1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
6  *		Florian La Roche, <rzsfl@rz.uni-sb.de>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/bug.h>
21 #include <linux/cache.h>
22 #include <linux/rbtree.h>
23 #include <linux/socket.h>
24 #include <linux/refcount.h>
25 
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <linux/sched/clock.h>
38 #include <net/flow_dissector.h>
39 #include <linux/splice.h>
40 #include <linux/in6.h>
41 #include <linux/if_packet.h>
42 #include <net/flow.h>
43 
44 /* The interface for checksum offload between the stack and networking drivers
45  * is as follows...
46  *
47  * A. IP checksum related features
48  *
49  * Drivers advertise checksum offload capabilities in the features of a device.
50  * From the stack's point of view these are capabilities offered by the driver,
51  * a driver typically only advertises features that it is capable of offloading
52  * to its device.
53  *
54  * The checksum related features are:
55  *
56  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
57  *			  IP (one's complement) checksum for any combination
58  *			  of protocols or protocol layering. The checksum is
59  *			  computed and set in a packet per the CHECKSUM_PARTIAL
60  *			  interface (see below).
61  *
62  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63  *			  TCP or UDP packets over IPv4. These are specifically
64  *			  unencapsulated packets of the form IPv4|TCP or
65  *			  IPv4|UDP where the Protocol field in the IPv4 header
66  *			  is TCP or UDP. The IPv4 header may contain IP options
67  *			  This feature cannot be set in features for a device
68  *			  with NETIF_F_HW_CSUM also set. This feature is being
69  *			  DEPRECATED (see below).
70  *
71  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72  *			  TCP or UDP packets over IPv6. These are specifically
73  *			  unencapsulated packets of the form IPv6|TCP or
74  *			  IPv4|UDP where the Next Header field in the IPv6
75  *			  header is either TCP or UDP. IPv6 extension headers
76  *			  are not supported with this feature. This feature
77  *			  cannot be set in features for a device with
78  *			  NETIF_F_HW_CSUM also set. This feature is being
79  *			  DEPRECATED (see below).
80  *
81  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82  *			 This flag is used only used to disable the RX checksum
83  *			 feature for a device. The stack will accept receive
84  *			 checksum indication in packets received on a device
85  *			 regardless of whether NETIF_F_RXCSUM is set.
86  *
87  * B. Checksumming of received packets by device. Indication of checksum
88  *    verification is in set skb->ip_summed. Possible values are:
89  *
90  * CHECKSUM_NONE:
91  *
92  *   Device did not checksum this packet e.g. due to lack of capabilities.
93  *   The packet contains full (though not verified) checksum in packet but
94  *   not in skb->csum. Thus, skb->csum is undefined in this case.
95  *
96  * CHECKSUM_UNNECESSARY:
97  *
98  *   The hardware you're dealing with doesn't calculate the full checksum
99  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101  *   if their checksums are okay. skb->csum is still undefined in this case
102  *   though. A driver or device must never modify the checksum field in the
103  *   packet even if checksum is verified.
104  *
105  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
106  *     TCP: IPv6 and IPv4.
107  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
109  *       may perform further validation in this case.
110  *     GRE: only if the checksum is present in the header.
111  *     SCTP: indicates the CRC in SCTP header has been validated.
112  *     FCOE: indicates the CRC in FC frame has been validated.
113  *
114  *   skb->csum_level indicates the number of consecutive checksums found in
115  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117  *   and a device is able to verify the checksums for UDP (possibly zero),
118  *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
119  *   two. If the device were only able to verify the UDP checksum and not
120  *   GRE, either because it doesn't support GRE checksum of because GRE
121  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122  *   not considered in this case).
123  *
124  * CHECKSUM_COMPLETE:
125  *
126  *   This is the most generic way. The device supplied checksum of the _whole_
127  *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
128  *   hardware doesn't need to parse L3/L4 headers to implement this.
129  *
130  *   Notes:
131  *   - Even if device supports only some protocols, but is able to produce
132  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134  *
135  * CHECKSUM_PARTIAL:
136  *
137  *   A checksum is set up to be offloaded to a device as described in the
138  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
139  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
140  *   on the same host, or it may be set in the input path in GRO or remote
141  *   checksum offload. For the purposes of checksum verification, the checksum
142  *   referred to by skb->csum_start + skb->csum_offset and any preceding
143  *   checksums in the packet are considered verified. Any checksums in the
144  *   packet that are after the checksum being offloaded are not considered to
145  *   be verified.
146  *
147  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148  *    in the skb->ip_summed for a packet. Values are:
149  *
150  * CHECKSUM_PARTIAL:
151  *
152  *   The driver is required to checksum the packet as seen by hard_start_xmit()
153  *   from skb->csum_start up to the end, and to record/write the checksum at
154  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
155  *   csum_start and csum_offset values are valid values given the length and
156  *   offset of the packet, however they should not attempt to validate that the
157  *   checksum refers to a legitimate transport layer checksum-- it is the
158  *   purview of the stack to validate that csum_start and csum_offset are set
159  *   correctly.
160  *
161  *   When the stack requests checksum offload for a packet, the driver MUST
162  *   ensure that the checksum is set correctly. A driver can either offload the
163  *   checksum calculation to the device, or call skb_checksum_help (in the case
164  *   that the device does not support offload for a particular checksum).
165  *
166  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168  *   checksum offload capability.
169  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170  *   on network device checksumming capabilities: if a packet does not match
171  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
172  *   csum_not_inet, see item D.) is called to resolve the checksum.
173  *
174  * CHECKSUM_NONE:
175  *
176  *   The skb was already checksummed by the protocol, or a checksum is not
177  *   required.
178  *
179  * CHECKSUM_UNNECESSARY:
180  *
181  *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
182  *   output.
183  *
184  * CHECKSUM_COMPLETE:
185  *   Not used in checksum output. If a driver observes a packet with this value
186  *   set in skbuff, if should treat as CHECKSUM_NONE being set.
187  *
188  * D. Non-IP checksum (CRC) offloads
189  *
190  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191  *     offloading the SCTP CRC in a packet. To perform this offload the stack
192  *     will set set csum_start and csum_offset accordingly, set ip_summed to
193  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
196  *     must verify which offload is configured for a packet by testing the
197  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199  *
200  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201  *     offloading the FCOE CRC in a packet. To perform this offload the stack
202  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203  *     accordingly. Note the there is no indication in the skbuff that the
204  *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
205  *     both IP checksum offload and FCOE CRC offload must verify which offload
206  *     is configured for a packet presumably by inspecting packet headers.
207  *
208  * E. Checksumming on output with GSO.
209  *
210  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213  * part of the GSO operation is implied. If a checksum is being offloaded
214  * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
215  * are set to refer to the outermost checksum being offload (two offloaded
216  * checksums are possible with UDP encapsulation).
217  */
218 
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE		0
221 #define CHECKSUM_UNNECESSARY	1
222 #define CHECKSUM_COMPLETE	2
223 #define CHECKSUM_PARTIAL	3
224 
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL	3
227 
228 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X)	\
230 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
235 
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) +						\
238 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
239 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240 
241 struct net_device;
242 struct scatterlist;
243 struct pipe_inode_info;
244 struct iov_iter;
245 struct napi_struct;
246 
247 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
248 struct nf_conntrack {
249 	atomic_t use;
250 };
251 #endif
252 
253 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
254 struct nf_bridge_info {
255 	refcount_t		use;
256 	enum {
257 		BRNF_PROTO_UNCHANGED,
258 		BRNF_PROTO_8021Q,
259 		BRNF_PROTO_PPPOE
260 	} orig_proto:8;
261 	u8			pkt_otherhost:1;
262 	u8			in_prerouting:1;
263 	u8			bridged_dnat:1;
264 	__u16			frag_max_size;
265 	struct net_device	*physindev;
266 
267 	/* always valid & non-NULL from FORWARD on, for physdev match */
268 	struct net_device	*physoutdev;
269 	union {
270 		/* prerouting: detect dnat in orig/reply direction */
271 		__be32          ipv4_daddr;
272 		struct in6_addr ipv6_daddr;
273 
274 		/* after prerouting + nat detected: store original source
275 		 * mac since neigh resolution overwrites it, only used while
276 		 * skb is out in neigh layer.
277 		 */
278 		char neigh_header[8];
279 	};
280 };
281 #endif
282 
283 struct sk_buff_head {
284 	/* These two members must be first. */
285 	struct sk_buff	*next;
286 	struct sk_buff	*prev;
287 
288 	__u32		qlen;
289 	spinlock_t	lock;
290 };
291 
292 struct sk_buff;
293 
294 /* To allow 64K frame to be packed as single skb without frag_list we
295  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
296  * buffers which do not start on a page boundary.
297  *
298  * Since GRO uses frags we allocate at least 16 regardless of page
299  * size.
300  */
301 #if (65536/PAGE_SIZE + 1) < 16
302 #define MAX_SKB_FRAGS 16UL
303 #else
304 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
305 #endif
306 extern int sysctl_max_skb_frags;
307 
308 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
309  * segment using its current segmentation instead.
310  */
311 #define GSO_BY_FRAGS	0xFFFF
312 
313 typedef struct skb_frag_struct skb_frag_t;
314 
315 struct skb_frag_struct {
316 	struct {
317 		struct page *p;
318 	} page;
319 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
320 	__u32 page_offset;
321 	__u32 size;
322 #else
323 	__u16 page_offset;
324 	__u16 size;
325 #endif
326 };
327 
skb_frag_size(const skb_frag_t * frag)328 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
329 {
330 	return frag->size;
331 }
332 
skb_frag_size_set(skb_frag_t * frag,unsigned int size)333 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
334 {
335 	frag->size = size;
336 }
337 
skb_frag_size_add(skb_frag_t * frag,int delta)338 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
339 {
340 	frag->size += delta;
341 }
342 
skb_frag_size_sub(skb_frag_t * frag,int delta)343 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
344 {
345 	frag->size -= delta;
346 }
347 
skb_frag_must_loop(struct page * p)348 static inline bool skb_frag_must_loop(struct page *p)
349 {
350 #if defined(CONFIG_HIGHMEM)
351 	if (PageHighMem(p))
352 		return true;
353 #endif
354 	return false;
355 }
356 
357 /**
358  *	skb_frag_foreach_page - loop over pages in a fragment
359  *
360  *	@f:		skb frag to operate on
361  *	@f_off:		offset from start of f->page.p
362  *	@f_len:		length from f_off to loop over
363  *	@p:		(temp var) current page
364  *	@p_off:		(temp var) offset from start of current page,
365  *	                           non-zero only on first page.
366  *	@p_len:		(temp var) length in current page,
367  *				   < PAGE_SIZE only on first and last page.
368  *	@copied:	(temp var) length so far, excluding current p_len.
369  *
370  *	A fragment can hold a compound page, in which case per-page
371  *	operations, notably kmap_atomic, must be called for each
372  *	regular page.
373  */
374 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
375 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
376 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
377 	     p_len = skb_frag_must_loop(p) ?				\
378 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
379 	     copied = 0;						\
380 	     copied < f_len;						\
381 	     copied += p_len, p++, p_off = 0,				\
382 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
383 
384 #define HAVE_HW_TIME_STAMP
385 
386 /**
387  * struct skb_shared_hwtstamps - hardware time stamps
388  * @hwtstamp:	hardware time stamp transformed into duration
389  *		since arbitrary point in time
390  *
391  * Software time stamps generated by ktime_get_real() are stored in
392  * skb->tstamp.
393  *
394  * hwtstamps can only be compared against other hwtstamps from
395  * the same device.
396  *
397  * This structure is attached to packets as part of the
398  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
399  */
400 struct skb_shared_hwtstamps {
401 	ktime_t	hwtstamp;
402 };
403 
404 /* Definitions for tx_flags in struct skb_shared_info */
405 enum {
406 	/* generate hardware time stamp */
407 	SKBTX_HW_TSTAMP = 1 << 0,
408 
409 	/* generate software time stamp when queueing packet to NIC */
410 	SKBTX_SW_TSTAMP = 1 << 1,
411 
412 	/* device driver is going to provide hardware time stamp */
413 	SKBTX_IN_PROGRESS = 1 << 2,
414 
415 	/* device driver supports TX zero-copy buffers */
416 	SKBTX_DEV_ZEROCOPY = 1 << 3,
417 
418 	/* generate wifi status information (where possible) */
419 	SKBTX_WIFI_STATUS = 1 << 4,
420 
421 	/* This indicates at least one fragment might be overwritten
422 	 * (as in vmsplice(), sendfile() ...)
423 	 * If we need to compute a TX checksum, we'll need to copy
424 	 * all frags to avoid possible bad checksum
425 	 */
426 	SKBTX_SHARED_FRAG = 1 << 5,
427 
428 	/* generate software time stamp when entering packet scheduling */
429 	SKBTX_SCHED_TSTAMP = 1 << 6,
430 };
431 
432 #define SKBTX_ZEROCOPY_FRAG	(SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
433 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
434 				 SKBTX_SCHED_TSTAMP)
435 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
436 
437 /*
438  * The callback notifies userspace to release buffers when skb DMA is done in
439  * lower device, the skb last reference should be 0 when calling this.
440  * The zerocopy_success argument is true if zero copy transmit occurred,
441  * false on data copy or out of memory error caused by data copy attempt.
442  * The ctx field is used to track device context.
443  * The desc field is used to track userspace buffer index.
444  */
445 struct ubuf_info {
446 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
447 	union {
448 		struct {
449 			unsigned long desc;
450 			void *ctx;
451 		};
452 		struct {
453 			u32 id;
454 			u16 len;
455 			u16 zerocopy:1;
456 			u32 bytelen;
457 		};
458 	};
459 	refcount_t refcnt;
460 
461 	struct mmpin {
462 		struct user_struct *user;
463 		unsigned int num_pg;
464 	} mmp;
465 };
466 
467 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
468 
469 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
470 void mm_unaccount_pinned_pages(struct mmpin *mmp);
471 
472 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
473 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
474 					struct ubuf_info *uarg);
475 
sock_zerocopy_get(struct ubuf_info * uarg)476 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
477 {
478 	refcount_inc(&uarg->refcnt);
479 }
480 
481 void sock_zerocopy_put(struct ubuf_info *uarg);
482 void sock_zerocopy_put_abort(struct ubuf_info *uarg);
483 
484 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
485 
486 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
487 			     struct msghdr *msg, int len,
488 			     struct ubuf_info *uarg);
489 
490 /* This data is invariant across clones and lives at
491  * the end of the header data, ie. at skb->end.
492  */
493 struct skb_shared_info {
494 	__u8		__unused;
495 	__u8		meta_len;
496 	__u8		nr_frags;
497 	__u8		tx_flags;
498 	unsigned short	gso_size;
499 	/* Warning: this field is not always filled in (UFO)! */
500 	unsigned short	gso_segs;
501 	struct sk_buff	*frag_list;
502 	struct skb_shared_hwtstamps hwtstamps;
503 	unsigned int	gso_type;
504 	u32		tskey;
505 
506 	/*
507 	 * Warning : all fields before dataref are cleared in __alloc_skb()
508 	 */
509 	atomic_t	dataref;
510 
511 	/* Intermediate layers must ensure that destructor_arg
512 	 * remains valid until skb destructor */
513 	void *		destructor_arg;
514 
515 	/* must be last field, see pskb_expand_head() */
516 	skb_frag_t	frags[MAX_SKB_FRAGS];
517 };
518 
519 /* We divide dataref into two halves.  The higher 16 bits hold references
520  * to the payload part of skb->data.  The lower 16 bits hold references to
521  * the entire skb->data.  A clone of a headerless skb holds the length of
522  * the header in skb->hdr_len.
523  *
524  * All users must obey the rule that the skb->data reference count must be
525  * greater than or equal to the payload reference count.
526  *
527  * Holding a reference to the payload part means that the user does not
528  * care about modifications to the header part of skb->data.
529  */
530 #define SKB_DATAREF_SHIFT 16
531 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
532 
533 
534 enum {
535 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
536 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
537 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
538 };
539 
540 enum {
541 	SKB_GSO_TCPV4 = 1 << 0,
542 
543 	/* This indicates the skb is from an untrusted source. */
544 	SKB_GSO_DODGY = 1 << 1,
545 
546 	/* This indicates the tcp segment has CWR set. */
547 	SKB_GSO_TCP_ECN = 1 << 2,
548 
549 	SKB_GSO_TCP_FIXEDID = 1 << 3,
550 
551 	SKB_GSO_TCPV6 = 1 << 4,
552 
553 	SKB_GSO_FCOE = 1 << 5,
554 
555 	SKB_GSO_GRE = 1 << 6,
556 
557 	SKB_GSO_GRE_CSUM = 1 << 7,
558 
559 	SKB_GSO_IPXIP4 = 1 << 8,
560 
561 	SKB_GSO_IPXIP6 = 1 << 9,
562 
563 	SKB_GSO_UDP_TUNNEL = 1 << 10,
564 
565 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
566 
567 	SKB_GSO_PARTIAL = 1 << 12,
568 
569 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
570 
571 	SKB_GSO_SCTP = 1 << 14,
572 
573 	SKB_GSO_ESP = 1 << 15,
574 
575 	SKB_GSO_UDP = 1 << 16,
576 
577 	SKB_GSO_UDP_L4 = 1 << 17,
578 };
579 
580 #if BITS_PER_LONG > 32
581 #define NET_SKBUFF_DATA_USES_OFFSET 1
582 #endif
583 
584 #ifdef NET_SKBUFF_DATA_USES_OFFSET
585 typedef unsigned int sk_buff_data_t;
586 #else
587 typedef unsigned char *sk_buff_data_t;
588 #endif
589 
590 /**
591  *	struct sk_buff - socket buffer
592  *	@next: Next buffer in list
593  *	@prev: Previous buffer in list
594  *	@tstamp: Time we arrived/left
595  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
596  *	@sk: Socket we are owned by
597  *	@dev: Device we arrived on/are leaving by
598  *	@cb: Control buffer. Free for use by every layer. Put private vars here
599  *	@_skb_refdst: destination entry (with norefcount bit)
600  *	@sp: the security path, used for xfrm
601  *	@len: Length of actual data
602  *	@data_len: Data length
603  *	@mac_len: Length of link layer header
604  *	@hdr_len: writable header length of cloned skb
605  *	@csum: Checksum (must include start/offset pair)
606  *	@csum_start: Offset from skb->head where checksumming should start
607  *	@csum_offset: Offset from csum_start where checksum should be stored
608  *	@priority: Packet queueing priority
609  *	@ignore_df: allow local fragmentation
610  *	@cloned: Head may be cloned (check refcnt to be sure)
611  *	@ip_summed: Driver fed us an IP checksum
612  *	@nohdr: Payload reference only, must not modify header
613  *	@pkt_type: Packet class
614  *	@fclone: skbuff clone status
615  *	@ipvs_property: skbuff is owned by ipvs
616  *	@tc_skip_classify: do not classify packet. set by IFB device
617  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
618  *	@tc_redirected: packet was redirected by a tc action
619  *	@tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
620  *	@peeked: this packet has been seen already, so stats have been
621  *		done for it, don't do them again
622  *	@nf_trace: netfilter packet trace flag
623  *	@protocol: Packet protocol from driver
624  *	@destructor: Destruct function
625  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
626  *	@_nfct: Associated connection, if any (with nfctinfo bits)
627  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
628  *	@skb_iif: ifindex of device we arrived on
629  *	@tc_index: Traffic control index
630  *	@hash: the packet hash
631  *	@queue_mapping: Queue mapping for multiqueue devices
632  *	@xmit_more: More SKBs are pending for this queue
633  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
634  *	@ndisc_nodetype: router type (from link layer)
635  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
636  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
637  *		ports.
638  *	@sw_hash: indicates hash was computed in software stack
639  *	@wifi_acked_valid: wifi_acked was set
640  *	@wifi_acked: whether frame was acked on wifi or not
641  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
642  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
643  *	@dst_pending_confirm: need to confirm neighbour
644  *	@decrypted: Decrypted SKB
645   *	@napi_id: id of the NAPI struct this skb came from
646  *	@secmark: security marking
647  *	@mark: Generic packet mark
648  *	@vlan_proto: vlan encapsulation protocol
649  *	@vlan_tci: vlan tag control information
650  *	@inner_protocol: Protocol (encapsulation)
651  *	@inner_transport_header: Inner transport layer header (encapsulation)
652  *	@inner_network_header: Network layer header (encapsulation)
653  *	@inner_mac_header: Link layer header (encapsulation)
654  *	@transport_header: Transport layer header
655  *	@network_header: Network layer header
656  *	@mac_header: Link layer header
657  *	@tail: Tail pointer
658  *	@end: End pointer
659  *	@head: Head of buffer
660  *	@data: Data head pointer
661  *	@truesize: Buffer size
662  *	@users: User count - see {datagram,tcp}.c
663  */
664 
665 struct sk_buff {
666 	union {
667 		struct {
668 			/* These two members must be first. */
669 			struct sk_buff		*next;
670 			struct sk_buff		*prev;
671 
672 			union {
673 				struct net_device	*dev;
674 				/* Some protocols might use this space to store information,
675 				 * while device pointer would be NULL.
676 				 * UDP receive path is one user.
677 				 */
678 				unsigned long		dev_scratch;
679 			};
680 		};
681 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
682 		struct list_head	list;
683 	};
684 
685 	union {
686 		struct sock		*sk;
687 		int			ip_defrag_offset;
688 	};
689 
690 	union {
691 		ktime_t		tstamp;
692 		u64		skb_mstamp;
693 	};
694 	/*
695 	 * This is the control buffer. It is free to use for every
696 	 * layer. Please put your private variables there. If you
697 	 * want to keep them across layers you have to do a skb_clone()
698 	 * first. This is owned by whoever has the skb queued ATM.
699 	 */
700 	char			cb[48] __aligned(8);
701 
702 	union {
703 		struct {
704 			unsigned long	_skb_refdst;
705 			void		(*destructor)(struct sk_buff *skb);
706 		};
707 		struct list_head	tcp_tsorted_anchor;
708 	};
709 
710 #ifdef CONFIG_XFRM
711 	struct	sec_path	*sp;
712 #endif
713 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
714 	unsigned long		 _nfct;
715 #endif
716 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
717 	struct nf_bridge_info	*nf_bridge;
718 #endif
719 	unsigned int		len,
720 				data_len;
721 	__u16			mac_len,
722 				hdr_len;
723 
724 	/* Following fields are _not_ copied in __copy_skb_header()
725 	 * Note that queue_mapping is here mostly to fill a hole.
726 	 */
727 	__u16			queue_mapping;
728 
729 /* if you move cloned around you also must adapt those constants */
730 #ifdef __BIG_ENDIAN_BITFIELD
731 #define CLONED_MASK	(1 << 7)
732 #else
733 #define CLONED_MASK	1
734 #endif
735 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
736 
737 	__u8			__cloned_offset[0];
738 	__u8			cloned:1,
739 				nohdr:1,
740 				fclone:2,
741 				peeked:1,
742 				head_frag:1,
743 				xmit_more:1,
744 				pfmemalloc:1;
745 
746 	/* fields enclosed in headers_start/headers_end are copied
747 	 * using a single memcpy() in __copy_skb_header()
748 	 */
749 	/* private: */
750 	__u32			headers_start[0];
751 	/* public: */
752 
753 /* if you move pkt_type around you also must adapt those constants */
754 #ifdef __BIG_ENDIAN_BITFIELD
755 #define PKT_TYPE_MAX	(7 << 5)
756 #else
757 #define PKT_TYPE_MAX	7
758 #endif
759 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
760 
761 	__u8			__pkt_type_offset[0];
762 	__u8			pkt_type:3;
763 	__u8			ignore_df:1;
764 	__u8			nf_trace:1;
765 	__u8			ip_summed:2;
766 	__u8			ooo_okay:1;
767 
768 	__u8			l4_hash:1;
769 	__u8			sw_hash:1;
770 	__u8			wifi_acked_valid:1;
771 	__u8			wifi_acked:1;
772 	__u8			no_fcs:1;
773 	/* Indicates the inner headers are valid in the skbuff. */
774 	__u8			encapsulation:1;
775 	__u8			encap_hdr_csum:1;
776 	__u8			csum_valid:1;
777 
778 	__u8			csum_complete_sw:1;
779 	__u8			csum_level:2;
780 	__u8			csum_not_inet:1;
781 	__u8			dst_pending_confirm:1;
782 #ifdef CONFIG_IPV6_NDISC_NODETYPE
783 	__u8			ndisc_nodetype:2;
784 #endif
785 	__u8			ipvs_property:1;
786 
787 	__u8			inner_protocol_type:1;
788 	__u8			remcsum_offload:1;
789 #ifdef CONFIG_NET_SWITCHDEV
790 	__u8			offload_fwd_mark:1;
791 	__u8			offload_mr_fwd_mark:1;
792 #endif
793 #ifdef CONFIG_NET_CLS_ACT
794 	__u8			tc_skip_classify:1;
795 	__u8			tc_at_ingress:1;
796 	__u8			tc_redirected:1;
797 	__u8			tc_from_ingress:1;
798 #endif
799 #ifdef CONFIG_TLS_DEVICE
800 	__u8			decrypted:1;
801 #endif
802 
803 #ifdef CONFIG_NET_SCHED
804 	__u16			tc_index;	/* traffic control index */
805 #endif
806 
807 	union {
808 		__wsum		csum;
809 		struct {
810 			__u16	csum_start;
811 			__u16	csum_offset;
812 		};
813 	};
814 	__u32			priority;
815 	int			skb_iif;
816 	__u32			hash;
817 	__be16			vlan_proto;
818 	__u16			vlan_tci;
819 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
820 	union {
821 		unsigned int	napi_id;
822 		unsigned int	sender_cpu;
823 	};
824 #endif
825 #ifdef CONFIG_NETWORK_SECMARK
826 	__u32		secmark;
827 #endif
828 
829 	union {
830 		__u32		mark;
831 		__u32		reserved_tailroom;
832 	};
833 
834 	union {
835 		__be16		inner_protocol;
836 		__u8		inner_ipproto;
837 	};
838 
839 	__u16			inner_transport_header;
840 	__u16			inner_network_header;
841 	__u16			inner_mac_header;
842 
843 	__be16			protocol;
844 	__u16			transport_header;
845 	__u16			network_header;
846 	__u16			mac_header;
847 
848 	/* private: */
849 	__u32			headers_end[0];
850 	/* public: */
851 
852 	/* These elements must be at the end, see alloc_skb() for details.  */
853 	sk_buff_data_t		tail;
854 	sk_buff_data_t		end;
855 	unsigned char		*head,
856 				*data;
857 	unsigned int		truesize;
858 	refcount_t		users;
859 };
860 
861 #ifdef __KERNEL__
862 /*
863  *	Handling routines are only of interest to the kernel
864  */
865 
866 #define SKB_ALLOC_FCLONE	0x01
867 #define SKB_ALLOC_RX		0x02
868 #define SKB_ALLOC_NAPI		0x04
869 
870 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
skb_pfmemalloc(const struct sk_buff * skb)871 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
872 {
873 	return unlikely(skb->pfmemalloc);
874 }
875 
876 /*
877  * skb might have a dst pointer attached, refcounted or not.
878  * _skb_refdst low order bit is set if refcount was _not_ taken
879  */
880 #define SKB_DST_NOREF	1UL
881 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
882 
883 #define SKB_NFCT_PTRMASK	~(7UL)
884 /**
885  * skb_dst - returns skb dst_entry
886  * @skb: buffer
887  *
888  * Returns skb dst_entry, regardless of reference taken or not.
889  */
skb_dst(const struct sk_buff * skb)890 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
891 {
892 	/* If refdst was not refcounted, check we still are in a
893 	 * rcu_read_lock section
894 	 */
895 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
896 		!rcu_read_lock_held() &&
897 		!rcu_read_lock_bh_held());
898 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
899 }
900 
901 /**
902  * skb_dst_set - sets skb dst
903  * @skb: buffer
904  * @dst: dst entry
905  *
906  * Sets skb dst, assuming a reference was taken on dst and should
907  * be released by skb_dst_drop()
908  */
skb_dst_set(struct sk_buff * skb,struct dst_entry * dst)909 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
910 {
911 	skb->_skb_refdst = (unsigned long)dst;
912 }
913 
914 /**
915  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
916  * @skb: buffer
917  * @dst: dst entry
918  *
919  * Sets skb dst, assuming a reference was not taken on dst.
920  * If dst entry is cached, we do not take reference and dst_release
921  * will be avoided by refdst_drop. If dst entry is not cached, we take
922  * reference, so that last dst_release can destroy the dst immediately.
923  */
skb_dst_set_noref(struct sk_buff * skb,struct dst_entry * dst)924 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
925 {
926 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
927 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
928 }
929 
930 /**
931  * skb_dst_is_noref - Test if skb dst isn't refcounted
932  * @skb: buffer
933  */
skb_dst_is_noref(const struct sk_buff * skb)934 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
935 {
936 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
937 }
938 
skb_rtable(const struct sk_buff * skb)939 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
940 {
941 	return (struct rtable *)skb_dst(skb);
942 }
943 
944 /* For mangling skb->pkt_type from user space side from applications
945  * such as nft, tc, etc, we only allow a conservative subset of
946  * possible pkt_types to be set.
947 */
skb_pkt_type_ok(u32 ptype)948 static inline bool skb_pkt_type_ok(u32 ptype)
949 {
950 	return ptype <= PACKET_OTHERHOST;
951 }
952 
skb_napi_id(const struct sk_buff * skb)953 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
954 {
955 #ifdef CONFIG_NET_RX_BUSY_POLL
956 	return skb->napi_id;
957 #else
958 	return 0;
959 #endif
960 }
961 
962 /* decrement the reference count and return true if we can free the skb */
skb_unref(struct sk_buff * skb)963 static inline bool skb_unref(struct sk_buff *skb)
964 {
965 	if (unlikely(!skb))
966 		return false;
967 	if (likely(refcount_read(&skb->users) == 1))
968 		smp_rmb();
969 	else if (likely(!refcount_dec_and_test(&skb->users)))
970 		return false;
971 
972 	return true;
973 }
974 
975 void skb_release_head_state(struct sk_buff *skb);
976 void kfree_skb(struct sk_buff *skb);
977 void kfree_skb_list(struct sk_buff *segs);
978 void skb_tx_error(struct sk_buff *skb);
979 void consume_skb(struct sk_buff *skb);
980 void __consume_stateless_skb(struct sk_buff *skb);
981 void  __kfree_skb(struct sk_buff *skb);
982 extern struct kmem_cache *skbuff_head_cache;
983 
984 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
985 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
986 		      bool *fragstolen, int *delta_truesize);
987 
988 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
989 			    int node);
990 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
991 struct sk_buff *build_skb(void *data, unsigned int frag_size);
alloc_skb(unsigned int size,gfp_t priority)992 static inline struct sk_buff *alloc_skb(unsigned int size,
993 					gfp_t priority)
994 {
995 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
996 }
997 
998 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
999 				     unsigned long data_len,
1000 				     int max_page_order,
1001 				     int *errcode,
1002 				     gfp_t gfp_mask);
1003 
1004 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1005 struct sk_buff_fclones {
1006 	struct sk_buff	skb1;
1007 
1008 	struct sk_buff	skb2;
1009 
1010 	refcount_t	fclone_ref;
1011 };
1012 
1013 /**
1014  *	skb_fclone_busy - check if fclone is busy
1015  *	@sk: socket
1016  *	@skb: buffer
1017  *
1018  * Returns true if skb is a fast clone, and its clone is not freed.
1019  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1020  * so we also check that this didnt happen.
1021  */
skb_fclone_busy(const struct sock * sk,const struct sk_buff * skb)1022 static inline bool skb_fclone_busy(const struct sock *sk,
1023 				   const struct sk_buff *skb)
1024 {
1025 	const struct sk_buff_fclones *fclones;
1026 
1027 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1028 
1029 	return skb->fclone == SKB_FCLONE_ORIG &&
1030 	       refcount_read(&fclones->fclone_ref) > 1 &&
1031 	       fclones->skb2.sk == sk;
1032 }
1033 
alloc_skb_fclone(unsigned int size,gfp_t priority)1034 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1035 					       gfp_t priority)
1036 {
1037 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1038 }
1039 
1040 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1041 void skb_headers_offset_update(struct sk_buff *skb, int off);
1042 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1043 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1044 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1045 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1046 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1047 				   gfp_t gfp_mask, bool fclone);
__pskb_copy(struct sk_buff * skb,int headroom,gfp_t gfp_mask)1048 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1049 					  gfp_t gfp_mask)
1050 {
1051 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1052 }
1053 
1054 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1055 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1056 				     unsigned int headroom);
1057 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1058 				int newtailroom, gfp_t priority);
1059 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1060 				     int offset, int len);
1061 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1062 			      int offset, int len);
1063 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1064 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1065 
1066 /**
1067  *	skb_pad			-	zero pad the tail of an skb
1068  *	@skb: buffer to pad
1069  *	@pad: space to pad
1070  *
1071  *	Ensure that a buffer is followed by a padding area that is zero
1072  *	filled. Used by network drivers which may DMA or transfer data
1073  *	beyond the buffer end onto the wire.
1074  *
1075  *	May return error in out of memory cases. The skb is freed on error.
1076  */
skb_pad(struct sk_buff * skb,int pad)1077 static inline int skb_pad(struct sk_buff *skb, int pad)
1078 {
1079 	return __skb_pad(skb, pad, true);
1080 }
1081 #define dev_kfree_skb(a)	consume_skb(a)
1082 
1083 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1084 			    int getfrag(void *from, char *to, int offset,
1085 					int len, int odd, struct sk_buff *skb),
1086 			    void *from, int length);
1087 
1088 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1089 			 int offset, size_t size);
1090 
1091 struct skb_seq_state {
1092 	__u32		lower_offset;
1093 	__u32		upper_offset;
1094 	__u32		frag_idx;
1095 	__u32		stepped_offset;
1096 	struct sk_buff	*root_skb;
1097 	struct sk_buff	*cur_skb;
1098 	__u8		*frag_data;
1099 };
1100 
1101 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1102 			  unsigned int to, struct skb_seq_state *st);
1103 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1104 			  struct skb_seq_state *st);
1105 void skb_abort_seq_read(struct skb_seq_state *st);
1106 
1107 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1108 			   unsigned int to, struct ts_config *config);
1109 
1110 /*
1111  * Packet hash types specify the type of hash in skb_set_hash.
1112  *
1113  * Hash types refer to the protocol layer addresses which are used to
1114  * construct a packet's hash. The hashes are used to differentiate or identify
1115  * flows of the protocol layer for the hash type. Hash types are either
1116  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1117  *
1118  * Properties of hashes:
1119  *
1120  * 1) Two packets in different flows have different hash values
1121  * 2) Two packets in the same flow should have the same hash value
1122  *
1123  * A hash at a higher layer is considered to be more specific. A driver should
1124  * set the most specific hash possible.
1125  *
1126  * A driver cannot indicate a more specific hash than the layer at which a hash
1127  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1128  *
1129  * A driver may indicate a hash level which is less specific than the
1130  * actual layer the hash was computed on. For instance, a hash computed
1131  * at L4 may be considered an L3 hash. This should only be done if the
1132  * driver can't unambiguously determine that the HW computed the hash at
1133  * the higher layer. Note that the "should" in the second property above
1134  * permits this.
1135  */
1136 enum pkt_hash_types {
1137 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1138 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1139 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1140 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1141 };
1142 
skb_clear_hash(struct sk_buff * skb)1143 static inline void skb_clear_hash(struct sk_buff *skb)
1144 {
1145 	skb->hash = 0;
1146 	skb->sw_hash = 0;
1147 	skb->l4_hash = 0;
1148 }
1149 
skb_clear_hash_if_not_l4(struct sk_buff * skb)1150 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1151 {
1152 	if (!skb->l4_hash)
1153 		skb_clear_hash(skb);
1154 }
1155 
1156 static inline void
__skb_set_hash(struct sk_buff * skb,__u32 hash,bool is_sw,bool is_l4)1157 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1158 {
1159 	skb->l4_hash = is_l4;
1160 	skb->sw_hash = is_sw;
1161 	skb->hash = hash;
1162 }
1163 
1164 static inline void
skb_set_hash(struct sk_buff * skb,__u32 hash,enum pkt_hash_types type)1165 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1166 {
1167 	/* Used by drivers to set hash from HW */
1168 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1169 }
1170 
1171 static inline void
__skb_set_sw_hash(struct sk_buff * skb,__u32 hash,bool is_l4)1172 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1173 {
1174 	__skb_set_hash(skb, hash, true, is_l4);
1175 }
1176 
1177 void __skb_get_hash(struct sk_buff *skb);
1178 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1179 u32 skb_get_poff(const struct sk_buff *skb);
1180 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1181 		   const struct flow_keys_basic *keys, int hlen);
1182 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1183 			    void *data, int hlen_proto);
1184 
skb_flow_get_ports(const struct sk_buff * skb,int thoff,u8 ip_proto)1185 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1186 					int thoff, u8 ip_proto)
1187 {
1188 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1189 }
1190 
1191 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1192 			     const struct flow_dissector_key *key,
1193 			     unsigned int key_count);
1194 
1195 bool __skb_flow_dissect(const struct sk_buff *skb,
1196 			struct flow_dissector *flow_dissector,
1197 			void *target_container,
1198 			void *data, __be16 proto, int nhoff, int hlen,
1199 			unsigned int flags);
1200 
skb_flow_dissect(const struct sk_buff * skb,struct flow_dissector * flow_dissector,void * target_container,unsigned int flags)1201 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1202 				    struct flow_dissector *flow_dissector,
1203 				    void *target_container, unsigned int flags)
1204 {
1205 	return __skb_flow_dissect(skb, flow_dissector, target_container,
1206 				  NULL, 0, 0, 0, flags);
1207 }
1208 
skb_flow_dissect_flow_keys(const struct sk_buff * skb,struct flow_keys * flow,unsigned int flags)1209 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1210 					      struct flow_keys *flow,
1211 					      unsigned int flags)
1212 {
1213 	memset(flow, 0, sizeof(*flow));
1214 	return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1215 				  NULL, 0, 0, 0, flags);
1216 }
1217 
1218 static inline bool
skb_flow_dissect_flow_keys_basic(const struct sk_buff * skb,struct flow_keys_basic * flow,void * data,__be16 proto,int nhoff,int hlen,unsigned int flags)1219 skb_flow_dissect_flow_keys_basic(const struct sk_buff *skb,
1220 				 struct flow_keys_basic *flow, void *data,
1221 				 __be16 proto, int nhoff, int hlen,
1222 				 unsigned int flags)
1223 {
1224 	memset(flow, 0, sizeof(*flow));
1225 	return __skb_flow_dissect(skb, &flow_keys_basic_dissector, flow,
1226 				  data, proto, nhoff, hlen, flags);
1227 }
1228 
1229 void
1230 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1231 			     struct flow_dissector *flow_dissector,
1232 			     void *target_container);
1233 
skb_get_hash(struct sk_buff * skb)1234 static inline __u32 skb_get_hash(struct sk_buff *skb)
1235 {
1236 	if (!skb->l4_hash && !skb->sw_hash)
1237 		__skb_get_hash(skb);
1238 
1239 	return skb->hash;
1240 }
1241 
skb_get_hash_flowi6(struct sk_buff * skb,const struct flowi6 * fl6)1242 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1243 {
1244 	if (!skb->l4_hash && !skb->sw_hash) {
1245 		struct flow_keys keys;
1246 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1247 
1248 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1249 	}
1250 
1251 	return skb->hash;
1252 }
1253 
1254 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1255 
skb_get_hash_raw(const struct sk_buff * skb)1256 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1257 {
1258 	return skb->hash;
1259 }
1260 
skb_copy_hash(struct sk_buff * to,const struct sk_buff * from)1261 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1262 {
1263 	to->hash = from->hash;
1264 	to->sw_hash = from->sw_hash;
1265 	to->l4_hash = from->l4_hash;
1266 };
1267 
1268 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_end_pointer(const struct sk_buff * skb)1269 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1270 {
1271 	return skb->head + skb->end;
1272 }
1273 
skb_end_offset(const struct sk_buff * skb)1274 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1275 {
1276 	return skb->end;
1277 }
1278 #else
skb_end_pointer(const struct sk_buff * skb)1279 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1280 {
1281 	return skb->end;
1282 }
1283 
skb_end_offset(const struct sk_buff * skb)1284 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1285 {
1286 	return skb->end - skb->head;
1287 }
1288 #endif
1289 
1290 /* Internal */
1291 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1292 
skb_hwtstamps(struct sk_buff * skb)1293 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1294 {
1295 	return &skb_shinfo(skb)->hwtstamps;
1296 }
1297 
skb_zcopy(struct sk_buff * skb)1298 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1299 {
1300 	bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1301 
1302 	return is_zcopy ? skb_uarg(skb) : NULL;
1303 }
1304 
skb_zcopy_set(struct sk_buff * skb,struct ubuf_info * uarg)1305 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg)
1306 {
1307 	if (skb && uarg && !skb_zcopy(skb)) {
1308 		sock_zerocopy_get(uarg);
1309 		skb_shinfo(skb)->destructor_arg = uarg;
1310 		skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1311 	}
1312 }
1313 
1314 /* Release a reference on a zerocopy structure */
skb_zcopy_clear(struct sk_buff * skb,bool zerocopy)1315 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1316 {
1317 	struct ubuf_info *uarg = skb_zcopy(skb);
1318 
1319 	if (uarg) {
1320 		if (uarg->callback == sock_zerocopy_callback) {
1321 			uarg->zerocopy = uarg->zerocopy && zerocopy;
1322 			sock_zerocopy_put(uarg);
1323 		} else {
1324 			uarg->callback(uarg, zerocopy);
1325 		}
1326 
1327 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1328 	}
1329 }
1330 
1331 /* Abort a zerocopy operation and revert zckey on error in send syscall */
skb_zcopy_abort(struct sk_buff * skb)1332 static inline void skb_zcopy_abort(struct sk_buff *skb)
1333 {
1334 	struct ubuf_info *uarg = skb_zcopy(skb);
1335 
1336 	if (uarg) {
1337 		sock_zerocopy_put_abort(uarg);
1338 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1339 	}
1340 }
1341 
1342 /**
1343  *	skb_queue_empty - check if a queue is empty
1344  *	@list: queue head
1345  *
1346  *	Returns true if the queue is empty, false otherwise.
1347  */
skb_queue_empty(const struct sk_buff_head * list)1348 static inline int skb_queue_empty(const struct sk_buff_head *list)
1349 {
1350 	return list->next == (const struct sk_buff *) list;
1351 }
1352 
1353 /**
1354  *	skb_queue_is_last - check if skb is the last entry in the queue
1355  *	@list: queue head
1356  *	@skb: buffer
1357  *
1358  *	Returns true if @skb is the last buffer on the list.
1359  */
skb_queue_is_last(const struct sk_buff_head * list,const struct sk_buff * skb)1360 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1361 				     const struct sk_buff *skb)
1362 {
1363 	return skb->next == (const struct sk_buff *) list;
1364 }
1365 
1366 /**
1367  *	skb_queue_is_first - check if skb is the first entry in the queue
1368  *	@list: queue head
1369  *	@skb: buffer
1370  *
1371  *	Returns true if @skb is the first buffer on the list.
1372  */
skb_queue_is_first(const struct sk_buff_head * list,const struct sk_buff * skb)1373 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1374 				      const struct sk_buff *skb)
1375 {
1376 	return skb->prev == (const struct sk_buff *) list;
1377 }
1378 
1379 /**
1380  *	skb_queue_next - return the next packet in the queue
1381  *	@list: queue head
1382  *	@skb: current buffer
1383  *
1384  *	Return the next packet in @list after @skb.  It is only valid to
1385  *	call this if skb_queue_is_last() evaluates to false.
1386  */
skb_queue_next(const struct sk_buff_head * list,const struct sk_buff * skb)1387 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1388 					     const struct sk_buff *skb)
1389 {
1390 	/* This BUG_ON may seem severe, but if we just return then we
1391 	 * are going to dereference garbage.
1392 	 */
1393 	BUG_ON(skb_queue_is_last(list, skb));
1394 	return skb->next;
1395 }
1396 
1397 /**
1398  *	skb_queue_prev - return the prev packet in the queue
1399  *	@list: queue head
1400  *	@skb: current buffer
1401  *
1402  *	Return the prev packet in @list before @skb.  It is only valid to
1403  *	call this if skb_queue_is_first() evaluates to false.
1404  */
skb_queue_prev(const struct sk_buff_head * list,const struct sk_buff * skb)1405 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1406 					     const struct sk_buff *skb)
1407 {
1408 	/* This BUG_ON may seem severe, but if we just return then we
1409 	 * are going to dereference garbage.
1410 	 */
1411 	BUG_ON(skb_queue_is_first(list, skb));
1412 	return skb->prev;
1413 }
1414 
1415 /**
1416  *	skb_get - reference buffer
1417  *	@skb: buffer to reference
1418  *
1419  *	Makes another reference to a socket buffer and returns a pointer
1420  *	to the buffer.
1421  */
skb_get(struct sk_buff * skb)1422 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1423 {
1424 	refcount_inc(&skb->users);
1425 	return skb;
1426 }
1427 
1428 /*
1429  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1430  */
1431 
1432 /**
1433  *	skb_cloned - is the buffer a clone
1434  *	@skb: buffer to check
1435  *
1436  *	Returns true if the buffer was generated with skb_clone() and is
1437  *	one of multiple shared copies of the buffer. Cloned buffers are
1438  *	shared data so must not be written to under normal circumstances.
1439  */
skb_cloned(const struct sk_buff * skb)1440 static inline int skb_cloned(const struct sk_buff *skb)
1441 {
1442 	return skb->cloned &&
1443 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1444 }
1445 
skb_unclone(struct sk_buff * skb,gfp_t pri)1446 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1447 {
1448 	might_sleep_if(gfpflags_allow_blocking(pri));
1449 
1450 	if (skb_cloned(skb))
1451 		return pskb_expand_head(skb, 0, 0, pri);
1452 
1453 	return 0;
1454 }
1455 
1456 /**
1457  *	skb_header_cloned - is the header a clone
1458  *	@skb: buffer to check
1459  *
1460  *	Returns true if modifying the header part of the buffer requires
1461  *	the data to be copied.
1462  */
skb_header_cloned(const struct sk_buff * skb)1463 static inline int skb_header_cloned(const struct sk_buff *skb)
1464 {
1465 	int dataref;
1466 
1467 	if (!skb->cloned)
1468 		return 0;
1469 
1470 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1471 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1472 	return dataref != 1;
1473 }
1474 
skb_header_unclone(struct sk_buff * skb,gfp_t pri)1475 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1476 {
1477 	might_sleep_if(gfpflags_allow_blocking(pri));
1478 
1479 	if (skb_header_cloned(skb))
1480 		return pskb_expand_head(skb, 0, 0, pri);
1481 
1482 	return 0;
1483 }
1484 
1485 /**
1486  *	__skb_header_release - release reference to header
1487  *	@skb: buffer to operate on
1488  */
__skb_header_release(struct sk_buff * skb)1489 static inline void __skb_header_release(struct sk_buff *skb)
1490 {
1491 	skb->nohdr = 1;
1492 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1493 }
1494 
1495 
1496 /**
1497  *	skb_shared - is the buffer shared
1498  *	@skb: buffer to check
1499  *
1500  *	Returns true if more than one person has a reference to this
1501  *	buffer.
1502  */
skb_shared(const struct sk_buff * skb)1503 static inline int skb_shared(const struct sk_buff *skb)
1504 {
1505 	return refcount_read(&skb->users) != 1;
1506 }
1507 
1508 /**
1509  *	skb_share_check - check if buffer is shared and if so clone it
1510  *	@skb: buffer to check
1511  *	@pri: priority for memory allocation
1512  *
1513  *	If the buffer is shared the buffer is cloned and the old copy
1514  *	drops a reference. A new clone with a single reference is returned.
1515  *	If the buffer is not shared the original buffer is returned. When
1516  *	being called from interrupt status or with spinlocks held pri must
1517  *	be GFP_ATOMIC.
1518  *
1519  *	NULL is returned on a memory allocation failure.
1520  */
skb_share_check(struct sk_buff * skb,gfp_t pri)1521 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1522 {
1523 	might_sleep_if(gfpflags_allow_blocking(pri));
1524 	if (skb_shared(skb)) {
1525 		struct sk_buff *nskb = skb_clone(skb, pri);
1526 
1527 		if (likely(nskb))
1528 			consume_skb(skb);
1529 		else
1530 			kfree_skb(skb);
1531 		skb = nskb;
1532 	}
1533 	return skb;
1534 }
1535 
1536 /*
1537  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1538  *	packets to handle cases where we have a local reader and forward
1539  *	and a couple of other messy ones. The normal one is tcpdumping
1540  *	a packet thats being forwarded.
1541  */
1542 
1543 /**
1544  *	skb_unshare - make a copy of a shared buffer
1545  *	@skb: buffer to check
1546  *	@pri: priority for memory allocation
1547  *
1548  *	If the socket buffer is a clone then this function creates a new
1549  *	copy of the data, drops a reference count on the old copy and returns
1550  *	the new copy with the reference count at 1. If the buffer is not a clone
1551  *	the original buffer is returned. When called with a spinlock held or
1552  *	from interrupt state @pri must be %GFP_ATOMIC
1553  *
1554  *	%NULL is returned on a memory allocation failure.
1555  */
skb_unshare(struct sk_buff * skb,gfp_t pri)1556 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1557 					  gfp_t pri)
1558 {
1559 	might_sleep_if(gfpflags_allow_blocking(pri));
1560 	if (skb_cloned(skb)) {
1561 		struct sk_buff *nskb = skb_copy(skb, pri);
1562 
1563 		/* Free our shared copy */
1564 		if (likely(nskb))
1565 			consume_skb(skb);
1566 		else
1567 			kfree_skb(skb);
1568 		skb = nskb;
1569 	}
1570 	return skb;
1571 }
1572 
1573 /**
1574  *	skb_peek - peek at the head of an &sk_buff_head
1575  *	@list_: list to peek at
1576  *
1577  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1578  *	be careful with this one. A peek leaves the buffer on the
1579  *	list and someone else may run off with it. You must hold
1580  *	the appropriate locks or have a private queue to do this.
1581  *
1582  *	Returns %NULL for an empty list or a pointer to the head element.
1583  *	The reference count is not incremented and the reference is therefore
1584  *	volatile. Use with caution.
1585  */
skb_peek(const struct sk_buff_head * list_)1586 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1587 {
1588 	struct sk_buff *skb = list_->next;
1589 
1590 	if (skb == (struct sk_buff *)list_)
1591 		skb = NULL;
1592 	return skb;
1593 }
1594 
1595 /**
1596  *	skb_peek_next - peek skb following the given one from a queue
1597  *	@skb: skb to start from
1598  *	@list_: list to peek at
1599  *
1600  *	Returns %NULL when the end of the list is met or a pointer to the
1601  *	next element. The reference count is not incremented and the
1602  *	reference is therefore volatile. Use with caution.
1603  */
skb_peek_next(struct sk_buff * skb,const struct sk_buff_head * list_)1604 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1605 		const struct sk_buff_head *list_)
1606 {
1607 	struct sk_buff *next = skb->next;
1608 
1609 	if (next == (struct sk_buff *)list_)
1610 		next = NULL;
1611 	return next;
1612 }
1613 
1614 /**
1615  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1616  *	@list_: list to peek at
1617  *
1618  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1619  *	be careful with this one. A peek leaves the buffer on the
1620  *	list and someone else may run off with it. You must hold
1621  *	the appropriate locks or have a private queue to do this.
1622  *
1623  *	Returns %NULL for an empty list or a pointer to the tail element.
1624  *	The reference count is not incremented and the reference is therefore
1625  *	volatile. Use with caution.
1626  */
skb_peek_tail(const struct sk_buff_head * list_)1627 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1628 {
1629 	struct sk_buff *skb = list_->prev;
1630 
1631 	if (skb == (struct sk_buff *)list_)
1632 		skb = NULL;
1633 	return skb;
1634 
1635 }
1636 
1637 /**
1638  *	skb_queue_len	- get queue length
1639  *	@list_: list to measure
1640  *
1641  *	Return the length of an &sk_buff queue.
1642  */
skb_queue_len(const struct sk_buff_head * list_)1643 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1644 {
1645 	return list_->qlen;
1646 }
1647 
1648 /**
1649  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1650  *	@list: queue to initialize
1651  *
1652  *	This initializes only the list and queue length aspects of
1653  *	an sk_buff_head object.  This allows to initialize the list
1654  *	aspects of an sk_buff_head without reinitializing things like
1655  *	the spinlock.  It can also be used for on-stack sk_buff_head
1656  *	objects where the spinlock is known to not be used.
1657  */
__skb_queue_head_init(struct sk_buff_head * list)1658 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1659 {
1660 	list->prev = list->next = (struct sk_buff *)list;
1661 	list->qlen = 0;
1662 }
1663 
1664 /*
1665  * This function creates a split out lock class for each invocation;
1666  * this is needed for now since a whole lot of users of the skb-queue
1667  * infrastructure in drivers have different locking usage (in hardirq)
1668  * than the networking core (in softirq only). In the long run either the
1669  * network layer or drivers should need annotation to consolidate the
1670  * main types of usage into 3 classes.
1671  */
skb_queue_head_init(struct sk_buff_head * list)1672 static inline void skb_queue_head_init(struct sk_buff_head *list)
1673 {
1674 	spin_lock_init(&list->lock);
1675 	__skb_queue_head_init(list);
1676 }
1677 
skb_queue_head_init_class(struct sk_buff_head * list,struct lock_class_key * class)1678 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1679 		struct lock_class_key *class)
1680 {
1681 	skb_queue_head_init(list);
1682 	lockdep_set_class(&list->lock, class);
1683 }
1684 
1685 /*
1686  *	Insert an sk_buff on a list.
1687  *
1688  *	The "__skb_xxxx()" functions are the non-atomic ones that
1689  *	can only be called with interrupts disabled.
1690  */
1691 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1692 		struct sk_buff_head *list);
__skb_insert(struct sk_buff * newsk,struct sk_buff * prev,struct sk_buff * next,struct sk_buff_head * list)1693 static inline void __skb_insert(struct sk_buff *newsk,
1694 				struct sk_buff *prev, struct sk_buff *next,
1695 				struct sk_buff_head *list)
1696 {
1697 	newsk->next = next;
1698 	newsk->prev = prev;
1699 	next->prev  = prev->next = newsk;
1700 	list->qlen++;
1701 }
1702 
__skb_queue_splice(const struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * next)1703 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1704 				      struct sk_buff *prev,
1705 				      struct sk_buff *next)
1706 {
1707 	struct sk_buff *first = list->next;
1708 	struct sk_buff *last = list->prev;
1709 
1710 	first->prev = prev;
1711 	prev->next = first;
1712 
1713 	last->next = next;
1714 	next->prev = last;
1715 }
1716 
1717 /**
1718  *	skb_queue_splice - join two skb lists, this is designed for stacks
1719  *	@list: the new list to add
1720  *	@head: the place to add it in the first list
1721  */
skb_queue_splice(const struct sk_buff_head * list,struct sk_buff_head * head)1722 static inline void skb_queue_splice(const struct sk_buff_head *list,
1723 				    struct sk_buff_head *head)
1724 {
1725 	if (!skb_queue_empty(list)) {
1726 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1727 		head->qlen += list->qlen;
1728 	}
1729 }
1730 
1731 /**
1732  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1733  *	@list: the new list to add
1734  *	@head: the place to add it in the first list
1735  *
1736  *	The list at @list is reinitialised
1737  */
skb_queue_splice_init(struct sk_buff_head * list,struct sk_buff_head * head)1738 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1739 					 struct sk_buff_head *head)
1740 {
1741 	if (!skb_queue_empty(list)) {
1742 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1743 		head->qlen += list->qlen;
1744 		__skb_queue_head_init(list);
1745 	}
1746 }
1747 
1748 /**
1749  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1750  *	@list: the new list to add
1751  *	@head: the place to add it in the first list
1752  */
skb_queue_splice_tail(const struct sk_buff_head * list,struct sk_buff_head * head)1753 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1754 					 struct sk_buff_head *head)
1755 {
1756 	if (!skb_queue_empty(list)) {
1757 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1758 		head->qlen += list->qlen;
1759 	}
1760 }
1761 
1762 /**
1763  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1764  *	@list: the new list to add
1765  *	@head: the place to add it in the first list
1766  *
1767  *	Each of the lists is a queue.
1768  *	The list at @list is reinitialised
1769  */
skb_queue_splice_tail_init(struct sk_buff_head * list,struct sk_buff_head * head)1770 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1771 					      struct sk_buff_head *head)
1772 {
1773 	if (!skb_queue_empty(list)) {
1774 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1775 		head->qlen += list->qlen;
1776 		__skb_queue_head_init(list);
1777 	}
1778 }
1779 
1780 /**
1781  *	__skb_queue_after - queue a buffer at the list head
1782  *	@list: list to use
1783  *	@prev: place after this buffer
1784  *	@newsk: buffer to queue
1785  *
1786  *	Queue a buffer int the middle of a list. This function takes no locks
1787  *	and you must therefore hold required locks before calling it.
1788  *
1789  *	A buffer cannot be placed on two lists at the same time.
1790  */
__skb_queue_after(struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * newsk)1791 static inline void __skb_queue_after(struct sk_buff_head *list,
1792 				     struct sk_buff *prev,
1793 				     struct sk_buff *newsk)
1794 {
1795 	__skb_insert(newsk, prev, prev->next, list);
1796 }
1797 
1798 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1799 		struct sk_buff_head *list);
1800 
__skb_queue_before(struct sk_buff_head * list,struct sk_buff * next,struct sk_buff * newsk)1801 static inline void __skb_queue_before(struct sk_buff_head *list,
1802 				      struct sk_buff *next,
1803 				      struct sk_buff *newsk)
1804 {
1805 	__skb_insert(newsk, next->prev, next, list);
1806 }
1807 
1808 /**
1809  *	__skb_queue_head - queue a buffer at the list head
1810  *	@list: list to use
1811  *	@newsk: buffer to queue
1812  *
1813  *	Queue a buffer at the start of a list. This function takes no locks
1814  *	and you must therefore hold required locks before calling it.
1815  *
1816  *	A buffer cannot be placed on two lists at the same time.
1817  */
1818 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
__skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)1819 static inline void __skb_queue_head(struct sk_buff_head *list,
1820 				    struct sk_buff *newsk)
1821 {
1822 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1823 }
1824 
1825 /**
1826  *	__skb_queue_tail - queue a buffer at the list tail
1827  *	@list: list to use
1828  *	@newsk: buffer to queue
1829  *
1830  *	Queue a buffer at the end of a list. This function takes no locks
1831  *	and you must therefore hold required locks before calling it.
1832  *
1833  *	A buffer cannot be placed on two lists at the same time.
1834  */
1835 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
__skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)1836 static inline void __skb_queue_tail(struct sk_buff_head *list,
1837 				   struct sk_buff *newsk)
1838 {
1839 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1840 }
1841 
1842 /*
1843  * remove sk_buff from list. _Must_ be called atomically, and with
1844  * the list known..
1845  */
1846 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
__skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)1847 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1848 {
1849 	struct sk_buff *next, *prev;
1850 
1851 	list->qlen--;
1852 	next	   = skb->next;
1853 	prev	   = skb->prev;
1854 	skb->next  = skb->prev = NULL;
1855 	next->prev = prev;
1856 	prev->next = next;
1857 }
1858 
1859 /**
1860  *	__skb_dequeue - remove from the head of the queue
1861  *	@list: list to dequeue from
1862  *
1863  *	Remove the head of the list. This function does not take any locks
1864  *	so must be used with appropriate locks held only. The head item is
1865  *	returned or %NULL if the list is empty.
1866  */
1867 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
__skb_dequeue(struct sk_buff_head * list)1868 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1869 {
1870 	struct sk_buff *skb = skb_peek(list);
1871 	if (skb)
1872 		__skb_unlink(skb, list);
1873 	return skb;
1874 }
1875 
1876 /**
1877  *	__skb_dequeue_tail - remove from the tail of the queue
1878  *	@list: list to dequeue from
1879  *
1880  *	Remove the tail of the list. This function does not take any locks
1881  *	so must be used with appropriate locks held only. The tail item is
1882  *	returned or %NULL if the list is empty.
1883  */
1884 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
__skb_dequeue_tail(struct sk_buff_head * list)1885 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1886 {
1887 	struct sk_buff *skb = skb_peek_tail(list);
1888 	if (skb)
1889 		__skb_unlink(skb, list);
1890 	return skb;
1891 }
1892 
1893 
skb_is_nonlinear(const struct sk_buff * skb)1894 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1895 {
1896 	return skb->data_len;
1897 }
1898 
skb_headlen(const struct sk_buff * skb)1899 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1900 {
1901 	return skb->len - skb->data_len;
1902 }
1903 
__skb_pagelen(const struct sk_buff * skb)1904 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
1905 {
1906 	unsigned int i, len = 0;
1907 
1908 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
1909 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1910 	return len;
1911 }
1912 
skb_pagelen(const struct sk_buff * skb)1913 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
1914 {
1915 	return skb_headlen(skb) + __skb_pagelen(skb);
1916 }
1917 
1918 /**
1919  * __skb_fill_page_desc - initialise a paged fragment in an skb
1920  * @skb: buffer containing fragment to be initialised
1921  * @i: paged fragment index to initialise
1922  * @page: the page to use for this fragment
1923  * @off: the offset to the data with @page
1924  * @size: the length of the data
1925  *
1926  * Initialises the @i'th fragment of @skb to point to &size bytes at
1927  * offset @off within @page.
1928  *
1929  * Does not take any additional reference on the fragment.
1930  */
__skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)1931 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1932 					struct page *page, int off, int size)
1933 {
1934 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1935 
1936 	/*
1937 	 * Propagate page pfmemalloc to the skb if we can. The problem is
1938 	 * that not all callers have unique ownership of the page but rely
1939 	 * on page_is_pfmemalloc doing the right thing(tm).
1940 	 */
1941 	frag->page.p		  = page;
1942 	frag->page_offset	  = off;
1943 	skb_frag_size_set(frag, size);
1944 
1945 	page = compound_head(page);
1946 	if (page_is_pfmemalloc(page))
1947 		skb->pfmemalloc	= true;
1948 }
1949 
1950 /**
1951  * skb_fill_page_desc - initialise a paged fragment in an skb
1952  * @skb: buffer containing fragment to be initialised
1953  * @i: paged fragment index to initialise
1954  * @page: the page to use for this fragment
1955  * @off: the offset to the data with @page
1956  * @size: the length of the data
1957  *
1958  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1959  * @skb to point to @size bytes at offset @off within @page. In
1960  * addition updates @skb such that @i is the last fragment.
1961  *
1962  * Does not take any additional reference on the fragment.
1963  */
skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)1964 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1965 				      struct page *page, int off, int size)
1966 {
1967 	__skb_fill_page_desc(skb, i, page, off, size);
1968 	skb_shinfo(skb)->nr_frags = i + 1;
1969 }
1970 
1971 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1972 		     int size, unsigned int truesize);
1973 
1974 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1975 			  unsigned int truesize);
1976 
1977 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1978 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1979 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1980 
1981 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_tail_pointer(const struct sk_buff * skb)1982 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1983 {
1984 	return skb->head + skb->tail;
1985 }
1986 
skb_reset_tail_pointer(struct sk_buff * skb)1987 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1988 {
1989 	skb->tail = skb->data - skb->head;
1990 }
1991 
skb_set_tail_pointer(struct sk_buff * skb,const int offset)1992 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1993 {
1994 	skb_reset_tail_pointer(skb);
1995 	skb->tail += offset;
1996 }
1997 
1998 #else /* NET_SKBUFF_DATA_USES_OFFSET */
skb_tail_pointer(const struct sk_buff * skb)1999 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2000 {
2001 	return skb->tail;
2002 }
2003 
skb_reset_tail_pointer(struct sk_buff * skb)2004 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2005 {
2006 	skb->tail = skb->data;
2007 }
2008 
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2009 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2010 {
2011 	skb->tail = skb->data + offset;
2012 }
2013 
2014 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2015 
2016 /*
2017  *	Add data to an sk_buff
2018  */
2019 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2020 void *skb_put(struct sk_buff *skb, unsigned int len);
__skb_put(struct sk_buff * skb,unsigned int len)2021 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2022 {
2023 	void *tmp = skb_tail_pointer(skb);
2024 	SKB_LINEAR_ASSERT(skb);
2025 	skb->tail += len;
2026 	skb->len  += len;
2027 	return tmp;
2028 }
2029 
__skb_put_zero(struct sk_buff * skb,unsigned int len)2030 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2031 {
2032 	void *tmp = __skb_put(skb, len);
2033 
2034 	memset(tmp, 0, len);
2035 	return tmp;
2036 }
2037 
__skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2038 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2039 				   unsigned int len)
2040 {
2041 	void *tmp = __skb_put(skb, len);
2042 
2043 	memcpy(tmp, data, len);
2044 	return tmp;
2045 }
2046 
__skb_put_u8(struct sk_buff * skb,u8 val)2047 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2048 {
2049 	*(u8 *)__skb_put(skb, 1) = val;
2050 }
2051 
skb_put_zero(struct sk_buff * skb,unsigned int len)2052 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2053 {
2054 	void *tmp = skb_put(skb, len);
2055 
2056 	memset(tmp, 0, len);
2057 
2058 	return tmp;
2059 }
2060 
skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2061 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2062 				 unsigned int len)
2063 {
2064 	void *tmp = skb_put(skb, len);
2065 
2066 	memcpy(tmp, data, len);
2067 
2068 	return tmp;
2069 }
2070 
skb_put_u8(struct sk_buff * skb,u8 val)2071 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2072 {
2073 	*(u8 *)skb_put(skb, 1) = val;
2074 }
2075 
2076 void *skb_push(struct sk_buff *skb, unsigned int len);
__skb_push(struct sk_buff * skb,unsigned int len)2077 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2078 {
2079 	skb->data -= len;
2080 	skb->len  += len;
2081 	return skb->data;
2082 }
2083 
2084 void *skb_pull(struct sk_buff *skb, unsigned int len);
__skb_pull(struct sk_buff * skb,unsigned int len)2085 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2086 {
2087 	skb->len -= len;
2088 	BUG_ON(skb->len < skb->data_len);
2089 	return skb->data += len;
2090 }
2091 
skb_pull_inline(struct sk_buff * skb,unsigned int len)2092 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2093 {
2094 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2095 }
2096 
2097 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2098 
__pskb_pull(struct sk_buff * skb,unsigned int len)2099 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2100 {
2101 	if (len > skb_headlen(skb) &&
2102 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2103 		return NULL;
2104 	skb->len -= len;
2105 	return skb->data += len;
2106 }
2107 
pskb_pull(struct sk_buff * skb,unsigned int len)2108 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2109 {
2110 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2111 }
2112 
pskb_may_pull(struct sk_buff * skb,unsigned int len)2113 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2114 {
2115 	if (likely(len <= skb_headlen(skb)))
2116 		return 1;
2117 	if (unlikely(len > skb->len))
2118 		return 0;
2119 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2120 }
2121 
2122 void skb_condense(struct sk_buff *skb);
2123 
2124 /**
2125  *	skb_headroom - bytes at buffer head
2126  *	@skb: buffer to check
2127  *
2128  *	Return the number of bytes of free space at the head of an &sk_buff.
2129  */
skb_headroom(const struct sk_buff * skb)2130 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2131 {
2132 	return skb->data - skb->head;
2133 }
2134 
2135 /**
2136  *	skb_tailroom - bytes at buffer end
2137  *	@skb: buffer to check
2138  *
2139  *	Return the number of bytes of free space at the tail of an sk_buff
2140  */
skb_tailroom(const struct sk_buff * skb)2141 static inline int skb_tailroom(const struct sk_buff *skb)
2142 {
2143 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2144 }
2145 
2146 /**
2147  *	skb_availroom - bytes at buffer end
2148  *	@skb: buffer to check
2149  *
2150  *	Return the number of bytes of free space at the tail of an sk_buff
2151  *	allocated by sk_stream_alloc()
2152  */
skb_availroom(const struct sk_buff * skb)2153 static inline int skb_availroom(const struct sk_buff *skb)
2154 {
2155 	if (skb_is_nonlinear(skb))
2156 		return 0;
2157 
2158 	return skb->end - skb->tail - skb->reserved_tailroom;
2159 }
2160 
2161 /**
2162  *	skb_reserve - adjust headroom
2163  *	@skb: buffer to alter
2164  *	@len: bytes to move
2165  *
2166  *	Increase the headroom of an empty &sk_buff by reducing the tail
2167  *	room. This is only allowed for an empty buffer.
2168  */
skb_reserve(struct sk_buff * skb,int len)2169 static inline void skb_reserve(struct sk_buff *skb, int len)
2170 {
2171 	skb->data += len;
2172 	skb->tail += len;
2173 }
2174 
2175 /**
2176  *	skb_tailroom_reserve - adjust reserved_tailroom
2177  *	@skb: buffer to alter
2178  *	@mtu: maximum amount of headlen permitted
2179  *	@needed_tailroom: minimum amount of reserved_tailroom
2180  *
2181  *	Set reserved_tailroom so that headlen can be as large as possible but
2182  *	not larger than mtu and tailroom cannot be smaller than
2183  *	needed_tailroom.
2184  *	The required headroom should already have been reserved before using
2185  *	this function.
2186  */
skb_tailroom_reserve(struct sk_buff * skb,unsigned int mtu,unsigned int needed_tailroom)2187 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2188 					unsigned int needed_tailroom)
2189 {
2190 	SKB_LINEAR_ASSERT(skb);
2191 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2192 		/* use at most mtu */
2193 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2194 	else
2195 		/* use up to all available space */
2196 		skb->reserved_tailroom = needed_tailroom;
2197 }
2198 
2199 #define ENCAP_TYPE_ETHER	0
2200 #define ENCAP_TYPE_IPPROTO	1
2201 
skb_set_inner_protocol(struct sk_buff * skb,__be16 protocol)2202 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2203 					  __be16 protocol)
2204 {
2205 	skb->inner_protocol = protocol;
2206 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2207 }
2208 
skb_set_inner_ipproto(struct sk_buff * skb,__u8 ipproto)2209 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2210 					 __u8 ipproto)
2211 {
2212 	skb->inner_ipproto = ipproto;
2213 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2214 }
2215 
skb_reset_inner_headers(struct sk_buff * skb)2216 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2217 {
2218 	skb->inner_mac_header = skb->mac_header;
2219 	skb->inner_network_header = skb->network_header;
2220 	skb->inner_transport_header = skb->transport_header;
2221 }
2222 
skb_reset_mac_len(struct sk_buff * skb)2223 static inline void skb_reset_mac_len(struct sk_buff *skb)
2224 {
2225 	skb->mac_len = skb->network_header - skb->mac_header;
2226 }
2227 
skb_inner_transport_header(const struct sk_buff * skb)2228 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2229 							*skb)
2230 {
2231 	return skb->head + skb->inner_transport_header;
2232 }
2233 
skb_inner_transport_offset(const struct sk_buff * skb)2234 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2235 {
2236 	return skb_inner_transport_header(skb) - skb->data;
2237 }
2238 
skb_reset_inner_transport_header(struct sk_buff * skb)2239 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2240 {
2241 	skb->inner_transport_header = skb->data - skb->head;
2242 }
2243 
skb_set_inner_transport_header(struct sk_buff * skb,const int offset)2244 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2245 						   const int offset)
2246 {
2247 	skb_reset_inner_transport_header(skb);
2248 	skb->inner_transport_header += offset;
2249 }
2250 
skb_inner_network_header(const struct sk_buff * skb)2251 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2252 {
2253 	return skb->head + skb->inner_network_header;
2254 }
2255 
skb_reset_inner_network_header(struct sk_buff * skb)2256 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2257 {
2258 	skb->inner_network_header = skb->data - skb->head;
2259 }
2260 
skb_set_inner_network_header(struct sk_buff * skb,const int offset)2261 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2262 						const int offset)
2263 {
2264 	skb_reset_inner_network_header(skb);
2265 	skb->inner_network_header += offset;
2266 }
2267 
skb_inner_mac_header(const struct sk_buff * skb)2268 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2269 {
2270 	return skb->head + skb->inner_mac_header;
2271 }
2272 
skb_reset_inner_mac_header(struct sk_buff * skb)2273 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2274 {
2275 	skb->inner_mac_header = skb->data - skb->head;
2276 }
2277 
skb_set_inner_mac_header(struct sk_buff * skb,const int offset)2278 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2279 					    const int offset)
2280 {
2281 	skb_reset_inner_mac_header(skb);
2282 	skb->inner_mac_header += offset;
2283 }
skb_transport_header_was_set(const struct sk_buff * skb)2284 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2285 {
2286 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2287 }
2288 
skb_transport_header(const struct sk_buff * skb)2289 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2290 {
2291 	return skb->head + skb->transport_header;
2292 }
2293 
skb_reset_transport_header(struct sk_buff * skb)2294 static inline void skb_reset_transport_header(struct sk_buff *skb)
2295 {
2296 	skb->transport_header = skb->data - skb->head;
2297 }
2298 
skb_set_transport_header(struct sk_buff * skb,const int offset)2299 static inline void skb_set_transport_header(struct sk_buff *skb,
2300 					    const int offset)
2301 {
2302 	skb_reset_transport_header(skb);
2303 	skb->transport_header += offset;
2304 }
2305 
skb_network_header(const struct sk_buff * skb)2306 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2307 {
2308 	return skb->head + skb->network_header;
2309 }
2310 
skb_reset_network_header(struct sk_buff * skb)2311 static inline void skb_reset_network_header(struct sk_buff *skb)
2312 {
2313 	skb->network_header = skb->data - skb->head;
2314 }
2315 
skb_set_network_header(struct sk_buff * skb,const int offset)2316 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2317 {
2318 	skb_reset_network_header(skb);
2319 	skb->network_header += offset;
2320 }
2321 
skb_mac_header(const struct sk_buff * skb)2322 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2323 {
2324 	return skb->head + skb->mac_header;
2325 }
2326 
skb_mac_offset(const struct sk_buff * skb)2327 static inline int skb_mac_offset(const struct sk_buff *skb)
2328 {
2329 	return skb_mac_header(skb) - skb->data;
2330 }
2331 
skb_mac_header_len(const struct sk_buff * skb)2332 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2333 {
2334 	return skb->network_header - skb->mac_header;
2335 }
2336 
skb_mac_header_was_set(const struct sk_buff * skb)2337 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2338 {
2339 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2340 }
2341 
skb_reset_mac_header(struct sk_buff * skb)2342 static inline void skb_reset_mac_header(struct sk_buff *skb)
2343 {
2344 	skb->mac_header = skb->data - skb->head;
2345 }
2346 
skb_set_mac_header(struct sk_buff * skb,const int offset)2347 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2348 {
2349 	skb_reset_mac_header(skb);
2350 	skb->mac_header += offset;
2351 }
2352 
skb_pop_mac_header(struct sk_buff * skb)2353 static inline void skb_pop_mac_header(struct sk_buff *skb)
2354 {
2355 	skb->mac_header = skb->network_header;
2356 }
2357 
skb_probe_transport_header(struct sk_buff * skb,const int offset_hint)2358 static inline void skb_probe_transport_header(struct sk_buff *skb,
2359 					      const int offset_hint)
2360 {
2361 	struct flow_keys_basic keys;
2362 
2363 	if (skb_transport_header_was_set(skb))
2364 		return;
2365 
2366 	if (skb_flow_dissect_flow_keys_basic(skb, &keys, NULL, 0, 0, 0, 0))
2367 		skb_set_transport_header(skb, keys.control.thoff);
2368 	else
2369 		skb_set_transport_header(skb, offset_hint);
2370 }
2371 
skb_mac_header_rebuild(struct sk_buff * skb)2372 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2373 {
2374 	if (skb_mac_header_was_set(skb)) {
2375 		const unsigned char *old_mac = skb_mac_header(skb);
2376 
2377 		skb_set_mac_header(skb, -skb->mac_len);
2378 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2379 	}
2380 }
2381 
skb_checksum_start_offset(const struct sk_buff * skb)2382 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2383 {
2384 	return skb->csum_start - skb_headroom(skb);
2385 }
2386 
skb_checksum_start(const struct sk_buff * skb)2387 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2388 {
2389 	return skb->head + skb->csum_start;
2390 }
2391 
skb_transport_offset(const struct sk_buff * skb)2392 static inline int skb_transport_offset(const struct sk_buff *skb)
2393 {
2394 	return skb_transport_header(skb) - skb->data;
2395 }
2396 
skb_network_header_len(const struct sk_buff * skb)2397 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2398 {
2399 	return skb->transport_header - skb->network_header;
2400 }
2401 
skb_inner_network_header_len(const struct sk_buff * skb)2402 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2403 {
2404 	return skb->inner_transport_header - skb->inner_network_header;
2405 }
2406 
skb_network_offset(const struct sk_buff * skb)2407 static inline int skb_network_offset(const struct sk_buff *skb)
2408 {
2409 	return skb_network_header(skb) - skb->data;
2410 }
2411 
skb_inner_network_offset(const struct sk_buff * skb)2412 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2413 {
2414 	return skb_inner_network_header(skb) - skb->data;
2415 }
2416 
pskb_network_may_pull(struct sk_buff * skb,unsigned int len)2417 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2418 {
2419 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2420 }
2421 
2422 /*
2423  * CPUs often take a performance hit when accessing unaligned memory
2424  * locations. The actual performance hit varies, it can be small if the
2425  * hardware handles it or large if we have to take an exception and fix it
2426  * in software.
2427  *
2428  * Since an ethernet header is 14 bytes network drivers often end up with
2429  * the IP header at an unaligned offset. The IP header can be aligned by
2430  * shifting the start of the packet by 2 bytes. Drivers should do this
2431  * with:
2432  *
2433  * skb_reserve(skb, NET_IP_ALIGN);
2434  *
2435  * The downside to this alignment of the IP header is that the DMA is now
2436  * unaligned. On some architectures the cost of an unaligned DMA is high
2437  * and this cost outweighs the gains made by aligning the IP header.
2438  *
2439  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2440  * to be overridden.
2441  */
2442 #ifndef NET_IP_ALIGN
2443 #define NET_IP_ALIGN	2
2444 #endif
2445 
2446 /*
2447  * The networking layer reserves some headroom in skb data (via
2448  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2449  * the header has to grow. In the default case, if the header has to grow
2450  * 32 bytes or less we avoid the reallocation.
2451  *
2452  * Unfortunately this headroom changes the DMA alignment of the resulting
2453  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2454  * on some architectures. An architecture can override this value,
2455  * perhaps setting it to a cacheline in size (since that will maintain
2456  * cacheline alignment of the DMA). It must be a power of 2.
2457  *
2458  * Various parts of the networking layer expect at least 32 bytes of
2459  * headroom, you should not reduce this.
2460  *
2461  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2462  * to reduce average number of cache lines per packet.
2463  * get_rps_cpus() for example only access one 64 bytes aligned block :
2464  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2465  */
2466 #ifndef NET_SKB_PAD
2467 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2468 #endif
2469 
2470 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2471 
__skb_set_length(struct sk_buff * skb,unsigned int len)2472 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2473 {
2474 	if (unlikely(skb_is_nonlinear(skb))) {
2475 		WARN_ON(1);
2476 		return;
2477 	}
2478 	skb->len = len;
2479 	skb_set_tail_pointer(skb, len);
2480 }
2481 
__skb_trim(struct sk_buff * skb,unsigned int len)2482 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2483 {
2484 	__skb_set_length(skb, len);
2485 }
2486 
2487 void skb_trim(struct sk_buff *skb, unsigned int len);
2488 
__pskb_trim(struct sk_buff * skb,unsigned int len)2489 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2490 {
2491 	if (skb->data_len)
2492 		return ___pskb_trim(skb, len);
2493 	__skb_trim(skb, len);
2494 	return 0;
2495 }
2496 
pskb_trim(struct sk_buff * skb,unsigned int len)2497 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2498 {
2499 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2500 }
2501 
2502 /**
2503  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2504  *	@skb: buffer to alter
2505  *	@len: new length
2506  *
2507  *	This is identical to pskb_trim except that the caller knows that
2508  *	the skb is not cloned so we should never get an error due to out-
2509  *	of-memory.
2510  */
pskb_trim_unique(struct sk_buff * skb,unsigned int len)2511 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2512 {
2513 	int err = pskb_trim(skb, len);
2514 	BUG_ON(err);
2515 }
2516 
__skb_grow(struct sk_buff * skb,unsigned int len)2517 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2518 {
2519 	unsigned int diff = len - skb->len;
2520 
2521 	if (skb_tailroom(skb) < diff) {
2522 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2523 					   GFP_ATOMIC);
2524 		if (ret)
2525 			return ret;
2526 	}
2527 	__skb_set_length(skb, len);
2528 	return 0;
2529 }
2530 
2531 /**
2532  *	skb_orphan - orphan a buffer
2533  *	@skb: buffer to orphan
2534  *
2535  *	If a buffer currently has an owner then we call the owner's
2536  *	destructor function and make the @skb unowned. The buffer continues
2537  *	to exist but is no longer charged to its former owner.
2538  */
skb_orphan(struct sk_buff * skb)2539 static inline void skb_orphan(struct sk_buff *skb)
2540 {
2541 	if (skb->destructor) {
2542 		skb->destructor(skb);
2543 		skb->destructor = NULL;
2544 		skb->sk		= NULL;
2545 	} else {
2546 		BUG_ON(skb->sk);
2547 	}
2548 }
2549 
2550 /**
2551  *	skb_orphan_frags - orphan the frags contained in a buffer
2552  *	@skb: buffer to orphan frags from
2553  *	@gfp_mask: allocation mask for replacement pages
2554  *
2555  *	For each frag in the SKB which needs a destructor (i.e. has an
2556  *	owner) create a copy of that frag and release the original
2557  *	page by calling the destructor.
2558  */
skb_orphan_frags(struct sk_buff * skb,gfp_t gfp_mask)2559 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2560 {
2561 	if (likely(!skb_zcopy(skb)))
2562 		return 0;
2563 	if (skb_uarg(skb)->callback == sock_zerocopy_callback)
2564 		return 0;
2565 	return skb_copy_ubufs(skb, gfp_mask);
2566 }
2567 
2568 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
skb_orphan_frags_rx(struct sk_buff * skb,gfp_t gfp_mask)2569 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2570 {
2571 	if (likely(!skb_zcopy(skb)))
2572 		return 0;
2573 	return skb_copy_ubufs(skb, gfp_mask);
2574 }
2575 
2576 /**
2577  *	__skb_queue_purge - empty a list
2578  *	@list: list to empty
2579  *
2580  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2581  *	the list and one reference dropped. This function does not take the
2582  *	list lock and the caller must hold the relevant locks to use it.
2583  */
2584 void skb_queue_purge(struct sk_buff_head *list);
__skb_queue_purge(struct sk_buff_head * list)2585 static inline void __skb_queue_purge(struct sk_buff_head *list)
2586 {
2587 	struct sk_buff *skb;
2588 	while ((skb = __skb_dequeue(list)) != NULL)
2589 		kfree_skb(skb);
2590 }
2591 
2592 unsigned int skb_rbtree_purge(struct rb_root *root);
2593 
2594 void *netdev_alloc_frag(unsigned int fragsz);
2595 
2596 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2597 				   gfp_t gfp_mask);
2598 
2599 /**
2600  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2601  *	@dev: network device to receive on
2602  *	@length: length to allocate
2603  *
2604  *	Allocate a new &sk_buff and assign it a usage count of one. The
2605  *	buffer has unspecified headroom built in. Users should allocate
2606  *	the headroom they think they need without accounting for the
2607  *	built in space. The built in space is used for optimisations.
2608  *
2609  *	%NULL is returned if there is no free memory. Although this function
2610  *	allocates memory it can be called from an interrupt.
2611  */
netdev_alloc_skb(struct net_device * dev,unsigned int length)2612 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2613 					       unsigned int length)
2614 {
2615 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2616 }
2617 
2618 /* legacy helper around __netdev_alloc_skb() */
__dev_alloc_skb(unsigned int length,gfp_t gfp_mask)2619 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2620 					      gfp_t gfp_mask)
2621 {
2622 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2623 }
2624 
2625 /* legacy helper around netdev_alloc_skb() */
dev_alloc_skb(unsigned int length)2626 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2627 {
2628 	return netdev_alloc_skb(NULL, length);
2629 }
2630 
2631 
__netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length,gfp_t gfp)2632 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2633 		unsigned int length, gfp_t gfp)
2634 {
2635 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2636 
2637 	if (NET_IP_ALIGN && skb)
2638 		skb_reserve(skb, NET_IP_ALIGN);
2639 	return skb;
2640 }
2641 
netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length)2642 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2643 		unsigned int length)
2644 {
2645 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2646 }
2647 
skb_free_frag(void * addr)2648 static inline void skb_free_frag(void *addr)
2649 {
2650 	page_frag_free(addr);
2651 }
2652 
2653 void *napi_alloc_frag(unsigned int fragsz);
2654 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2655 				 unsigned int length, gfp_t gfp_mask);
napi_alloc_skb(struct napi_struct * napi,unsigned int length)2656 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2657 					     unsigned int length)
2658 {
2659 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2660 }
2661 void napi_consume_skb(struct sk_buff *skb, int budget);
2662 
2663 void __kfree_skb_flush(void);
2664 void __kfree_skb_defer(struct sk_buff *skb);
2665 
2666 /**
2667  * __dev_alloc_pages - allocate page for network Rx
2668  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2669  * @order: size of the allocation
2670  *
2671  * Allocate a new page.
2672  *
2673  * %NULL is returned if there is no free memory.
2674 */
__dev_alloc_pages(gfp_t gfp_mask,unsigned int order)2675 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2676 					     unsigned int order)
2677 {
2678 	/* This piece of code contains several assumptions.
2679 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2680 	 * 2.  The expectation is the user wants a compound page.
2681 	 * 3.  If requesting a order 0 page it will not be compound
2682 	 *     due to the check to see if order has a value in prep_new_page
2683 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2684 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2685 	 */
2686 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2687 
2688 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2689 }
2690 
dev_alloc_pages(unsigned int order)2691 static inline struct page *dev_alloc_pages(unsigned int order)
2692 {
2693 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2694 }
2695 
2696 /**
2697  * __dev_alloc_page - allocate a page for network Rx
2698  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2699  *
2700  * Allocate a new page.
2701  *
2702  * %NULL is returned if there is no free memory.
2703  */
__dev_alloc_page(gfp_t gfp_mask)2704 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2705 {
2706 	return __dev_alloc_pages(gfp_mask, 0);
2707 }
2708 
dev_alloc_page(void)2709 static inline struct page *dev_alloc_page(void)
2710 {
2711 	return dev_alloc_pages(0);
2712 }
2713 
2714 /**
2715  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2716  *	@page: The page that was allocated from skb_alloc_page
2717  *	@skb: The skb that may need pfmemalloc set
2718  */
skb_propagate_pfmemalloc(struct page * page,struct sk_buff * skb)2719 static inline void skb_propagate_pfmemalloc(struct page *page,
2720 					     struct sk_buff *skb)
2721 {
2722 	if (page_is_pfmemalloc(page))
2723 		skb->pfmemalloc = true;
2724 }
2725 
2726 /**
2727  * skb_frag_page - retrieve the page referred to by a paged fragment
2728  * @frag: the paged fragment
2729  *
2730  * Returns the &struct page associated with @frag.
2731  */
skb_frag_page(const skb_frag_t * frag)2732 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2733 {
2734 	return frag->page.p;
2735 }
2736 
2737 /**
2738  * __skb_frag_ref - take an addition reference on a paged fragment.
2739  * @frag: the paged fragment
2740  *
2741  * Takes an additional reference on the paged fragment @frag.
2742  */
__skb_frag_ref(skb_frag_t * frag)2743 static inline void __skb_frag_ref(skb_frag_t *frag)
2744 {
2745 	get_page(skb_frag_page(frag));
2746 }
2747 
2748 /**
2749  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2750  * @skb: the buffer
2751  * @f: the fragment offset.
2752  *
2753  * Takes an additional reference on the @f'th paged fragment of @skb.
2754  */
skb_frag_ref(struct sk_buff * skb,int f)2755 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2756 {
2757 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2758 }
2759 
2760 /**
2761  * __skb_frag_unref - release a reference on a paged fragment.
2762  * @frag: the paged fragment
2763  *
2764  * Releases a reference on the paged fragment @frag.
2765  */
__skb_frag_unref(skb_frag_t * frag)2766 static inline void __skb_frag_unref(skb_frag_t *frag)
2767 {
2768 	put_page(skb_frag_page(frag));
2769 }
2770 
2771 /**
2772  * skb_frag_unref - release a reference on a paged fragment of an skb.
2773  * @skb: the buffer
2774  * @f: the fragment offset
2775  *
2776  * Releases a reference on the @f'th paged fragment of @skb.
2777  */
skb_frag_unref(struct sk_buff * skb,int f)2778 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2779 {
2780 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2781 }
2782 
2783 /**
2784  * skb_frag_address - gets the address of the data contained in a paged fragment
2785  * @frag: the paged fragment buffer
2786  *
2787  * Returns the address of the data within @frag. The page must already
2788  * be mapped.
2789  */
skb_frag_address(const skb_frag_t * frag)2790 static inline void *skb_frag_address(const skb_frag_t *frag)
2791 {
2792 	return page_address(skb_frag_page(frag)) + frag->page_offset;
2793 }
2794 
2795 /**
2796  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2797  * @frag: the paged fragment buffer
2798  *
2799  * Returns the address of the data within @frag. Checks that the page
2800  * is mapped and returns %NULL otherwise.
2801  */
skb_frag_address_safe(const skb_frag_t * frag)2802 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2803 {
2804 	void *ptr = page_address(skb_frag_page(frag));
2805 	if (unlikely(!ptr))
2806 		return NULL;
2807 
2808 	return ptr + frag->page_offset;
2809 }
2810 
2811 /**
2812  * __skb_frag_set_page - sets the page contained in a paged fragment
2813  * @frag: the paged fragment
2814  * @page: the page to set
2815  *
2816  * Sets the fragment @frag to contain @page.
2817  */
__skb_frag_set_page(skb_frag_t * frag,struct page * page)2818 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2819 {
2820 	frag->page.p = page;
2821 }
2822 
2823 /**
2824  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2825  * @skb: the buffer
2826  * @f: the fragment offset
2827  * @page: the page to set
2828  *
2829  * Sets the @f'th fragment of @skb to contain @page.
2830  */
skb_frag_set_page(struct sk_buff * skb,int f,struct page * page)2831 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2832 				     struct page *page)
2833 {
2834 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2835 }
2836 
2837 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2838 
2839 /**
2840  * skb_frag_dma_map - maps a paged fragment via the DMA API
2841  * @dev: the device to map the fragment to
2842  * @frag: the paged fragment to map
2843  * @offset: the offset within the fragment (starting at the
2844  *          fragment's own offset)
2845  * @size: the number of bytes to map
2846  * @dir: the direction of the mapping (``PCI_DMA_*``)
2847  *
2848  * Maps the page associated with @frag to @device.
2849  */
skb_frag_dma_map(struct device * dev,const skb_frag_t * frag,size_t offset,size_t size,enum dma_data_direction dir)2850 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2851 					  const skb_frag_t *frag,
2852 					  size_t offset, size_t size,
2853 					  enum dma_data_direction dir)
2854 {
2855 	return dma_map_page(dev, skb_frag_page(frag),
2856 			    frag->page_offset + offset, size, dir);
2857 }
2858 
pskb_copy(struct sk_buff * skb,gfp_t gfp_mask)2859 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2860 					gfp_t gfp_mask)
2861 {
2862 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2863 }
2864 
2865 
pskb_copy_for_clone(struct sk_buff * skb,gfp_t gfp_mask)2866 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2867 						  gfp_t gfp_mask)
2868 {
2869 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2870 }
2871 
2872 
2873 /**
2874  *	skb_clone_writable - is the header of a clone writable
2875  *	@skb: buffer to check
2876  *	@len: length up to which to write
2877  *
2878  *	Returns true if modifying the header part of the cloned buffer
2879  *	does not requires the data to be copied.
2880  */
skb_clone_writable(const struct sk_buff * skb,unsigned int len)2881 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2882 {
2883 	return !skb_header_cloned(skb) &&
2884 	       skb_headroom(skb) + len <= skb->hdr_len;
2885 }
2886 
skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)2887 static inline int skb_try_make_writable(struct sk_buff *skb,
2888 					unsigned int write_len)
2889 {
2890 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2891 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2892 }
2893 
__skb_cow(struct sk_buff * skb,unsigned int headroom,int cloned)2894 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2895 			    int cloned)
2896 {
2897 	int delta = 0;
2898 
2899 	if (headroom > skb_headroom(skb))
2900 		delta = headroom - skb_headroom(skb);
2901 
2902 	if (delta || cloned)
2903 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2904 					GFP_ATOMIC);
2905 	return 0;
2906 }
2907 
2908 /**
2909  *	skb_cow - copy header of skb when it is required
2910  *	@skb: buffer to cow
2911  *	@headroom: needed headroom
2912  *
2913  *	If the skb passed lacks sufficient headroom or its data part
2914  *	is shared, data is reallocated. If reallocation fails, an error
2915  *	is returned and original skb is not changed.
2916  *
2917  *	The result is skb with writable area skb->head...skb->tail
2918  *	and at least @headroom of space at head.
2919  */
skb_cow(struct sk_buff * skb,unsigned int headroom)2920 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2921 {
2922 	return __skb_cow(skb, headroom, skb_cloned(skb));
2923 }
2924 
2925 /**
2926  *	skb_cow_head - skb_cow but only making the head writable
2927  *	@skb: buffer to cow
2928  *	@headroom: needed headroom
2929  *
2930  *	This function is identical to skb_cow except that we replace the
2931  *	skb_cloned check by skb_header_cloned.  It should be used when
2932  *	you only need to push on some header and do not need to modify
2933  *	the data.
2934  */
skb_cow_head(struct sk_buff * skb,unsigned int headroom)2935 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2936 {
2937 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
2938 }
2939 
2940 /**
2941  *	skb_padto	- pad an skbuff up to a minimal size
2942  *	@skb: buffer to pad
2943  *	@len: minimal length
2944  *
2945  *	Pads up a buffer to ensure the trailing bytes exist and are
2946  *	blanked. If the buffer already contains sufficient data it
2947  *	is untouched. Otherwise it is extended. Returns zero on
2948  *	success. The skb is freed on error.
2949  */
skb_padto(struct sk_buff * skb,unsigned int len)2950 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2951 {
2952 	unsigned int size = skb->len;
2953 	if (likely(size >= len))
2954 		return 0;
2955 	return skb_pad(skb, len - size);
2956 }
2957 
2958 /**
2959  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
2960  *	@skb: buffer to pad
2961  *	@len: minimal length
2962  *	@free_on_error: free buffer on error
2963  *
2964  *	Pads up a buffer to ensure the trailing bytes exist and are
2965  *	blanked. If the buffer already contains sufficient data it
2966  *	is untouched. Otherwise it is extended. Returns zero on
2967  *	success. The skb is freed on error if @free_on_error is true.
2968  */
__skb_put_padto(struct sk_buff * skb,unsigned int len,bool free_on_error)2969 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
2970 				  bool free_on_error)
2971 {
2972 	unsigned int size = skb->len;
2973 
2974 	if (unlikely(size < len)) {
2975 		len -= size;
2976 		if (__skb_pad(skb, len, free_on_error))
2977 			return -ENOMEM;
2978 		__skb_put(skb, len);
2979 	}
2980 	return 0;
2981 }
2982 
2983 /**
2984  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
2985  *	@skb: buffer to pad
2986  *	@len: minimal length
2987  *
2988  *	Pads up a buffer to ensure the trailing bytes exist and are
2989  *	blanked. If the buffer already contains sufficient data it
2990  *	is untouched. Otherwise it is extended. Returns zero on
2991  *	success. The skb is freed on error.
2992  */
skb_put_padto(struct sk_buff * skb,unsigned int len)2993 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2994 {
2995 	return __skb_put_padto(skb, len, true);
2996 }
2997 
skb_add_data(struct sk_buff * skb,struct iov_iter * from,int copy)2998 static inline int skb_add_data(struct sk_buff *skb,
2999 			       struct iov_iter *from, int copy)
3000 {
3001 	const int off = skb->len;
3002 
3003 	if (skb->ip_summed == CHECKSUM_NONE) {
3004 		__wsum csum = 0;
3005 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3006 					         &csum, from)) {
3007 			skb->csum = csum_block_add(skb->csum, csum, off);
3008 			return 0;
3009 		}
3010 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3011 		return 0;
3012 
3013 	__skb_trim(skb, off);
3014 	return -EFAULT;
3015 }
3016 
skb_can_coalesce(struct sk_buff * skb,int i,const struct page * page,int off)3017 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3018 				    const struct page *page, int off)
3019 {
3020 	if (skb_zcopy(skb))
3021 		return false;
3022 	if (i) {
3023 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
3024 
3025 		return page == skb_frag_page(frag) &&
3026 		       off == frag->page_offset + skb_frag_size(frag);
3027 	}
3028 	return false;
3029 }
3030 
__skb_linearize(struct sk_buff * skb)3031 static inline int __skb_linearize(struct sk_buff *skb)
3032 {
3033 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3034 }
3035 
3036 /**
3037  *	skb_linearize - convert paged skb to linear one
3038  *	@skb: buffer to linarize
3039  *
3040  *	If there is no free memory -ENOMEM is returned, otherwise zero
3041  *	is returned and the old skb data released.
3042  */
skb_linearize(struct sk_buff * skb)3043 static inline int skb_linearize(struct sk_buff *skb)
3044 {
3045 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3046 }
3047 
3048 /**
3049  * skb_has_shared_frag - can any frag be overwritten
3050  * @skb: buffer to test
3051  *
3052  * Return true if the skb has at least one frag that might be modified
3053  * by an external entity (as in vmsplice()/sendfile())
3054  */
skb_has_shared_frag(const struct sk_buff * skb)3055 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3056 {
3057 	return skb_is_nonlinear(skb) &&
3058 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3059 }
3060 
3061 /**
3062  *	skb_linearize_cow - make sure skb is linear and writable
3063  *	@skb: buffer to process
3064  *
3065  *	If there is no free memory -ENOMEM is returned, otherwise zero
3066  *	is returned and the old skb data released.
3067  */
skb_linearize_cow(struct sk_buff * skb)3068 static inline int skb_linearize_cow(struct sk_buff *skb)
3069 {
3070 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3071 	       __skb_linearize(skb) : 0;
3072 }
3073 
3074 static __always_inline void
__skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3075 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3076 		     unsigned int off)
3077 {
3078 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3079 		skb->csum = csum_block_sub(skb->csum,
3080 					   csum_partial(start, len, 0), off);
3081 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3082 		 skb_checksum_start_offset(skb) < 0)
3083 		skb->ip_summed = CHECKSUM_NONE;
3084 }
3085 
3086 /**
3087  *	skb_postpull_rcsum - update checksum for received skb after pull
3088  *	@skb: buffer to update
3089  *	@start: start of data before pull
3090  *	@len: length of data pulled
3091  *
3092  *	After doing a pull on a received packet, you need to call this to
3093  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3094  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3095  */
skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3096 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3097 				      const void *start, unsigned int len)
3098 {
3099 	__skb_postpull_rcsum(skb, start, len, 0);
3100 }
3101 
3102 static __always_inline void
__skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3103 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3104 		     unsigned int off)
3105 {
3106 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3107 		skb->csum = csum_block_add(skb->csum,
3108 					   csum_partial(start, len, 0), off);
3109 }
3110 
3111 /**
3112  *	skb_postpush_rcsum - update checksum for received skb after push
3113  *	@skb: buffer to update
3114  *	@start: start of data after push
3115  *	@len: length of data pushed
3116  *
3117  *	After doing a push on a received packet, you need to call this to
3118  *	update the CHECKSUM_COMPLETE checksum.
3119  */
skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3120 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3121 				      const void *start, unsigned int len)
3122 {
3123 	__skb_postpush_rcsum(skb, start, len, 0);
3124 }
3125 
3126 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3127 
3128 /**
3129  *	skb_push_rcsum - push skb and update receive checksum
3130  *	@skb: buffer to update
3131  *	@len: length of data pulled
3132  *
3133  *	This function performs an skb_push on the packet and updates
3134  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3135  *	receive path processing instead of skb_push unless you know
3136  *	that the checksum difference is zero (e.g., a valid IP header)
3137  *	or you are setting ip_summed to CHECKSUM_NONE.
3138  */
skb_push_rcsum(struct sk_buff * skb,unsigned int len)3139 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3140 {
3141 	skb_push(skb, len);
3142 	skb_postpush_rcsum(skb, skb->data, len);
3143 	return skb->data;
3144 }
3145 
3146 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3147 /**
3148  *	pskb_trim_rcsum - trim received skb and update checksum
3149  *	@skb: buffer to trim
3150  *	@len: new length
3151  *
3152  *	This is exactly the same as pskb_trim except that it ensures the
3153  *	checksum of received packets are still valid after the operation.
3154  */
3155 
pskb_trim_rcsum(struct sk_buff * skb,unsigned int len)3156 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3157 {
3158 	if (likely(len >= skb->len))
3159 		return 0;
3160 	return pskb_trim_rcsum_slow(skb, len);
3161 }
3162 
__skb_trim_rcsum(struct sk_buff * skb,unsigned int len)3163 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3164 {
3165 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3166 		skb->ip_summed = CHECKSUM_NONE;
3167 	__skb_trim(skb, len);
3168 	return 0;
3169 }
3170 
__skb_grow_rcsum(struct sk_buff * skb,unsigned int len)3171 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3172 {
3173 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3174 		skb->ip_summed = CHECKSUM_NONE;
3175 	return __skb_grow(skb, len);
3176 }
3177 
3178 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3179 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3180 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3181 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3182 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3183 
3184 #define skb_queue_walk(queue, skb) \
3185 		for (skb = (queue)->next;					\
3186 		     skb != (struct sk_buff *)(queue);				\
3187 		     skb = skb->next)
3188 
3189 #define skb_queue_walk_safe(queue, skb, tmp)					\
3190 		for (skb = (queue)->next, tmp = skb->next;			\
3191 		     skb != (struct sk_buff *)(queue);				\
3192 		     skb = tmp, tmp = skb->next)
3193 
3194 #define skb_queue_walk_from(queue, skb)						\
3195 		for (; skb != (struct sk_buff *)(queue);			\
3196 		     skb = skb->next)
3197 
3198 #define skb_rbtree_walk(skb, root)						\
3199 		for (skb = skb_rb_first(root); skb != NULL;			\
3200 		     skb = skb_rb_next(skb))
3201 
3202 #define skb_rbtree_walk_from(skb)						\
3203 		for (; skb != NULL;						\
3204 		     skb = skb_rb_next(skb))
3205 
3206 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3207 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3208 		     skb = tmp)
3209 
3210 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3211 		for (tmp = skb->next;						\
3212 		     skb != (struct sk_buff *)(queue);				\
3213 		     skb = tmp, tmp = skb->next)
3214 
3215 #define skb_queue_reverse_walk(queue, skb) \
3216 		for (skb = (queue)->prev;					\
3217 		     skb != (struct sk_buff *)(queue);				\
3218 		     skb = skb->prev)
3219 
3220 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3221 		for (skb = (queue)->prev, tmp = skb->prev;			\
3222 		     skb != (struct sk_buff *)(queue);				\
3223 		     skb = tmp, tmp = skb->prev)
3224 
3225 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3226 		for (tmp = skb->prev;						\
3227 		     skb != (struct sk_buff *)(queue);				\
3228 		     skb = tmp, tmp = skb->prev)
3229 
skb_has_frag_list(const struct sk_buff * skb)3230 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3231 {
3232 	return skb_shinfo(skb)->frag_list != NULL;
3233 }
3234 
skb_frag_list_init(struct sk_buff * skb)3235 static inline void skb_frag_list_init(struct sk_buff *skb)
3236 {
3237 	skb_shinfo(skb)->frag_list = NULL;
3238 }
3239 
3240 #define skb_walk_frags(skb, iter)	\
3241 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3242 
3243 
3244 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3245 				const struct sk_buff *skb);
3246 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3247 					  struct sk_buff_head *queue,
3248 					  unsigned int flags,
3249 					  void (*destructor)(struct sock *sk,
3250 							   struct sk_buff *skb),
3251 					  int *peeked, int *off, int *err,
3252 					  struct sk_buff **last);
3253 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3254 					void (*destructor)(struct sock *sk,
3255 							   struct sk_buff *skb),
3256 					int *peeked, int *off, int *err,
3257 					struct sk_buff **last);
3258 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3259 				    void (*destructor)(struct sock *sk,
3260 						       struct sk_buff *skb),
3261 				    int *peeked, int *off, int *err);
3262 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3263 				  int *err);
3264 __poll_t datagram_poll(struct file *file, struct socket *sock,
3265 			   struct poll_table_struct *wait);
3266 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3267 			   struct iov_iter *to, int size);
skb_copy_datagram_msg(const struct sk_buff * from,int offset,struct msghdr * msg,int size)3268 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3269 					struct msghdr *msg, int size)
3270 {
3271 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3272 }
3273 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3274 				   struct msghdr *msg);
3275 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3276 				 struct iov_iter *from, int len);
3277 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3278 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3279 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
skb_free_datagram_locked(struct sock * sk,struct sk_buff * skb)3280 static inline void skb_free_datagram_locked(struct sock *sk,
3281 					    struct sk_buff *skb)
3282 {
3283 	__skb_free_datagram_locked(sk, skb, 0);
3284 }
3285 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3286 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3287 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3288 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3289 			      int len, __wsum csum);
3290 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3291 		    struct pipe_inode_info *pipe, unsigned int len,
3292 		    unsigned int flags);
3293 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3294 			 int len);
3295 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3296 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3297 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3298 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3299 		 int len, int hlen);
3300 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3301 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3302 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3303 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3304 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3305 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3306 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3307 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3308 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3309 int skb_vlan_pop(struct sk_buff *skb);
3310 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3311 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3312 			     gfp_t gfp);
3313 
memcpy_from_msg(void * data,struct msghdr * msg,int len)3314 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3315 {
3316 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3317 }
3318 
memcpy_to_msg(struct msghdr * msg,void * data,int len)3319 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3320 {
3321 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3322 }
3323 
3324 struct skb_checksum_ops {
3325 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3326 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3327 };
3328 
3329 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3330 
3331 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3332 		      __wsum csum, const struct skb_checksum_ops *ops);
3333 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3334 		    __wsum csum);
3335 
3336 static inline void * __must_check
__skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * data,int hlen,void * buffer)3337 __skb_header_pointer(const struct sk_buff *skb, int offset,
3338 		     int len, void *data, int hlen, void *buffer)
3339 {
3340 	if (hlen - offset >= len)
3341 		return data + offset;
3342 
3343 	if (!skb ||
3344 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3345 		return NULL;
3346 
3347 	return buffer;
3348 }
3349 
3350 static inline void * __must_check
skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * buffer)3351 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3352 {
3353 	return __skb_header_pointer(skb, offset, len, skb->data,
3354 				    skb_headlen(skb), buffer);
3355 }
3356 
3357 /**
3358  *	skb_needs_linearize - check if we need to linearize a given skb
3359  *			      depending on the given device features.
3360  *	@skb: socket buffer to check
3361  *	@features: net device features
3362  *
3363  *	Returns true if either:
3364  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3365  *	2. skb is fragmented and the device does not support SG.
3366  */
skb_needs_linearize(struct sk_buff * skb,netdev_features_t features)3367 static inline bool skb_needs_linearize(struct sk_buff *skb,
3368 				       netdev_features_t features)
3369 {
3370 	return skb_is_nonlinear(skb) &&
3371 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3372 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3373 }
3374 
skb_copy_from_linear_data(const struct sk_buff * skb,void * to,const unsigned int len)3375 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3376 					     void *to,
3377 					     const unsigned int len)
3378 {
3379 	memcpy(to, skb->data, len);
3380 }
3381 
skb_copy_from_linear_data_offset(const struct sk_buff * skb,const int offset,void * to,const unsigned int len)3382 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3383 						    const int offset, void *to,
3384 						    const unsigned int len)
3385 {
3386 	memcpy(to, skb->data + offset, len);
3387 }
3388 
skb_copy_to_linear_data(struct sk_buff * skb,const void * from,const unsigned int len)3389 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3390 					   const void *from,
3391 					   const unsigned int len)
3392 {
3393 	memcpy(skb->data, from, len);
3394 }
3395 
skb_copy_to_linear_data_offset(struct sk_buff * skb,const int offset,const void * from,const unsigned int len)3396 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3397 						  const int offset,
3398 						  const void *from,
3399 						  const unsigned int len)
3400 {
3401 	memcpy(skb->data + offset, from, len);
3402 }
3403 
3404 void skb_init(void);
3405 
skb_get_ktime(const struct sk_buff * skb)3406 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3407 {
3408 	return skb->tstamp;
3409 }
3410 
3411 /**
3412  *	skb_get_timestamp - get timestamp from a skb
3413  *	@skb: skb to get stamp from
3414  *	@stamp: pointer to struct timeval to store stamp in
3415  *
3416  *	Timestamps are stored in the skb as offsets to a base timestamp.
3417  *	This function converts the offset back to a struct timeval and stores
3418  *	it in stamp.
3419  */
skb_get_timestamp(const struct sk_buff * skb,struct timeval * stamp)3420 static inline void skb_get_timestamp(const struct sk_buff *skb,
3421 				     struct timeval *stamp)
3422 {
3423 	*stamp = ktime_to_timeval(skb->tstamp);
3424 }
3425 
skb_get_timestampns(const struct sk_buff * skb,struct timespec * stamp)3426 static inline void skb_get_timestampns(const struct sk_buff *skb,
3427 				       struct timespec *stamp)
3428 {
3429 	*stamp = ktime_to_timespec(skb->tstamp);
3430 }
3431 
__net_timestamp(struct sk_buff * skb)3432 static inline void __net_timestamp(struct sk_buff *skb)
3433 {
3434 	skb->tstamp = ktime_get_real();
3435 }
3436 
net_timedelta(ktime_t t)3437 static inline ktime_t net_timedelta(ktime_t t)
3438 {
3439 	return ktime_sub(ktime_get_real(), t);
3440 }
3441 
net_invalid_timestamp(void)3442 static inline ktime_t net_invalid_timestamp(void)
3443 {
3444 	return 0;
3445 }
3446 
skb_metadata_len(const struct sk_buff * skb)3447 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3448 {
3449 	return skb_shinfo(skb)->meta_len;
3450 }
3451 
skb_metadata_end(const struct sk_buff * skb)3452 static inline void *skb_metadata_end(const struct sk_buff *skb)
3453 {
3454 	return skb_mac_header(skb);
3455 }
3456 
__skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b,u8 meta_len)3457 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3458 					  const struct sk_buff *skb_b,
3459 					  u8 meta_len)
3460 {
3461 	const void *a = skb_metadata_end(skb_a);
3462 	const void *b = skb_metadata_end(skb_b);
3463 	/* Using more efficient varaiant than plain call to memcmp(). */
3464 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3465 	u64 diffs = 0;
3466 
3467 	switch (meta_len) {
3468 #define __it(x, op) (x -= sizeof(u##op))
3469 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3470 	case 32: diffs |= __it_diff(a, b, 64);
3471 	case 24: diffs |= __it_diff(a, b, 64);
3472 	case 16: diffs |= __it_diff(a, b, 64);
3473 	case  8: diffs |= __it_diff(a, b, 64);
3474 		break;
3475 	case 28: diffs |= __it_diff(a, b, 64);
3476 	case 20: diffs |= __it_diff(a, b, 64);
3477 	case 12: diffs |= __it_diff(a, b, 64);
3478 	case  4: diffs |= __it_diff(a, b, 32);
3479 		break;
3480 	}
3481 	return diffs;
3482 #else
3483 	return memcmp(a - meta_len, b - meta_len, meta_len);
3484 #endif
3485 }
3486 
skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b)3487 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3488 					const struct sk_buff *skb_b)
3489 {
3490 	u8 len_a = skb_metadata_len(skb_a);
3491 	u8 len_b = skb_metadata_len(skb_b);
3492 
3493 	if (!(len_a | len_b))
3494 		return false;
3495 
3496 	return len_a != len_b ?
3497 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
3498 }
3499 
skb_metadata_set(struct sk_buff * skb,u8 meta_len)3500 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3501 {
3502 	skb_shinfo(skb)->meta_len = meta_len;
3503 }
3504 
skb_metadata_clear(struct sk_buff * skb)3505 static inline void skb_metadata_clear(struct sk_buff *skb)
3506 {
3507 	skb_metadata_set(skb, 0);
3508 }
3509 
3510 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3511 
3512 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3513 
3514 void skb_clone_tx_timestamp(struct sk_buff *skb);
3515 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3516 
3517 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3518 
skb_clone_tx_timestamp(struct sk_buff * skb)3519 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3520 {
3521 }
3522 
skb_defer_rx_timestamp(struct sk_buff * skb)3523 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3524 {
3525 	return false;
3526 }
3527 
3528 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3529 
3530 /**
3531  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3532  *
3533  * PHY drivers may accept clones of transmitted packets for
3534  * timestamping via their phy_driver.txtstamp method. These drivers
3535  * must call this function to return the skb back to the stack with a
3536  * timestamp.
3537  *
3538  * @skb: clone of the the original outgoing packet
3539  * @hwtstamps: hardware time stamps
3540  *
3541  */
3542 void skb_complete_tx_timestamp(struct sk_buff *skb,
3543 			       struct skb_shared_hwtstamps *hwtstamps);
3544 
3545 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3546 		     struct skb_shared_hwtstamps *hwtstamps,
3547 		     struct sock *sk, int tstype);
3548 
3549 /**
3550  * skb_tstamp_tx - queue clone of skb with send time stamps
3551  * @orig_skb:	the original outgoing packet
3552  * @hwtstamps:	hardware time stamps, may be NULL if not available
3553  *
3554  * If the skb has a socket associated, then this function clones the
3555  * skb (thus sharing the actual data and optional structures), stores
3556  * the optional hardware time stamping information (if non NULL) or
3557  * generates a software time stamp (otherwise), then queues the clone
3558  * to the error queue of the socket.  Errors are silently ignored.
3559  */
3560 void skb_tstamp_tx(struct sk_buff *orig_skb,
3561 		   struct skb_shared_hwtstamps *hwtstamps);
3562 
3563 /**
3564  * skb_tx_timestamp() - Driver hook for transmit timestamping
3565  *
3566  * Ethernet MAC Drivers should call this function in their hard_xmit()
3567  * function immediately before giving the sk_buff to the MAC hardware.
3568  *
3569  * Specifically, one should make absolutely sure that this function is
3570  * called before TX completion of this packet can trigger.  Otherwise
3571  * the packet could potentially already be freed.
3572  *
3573  * @skb: A socket buffer.
3574  */
skb_tx_timestamp(struct sk_buff * skb)3575 static inline void skb_tx_timestamp(struct sk_buff *skb)
3576 {
3577 	skb_clone_tx_timestamp(skb);
3578 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3579 		skb_tstamp_tx(skb, NULL);
3580 }
3581 
3582 /**
3583  * skb_complete_wifi_ack - deliver skb with wifi status
3584  *
3585  * @skb: the original outgoing packet
3586  * @acked: ack status
3587  *
3588  */
3589 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3590 
3591 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3592 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3593 
skb_csum_unnecessary(const struct sk_buff * skb)3594 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3595 {
3596 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3597 		skb->csum_valid ||
3598 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3599 		 skb_checksum_start_offset(skb) >= 0));
3600 }
3601 
3602 /**
3603  *	skb_checksum_complete - Calculate checksum of an entire packet
3604  *	@skb: packet to process
3605  *
3606  *	This function calculates the checksum over the entire packet plus
3607  *	the value of skb->csum.  The latter can be used to supply the
3608  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3609  *	checksum.
3610  *
3611  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3612  *	this function can be used to verify that checksum on received
3613  *	packets.  In that case the function should return zero if the
3614  *	checksum is correct.  In particular, this function will return zero
3615  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3616  *	hardware has already verified the correctness of the checksum.
3617  */
skb_checksum_complete(struct sk_buff * skb)3618 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3619 {
3620 	return skb_csum_unnecessary(skb) ?
3621 	       0 : __skb_checksum_complete(skb);
3622 }
3623 
__skb_decr_checksum_unnecessary(struct sk_buff * skb)3624 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3625 {
3626 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3627 		if (skb->csum_level == 0)
3628 			skb->ip_summed = CHECKSUM_NONE;
3629 		else
3630 			skb->csum_level--;
3631 	}
3632 }
3633 
__skb_incr_checksum_unnecessary(struct sk_buff * skb)3634 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3635 {
3636 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3637 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3638 			skb->csum_level++;
3639 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3640 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3641 		skb->csum_level = 0;
3642 	}
3643 }
3644 
3645 /* Check if we need to perform checksum complete validation.
3646  *
3647  * Returns true if checksum complete is needed, false otherwise
3648  * (either checksum is unnecessary or zero checksum is allowed).
3649  */
__skb_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)3650 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3651 						  bool zero_okay,
3652 						  __sum16 check)
3653 {
3654 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3655 		skb->csum_valid = 1;
3656 		__skb_decr_checksum_unnecessary(skb);
3657 		return false;
3658 	}
3659 
3660 	return true;
3661 }
3662 
3663 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3664  * in checksum_init.
3665  */
3666 #define CHECKSUM_BREAK 76
3667 
3668 /* Unset checksum-complete
3669  *
3670  * Unset checksum complete can be done when packet is being modified
3671  * (uncompressed for instance) and checksum-complete value is
3672  * invalidated.
3673  */
skb_checksum_complete_unset(struct sk_buff * skb)3674 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3675 {
3676 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3677 		skb->ip_summed = CHECKSUM_NONE;
3678 }
3679 
3680 /* Validate (init) checksum based on checksum complete.
3681  *
3682  * Return values:
3683  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3684  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3685  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3686  *   non-zero: value of invalid checksum
3687  *
3688  */
__skb_checksum_validate_complete(struct sk_buff * skb,bool complete,__wsum psum)3689 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3690 						       bool complete,
3691 						       __wsum psum)
3692 {
3693 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3694 		if (!csum_fold(csum_add(psum, skb->csum))) {
3695 			skb->csum_valid = 1;
3696 			return 0;
3697 		}
3698 	}
3699 
3700 	skb->csum = psum;
3701 
3702 	if (complete || skb->len <= CHECKSUM_BREAK) {
3703 		__sum16 csum;
3704 
3705 		csum = __skb_checksum_complete(skb);
3706 		skb->csum_valid = !csum;
3707 		return csum;
3708 	}
3709 
3710 	return 0;
3711 }
3712 
null_compute_pseudo(struct sk_buff * skb,int proto)3713 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3714 {
3715 	return 0;
3716 }
3717 
3718 /* Perform checksum validate (init). Note that this is a macro since we only
3719  * want to calculate the pseudo header which is an input function if necessary.
3720  * First we try to validate without any computation (checksum unnecessary) and
3721  * then calculate based on checksum complete calling the function to compute
3722  * pseudo header.
3723  *
3724  * Return values:
3725  *   0: checksum is validated or try to in skb_checksum_complete
3726  *   non-zero: value of invalid checksum
3727  */
3728 #define __skb_checksum_validate(skb, proto, complete,			\
3729 				zero_okay, check, compute_pseudo)	\
3730 ({									\
3731 	__sum16 __ret = 0;						\
3732 	skb->csum_valid = 0;						\
3733 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
3734 		__ret = __skb_checksum_validate_complete(skb,		\
3735 				complete, compute_pseudo(skb, proto));	\
3736 	__ret;								\
3737 })
3738 
3739 #define skb_checksum_init(skb, proto, compute_pseudo)			\
3740 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3741 
3742 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
3743 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3744 
3745 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
3746 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3747 
3748 #define skb_checksum_validate_zero_check(skb, proto, check,		\
3749 					 compute_pseudo)		\
3750 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3751 
3752 #define skb_checksum_simple_validate(skb)				\
3753 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3754 
__skb_checksum_convert_check(struct sk_buff * skb)3755 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3756 {
3757 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
3758 }
3759 
__skb_checksum_convert(struct sk_buff * skb,__sum16 check,__wsum pseudo)3760 static inline void __skb_checksum_convert(struct sk_buff *skb,
3761 					  __sum16 check, __wsum pseudo)
3762 {
3763 	skb->csum = ~pseudo;
3764 	skb->ip_summed = CHECKSUM_COMPLETE;
3765 }
3766 
3767 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
3768 do {									\
3769 	if (__skb_checksum_convert_check(skb))				\
3770 		__skb_checksum_convert(skb, check,			\
3771 				       compute_pseudo(skb, proto));	\
3772 } while (0)
3773 
skb_remcsum_adjust_partial(struct sk_buff * skb,void * ptr,u16 start,u16 offset)3774 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3775 					      u16 start, u16 offset)
3776 {
3777 	skb->ip_summed = CHECKSUM_PARTIAL;
3778 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3779 	skb->csum_offset = offset - start;
3780 }
3781 
3782 /* Update skbuf and packet to reflect the remote checksum offload operation.
3783  * When called, ptr indicates the starting point for skb->csum when
3784  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3785  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3786  */
skb_remcsum_process(struct sk_buff * skb,void * ptr,int start,int offset,bool nopartial)3787 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3788 				       int start, int offset, bool nopartial)
3789 {
3790 	__wsum delta;
3791 
3792 	if (!nopartial) {
3793 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
3794 		return;
3795 	}
3796 
3797 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3798 		__skb_checksum_complete(skb);
3799 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3800 	}
3801 
3802 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
3803 
3804 	/* Adjust skb->csum since we changed the packet */
3805 	skb->csum = csum_add(skb->csum, delta);
3806 }
3807 
skb_nfct(const struct sk_buff * skb)3808 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3809 {
3810 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3811 	return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
3812 #else
3813 	return NULL;
3814 #endif
3815 }
3816 
3817 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3818 void nf_conntrack_destroy(struct nf_conntrack *nfct);
nf_conntrack_put(struct nf_conntrack * nfct)3819 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3820 {
3821 	if (nfct && atomic_dec_and_test(&nfct->use))
3822 		nf_conntrack_destroy(nfct);
3823 }
nf_conntrack_get(struct nf_conntrack * nfct)3824 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3825 {
3826 	if (nfct)
3827 		atomic_inc(&nfct->use);
3828 }
3829 #endif
3830 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
nf_bridge_put(struct nf_bridge_info * nf_bridge)3831 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3832 {
3833 	if (nf_bridge && refcount_dec_and_test(&nf_bridge->use))
3834 		kfree(nf_bridge);
3835 }
nf_bridge_get(struct nf_bridge_info * nf_bridge)3836 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3837 {
3838 	if (nf_bridge)
3839 		refcount_inc(&nf_bridge->use);
3840 }
3841 #endif /* CONFIG_BRIDGE_NETFILTER */
nf_reset(struct sk_buff * skb)3842 static inline void nf_reset(struct sk_buff *skb)
3843 {
3844 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3845 	nf_conntrack_put(skb_nfct(skb));
3846 	skb->_nfct = 0;
3847 #endif
3848 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3849 	nf_bridge_put(skb->nf_bridge);
3850 	skb->nf_bridge = NULL;
3851 #endif
3852 }
3853 
nf_reset_trace(struct sk_buff * skb)3854 static inline void nf_reset_trace(struct sk_buff *skb)
3855 {
3856 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3857 	skb->nf_trace = 0;
3858 #endif
3859 }
3860 
ipvs_reset(struct sk_buff * skb)3861 static inline void ipvs_reset(struct sk_buff *skb)
3862 {
3863 #if IS_ENABLED(CONFIG_IP_VS)
3864 	skb->ipvs_property = 0;
3865 #endif
3866 }
3867 
3868 /* Note: This doesn't put any conntrack and bridge info in dst. */
__nf_copy(struct sk_buff * dst,const struct sk_buff * src,bool copy)3869 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3870 			     bool copy)
3871 {
3872 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3873 	dst->_nfct = src->_nfct;
3874 	nf_conntrack_get(skb_nfct(src));
3875 #endif
3876 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3877 	dst->nf_bridge  = src->nf_bridge;
3878 	nf_bridge_get(src->nf_bridge);
3879 #endif
3880 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3881 	if (copy)
3882 		dst->nf_trace = src->nf_trace;
3883 #endif
3884 }
3885 
nf_copy(struct sk_buff * dst,const struct sk_buff * src)3886 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3887 {
3888 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3889 	nf_conntrack_put(skb_nfct(dst));
3890 #endif
3891 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3892 	nf_bridge_put(dst->nf_bridge);
3893 #endif
3894 	__nf_copy(dst, src, true);
3895 }
3896 
3897 #ifdef CONFIG_NETWORK_SECMARK
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)3898 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3899 {
3900 	to->secmark = from->secmark;
3901 }
3902 
skb_init_secmark(struct sk_buff * skb)3903 static inline void skb_init_secmark(struct sk_buff *skb)
3904 {
3905 	skb->secmark = 0;
3906 }
3907 #else
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)3908 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3909 { }
3910 
skb_init_secmark(struct sk_buff * skb)3911 static inline void skb_init_secmark(struct sk_buff *skb)
3912 { }
3913 #endif
3914 
skb_irq_freeable(const struct sk_buff * skb)3915 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3916 {
3917 	return !skb->destructor &&
3918 #if IS_ENABLED(CONFIG_XFRM)
3919 		!skb->sp &&
3920 #endif
3921 		!skb_nfct(skb) &&
3922 		!skb->_skb_refdst &&
3923 		!skb_has_frag_list(skb);
3924 }
3925 
skb_set_queue_mapping(struct sk_buff * skb,u16 queue_mapping)3926 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3927 {
3928 	skb->queue_mapping = queue_mapping;
3929 }
3930 
skb_get_queue_mapping(const struct sk_buff * skb)3931 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3932 {
3933 	return skb->queue_mapping;
3934 }
3935 
skb_copy_queue_mapping(struct sk_buff * to,const struct sk_buff * from)3936 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3937 {
3938 	to->queue_mapping = from->queue_mapping;
3939 }
3940 
skb_record_rx_queue(struct sk_buff * skb,u16 rx_queue)3941 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3942 {
3943 	skb->queue_mapping = rx_queue + 1;
3944 }
3945 
skb_get_rx_queue(const struct sk_buff * skb)3946 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3947 {
3948 	return skb->queue_mapping - 1;
3949 }
3950 
skb_rx_queue_recorded(const struct sk_buff * skb)3951 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3952 {
3953 	return skb->queue_mapping != 0;
3954 }
3955 
skb_set_dst_pending_confirm(struct sk_buff * skb,u32 val)3956 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
3957 {
3958 	skb->dst_pending_confirm = val;
3959 }
3960 
skb_get_dst_pending_confirm(const struct sk_buff * skb)3961 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
3962 {
3963 	return skb->dst_pending_confirm != 0;
3964 }
3965 
skb_sec_path(struct sk_buff * skb)3966 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3967 {
3968 #ifdef CONFIG_XFRM
3969 	return skb->sp;
3970 #else
3971 	return NULL;
3972 #endif
3973 }
3974 
3975 /* Keeps track of mac header offset relative to skb->head.
3976  * It is useful for TSO of Tunneling protocol. e.g. GRE.
3977  * For non-tunnel skb it points to skb_mac_header() and for
3978  * tunnel skb it points to outer mac header.
3979  * Keeps track of level of encapsulation of network headers.
3980  */
3981 struct skb_gso_cb {
3982 	union {
3983 		int	mac_offset;
3984 		int	data_offset;
3985 	};
3986 	int	encap_level;
3987 	__wsum	csum;
3988 	__u16	csum_start;
3989 };
3990 #define SKB_SGO_CB_OFFSET	32
3991 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
3992 
skb_tnl_header_len(const struct sk_buff * inner_skb)3993 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3994 {
3995 	return (skb_mac_header(inner_skb) - inner_skb->head) -
3996 		SKB_GSO_CB(inner_skb)->mac_offset;
3997 }
3998 
gso_pskb_expand_head(struct sk_buff * skb,int extra)3999 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4000 {
4001 	int new_headroom, headroom;
4002 	int ret;
4003 
4004 	headroom = skb_headroom(skb);
4005 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4006 	if (ret)
4007 		return ret;
4008 
4009 	new_headroom = skb_headroom(skb);
4010 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4011 	return 0;
4012 }
4013 
gso_reset_checksum(struct sk_buff * skb,__wsum res)4014 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4015 {
4016 	/* Do not update partial checksums if remote checksum is enabled. */
4017 	if (skb->remcsum_offload)
4018 		return;
4019 
4020 	SKB_GSO_CB(skb)->csum = res;
4021 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4022 }
4023 
4024 /* Compute the checksum for a gso segment. First compute the checksum value
4025  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4026  * then add in skb->csum (checksum from csum_start to end of packet).
4027  * skb->csum and csum_start are then updated to reflect the checksum of the
4028  * resultant packet starting from the transport header-- the resultant checksum
4029  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4030  * header.
4031  */
gso_make_checksum(struct sk_buff * skb,__wsum res)4032 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4033 {
4034 	unsigned char *csum_start = skb_transport_header(skb);
4035 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4036 	__wsum partial = SKB_GSO_CB(skb)->csum;
4037 
4038 	SKB_GSO_CB(skb)->csum = res;
4039 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4040 
4041 	return csum_fold(csum_partial(csum_start, plen, partial));
4042 }
4043 
skb_is_gso(const struct sk_buff * skb)4044 static inline bool skb_is_gso(const struct sk_buff *skb)
4045 {
4046 	return skb_shinfo(skb)->gso_size;
4047 }
4048 
4049 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_v6(const struct sk_buff * skb)4050 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4051 {
4052 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4053 }
4054 
4055 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_sctp(const struct sk_buff * skb)4056 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4057 {
4058 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4059 }
4060 
skb_gso_reset(struct sk_buff * skb)4061 static inline void skb_gso_reset(struct sk_buff *skb)
4062 {
4063 	skb_shinfo(skb)->gso_size = 0;
4064 	skb_shinfo(skb)->gso_segs = 0;
4065 	skb_shinfo(skb)->gso_type = 0;
4066 }
4067 
skb_increase_gso_size(struct skb_shared_info * shinfo,u16 increment)4068 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4069 					 u16 increment)
4070 {
4071 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4072 		return;
4073 	shinfo->gso_size += increment;
4074 }
4075 
skb_decrease_gso_size(struct skb_shared_info * shinfo,u16 decrement)4076 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4077 					 u16 decrement)
4078 {
4079 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4080 		return;
4081 	shinfo->gso_size -= decrement;
4082 }
4083 
4084 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4085 
skb_warn_if_lro(const struct sk_buff * skb)4086 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4087 {
4088 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4089 	 * wanted then gso_type will be set. */
4090 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4091 
4092 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4093 	    unlikely(shinfo->gso_type == 0)) {
4094 		__skb_warn_lro_forwarding(skb);
4095 		return true;
4096 	}
4097 	return false;
4098 }
4099 
skb_forward_csum(struct sk_buff * skb)4100 static inline void skb_forward_csum(struct sk_buff *skb)
4101 {
4102 	/* Unfortunately we don't support this one.  Any brave souls? */
4103 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4104 		skb->ip_summed = CHECKSUM_NONE;
4105 }
4106 
4107 /**
4108  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4109  * @skb: skb to check
4110  *
4111  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4112  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4113  * use this helper, to document places where we make this assertion.
4114  */
skb_checksum_none_assert(const struct sk_buff * skb)4115 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4116 {
4117 #ifdef DEBUG
4118 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4119 #endif
4120 }
4121 
4122 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4123 
4124 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4125 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4126 				     unsigned int transport_len,
4127 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4128 
4129 /**
4130  * skb_head_is_locked - Determine if the skb->head is locked down
4131  * @skb: skb to check
4132  *
4133  * The head on skbs build around a head frag can be removed if they are
4134  * not cloned.  This function returns true if the skb head is locked down
4135  * due to either being allocated via kmalloc, or by being a clone with
4136  * multiple references to the head.
4137  */
skb_head_is_locked(const struct sk_buff * skb)4138 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4139 {
4140 	return !skb->head_frag || skb_cloned(skb);
4141 }
4142 
4143 /* Local Checksum Offload.
4144  * Compute outer checksum based on the assumption that the
4145  * inner checksum will be offloaded later.
4146  * See Documentation/networking/checksum-offloads.txt for
4147  * explanation of how this works.
4148  * Fill in outer checksum adjustment (e.g. with sum of outer
4149  * pseudo-header) before calling.
4150  * Also ensure that inner checksum is in linear data area.
4151  */
lco_csum(struct sk_buff * skb)4152 static inline __wsum lco_csum(struct sk_buff *skb)
4153 {
4154 	unsigned char *csum_start = skb_checksum_start(skb);
4155 	unsigned char *l4_hdr = skb_transport_header(skb);
4156 	__wsum partial;
4157 
4158 	/* Start with complement of inner checksum adjustment */
4159 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4160 						    skb->csum_offset));
4161 
4162 	/* Add in checksum of our headers (incl. outer checksum
4163 	 * adjustment filled in by caller) and return result.
4164 	 */
4165 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4166 }
4167 
4168 #endif	/* __KERNEL__ */
4169 #endif	/* _LINUX_SKBUFF_H */
4170