
1326 	it->phandle = be32_to_cpup(it->cur++);
1327 
1328 	if (it->phandle) {
1329 
1330 		/*
1331 		 * Find the provider node and parse the #*-cells property to
1332 		 * determine the argument length.
1333 		 */
1334 		it->node = of_find_node_by_phandle(it->phandle);
1335 
1336 		if (it->cells_name) {
1337 			if (!it->node) {
1338 				pr_err("%pOF: could not find phandle\n",
1339 				       it->parent);
1340 				goto err;
1341 			}
1342 
1343 			if (of_property_read_u32(it->node, it->cells_name,
1344 						 &count)) {
1345 				/*
1346 				 * If both cell_count and cells_name is given,
1347 				 * fall back to cell_count in absence
1348 				 * of the cells_name property
1349 				 */
1350 				if (it->cell_count >= 0) {
1351 					count = it->cell_count;
1352 				} else {
1353 					pr_err("%pOF: could not get %s for %pOF\n",
1354 					       it->parent,
1355 					       it->cells_name,
1356 					       it->node);
1357 					goto err;
1358 				}
1359 			}
1360 		} else {
1361 			count = it->cell_count;
1362 		}
1363 
1364 		/*
1365 		 * Make sure that the arguments actually fit in the remaining
1366 		 * property data length
1367 		 */
1368 		if (it->cur + count > it->list_end) {
1369 			pr_err("%pOF: %s = %d found %d\n",
1370 			       it->parent, it->cells_name,
1371 			       count, it->cell_count);
1372 			goto err;
1373 		}
1374 	}
1375 
1376 	it->phandle_end = it->cur + count;
1377 	it->cur_count = count;
1378 
1379 	return 0;
1380 
1381 err:
1382 	if (it->node) {
1383 		of_node_put(it->node);
1384 		it->node = NULL;
1385 	}
1386 
1387 	return -EINVAL;
1388 }
1389 EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1390 
of_phandle_iterator_args(struct of_phandle_iterator * it,uint32_t * args,int size)1391 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1392 			     uint32_t *args,
1393 			     int size)
1394 {
1395 	int i, count;
1396 
1397 	count = it->cur_count;
1398 
1399 	if (WARN_ON(size < count))
1400 		count = size;
1401 
1402 	for (i = 0; i < count; i++)
1403 		args[i] = be32_to_cpup(it->cur++);
1404 
1405 	return count;
1406 }
1407 
__of_parse_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name,int cell_count,int index,struct of_phandle_args * out_args)1408 static int __of_parse_phandle_with_args(const struct device_node *np,
1409 					const char *list_name,
1410 					const char *cells_name,
1411 					int cell_count, int index,
1412 					struct of_phandle_args *out_args)
1413 {
1414 	struct of_phandle_iterator it;
1415 	int rc, cur_index = 0;
1416 
1417 	/* Loop over the phandles until all the requested entry is found */
1418 	of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1419 		/*
1420 		 * All of the error cases bail out of the loop, so at
1421 		 * this point, the parsing is successful. If the requested
1422 		 * index matches, then fill the out_args structure and return,
1423 		 * or return -ENOENT for an empty entry.
1424 		 */
1425 		rc = -ENOENT;
1426 		if (cur_index == index) {
1427 			if (!it.phandle)
1428 				goto err;
1429 
1430 			if (out_args) {
1431 				int c;
1432 
1433 				c = of_phandle_iterator_args(&it,
1434 							     out_args->args,
1435 							     MAX_PHANDLE_ARGS);
1436 				out_args->np = it.node;
1437 				out_args->args_count = c;
1438 			} else {
1439 				of_node_put(it.node);
1440 			}
1441 
1442 			/* Found it! return success */
1443 			return 0;
1444 		}
1445 
1446 		cur_index++;
1447 	}
1448 
1449 	/*
1450 	 * Unlock node before returning result; will be one of:
1451 	 * -ENOENT : index is for empty phandle
1452 	 * -EINVAL : parsing error on data
1453 	 */
1454 
1455  err:
1456 	of_node_put(it.node);
1457 	return rc;
1458 }
1459 
1460 /**
1461  * of_parse_phandle - Resolve a phandle property to a device_node pointer
1462  * @np: Pointer to device node holding phandle property
1463  * @phandle_name: Name of property holding a phandle value
1464  * @index: For properties holding a table of phandles, this is the index into
1465  *         the table
1466  *
1467  * Returns the device_node pointer with refcount incremented.  Use
1468  * of_node_put() on it when done.
1469  */
of_parse_phandle(const struct device_node * np,const char * phandle_name,int index)1470 struct device_node *of_parse_phandle(const struct device_node *np,
1471 				     const char *phandle_name, int index)
1472 {
1473 	struct of_phandle_args args;
1474 
1475 	if (index < 0)
1476 		return NULL;
1477 
1478 	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1479 					 index, &args))
1480 		return NULL;
1481 
1482 	return args.np;
1483 }
1484 EXPORT_SYMBOL(of_parse_phandle);
1485 
1486 /**
1487  * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1488  * @np:		pointer to a device tree node containing a list
1489  * @list_name:	property name that contains a list
1490  * @cells_name:	property name that specifies phandles' arguments count
1491  * @index:	index of a phandle to parse out
1492  * @out_args:	optional pointer to output arguments structure (will be filled)
1493  *
1494  * This function is useful to parse lists of phandles and their arguments.
1495  * Returns 0 on success and fills out_args, on error returns appropriate
1496  * errno value.
1497  *
1498  * Caller is responsible to call of_node_put() on the returned out_args->np
1499  * pointer.
1500  *
1501  * Example:
1502  *
1503  * phandle1: node1 {
1504  *	#list-cells = <2>;
1505  * }
1506  *
1507  * phandle2: node2 {
1508  *	#list-cells = <1>;
1509  * }
1510  *
1511  * node3 {
1512  *	list = <&phandle1 1 2 &phandle2 3>;
1513  * }
1514  *
1515  * To get a device_node of the `node2' node you may call this:
1516  * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1517  */
of_parse_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name,int index,struct of_phandle_args * out_args)1518 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1519 				const char *cells_name, int index,
1520 				struct of_phandle_args *out_args)
1521 {
1522 	int cell_count = -1;
1523 
1524 	if (index < 0)
1525 		return -EINVAL;
1526 
1527 	/* If cells_name is NULL we assume a cell count of 0 */
1528 	if (!cells_name)
1529 		cell_count = 0;
1530 
1531 	return __of_parse_phandle_with_args(np, list_name, cells_name,
1532 					    cell_count, index, out_args);
1533 }
1534 EXPORT_SYMBOL(of_parse_phandle_with_args);
1535 
1536 /**
1537  * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1538  * @np:		pointer to a device tree node containing a list
1539  * @list_name:	property name that contains a list
1540  * @stem_name:	stem of property names that specify phandles' arguments count
1541  * @index:	index of a phandle to parse out
1542  * @out_args:	optional pointer to output arguments structure (will be filled)
1543  *
1544  * This function is useful to parse lists of phandles and their arguments.
1545  * Returns 0 on success and fills out_args, on error returns appropriate errno
1546  * value. The difference between this function and of_parse_phandle_with_args()
1547  * is that this API remaps a phandle if the node the phandle points to has
1548  * a <@stem_name>-map property.
1549  *
1550  * Caller is responsible to call of_node_put() on the returned out_args->np
1551  * pointer.
1552  *
1553  * Example:
1554  *
1555  * phandle1: node1 {
1556  *	#list-cells = <2>;
1557  * }
1558  *
1559  * phandle2: node2 {
1560  *	#list-cells = <1>;
1561  * }
1562  *
1563  * phandle3: node3 {
1564  * 	#list-cells = <1>;
1565  * 	list-map = <0 &phandle2 3>,
1566  * 		   <1 &phandle2 2>,
1567  * 		   <2 &phandle1 5 1>;
1568  *	list-map-mask = <0x3>;
1569  * };
1570  *
1571  * node4 {
1572  *	list = <&phandle1 1 2 &phandle3 0>;
1573  * }
1574  *
1575  * To get a device_node of the `node2' node you may call this:
1576  * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1577  */
of_parse_phandle_with_args_map(const struct device_node * np,const char * list_name,const char * stem_name,int index,struct of_phandle_args * out_args)1578 int of_parse_phandle_with_args_map(const struct device_node *np,
1579 				   const char *list_name,
1580 				   const char *stem_name,
1581 				   int index, struct of_phandle_args *out_args)
1582 {
1583 	char *cells_name, *map_name = NULL, *mask_name = NULL;
1584 	char *pass_name = NULL;
1585 	struct device_node *cur, *new = NULL;
1586 	const __be32 *map, *mask, *pass;
1587 	static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1588 	static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1589 	__be32 initial_match_array[MAX_PHANDLE_ARGS];
1590 	const __be32 *match_array = initial_match_array;
1591 	int i, ret, map_len, match;
1592 	u32 list_size, new_size;
1593 
1594 	if (index < 0)
1595 		return -EINVAL;
1596 
1597 	cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1598 	if (!cells_name)
1599 		return -ENOMEM;
1600 
1601 	ret = -ENOMEM;
1602 	map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1603 	if (!map_name)
1604 		goto free;
1605 
1606 	mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1607 	if (!mask_name)
1608 		goto free;
1609 
1610 	pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1611 	if (!pass_name)
1612 		goto free;
1613 
1614 	ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1615 					   out_args);
1616 	if (ret)
1617 		goto free;
1618 
1619 	/* Get the #<list>-cells property */
1620 	cur = out_args->np;
1621 	ret = of_property_read_u32(cur, cells_name, &list_size);
1622 	if (ret < 0)
1623 		goto put;
1624 
1625 	/* Precalculate the match array - this simplifies match loop */
1626 	for (i = 0; i < list_size; i++)
1627 		initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1628 
1629 	ret = -EINVAL;
1630 	while (cur) {
1631 		/* Get the <list>-map property */
1632 		map = of_get_property(cur, map_name, &map_len);
1633 		if (!map) {
1634 			ret = 0;
1635 			goto free;
1636 		}
1637 		map_len /= sizeof(u32);
1638 
1639 		/* Get the <list>-map-mask property (optional) */
1640 		mask = of_get_property(cur, mask_name, NULL);
1641 		if (!mask)
1642 			mask = dummy_mask;
1643 		/* Iterate through <list>-map property */
1644 		match = 0;
1645 		while (map_len > (list_size + 1) && !match) {
1646 			/* Compare specifiers */
1647 			match = 1;
1648 			for (i = 0; i < list_size; i++, map_len--)
1649 				match &= !((match_array[i] ^ *map++) & mask[i]);
1650 
1651 			of_node_put(new);
1652 			new = of_find_node_by_phandle(be32_to_cpup(map));
1653 			map++;
1654 			map_len--;
1655 
1656 			/* Check if not found */
1657 			if (!new)
1658 				goto put;
1659 
1660 			if (!of_device_is_available(new))
1661 				match = 0;
1662 
1663 			ret = of_property_read_u32(new, cells_name, &new_size);
1664 			if (ret)
1665 				goto put;
1666 
1667 			/* Check for malformed properties */
1668 			if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1669 				goto put;
1670 			if (map_len < new_size)
1671 				goto put;
1672 
1673 			/* Move forward by new node's #<list>-cells amount */
1674 			map += new_size;
1675 			map_len -= new_size;
1676 		}
1677 		if (!match)
1678 			goto put;
1679 
1680 		/* Get the <list>-map-pass-thru property (optional) */
1681 		pass = of_get_property(cur, pass_name, NULL);
1682 		if (!pass)
1683 			pass = dummy_pass;
1684 
1685 		/*
1686 		 * Successfully parsed a <list>-map translation; copy new
1687 		 * specifier into the out_args structure, keeping the
1688 		 * bits specified in <list>-map-pass-thru.
1689 		 */
1690 		match_array = map - new_size;
1691 		for (i = 0; i < new_size; i++) {
1692 			__be32 val = *(map - new_size + i);
1693 
1694 			if (i < list_size) {
1695 				val &= ~pass[i];
1696 				val |= cpu_to_be32(out_args->args[i]) & pass[i];
1697 			}
1698 
1699 			out_args->args[i] = be32_to_cpu(val);
1700 		}
1701 		out_args->args_count = list_size = new_size;
1702 		/* Iterate again with new provider */
1703 		out_args->np = new;
1704 		of_node_put(cur);
1705 		cur = new;
1706 	}
1707 put:
1708 	of_node_put(cur);
1709 	of_node_put(new);
1710 free:
1711 	kfree(mask_name);
1712 	kfree(map_name);
1713 	kfree(cells_name);
1714 	kfree(pass_name);
1715 
1716 	return ret;
1717 }
1718 EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1719 
1720 /**
1721  * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1722  * @np:		pointer to a device tree node containing a list
1723  * @list_name:	property name that contains a list
1724  * @cell_count: number of argument cells following the phandle
1725  * @index:	index of a phandle to parse out
1726  * @out_args:	optional pointer to output arguments structure (will be filled)
1727  *
1728  * This function is useful to parse lists of phandles and their arguments.
1729  * Returns 0 on success and fills out_args, on error returns appropriate
1730  * errno value.
1731  *
1732  * Caller is responsible to call of_node_put() on the returned out_args->np
1733  * pointer.
1734  *
1735  * Example:
1736  *
1737  * phandle1: node1 {
1738  * }
1739  *
1740  * phandle2: node2 {
1741  * }
1742  *
1743  * node3 {
1744  *	list = <&phandle1 0 2 &phandle2 2 3>;
1745  * }
1746  *
1747  * To get a device_node of the `node2' node you may call this:
1748  * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1749  */
of_parse_phandle_with_fixed_args(const struct device_node * np,const char * list_name,int cell_count,int index,struct of_phandle_args * out_args)1750 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1751 				const char *list_name, int cell_count,
1752 				int index, struct of_phandle_args *out_args)
1753 {
1754 	if (index < 0)
1755 		return -EINVAL;
1756 	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1757 					   index, out_args);
1758 }
1759 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1760 
1761 /**
1762  * of_count_phandle_with_args() - Find the number of phandles references in a property
1763  * @np:		pointer to a device tree node containing a list
1764  * @list_name:	property name that contains a list
1765  * @cells_name:	property name that specifies phandles' arguments count
1766  *
1767  * Returns the number of phandle + argument tuples within a property. It
1768  * is a typical pattern to encode a list of phandle and variable
1769  * arguments into a single property. The number of arguments is encoded
1770  * by a property in the phandle-target node. For example, a gpios
1771  * property would contain a list of GPIO specifies consisting of a
1772  * phandle and 1 or more arguments. The number of arguments are
1773  * determined by the #gpio-cells property in the node pointed to by the
1774  * phandle.
1775  */
of_count_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name)1776 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1777 				const char *cells_name)
1778 {
1779 	struct of_phandle_iterator it;
1780 	int rc, cur_index = 0;
1781 
1782 	/*
1783 	 * If cells_name is NULL we assume a cell count of 0. This makes
1784 	 * counting the phandles trivial as each 32bit word in the list is a
1785 	 * phandle and no arguments are to consider. So we don't iterate through
1786 	 * the list but just use the length to determine the phandle count.
1787 	 */
1788 	if (!cells_name) {
1789 		const __be32 *list;
1790 		int size;
1791 
1792 		list = of_get_property(np, list_name, &size);
1793 		if (!list)
1794 			return -ENOENT;
1795 
1796 		return size / sizeof(*list);
1797 	}
1798 
1799 	rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1800 	if (rc)
1801 		return rc;
1802 
1803 	while ((rc = of_phandle_iterator_next(&it)) == 0)
1804 		cur_index += 1;
1805 
1806 	if (rc != -ENOENT)
1807 		return rc;
1808 
1809 	return cur_index;
1810 }
1811 EXPORT_SYMBOL(of_count_phandle_with_args);
1812 
1813 /**
1814  * __of_add_property - Add a property to a node without lock operations
1815  */
__of_add_property(struct device_node * np,struct property * prop)1816 int __of_add_property(struct device_node *np, struct property *prop)
1817 {
1818 	struct property **next;
1819 
1820 	prop->next = NULL;
1821 	next = &np->properties;
1822 	while (*next) {
1823 		if (strcmp(prop->name, (*next)->name) == 0)
1824 			/* duplicate ! don't insert it */
1825 			return -EEXIST;
1826 
1827 		next = &(*next)->next;
1828 	}
1829 	*next = prop;
1830 
1831 	return 0;
1832 }
1833 
1834 /**
1835  * of_add_property - Add a property to a node
1836  */
of_add_property(struct device_node * np,struct property * prop)1837 int of_add_property(struct device_node *np, struct property *prop)
1838 {
1839 	unsigned long flags;
1840 	int rc;
1841 
1842 	mutex_lock(&of_mutex);
1843 
1844 	raw_spin_lock_irqsave(&devtree_lock, flags);
1845 	rc = __of_add_property(np, prop);
1846 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1847 
1848 	if (!rc)
1849 		__of_add_property_sysfs(np, prop);
1850 
1851 	mutex_unlock(&of_mutex);
1852 
1853 	if (!rc)
1854 		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1855 
1856 	return rc;
1857 }
1858 
__of_remove_property(struct device_node * np,struct property * prop)1859 int __of_remove_property(struct device_node *np, struct property *prop)
1860 {
1861 	struct property **next;
1862 
1863 	for (next = &np->properties; *next; next = &(*next)->next) {
1864 		if (*next == prop)
1865 			break;
1866 	}
1867 	if (*next == NULL)
1868 		return -ENODEV;
1869 
1870 	/* found the node */
1871 	*next = prop->next;
1872 	prop->next = np->deadprops;
1873 	np->deadprops = prop;
1874 
1875 	return 0;
1876 }
1877 
1878 /**
1879  * of_remove_property - Remove a property from a node.
1880  *
1881  * Note that we don't actually remove it, since we have given out
1882  * who-knows-how-many pointers to the data using get-property.
1883  * Instead we just move the property to the "dead properties"
1884  * list, so it won't be found any more.
1885  */
of_remove_property(struct device_node * np,struct property * prop)1886 int of_remove_property(struct device_node *np, struct property *prop)
1887 {
1888 	unsigned long flags;
1889 	int rc;
1890 
1891 	if (!prop)
1892 		return -ENODEV;
1893 
1894 	mutex_lock(&of_mutex);
1895 
1896 	raw_spin_lock_irqsave(&devtree_lock, flags);
1897 	rc = __of_remove_property(np, prop);
1898 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1899 
1900 	if (!rc)
1901 		__of_remove_property_sysfs(np, prop);
1902 
1903 	mutex_unlock(&of_mutex);
1904 
1905 	if (!rc)
1906 		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1907 
1908 	return rc;
1909 }
1910 
__of_update_property(struct device_node * np,struct property * newprop,struct property ** oldpropp)1911 int __of_update_property(struct device_node *np, struct property *newprop,
1912 		struct property **oldpropp)
1913 {
1914 	struct property **next, *oldprop;
1915 
1916 	for (next = &np->properties; *next; next = &(*next)->next) {
1917 		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1918 			break;
1919 	}
1920 	*oldpropp = oldprop = *next;
1921 
1922 	if (oldprop) {
1923 		/* replace the node */
1924 		newprop->next = oldprop->next;
1925 		*next = newprop;
1926 		oldprop->next = np->deadprops;
1927 		np->deadprops = oldprop;
1928 	} else {
1929 		/* new node */
1930 		newprop->next = NULL;
1931 		*next = newprop;
1932 	}
1933 
1934 	return 0;
1935 }
1936 
1937 /*
1938  * of_update_property - Update a property in a node, if the property does
1939  * not exist, add it.
1940  *
1941  * Note that we don't actually remove it, since we have given out
1942  * who-knows-how-many pointers to the data using get-property.
1943  * Instead we just move the property to the "dead properties" list,
1944  * and add the new property to the property list
1945  */
of_update_property(struct device_node * np,struct property * newprop)1946 int of_update_property(struct device_node *np, struct property *newprop)
1947 {
1948 	struct property *oldprop;
1949 	unsigned long flags;
1950 	int rc;
1951 
1952 	if (!newprop->name)
1953 		return -EINVAL;
1954 
1955 	mutex_lock(&of_mutex);
1956 
1957 	raw_spin_lock_irqsave(&devtree_lock, flags);
1958 	rc = __of_update_property(np, newprop, &oldprop);
1959 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1960 
1961 	if (!rc)
1962 		__of_update_property_sysfs(np, newprop, oldprop);
1963 
1964 	mutex_unlock(&of_mutex);
1965 
1966 	if (!rc)
1967 		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1968 
1969 	return rc;
1970 }
1971 
of_alias_add(struct alias_prop * ap,struct device_node * np,int id,const char * stem,int stem_len)1972 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1973 			 int id, const char *stem, int stem_len)
1974 {
1975 	ap->np = np;
1976 	ap->id = id;
1977 	strncpy(ap->stem, stem, stem_len);
1978 	ap->stem[stem_len] = 0;
1979 	list_add_tail(&ap->link, &aliases_lookup);
1980 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1981 		 ap->alias, ap->stem, ap->id, np);
1982 }
1983 
1984 /**
1985  * of_alias_scan - Scan all properties of the 'aliases' node
1986  *
1987  * The function scans all the properties of the 'aliases' node and populates
1988  * the global lookup table with the properties.  It returns the
1989  * number of alias properties found, or an error code in case of failure.
1990  *
1991  * @dt_alloc:	An allocator that provides a virtual address to memory
1992  *		for storing the resulting tree
1993  */
of_alias_scan(void * (* dt_alloc)(u64 size,u64 align))1994 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1995 {
1996 	struct property *pp;
1997 
1998 	of_aliases = of_find_node_by_path("/aliases");
1999 	of_chosen = of_find_node_by_path("/chosen");
2000 	if (of_chosen == NULL)
2001 		of_chosen = of_find_node_by_path("/chosen@0");
2002 
2003 	if (of_chosen) {
2004 		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
2005 		const char *name = NULL;
2006 
2007 		if (of_property_read_string(of_chosen, "stdout-path", &name))
2008 			of_property_read_string(of_chosen, "linux,stdout-path",
2009 						&name);
2010 		if (IS_ENABLED(CONFIG_PPC) && !name)
2011 			of_property_read_string(of_aliases, "stdout", &name);
2012 		if (name)
2013 			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
2014 	}
2015 
2016 	if (!of_aliases)
2017 		return;
2018 
2019 	for_each_property_of_node(of_aliases, pp) {
2020 		const char *start = pp->name;
2021 		const char *end = start + strlen(start);
2022 		struct device_node *np;
2023 		struct alias_prop *ap;
2024 		int id, len;
2025 
2026 		/* Skip those we do not want to proceed */
2027 		if (!strcmp(pp->name, "name") ||
2028 		    !strcmp(pp->name, "phandle") ||
2029 		    !strcmp(pp->name, "linux,phandle"))
2030 			continue;
2031 
2032 		np = of_find_node_by_path(pp->value);
2033 		if (!np)
2034 			continue;
2035 
2036 		/* walk the alias backwards to extract the id and work out
2037 		 * the 'stem' string */
2038 		while (isdigit(*(end-1)) && end > start)
2039 			end--;
2040 		len = end - start;
2041 
2042 		if (kstrtoint(end, 10, &id) < 0)
2043 			continue;
2044 
2045 		/* Allocate an alias_prop with enough space for the stem */
2046 		ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
2047 		if (!ap)
2048 			continue;
2049 		memset(ap, 0, sizeof(*ap) + len + 1);
2050 		ap->alias = start;
2051 		of_alias_add(ap, np, id, start, len);
2052 	}
2053 }
2054 
2055 /**
2056  * of_alias_get_id - Get alias id for the given device_node
2057  * @np:		Pointer to the given device_node
2058  * @stem:	Alias stem of the given device_node
2059  *
2060  * The function travels the lookup table to get the alias id for the given
2061  * device_node and alias stem.  It returns the alias id if found.
2062  */
of_alias_get_id(struct device_node * np,const char * stem)2063 int of_alias_get_id(struct device_node *np, const char *stem)
2064 {
2065 	struct alias_prop *app;
2066 	int id = -ENODEV;
2067 
2068 	mutex_lock(&of_mutex);
2069 	list_for_each_entry(app, &aliases_lookup, link) {
2070 		if (strcmp(app->stem, stem) != 0)
2071 			continue;
2072 
2073 		if (np == app->np) {
2074 			id = app->id;
2075 			break;
2076 		}
2077 	}
2078 	mutex_unlock(&of_mutex);
2079 
2080 	return id;
2081 }
2082 EXPORT_SYMBOL_GPL(of_alias_get_id);
2083 
2084 /**
2085  * of_alias_get_alias_list - Get alias list for the given device driver
2086  * @matches:	Array of OF device match structures to search in
2087  * @stem:	Alias stem of the given device_node
2088  * @bitmap:	Bitmap field pointer
2089  * @nbits:	Maximum number of alias IDs which can be recorded in bitmap
2090  *
2091  * The function travels the lookup table to record alias ids for the given
2092  * device match structures and alias stem.
2093  *
2094  * Return:	0 or -ENOSYS when !CONFIG_OF or
2095  *		-EOVERFLOW if alias ID is greater then allocated nbits
2096  */
of_alias_get_alias_list(const struct of_device_id * matches,const char * stem,unsigned long * bitmap,unsigned int nbits)2097 int of_alias_get_alias_list(const struct of_device_id *matches,
2098 			     const char *stem, unsigned long *bitmap,
2099 			     unsigned int nbits)
2100 {
2101 	struct alias_prop *app;
2102 	int ret = 0;
2103 
2104 	/* Zero bitmap field to make sure that all the time it is clean */
2105 	bitmap_zero(bitmap, nbits);
2106 
2107 	mutex_lock(&of_mutex);
2108 	pr_debug("%s: Looking for stem: %s\n", __func__, stem);
2109 	list_for_each_entry(app, &aliases_lookup, link) {
2110 		pr_debug("%s: stem: %s, id: %d\n",
2111 			 __func__, app->stem, app->id);
2112 
2113 		if (strcmp(app->stem, stem) != 0) {
2114 			pr_debug("%s: stem comparison didn't pass %s\n",
2115 				 __func__, app->stem);
2116 			continue;
2117 		}
2118 
2119 		if (of_match_node(matches, app->np)) {
2120 			pr_debug("%s: Allocated ID %d\n", __func__, app->id);
2121 
2122 			if (app->id >= nbits) {
2123 				pr_warn("%s: ID %d >= than bitmap field %d\n",
2124 					__func__, app->id, nbits);
2125 				ret = -EOVERFLOW;
2126 			} else {
2127 				set_bit(app->id, bitmap);
2128 			}
2129 		}
2130 	}
2131 	mutex_unlock(&of_mutex);
2132 
2133 	return ret;
2134 }
2135 EXPORT_SYMBOL_GPL(of_alias_get_alias_list);
2136 
2137 /**
2138  * of_alias_get_highest_id - Get highest alias id for the given stem
2139  * @stem:	Alias stem to be examined
2140  *
2141  * The function travels the lookup table to get the highest alias id for the
2142  * given alias stem.  It returns the alias id if found.
2143  */
of_alias_get_highest_id(const char * stem)2144 int of_alias_get_highest_id(const char *stem)
2145 {
2146 	struct alias_prop *app;
2147 	int id = -ENODEV;
2148 
2149 	mutex_lock(&of_mutex);
2150 	list_for_each_entry(app, &aliases_lookup, link) {
2151 		if (strcmp(app->stem, stem) != 0)
2152 			continue;
2153 
2154 		if (app->id > id)
2155 			id = app->id;
2156 	}
2157 	mutex_unlock(&of_mutex);
2158 
2159 	return id;
2160 }
2161 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2162 
2163 /**
2164  * of_console_check() - Test and setup console for DT setup
2165  * @dn - Pointer to device node
2166  * @name - Name to use for preferred console without index. ex. "ttyS"
2167  * @index - Index to use for preferred console.
2168  *
2169  * Check if the given device node matches the stdout-path property in the
2170  * /chosen node. If it does then register it as the preferred console and return
2171  * TRUE. Otherwise return FALSE.
2172  */
of_console_check(struct device_node * dn,char * name,int index)2173 bool of_console_check(struct device_node *dn, char *name, int index)
2174 {
2175 	if (!dn || dn != of_stdout || console_set_on_cmdline)
2176 		return false;
2177 
2178 	/*
2179 	 * XXX: cast `options' to char pointer to suppress complication
2180 	 * warnings: printk, UART and console drivers expect char pointer.
2181 	 */
2182 	return !add_preferred_console(name, index, (char *)of_stdout_options);
2183 }
2184 EXPORT_SYMBOL_GPL(of_console_check);
2185 
2186 /**
2187  *	of_find_next_cache_node - Find a node's subsidiary cache
2188  *	@np:	node of type "cpu" or "cache"
2189  *
2190  *	Returns a node pointer with refcount incremented, use
2191  *	of_node_put() on it when done.  Caller should hold a reference
2192  *	to np.
2193  */
of_find_next_cache_node(const struct device_node * np)2194 struct device_node *of_find_next_cache_node(const struct device_node *np)
2195 {
2196 	struct device_node *child, *cache_node;
2197 
2198 	cache_node = of_parse_phandle(np, "l2-cache", 0);
2199 	if (!cache_node)
2200 		cache_node = of_parse_phandle(np, "next-level-cache", 0);
2201 
2202 	if (cache_node)
2203 		return cache_node;
2204 
2205 	/* OF on pmac has nodes instead of properties named "l2-cache"
2206 	 * beneath CPU nodes.
2207 	 */
2208 	if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
2209 		for_each_child_of_node(np, child)
2210 			if (of_node_is_type(child, "cache"))
2211 				return child;
2212 
2213 	return NULL;
2214 }
2215 
2216 /**
2217  * of_find_last_cache_level - Find the level at which the last cache is
2218  * 		present for the given logical cpu
2219  *
2220  * @cpu: cpu number(logical index) for which the last cache level is needed
2221  *
2222  * Returns the the level at which the last cache is present. It is exactly
2223  * same as  the total number of cache levels for the given logical cpu.
2224  */
of_find_last_cache_level(unsigned int cpu)2225 int of_find_last_cache_level(unsigned int cpu)
2226 {
2227 	u32 cache_level = 0;
2228 	struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2229 
2230 	while (np) {
2231 		prev = np;
2232 		of_node_put(np);
2233 		np = of_find_next_cache_node(np);
2234 	}
2235 
2236 	of_property_read_u32(prev, "cache-level", &cache_level);
2237 
2238 	return cache_level;
2239 }
2240 
2241 /**
2242  * of_map_rid - Translate a requester ID through a downstream mapping.
2243  * @np: root complex device node.
2244  * @rid: device requester ID to map.
2245  * @map_name: property name of the map to use.
2246  * @map_mask_name: optional property name of the mask to use.
2247  * @target: optional pointer to a target device node.
2248  * @id_out: optional pointer to receive the translated ID.
2249  *
2250  * Given a device requester ID, look up the appropriate implementation-defined
2251  * platform ID and/or the target device which receives transactions on that
2252  * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
2253  * @id_out may be NULL if only the other is required. If @target points to
2254  * a non-NULL device node pointer, only entries targeting that node will be
2255  * matched; if it points to a NULL value, it will receive the device node of
2256  * the first matching target phandle, with a reference held.
2257  *
2258  * Return: 0 on success or a standard error code on failure.
2259  */
of_map_rid(struct device_node * np,u32 rid,const char * map_name,const char * map_mask_name,struct device_node ** target,u32 * id_out)2260 int of_map_rid(struct device_node *np, u32 rid,
2261 	       const char *map_name, const char *map_mask_name,
2262 	       struct device_node **target, u32 *id_out)
2263 {
2264 	u32 map_mask, masked_rid;
2265 	int map_len;
2266 	const __be32 *map = NULL;
2267 
2268 	if (!np || !map_name || (!target && !id_out))
2269 		return -EINVAL;
2270 
2271 	map = of_get_property(np, map_name, &map_len);
2272 	if (!map) {
2273 		if (target)
2274 			return -ENODEV;
2275 		/* Otherwise, no map implies no translation */
2276 		*id_out = rid;
2277 		return 0;
2278 	}
2279 
2280 	if (!map_len || map_len % (4 * sizeof(*map))) {
2281 		pr_err("%pOF: Error: Bad %s length: %d\n", np,
2282 			map_name, map_len);
2283 		return -EINVAL;
2284 	}
2285 
2286 	/* The default is to select all bits. */
2287 	map_mask = 0xffffffff;
2288 
2289 	/*
2290 	 * Can be overridden by "{iommu,msi}-map-mask" property.
2291 	 * If of_property_read_u32() fails, the default is used.
2292 	 */
2293 	if (map_mask_name)
2294 		of_property_read_u32(np, map_mask_name, &map_mask);
2295 
2296 	masked_rid = map_mask & rid;
2297 	for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2298 		struct device_node *phandle_node;
2299 		u32 rid_base = be32_to_cpup(map + 0);
2300 		u32 phandle = be32_to_cpup(map + 1);
2301 		u32 out_base = be32_to_cpup(map + 2);
2302 		u32 rid_len = be32_to_cpup(map + 3);
2303 
2304 		if (rid_base & ~map_mask) {
2305 			pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores rid-base (0x%x)\n",
2306 				np, map_name, map_name,
2307 				map_mask, rid_base);
2308 			return -EFAULT;
2309 		}
2310 
2311 		if (masked_rid < rid_base || masked_rid >= rid_base + rid_len)
2312 			continue;
2313 
2314 		phandle_node = of_find_node_by_phandle(phandle);
2315 		if (!phandle_node)
2316 			return -ENODEV;
2317 
2318 		if (target) {
2319 			if (*target)
2320 				of_node_put(phandle_node);
2321 			else
2322 				*target = phandle_node;
2323 
2324 			if (*target != phandle_node)
2325 				continue;
2326 		}
2327 
2328 		if (id_out)
2329 			*id_out = masked_rid - rid_base + out_base;
2330 
2331 		pr_debug("%pOF: %s, using mask %08x, rid-base: %08x, out-base: %08x, length: %08x, rid: %08x -> %08x\n",
2332 			np, map_name, map_mask, rid_base, out_base,
2333 			rid_len, rid, masked_rid - rid_base + out_base);
2334 		return 0;
2335 	}
2336 
2337 	pr_info("%pOF: no %s translation for rid 0x%x on %pOF\n", np, map_name,
2338 		rid, target && *target ? *target : NULL);
2339 
2340 	/* Bypasses translation */
2341 	if (id_out)
2342 		*id_out = rid;
2343 	return 0;
2344 }
2345 EXPORT_SYMBOL_GPL(of_map_rid);
2346