1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5 
6 #include <linux/slab.h> /* fault-inject.h is not standalone! */
7 
8 #include <linux/fault-inject.h>
9 
10 #include "gem/i915_gem_lmem.h"
11 #include "i915_trace.h"
12 #include "intel_gt.h"
13 #include "intel_gtt.h"
14 
alloc_pt_lmem(struct i915_address_space * vm,int sz)15 struct drm_i915_gem_object *alloc_pt_lmem(struct i915_address_space *vm, int sz)
16 {
17 	struct drm_i915_gem_object *obj;
18 
19 	/*
20 	 * To avoid severe over-allocation when dealing with min_page_size
21 	 * restrictions, we override that behaviour here by allowing an object
22 	 * size and page layout which can be smaller. In practice this should be
23 	 * totally fine, since GTT paging structures are not typically inserted
24 	 * into the GTT.
25 	 *
26 	 * Note that we also hit this path for the scratch page, and for this
27 	 * case it might need to be 64K, but that should work fine here since we
28 	 * used the passed in size for the page size, which should ensure it
29 	 * also has the same alignment.
30 	 */
31 	obj = __i915_gem_object_create_lmem_with_ps(vm->i915, sz, sz, 0);
32 	/*
33 	 * Ensure all paging structures for this vm share the same dma-resv
34 	 * object underneath, with the idea that one object_lock() will lock
35 	 * them all at once.
36 	 */
37 	if (!IS_ERR(obj)) {
38 		obj->base.resv = i915_vm_resv_get(vm);
39 		obj->shares_resv_from = vm;
40 	}
41 
42 	return obj;
43 }
44 
alloc_pt_dma(struct i915_address_space * vm,int sz)45 struct drm_i915_gem_object *alloc_pt_dma(struct i915_address_space *vm, int sz)
46 {
47 	struct drm_i915_gem_object *obj;
48 
49 	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
50 		i915_gem_shrink_all(vm->i915);
51 
52 	obj = i915_gem_object_create_internal(vm->i915, sz);
53 	/*
54 	 * Ensure all paging structures for this vm share the same dma-resv
55 	 * object underneath, with the idea that one object_lock() will lock
56 	 * them all at once.
57 	 */
58 	if (!IS_ERR(obj)) {
59 		obj->base.resv = i915_vm_resv_get(vm);
60 		obj->shares_resv_from = vm;
61 	}
62 
63 	return obj;
64 }
65 
map_pt_dma(struct i915_address_space * vm,struct drm_i915_gem_object * obj)66 int map_pt_dma(struct i915_address_space *vm, struct drm_i915_gem_object *obj)
67 {
68 	enum i915_map_type type;
69 	void *vaddr;
70 
71 	type = i915_coherent_map_type(vm->i915, obj, true);
72 	vaddr = i915_gem_object_pin_map_unlocked(obj, type);
73 	if (IS_ERR(vaddr))
74 		return PTR_ERR(vaddr);
75 
76 	i915_gem_object_make_unshrinkable(obj);
77 	return 0;
78 }
79 
map_pt_dma_locked(struct i915_address_space * vm,struct drm_i915_gem_object * obj)80 int map_pt_dma_locked(struct i915_address_space *vm, struct drm_i915_gem_object *obj)
81 {
82 	enum i915_map_type type;
83 	void *vaddr;
84 
85 	type = i915_coherent_map_type(vm->i915, obj, true);
86 	vaddr = i915_gem_object_pin_map(obj, type);
87 	if (IS_ERR(vaddr))
88 		return PTR_ERR(vaddr);
89 
90 	i915_gem_object_make_unshrinkable(obj);
91 	return 0;
92 }
93 
__i915_vm_close(struct i915_address_space * vm)94 void __i915_vm_close(struct i915_address_space *vm)
95 {
96 	struct i915_vma *vma, *vn;
97 
98 	if (!atomic_dec_and_mutex_lock(&vm->open, &vm->mutex))
99 		return;
100 
101 	list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) {
102 		struct drm_i915_gem_object *obj = vma->obj;
103 
104 		/* Keep the obj (and hence the vma) alive as _we_ destroy it */
105 		if (!kref_get_unless_zero(&obj->base.refcount))
106 			continue;
107 
108 		atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
109 		WARN_ON(__i915_vma_unbind(vma));
110 		__i915_vma_put(vma);
111 
112 		i915_gem_object_put(obj);
113 	}
114 	GEM_BUG_ON(!list_empty(&vm->bound_list));
115 
116 	mutex_unlock(&vm->mutex);
117 }
118 
119 /* lock the vm into the current ww, if we lock one, we lock all */
i915_vm_lock_objects(struct i915_address_space * vm,struct i915_gem_ww_ctx * ww)120 int i915_vm_lock_objects(struct i915_address_space *vm,
121 			 struct i915_gem_ww_ctx *ww)
122 {
123 	if (vm->scratch[0]->base.resv == &vm->_resv) {
124 		return i915_gem_object_lock(vm->scratch[0], ww);
125 	} else {
126 		struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
127 
128 		/* We borrowed the scratch page from ggtt, take the top level object */
129 		return i915_gem_object_lock(ppgtt->pd->pt.base, ww);
130 	}
131 }
132 
i915_address_space_fini(struct i915_address_space * vm)133 void i915_address_space_fini(struct i915_address_space *vm)
134 {
135 	drm_mm_takedown(&vm->mm);
136 	mutex_destroy(&vm->mutex);
137 }
138 
139 /**
140  * i915_vm_resv_release - Final struct i915_address_space destructor
141  * @kref: Pointer to the &i915_address_space.resv_ref member.
142  *
143  * This function is called when the last lock sharer no longer shares the
144  * &i915_address_space._resv lock.
145  */
i915_vm_resv_release(struct kref * kref)146 void i915_vm_resv_release(struct kref *kref)
147 {
148 	struct i915_address_space *vm =
149 		container_of(kref, typeof(*vm), resv_ref);
150 
151 	dma_resv_fini(&vm->_resv);
152 	kfree(vm);
153 }
154 
__i915_vm_release(struct work_struct * work)155 static void __i915_vm_release(struct work_struct *work)
156 {
157 	struct i915_address_space *vm =
158 		container_of(work, struct i915_address_space, rcu.work);
159 
160 	vm->cleanup(vm);
161 	i915_address_space_fini(vm);
162 
163 	i915_vm_resv_put(vm);
164 }
165 
i915_vm_release(struct kref * kref)166 void i915_vm_release(struct kref *kref)
167 {
168 	struct i915_address_space *vm =
169 		container_of(kref, struct i915_address_space, ref);
170 
171 	GEM_BUG_ON(i915_is_ggtt(vm));
172 	trace_i915_ppgtt_release(vm);
173 
174 	queue_rcu_work(vm->i915->wq, &vm->rcu);
175 }
176 
i915_address_space_init(struct i915_address_space * vm,int subclass)177 void i915_address_space_init(struct i915_address_space *vm, int subclass)
178 {
179 	kref_init(&vm->ref);
180 
181 	/*
182 	 * Special case for GGTT that has already done an early
183 	 * kref_init here.
184 	 */
185 	if (!kref_read(&vm->resv_ref))
186 		kref_init(&vm->resv_ref);
187 
188 	INIT_RCU_WORK(&vm->rcu, __i915_vm_release);
189 	atomic_set(&vm->open, 1);
190 
191 	/*
192 	 * The vm->mutex must be reclaim safe (for use in the shrinker).
193 	 * Do a dummy acquire now under fs_reclaim so that any allocation
194 	 * attempt holding the lock is immediately reported by lockdep.
195 	 */
196 	mutex_init(&vm->mutex);
197 	lockdep_set_subclass(&vm->mutex, subclass);
198 
199 	if (!intel_vm_no_concurrent_access_wa(vm->i915)) {
200 		i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
201 	} else {
202 		/*
203 		 * CHV + BXT VTD workaround use stop_machine(),
204 		 * which is allowed to allocate memory. This means &vm->mutex
205 		 * is the outer lock, and in theory we can allocate memory inside
206 		 * it through stop_machine().
207 		 *
208 		 * Add the annotation for this, we use trylock in shrinker.
209 		 */
210 		mutex_acquire(&vm->mutex.dep_map, 0, 0, _THIS_IP_);
211 		might_alloc(GFP_KERNEL);
212 		mutex_release(&vm->mutex.dep_map, _THIS_IP_);
213 	}
214 	dma_resv_init(&vm->_resv);
215 
216 	GEM_BUG_ON(!vm->total);
217 	drm_mm_init(&vm->mm, 0, vm->total);
218 	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
219 
220 	INIT_LIST_HEAD(&vm->bound_list);
221 }
222 
clear_pages(struct i915_vma * vma)223 void clear_pages(struct i915_vma *vma)
224 {
225 	GEM_BUG_ON(!vma->pages);
226 
227 	if (vma->pages != vma->obj->mm.pages) {
228 		sg_free_table(vma->pages);
229 		kfree(vma->pages);
230 	}
231 	vma->pages = NULL;
232 
233 	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
234 }
235 
__px_vaddr(struct drm_i915_gem_object * p)236 void *__px_vaddr(struct drm_i915_gem_object *p)
237 {
238 	enum i915_map_type type;
239 
240 	GEM_BUG_ON(!i915_gem_object_has_pages(p));
241 	return page_unpack_bits(p->mm.mapping, &type);
242 }
243 
__px_dma(struct drm_i915_gem_object * p)244 dma_addr_t __px_dma(struct drm_i915_gem_object *p)
245 {
246 	GEM_BUG_ON(!i915_gem_object_has_pages(p));
247 	return sg_dma_address(p->mm.pages->sgl);
248 }
249 
__px_page(struct drm_i915_gem_object * p)250 struct page *__px_page(struct drm_i915_gem_object *p)
251 {
252 	GEM_BUG_ON(!i915_gem_object_has_pages(p));
253 	return sg_page(p->mm.pages->sgl);
254 }
255 
256 void
fill_page_dma(struct drm_i915_gem_object * p,const u64 val,unsigned int count)257 fill_page_dma(struct drm_i915_gem_object *p, const u64 val, unsigned int count)
258 {
259 	void *vaddr = __px_vaddr(p);
260 
261 	memset64(vaddr, val, count);
262 	clflush_cache_range(vaddr, PAGE_SIZE);
263 }
264 
poison_scratch_page(struct drm_i915_gem_object * scratch)265 static void poison_scratch_page(struct drm_i915_gem_object *scratch)
266 {
267 	void *vaddr = __px_vaddr(scratch);
268 	u8 val;
269 
270 	val = 0;
271 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
272 		val = POISON_FREE;
273 
274 	memset(vaddr, val, scratch->base.size);
275 }
276 
setup_scratch_page(struct i915_address_space * vm)277 int setup_scratch_page(struct i915_address_space *vm)
278 {
279 	unsigned long size;
280 
281 	/*
282 	 * In order to utilize 64K pages for an object with a size < 2M, we will
283 	 * need to support a 64K scratch page, given that every 16th entry for a
284 	 * page-table operating in 64K mode must point to a properly aligned 64K
285 	 * region, including any PTEs which happen to point to scratch.
286 	 *
287 	 * This is only relevant for the 48b PPGTT where we support
288 	 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
289 	 * scratch (read-only) between all vm, we create one 64k scratch page
290 	 * for all.
291 	 */
292 	size = I915_GTT_PAGE_SIZE_4K;
293 	if (i915_vm_is_4lvl(vm) &&
294 	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K))
295 		size = I915_GTT_PAGE_SIZE_64K;
296 
297 	do {
298 		struct drm_i915_gem_object *obj;
299 
300 		obj = vm->alloc_pt_dma(vm, size);
301 		if (IS_ERR(obj))
302 			goto skip;
303 
304 		if (map_pt_dma(vm, obj))
305 			goto skip_obj;
306 
307 		/* We need a single contiguous page for our scratch */
308 		if (obj->mm.page_sizes.sg < size)
309 			goto skip_obj;
310 
311 		/* And it needs to be correspondingly aligned */
312 		if (__px_dma(obj) & (size - 1))
313 			goto skip_obj;
314 
315 		/*
316 		 * Use a non-zero scratch page for debugging.
317 		 *
318 		 * We want a value that should be reasonably obvious
319 		 * to spot in the error state, while also causing a GPU hang
320 		 * if executed. We prefer using a clear page in production, so
321 		 * should it ever be accidentally used, the effect should be
322 		 * fairly benign.
323 		 */
324 		poison_scratch_page(obj);
325 
326 		vm->scratch[0] = obj;
327 		vm->scratch_order = get_order(size);
328 		return 0;
329 
330 skip_obj:
331 		i915_gem_object_put(obj);
332 skip:
333 		if (size == I915_GTT_PAGE_SIZE_4K)
334 			return -ENOMEM;
335 
336 		size = I915_GTT_PAGE_SIZE_4K;
337 	} while (1);
338 }
339 
free_scratch(struct i915_address_space * vm)340 void free_scratch(struct i915_address_space *vm)
341 {
342 	int i;
343 
344 	for (i = 0; i <= vm->top; i++)
345 		i915_gem_object_put(vm->scratch[i]);
346 }
347 
gtt_write_workarounds(struct intel_gt * gt)348 void gtt_write_workarounds(struct intel_gt *gt)
349 {
350 	struct drm_i915_private *i915 = gt->i915;
351 	struct intel_uncore *uncore = gt->uncore;
352 
353 	/*
354 	 * This function is for gtt related workarounds. This function is
355 	 * called on driver load and after a GPU reset, so you can place
356 	 * workarounds here even if they get overwritten by GPU reset.
357 	 */
358 	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
359 	if (IS_BROADWELL(i915))
360 		intel_uncore_write(uncore,
361 				   GEN8_L3_LRA_1_GPGPU,
362 				   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
363 	else if (IS_CHERRYVIEW(i915))
364 		intel_uncore_write(uncore,
365 				   GEN8_L3_LRA_1_GPGPU,
366 				   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
367 	else if (IS_GEN9_LP(i915))
368 		intel_uncore_write(uncore,
369 				   GEN8_L3_LRA_1_GPGPU,
370 				   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
371 	else if (GRAPHICS_VER(i915) >= 9 && GRAPHICS_VER(i915) <= 11)
372 		intel_uncore_write(uncore,
373 				   GEN8_L3_LRA_1_GPGPU,
374 				   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
375 
376 	/*
377 	 * To support 64K PTEs we need to first enable the use of the
378 	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
379 	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
380 	 * shouldn't be needed after GEN10.
381 	 *
382 	 * 64K pages were first introduced from BDW+, although technically they
383 	 * only *work* from gen9+. For pre-BDW we instead have the option for
384 	 * 32K pages, but we don't currently have any support for it in our
385 	 * driver.
386 	 */
387 	if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) &&
388 	    GRAPHICS_VER(i915) <= 10)
389 		intel_uncore_rmw(uncore,
390 				 GEN8_GAMW_ECO_DEV_RW_IA,
391 				 0,
392 				 GAMW_ECO_ENABLE_64K_IPS_FIELD);
393 
394 	if (IS_GRAPHICS_VER(i915, 8, 11)) {
395 		bool can_use_gtt_cache = true;
396 
397 		/*
398 		 * According to the BSpec if we use 2M/1G pages then we also
399 		 * need to disable the GTT cache. At least on BDW we can see
400 		 * visual corruption when using 2M pages, and not disabling the
401 		 * GTT cache.
402 		 */
403 		if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M))
404 			can_use_gtt_cache = false;
405 
406 		/* WaGttCachingOffByDefault */
407 		intel_uncore_write(uncore,
408 				   HSW_GTT_CACHE_EN,
409 				   can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
410 		drm_WARN_ON_ONCE(&i915->drm, can_use_gtt_cache &&
411 				 intel_uncore_read(uncore,
412 						   HSW_GTT_CACHE_EN) == 0);
413 	}
414 }
415 
tgl_setup_private_ppat(struct intel_uncore * uncore)416 static void tgl_setup_private_ppat(struct intel_uncore *uncore)
417 {
418 	/* TGL doesn't support LLC or AGE settings */
419 	intel_uncore_write(uncore, GEN12_PAT_INDEX(0), GEN8_PPAT_WB);
420 	intel_uncore_write(uncore, GEN12_PAT_INDEX(1), GEN8_PPAT_WC);
421 	intel_uncore_write(uncore, GEN12_PAT_INDEX(2), GEN8_PPAT_WT);
422 	intel_uncore_write(uncore, GEN12_PAT_INDEX(3), GEN8_PPAT_UC);
423 	intel_uncore_write(uncore, GEN12_PAT_INDEX(4), GEN8_PPAT_WB);
424 	intel_uncore_write(uncore, GEN12_PAT_INDEX(5), GEN8_PPAT_WB);
425 	intel_uncore_write(uncore, GEN12_PAT_INDEX(6), GEN8_PPAT_WB);
426 	intel_uncore_write(uncore, GEN12_PAT_INDEX(7), GEN8_PPAT_WB);
427 }
428 
icl_setup_private_ppat(struct intel_uncore * uncore)429 static void icl_setup_private_ppat(struct intel_uncore *uncore)
430 {
431 	intel_uncore_write(uncore,
432 			   GEN10_PAT_INDEX(0),
433 			   GEN8_PPAT_WB | GEN8_PPAT_LLC);
434 	intel_uncore_write(uncore,
435 			   GEN10_PAT_INDEX(1),
436 			   GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
437 	intel_uncore_write(uncore,
438 			   GEN10_PAT_INDEX(2),
439 			   GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE);
440 	intel_uncore_write(uncore,
441 			   GEN10_PAT_INDEX(3),
442 			   GEN8_PPAT_UC);
443 	intel_uncore_write(uncore,
444 			   GEN10_PAT_INDEX(4),
445 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
446 	intel_uncore_write(uncore,
447 			   GEN10_PAT_INDEX(5),
448 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
449 	intel_uncore_write(uncore,
450 			   GEN10_PAT_INDEX(6),
451 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
452 	intel_uncore_write(uncore,
453 			   GEN10_PAT_INDEX(7),
454 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
455 }
456 
457 /*
458  * The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
459  * bits. When using advanced contexts each context stores its own PAT, but
460  * writing this data shouldn't be harmful even in those cases.
461  */
bdw_setup_private_ppat(struct intel_uncore * uncore)462 static void bdw_setup_private_ppat(struct intel_uncore *uncore)
463 {
464 	struct drm_i915_private *i915 = uncore->i915;
465 	u64 pat;
466 
467 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) |	/* for normal objects, no eLLC */
468 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) |	/* for something pointing to ptes? */
469 	      GEN8_PPAT(3, GEN8_PPAT_UC) |			/* Uncached objects, mostly for scanout */
470 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
471 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
472 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
473 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
474 
475 	/* for scanout with eLLC */
476 	if (GRAPHICS_VER(i915) >= 9)
477 		pat |= GEN8_PPAT(2, GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE);
478 	else
479 		pat |= GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
480 
481 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
482 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
483 }
484 
chv_setup_private_ppat(struct intel_uncore * uncore)485 static void chv_setup_private_ppat(struct intel_uncore *uncore)
486 {
487 	u64 pat;
488 
489 	/*
490 	 * Map WB on BDW to snooped on CHV.
491 	 *
492 	 * Only the snoop bit has meaning for CHV, the rest is
493 	 * ignored.
494 	 *
495 	 * The hardware will never snoop for certain types of accesses:
496 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
497 	 * - PPGTT page tables
498 	 * - some other special cycles
499 	 *
500 	 * As with BDW, we also need to consider the following for GT accesses:
501 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
502 	 * so RTL will always use the value corresponding to
503 	 * pat_sel = 000".
504 	 * Which means we must set the snoop bit in PAT entry 0
505 	 * in order to keep the global status page working.
506 	 */
507 
508 	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
509 	      GEN8_PPAT(1, 0) |
510 	      GEN8_PPAT(2, 0) |
511 	      GEN8_PPAT(3, 0) |
512 	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
513 	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
514 	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
515 	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
516 
517 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
518 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
519 }
520 
setup_private_pat(struct intel_uncore * uncore)521 void setup_private_pat(struct intel_uncore *uncore)
522 {
523 	struct drm_i915_private *i915 = uncore->i915;
524 
525 	GEM_BUG_ON(GRAPHICS_VER(i915) < 8);
526 
527 	if (GRAPHICS_VER(i915) >= 12)
528 		tgl_setup_private_ppat(uncore);
529 	else if (GRAPHICS_VER(i915) >= 11)
530 		icl_setup_private_ppat(uncore);
531 	else if (IS_CHERRYVIEW(i915) || IS_GEN9_LP(i915))
532 		chv_setup_private_ppat(uncore);
533 	else
534 		bdw_setup_private_ppat(uncore);
535 }
536 
537 struct i915_vma *
__vm_create_scratch_for_read(struct i915_address_space * vm,unsigned long size)538 __vm_create_scratch_for_read(struct i915_address_space *vm, unsigned long size)
539 {
540 	struct drm_i915_gem_object *obj;
541 	struct i915_vma *vma;
542 
543 	obj = i915_gem_object_create_internal(vm->i915, PAGE_ALIGN(size));
544 	if (IS_ERR(obj))
545 		return ERR_CAST(obj);
546 
547 	i915_gem_object_set_cache_coherency(obj, I915_CACHING_CACHED);
548 
549 	vma = i915_vma_instance(obj, vm, NULL);
550 	if (IS_ERR(vma)) {
551 		i915_gem_object_put(obj);
552 		return vma;
553 	}
554 
555 	return vma;
556 }
557 
558 struct i915_vma *
__vm_create_scratch_for_read_pinned(struct i915_address_space * vm,unsigned long size)559 __vm_create_scratch_for_read_pinned(struct i915_address_space *vm, unsigned long size)
560 {
561 	struct i915_vma *vma;
562 	int err;
563 
564 	vma = __vm_create_scratch_for_read(vm, size);
565 	if (IS_ERR(vma))
566 		return vma;
567 
568 	err = i915_vma_pin(vma, 0, 0,
569 			   i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER);
570 	if (err) {
571 		i915_vma_put(vma);
572 		return ERR_PTR(err);
573 	}
574 
575 	return vma;
576 }
577 
578 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
579 #include "selftests/mock_gtt.c"
580 #endif
581