1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * linux/fs/jbd2/journal.c
4 *
5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 *
7 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 *
9 * Generic filesystem journal-writing code; part of the ext2fs
10 * journaling system.
11 *
12 * This file manages journals: areas of disk reserved for logging
13 * transactional updates. This includes the kernel journaling thread
14 * which is responsible for scheduling updates to the log.
15 *
16 * We do not actually manage the physical storage of the journal in this
17 * file: that is left to a per-journal policy function, which allows us
18 * to store the journal within a filesystem-specified area for ext2
19 * journaling (ext2 can use a reserved inode for storing the log).
20 */
21
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50
51 #ifdef CONFIG_JBD2_DEBUG
52 ushort jbd2_journal_enable_debug __read_mostly;
53 EXPORT_SYMBOL(jbd2_journal_enable_debug);
54
55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
57 #endif
58
59 EXPORT_SYMBOL(jbd2_journal_extend);
60 EXPORT_SYMBOL(jbd2_journal_stop);
61 EXPORT_SYMBOL(jbd2_journal_lock_updates);
62 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
63 EXPORT_SYMBOL(jbd2_journal_get_write_access);
64 EXPORT_SYMBOL(jbd2_journal_get_create_access);
65 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
66 EXPORT_SYMBOL(jbd2_journal_set_triggers);
67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
68 EXPORT_SYMBOL(jbd2_journal_forget);
69 #if 0
70 EXPORT_SYMBOL(journal_sync_buffer);
71 #endif
72 EXPORT_SYMBOL(jbd2_journal_flush);
73 EXPORT_SYMBOL(jbd2_journal_revoke);
74
75 EXPORT_SYMBOL(jbd2_journal_init_dev);
76 EXPORT_SYMBOL(jbd2_journal_init_inode);
77 EXPORT_SYMBOL(jbd2_journal_check_used_features);
78 EXPORT_SYMBOL(jbd2_journal_check_available_features);
79 EXPORT_SYMBOL(jbd2_journal_set_features);
80 EXPORT_SYMBOL(jbd2_journal_load);
81 EXPORT_SYMBOL(jbd2_journal_destroy);
82 EXPORT_SYMBOL(jbd2_journal_abort);
83 EXPORT_SYMBOL(jbd2_journal_errno);
84 EXPORT_SYMBOL(jbd2_journal_ack_err);
85 EXPORT_SYMBOL(jbd2_journal_clear_err);
86 EXPORT_SYMBOL(jbd2_log_wait_commit);
87 EXPORT_SYMBOL(jbd2_log_start_commit);
88 EXPORT_SYMBOL(jbd2_journal_start_commit);
89 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
90 EXPORT_SYMBOL(jbd2_journal_wipe);
91 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
92 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
93 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
94 EXPORT_SYMBOL(jbd2_journal_force_commit);
95 EXPORT_SYMBOL(jbd2_journal_inode_add_write);
96 EXPORT_SYMBOL(jbd2_journal_inode_add_wait);
97 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
98 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
99 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
100 EXPORT_SYMBOL(jbd2_inode_cache);
101
102 static void __journal_abort_soft (journal_t *journal, int errno);
103 static int jbd2_journal_create_slab(size_t slab_size);
104
105 #ifdef CONFIG_JBD2_DEBUG
__jbd2_debug(int level,const char * file,const char * func,unsigned int line,const char * fmt,...)106 void __jbd2_debug(int level, const char *file, const char *func,
107 unsigned int line, const char *fmt, ...)
108 {
109 struct va_format vaf;
110 va_list args;
111
112 if (level > jbd2_journal_enable_debug)
113 return;
114 va_start(args, fmt);
115 vaf.fmt = fmt;
116 vaf.va = &args;
117 printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
118 va_end(args);
119 }
120 EXPORT_SYMBOL(__jbd2_debug);
121 #endif
122
123 /* Checksumming functions */
jbd2_verify_csum_type(journal_t * j,journal_superblock_t * sb)124 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
125 {
126 if (!jbd2_journal_has_csum_v2or3_feature(j))
127 return 1;
128
129 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
130 }
131
jbd2_superblock_csum(journal_t * j,journal_superblock_t * sb)132 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
133 {
134 __u32 csum;
135 __be32 old_csum;
136
137 old_csum = sb->s_checksum;
138 sb->s_checksum = 0;
139 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
140 sb->s_checksum = old_csum;
141
142 return cpu_to_be32(csum);
143 }
144
jbd2_superblock_csum_verify(journal_t * j,journal_superblock_t * sb)145 static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
146 {
147 if (!jbd2_journal_has_csum_v2or3(j))
148 return 1;
149
150 return sb->s_checksum == jbd2_superblock_csum(j, sb);
151 }
152
jbd2_superblock_csum_set(journal_t * j,journal_superblock_t * sb)153 static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
154 {
155 if (!jbd2_journal_has_csum_v2or3(j))
156 return;
157
158 sb->s_checksum = jbd2_superblock_csum(j, sb);
159 }
160
161 /*
162 * Helper function used to manage commit timeouts
163 */
164
commit_timeout(struct timer_list * t)165 static void commit_timeout(struct timer_list *t)
166 {
167 journal_t *journal = from_timer(journal, t, j_commit_timer);
168
169 wake_up_process(journal->j_task);
170 }
171
172 /*
173 * kjournald2: The main thread function used to manage a logging device
174 * journal.
175 *
176 * This kernel thread is responsible for two things:
177 *
178 * 1) COMMIT: Every so often we need to commit the current state of the
179 * filesystem to disk. The journal thread is responsible for writing
180 * all of the metadata buffers to disk.
181 *
182 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
183 * of the data in that part of the log has been rewritten elsewhere on
184 * the disk. Flushing these old buffers to reclaim space in the log is
185 * known as checkpointing, and this thread is responsible for that job.
186 */
187
kjournald2(void * arg)188 static int kjournald2(void *arg)
189 {
190 journal_t *journal = arg;
191 transaction_t *transaction;
192
193 /*
194 * Set up an interval timer which can be used to trigger a commit wakeup
195 * after the commit interval expires
196 */
197 timer_setup(&journal->j_commit_timer, commit_timeout, 0);
198
199 set_freezable();
200
201 /* Record that the journal thread is running */
202 journal->j_task = current;
203 wake_up(&journal->j_wait_done_commit);
204
205 /*
206 * Make sure that no allocations from this kernel thread will ever
207 * recurse to the fs layer because we are responsible for the
208 * transaction commit and any fs involvement might get stuck waiting for
209 * the trasn. commit.
210 */
211 memalloc_nofs_save();
212
213 /*
214 * And now, wait forever for commit wakeup events.
215 */
216 write_lock(&journal->j_state_lock);
217
218 loop:
219 if (journal->j_flags & JBD2_UNMOUNT)
220 goto end_loop;
221
222 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
223 journal->j_commit_sequence, journal->j_commit_request);
224
225 if (journal->j_commit_sequence != journal->j_commit_request) {
226 jbd_debug(1, "OK, requests differ\n");
227 write_unlock(&journal->j_state_lock);
228 del_timer_sync(&journal->j_commit_timer);
229 jbd2_journal_commit_transaction(journal);
230 write_lock(&journal->j_state_lock);
231 goto loop;
232 }
233
234 wake_up(&journal->j_wait_done_commit);
235 if (freezing(current)) {
236 /*
237 * The simpler the better. Flushing journal isn't a
238 * good idea, because that depends on threads that may
239 * be already stopped.
240 */
241 jbd_debug(1, "Now suspending kjournald2\n");
242 write_unlock(&journal->j_state_lock);
243 try_to_freeze();
244 write_lock(&journal->j_state_lock);
245 } else {
246 /*
247 * We assume on resume that commits are already there,
248 * so we don't sleep
249 */
250 DEFINE_WAIT(wait);
251 int should_sleep = 1;
252
253 prepare_to_wait(&journal->j_wait_commit, &wait,
254 TASK_INTERRUPTIBLE);
255 if (journal->j_commit_sequence != journal->j_commit_request)
256 should_sleep = 0;
257 transaction = journal->j_running_transaction;
258 if (transaction && time_after_eq(jiffies,
259 transaction->t_expires))
260 should_sleep = 0;
261 if (journal->j_flags & JBD2_UNMOUNT)
262 should_sleep = 0;
263 if (should_sleep) {
264 write_unlock(&journal->j_state_lock);
265 schedule();
266 write_lock(&journal->j_state_lock);
267 }
268 finish_wait(&journal->j_wait_commit, &wait);
269 }
270
271 jbd_debug(1, "kjournald2 wakes\n");
272
273 /*
274 * Were we woken up by a commit wakeup event?
275 */
276 transaction = journal->j_running_transaction;
277 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
278 journal->j_commit_request = transaction->t_tid;
279 jbd_debug(1, "woke because of timeout\n");
280 }
281 goto loop;
282
283 end_loop:
284 del_timer_sync(&journal->j_commit_timer);
285 journal->j_task = NULL;
286 wake_up(&journal->j_wait_done_commit);
287 jbd_debug(1, "Journal thread exiting.\n");
288 write_unlock(&journal->j_state_lock);
289 return 0;
290 }
291
jbd2_journal_start_thread(journal_t * journal)292 static int jbd2_journal_start_thread(journal_t *journal)
293 {
294 struct task_struct *t;
295
296 t = kthread_run(kjournald2, journal, "jbd2/%s",
297 journal->j_devname);
298 if (IS_ERR(t))
299 return PTR_ERR(t);
300
301 wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
302 return 0;
303 }
304
journal_kill_thread(journal_t * journal)305 static void journal_kill_thread(journal_t *journal)
306 {
307 write_lock(&journal->j_state_lock);
308 journal->j_flags |= JBD2_UNMOUNT;
309
310 while (journal->j_task) {
311 write_unlock(&journal->j_state_lock);
312 wake_up(&journal->j_wait_commit);
313 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
314 write_lock(&journal->j_state_lock);
315 }
316 write_unlock(&journal->j_state_lock);
317 }
318
319 /*
320 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
321 *
322 * Writes a metadata buffer to a given disk block. The actual IO is not
323 * performed but a new buffer_head is constructed which labels the data
324 * to be written with the correct destination disk block.
325 *
326 * Any magic-number escaping which needs to be done will cause a
327 * copy-out here. If the buffer happens to start with the
328 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
329 * magic number is only written to the log for descripter blocks. In
330 * this case, we copy the data and replace the first word with 0, and we
331 * return a result code which indicates that this buffer needs to be
332 * marked as an escaped buffer in the corresponding log descriptor
333 * block. The missing word can then be restored when the block is read
334 * during recovery.
335 *
336 * If the source buffer has already been modified by a new transaction
337 * since we took the last commit snapshot, we use the frozen copy of
338 * that data for IO. If we end up using the existing buffer_head's data
339 * for the write, then we have to make sure nobody modifies it while the
340 * IO is in progress. do_get_write_access() handles this.
341 *
342 * The function returns a pointer to the buffer_head to be used for IO.
343 *
344 *
345 * Return value:
346 * <0: Error
347 * >=0: Finished OK
348 *
349 * On success:
350 * Bit 0 set == escape performed on the data
351 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
352 */
353
jbd2_journal_write_metadata_buffer(transaction_t * transaction,struct journal_head * jh_in,struct buffer_head ** bh_out,sector_t blocknr)354 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
355 struct journal_head *jh_in,
356 struct buffer_head **bh_out,
357 sector_t blocknr)
358 {
359 int need_copy_out = 0;
360 int done_copy_out = 0;
361 int do_escape = 0;
362 char *mapped_data;
363 struct buffer_head *new_bh;
364 struct page *new_page;
365 unsigned int new_offset;
366 struct buffer_head *bh_in = jh2bh(jh_in);
367 journal_t *journal = transaction->t_journal;
368
369 /*
370 * The buffer really shouldn't be locked: only the current committing
371 * transaction is allowed to write it, so nobody else is allowed
372 * to do any IO.
373 *
374 * akpm: except if we're journalling data, and write() output is
375 * also part of a shared mapping, and another thread has
376 * decided to launch a writepage() against this buffer.
377 */
378 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
379
380 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
381
382 /* keep subsequent assertions sane */
383 atomic_set(&new_bh->b_count, 1);
384
385 jbd_lock_bh_state(bh_in);
386 repeat:
387 /*
388 * If a new transaction has already done a buffer copy-out, then
389 * we use that version of the data for the commit.
390 */
391 if (jh_in->b_frozen_data) {
392 done_copy_out = 1;
393 new_page = virt_to_page(jh_in->b_frozen_data);
394 new_offset = offset_in_page(jh_in->b_frozen_data);
395 } else {
396 new_page = jh2bh(jh_in)->b_page;
397 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
398 }
399
400 mapped_data = kmap_atomic(new_page);
401 /*
402 * Fire data frozen trigger if data already wasn't frozen. Do this
403 * before checking for escaping, as the trigger may modify the magic
404 * offset. If a copy-out happens afterwards, it will have the correct
405 * data in the buffer.
406 */
407 if (!done_copy_out)
408 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
409 jh_in->b_triggers);
410
411 /*
412 * Check for escaping
413 */
414 if (*((__be32 *)(mapped_data + new_offset)) ==
415 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
416 need_copy_out = 1;
417 do_escape = 1;
418 }
419 kunmap_atomic(mapped_data);
420
421 /*
422 * Do we need to do a data copy?
423 */
424 if (need_copy_out && !done_copy_out) {
425 char *tmp;
426
427 jbd_unlock_bh_state(bh_in);
428 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
429 if (!tmp) {
430 brelse(new_bh);
431 return -ENOMEM;
432 }
433 jbd_lock_bh_state(bh_in);
434 if (jh_in->b_frozen_data) {
435 jbd2_free(tmp, bh_in->b_size);
436 goto repeat;
437 }
438
439 jh_in->b_frozen_data = tmp;
440 mapped_data = kmap_atomic(new_page);
441 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
442 kunmap_atomic(mapped_data);
443
444 new_page = virt_to_page(tmp);
445 new_offset = offset_in_page(tmp);
446 done_copy_out = 1;
447
448 /*
449 * This isn't strictly necessary, as we're using frozen
450 * data for the escaping, but it keeps consistency with
451 * b_frozen_data usage.
452 */
453 jh_in->b_frozen_triggers = jh_in->b_triggers;
454 }
455
456 /*
457 * Did we need to do an escaping? Now we've done all the
458 * copying, we can finally do so.
459 */
460 if (do_escape) {
461 mapped_data = kmap_atomic(new_page);
462 *((unsigned int *)(mapped_data + new_offset)) = 0;
463 kunmap_atomic(mapped_data);
464 }
465
466 set_bh_page(new_bh, new_page, new_offset);
467 new_bh->b_size = bh_in->b_size;
468 new_bh->b_bdev = journal->j_dev;
469 new_bh->b_blocknr = blocknr;
470 new_bh->b_private = bh_in;
471 set_buffer_mapped(new_bh);
472 set_buffer_dirty(new_bh);
473
474 *bh_out = new_bh;
475
476 /*
477 * The to-be-written buffer needs to get moved to the io queue,
478 * and the original buffer whose contents we are shadowing or
479 * copying is moved to the transaction's shadow queue.
480 */
481 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
482 spin_lock(&journal->j_list_lock);
483 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
484 spin_unlock(&journal->j_list_lock);
485 set_buffer_shadow(bh_in);
486 jbd_unlock_bh_state(bh_in);
487
488 return do_escape | (done_copy_out << 1);
489 }
490
491 /*
492 * Allocation code for the journal file. Manage the space left in the
493 * journal, so that we can begin checkpointing when appropriate.
494 */
495
496 /*
497 * Called with j_state_lock locked for writing.
498 * Returns true if a transaction commit was started.
499 */
__jbd2_log_start_commit(journal_t * journal,tid_t target)500 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
501 {
502 /* Return if the txn has already requested to be committed */
503 if (journal->j_commit_request == target)
504 return 0;
505
506 /*
507 * The only transaction we can possibly wait upon is the
508 * currently running transaction (if it exists). Otherwise,
509 * the target tid must be an old one.
510 */
511 if (journal->j_running_transaction &&
512 journal->j_running_transaction->t_tid == target) {
513 /*
514 * We want a new commit: OK, mark the request and wakeup the
515 * commit thread. We do _not_ do the commit ourselves.
516 */
517
518 journal->j_commit_request = target;
519 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
520 journal->j_commit_request,
521 journal->j_commit_sequence);
522 journal->j_running_transaction->t_requested = jiffies;
523 wake_up(&journal->j_wait_commit);
524 return 1;
525 } else if (!tid_geq(journal->j_commit_request, target))
526 /* This should never happen, but if it does, preserve
527 the evidence before kjournald goes into a loop and
528 increments j_commit_sequence beyond all recognition. */
529 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
530 journal->j_commit_request,
531 journal->j_commit_sequence,
532 target, journal->j_running_transaction ?
533 journal->j_running_transaction->t_tid : 0);
534 return 0;
535 }
536
jbd2_log_start_commit(journal_t * journal,tid_t tid)537 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
538 {
539 int ret;
540
541 write_lock(&journal->j_state_lock);
542 ret = __jbd2_log_start_commit(journal, tid);
543 write_unlock(&journal->j_state_lock);
544 return ret;
545 }
546
547 /*
548 * Force and wait any uncommitted transactions. We can only force the running
549 * transaction if we don't have an active handle, otherwise, we will deadlock.
550 * Returns: <0 in case of error,
551 * 0 if nothing to commit,
552 * 1 if transaction was successfully committed.
553 */
__jbd2_journal_force_commit(journal_t * journal)554 static int __jbd2_journal_force_commit(journal_t *journal)
555 {
556 transaction_t *transaction = NULL;
557 tid_t tid;
558 int need_to_start = 0, ret = 0;
559
560 read_lock(&journal->j_state_lock);
561 if (journal->j_running_transaction && !current->journal_info) {
562 transaction = journal->j_running_transaction;
563 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
564 need_to_start = 1;
565 } else if (journal->j_committing_transaction)
566 transaction = journal->j_committing_transaction;
567
568 if (!transaction) {
569 /* Nothing to commit */
570 read_unlock(&journal->j_state_lock);
571 return 0;
572 }
573 tid = transaction->t_tid;
574 read_unlock(&journal->j_state_lock);
575 if (need_to_start)
576 jbd2_log_start_commit(journal, tid);
577 ret = jbd2_log_wait_commit(journal, tid);
578 if (!ret)
579 ret = 1;
580
581 return ret;
582 }
583
584 /**
585 * Force and wait upon a commit if the calling process is not within
586 * transaction. This is used for forcing out undo-protected data which contains
587 * bitmaps, when the fs is running out of space.
588 *
589 * @journal: journal to force
590 * Returns true if progress was made.
591 */
jbd2_journal_force_commit_nested(journal_t * journal)592 int jbd2_journal_force_commit_nested(journal_t *journal)
593 {
594 int ret;
595
596 ret = __jbd2_journal_force_commit(journal);
597 return ret > 0;
598 }
599
600 /**
601 * int journal_force_commit() - force any uncommitted transactions
602 * @journal: journal to force
603 *
604 * Caller want unconditional commit. We can only force the running transaction
605 * if we don't have an active handle, otherwise, we will deadlock.
606 */
jbd2_journal_force_commit(journal_t * journal)607 int jbd2_journal_force_commit(journal_t *journal)
608 {
609 int ret;
610
611 J_ASSERT(!current->journal_info);
612 ret = __jbd2_journal_force_commit(journal);
613 if (ret > 0)
614 ret = 0;
615 return ret;
616 }
617
618 /*
619 * Start a commit of the current running transaction (if any). Returns true
620 * if a transaction is going to be committed (or is currently already
621 * committing), and fills its tid in at *ptid
622 */
jbd2_journal_start_commit(journal_t * journal,tid_t * ptid)623 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
624 {
625 int ret = 0;
626
627 write_lock(&journal->j_state_lock);
628 if (journal->j_running_transaction) {
629 tid_t tid = journal->j_running_transaction->t_tid;
630
631 __jbd2_log_start_commit(journal, tid);
632 /* There's a running transaction and we've just made sure
633 * it's commit has been scheduled. */
634 if (ptid)
635 *ptid = tid;
636 ret = 1;
637 } else if (journal->j_committing_transaction) {
638 /*
639 * If commit has been started, then we have to wait for
640 * completion of that transaction.
641 */
642 if (ptid)
643 *ptid = journal->j_committing_transaction->t_tid;
644 ret = 1;
645 }
646 write_unlock(&journal->j_state_lock);
647 return ret;
648 }
649
650 /*
651 * Return 1 if a given transaction has not yet sent barrier request
652 * connected with a transaction commit. If 0 is returned, transaction
653 * may or may not have sent the barrier. Used to avoid sending barrier
654 * twice in common cases.
655 */
jbd2_trans_will_send_data_barrier(journal_t * journal,tid_t tid)656 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
657 {
658 int ret = 0;
659 transaction_t *commit_trans;
660
661 if (!(journal->j_flags & JBD2_BARRIER))
662 return 0;
663 read_lock(&journal->j_state_lock);
664 /* Transaction already committed? */
665 if (tid_geq(journal->j_commit_sequence, tid))
666 goto out;
667 commit_trans = journal->j_committing_transaction;
668 if (!commit_trans || commit_trans->t_tid != tid) {
669 ret = 1;
670 goto out;
671 }
672 /*
673 * Transaction is being committed and we already proceeded to
674 * submitting a flush to fs partition?
675 */
676 if (journal->j_fs_dev != journal->j_dev) {
677 if (!commit_trans->t_need_data_flush ||
678 commit_trans->t_state >= T_COMMIT_DFLUSH)
679 goto out;
680 } else {
681 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
682 goto out;
683 }
684 ret = 1;
685 out:
686 read_unlock(&journal->j_state_lock);
687 return ret;
688 }
689 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
690
691 /*
692 * Wait for a specified commit to complete.
693 * The caller may not hold the journal lock.
694 */
jbd2_log_wait_commit(journal_t * journal,tid_t tid)695 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
696 {
697 int err = 0;
698
699 read_lock(&journal->j_state_lock);
700 #ifdef CONFIG_PROVE_LOCKING
701 /*
702 * Some callers make sure transaction is already committing and in that
703 * case we cannot block on open handles anymore. So don't warn in that
704 * case.
705 */
706 if (tid_gt(tid, journal->j_commit_sequence) &&
707 (!journal->j_committing_transaction ||
708 journal->j_committing_transaction->t_tid != tid)) {
709 read_unlock(&journal->j_state_lock);
710 jbd2_might_wait_for_commit(journal);
711 read_lock(&journal->j_state_lock);
712 }
713 #endif
714 #ifdef CONFIG_JBD2_DEBUG
715 if (!tid_geq(journal->j_commit_request, tid)) {
716 printk(KERN_ERR
717 "%s: error: j_commit_request=%d, tid=%d\n",
718 __func__, journal->j_commit_request, tid);
719 }
720 #endif
721 while (tid_gt(tid, journal->j_commit_sequence)) {
722 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
723 tid, journal->j_commit_sequence);
724 read_unlock(&journal->j_state_lock);
725 wake_up(&journal->j_wait_commit);
726 wait_event(journal->j_wait_done_commit,
727 !tid_gt(tid, journal->j_commit_sequence));
728 read_lock(&journal->j_state_lock);
729 }
730 read_unlock(&journal->j_state_lock);
731
732 if (unlikely(is_journal_aborted(journal)))
733 err = -EIO;
734 return err;
735 }
736
737 /* Return 1 when transaction with given tid has already committed. */
jbd2_transaction_committed(journal_t * journal,tid_t tid)738 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
739 {
740 int ret = 1;
741
742 read_lock(&journal->j_state_lock);
743 if (journal->j_running_transaction &&
744 journal->j_running_transaction->t_tid == tid)
745 ret = 0;
746 if (journal->j_committing_transaction &&
747 journal->j_committing_transaction->t_tid == tid)
748 ret = 0;
749 read_unlock(&journal->j_state_lock);
750 return ret;
751 }
752 EXPORT_SYMBOL(jbd2_transaction_committed);
753
754 /*
755 * When this function returns the transaction corresponding to tid
756 * will be completed. If the transaction has currently running, start
757 * committing that transaction before waiting for it to complete. If
758 * the transaction id is stale, it is by definition already completed,
759 * so just return SUCCESS.
760 */
jbd2_complete_transaction(journal_t * journal,tid_t tid)761 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
762 {
763 int need_to_wait = 1;
764
765 read_lock(&journal->j_state_lock);
766 if (journal->j_running_transaction &&
767 journal->j_running_transaction->t_tid == tid) {
768 if (journal->j_commit_request != tid) {
769 /* transaction not yet started, so request it */
770 read_unlock(&journal->j_state_lock);
771 jbd2_log_start_commit(journal, tid);
772 goto wait_commit;
773 }
774 } else if (!(journal->j_committing_transaction &&
775 journal->j_committing_transaction->t_tid == tid))
776 need_to_wait = 0;
777 read_unlock(&journal->j_state_lock);
778 if (!need_to_wait)
779 return 0;
780 wait_commit:
781 return jbd2_log_wait_commit(journal, tid);
782 }
783 EXPORT_SYMBOL(jbd2_complete_transaction);
784
785 /*
786 * Log buffer allocation routines:
787 */
788
jbd2_journal_next_log_block(journal_t * journal,unsigned long long * retp)789 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
790 {
791 unsigned long blocknr;
792
793 write_lock(&journal->j_state_lock);
794 J_ASSERT(journal->j_free > 1);
795
796 blocknr = journal->j_head;
797 journal->j_head++;
798 journal->j_free--;
799 if (journal->j_head == journal->j_last)
800 journal->j_head = journal->j_first;
801 write_unlock(&journal->j_state_lock);
802 return jbd2_journal_bmap(journal, blocknr, retp);
803 }
804
805 /*
806 * Conversion of logical to physical block numbers for the journal
807 *
808 * On external journals the journal blocks are identity-mapped, so
809 * this is a no-op. If needed, we can use j_blk_offset - everything is
810 * ready.
811 */
jbd2_journal_bmap(journal_t * journal,unsigned long blocknr,unsigned long long * retp)812 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
813 unsigned long long *retp)
814 {
815 int err = 0;
816 unsigned long long ret;
817
818 if (journal->j_inode) {
819 ret = bmap(journal->j_inode, blocknr);
820 if (ret)
821 *retp = ret;
822 else {
823 printk(KERN_ALERT "%s: journal block not found "
824 "at offset %lu on %s\n",
825 __func__, blocknr, journal->j_devname);
826 err = -EIO;
827 __journal_abort_soft(journal, err);
828 }
829 } else {
830 *retp = blocknr; /* +journal->j_blk_offset */
831 }
832 return err;
833 }
834
835 /*
836 * We play buffer_head aliasing tricks to write data/metadata blocks to
837 * the journal without copying their contents, but for journal
838 * descriptor blocks we do need to generate bona fide buffers.
839 *
840 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
841 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
842 * But we don't bother doing that, so there will be coherency problems with
843 * mmaps of blockdevs which hold live JBD-controlled filesystems.
844 */
845 struct buffer_head *
jbd2_journal_get_descriptor_buffer(transaction_t * transaction,int type)846 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
847 {
848 journal_t *journal = transaction->t_journal;
849 struct buffer_head *bh;
850 unsigned long long blocknr;
851 journal_header_t *header;
852 int err;
853
854 err = jbd2_journal_next_log_block(journal, &blocknr);
855
856 if (err)
857 return NULL;
858
859 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
860 if (!bh)
861 return NULL;
862 lock_buffer(bh);
863 memset(bh->b_data, 0, journal->j_blocksize);
864 header = (journal_header_t *)bh->b_data;
865 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
866 header->h_blocktype = cpu_to_be32(type);
867 header->h_sequence = cpu_to_be32(transaction->t_tid);
868 set_buffer_uptodate(bh);
869 unlock_buffer(bh);
870 BUFFER_TRACE(bh, "return this buffer");
871 return bh;
872 }
873
jbd2_descriptor_block_csum_set(journal_t * j,struct buffer_head * bh)874 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
875 {
876 struct jbd2_journal_block_tail *tail;
877 __u32 csum;
878
879 if (!jbd2_journal_has_csum_v2or3(j))
880 return;
881
882 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
883 sizeof(struct jbd2_journal_block_tail));
884 tail->t_checksum = 0;
885 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
886 tail->t_checksum = cpu_to_be32(csum);
887 }
888
889 /*
890 * Return tid of the oldest transaction in the journal and block in the journal
891 * where the transaction starts.
892 *
893 * If the journal is now empty, return which will be the next transaction ID
894 * we will write and where will that transaction start.
895 *
896 * The return value is 0 if journal tail cannot be pushed any further, 1 if
897 * it can.
898 */
jbd2_journal_get_log_tail(journal_t * journal,tid_t * tid,unsigned long * block)899 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
900 unsigned long *block)
901 {
902 transaction_t *transaction;
903 int ret;
904
905 read_lock(&journal->j_state_lock);
906 spin_lock(&journal->j_list_lock);
907 transaction = journal->j_checkpoint_transactions;
908 if (transaction) {
909 *tid = transaction->t_tid;
910 *block = transaction->t_log_start;
911 } else if ((transaction = journal->j_committing_transaction) != NULL) {
912 *tid = transaction->t_tid;
913 *block = transaction->t_log_start;
914 } else if ((transaction = journal->j_running_transaction) != NULL) {
915 *tid = transaction->t_tid;
916 *block = journal->j_head;
917 } else {
918 *tid = journal->j_transaction_sequence;
919 *block = journal->j_head;
920 }
921 ret = tid_gt(*tid, journal->j_tail_sequence);
922 spin_unlock(&journal->j_list_lock);
923 read_unlock(&journal->j_state_lock);
924
925 return ret;
926 }
927
928 /*
929 * Update information in journal structure and in on disk journal superblock
930 * about log tail. This function does not check whether information passed in
931 * really pushes log tail further. It's responsibility of the caller to make
932 * sure provided log tail information is valid (e.g. by holding
933 * j_checkpoint_mutex all the time between computing log tail and calling this
934 * function as is the case with jbd2_cleanup_journal_tail()).
935 *
936 * Requires j_checkpoint_mutex
937 */
__jbd2_update_log_tail(journal_t * journal,tid_t tid,unsigned long block)938 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
939 {
940 unsigned long freed;
941 int ret;
942
943 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
944
945 /*
946 * We cannot afford for write to remain in drive's caches since as
947 * soon as we update j_tail, next transaction can start reusing journal
948 * space and if we lose sb update during power failure we'd replay
949 * old transaction with possibly newly overwritten data.
950 */
951 ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
952 REQ_SYNC | REQ_FUA);
953 if (ret)
954 goto out;
955
956 write_lock(&journal->j_state_lock);
957 freed = block - journal->j_tail;
958 if (block < journal->j_tail)
959 freed += journal->j_last - journal->j_first;
960
961 trace_jbd2_update_log_tail(journal, tid, block, freed);
962 jbd_debug(1,
963 "Cleaning journal tail from %d to %d (offset %lu), "
964 "freeing %lu\n",
965 journal->j_tail_sequence, tid, block, freed);
966
967 journal->j_free += freed;
968 journal->j_tail_sequence = tid;
969 journal->j_tail = block;
970 write_unlock(&journal->j_state_lock);
971
972 out:
973 return ret;
974 }
975
976 /*
977 * This is a variation of __jbd2_update_log_tail which checks for validity of
978 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
979 * with other threads updating log tail.
980 */
jbd2_update_log_tail(journal_t * journal,tid_t tid,unsigned long block)981 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
982 {
983 mutex_lock_io(&journal->j_checkpoint_mutex);
984 if (tid_gt(tid, journal->j_tail_sequence))
985 __jbd2_update_log_tail(journal, tid, block);
986 mutex_unlock(&journal->j_checkpoint_mutex);
987 }
988
989 struct jbd2_stats_proc_session {
990 journal_t *journal;
991 struct transaction_stats_s *stats;
992 int start;
993 int max;
994 };
995
jbd2_seq_info_start(struct seq_file * seq,loff_t * pos)996 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
997 {
998 return *pos ? NULL : SEQ_START_TOKEN;
999 }
1000
jbd2_seq_info_next(struct seq_file * seq,void * v,loff_t * pos)1001 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
1002 {
1003 return NULL;
1004 }
1005
jbd2_seq_info_show(struct seq_file * seq,void * v)1006 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
1007 {
1008 struct jbd2_stats_proc_session *s = seq->private;
1009
1010 if (v != SEQ_START_TOKEN)
1011 return 0;
1012 seq_printf(seq, "%lu transactions (%lu requested), "
1013 "each up to %u blocks\n",
1014 s->stats->ts_tid, s->stats->ts_requested,
1015 s->journal->j_max_transaction_buffers);
1016 if (s->stats->ts_tid == 0)
1017 return 0;
1018 seq_printf(seq, "average: \n %ums waiting for transaction\n",
1019 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1020 seq_printf(seq, " %ums request delay\n",
1021 (s->stats->ts_requested == 0) ? 0 :
1022 jiffies_to_msecs(s->stats->run.rs_request_delay /
1023 s->stats->ts_requested));
1024 seq_printf(seq, " %ums running transaction\n",
1025 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1026 seq_printf(seq, " %ums transaction was being locked\n",
1027 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1028 seq_printf(seq, " %ums flushing data (in ordered mode)\n",
1029 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1030 seq_printf(seq, " %ums logging transaction\n",
1031 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1032 seq_printf(seq, " %lluus average transaction commit time\n",
1033 div_u64(s->journal->j_average_commit_time, 1000));
1034 seq_printf(seq, " %lu handles per transaction\n",
1035 s->stats->run.rs_handle_count / s->stats->ts_tid);
1036 seq_printf(seq, " %lu blocks per transaction\n",
1037 s->stats->run.rs_blocks / s->stats->ts_tid);
1038 seq_printf(seq, " %lu logged blocks per transaction\n",
1039 s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1040 return 0;
1041 }
1042
jbd2_seq_info_stop(struct seq_file * seq,void * v)1043 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1044 {
1045 }
1046
1047 static const struct seq_operations jbd2_seq_info_ops = {
1048 .start = jbd2_seq_info_start,
1049 .next = jbd2_seq_info_next,
1050 .stop = jbd2_seq_info_stop,
1051 .show = jbd2_seq_info_show,
1052 };
1053
jbd2_seq_info_open(struct inode * inode,struct file * file)1054 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1055 {
1056 journal_t *journal = PDE_DATA(inode);
1057 struct jbd2_stats_proc_session *s;
1058 int rc, size;
1059
1060 s = kmalloc(sizeof(*s), GFP_KERNEL);
1061 if (s == NULL)
1062 return -ENOMEM;
1063 size = sizeof(struct transaction_stats_s);
1064 s->stats = kmalloc(size, GFP_KERNEL);
1065 if (s->stats == NULL) {
1066 kfree(s);
1067 return -ENOMEM;
1068 }
1069 spin_lock(&journal->j_history_lock);
1070 memcpy(s->stats, &journal->j_stats, size);
1071 s->journal = journal;
1072 spin_unlock(&journal->j_history_lock);
1073
1074 rc = seq_open(file, &jbd2_seq_info_ops);
1075 if (rc == 0) {
1076 struct seq_file *m = file->private_data;
1077 m->private = s;
1078 } else {
1079 kfree(s->stats);
1080 kfree(s);
1081 }
1082 return rc;
1083
1084 }
1085
jbd2_seq_info_release(struct inode * inode,struct file * file)1086 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1087 {
1088 struct seq_file *seq = file->private_data;
1089 struct jbd2_stats_proc_session *s = seq->private;
1090 kfree(s->stats);
1091 kfree(s);
1092 return seq_release(inode, file);
1093 }
1094
1095 static const struct file_operations jbd2_seq_info_fops = {
1096 .owner = THIS_MODULE,
1097 .open = jbd2_seq_info_open,
1098 .read = seq_read,
1099 .llseek = seq_lseek,
1100 .release = jbd2_seq_info_release,
1101 };
1102
1103 static struct proc_dir_entry *proc_jbd2_stats;
1104
jbd2_stats_proc_init(journal_t * journal)1105 static void jbd2_stats_proc_init(journal_t *journal)
1106 {
1107 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1108 if (journal->j_proc_entry) {
1109 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1110 &jbd2_seq_info_fops, journal);
1111 }
1112 }
1113
jbd2_stats_proc_exit(journal_t * journal)1114 static void jbd2_stats_proc_exit(journal_t *journal)
1115 {
1116 remove_proc_entry("info", journal->j_proc_entry);
1117 remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1118 }
1119
1120 /*
1121 * Management for journal control blocks: functions to create and
1122 * destroy journal_t structures, and to initialise and read existing
1123 * journal blocks from disk. */
1124
1125 /* First: create and setup a journal_t object in memory. We initialise
1126 * very few fields yet: that has to wait until we have created the
1127 * journal structures from from scratch, or loaded them from disk. */
1128
journal_init_common(struct block_device * bdev,struct block_device * fs_dev,unsigned long long start,int len,int blocksize)1129 static journal_t *journal_init_common(struct block_device *bdev,
1130 struct block_device *fs_dev,
1131 unsigned long long start, int len, int blocksize)
1132 {
1133 static struct lock_class_key jbd2_trans_commit_key;
1134 journal_t *journal;
1135 int err;
1136 struct buffer_head *bh;
1137 int n;
1138
1139 journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1140 if (!journal)
1141 return NULL;
1142
1143 init_waitqueue_head(&journal->j_wait_transaction_locked);
1144 init_waitqueue_head(&journal->j_wait_done_commit);
1145 init_waitqueue_head(&journal->j_wait_commit);
1146 init_waitqueue_head(&journal->j_wait_updates);
1147 init_waitqueue_head(&journal->j_wait_reserved);
1148 mutex_init(&journal->j_barrier);
1149 mutex_init(&journal->j_checkpoint_mutex);
1150 spin_lock_init(&journal->j_revoke_lock);
1151 spin_lock_init(&journal->j_list_lock);
1152 rwlock_init(&journal->j_state_lock);
1153
1154 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1155 journal->j_min_batch_time = 0;
1156 journal->j_max_batch_time = 15000; /* 15ms */
1157 atomic_set(&journal->j_reserved_credits, 0);
1158
1159 /* The journal is marked for error until we succeed with recovery! */
1160 journal->j_flags = JBD2_ABORT;
1161
1162 /* Set up a default-sized revoke table for the new mount. */
1163 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1164 if (err)
1165 goto err_cleanup;
1166
1167 spin_lock_init(&journal->j_history_lock);
1168
1169 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1170 &jbd2_trans_commit_key, 0);
1171
1172 /* journal descriptor can store up to n blocks -bzzz */
1173 journal->j_blocksize = blocksize;
1174 journal->j_dev = bdev;
1175 journal->j_fs_dev = fs_dev;
1176 journal->j_blk_offset = start;
1177 journal->j_maxlen = len;
1178 n = journal->j_blocksize / sizeof(journal_block_tag_t);
1179 journal->j_wbufsize = n;
1180 journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1181 GFP_KERNEL);
1182 if (!journal->j_wbuf)
1183 goto err_cleanup;
1184
1185 bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1186 if (!bh) {
1187 pr_err("%s: Cannot get buffer for journal superblock\n",
1188 __func__);
1189 goto err_cleanup;
1190 }
1191 journal->j_sb_buffer = bh;
1192 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1193
1194 return journal;
1195
1196 err_cleanup:
1197 kfree(journal->j_wbuf);
1198 jbd2_journal_destroy_revoke(journal);
1199 kfree(journal);
1200 return NULL;
1201 }
1202
1203 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1204 *
1205 * Create a journal structure assigned some fixed set of disk blocks to
1206 * the journal. We don't actually touch those disk blocks yet, but we
1207 * need to set up all of the mapping information to tell the journaling
1208 * system where the journal blocks are.
1209 *
1210 */
1211
1212 /**
1213 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1214 * @bdev: Block device on which to create the journal
1215 * @fs_dev: Device which hold journalled filesystem for this journal.
1216 * @start: Block nr Start of journal.
1217 * @len: Length of the journal in blocks.
1218 * @blocksize: blocksize of journalling device
1219 *
1220 * Returns: a newly created journal_t *
1221 *
1222 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1223 * range of blocks on an arbitrary block device.
1224 *
1225 */
jbd2_journal_init_dev(struct block_device * bdev,struct block_device * fs_dev,unsigned long long start,int len,int blocksize)1226 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1227 struct block_device *fs_dev,
1228 unsigned long long start, int len, int blocksize)
1229 {
1230 journal_t *journal;
1231
1232 journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1233 if (!journal)
1234 return NULL;
1235
1236 bdevname(journal->j_dev, journal->j_devname);
1237 strreplace(journal->j_devname, '/', '!');
1238 jbd2_stats_proc_init(journal);
1239
1240 return journal;
1241 }
1242
1243 /**
1244 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1245 * @inode: An inode to create the journal in
1246 *
1247 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1248 * the journal. The inode must exist already, must support bmap() and
1249 * must have all data blocks preallocated.
1250 */
jbd2_journal_init_inode(struct inode * inode)1251 journal_t *jbd2_journal_init_inode(struct inode *inode)
1252 {
1253 journal_t *journal;
1254 char *p;
1255 unsigned long long blocknr;
1256
1257 blocknr = bmap(inode, 0);
1258 if (!blocknr) {
1259 pr_err("%s: Cannot locate journal superblock\n",
1260 __func__);
1261 return NULL;
1262 }
1263
1264 jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1265 inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1266 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1267
1268 journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1269 blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1270 inode->i_sb->s_blocksize);
1271 if (!journal)
1272 return NULL;
1273
1274 journal->j_inode = inode;
1275 bdevname(journal->j_dev, journal->j_devname);
1276 p = strreplace(journal->j_devname, '/', '!');
1277 sprintf(p, "-%lu", journal->j_inode->i_ino);
1278 jbd2_stats_proc_init(journal);
1279
1280 return journal;
1281 }
1282
1283 /*
1284 * If the journal init or create aborts, we need to mark the journal
1285 * superblock as being NULL to prevent the journal destroy from writing
1286 * back a bogus superblock.
1287 */
journal_fail_superblock(journal_t * journal)1288 static void journal_fail_superblock (journal_t *journal)
1289 {
1290 struct buffer_head *bh = journal->j_sb_buffer;
1291 brelse(bh);
1292 journal->j_sb_buffer = NULL;
1293 }
1294
1295 /*
1296 * Given a journal_t structure, initialise the various fields for
1297 * startup of a new journaling session. We use this both when creating
1298 * a journal, and after recovering an old journal to reset it for
1299 * subsequent use.
1300 */
1301
journal_reset(journal_t * journal)1302 static int journal_reset(journal_t *journal)
1303 {
1304 journal_superblock_t *sb = journal->j_superblock;
1305 unsigned long long first, last;
1306
1307 first = be32_to_cpu(sb->s_first);
1308 last = be32_to_cpu(sb->s_maxlen);
1309 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1310 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1311 first, last);
1312 journal_fail_superblock(journal);
1313 return -EINVAL;
1314 }
1315
1316 journal->j_first = first;
1317 journal->j_last = last;
1318
1319 journal->j_head = first;
1320 journal->j_tail = first;
1321 journal->j_free = last - first;
1322
1323 journal->j_tail_sequence = journal->j_transaction_sequence;
1324 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1325 journal->j_commit_request = journal->j_commit_sequence;
1326
1327 journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1328
1329 /*
1330 * As a special case, if the on-disk copy is already marked as needing
1331 * no recovery (s_start == 0), then we can safely defer the superblock
1332 * update until the next commit by setting JBD2_FLUSHED. This avoids
1333 * attempting a write to a potential-readonly device.
1334 */
1335 if (sb->s_start == 0) {
1336 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1337 "(start %ld, seq %d, errno %d)\n",
1338 journal->j_tail, journal->j_tail_sequence,
1339 journal->j_errno);
1340 journal->j_flags |= JBD2_FLUSHED;
1341 } else {
1342 /* Lock here to make assertions happy... */
1343 mutex_lock_io(&journal->j_checkpoint_mutex);
1344 /*
1345 * Update log tail information. We use REQ_FUA since new
1346 * transaction will start reusing journal space and so we
1347 * must make sure information about current log tail is on
1348 * disk before that.
1349 */
1350 jbd2_journal_update_sb_log_tail(journal,
1351 journal->j_tail_sequence,
1352 journal->j_tail,
1353 REQ_SYNC | REQ_FUA);
1354 mutex_unlock(&journal->j_checkpoint_mutex);
1355 }
1356 return jbd2_journal_start_thread(journal);
1357 }
1358
jbd2_write_superblock(journal_t * journal,int write_flags)1359 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1360 {
1361 struct buffer_head *bh = journal->j_sb_buffer;
1362 journal_superblock_t *sb = journal->j_superblock;
1363 int ret;
1364
1365 trace_jbd2_write_superblock(journal, write_flags);
1366 if (!(journal->j_flags & JBD2_BARRIER))
1367 write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1368 lock_buffer(bh);
1369 if (buffer_write_io_error(bh)) {
1370 /*
1371 * Oh, dear. A previous attempt to write the journal
1372 * superblock failed. This could happen because the
1373 * USB device was yanked out. Or it could happen to
1374 * be a transient write error and maybe the block will
1375 * be remapped. Nothing we can do but to retry the
1376 * write and hope for the best.
1377 */
1378 printk(KERN_ERR "JBD2: previous I/O error detected "
1379 "for journal superblock update for %s.\n",
1380 journal->j_devname);
1381 clear_buffer_write_io_error(bh);
1382 set_buffer_uptodate(bh);
1383 }
1384 jbd2_superblock_csum_set(journal, sb);
1385 get_bh(bh);
1386 bh->b_end_io = end_buffer_write_sync;
1387 ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1388 wait_on_buffer(bh);
1389 if (buffer_write_io_error(bh)) {
1390 clear_buffer_write_io_error(bh);
1391 set_buffer_uptodate(bh);
1392 ret = -EIO;
1393 }
1394 if (ret) {
1395 printk(KERN_ERR "JBD2: Error %d detected when updating "
1396 "journal superblock for %s.\n", ret,
1397 journal->j_devname);
1398 jbd2_journal_abort(journal, ret);
1399 }
1400
1401 return ret;
1402 }
1403
1404 /**
1405 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1406 * @journal: The journal to update.
1407 * @tail_tid: TID of the new transaction at the tail of the log
1408 * @tail_block: The first block of the transaction at the tail of the log
1409 * @write_op: With which operation should we write the journal sb
1410 *
1411 * Update a journal's superblock information about log tail and write it to
1412 * disk, waiting for the IO to complete.
1413 */
jbd2_journal_update_sb_log_tail(journal_t * journal,tid_t tail_tid,unsigned long tail_block,int write_op)1414 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1415 unsigned long tail_block, int write_op)
1416 {
1417 journal_superblock_t *sb = journal->j_superblock;
1418 int ret;
1419
1420 if (is_journal_aborted(journal))
1421 return -EIO;
1422
1423 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1424 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1425 tail_block, tail_tid);
1426
1427 sb->s_sequence = cpu_to_be32(tail_tid);
1428 sb->s_start = cpu_to_be32(tail_block);
1429
1430 ret = jbd2_write_superblock(journal, write_op);
1431 if (ret)
1432 goto out;
1433
1434 /* Log is no longer empty */
1435 write_lock(&journal->j_state_lock);
1436 WARN_ON(!sb->s_sequence);
1437 journal->j_flags &= ~JBD2_FLUSHED;
1438 write_unlock(&journal->j_state_lock);
1439
1440 out:
1441 return ret;
1442 }
1443
1444 /**
1445 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1446 * @journal: The journal to update.
1447 * @write_op: With which operation should we write the journal sb
1448 *
1449 * Update a journal's dynamic superblock fields to show that journal is empty.
1450 * Write updated superblock to disk waiting for IO to complete.
1451 */
jbd2_mark_journal_empty(journal_t * journal,int write_op)1452 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1453 {
1454 journal_superblock_t *sb = journal->j_superblock;
1455
1456 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1457 read_lock(&journal->j_state_lock);
1458 /* Is it already empty? */
1459 if (sb->s_start == 0) {
1460 read_unlock(&journal->j_state_lock);
1461 return;
1462 }
1463 jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1464 journal->j_tail_sequence);
1465
1466 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1467 sb->s_start = cpu_to_be32(0);
1468 read_unlock(&journal->j_state_lock);
1469
1470 jbd2_write_superblock(journal, write_op);
1471
1472 /* Log is no longer empty */
1473 write_lock(&journal->j_state_lock);
1474 journal->j_flags |= JBD2_FLUSHED;
1475 write_unlock(&journal->j_state_lock);
1476 }
1477
1478
1479 /**
1480 * jbd2_journal_update_sb_errno() - Update error in the journal.
1481 * @journal: The journal to update.
1482 *
1483 * Update a journal's errno. Write updated superblock to disk waiting for IO
1484 * to complete.
1485 */
jbd2_journal_update_sb_errno(journal_t * journal)1486 void jbd2_journal_update_sb_errno(journal_t *journal)
1487 {
1488 journal_superblock_t *sb = journal->j_superblock;
1489 int errcode;
1490
1491 read_lock(&journal->j_state_lock);
1492 errcode = journal->j_errno;
1493 read_unlock(&journal->j_state_lock);
1494 if (errcode == -ESHUTDOWN)
1495 errcode = 0;
1496 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1497 sb->s_errno = cpu_to_be32(errcode);
1498
1499 jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1500 }
1501 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1502
1503 /*
1504 * Read the superblock for a given journal, performing initial
1505 * validation of the format.
1506 */
journal_get_superblock(journal_t * journal)1507 static int journal_get_superblock(journal_t *journal)
1508 {
1509 struct buffer_head *bh;
1510 journal_superblock_t *sb;
1511 int err = -EIO;
1512
1513 bh = journal->j_sb_buffer;
1514
1515 J_ASSERT(bh != NULL);
1516 if (!buffer_uptodate(bh)) {
1517 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1518 wait_on_buffer(bh);
1519 if (!buffer_uptodate(bh)) {
1520 printk(KERN_ERR
1521 "JBD2: IO error reading journal superblock\n");
1522 goto out;
1523 }
1524 }
1525
1526 if (buffer_verified(bh))
1527 return 0;
1528
1529 sb = journal->j_superblock;
1530
1531 err = -EINVAL;
1532
1533 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1534 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1535 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1536 goto out;
1537 }
1538
1539 switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1540 case JBD2_SUPERBLOCK_V1:
1541 journal->j_format_version = 1;
1542 break;
1543 case JBD2_SUPERBLOCK_V2:
1544 journal->j_format_version = 2;
1545 break;
1546 default:
1547 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1548 goto out;
1549 }
1550
1551 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1552 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1553 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1554 printk(KERN_WARNING "JBD2: journal file too short\n");
1555 goto out;
1556 }
1557
1558 if (be32_to_cpu(sb->s_first) == 0 ||
1559 be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1560 printk(KERN_WARNING
1561 "JBD2: Invalid start block of journal: %u\n",
1562 be32_to_cpu(sb->s_first));
1563 goto out;
1564 }
1565
1566 if (jbd2_has_feature_csum2(journal) &&
1567 jbd2_has_feature_csum3(journal)) {
1568 /* Can't have checksum v2 and v3 at the same time! */
1569 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1570 "at the same time!\n");
1571 goto out;
1572 }
1573
1574 if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1575 jbd2_has_feature_checksum(journal)) {
1576 /* Can't have checksum v1 and v2 on at the same time! */
1577 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1578 "at the same time!\n");
1579 goto out;
1580 }
1581
1582 if (!jbd2_verify_csum_type(journal, sb)) {
1583 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1584 goto out;
1585 }
1586
1587 /* Load the checksum driver */
1588 if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1589 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1590 if (IS_ERR(journal->j_chksum_driver)) {
1591 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1592 err = PTR_ERR(journal->j_chksum_driver);
1593 journal->j_chksum_driver = NULL;
1594 goto out;
1595 }
1596 }
1597
1598 /* Check superblock checksum */
1599 if (!jbd2_superblock_csum_verify(journal, sb)) {
1600 printk(KERN_ERR "JBD2: journal checksum error\n");
1601 err = -EFSBADCRC;
1602 goto out;
1603 }
1604
1605 /* Precompute checksum seed for all metadata */
1606 if (jbd2_journal_has_csum_v2or3(journal))
1607 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1608 sizeof(sb->s_uuid));
1609
1610 set_buffer_verified(bh);
1611
1612 return 0;
1613
1614 out:
1615 journal_fail_superblock(journal);
1616 return err;
1617 }
1618
1619 /*
1620 * Load the on-disk journal superblock and read the key fields into the
1621 * journal_t.
1622 */
1623
load_superblock(journal_t * journal)1624 static int load_superblock(journal_t *journal)
1625 {
1626 int err;
1627 journal_superblock_t *sb;
1628
1629 err = journal_get_superblock(journal);
1630 if (err)
1631 return err;
1632
1633 sb = journal->j_superblock;
1634
1635 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1636 journal->j_tail = be32_to_cpu(sb->s_start);
1637 journal->j_first = be32_to_cpu(sb->s_first);
1638 journal->j_last = be32_to_cpu(sb->s_maxlen);
1639 journal->j_errno = be32_to_cpu(sb->s_errno);
1640
1641 return 0;
1642 }
1643
1644
1645 /**
1646 * int jbd2_journal_load() - Read journal from disk.
1647 * @journal: Journal to act on.
1648 *
1649 * Given a journal_t structure which tells us which disk blocks contain
1650 * a journal, read the journal from disk to initialise the in-memory
1651 * structures.
1652 */
jbd2_journal_load(journal_t * journal)1653 int jbd2_journal_load(journal_t *journal)
1654 {
1655 int err;
1656 journal_superblock_t *sb;
1657
1658 err = load_superblock(journal);
1659 if (err)
1660 return err;
1661
1662 sb = journal->j_superblock;
1663 /* If this is a V2 superblock, then we have to check the
1664 * features flags on it. */
1665
1666 if (journal->j_format_version >= 2) {
1667 if ((sb->s_feature_ro_compat &
1668 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1669 (sb->s_feature_incompat &
1670 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1671 printk(KERN_WARNING
1672 "JBD2: Unrecognised features on journal\n");
1673 return -EINVAL;
1674 }
1675 }
1676
1677 /*
1678 * Create a slab for this blocksize
1679 */
1680 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1681 if (err)
1682 return err;
1683
1684 /* Let the recovery code check whether it needs to recover any
1685 * data from the journal. */
1686 if (jbd2_journal_recover(journal))
1687 goto recovery_error;
1688
1689 if (journal->j_failed_commit) {
1690 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1691 "is corrupt.\n", journal->j_failed_commit,
1692 journal->j_devname);
1693 return -EFSCORRUPTED;
1694 }
1695
1696 /* OK, we've finished with the dynamic journal bits:
1697 * reinitialise the dynamic contents of the superblock in memory
1698 * and reset them on disk. */
1699 if (journal_reset(journal))
1700 goto recovery_error;
1701
1702 journal->j_flags &= ~JBD2_ABORT;
1703 journal->j_flags |= JBD2_LOADED;
1704 return 0;
1705
1706 recovery_error:
1707 printk(KERN_WARNING "JBD2: recovery failed\n");
1708 return -EIO;
1709 }
1710
1711 /**
1712 * void jbd2_journal_destroy() - Release a journal_t structure.
1713 * @journal: Journal to act on.
1714 *
1715 * Release a journal_t structure once it is no longer in use by the
1716 * journaled object.
1717 * Return <0 if we couldn't clean up the journal.
1718 */
jbd2_journal_destroy(journal_t * journal)1719 int jbd2_journal_destroy(journal_t *journal)
1720 {
1721 int err = 0;
1722
1723 /* Wait for the commit thread to wake up and die. */
1724 journal_kill_thread(journal);
1725
1726 /* Force a final log commit */
1727 if (journal->j_running_transaction)
1728 jbd2_journal_commit_transaction(journal);
1729
1730 /* Force any old transactions to disk */
1731
1732 /* Totally anal locking here... */
1733 spin_lock(&journal->j_list_lock);
1734 while (journal->j_checkpoint_transactions != NULL) {
1735 spin_unlock(&journal->j_list_lock);
1736 mutex_lock_io(&journal->j_checkpoint_mutex);
1737 err = jbd2_log_do_checkpoint(journal);
1738 mutex_unlock(&journal->j_checkpoint_mutex);
1739 /*
1740 * If checkpointing failed, just free the buffers to avoid
1741 * looping forever
1742 */
1743 if (err) {
1744 jbd2_journal_destroy_checkpoint(journal);
1745 spin_lock(&journal->j_list_lock);
1746 break;
1747 }
1748 spin_lock(&journal->j_list_lock);
1749 }
1750
1751 J_ASSERT(journal->j_running_transaction == NULL);
1752 J_ASSERT(journal->j_committing_transaction == NULL);
1753 J_ASSERT(journal->j_checkpoint_transactions == NULL);
1754 spin_unlock(&journal->j_list_lock);
1755
1756 if (journal->j_sb_buffer) {
1757 if (!is_journal_aborted(journal)) {
1758 mutex_lock_io(&journal->j_checkpoint_mutex);
1759
1760 write_lock(&journal->j_state_lock);
1761 journal->j_tail_sequence =
1762 ++journal->j_transaction_sequence;
1763 write_unlock(&journal->j_state_lock);
1764
1765 jbd2_mark_journal_empty(journal,
1766 REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1767 mutex_unlock(&journal->j_checkpoint_mutex);
1768 } else
1769 err = -EIO;
1770 brelse(journal->j_sb_buffer);
1771 }
1772
1773 if (journal->j_proc_entry)
1774 jbd2_stats_proc_exit(journal);
1775 iput(journal->j_inode);
1776 if (journal->j_revoke)
1777 jbd2_journal_destroy_revoke(journal);
1778 if (journal->j_chksum_driver)
1779 crypto_free_shash(journal->j_chksum_driver);
1780 kfree(journal->j_wbuf);
1781 kfree(journal);
1782
1783 return err;
1784 }
1785
1786
1787 /**
1788 *int jbd2_journal_check_used_features () - Check if features specified are used.
1789 * @journal: Journal to check.
1790 * @compat: bitmask of compatible features
1791 * @ro: bitmask of features that force read-only mount
1792 * @incompat: bitmask of incompatible features
1793 *
1794 * Check whether the journal uses all of a given set of
1795 * features. Return true (non-zero) if it does.
1796 **/
1797
jbd2_journal_check_used_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1798 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1799 unsigned long ro, unsigned long incompat)
1800 {
1801 journal_superblock_t *sb;
1802
1803 if (!compat && !ro && !incompat)
1804 return 1;
1805 /* Load journal superblock if it is not loaded yet. */
1806 if (journal->j_format_version == 0 &&
1807 journal_get_superblock(journal) != 0)
1808 return 0;
1809 if (journal->j_format_version == 1)
1810 return 0;
1811
1812 sb = journal->j_superblock;
1813
1814 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1815 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1816 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1817 return 1;
1818
1819 return 0;
1820 }
1821
1822 /**
1823 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1824 * @journal: Journal to check.
1825 * @compat: bitmask of compatible features
1826 * @ro: bitmask of features that force read-only mount
1827 * @incompat: bitmask of incompatible features
1828 *
1829 * Check whether the journaling code supports the use of
1830 * all of a given set of features on this journal. Return true
1831 * (non-zero) if it can. */
1832
jbd2_journal_check_available_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1833 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1834 unsigned long ro, unsigned long incompat)
1835 {
1836 if (!compat && !ro && !incompat)
1837 return 1;
1838
1839 /* We can support any known requested features iff the
1840 * superblock is in version 2. Otherwise we fail to support any
1841 * extended sb features. */
1842
1843 if (journal->j_format_version != 2)
1844 return 0;
1845
1846 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1847 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1848 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1849 return 1;
1850
1851 return 0;
1852 }
1853
1854 /**
1855 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1856 * @journal: Journal to act on.
1857 * @compat: bitmask of compatible features
1858 * @ro: bitmask of features that force read-only mount
1859 * @incompat: bitmask of incompatible features
1860 *
1861 * Mark a given journal feature as present on the
1862 * superblock. Returns true if the requested features could be set.
1863 *
1864 */
1865
jbd2_journal_set_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1866 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1867 unsigned long ro, unsigned long incompat)
1868 {
1869 #define INCOMPAT_FEATURE_ON(f) \
1870 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1871 #define COMPAT_FEATURE_ON(f) \
1872 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1873 journal_superblock_t *sb;
1874
1875 if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1876 return 1;
1877
1878 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1879 return 0;
1880
1881 /* If enabling v2 checksums, turn on v3 instead */
1882 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1883 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1884 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1885 }
1886
1887 /* Asking for checksumming v3 and v1? Only give them v3. */
1888 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1889 compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1890 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1891
1892 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1893 compat, ro, incompat);
1894
1895 sb = journal->j_superblock;
1896
1897 /* If enabling v3 checksums, update superblock */
1898 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1899 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1900 sb->s_feature_compat &=
1901 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1902
1903 /* Load the checksum driver */
1904 if (journal->j_chksum_driver == NULL) {
1905 journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1906 0, 0);
1907 if (IS_ERR(journal->j_chksum_driver)) {
1908 printk(KERN_ERR "JBD2: Cannot load crc32c "
1909 "driver.\n");
1910 journal->j_chksum_driver = NULL;
1911 return 0;
1912 }
1913
1914 /* Precompute checksum seed for all metadata */
1915 journal->j_csum_seed = jbd2_chksum(journal, ~0,
1916 sb->s_uuid,
1917 sizeof(sb->s_uuid));
1918 }
1919 }
1920
1921 /* If enabling v1 checksums, downgrade superblock */
1922 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1923 sb->s_feature_incompat &=
1924 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1925 JBD2_FEATURE_INCOMPAT_CSUM_V3);
1926
1927 sb->s_feature_compat |= cpu_to_be32(compat);
1928 sb->s_feature_ro_compat |= cpu_to_be32(ro);
1929 sb->s_feature_incompat |= cpu_to_be32(incompat);
1930
1931 return 1;
1932 #undef COMPAT_FEATURE_ON
1933 #undef INCOMPAT_FEATURE_ON
1934 }
1935
1936 /*
1937 * jbd2_journal_clear_features () - Clear a given journal feature in the
1938 * superblock
1939 * @journal: Journal to act on.
1940 * @compat: bitmask of compatible features
1941 * @ro: bitmask of features that force read-only mount
1942 * @incompat: bitmask of incompatible features
1943 *
1944 * Clear a given journal feature as present on the
1945 * superblock.
1946 */
jbd2_journal_clear_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1947 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1948 unsigned long ro, unsigned long incompat)
1949 {
1950 journal_superblock_t *sb;
1951
1952 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1953 compat, ro, incompat);
1954
1955 sb = journal->j_superblock;
1956
1957 sb->s_feature_compat &= ~cpu_to_be32(compat);
1958 sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1959 sb->s_feature_incompat &= ~cpu_to_be32(incompat);
1960 }
1961 EXPORT_SYMBOL(jbd2_journal_clear_features);
1962
1963 /**
1964 * int jbd2_journal_flush () - Flush journal
1965 * @journal: Journal to act on.
1966 *
1967 * Flush all data for a given journal to disk and empty the journal.
1968 * Filesystems can use this when remounting readonly to ensure that
1969 * recovery does not need to happen on remount.
1970 */
1971
jbd2_journal_flush(journal_t * journal)1972 int jbd2_journal_flush(journal_t *journal)
1973 {
1974 int err = 0;
1975 transaction_t *transaction = NULL;
1976
1977 write_lock(&journal->j_state_lock);
1978
1979 /* Force everything buffered to the log... */
1980 if (journal->j_running_transaction) {
1981 transaction = journal->j_running_transaction;
1982 __jbd2_log_start_commit(journal, transaction->t_tid);
1983 } else if (journal->j_committing_transaction)
1984 transaction = journal->j_committing_transaction;
1985
1986 /* Wait for the log commit to complete... */
1987 if (transaction) {
1988 tid_t tid = transaction->t_tid;
1989
1990 write_unlock(&journal->j_state_lock);
1991 jbd2_log_wait_commit(journal, tid);
1992 } else {
1993 write_unlock(&journal->j_state_lock);
1994 }
1995
1996 /* ...and flush everything in the log out to disk. */
1997 spin_lock(&journal->j_list_lock);
1998 while (!err && journal->j_checkpoint_transactions != NULL) {
1999 spin_unlock(&journal->j_list_lock);
2000 mutex_lock_io(&journal->j_checkpoint_mutex);
2001 err = jbd2_log_do_checkpoint(journal);
2002 mutex_unlock(&journal->j_checkpoint_mutex);
2003 spin_lock(&journal->j_list_lock);
2004 }
2005 spin_unlock(&journal->j_list_lock);
2006
2007 if (is_journal_aborted(journal))
2008 return -EIO;
2009
2010 mutex_lock_io(&journal->j_checkpoint_mutex);
2011 if (!err) {
2012 err = jbd2_cleanup_journal_tail(journal);
2013 if (err < 0) {
2014 mutex_unlock(&journal->j_checkpoint_mutex);
2015 goto out;
2016 }
2017 err = 0;
2018 }
2019
2020 /* Finally, mark the journal as really needing no recovery.
2021 * This sets s_start==0 in the underlying superblock, which is
2022 * the magic code for a fully-recovered superblock. Any future
2023 * commits of data to the journal will restore the current
2024 * s_start value. */
2025 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2026 mutex_unlock(&journal->j_checkpoint_mutex);
2027 write_lock(&journal->j_state_lock);
2028 J_ASSERT(!journal->j_running_transaction);
2029 J_ASSERT(!journal->j_committing_transaction);
2030 J_ASSERT(!journal->j_checkpoint_transactions);
2031 J_ASSERT(journal->j_head == journal->j_tail);
2032 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2033 write_unlock(&journal->j_state_lock);
2034 out:
2035 return err;
2036 }
2037
2038 /**
2039 * int jbd2_journal_wipe() - Wipe journal contents
2040 * @journal: Journal to act on.
2041 * @write: flag (see below)
2042 *
2043 * Wipe out all of the contents of a journal, safely. This will produce
2044 * a warning if the journal contains any valid recovery information.
2045 * Must be called between journal_init_*() and jbd2_journal_load().
2046 *
2047 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2048 * we merely suppress recovery.
2049 */
2050
jbd2_journal_wipe(journal_t * journal,int write)2051 int jbd2_journal_wipe(journal_t *journal, int write)
2052 {
2053 int err = 0;
2054
2055 J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2056
2057 err = load_superblock(journal);
2058 if (err)
2059 return err;
2060
2061 if (!journal->j_tail)
2062 goto no_recovery;
2063
2064 printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2065 write ? "Clearing" : "Ignoring");
2066
2067 err = jbd2_journal_skip_recovery(journal);
2068 if (write) {
2069 /* Lock to make assertions happy... */
2070 mutex_lock(&journal->j_checkpoint_mutex);
2071 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2072 mutex_unlock(&journal->j_checkpoint_mutex);
2073 }
2074
2075 no_recovery:
2076 return err;
2077 }
2078
2079 /*
2080 * Journal abort has very specific semantics, which we describe
2081 * for journal abort.
2082 *
2083 * Two internal functions, which provide abort to the jbd layer
2084 * itself are here.
2085 */
2086
2087 /*
2088 * Quick version for internal journal use (doesn't lock the journal).
2089 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2090 * and don't attempt to make any other journal updates.
2091 */
__jbd2_journal_abort_hard(journal_t * journal)2092 void __jbd2_journal_abort_hard(journal_t *journal)
2093 {
2094 transaction_t *transaction;
2095
2096 if (journal->j_flags & JBD2_ABORT)
2097 return;
2098
2099 printk(KERN_ERR "Aborting journal on device %s.\n",
2100 journal->j_devname);
2101
2102 write_lock(&journal->j_state_lock);
2103 journal->j_flags |= JBD2_ABORT;
2104 transaction = journal->j_running_transaction;
2105 if (transaction)
2106 __jbd2_log_start_commit(journal, transaction->t_tid);
2107 write_unlock(&journal->j_state_lock);
2108 }
2109
2110 /* Soft abort: record the abort error status in the journal superblock,
2111 * but don't do any other IO. */
__journal_abort_soft(journal_t * journal,int errno)2112 static void __journal_abort_soft (journal_t *journal, int errno)
2113 {
2114 int old_errno;
2115
2116 write_lock(&journal->j_state_lock);
2117 old_errno = journal->j_errno;
2118 if (!journal->j_errno || errno == -ESHUTDOWN)
2119 journal->j_errno = errno;
2120
2121 if (journal->j_flags & JBD2_ABORT) {
2122 write_unlock(&journal->j_state_lock);
2123 if (!old_errno && old_errno != -ESHUTDOWN &&
2124 errno == -ESHUTDOWN)
2125 jbd2_journal_update_sb_errno(journal);
2126 return;
2127 }
2128 write_unlock(&journal->j_state_lock);
2129
2130 __jbd2_journal_abort_hard(journal);
2131
2132 if (errno) {
2133 jbd2_journal_update_sb_errno(journal);
2134 write_lock(&journal->j_state_lock);
2135 journal->j_flags |= JBD2_REC_ERR;
2136 write_unlock(&journal->j_state_lock);
2137 }
2138 }
2139
2140 /**
2141 * void jbd2_journal_abort () - Shutdown the journal immediately.
2142 * @journal: the journal to shutdown.
2143 * @errno: an error number to record in the journal indicating
2144 * the reason for the shutdown.
2145 *
2146 * Perform a complete, immediate shutdown of the ENTIRE
2147 * journal (not of a single transaction). This operation cannot be
2148 * undone without closing and reopening the journal.
2149 *
2150 * The jbd2_journal_abort function is intended to support higher level error
2151 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2152 * mode.
2153 *
2154 * Journal abort has very specific semantics. Any existing dirty,
2155 * unjournaled buffers in the main filesystem will still be written to
2156 * disk by bdflush, but the journaling mechanism will be suspended
2157 * immediately and no further transaction commits will be honoured.
2158 *
2159 * Any dirty, journaled buffers will be written back to disk without
2160 * hitting the journal. Atomicity cannot be guaranteed on an aborted
2161 * filesystem, but we _do_ attempt to leave as much data as possible
2162 * behind for fsck to use for cleanup.
2163 *
2164 * Any attempt to get a new transaction handle on a journal which is in
2165 * ABORT state will just result in an -EROFS error return. A
2166 * jbd2_journal_stop on an existing handle will return -EIO if we have
2167 * entered abort state during the update.
2168 *
2169 * Recursive transactions are not disturbed by journal abort until the
2170 * final jbd2_journal_stop, which will receive the -EIO error.
2171 *
2172 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2173 * which will be recorded (if possible) in the journal superblock. This
2174 * allows a client to record failure conditions in the middle of a
2175 * transaction without having to complete the transaction to record the
2176 * failure to disk. ext3_error, for example, now uses this
2177 * functionality.
2178 *
2179 * Errors which originate from within the journaling layer will NOT
2180 * supply an errno; a null errno implies that absolutely no further
2181 * writes are done to the journal (unless there are any already in
2182 * progress).
2183 *
2184 */
2185
jbd2_journal_abort(journal_t * journal,int errno)2186 void jbd2_journal_abort(journal_t *journal, int errno)
2187 {
2188 __journal_abort_soft(journal, errno);
2189 }
2190
2191 /**
2192 * int jbd2_journal_errno () - returns the journal's error state.
2193 * @journal: journal to examine.
2194 *
2195 * This is the errno number set with jbd2_journal_abort(), the last
2196 * time the journal was mounted - if the journal was stopped
2197 * without calling abort this will be 0.
2198 *
2199 * If the journal has been aborted on this mount time -EROFS will
2200 * be returned.
2201 */
jbd2_journal_errno(journal_t * journal)2202 int jbd2_journal_errno(journal_t *journal)
2203 {
2204 int err;
2205
2206 read_lock(&journal->j_state_lock);
2207 if (journal->j_flags & JBD2_ABORT)
2208 err = -EROFS;
2209 else
2210 err = journal->j_errno;
2211 read_unlock(&journal->j_state_lock);
2212 return err;
2213 }
2214
2215 /**
2216 * int jbd2_journal_clear_err () - clears the journal's error state
2217 * @journal: journal to act on.
2218 *
2219 * An error must be cleared or acked to take a FS out of readonly
2220 * mode.
2221 */
jbd2_journal_clear_err(journal_t * journal)2222 int jbd2_journal_clear_err(journal_t *journal)
2223 {
2224 int err = 0;
2225
2226 write_lock(&journal->j_state_lock);
2227 if (journal->j_flags & JBD2_ABORT)
2228 err = -EROFS;
2229 else
2230 journal->j_errno = 0;
2231 write_unlock(&journal->j_state_lock);
2232 return err;
2233 }
2234
2235 /**
2236 * void jbd2_journal_ack_err() - Ack journal err.
2237 * @journal: journal to act on.
2238 *
2239 * An error must be cleared or acked to take a FS out of readonly
2240 * mode.
2241 */
jbd2_journal_ack_err(journal_t * journal)2242 void jbd2_journal_ack_err(journal_t *journal)
2243 {
2244 write_lock(&journal->j_state_lock);
2245 if (journal->j_errno)
2246 journal->j_flags |= JBD2_ACK_ERR;
2247 write_unlock(&journal->j_state_lock);
2248 }
2249
jbd2_journal_blocks_per_page(struct inode * inode)2250 int jbd2_journal_blocks_per_page(struct inode *inode)
2251 {
2252 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2253 }
2254
2255 /*
2256 * helper functions to deal with 32 or 64bit block numbers.
2257 */
journal_tag_bytes(journal_t * journal)2258 size_t journal_tag_bytes(journal_t *journal)
2259 {
2260 size_t sz;
2261
2262 if (jbd2_has_feature_csum3(journal))
2263 return sizeof(journal_block_tag3_t);
2264
2265 sz = sizeof(journal_block_tag_t);
2266
2267 if (jbd2_has_feature_csum2(journal))
2268 sz += sizeof(__u16);
2269
2270 if (jbd2_has_feature_64bit(journal))
2271 return sz;
2272 else
2273 return sz - sizeof(__u32);
2274 }
2275
2276 /*
2277 * JBD memory management
2278 *
2279 * These functions are used to allocate block-sized chunks of memory
2280 * used for making copies of buffer_head data. Very often it will be
2281 * page-sized chunks of data, but sometimes it will be in
2282 * sub-page-size chunks. (For example, 16k pages on Power systems
2283 * with a 4k block file system.) For blocks smaller than a page, we
2284 * use a SLAB allocator. There are slab caches for each block size,
2285 * which are allocated at mount time, if necessary, and we only free
2286 * (all of) the slab caches when/if the jbd2 module is unloaded. For
2287 * this reason we don't need to a mutex to protect access to
2288 * jbd2_slab[] allocating or releasing memory; only in
2289 * jbd2_journal_create_slab().
2290 */
2291 #define JBD2_MAX_SLABS 8
2292 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2293
2294 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2295 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2296 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2297 };
2298
2299
jbd2_journal_destroy_slabs(void)2300 static void jbd2_journal_destroy_slabs(void)
2301 {
2302 int i;
2303
2304 for (i = 0; i < JBD2_MAX_SLABS; i++) {
2305 kmem_cache_destroy(jbd2_slab[i]);
2306 jbd2_slab[i] = NULL;
2307 }
2308 }
2309
jbd2_journal_create_slab(size_t size)2310 static int jbd2_journal_create_slab(size_t size)
2311 {
2312 static DEFINE_MUTEX(jbd2_slab_create_mutex);
2313 int i = order_base_2(size) - 10;
2314 size_t slab_size;
2315
2316 if (size == PAGE_SIZE)
2317 return 0;
2318
2319 if (i >= JBD2_MAX_SLABS)
2320 return -EINVAL;
2321
2322 if (unlikely(i < 0))
2323 i = 0;
2324 mutex_lock(&jbd2_slab_create_mutex);
2325 if (jbd2_slab[i]) {
2326 mutex_unlock(&jbd2_slab_create_mutex);
2327 return 0; /* Already created */
2328 }
2329
2330 slab_size = 1 << (i+10);
2331 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2332 slab_size, 0, NULL);
2333 mutex_unlock(&jbd2_slab_create_mutex);
2334 if (!jbd2_slab[i]) {
2335 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2336 return -ENOMEM;
2337 }
2338 return 0;
2339 }
2340
get_slab(size_t size)2341 static struct kmem_cache *get_slab(size_t size)
2342 {
2343 int i = order_base_2(size) - 10;
2344
2345 BUG_ON(i >= JBD2_MAX_SLABS);
2346 if (unlikely(i < 0))
2347 i = 0;
2348 BUG_ON(jbd2_slab[i] == NULL);
2349 return jbd2_slab[i];
2350 }
2351
jbd2_alloc(size_t size,gfp_t flags)2352 void *jbd2_alloc(size_t size, gfp_t flags)
2353 {
2354 void *ptr;
2355
2356 BUG_ON(size & (size-1)); /* Must be a power of 2 */
2357
2358 if (size < PAGE_SIZE)
2359 ptr = kmem_cache_alloc(get_slab(size), flags);
2360 else
2361 ptr = (void *)__get_free_pages(flags, get_order(size));
2362
2363 /* Check alignment; SLUB has gotten this wrong in the past,
2364 * and this can lead to user data corruption! */
2365 BUG_ON(((unsigned long) ptr) & (size-1));
2366
2367 return ptr;
2368 }
2369
jbd2_free(void * ptr,size_t size)2370 void jbd2_free(void *ptr, size_t size)
2371 {
2372 if (size < PAGE_SIZE)
2373 kmem_cache_free(get_slab(size), ptr);
2374 else
2375 free_pages((unsigned long)ptr, get_order(size));
2376 };
2377
2378 /*
2379 * Journal_head storage management
2380 */
2381 static struct kmem_cache *jbd2_journal_head_cache;
2382 #ifdef CONFIG_JBD2_DEBUG
2383 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2384 #endif
2385
jbd2_journal_init_journal_head_cache(void)2386 static int jbd2_journal_init_journal_head_cache(void)
2387 {
2388 int retval;
2389
2390 J_ASSERT(jbd2_journal_head_cache == NULL);
2391 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2392 sizeof(struct journal_head),
2393 0, /* offset */
2394 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2395 NULL); /* ctor */
2396 retval = 0;
2397 if (!jbd2_journal_head_cache) {
2398 retval = -ENOMEM;
2399 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2400 }
2401 return retval;
2402 }
2403
jbd2_journal_destroy_journal_head_cache(void)2404 static void jbd2_journal_destroy_journal_head_cache(void)
2405 {
2406 kmem_cache_destroy(jbd2_journal_head_cache);
2407 jbd2_journal_head_cache = NULL;
2408 }
2409
2410 /*
2411 * journal_head splicing and dicing
2412 */
journal_alloc_journal_head(void)2413 static struct journal_head *journal_alloc_journal_head(void)
2414 {
2415 struct journal_head *ret;
2416
2417 #ifdef CONFIG_JBD2_DEBUG
2418 atomic_inc(&nr_journal_heads);
2419 #endif
2420 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2421 if (!ret) {
2422 jbd_debug(1, "out of memory for journal_head\n");
2423 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2424 ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2425 GFP_NOFS | __GFP_NOFAIL);
2426 }
2427 return ret;
2428 }
2429
journal_free_journal_head(struct journal_head * jh)2430 static void journal_free_journal_head(struct journal_head *jh)
2431 {
2432 #ifdef CONFIG_JBD2_DEBUG
2433 atomic_dec(&nr_journal_heads);
2434 memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2435 #endif
2436 kmem_cache_free(jbd2_journal_head_cache, jh);
2437 }
2438
2439 /*
2440 * A journal_head is attached to a buffer_head whenever JBD has an
2441 * interest in the buffer.
2442 *
2443 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2444 * is set. This bit is tested in core kernel code where we need to take
2445 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2446 * there.
2447 *
2448 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2449 *
2450 * When a buffer has its BH_JBD bit set it is immune from being released by
2451 * core kernel code, mainly via ->b_count.
2452 *
2453 * A journal_head is detached from its buffer_head when the journal_head's
2454 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2455 * transaction (b_cp_transaction) hold their references to b_jcount.
2456 *
2457 * Various places in the kernel want to attach a journal_head to a buffer_head
2458 * _before_ attaching the journal_head to a transaction. To protect the
2459 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2460 * journal_head's b_jcount refcount by one. The caller must call
2461 * jbd2_journal_put_journal_head() to undo this.
2462 *
2463 * So the typical usage would be:
2464 *
2465 * (Attach a journal_head if needed. Increments b_jcount)
2466 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2467 * ...
2468 * (Get another reference for transaction)
2469 * jbd2_journal_grab_journal_head(bh);
2470 * jh->b_transaction = xxx;
2471 * (Put original reference)
2472 * jbd2_journal_put_journal_head(jh);
2473 */
2474
2475 /*
2476 * Give a buffer_head a journal_head.
2477 *
2478 * May sleep.
2479 */
jbd2_journal_add_journal_head(struct buffer_head * bh)2480 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2481 {
2482 struct journal_head *jh;
2483 struct journal_head *new_jh = NULL;
2484
2485 repeat:
2486 if (!buffer_jbd(bh))
2487 new_jh = journal_alloc_journal_head();
2488
2489 jbd_lock_bh_journal_head(bh);
2490 if (buffer_jbd(bh)) {
2491 jh = bh2jh(bh);
2492 } else {
2493 J_ASSERT_BH(bh,
2494 (atomic_read(&bh->b_count) > 0) ||
2495 (bh->b_page && bh->b_page->mapping));
2496
2497 if (!new_jh) {
2498 jbd_unlock_bh_journal_head(bh);
2499 goto repeat;
2500 }
2501
2502 jh = new_jh;
2503 new_jh = NULL; /* We consumed it */
2504 set_buffer_jbd(bh);
2505 bh->b_private = jh;
2506 jh->b_bh = bh;
2507 get_bh(bh);
2508 BUFFER_TRACE(bh, "added journal_head");
2509 }
2510 jh->b_jcount++;
2511 jbd_unlock_bh_journal_head(bh);
2512 if (new_jh)
2513 journal_free_journal_head(new_jh);
2514 return bh->b_private;
2515 }
2516
2517 /*
2518 * Grab a ref against this buffer_head's journal_head. If it ended up not
2519 * having a journal_head, return NULL
2520 */
jbd2_journal_grab_journal_head(struct buffer_head * bh)2521 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2522 {
2523 struct journal_head *jh = NULL;
2524
2525 jbd_lock_bh_journal_head(bh);
2526 if (buffer_jbd(bh)) {
2527 jh = bh2jh(bh);
2528 jh->b_jcount++;
2529 }
2530 jbd_unlock_bh_journal_head(bh);
2531 return jh;
2532 }
2533
__journal_remove_journal_head(struct buffer_head * bh)2534 static void __journal_remove_journal_head(struct buffer_head *bh)
2535 {
2536 struct journal_head *jh = bh2jh(bh);
2537
2538 J_ASSERT_JH(jh, jh->b_jcount >= 0);
2539 J_ASSERT_JH(jh, jh->b_transaction == NULL);
2540 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2541 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2542 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2543 J_ASSERT_BH(bh, buffer_jbd(bh));
2544 J_ASSERT_BH(bh, jh2bh(jh) == bh);
2545 BUFFER_TRACE(bh, "remove journal_head");
2546 if (jh->b_frozen_data) {
2547 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2548 jbd2_free(jh->b_frozen_data, bh->b_size);
2549 }
2550 if (jh->b_committed_data) {
2551 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2552 jbd2_free(jh->b_committed_data, bh->b_size);
2553 }
2554 bh->b_private = NULL;
2555 jh->b_bh = NULL; /* debug, really */
2556 clear_buffer_jbd(bh);
2557 journal_free_journal_head(jh);
2558 }
2559
2560 /*
2561 * Drop a reference on the passed journal_head. If it fell to zero then
2562 * release the journal_head from the buffer_head.
2563 */
jbd2_journal_put_journal_head(struct journal_head * jh)2564 void jbd2_journal_put_journal_head(struct journal_head *jh)
2565 {
2566 struct buffer_head *bh = jh2bh(jh);
2567
2568 jbd_lock_bh_journal_head(bh);
2569 J_ASSERT_JH(jh, jh->b_jcount > 0);
2570 --jh->b_jcount;
2571 if (!jh->b_jcount) {
2572 __journal_remove_journal_head(bh);
2573 jbd_unlock_bh_journal_head(bh);
2574 __brelse(bh);
2575 } else
2576 jbd_unlock_bh_journal_head(bh);
2577 }
2578
2579 /*
2580 * Initialize jbd inode head
2581 */
jbd2_journal_init_jbd_inode(struct jbd2_inode * jinode,struct inode * inode)2582 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2583 {
2584 jinode->i_transaction = NULL;
2585 jinode->i_next_transaction = NULL;
2586 jinode->i_vfs_inode = inode;
2587 jinode->i_flags = 0;
2588 INIT_LIST_HEAD(&jinode->i_list);
2589 }
2590
2591 /*
2592 * Function to be called before we start removing inode from memory (i.e.,
2593 * clear_inode() is a fine place to be called from). It removes inode from
2594 * transaction's lists.
2595 */
jbd2_journal_release_jbd_inode(journal_t * journal,struct jbd2_inode * jinode)2596 void jbd2_journal_release_jbd_inode(journal_t *journal,
2597 struct jbd2_inode *jinode)
2598 {
2599 if (!journal)
2600 return;
2601 restart:
2602 spin_lock(&journal->j_list_lock);
2603 /* Is commit writing out inode - we have to wait */
2604 if (jinode->i_flags & JI_COMMIT_RUNNING) {
2605 wait_queue_head_t *wq;
2606 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2607 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2608 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2609 spin_unlock(&journal->j_list_lock);
2610 schedule();
2611 finish_wait(wq, &wait.wq_entry);
2612 goto restart;
2613 }
2614
2615 if (jinode->i_transaction) {
2616 list_del(&jinode->i_list);
2617 jinode->i_transaction = NULL;
2618 }
2619 spin_unlock(&journal->j_list_lock);
2620 }
2621
2622
2623 #ifdef CONFIG_PROC_FS
2624
2625 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2626
jbd2_create_jbd_stats_proc_entry(void)2627 static void __init jbd2_create_jbd_stats_proc_entry(void)
2628 {
2629 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2630 }
2631
jbd2_remove_jbd_stats_proc_entry(void)2632 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2633 {
2634 if (proc_jbd2_stats)
2635 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2636 }
2637
2638 #else
2639
2640 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2641 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2642
2643 #endif
2644
2645 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2646
jbd2_journal_init_handle_cache(void)2647 static int __init jbd2_journal_init_handle_cache(void)
2648 {
2649 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2650 if (jbd2_handle_cache == NULL) {
2651 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2652 return -ENOMEM;
2653 }
2654 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2655 if (jbd2_inode_cache == NULL) {
2656 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2657 kmem_cache_destroy(jbd2_handle_cache);
2658 return -ENOMEM;
2659 }
2660 return 0;
2661 }
2662
jbd2_journal_destroy_handle_cache(void)2663 static void jbd2_journal_destroy_handle_cache(void)
2664 {
2665 kmem_cache_destroy(jbd2_handle_cache);
2666 jbd2_handle_cache = NULL;
2667 kmem_cache_destroy(jbd2_inode_cache);
2668 jbd2_inode_cache = NULL;
2669 }
2670
2671 /*
2672 * Module startup and shutdown
2673 */
2674
journal_init_caches(void)2675 static int __init journal_init_caches(void)
2676 {
2677 int ret;
2678
2679 ret = jbd2_journal_init_revoke_caches();
2680 if (ret == 0)
2681 ret = jbd2_journal_init_journal_head_cache();
2682 if (ret == 0)
2683 ret = jbd2_journal_init_handle_cache();
2684 if (ret == 0)
2685 ret = jbd2_journal_init_transaction_cache();
2686 return ret;
2687 }
2688
jbd2_journal_destroy_caches(void)2689 static void jbd2_journal_destroy_caches(void)
2690 {
2691 jbd2_journal_destroy_revoke_caches();
2692 jbd2_journal_destroy_journal_head_cache();
2693 jbd2_journal_destroy_handle_cache();
2694 jbd2_journal_destroy_transaction_cache();
2695 jbd2_journal_destroy_slabs();
2696 }
2697
journal_init(void)2698 static int __init journal_init(void)
2699 {
2700 int ret;
2701
2702 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2703
2704 ret = journal_init_caches();
2705 if (ret == 0) {
2706 jbd2_create_jbd_stats_proc_entry();
2707 } else {
2708 jbd2_journal_destroy_caches();
2709 }
2710 return ret;
2711 }
2712
journal_exit(void)2713 static void __exit journal_exit(void)
2714 {
2715 #ifdef CONFIG_JBD2_DEBUG
2716 int n = atomic_read(&nr_journal_heads);
2717 if (n)
2718 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2719 #endif
2720 jbd2_remove_jbd_stats_proc_entry();
2721 jbd2_journal_destroy_caches();
2722 }
2723
2724 MODULE_LICENSE("GPL");
2725 module_init(journal_init);
2726 module_exit(journal_exit);
2727
2728