1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_SEGMENT_H
3 #define _ASM_X86_SEGMENT_H
4 
5 #include <linux/const.h>
6 #include <asm/alternative.h>
7 
8 /*
9  * Constructor for a conventional segment GDT (or LDT) entry.
10  * This is a macro so it can be used in initializers.
11  */
12 #define GDT_ENTRY(flags, base, limit)			\
13 	((((base)  & _AC(0xff000000,ULL)) << (56-24)) |	\
14 	 (((flags) & _AC(0x0000f0ff,ULL)) << 40) |	\
15 	 (((limit) & _AC(0x000f0000,ULL)) << (48-16)) |	\
16 	 (((base)  & _AC(0x00ffffff,ULL)) << 16) |	\
17 	 (((limit) & _AC(0x0000ffff,ULL))))
18 
19 /* Simple and small GDT entries for booting only: */
20 
21 #define GDT_ENTRY_BOOT_CS	2
22 #define GDT_ENTRY_BOOT_DS	3
23 #define GDT_ENTRY_BOOT_TSS	4
24 #define __BOOT_CS		(GDT_ENTRY_BOOT_CS*8)
25 #define __BOOT_DS		(GDT_ENTRY_BOOT_DS*8)
26 #define __BOOT_TSS		(GDT_ENTRY_BOOT_TSS*8)
27 
28 /*
29  * Bottom two bits of selector give the ring
30  * privilege level
31  */
32 #define SEGMENT_RPL_MASK	0x3
33 
34 /* User mode is privilege level 3: */
35 #define USER_RPL		0x3
36 
37 /* Bit 2 is Table Indicator (TI): selects between LDT or GDT */
38 #define SEGMENT_TI_MASK		0x4
39 /* LDT segment has TI set ... */
40 #define SEGMENT_LDT		0x4
41 /* ... GDT has it cleared */
42 #define SEGMENT_GDT		0x0
43 
44 #define GDT_ENTRY_INVALID_SEG	0
45 
46 #ifdef CONFIG_X86_32
47 /*
48  * The layout of the per-CPU GDT under Linux:
49  *
50  *   0 - null								<=== cacheline #1
51  *   1 - reserved
52  *   2 - reserved
53  *   3 - reserved
54  *
55  *   4 - unused								<=== cacheline #2
56  *   5 - unused
57  *
58  *  ------- start of TLS (Thread-Local Storage) segments:
59  *
60  *   6 - TLS segment #1			[ glibc's TLS segment ]
61  *   7 - TLS segment #2			[ Wine's %fs Win32 segment ]
62  *   8 - TLS segment #3							<=== cacheline #3
63  *   9 - reserved
64  *  10 - reserved
65  *  11 - reserved
66  *
67  *  ------- start of kernel segments:
68  *
69  *  12 - kernel code segment						<=== cacheline #4
70  *  13 - kernel data segment
71  *  14 - default user CS
72  *  15 - default user DS
73  *  16 - TSS								<=== cacheline #5
74  *  17 - LDT
75  *  18 - PNPBIOS support (16->32 gate)
76  *  19 - PNPBIOS support
77  *  20 - PNPBIOS support						<=== cacheline #6
78  *  21 - PNPBIOS support
79  *  22 - PNPBIOS support
80  *  23 - APM BIOS support
81  *  24 - APM BIOS support						<=== cacheline #7
82  *  25 - APM BIOS support
83  *
84  *  26 - ESPFIX small SS
85  *  27 - per-cpu			[ offset to per-cpu data area ]
86  *  28 - stack_canary-20		[ for stack protector ]		<=== cacheline #8
87  *  29 - unused
88  *  30 - unused
89  *  31 - TSS for double fault handler
90  */
91 #define GDT_ENTRY_TLS_MIN		6
92 #define GDT_ENTRY_TLS_MAX 		(GDT_ENTRY_TLS_MIN + GDT_ENTRY_TLS_ENTRIES - 1)
93 
94 #define GDT_ENTRY_KERNEL_CS		12
95 #define GDT_ENTRY_KERNEL_DS		13
96 #define GDT_ENTRY_DEFAULT_USER_CS	14
97 #define GDT_ENTRY_DEFAULT_USER_DS	15
98 #define GDT_ENTRY_TSS			16
99 #define GDT_ENTRY_LDT			17
100 #define GDT_ENTRY_PNPBIOS_CS32		18
101 #define GDT_ENTRY_PNPBIOS_CS16		19
102 #define GDT_ENTRY_PNPBIOS_DS		20
103 #define GDT_ENTRY_PNPBIOS_TS1		21
104 #define GDT_ENTRY_PNPBIOS_TS2		22
105 #define GDT_ENTRY_APMBIOS_BASE		23
106 
107 #define GDT_ENTRY_ESPFIX_SS		26
108 #define GDT_ENTRY_PERCPU		27
109 #define GDT_ENTRY_STACK_CANARY		28
110 
111 #define GDT_ENTRY_DOUBLEFAULT_TSS	31
112 
113 /*
114  * Number of entries in the GDT table:
115  */
116 #define GDT_ENTRIES			32
117 
118 /*
119  * Segment selector values corresponding to the above entries:
120  */
121 
122 #define __KERNEL_CS			(GDT_ENTRY_KERNEL_CS*8)
123 #define __KERNEL_DS			(GDT_ENTRY_KERNEL_DS*8)
124 #define __USER_DS			(GDT_ENTRY_DEFAULT_USER_DS*8 + 3)
125 #define __USER_CS			(GDT_ENTRY_DEFAULT_USER_CS*8 + 3)
126 #define __ESPFIX_SS			(GDT_ENTRY_ESPFIX_SS*8)
127 
128 /* segment for calling fn: */
129 #define PNP_CS32			(GDT_ENTRY_PNPBIOS_CS32*8)
130 /* code segment for BIOS: */
131 #define PNP_CS16			(GDT_ENTRY_PNPBIOS_CS16*8)
132 
133 /* "Is this PNP code selector (PNP_CS32 or PNP_CS16)?" */
134 #define SEGMENT_IS_PNP_CODE(x)		(((x) & 0xf4) == PNP_CS32)
135 
136 /* data segment for BIOS: */
137 #define PNP_DS				(GDT_ENTRY_PNPBIOS_DS*8)
138 /* transfer data segment: */
139 #define PNP_TS1				(GDT_ENTRY_PNPBIOS_TS1*8)
140 /* another data segment: */
141 #define PNP_TS2				(GDT_ENTRY_PNPBIOS_TS2*8)
142 
143 #ifdef CONFIG_SMP
144 # define __KERNEL_PERCPU		(GDT_ENTRY_PERCPU*8)
145 #else
146 # define __KERNEL_PERCPU		0
147 #endif
148 
149 #ifdef CONFIG_STACKPROTECTOR
150 # define __KERNEL_STACK_CANARY		(GDT_ENTRY_STACK_CANARY*8)
151 #else
152 # define __KERNEL_STACK_CANARY		0
153 #endif
154 
155 #else /* 64-bit: */
156 
157 #include <asm/cache.h>
158 
159 #define GDT_ENTRY_KERNEL32_CS		1
160 #define GDT_ENTRY_KERNEL_CS		2
161 #define GDT_ENTRY_KERNEL_DS		3
162 
163 /*
164  * We cannot use the same code segment descriptor for user and kernel mode,
165  * not even in long flat mode, because of different DPL.
166  *
167  * GDT layout to get 64-bit SYSCALL/SYSRET support right. SYSRET hardcodes
168  * selectors:
169  *
170  *   if returning to 32-bit userspace: cs = STAR.SYSRET_CS,
171  *   if returning to 64-bit userspace: cs = STAR.SYSRET_CS+16,
172  *
173  * ss = STAR.SYSRET_CS+8 (in either case)
174  *
175  * thus USER_DS should be between 32-bit and 64-bit code selectors:
176  */
177 #define GDT_ENTRY_DEFAULT_USER32_CS	4
178 #define GDT_ENTRY_DEFAULT_USER_DS	5
179 #define GDT_ENTRY_DEFAULT_USER_CS	6
180 
181 /* Needs two entries */
182 #define GDT_ENTRY_TSS			8
183 /* Needs two entries */
184 #define GDT_ENTRY_LDT			10
185 
186 #define GDT_ENTRY_TLS_MIN		12
187 #define GDT_ENTRY_TLS_MAX		14
188 
189 /* Abused to load per CPU data from limit */
190 #define GDT_ENTRY_PER_CPU		15
191 
192 /*
193  * Number of entries in the GDT table:
194  */
195 #define GDT_ENTRIES			16
196 
197 /*
198  * Segment selector values corresponding to the above entries:
199  *
200  * Note, selectors also need to have a correct RPL,
201  * expressed with the +3 value for user-space selectors:
202  */
203 #define __KERNEL32_CS			(GDT_ENTRY_KERNEL32_CS*8)
204 #define __KERNEL_CS			(GDT_ENTRY_KERNEL_CS*8)
205 #define __KERNEL_DS			(GDT_ENTRY_KERNEL_DS*8)
206 #define __USER32_CS			(GDT_ENTRY_DEFAULT_USER32_CS*8 + 3)
207 #define __USER_DS			(GDT_ENTRY_DEFAULT_USER_DS*8 + 3)
208 #define __USER32_DS			__USER_DS
209 #define __USER_CS			(GDT_ENTRY_DEFAULT_USER_CS*8 + 3)
210 #define __PER_CPU_SEG			(GDT_ENTRY_PER_CPU*8 + 3)
211 
212 #endif
213 
214 #ifndef CONFIG_PARAVIRT
215 # define get_kernel_rpl()		0
216 #endif
217 
218 #define IDT_ENTRIES			256
219 #define NUM_EXCEPTION_VECTORS		32
220 
221 /* Bitmask of exception vectors which push an error code on the stack: */
222 #define EXCEPTION_ERRCODE_MASK		0x00027d00
223 
224 #define GDT_SIZE			(GDT_ENTRIES*8)
225 #define GDT_ENTRY_TLS_ENTRIES		3
226 #define TLS_SIZE			(GDT_ENTRY_TLS_ENTRIES* 8)
227 
228 #ifdef __KERNEL__
229 
230 /*
231  * early_idt_handler_array is an array of entry points referenced in the
232  * early IDT.  For simplicity, it's a real array with one entry point
233  * every nine bytes.  That leaves room for an optional 'push $0' if the
234  * vector has no error code (two bytes), a 'push $vector_number' (two
235  * bytes), and a jump to the common entry code (up to five bytes).
236  */
237 #define EARLY_IDT_HANDLER_SIZE 9
238 
239 /*
240  * xen_early_idt_handler_array is for Xen pv guests: for each entry in
241  * early_idt_handler_array it contains a prequel in the form of
242  * pop %rcx; pop %r11; jmp early_idt_handler_array[i]; summing up to
243  * max 8 bytes.
244  */
245 #define XEN_EARLY_IDT_HANDLER_SIZE 8
246 
247 #ifndef __ASSEMBLY__
248 
249 extern const char early_idt_handler_array[NUM_EXCEPTION_VECTORS][EARLY_IDT_HANDLER_SIZE];
250 extern void early_ignore_irq(void);
251 
252 #if defined(CONFIG_X86_64) && defined(CONFIG_XEN_PV)
253 extern const char xen_early_idt_handler_array[NUM_EXCEPTION_VECTORS][XEN_EARLY_IDT_HANDLER_SIZE];
254 #endif
255 
256 /*
257  * Load a segment. Fall back on loading the zero segment if something goes
258  * wrong.  This variant assumes that loading zero fully clears the segment.
259  * This is always the case on Intel CPUs and, even on 64-bit AMD CPUs, any
260  * failure to fully clear the cached descriptor is only observable for
261  * FS and GS.
262  */
263 #define __loadsegment_simple(seg, value)				\
264 do {									\
265 	unsigned short __val = (value);					\
266 									\
267 	asm volatile("						\n"	\
268 		     "1:	movl %k0,%%" #seg "		\n"	\
269 									\
270 		     ".section .fixup,\"ax\"			\n"	\
271 		     "2:	xorl %k0,%k0			\n"	\
272 		     "		jmp 1b				\n"	\
273 		     ".previous					\n"	\
274 									\
275 		     _ASM_EXTABLE(1b, 2b)				\
276 									\
277 		     : "+r" (__val) : : "memory");			\
278 } while (0)
279 
280 #define __loadsegment_ss(value) __loadsegment_simple(ss, (value))
281 #define __loadsegment_ds(value) __loadsegment_simple(ds, (value))
282 #define __loadsegment_es(value) __loadsegment_simple(es, (value))
283 
284 #ifdef CONFIG_X86_32
285 
286 /*
287  * On 32-bit systems, the hidden parts of FS and GS are unobservable if
288  * the selector is NULL, so there's no funny business here.
289  */
290 #define __loadsegment_fs(value) __loadsegment_simple(fs, (value))
291 #define __loadsegment_gs(value) __loadsegment_simple(gs, (value))
292 
293 #else
294 
__loadsegment_fs(unsigned short value)295 static inline void __loadsegment_fs(unsigned short value)
296 {
297 	asm volatile("						\n"
298 		     "1:	movw %0, %%fs			\n"
299 		     "2:					\n"
300 
301 		     _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_clear_fs)
302 
303 		     : : "rm" (value) : "memory");
304 }
305 
306 /* __loadsegment_gs is intentionally undefined.  Use load_gs_index instead. */
307 
308 #endif
309 
310 #define loadsegment(seg, value) __loadsegment_ ## seg (value)
311 
312 /*
313  * Save a segment register away:
314  */
315 #define savesegment(seg, value)				\
316 	asm("mov %%" #seg ",%0":"=r" (value) : : "memory")
317 
318 /*
319  * x86-32 user GS accessors:
320  */
321 #ifdef CONFIG_X86_32
322 # ifdef CONFIG_X86_32_LAZY_GS
323 #  define get_user_gs(regs)		(u16)({ unsigned long v; savesegment(gs, v); v; })
324 #  define set_user_gs(regs, v)		loadsegment(gs, (unsigned long)(v))
325 #  define task_user_gs(tsk)		((tsk)->thread.gs)
326 #  define lazy_save_gs(v)		savesegment(gs, (v))
327 #  define lazy_load_gs(v)		loadsegment(gs, (v))
328 # else	/* X86_32_LAZY_GS */
329 #  define get_user_gs(regs)		(u16)((regs)->gs)
330 #  define set_user_gs(regs, v)		do { (regs)->gs = (v); } while (0)
331 #  define task_user_gs(tsk)		(task_pt_regs(tsk)->gs)
332 #  define lazy_save_gs(v)		do { } while (0)
333 #  define lazy_load_gs(v)		do { } while (0)
334 # endif	/* X86_32_LAZY_GS */
335 #endif	/* X86_32 */
336 
337 #endif /* !__ASSEMBLY__ */
338 #endif /* __KERNEL__ */
339 
340 #endif /* _ASM_X86_SEGMENT_H */
341