1 /*
2  * Procedures for maintaining information about logical memory blocks.
3  *
4  * Peter Bergner, IBM Corp.	June 2001.
5  * Copyright (C) 2001 Peter Bergner.
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/kmemleak.h>
21 #include <linux/seq_file.h>
22 #include <linux/memblock.h>
23 #include <linux/bootmem.h>
24 
25 #include <asm/sections.h>
26 #include <linux/io.h>
27 
28 #include "internal.h"
29 
30 /**
31  * DOC: memblock overview
32  *
33  * Memblock is a method of managing memory regions during the early
34  * boot period when the usual kernel memory allocators are not up and
35  * running.
36  *
37  * Memblock views the system memory as collections of contiguous
38  * regions. There are several types of these collections:
39  *
40  * * ``memory`` - describes the physical memory available to the
41  *   kernel; this may differ from the actual physical memory installed
42  *   in the system, for instance when the memory is restricted with
43  *   ``mem=`` command line parameter
44  * * ``reserved`` - describes the regions that were allocated
45  * * ``physmap`` - describes the actual physical memory regardless of
46  *   the possible restrictions; the ``physmap`` type is only available
47  *   on some architectures.
48  *
49  * Each region is represented by :c:type:`struct memblock_region` that
50  * defines the region extents, its attributes and NUMA node id on NUMA
51  * systems. Every memory type is described by the :c:type:`struct
52  * memblock_type` which contains an array of memory regions along with
53  * the allocator metadata. The memory types are nicely wrapped with
54  * :c:type:`struct memblock`. This structure is statically initialzed
55  * at build time. The region arrays for the "memory" and "reserved"
56  * types are initially sized to %INIT_MEMBLOCK_REGIONS and for the
57  * "physmap" type to %INIT_PHYSMEM_REGIONS.
58  * The :c:func:`memblock_allow_resize` enables automatic resizing of
59  * the region arrays during addition of new regions. This feature
60  * should be used with care so that memory allocated for the region
61  * array will not overlap with areas that should be reserved, for
62  * example initrd.
63  *
64  * The early architecture setup should tell memblock what the physical
65  * memory layout is by using :c:func:`memblock_add` or
66  * :c:func:`memblock_add_node` functions. The first function does not
67  * assign the region to a NUMA node and it is appropriate for UMA
68  * systems. Yet, it is possible to use it on NUMA systems as well and
69  * assign the region to a NUMA node later in the setup process using
70  * :c:func:`memblock_set_node`. The :c:func:`memblock_add_node`
71  * performs such an assignment directly.
72  *
73  * Once memblock is setup the memory can be allocated using either
74  * memblock or bootmem APIs.
75  *
76  * As the system boot progresses, the architecture specific
77  * :c:func:`mem_init` function frees all the memory to the buddy page
78  * allocator.
79  *
80  * If an architecure enables %CONFIG_ARCH_DISCARD_MEMBLOCK, the
81  * memblock data structures will be discarded after the system
82  * initialization compltes.
83  */
84 
85 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
86 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
87 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
88 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
89 #endif
90 
91 struct memblock memblock __initdata_memblock = {
92 	.memory.regions		= memblock_memory_init_regions,
93 	.memory.cnt		= 1,	/* empty dummy entry */
94 	.memory.max		= INIT_MEMBLOCK_REGIONS,
95 	.memory.name		= "memory",
96 
97 	.reserved.regions	= memblock_reserved_init_regions,
98 	.reserved.cnt		= 1,	/* empty dummy entry */
99 	.reserved.max		= INIT_MEMBLOCK_REGIONS,
100 	.reserved.name		= "reserved",
101 
102 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
103 	.physmem.regions	= memblock_physmem_init_regions,
104 	.physmem.cnt		= 1,	/* empty dummy entry */
105 	.physmem.max		= INIT_PHYSMEM_REGIONS,
106 	.physmem.name		= "physmem",
107 #endif
108 
109 	.bottom_up		= false,
110 	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
111 };
112 
113 int memblock_debug __initdata_memblock;
114 static bool system_has_some_mirror __initdata_memblock = false;
115 static int memblock_can_resize __initdata_memblock;
116 static int memblock_memory_in_slab __initdata_memblock = 0;
117 static int memblock_reserved_in_slab __initdata_memblock = 0;
118 
choose_memblock_flags(void)119 enum memblock_flags __init_memblock choose_memblock_flags(void)
120 {
121 	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
122 }
123 
124 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
memblock_cap_size(phys_addr_t base,phys_addr_t * size)125 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
126 {
127 	return *size = min(*size, PHYS_ADDR_MAX - base);
128 }
129 
130 /*
131  * Address comparison utilities
132  */
memblock_addrs_overlap(phys_addr_t base1,phys_addr_t size1,phys_addr_t base2,phys_addr_t size2)133 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
134 				       phys_addr_t base2, phys_addr_t size2)
135 {
136 	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
137 }
138 
memblock_overlaps_region(struct memblock_type * type,phys_addr_t base,phys_addr_t size)139 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
140 					phys_addr_t base, phys_addr_t size)
141 {
142 	unsigned long i;
143 
144 	for (i = 0; i < type->cnt; i++)
145 		if (memblock_addrs_overlap(base, size, type->regions[i].base,
146 					   type->regions[i].size))
147 			break;
148 	return i < type->cnt;
149 }
150 
151 /**
152  * __memblock_find_range_bottom_up - find free area utility in bottom-up
153  * @start: start of candidate range
154  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
155  *       %MEMBLOCK_ALLOC_ACCESSIBLE
156  * @size: size of free area to find
157  * @align: alignment of free area to find
158  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
159  * @flags: pick from blocks based on memory attributes
160  *
161  * Utility called from memblock_find_in_range_node(), find free area bottom-up.
162  *
163  * Return:
164  * Found address on success, 0 on failure.
165  */
166 static phys_addr_t __init_memblock
__memblock_find_range_bottom_up(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)167 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
168 				phys_addr_t size, phys_addr_t align, int nid,
169 				enum memblock_flags flags)
170 {
171 	phys_addr_t this_start, this_end, cand;
172 	u64 i;
173 
174 	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
175 		this_start = clamp(this_start, start, end);
176 		this_end = clamp(this_end, start, end);
177 
178 		cand = round_up(this_start, align);
179 		if (cand < this_end && this_end - cand >= size)
180 			return cand;
181 	}
182 
183 	return 0;
184 }
185 
186 /**
187  * __memblock_find_range_top_down - find free area utility, in top-down
188  * @start: start of candidate range
189  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
190  *       %MEMBLOCK_ALLOC_ACCESSIBLE
191  * @size: size of free area to find
192  * @align: alignment of free area to find
193  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
194  * @flags: pick from blocks based on memory attributes
195  *
196  * Utility called from memblock_find_in_range_node(), find free area top-down.
197  *
198  * Return:
199  * Found address on success, 0 on failure.
200  */
201 static phys_addr_t __init_memblock
__memblock_find_range_top_down(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)202 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
203 			       phys_addr_t size, phys_addr_t align, int nid,
204 			       enum memblock_flags flags)
205 {
206 	phys_addr_t this_start, this_end, cand;
207 	u64 i;
208 
209 	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
210 					NULL) {
211 		this_start = clamp(this_start, start, end);
212 		this_end = clamp(this_end, start, end);
213 
214 		if (this_end < size)
215 			continue;
216 
217 		cand = round_down(this_end - size, align);
218 		if (cand >= this_start)
219 			return cand;
220 	}
221 
222 	return 0;
223 }
224 
225 /**
226  * memblock_find_in_range_node - find free area in given range and node
227  * @size: size of free area to find
228  * @align: alignment of free area to find
229  * @start: start of candidate range
230  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
231  *       %MEMBLOCK_ALLOC_ACCESSIBLE
232  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
233  * @flags: pick from blocks based on memory attributes
234  *
235  * Find @size free area aligned to @align in the specified range and node.
236  *
237  * When allocation direction is bottom-up, the @start should be greater
238  * than the end of the kernel image. Otherwise, it will be trimmed. The
239  * reason is that we want the bottom-up allocation just near the kernel
240  * image so it is highly likely that the allocated memory and the kernel
241  * will reside in the same node.
242  *
243  * If bottom-up allocation failed, will try to allocate memory top-down.
244  *
245  * Return:
246  * Found address on success, 0 on failure.
247  */
memblock_find_in_range_node(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,enum memblock_flags flags)248 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
249 					phys_addr_t align, phys_addr_t start,
250 					phys_addr_t end, int nid,
251 					enum memblock_flags flags)
252 {
253 	phys_addr_t kernel_end, ret;
254 
255 	/* pump up @end */
256 	if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
257 		end = memblock.current_limit;
258 
259 	/* avoid allocating the first page */
260 	start = max_t(phys_addr_t, start, PAGE_SIZE);
261 	end = max(start, end);
262 	kernel_end = __pa_symbol(_end);
263 
264 	/*
265 	 * try bottom-up allocation only when bottom-up mode
266 	 * is set and @end is above the kernel image.
267 	 */
268 	if (memblock_bottom_up() && end > kernel_end) {
269 		phys_addr_t bottom_up_start;
270 
271 		/* make sure we will allocate above the kernel */
272 		bottom_up_start = max(start, kernel_end);
273 
274 		/* ok, try bottom-up allocation first */
275 		ret = __memblock_find_range_bottom_up(bottom_up_start, end,
276 						      size, align, nid, flags);
277 		if (ret)
278 			return ret;
279 
280 		/*
281 		 * we always limit bottom-up allocation above the kernel,
282 		 * but top-down allocation doesn't have the limit, so
283 		 * retrying top-down allocation may succeed when bottom-up
284 		 * allocation failed.
285 		 *
286 		 * bottom-up allocation is expected to be fail very rarely,
287 		 * so we use WARN_ONCE() here to see the stack trace if
288 		 * fail happens.
289 		 */
290 		WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE),
291 			  "memblock: bottom-up allocation failed, memory hotremove may be affected\n");
292 	}
293 
294 	return __memblock_find_range_top_down(start, end, size, align, nid,
295 					      flags);
296 }
297 
298 /**
299  * memblock_find_in_range - find free area in given range
300  * @start: start of candidate range
301  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
302  *       %MEMBLOCK_ALLOC_ACCESSIBLE
303  * @size: size of free area to find
304  * @align: alignment of free area to find
305  *
306  * Find @size free area aligned to @align in the specified range.
307  *
308  * Return:
309  * Found address on success, 0 on failure.
310  */
memblock_find_in_range(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align)311 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
312 					phys_addr_t end, phys_addr_t size,
313 					phys_addr_t align)
314 {
315 	phys_addr_t ret;
316 	enum memblock_flags flags = choose_memblock_flags();
317 
318 again:
319 	ret = memblock_find_in_range_node(size, align, start, end,
320 					    NUMA_NO_NODE, flags);
321 
322 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
323 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
324 			&size);
325 		flags &= ~MEMBLOCK_MIRROR;
326 		goto again;
327 	}
328 
329 	return ret;
330 }
331 
memblock_remove_region(struct memblock_type * type,unsigned long r)332 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
333 {
334 	type->total_size -= type->regions[r].size;
335 	memmove(&type->regions[r], &type->regions[r + 1],
336 		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
337 	type->cnt--;
338 
339 	/* Special case for empty arrays */
340 	if (type->cnt == 0) {
341 		WARN_ON(type->total_size != 0);
342 		type->cnt = 1;
343 		type->regions[0].base = 0;
344 		type->regions[0].size = 0;
345 		type->regions[0].flags = 0;
346 		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
347 	}
348 }
349 
350 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
351 /**
352  * memblock_discard - discard memory and reserved arrays if they were allocated
353  */
memblock_discard(void)354 void __init memblock_discard(void)
355 {
356 	phys_addr_t addr, size;
357 
358 	if (memblock.reserved.regions != memblock_reserved_init_regions) {
359 		addr = __pa(memblock.reserved.regions);
360 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
361 				  memblock.reserved.max);
362 		__memblock_free_late(addr, size);
363 	}
364 
365 	if (memblock.memory.regions != memblock_memory_init_regions) {
366 		addr = __pa(memblock.memory.regions);
367 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
368 				  memblock.memory.max);
369 		__memblock_free_late(addr, size);
370 	}
371 }
372 #endif
373 
374 /**
375  * memblock_double_array - double the size of the memblock regions array
376  * @type: memblock type of the regions array being doubled
377  * @new_area_start: starting address of memory range to avoid overlap with
378  * @new_area_size: size of memory range to avoid overlap with
379  *
380  * Double the size of the @type regions array. If memblock is being used to
381  * allocate memory for a new reserved regions array and there is a previously
382  * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
383  * waiting to be reserved, ensure the memory used by the new array does
384  * not overlap.
385  *
386  * Return:
387  * 0 on success, -1 on failure.
388  */
memblock_double_array(struct memblock_type * type,phys_addr_t new_area_start,phys_addr_t new_area_size)389 static int __init_memblock memblock_double_array(struct memblock_type *type,
390 						phys_addr_t new_area_start,
391 						phys_addr_t new_area_size)
392 {
393 	struct memblock_region *new_array, *old_array;
394 	phys_addr_t old_alloc_size, new_alloc_size;
395 	phys_addr_t old_size, new_size, addr, new_end;
396 	int use_slab = slab_is_available();
397 	int *in_slab;
398 
399 	/* We don't allow resizing until we know about the reserved regions
400 	 * of memory that aren't suitable for allocation
401 	 */
402 	if (!memblock_can_resize)
403 		return -1;
404 
405 	/* Calculate new doubled size */
406 	old_size = type->max * sizeof(struct memblock_region);
407 	new_size = old_size << 1;
408 	/*
409 	 * We need to allocated new one align to PAGE_SIZE,
410 	 *   so we can free them completely later.
411 	 */
412 	old_alloc_size = PAGE_ALIGN(old_size);
413 	new_alloc_size = PAGE_ALIGN(new_size);
414 
415 	/* Retrieve the slab flag */
416 	if (type == &memblock.memory)
417 		in_slab = &memblock_memory_in_slab;
418 	else
419 		in_slab = &memblock_reserved_in_slab;
420 
421 	/* Try to find some space for it.
422 	 *
423 	 * WARNING: We assume that either slab_is_available() and we use it or
424 	 * we use MEMBLOCK for allocations. That means that this is unsafe to
425 	 * use when bootmem is currently active (unless bootmem itself is
426 	 * implemented on top of MEMBLOCK which isn't the case yet)
427 	 *
428 	 * This should however not be an issue for now, as we currently only
429 	 * call into MEMBLOCK while it's still active, or much later when slab
430 	 * is active for memory hotplug operations
431 	 */
432 	if (use_slab) {
433 		new_array = kmalloc(new_size, GFP_KERNEL);
434 		addr = new_array ? __pa(new_array) : 0;
435 	} else {
436 		/* only exclude range when trying to double reserved.regions */
437 		if (type != &memblock.reserved)
438 			new_area_start = new_area_size = 0;
439 
440 		addr = memblock_find_in_range(new_area_start + new_area_size,
441 						memblock.current_limit,
442 						new_alloc_size, PAGE_SIZE);
443 		if (!addr && new_area_size)
444 			addr = memblock_find_in_range(0,
445 				min(new_area_start, memblock.current_limit),
446 				new_alloc_size, PAGE_SIZE);
447 
448 		new_array = addr ? __va(addr) : NULL;
449 	}
450 	if (!addr) {
451 		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
452 		       type->name, type->max, type->max * 2);
453 		return -1;
454 	}
455 
456 	new_end = addr + new_size - 1;
457 	memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
458 			type->name, type->max * 2, &addr, &new_end);
459 
460 	/*
461 	 * Found space, we now need to move the array over before we add the
462 	 * reserved region since it may be our reserved array itself that is
463 	 * full.
464 	 */
465 	memcpy(new_array, type->regions, old_size);
466 	memset(new_array + type->max, 0, old_size);
467 	old_array = type->regions;
468 	type->regions = new_array;
469 	type->max <<= 1;
470 
471 	/* Free old array. We needn't free it if the array is the static one */
472 	if (*in_slab)
473 		kfree(old_array);
474 	else if (old_array != memblock_memory_init_regions &&
475 		 old_array != memblock_reserved_init_regions)
476 		memblock_free(__pa(old_array), old_alloc_size);
477 
478 	/*
479 	 * Reserve the new array if that comes from the memblock.  Otherwise, we
480 	 * needn't do it
481 	 */
482 	if (!use_slab)
483 		BUG_ON(memblock_reserve(addr, new_alloc_size));
484 
485 	/* Update slab flag */
486 	*in_slab = use_slab;
487 
488 	return 0;
489 }
490 
491 /**
492  * memblock_merge_regions - merge neighboring compatible regions
493  * @type: memblock type to scan
494  *
495  * Scan @type and merge neighboring compatible regions.
496  */
memblock_merge_regions(struct memblock_type * type)497 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
498 {
499 	int i = 0;
500 
501 	/* cnt never goes below 1 */
502 	while (i < type->cnt - 1) {
503 		struct memblock_region *this = &type->regions[i];
504 		struct memblock_region *next = &type->regions[i + 1];
505 
506 		if (this->base + this->size != next->base ||
507 		    memblock_get_region_node(this) !=
508 		    memblock_get_region_node(next) ||
509 		    this->flags != next->flags) {
510 			BUG_ON(this->base + this->size > next->base);
511 			i++;
512 			continue;
513 		}
514 
515 		this->size += next->size;
516 		/* move forward from next + 1, index of which is i + 2 */
517 		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
518 		type->cnt--;
519 	}
520 }
521 
522 /**
523  * memblock_insert_region - insert new memblock region
524  * @type:	memblock type to insert into
525  * @idx:	index for the insertion point
526  * @base:	base address of the new region
527  * @size:	size of the new region
528  * @nid:	node id of the new region
529  * @flags:	flags of the new region
530  *
531  * Insert new memblock region [@base, @base + @size) into @type at @idx.
532  * @type must already have extra room to accommodate the new region.
533  */
memblock_insert_region(struct memblock_type * type,int idx,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)534 static void __init_memblock memblock_insert_region(struct memblock_type *type,
535 						   int idx, phys_addr_t base,
536 						   phys_addr_t size,
537 						   int nid,
538 						   enum memblock_flags flags)
539 {
540 	struct memblock_region *rgn = &type->regions[idx];
541 
542 	BUG_ON(type->cnt >= type->max);
543 	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
544 	rgn->base = base;
545 	rgn->size = size;
546 	rgn->flags = flags;
547 	memblock_set_region_node(rgn, nid);
548 	type->cnt++;
549 	type->total_size += size;
550 }
551 
552 /**
553  * memblock_add_range - add new memblock region
554  * @type: memblock type to add new region into
555  * @base: base address of the new region
556  * @size: size of the new region
557  * @nid: nid of the new region
558  * @flags: flags of the new region
559  *
560  * Add new memblock region [@base, @base + @size) into @type.  The new region
561  * is allowed to overlap with existing ones - overlaps don't affect already
562  * existing regions.  @type is guaranteed to be minimal (all neighbouring
563  * compatible regions are merged) after the addition.
564  *
565  * Return:
566  * 0 on success, -errno on failure.
567  */
memblock_add_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)568 int __init_memblock memblock_add_range(struct memblock_type *type,
569 				phys_addr_t base, phys_addr_t size,
570 				int nid, enum memblock_flags flags)
571 {
572 	bool insert = false;
573 	phys_addr_t obase = base;
574 	phys_addr_t end = base + memblock_cap_size(base, &size);
575 	int idx, nr_new;
576 	struct memblock_region *rgn;
577 
578 	if (!size)
579 		return 0;
580 
581 	/* special case for empty array */
582 	if (type->regions[0].size == 0) {
583 		WARN_ON(type->cnt != 1 || type->total_size);
584 		type->regions[0].base = base;
585 		type->regions[0].size = size;
586 		type->regions[0].flags = flags;
587 		memblock_set_region_node(&type->regions[0], nid);
588 		type->total_size = size;
589 		return 0;
590 	}
591 repeat:
592 	/*
593 	 * The following is executed twice.  Once with %false @insert and
594 	 * then with %true.  The first counts the number of regions needed
595 	 * to accommodate the new area.  The second actually inserts them.
596 	 */
597 	base = obase;
598 	nr_new = 0;
599 
600 	for_each_memblock_type(idx, type, rgn) {
601 		phys_addr_t rbase = rgn->base;
602 		phys_addr_t rend = rbase + rgn->size;
603 
604 		if (rbase >= end)
605 			break;
606 		if (rend <= base)
607 			continue;
608 		/*
609 		 * @rgn overlaps.  If it separates the lower part of new
610 		 * area, insert that portion.
611 		 */
612 		if (rbase > base) {
613 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
614 			WARN_ON(nid != memblock_get_region_node(rgn));
615 #endif
616 			WARN_ON(flags != rgn->flags);
617 			nr_new++;
618 			if (insert)
619 				memblock_insert_region(type, idx++, base,
620 						       rbase - base, nid,
621 						       flags);
622 		}
623 		/* area below @rend is dealt with, forget about it */
624 		base = min(rend, end);
625 	}
626 
627 	/* insert the remaining portion */
628 	if (base < end) {
629 		nr_new++;
630 		if (insert)
631 			memblock_insert_region(type, idx, base, end - base,
632 					       nid, flags);
633 	}
634 
635 	if (!nr_new)
636 		return 0;
637 
638 	/*
639 	 * If this was the first round, resize array and repeat for actual
640 	 * insertions; otherwise, merge and return.
641 	 */
642 	if (!insert) {
643 		while (type->cnt + nr_new > type->max)
644 			if (memblock_double_array(type, obase, size) < 0)
645 				return -ENOMEM;
646 		insert = true;
647 		goto repeat;
648 	} else {
649 		memblock_merge_regions(type);
650 		return 0;
651 	}
652 }
653 
654 /**
655  * memblock_add_node - add new memblock region within a NUMA node
656  * @base: base address of the new region
657  * @size: size of the new region
658  * @nid: nid of the new region
659  *
660  * Add new memblock region [@base, @base + @size) to the "memory"
661  * type. See memblock_add_range() description for mode details
662  *
663  * Return:
664  * 0 on success, -errno on failure.
665  */
memblock_add_node(phys_addr_t base,phys_addr_t size,int nid)666 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
667 				       int nid)
668 {
669 	return memblock_add_range(&memblock.memory, base, size, nid, 0);
670 }
671 
672 /**
673  * memblock_add - add new memblock region
674  * @base: base address of the new region
675  * @size: size of the new region
676  *
677  * Add new memblock region [@base, @base + @size) to the "memory"
678  * type. See memblock_add_range() description for mode details
679  *
680  * Return:
681  * 0 on success, -errno on failure.
682  */
memblock_add(phys_addr_t base,phys_addr_t size)683 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
684 {
685 	phys_addr_t end = base + size - 1;
686 
687 	memblock_dbg("memblock_add: [%pa-%pa] %pF\n",
688 		     &base, &end, (void *)_RET_IP_);
689 
690 	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
691 }
692 
693 /**
694  * memblock_isolate_range - isolate given range into disjoint memblocks
695  * @type: memblock type to isolate range for
696  * @base: base of range to isolate
697  * @size: size of range to isolate
698  * @start_rgn: out parameter for the start of isolated region
699  * @end_rgn: out parameter for the end of isolated region
700  *
701  * Walk @type and ensure that regions don't cross the boundaries defined by
702  * [@base, @base + @size).  Crossing regions are split at the boundaries,
703  * which may create at most two more regions.  The index of the first
704  * region inside the range is returned in *@start_rgn and end in *@end_rgn.
705  *
706  * Return:
707  * 0 on success, -errno on failure.
708  */
memblock_isolate_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int * start_rgn,int * end_rgn)709 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
710 					phys_addr_t base, phys_addr_t size,
711 					int *start_rgn, int *end_rgn)
712 {
713 	phys_addr_t end = base + memblock_cap_size(base, &size);
714 	int idx;
715 	struct memblock_region *rgn;
716 
717 	*start_rgn = *end_rgn = 0;
718 
719 	if (!size)
720 		return 0;
721 
722 	/* we'll create at most two more regions */
723 	while (type->cnt + 2 > type->max)
724 		if (memblock_double_array(type, base, size) < 0)
725 			return -ENOMEM;
726 
727 	for_each_memblock_type(idx, type, rgn) {
728 		phys_addr_t rbase = rgn->base;
729 		phys_addr_t rend = rbase + rgn->size;
730 
731 		if (rbase >= end)
732 			break;
733 		if (rend <= base)
734 			continue;
735 
736 		if (rbase < base) {
737 			/*
738 			 * @rgn intersects from below.  Split and continue
739 			 * to process the next region - the new top half.
740 			 */
741 			rgn->base = base;
742 			rgn->size -= base - rbase;
743 			type->total_size -= base - rbase;
744 			memblock_insert_region(type, idx, rbase, base - rbase,
745 					       memblock_get_region_node(rgn),
746 					       rgn->flags);
747 		} else if (rend > end) {
748 			/*
749 			 * @rgn intersects from above.  Split and redo the
750 			 * current region - the new bottom half.
751 			 */
752 			rgn->base = end;
753 			rgn->size -= end - rbase;
754 			type->total_size -= end - rbase;
755 			memblock_insert_region(type, idx--, rbase, end - rbase,
756 					       memblock_get_region_node(rgn),
757 					       rgn->flags);
758 		} else {
759 			/* @rgn is fully contained, record it */
760 			if (!*end_rgn)
761 				*start_rgn = idx;
762 			*end_rgn = idx + 1;
763 		}
764 	}
765 
766 	return 0;
767 }
768 
memblock_remove_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size)769 static int __init_memblock memblock_remove_range(struct memblock_type *type,
770 					  phys_addr_t base, phys_addr_t size)
771 {
772 	int start_rgn, end_rgn;
773 	int i, ret;
774 
775 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
776 	if (ret)
777 		return ret;
778 
779 	for (i = end_rgn - 1; i >= start_rgn; i--)
780 		memblock_remove_region(type, i);
781 	return 0;
782 }
783 
memblock_remove(phys_addr_t base,phys_addr_t size)784 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
785 {
786 	phys_addr_t end = base + size - 1;
787 
788 	memblock_dbg("memblock_remove: [%pa-%pa] %pS\n",
789 		     &base, &end, (void *)_RET_IP_);
790 
791 	return memblock_remove_range(&memblock.memory, base, size);
792 }
793 
794 
memblock_free(phys_addr_t base,phys_addr_t size)795 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
796 {
797 	phys_addr_t end = base + size - 1;
798 
799 	memblock_dbg("   memblock_free: [%pa-%pa] %pF\n",
800 		     &base, &end, (void *)_RET_IP_);
801 
802 	kmemleak_free_part_phys(base, size);
803 	return memblock_remove_range(&memblock.reserved, base, size);
804 }
805 
memblock_reserve(phys_addr_t base,phys_addr_t size)806 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
807 {
808 	phys_addr_t end = base + size - 1;
809 
810 	memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n",
811 		     &base, &end, (void *)_RET_IP_);
812 
813 	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
814 }
815 
816 /**
817  * memblock_setclr_flag - set or clear flag for a memory region
818  * @base: base address of the region
819  * @size: size of the region
820  * @set: set or clear the flag
821  * @flag: the flag to udpate
822  *
823  * This function isolates region [@base, @base + @size), and sets/clears flag
824  *
825  * Return: 0 on success, -errno on failure.
826  */
memblock_setclr_flag(phys_addr_t base,phys_addr_t size,int set,int flag)827 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
828 				phys_addr_t size, int set, int flag)
829 {
830 	struct memblock_type *type = &memblock.memory;
831 	int i, ret, start_rgn, end_rgn;
832 
833 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
834 	if (ret)
835 		return ret;
836 
837 	for (i = start_rgn; i < end_rgn; i++)
838 		if (set)
839 			memblock_set_region_flags(&type->regions[i], flag);
840 		else
841 			memblock_clear_region_flags(&type->regions[i], flag);
842 
843 	memblock_merge_regions(type);
844 	return 0;
845 }
846 
847 /**
848  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
849  * @base: the base phys addr of the region
850  * @size: the size of the region
851  *
852  * Return: 0 on success, -errno on failure.
853  */
memblock_mark_hotplug(phys_addr_t base,phys_addr_t size)854 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
855 {
856 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
857 }
858 
859 /**
860  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
861  * @base: the base phys addr of the region
862  * @size: the size of the region
863  *
864  * Return: 0 on success, -errno on failure.
865  */
memblock_clear_hotplug(phys_addr_t base,phys_addr_t size)866 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
867 {
868 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
869 }
870 
871 /**
872  * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
873  * @base: the base phys addr of the region
874  * @size: the size of the region
875  *
876  * Return: 0 on success, -errno on failure.
877  */
memblock_mark_mirror(phys_addr_t base,phys_addr_t size)878 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
879 {
880 	system_has_some_mirror = true;
881 
882 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
883 }
884 
885 /**
886  * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
887  * @base: the base phys addr of the region
888  * @size: the size of the region
889  *
890  * Return: 0 on success, -errno on failure.
891  */
memblock_mark_nomap(phys_addr_t base,phys_addr_t size)892 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
893 {
894 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
895 }
896 
897 /**
898  * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
899  * @base: the base phys addr of the region
900  * @size: the size of the region
901  *
902  * Return: 0 on success, -errno on failure.
903  */
memblock_clear_nomap(phys_addr_t base,phys_addr_t size)904 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
905 {
906 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
907 }
908 
909 /**
910  * __next_reserved_mem_region - next function for for_each_reserved_region()
911  * @idx: pointer to u64 loop variable
912  * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
913  * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
914  *
915  * Iterate over all reserved memory regions.
916  */
__next_reserved_mem_region(u64 * idx,phys_addr_t * out_start,phys_addr_t * out_end)917 void __init_memblock __next_reserved_mem_region(u64 *idx,
918 					   phys_addr_t *out_start,
919 					   phys_addr_t *out_end)
920 {
921 	struct memblock_type *type = &memblock.reserved;
922 
923 	if (*idx < type->cnt) {
924 		struct memblock_region *r = &type->regions[*idx];
925 		phys_addr_t base = r->base;
926 		phys_addr_t size = r->size;
927 
928 		if (out_start)
929 			*out_start = base;
930 		if (out_end)
931 			*out_end = base + size - 1;
932 
933 		*idx += 1;
934 		return;
935 	}
936 
937 	/* signal end of iteration */
938 	*idx = ULLONG_MAX;
939 }
940 
941 /**
942  * __next__mem_range - next function for for_each_free_mem_range() etc.
943  * @idx: pointer to u64 loop variable
944  * @nid: node selector, %NUMA_NO_NODE for all nodes
945  * @flags: pick from blocks based on memory attributes
946  * @type_a: pointer to memblock_type from where the range is taken
947  * @type_b: pointer to memblock_type which excludes memory from being taken
948  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
949  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
950  * @out_nid: ptr to int for nid of the range, can be %NULL
951  *
952  * Find the first area from *@idx which matches @nid, fill the out
953  * parameters, and update *@idx for the next iteration.  The lower 32bit of
954  * *@idx contains index into type_a and the upper 32bit indexes the
955  * areas before each region in type_b.	For example, if type_b regions
956  * look like the following,
957  *
958  *	0:[0-16), 1:[32-48), 2:[128-130)
959  *
960  * The upper 32bit indexes the following regions.
961  *
962  *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
963  *
964  * As both region arrays are sorted, the function advances the two indices
965  * in lockstep and returns each intersection.
966  */
__next_mem_range(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)967 void __init_memblock __next_mem_range(u64 *idx, int nid,
968 				      enum memblock_flags flags,
969 				      struct memblock_type *type_a,
970 				      struct memblock_type *type_b,
971 				      phys_addr_t *out_start,
972 				      phys_addr_t *out_end, int *out_nid)
973 {
974 	int idx_a = *idx & 0xffffffff;
975 	int idx_b = *idx >> 32;
976 
977 	if (WARN_ONCE(nid == MAX_NUMNODES,
978 	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
979 		nid = NUMA_NO_NODE;
980 
981 	for (; idx_a < type_a->cnt; idx_a++) {
982 		struct memblock_region *m = &type_a->regions[idx_a];
983 
984 		phys_addr_t m_start = m->base;
985 		phys_addr_t m_end = m->base + m->size;
986 		int	    m_nid = memblock_get_region_node(m);
987 
988 		/* only memory regions are associated with nodes, check it */
989 		if (nid != NUMA_NO_NODE && nid != m_nid)
990 			continue;
991 
992 		/* skip hotpluggable memory regions if needed */
993 		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
994 			continue;
995 
996 		/* if we want mirror memory skip non-mirror memory regions */
997 		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
998 			continue;
999 
1000 		/* skip nomap memory unless we were asked for it explicitly */
1001 		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1002 			continue;
1003 
1004 		if (!type_b) {
1005 			if (out_start)
1006 				*out_start = m_start;
1007 			if (out_end)
1008 				*out_end = m_end;
1009 			if (out_nid)
1010 				*out_nid = m_nid;
1011 			idx_a++;
1012 			*idx = (u32)idx_a | (u64)idx_b << 32;
1013 			return;
1014 		}
1015 
1016 		/* scan areas before each reservation */
1017 		for (; idx_b < type_b->cnt + 1; idx_b++) {
1018 			struct memblock_region *r;
1019 			phys_addr_t r_start;
1020 			phys_addr_t r_end;
1021 
1022 			r = &type_b->regions[idx_b];
1023 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1024 			r_end = idx_b < type_b->cnt ?
1025 				r->base : PHYS_ADDR_MAX;
1026 
1027 			/*
1028 			 * if idx_b advanced past idx_a,
1029 			 * break out to advance idx_a
1030 			 */
1031 			if (r_start >= m_end)
1032 				break;
1033 			/* if the two regions intersect, we're done */
1034 			if (m_start < r_end) {
1035 				if (out_start)
1036 					*out_start =
1037 						max(m_start, r_start);
1038 				if (out_end)
1039 					*out_end = min(m_end, r_end);
1040 				if (out_nid)
1041 					*out_nid = m_nid;
1042 				/*
1043 				 * The region which ends first is
1044 				 * advanced for the next iteration.
1045 				 */
1046 				if (m_end <= r_end)
1047 					idx_a++;
1048 				else
1049 					idx_b++;
1050 				*idx = (u32)idx_a | (u64)idx_b << 32;
1051 				return;
1052 			}
1053 		}
1054 	}
1055 
1056 	/* signal end of iteration */
1057 	*idx = ULLONG_MAX;
1058 }
1059 
1060 /**
1061  * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1062  *
1063  * @idx: pointer to u64 loop variable
1064  * @nid: node selector, %NUMA_NO_NODE for all nodes
1065  * @flags: pick from blocks based on memory attributes
1066  * @type_a: pointer to memblock_type from where the range is taken
1067  * @type_b: pointer to memblock_type which excludes memory from being taken
1068  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1069  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1070  * @out_nid: ptr to int for nid of the range, can be %NULL
1071  *
1072  * Finds the next range from type_a which is not marked as unsuitable
1073  * in type_b.
1074  *
1075  * Reverse of __next_mem_range().
1076  */
__next_mem_range_rev(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)1077 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1078 					  enum memblock_flags flags,
1079 					  struct memblock_type *type_a,
1080 					  struct memblock_type *type_b,
1081 					  phys_addr_t *out_start,
1082 					  phys_addr_t *out_end, int *out_nid)
1083 {
1084 	int idx_a = *idx & 0xffffffff;
1085 	int idx_b = *idx >> 32;
1086 
1087 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1088 		nid = NUMA_NO_NODE;
1089 
1090 	if (*idx == (u64)ULLONG_MAX) {
1091 		idx_a = type_a->cnt - 1;
1092 		if (type_b != NULL)
1093 			idx_b = type_b->cnt;
1094 		else
1095 			idx_b = 0;
1096 	}
1097 
1098 	for (; idx_a >= 0; idx_a--) {
1099 		struct memblock_region *m = &type_a->regions[idx_a];
1100 
1101 		phys_addr_t m_start = m->base;
1102 		phys_addr_t m_end = m->base + m->size;
1103 		int m_nid = memblock_get_region_node(m);
1104 
1105 		/* only memory regions are associated with nodes, check it */
1106 		if (nid != NUMA_NO_NODE && nid != m_nid)
1107 			continue;
1108 
1109 		/* skip hotpluggable memory regions if needed */
1110 		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1111 			continue;
1112 
1113 		/* if we want mirror memory skip non-mirror memory regions */
1114 		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1115 			continue;
1116 
1117 		/* skip nomap memory unless we were asked for it explicitly */
1118 		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1119 			continue;
1120 
1121 		if (!type_b) {
1122 			if (out_start)
1123 				*out_start = m_start;
1124 			if (out_end)
1125 				*out_end = m_end;
1126 			if (out_nid)
1127 				*out_nid = m_nid;
1128 			idx_a--;
1129 			*idx = (u32)idx_a | (u64)idx_b << 32;
1130 			return;
1131 		}
1132 
1133 		/* scan areas before each reservation */
1134 		for (; idx_b >= 0; idx_b--) {
1135 			struct memblock_region *r;
1136 			phys_addr_t r_start;
1137 			phys_addr_t r_end;
1138 
1139 			r = &type_b->regions[idx_b];
1140 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1141 			r_end = idx_b < type_b->cnt ?
1142 				r->base : PHYS_ADDR_MAX;
1143 			/*
1144 			 * if idx_b advanced past idx_a,
1145 			 * break out to advance idx_a
1146 			 */
1147 
1148 			if (r_end <= m_start)
1149 				break;
1150 			/* if the two regions intersect, we're done */
1151 			if (m_end > r_start) {
1152 				if (out_start)
1153 					*out_start = max(m_start, r_start);
1154 				if (out_end)
1155 					*out_end = min(m_end, r_end);
1156 				if (out_nid)
1157 					*out_nid = m_nid;
1158 				if (m_start >= r_start)
1159 					idx_a--;
1160 				else
1161 					idx_b--;
1162 				*idx = (u32)idx_a | (u64)idx_b << 32;
1163 				return;
1164 			}
1165 		}
1166 	}
1167 	/* signal end of iteration */
1168 	*idx = ULLONG_MAX;
1169 }
1170 
1171 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1172 /*
1173  * Common iterator interface used to define for_each_mem_range().
1174  */
__next_mem_pfn_range(int * idx,int nid,unsigned long * out_start_pfn,unsigned long * out_end_pfn,int * out_nid)1175 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1176 				unsigned long *out_start_pfn,
1177 				unsigned long *out_end_pfn, int *out_nid)
1178 {
1179 	struct memblock_type *type = &memblock.memory;
1180 	struct memblock_region *r;
1181 
1182 	while (++*idx < type->cnt) {
1183 		r = &type->regions[*idx];
1184 
1185 		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1186 			continue;
1187 		if (nid == MAX_NUMNODES || nid == r->nid)
1188 			break;
1189 	}
1190 	if (*idx >= type->cnt) {
1191 		*idx = -1;
1192 		return;
1193 	}
1194 
1195 	if (out_start_pfn)
1196 		*out_start_pfn = PFN_UP(r->base);
1197 	if (out_end_pfn)
1198 		*out_end_pfn = PFN_DOWN(r->base + r->size);
1199 	if (out_nid)
1200 		*out_nid = r->nid;
1201 }
1202 
1203 /**
1204  * memblock_set_node - set node ID on memblock regions
1205  * @base: base of area to set node ID for
1206  * @size: size of area to set node ID for
1207  * @type: memblock type to set node ID for
1208  * @nid: node ID to set
1209  *
1210  * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1211  * Regions which cross the area boundaries are split as necessary.
1212  *
1213  * Return:
1214  * 0 on success, -errno on failure.
1215  */
memblock_set_node(phys_addr_t base,phys_addr_t size,struct memblock_type * type,int nid)1216 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1217 				      struct memblock_type *type, int nid)
1218 {
1219 	int start_rgn, end_rgn;
1220 	int i, ret;
1221 
1222 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1223 	if (ret)
1224 		return ret;
1225 
1226 	for (i = start_rgn; i < end_rgn; i++)
1227 		memblock_set_region_node(&type->regions[i], nid);
1228 
1229 	memblock_merge_regions(type);
1230 	return 0;
1231 }
1232 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1233 
memblock_alloc_range_nid(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,enum memblock_flags flags)1234 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1235 					phys_addr_t align, phys_addr_t start,
1236 					phys_addr_t end, int nid,
1237 					enum memblock_flags flags)
1238 {
1239 	phys_addr_t found;
1240 
1241 	if (!align)
1242 		align = SMP_CACHE_BYTES;
1243 
1244 	found = memblock_find_in_range_node(size, align, start, end, nid,
1245 					    flags);
1246 	if (found && !memblock_reserve(found, size)) {
1247 		/*
1248 		 * The min_count is set to 0 so that memblock allocations are
1249 		 * never reported as leaks.
1250 		 */
1251 		kmemleak_alloc_phys(found, size, 0, 0);
1252 		return found;
1253 	}
1254 	return 0;
1255 }
1256 
memblock_alloc_range(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,enum memblock_flags flags)1257 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1258 					phys_addr_t start, phys_addr_t end,
1259 					enum memblock_flags flags)
1260 {
1261 	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1262 					flags);
1263 }
1264 
memblock_alloc_base_nid(phys_addr_t size,phys_addr_t align,phys_addr_t max_addr,int nid,enum memblock_flags flags)1265 phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1266 					phys_addr_t align, phys_addr_t max_addr,
1267 					int nid, enum memblock_flags flags)
1268 {
1269 	return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1270 }
1271 
memblock_alloc_nid(phys_addr_t size,phys_addr_t align,int nid)1272 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1273 {
1274 	enum memblock_flags flags = choose_memblock_flags();
1275 	phys_addr_t ret;
1276 
1277 again:
1278 	ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1279 				      nid, flags);
1280 
1281 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
1282 		flags &= ~MEMBLOCK_MIRROR;
1283 		goto again;
1284 	}
1285 	return ret;
1286 }
1287 
__memblock_alloc_base(phys_addr_t size,phys_addr_t align,phys_addr_t max_addr)1288 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1289 {
1290 	return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1291 				       MEMBLOCK_NONE);
1292 }
1293 
memblock_alloc_base(phys_addr_t size,phys_addr_t align,phys_addr_t max_addr)1294 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1295 {
1296 	phys_addr_t alloc;
1297 
1298 	alloc = __memblock_alloc_base(size, align, max_addr);
1299 
1300 	if (alloc == 0)
1301 		panic("ERROR: Failed to allocate %pa bytes below %pa.\n",
1302 		      &size, &max_addr);
1303 
1304 	return alloc;
1305 }
1306 
memblock_alloc(phys_addr_t size,phys_addr_t align)1307 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1308 {
1309 	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1310 }
1311 
memblock_alloc_try_nid(phys_addr_t size,phys_addr_t align,int nid)1312 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1313 {
1314 	phys_addr_t res = memblock_alloc_nid(size, align, nid);
1315 
1316 	if (res)
1317 		return res;
1318 	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1319 }
1320 
1321 #if defined(CONFIG_NO_BOOTMEM)
1322 /**
1323  * memblock_virt_alloc_internal - allocate boot memory block
1324  * @size: size of memory block to be allocated in bytes
1325  * @align: alignment of the region and block's size
1326  * @min_addr: the lower bound of the memory region to allocate (phys address)
1327  * @max_addr: the upper bound of the memory region to allocate (phys address)
1328  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1329  *
1330  * The @min_addr limit is dropped if it can not be satisfied and the allocation
1331  * will fall back to memory below @min_addr. Also, allocation may fall back
1332  * to any node in the system if the specified node can not
1333  * hold the requested memory.
1334  *
1335  * The allocation is performed from memory region limited by
1336  * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1337  *
1338  * The memory block is aligned on %SMP_CACHE_BYTES if @align == 0.
1339  *
1340  * The phys address of allocated boot memory block is converted to virtual and
1341  * allocated memory is reset to 0.
1342  *
1343  * In addition, function sets the min_count to 0 using kmemleak_alloc for
1344  * allocated boot memory block, so that it is never reported as leaks.
1345  *
1346  * Return:
1347  * Virtual address of allocated memory block on success, NULL on failure.
1348  */
memblock_virt_alloc_internal(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1349 static void * __init memblock_virt_alloc_internal(
1350 				phys_addr_t size, phys_addr_t align,
1351 				phys_addr_t min_addr, phys_addr_t max_addr,
1352 				int nid)
1353 {
1354 	phys_addr_t alloc;
1355 	void *ptr;
1356 	enum memblock_flags flags = choose_memblock_flags();
1357 
1358 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1359 		nid = NUMA_NO_NODE;
1360 
1361 	/*
1362 	 * Detect any accidental use of these APIs after slab is ready, as at
1363 	 * this moment memblock may be deinitialized already and its
1364 	 * internal data may be destroyed (after execution of free_all_bootmem)
1365 	 */
1366 	if (WARN_ON_ONCE(slab_is_available()))
1367 		return kzalloc_node(size, GFP_NOWAIT, nid);
1368 
1369 	if (!align)
1370 		align = SMP_CACHE_BYTES;
1371 
1372 	if (max_addr > memblock.current_limit)
1373 		max_addr = memblock.current_limit;
1374 again:
1375 	alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1376 					    nid, flags);
1377 	if (alloc && !memblock_reserve(alloc, size))
1378 		goto done;
1379 
1380 	if (nid != NUMA_NO_NODE) {
1381 		alloc = memblock_find_in_range_node(size, align, min_addr,
1382 						    max_addr, NUMA_NO_NODE,
1383 						    flags);
1384 		if (alloc && !memblock_reserve(alloc, size))
1385 			goto done;
1386 	}
1387 
1388 	if (min_addr) {
1389 		min_addr = 0;
1390 		goto again;
1391 	}
1392 
1393 	if (flags & MEMBLOCK_MIRROR) {
1394 		flags &= ~MEMBLOCK_MIRROR;
1395 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1396 			&size);
1397 		goto again;
1398 	}
1399 
1400 	return NULL;
1401 done:
1402 	ptr = phys_to_virt(alloc);
1403 
1404 	/*
1405 	 * The min_count is set to 0 so that bootmem allocated blocks
1406 	 * are never reported as leaks. This is because many of these blocks
1407 	 * are only referred via the physical address which is not
1408 	 * looked up by kmemleak.
1409 	 */
1410 	kmemleak_alloc(ptr, size, 0, 0);
1411 
1412 	return ptr;
1413 }
1414 
1415 /**
1416  * memblock_virt_alloc_try_nid_raw - allocate boot memory block without zeroing
1417  * memory and without panicking
1418  * @size: size of memory block to be allocated in bytes
1419  * @align: alignment of the region and block's size
1420  * @min_addr: the lower bound of the memory region from where the allocation
1421  *	  is preferred (phys address)
1422  * @max_addr: the upper bound of the memory region from where the allocation
1423  *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1424  *	      allocate only from memory limited by memblock.current_limit value
1425  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1426  *
1427  * Public function, provides additional debug information (including caller
1428  * info), if enabled. Does not zero allocated memory, does not panic if request
1429  * cannot be satisfied.
1430  *
1431  * Return:
1432  * Virtual address of allocated memory block on success, NULL on failure.
1433  */
memblock_virt_alloc_try_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1434 void * __init memblock_virt_alloc_try_nid_raw(
1435 			phys_addr_t size, phys_addr_t align,
1436 			phys_addr_t min_addr, phys_addr_t max_addr,
1437 			int nid)
1438 {
1439 	void *ptr;
1440 
1441 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n",
1442 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1443 		     &max_addr, (void *)_RET_IP_);
1444 
1445 	ptr = memblock_virt_alloc_internal(size, align,
1446 					   min_addr, max_addr, nid);
1447 #ifdef CONFIG_DEBUG_VM
1448 	if (ptr && size > 0)
1449 		memset(ptr, PAGE_POISON_PATTERN, size);
1450 #endif
1451 	return ptr;
1452 }
1453 
1454 /**
1455  * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1456  * @size: size of memory block to be allocated in bytes
1457  * @align: alignment of the region and block's size
1458  * @min_addr: the lower bound of the memory region from where the allocation
1459  *	  is preferred (phys address)
1460  * @max_addr: the upper bound of the memory region from where the allocation
1461  *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1462  *	      allocate only from memory limited by memblock.current_limit value
1463  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1464  *
1465  * Public function, provides additional debug information (including caller
1466  * info), if enabled. This function zeroes the allocated memory.
1467  *
1468  * Return:
1469  * Virtual address of allocated memory block on success, NULL on failure.
1470  */
memblock_virt_alloc_try_nid_nopanic(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1471 void * __init memblock_virt_alloc_try_nid_nopanic(
1472 				phys_addr_t size, phys_addr_t align,
1473 				phys_addr_t min_addr, phys_addr_t max_addr,
1474 				int nid)
1475 {
1476 	void *ptr;
1477 
1478 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n",
1479 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1480 		     &max_addr, (void *)_RET_IP_);
1481 
1482 	ptr = memblock_virt_alloc_internal(size, align,
1483 					   min_addr, max_addr, nid);
1484 	if (ptr)
1485 		memset(ptr, 0, size);
1486 	return ptr;
1487 }
1488 
1489 /**
1490  * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1491  * @size: size of memory block to be allocated in bytes
1492  * @align: alignment of the region and block's size
1493  * @min_addr: the lower bound of the memory region from where the allocation
1494  *	  is preferred (phys address)
1495  * @max_addr: the upper bound of the memory region from where the allocation
1496  *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1497  *	      allocate only from memory limited by memblock.current_limit value
1498  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1499  *
1500  * Public panicking version of memblock_virt_alloc_try_nid_nopanic()
1501  * which provides debug information (including caller info), if enabled,
1502  * and panics if the request can not be satisfied.
1503  *
1504  * Return:
1505  * Virtual address of allocated memory block on success, NULL on failure.
1506  */
memblock_virt_alloc_try_nid(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1507 void * __init memblock_virt_alloc_try_nid(
1508 			phys_addr_t size, phys_addr_t align,
1509 			phys_addr_t min_addr, phys_addr_t max_addr,
1510 			int nid)
1511 {
1512 	void *ptr;
1513 
1514 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n",
1515 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1516 		     &max_addr, (void *)_RET_IP_);
1517 	ptr = memblock_virt_alloc_internal(size, align,
1518 					   min_addr, max_addr, nid);
1519 	if (ptr) {
1520 		memset(ptr, 0, size);
1521 		return ptr;
1522 	}
1523 
1524 	panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa\n",
1525 	      __func__, (u64)size, (u64)align, nid, &min_addr, &max_addr);
1526 	return NULL;
1527 }
1528 #endif
1529 
1530 /**
1531  * __memblock_free_early - free boot memory block
1532  * @base: phys starting address of the  boot memory block
1533  * @size: size of the boot memory block in bytes
1534  *
1535  * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1536  * The freeing memory will not be released to the buddy allocator.
1537  */
__memblock_free_early(phys_addr_t base,phys_addr_t size)1538 void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1539 {
1540 	phys_addr_t end = base + size - 1;
1541 
1542 	memblock_dbg("%s: [%pa-%pa] %pF\n",
1543 		     __func__, &base, &end, (void *)_RET_IP_);
1544 	kmemleak_free_part_phys(base, size);
1545 	memblock_remove_range(&memblock.reserved, base, size);
1546 }
1547 
1548 /**
1549  * __memblock_free_late - free bootmem block pages directly to buddy allocator
1550  * @base: phys starting address of the  boot memory block
1551  * @size: size of the boot memory block in bytes
1552  *
1553  * This is only useful when the bootmem allocator has already been torn
1554  * down, but we are still initializing the system.  Pages are released directly
1555  * to the buddy allocator, no bootmem metadata is updated because it is gone.
1556  */
__memblock_free_late(phys_addr_t base,phys_addr_t size)1557 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1558 {
1559 	phys_addr_t cursor, end;
1560 
1561 	end = base + size - 1;
1562 	memblock_dbg("%s: [%pa-%pa] %pF\n",
1563 		     __func__, &base, &end, (void *)_RET_IP_);
1564 	kmemleak_free_part_phys(base, size);
1565 	cursor = PFN_UP(base);
1566 	end = PFN_DOWN(base + size);
1567 
1568 	for (; cursor < end; cursor++) {
1569 		__free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
1570 		totalram_pages++;
1571 	}
1572 }
1573 
1574 /*
1575  * Remaining API functions
1576  */
1577 
memblock_phys_mem_size(void)1578 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1579 {
1580 	return memblock.memory.total_size;
1581 }
1582 
memblock_reserved_size(void)1583 phys_addr_t __init_memblock memblock_reserved_size(void)
1584 {
1585 	return memblock.reserved.total_size;
1586 }
1587 
memblock_mem_size(unsigned long limit_pfn)1588 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1589 {
1590 	unsigned long pages = 0;
1591 	struct memblock_region *r;
1592 	unsigned long start_pfn, end_pfn;
1593 
1594 	for_each_memblock(memory, r) {
1595 		start_pfn = memblock_region_memory_base_pfn(r);
1596 		end_pfn = memblock_region_memory_end_pfn(r);
1597 		start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1598 		end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1599 		pages += end_pfn - start_pfn;
1600 	}
1601 
1602 	return PFN_PHYS(pages);
1603 }
1604 
1605 /* lowest address */
memblock_start_of_DRAM(void)1606 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1607 {
1608 	return memblock.memory.regions[0].base;
1609 }
1610 
memblock_end_of_DRAM(void)1611 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1612 {
1613 	int idx = memblock.memory.cnt - 1;
1614 
1615 	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1616 }
1617 
__find_max_addr(phys_addr_t limit)1618 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1619 {
1620 	phys_addr_t max_addr = PHYS_ADDR_MAX;
1621 	struct memblock_region *r;
1622 
1623 	/*
1624 	 * translate the memory @limit size into the max address within one of
1625 	 * the memory memblock regions, if the @limit exceeds the total size
1626 	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1627 	 */
1628 	for_each_memblock(memory, r) {
1629 		if (limit <= r->size) {
1630 			max_addr = r->base + limit;
1631 			break;
1632 		}
1633 		limit -= r->size;
1634 	}
1635 
1636 	return max_addr;
1637 }
1638 
memblock_enforce_memory_limit(phys_addr_t limit)1639 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1640 {
1641 	phys_addr_t max_addr = PHYS_ADDR_MAX;
1642 
1643 	if (!limit)
1644 		return;
1645 
1646 	max_addr = __find_max_addr(limit);
1647 
1648 	/* @limit exceeds the total size of the memory, do nothing */
1649 	if (max_addr == PHYS_ADDR_MAX)
1650 		return;
1651 
1652 	/* truncate both memory and reserved regions */
1653 	memblock_remove_range(&memblock.memory, max_addr,
1654 			      PHYS_ADDR_MAX);
1655 	memblock_remove_range(&memblock.reserved, max_addr,
1656 			      PHYS_ADDR_MAX);
1657 }
1658 
memblock_cap_memory_range(phys_addr_t base,phys_addr_t size)1659 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1660 {
1661 	int start_rgn, end_rgn;
1662 	int i, ret;
1663 
1664 	if (!size)
1665 		return;
1666 
1667 	ret = memblock_isolate_range(&memblock.memory, base, size,
1668 						&start_rgn, &end_rgn);
1669 	if (ret)
1670 		return;
1671 
1672 	/* remove all the MAP regions */
1673 	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1674 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1675 			memblock_remove_region(&memblock.memory, i);
1676 
1677 	for (i = start_rgn - 1; i >= 0; i--)
1678 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1679 			memblock_remove_region(&memblock.memory, i);
1680 
1681 	/* truncate the reserved regions */
1682 	memblock_remove_range(&memblock.reserved, 0, base);
1683 	memblock_remove_range(&memblock.reserved,
1684 			base + size, PHYS_ADDR_MAX);
1685 }
1686 
memblock_mem_limit_remove_map(phys_addr_t limit)1687 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1688 {
1689 	phys_addr_t max_addr;
1690 
1691 	if (!limit)
1692 		return;
1693 
1694 	max_addr = __find_max_addr(limit);
1695 
1696 	/* @limit exceeds the total size of the memory, do nothing */
1697 	if (max_addr == PHYS_ADDR_MAX)
1698 		return;
1699 
1700 	memblock_cap_memory_range(0, max_addr);
1701 }
1702 
memblock_search(struct memblock_type * type,phys_addr_t addr)1703 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1704 {
1705 	unsigned int left = 0, right = type->cnt;
1706 
1707 	do {
1708 		unsigned int mid = (right + left) / 2;
1709 
1710 		if (addr < type->regions[mid].base)
1711 			right = mid;
1712 		else if (addr >= (type->regions[mid].base +
1713 				  type->regions[mid].size))
1714 			left = mid + 1;
1715 		else
1716 			return mid;
1717 	} while (left < right);
1718 	return -1;
1719 }
1720 
memblock_is_reserved(phys_addr_t addr)1721 bool __init memblock_is_reserved(phys_addr_t addr)
1722 {
1723 	return memblock_search(&memblock.reserved, addr) != -1;
1724 }
1725 
memblock_is_memory(phys_addr_t addr)1726 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1727 {
1728 	return memblock_search(&memblock.memory, addr) != -1;
1729 }
1730 
memblock_is_map_memory(phys_addr_t addr)1731 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1732 {
1733 	int i = memblock_search(&memblock.memory, addr);
1734 
1735 	if (i == -1)
1736 		return false;
1737 	return !memblock_is_nomap(&memblock.memory.regions[i]);
1738 }
1739 
1740 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
memblock_search_pfn_nid(unsigned long pfn,unsigned long * start_pfn,unsigned long * end_pfn)1741 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1742 			 unsigned long *start_pfn, unsigned long *end_pfn)
1743 {
1744 	struct memblock_type *type = &memblock.memory;
1745 	int mid = memblock_search(type, PFN_PHYS(pfn));
1746 
1747 	if (mid == -1)
1748 		return -1;
1749 
1750 	*start_pfn = PFN_DOWN(type->regions[mid].base);
1751 	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1752 
1753 	return type->regions[mid].nid;
1754 }
1755 #endif
1756 
1757 /**
1758  * memblock_is_region_memory - check if a region is a subset of memory
1759  * @base: base of region to check
1760  * @size: size of region to check
1761  *
1762  * Check if the region [@base, @base + @size) is a subset of a memory block.
1763  *
1764  * Return:
1765  * 0 if false, non-zero if true
1766  */
memblock_is_region_memory(phys_addr_t base,phys_addr_t size)1767 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1768 {
1769 	int idx = memblock_search(&memblock.memory, base);
1770 	phys_addr_t end = base + memblock_cap_size(base, &size);
1771 
1772 	if (idx == -1)
1773 		return false;
1774 	return (memblock.memory.regions[idx].base +
1775 		 memblock.memory.regions[idx].size) >= end;
1776 }
1777 
1778 /**
1779  * memblock_is_region_reserved - check if a region intersects reserved memory
1780  * @base: base of region to check
1781  * @size: size of region to check
1782  *
1783  * Check if the region [@base, @base + @size) intersects a reserved
1784  * memory block.
1785  *
1786  * Return:
1787  * True if they intersect, false if not.
1788  */
memblock_is_region_reserved(phys_addr_t base,phys_addr_t size)1789 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1790 {
1791 	memblock_cap_size(base, &size);
1792 	return memblock_overlaps_region(&memblock.reserved, base, size);
1793 }
1794 
memblock_trim_memory(phys_addr_t align)1795 void __init_memblock memblock_trim_memory(phys_addr_t align)
1796 {
1797 	phys_addr_t start, end, orig_start, orig_end;
1798 	struct memblock_region *r;
1799 
1800 	for_each_memblock(memory, r) {
1801 		orig_start = r->base;
1802 		orig_end = r->base + r->size;
1803 		start = round_up(orig_start, align);
1804 		end = round_down(orig_end, align);
1805 
1806 		if (start == orig_start && end == orig_end)
1807 			continue;
1808 
1809 		if (start < end) {
1810 			r->base = start;
1811 			r->size = end - start;
1812 		} else {
1813 			memblock_remove_region(&memblock.memory,
1814 					       r - memblock.memory.regions);
1815 			r--;
1816 		}
1817 	}
1818 }
1819 
memblock_set_current_limit(phys_addr_t limit)1820 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1821 {
1822 	memblock.current_limit = limit;
1823 }
1824 
memblock_get_current_limit(void)1825 phys_addr_t __init_memblock memblock_get_current_limit(void)
1826 {
1827 	return memblock.current_limit;
1828 }
1829 
memblock_dump(struct memblock_type * type)1830 static void __init_memblock memblock_dump(struct memblock_type *type)
1831 {
1832 	phys_addr_t base, end, size;
1833 	enum memblock_flags flags;
1834 	int idx;
1835 	struct memblock_region *rgn;
1836 
1837 	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1838 
1839 	for_each_memblock_type(idx, type, rgn) {
1840 		char nid_buf[32] = "";
1841 
1842 		base = rgn->base;
1843 		size = rgn->size;
1844 		end = base + size - 1;
1845 		flags = rgn->flags;
1846 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1847 		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1848 			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1849 				 memblock_get_region_node(rgn));
1850 #endif
1851 		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1852 			type->name, idx, &base, &end, &size, nid_buf, flags);
1853 	}
1854 }
1855 
__memblock_dump_all(void)1856 void __init_memblock __memblock_dump_all(void)
1857 {
1858 	pr_info("MEMBLOCK configuration:\n");
1859 	pr_info(" memory size = %pa reserved size = %pa\n",
1860 		&memblock.memory.total_size,
1861 		&memblock.reserved.total_size);
1862 
1863 	memblock_dump(&memblock.memory);
1864 	memblock_dump(&memblock.reserved);
1865 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1866 	memblock_dump(&memblock.physmem);
1867 #endif
1868 }
1869 
memblock_allow_resize(void)1870 void __init memblock_allow_resize(void)
1871 {
1872 	memblock_can_resize = 1;
1873 }
1874 
early_memblock(char * p)1875 static int __init early_memblock(char *p)
1876 {
1877 	if (p && strstr(p, "debug"))
1878 		memblock_debug = 1;
1879 	return 0;
1880 }
1881 early_param("memblock", early_memblock);
1882 
1883 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1884 
memblock_debug_show(struct seq_file * m,void * private)1885 static int memblock_debug_show(struct seq_file *m, void *private)
1886 {
1887 	struct memblock_type *type = m->private;
1888 	struct memblock_region *reg;
1889 	int i;
1890 	phys_addr_t end;
1891 
1892 	for (i = 0; i < type->cnt; i++) {
1893 		reg = &type->regions[i];
1894 		end = reg->base + reg->size - 1;
1895 
1896 		seq_printf(m, "%4d: ", i);
1897 		seq_printf(m, "%pa..%pa\n", &reg->base, &end);
1898 	}
1899 	return 0;
1900 }
1901 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
1902 
memblock_init_debugfs(void)1903 static int __init memblock_init_debugfs(void)
1904 {
1905 	struct dentry *root = debugfs_create_dir("memblock", NULL);
1906 	if (!root)
1907 		return -ENXIO;
1908 	debugfs_create_file("memory", 0444, root,
1909 			    &memblock.memory, &memblock_debug_fops);
1910 	debugfs_create_file("reserved", 0444, root,
1911 			    &memblock.reserved, &memblock_debug_fops);
1912 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1913 	debugfs_create_file("physmem", 0444, root,
1914 			    &memblock.physmem, &memblock_debug_fops);
1915 #endif
1916 
1917 	return 0;
1918 }
1919 __initcall(memblock_init_debugfs);
1920 
1921 #endif /* CONFIG_DEBUG_FS */
1922