1 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #include <linux/acpi.h>
31 #include <linux/device.h>
32 #include <linux/oom.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/pm.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/pnp.h>
38 #include <linux/slab.h>
39 #include <linux/vgaarb.h>
40 #include <linux/vga_switcheroo.h>
41 #include <linux/vt.h>
42 #include <acpi/video.h>
43
44 #include <drm/drmP.h>
45 #include <drm/drm_crtc_helper.h>
46 #include <drm/drm_atomic_helper.h>
47 #include <drm/i915_drm.h>
48
49 #include "i915_drv.h"
50 #include "i915_trace.h"
51 #include "i915_pmu.h"
52 #include "i915_query.h"
53 #include "i915_vgpu.h"
54 #include "intel_drv.h"
55 #include "intel_uc.h"
56
57 static struct drm_driver driver;
58
59 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG)
60 static unsigned int i915_load_fail_count;
61
__i915_inject_load_failure(const char * func,int line)62 bool __i915_inject_load_failure(const char *func, int line)
63 {
64 if (i915_load_fail_count >= i915_modparams.inject_load_failure)
65 return false;
66
67 if (++i915_load_fail_count == i915_modparams.inject_load_failure) {
68 DRM_INFO("Injecting failure at checkpoint %u [%s:%d]\n",
69 i915_modparams.inject_load_failure, func, line);
70 i915_modparams.inject_load_failure = 0;
71 return true;
72 }
73
74 return false;
75 }
76
i915_error_injected(void)77 bool i915_error_injected(void)
78 {
79 return i915_load_fail_count && !i915_modparams.inject_load_failure;
80 }
81
82 #endif
83
84 #define FDO_BUG_URL "https://bugs.freedesktop.org/enter_bug.cgi?product=DRI"
85 #define FDO_BUG_MSG "Please file a bug at " FDO_BUG_URL " against DRM/Intel " \
86 "providing the dmesg log by booting with drm.debug=0xf"
87
88 void
__i915_printk(struct drm_i915_private * dev_priv,const char * level,const char * fmt,...)89 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
90 const char *fmt, ...)
91 {
92 static bool shown_bug_once;
93 struct device *kdev = dev_priv->drm.dev;
94 bool is_error = level[1] <= KERN_ERR[1];
95 bool is_debug = level[1] == KERN_DEBUG[1];
96 struct va_format vaf;
97 va_list args;
98
99 if (is_debug && !(drm_debug & DRM_UT_DRIVER))
100 return;
101
102 va_start(args, fmt);
103
104 vaf.fmt = fmt;
105 vaf.va = &args;
106
107 if (is_error)
108 dev_printk(level, kdev, "%pV", &vaf);
109 else
110 dev_printk(level, kdev, "[" DRM_NAME ":%ps] %pV",
111 __builtin_return_address(0), &vaf);
112
113 va_end(args);
114
115 if (is_error && !shown_bug_once) {
116 /*
117 * Ask the user to file a bug report for the error, except
118 * if they may have caused the bug by fiddling with unsafe
119 * module parameters.
120 */
121 if (!test_taint(TAINT_USER))
122 dev_notice(kdev, "%s", FDO_BUG_MSG);
123 shown_bug_once = true;
124 }
125 }
126
127 /* Map PCH device id to PCH type, or PCH_NONE if unknown. */
128 static enum intel_pch
intel_pch_type(const struct drm_i915_private * dev_priv,unsigned short id)129 intel_pch_type(const struct drm_i915_private *dev_priv, unsigned short id)
130 {
131 switch (id) {
132 case INTEL_PCH_IBX_DEVICE_ID_TYPE:
133 DRM_DEBUG_KMS("Found Ibex Peak PCH\n");
134 WARN_ON(!IS_GEN5(dev_priv));
135 return PCH_IBX;
136 case INTEL_PCH_CPT_DEVICE_ID_TYPE:
137 DRM_DEBUG_KMS("Found CougarPoint PCH\n");
138 WARN_ON(!IS_GEN6(dev_priv) && !IS_IVYBRIDGE(dev_priv));
139 return PCH_CPT;
140 case INTEL_PCH_PPT_DEVICE_ID_TYPE:
141 DRM_DEBUG_KMS("Found PantherPoint PCH\n");
142 WARN_ON(!IS_GEN6(dev_priv) && !IS_IVYBRIDGE(dev_priv));
143 /* PantherPoint is CPT compatible */
144 return PCH_CPT;
145 case INTEL_PCH_LPT_DEVICE_ID_TYPE:
146 DRM_DEBUG_KMS("Found LynxPoint PCH\n");
147 WARN_ON(!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv));
148 WARN_ON(IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv));
149 return PCH_LPT;
150 case INTEL_PCH_LPT_LP_DEVICE_ID_TYPE:
151 DRM_DEBUG_KMS("Found LynxPoint LP PCH\n");
152 WARN_ON(!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv));
153 WARN_ON(!IS_HSW_ULT(dev_priv) && !IS_BDW_ULT(dev_priv));
154 return PCH_LPT;
155 case INTEL_PCH_WPT_DEVICE_ID_TYPE:
156 DRM_DEBUG_KMS("Found WildcatPoint PCH\n");
157 WARN_ON(!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv));
158 WARN_ON(IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv));
159 /* WildcatPoint is LPT compatible */
160 return PCH_LPT;
161 case INTEL_PCH_WPT_LP_DEVICE_ID_TYPE:
162 DRM_DEBUG_KMS("Found WildcatPoint LP PCH\n");
163 WARN_ON(!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv));
164 WARN_ON(!IS_HSW_ULT(dev_priv) && !IS_BDW_ULT(dev_priv));
165 /* WildcatPoint is LPT compatible */
166 return PCH_LPT;
167 case INTEL_PCH_SPT_DEVICE_ID_TYPE:
168 DRM_DEBUG_KMS("Found SunrisePoint PCH\n");
169 WARN_ON(!IS_SKYLAKE(dev_priv) && !IS_KABYLAKE(dev_priv));
170 return PCH_SPT;
171 case INTEL_PCH_SPT_LP_DEVICE_ID_TYPE:
172 DRM_DEBUG_KMS("Found SunrisePoint LP PCH\n");
173 WARN_ON(!IS_SKYLAKE(dev_priv) && !IS_KABYLAKE(dev_priv));
174 return PCH_SPT;
175 case INTEL_PCH_KBP_DEVICE_ID_TYPE:
176 DRM_DEBUG_KMS("Found Kaby Lake PCH (KBP)\n");
177 WARN_ON(!IS_SKYLAKE(dev_priv) && !IS_KABYLAKE(dev_priv) &&
178 !IS_COFFEELAKE(dev_priv));
179 return PCH_KBP;
180 case INTEL_PCH_CNP_DEVICE_ID_TYPE:
181 DRM_DEBUG_KMS("Found Cannon Lake PCH (CNP)\n");
182 WARN_ON(!IS_CANNONLAKE(dev_priv) && !IS_COFFEELAKE(dev_priv));
183 return PCH_CNP;
184 case INTEL_PCH_CNP_LP_DEVICE_ID_TYPE:
185 DRM_DEBUG_KMS("Found Cannon Lake LP PCH (CNP-LP)\n");
186 WARN_ON(!IS_CANNONLAKE(dev_priv) && !IS_COFFEELAKE(dev_priv));
187 return PCH_CNP;
188 case INTEL_PCH_ICP_DEVICE_ID_TYPE:
189 DRM_DEBUG_KMS("Found Ice Lake PCH\n");
190 WARN_ON(!IS_ICELAKE(dev_priv));
191 return PCH_ICP;
192 default:
193 return PCH_NONE;
194 }
195 }
196
intel_is_virt_pch(unsigned short id,unsigned short svendor,unsigned short sdevice)197 static bool intel_is_virt_pch(unsigned short id,
198 unsigned short svendor, unsigned short sdevice)
199 {
200 return (id == INTEL_PCH_P2X_DEVICE_ID_TYPE ||
201 id == INTEL_PCH_P3X_DEVICE_ID_TYPE ||
202 (id == INTEL_PCH_QEMU_DEVICE_ID_TYPE &&
203 svendor == PCI_SUBVENDOR_ID_REDHAT_QUMRANET &&
204 sdevice == PCI_SUBDEVICE_ID_QEMU));
205 }
206
207 static unsigned short
intel_virt_detect_pch(const struct drm_i915_private * dev_priv)208 intel_virt_detect_pch(const struct drm_i915_private *dev_priv)
209 {
210 unsigned short id = 0;
211
212 /*
213 * In a virtualized passthrough environment we can be in a
214 * setup where the ISA bridge is not able to be passed through.
215 * In this case, a south bridge can be emulated and we have to
216 * make an educated guess as to which PCH is really there.
217 */
218
219 if (IS_GEN5(dev_priv))
220 id = INTEL_PCH_IBX_DEVICE_ID_TYPE;
221 else if (IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
222 id = INTEL_PCH_CPT_DEVICE_ID_TYPE;
223 else if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
224 id = INTEL_PCH_LPT_LP_DEVICE_ID_TYPE;
225 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
226 id = INTEL_PCH_LPT_DEVICE_ID_TYPE;
227 else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
228 id = INTEL_PCH_SPT_DEVICE_ID_TYPE;
229 else if (IS_COFFEELAKE(dev_priv) || IS_CANNONLAKE(dev_priv))
230 id = INTEL_PCH_CNP_DEVICE_ID_TYPE;
231 else if (IS_ICELAKE(dev_priv))
232 id = INTEL_PCH_ICP_DEVICE_ID_TYPE;
233
234 if (id)
235 DRM_DEBUG_KMS("Assuming PCH ID %04x\n", id);
236 else
237 DRM_DEBUG_KMS("Assuming no PCH\n");
238
239 return id;
240 }
241
intel_detect_pch(struct drm_i915_private * dev_priv)242 static void intel_detect_pch(struct drm_i915_private *dev_priv)
243 {
244 struct pci_dev *pch = NULL;
245
246 /*
247 * The reason to probe ISA bridge instead of Dev31:Fun0 is to
248 * make graphics device passthrough work easy for VMM, that only
249 * need to expose ISA bridge to let driver know the real hardware
250 * underneath. This is a requirement from virtualization team.
251 *
252 * In some virtualized environments (e.g. XEN), there is irrelevant
253 * ISA bridge in the system. To work reliably, we should scan trhough
254 * all the ISA bridge devices and check for the first match, instead
255 * of only checking the first one.
256 */
257 while ((pch = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, pch))) {
258 unsigned short id;
259 enum intel_pch pch_type;
260
261 if (pch->vendor != PCI_VENDOR_ID_INTEL)
262 continue;
263
264 id = pch->device & INTEL_PCH_DEVICE_ID_MASK;
265
266 pch_type = intel_pch_type(dev_priv, id);
267 if (pch_type != PCH_NONE) {
268 dev_priv->pch_type = pch_type;
269 dev_priv->pch_id = id;
270 break;
271 } else if (intel_is_virt_pch(id, pch->subsystem_vendor,
272 pch->subsystem_device)) {
273 id = intel_virt_detect_pch(dev_priv);
274 pch_type = intel_pch_type(dev_priv, id);
275
276 /* Sanity check virtual PCH id */
277 if (WARN_ON(id && pch_type == PCH_NONE))
278 id = 0;
279
280 dev_priv->pch_type = pch_type;
281 dev_priv->pch_id = id;
282 break;
283 }
284 }
285
286 /*
287 * Use PCH_NOP (PCH but no South Display) for PCH platforms without
288 * display.
289 */
290 if (pch && INTEL_INFO(dev_priv)->num_pipes == 0) {
291 DRM_DEBUG_KMS("Display disabled, reverting to NOP PCH\n");
292 dev_priv->pch_type = PCH_NOP;
293 dev_priv->pch_id = 0;
294 }
295
296 if (!pch)
297 DRM_DEBUG_KMS("No PCH found.\n");
298
299 pci_dev_put(pch);
300 }
301
i915_getparam_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)302 static int i915_getparam_ioctl(struct drm_device *dev, void *data,
303 struct drm_file *file_priv)
304 {
305 struct drm_i915_private *dev_priv = to_i915(dev);
306 struct pci_dev *pdev = dev_priv->drm.pdev;
307 drm_i915_getparam_t *param = data;
308 int value;
309
310 switch (param->param) {
311 case I915_PARAM_IRQ_ACTIVE:
312 case I915_PARAM_ALLOW_BATCHBUFFER:
313 case I915_PARAM_LAST_DISPATCH:
314 case I915_PARAM_HAS_EXEC_CONSTANTS:
315 /* Reject all old ums/dri params. */
316 return -ENODEV;
317 case I915_PARAM_CHIPSET_ID:
318 value = pdev->device;
319 break;
320 case I915_PARAM_REVISION:
321 value = pdev->revision;
322 break;
323 case I915_PARAM_NUM_FENCES_AVAIL:
324 value = dev_priv->num_fence_regs;
325 break;
326 case I915_PARAM_HAS_OVERLAY:
327 value = dev_priv->overlay ? 1 : 0;
328 break;
329 case I915_PARAM_HAS_BSD:
330 value = !!dev_priv->engine[VCS];
331 break;
332 case I915_PARAM_HAS_BLT:
333 value = !!dev_priv->engine[BCS];
334 break;
335 case I915_PARAM_HAS_VEBOX:
336 value = !!dev_priv->engine[VECS];
337 break;
338 case I915_PARAM_HAS_BSD2:
339 value = !!dev_priv->engine[VCS2];
340 break;
341 case I915_PARAM_HAS_LLC:
342 value = HAS_LLC(dev_priv);
343 break;
344 case I915_PARAM_HAS_WT:
345 value = HAS_WT(dev_priv);
346 break;
347 case I915_PARAM_HAS_ALIASING_PPGTT:
348 value = USES_PPGTT(dev_priv);
349 break;
350 case I915_PARAM_HAS_SEMAPHORES:
351 value = HAS_LEGACY_SEMAPHORES(dev_priv);
352 break;
353 case I915_PARAM_HAS_SECURE_BATCHES:
354 value = capable(CAP_SYS_ADMIN);
355 break;
356 case I915_PARAM_CMD_PARSER_VERSION:
357 value = i915_cmd_parser_get_version(dev_priv);
358 break;
359 case I915_PARAM_SUBSLICE_TOTAL:
360 value = sseu_subslice_total(&INTEL_INFO(dev_priv)->sseu);
361 if (!value)
362 return -ENODEV;
363 break;
364 case I915_PARAM_EU_TOTAL:
365 value = INTEL_INFO(dev_priv)->sseu.eu_total;
366 if (!value)
367 return -ENODEV;
368 break;
369 case I915_PARAM_HAS_GPU_RESET:
370 value = i915_modparams.enable_hangcheck &&
371 intel_has_gpu_reset(dev_priv);
372 if (value && intel_has_reset_engine(dev_priv))
373 value = 2;
374 break;
375 case I915_PARAM_HAS_RESOURCE_STREAMER:
376 value = HAS_RESOURCE_STREAMER(dev_priv);
377 break;
378 case I915_PARAM_HAS_POOLED_EU:
379 value = HAS_POOLED_EU(dev_priv);
380 break;
381 case I915_PARAM_MIN_EU_IN_POOL:
382 value = INTEL_INFO(dev_priv)->sseu.min_eu_in_pool;
383 break;
384 case I915_PARAM_HUC_STATUS:
385 value = intel_huc_check_status(&dev_priv->huc);
386 if (value < 0)
387 return value;
388 break;
389 case I915_PARAM_MMAP_GTT_VERSION:
390 /* Though we've started our numbering from 1, and so class all
391 * earlier versions as 0, in effect their value is undefined as
392 * the ioctl will report EINVAL for the unknown param!
393 */
394 value = i915_gem_mmap_gtt_version();
395 break;
396 case I915_PARAM_HAS_SCHEDULER:
397 value = dev_priv->caps.scheduler;
398 break;
399
400 case I915_PARAM_MMAP_VERSION:
401 /* Remember to bump this if the version changes! */
402 case I915_PARAM_HAS_GEM:
403 case I915_PARAM_HAS_PAGEFLIPPING:
404 case I915_PARAM_HAS_EXECBUF2: /* depends on GEM */
405 case I915_PARAM_HAS_RELAXED_FENCING:
406 case I915_PARAM_HAS_COHERENT_RINGS:
407 case I915_PARAM_HAS_RELAXED_DELTA:
408 case I915_PARAM_HAS_GEN7_SOL_RESET:
409 case I915_PARAM_HAS_WAIT_TIMEOUT:
410 case I915_PARAM_HAS_PRIME_VMAP_FLUSH:
411 case I915_PARAM_HAS_PINNED_BATCHES:
412 case I915_PARAM_HAS_EXEC_NO_RELOC:
413 case I915_PARAM_HAS_EXEC_HANDLE_LUT:
414 case I915_PARAM_HAS_COHERENT_PHYS_GTT:
415 case I915_PARAM_HAS_EXEC_SOFTPIN:
416 case I915_PARAM_HAS_EXEC_ASYNC:
417 case I915_PARAM_HAS_EXEC_FENCE:
418 case I915_PARAM_HAS_EXEC_CAPTURE:
419 case I915_PARAM_HAS_EXEC_BATCH_FIRST:
420 case I915_PARAM_HAS_EXEC_FENCE_ARRAY:
421 /* For the time being all of these are always true;
422 * if some supported hardware does not have one of these
423 * features this value needs to be provided from
424 * INTEL_INFO(), a feature macro, or similar.
425 */
426 value = 1;
427 break;
428 case I915_PARAM_HAS_CONTEXT_ISOLATION:
429 value = intel_engines_has_context_isolation(dev_priv);
430 break;
431 case I915_PARAM_SLICE_MASK:
432 value = INTEL_INFO(dev_priv)->sseu.slice_mask;
433 if (!value)
434 return -ENODEV;
435 break;
436 case I915_PARAM_SUBSLICE_MASK:
437 value = INTEL_INFO(dev_priv)->sseu.subslice_mask[0];
438 if (!value)
439 return -ENODEV;
440 break;
441 case I915_PARAM_CS_TIMESTAMP_FREQUENCY:
442 value = 1000 * INTEL_INFO(dev_priv)->cs_timestamp_frequency_khz;
443 break;
444 default:
445 DRM_DEBUG("Unknown parameter %d\n", param->param);
446 return -EINVAL;
447 }
448
449 if (put_user(value, param->value))
450 return -EFAULT;
451
452 return 0;
453 }
454
i915_get_bridge_dev(struct drm_i915_private * dev_priv)455 static int i915_get_bridge_dev(struct drm_i915_private *dev_priv)
456 {
457 int domain = pci_domain_nr(dev_priv->drm.pdev->bus);
458
459 dev_priv->bridge_dev =
460 pci_get_domain_bus_and_slot(domain, 0, PCI_DEVFN(0, 0));
461 if (!dev_priv->bridge_dev) {
462 DRM_ERROR("bridge device not found\n");
463 return -1;
464 }
465 return 0;
466 }
467
468 /* Allocate space for the MCH regs if needed, return nonzero on error */
469 static int
intel_alloc_mchbar_resource(struct drm_i915_private * dev_priv)470 intel_alloc_mchbar_resource(struct drm_i915_private *dev_priv)
471 {
472 int reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
473 u32 temp_lo, temp_hi = 0;
474 u64 mchbar_addr;
475 int ret;
476
477 if (INTEL_GEN(dev_priv) >= 4)
478 pci_read_config_dword(dev_priv->bridge_dev, reg + 4, &temp_hi);
479 pci_read_config_dword(dev_priv->bridge_dev, reg, &temp_lo);
480 mchbar_addr = ((u64)temp_hi << 32) | temp_lo;
481
482 /* If ACPI doesn't have it, assume we need to allocate it ourselves */
483 #ifdef CONFIG_PNP
484 if (mchbar_addr &&
485 pnp_range_reserved(mchbar_addr, mchbar_addr + MCHBAR_SIZE))
486 return 0;
487 #endif
488
489 /* Get some space for it */
490 dev_priv->mch_res.name = "i915 MCHBAR";
491 dev_priv->mch_res.flags = IORESOURCE_MEM;
492 ret = pci_bus_alloc_resource(dev_priv->bridge_dev->bus,
493 &dev_priv->mch_res,
494 MCHBAR_SIZE, MCHBAR_SIZE,
495 PCIBIOS_MIN_MEM,
496 0, pcibios_align_resource,
497 dev_priv->bridge_dev);
498 if (ret) {
499 DRM_DEBUG_DRIVER("failed bus alloc: %d\n", ret);
500 dev_priv->mch_res.start = 0;
501 return ret;
502 }
503
504 if (INTEL_GEN(dev_priv) >= 4)
505 pci_write_config_dword(dev_priv->bridge_dev, reg + 4,
506 upper_32_bits(dev_priv->mch_res.start));
507
508 pci_write_config_dword(dev_priv->bridge_dev, reg,
509 lower_32_bits(dev_priv->mch_res.start));
510 return 0;
511 }
512
513 /* Setup MCHBAR if possible, return true if we should disable it again */
514 static void
intel_setup_mchbar(struct drm_i915_private * dev_priv)515 intel_setup_mchbar(struct drm_i915_private *dev_priv)
516 {
517 int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
518 u32 temp;
519 bool enabled;
520
521 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
522 return;
523
524 dev_priv->mchbar_need_disable = false;
525
526 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
527 pci_read_config_dword(dev_priv->bridge_dev, DEVEN, &temp);
528 enabled = !!(temp & DEVEN_MCHBAR_EN);
529 } else {
530 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
531 enabled = temp & 1;
532 }
533
534 /* If it's already enabled, don't have to do anything */
535 if (enabled)
536 return;
537
538 if (intel_alloc_mchbar_resource(dev_priv))
539 return;
540
541 dev_priv->mchbar_need_disable = true;
542
543 /* Space is allocated or reserved, so enable it. */
544 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
545 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
546 temp | DEVEN_MCHBAR_EN);
547 } else {
548 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
549 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg, temp | 1);
550 }
551 }
552
553 static void
intel_teardown_mchbar(struct drm_i915_private * dev_priv)554 intel_teardown_mchbar(struct drm_i915_private *dev_priv)
555 {
556 int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
557
558 if (dev_priv->mchbar_need_disable) {
559 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
560 u32 deven_val;
561
562 pci_read_config_dword(dev_priv->bridge_dev, DEVEN,
563 &deven_val);
564 deven_val &= ~DEVEN_MCHBAR_EN;
565 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
566 deven_val);
567 } else {
568 u32 mchbar_val;
569
570 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg,
571 &mchbar_val);
572 mchbar_val &= ~1;
573 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg,
574 mchbar_val);
575 }
576 }
577
578 if (dev_priv->mch_res.start)
579 release_resource(&dev_priv->mch_res);
580 }
581
582 /* true = enable decode, false = disable decoder */
i915_vga_set_decode(void * cookie,bool state)583 static unsigned int i915_vga_set_decode(void *cookie, bool state)
584 {
585 struct drm_i915_private *dev_priv = cookie;
586
587 intel_modeset_vga_set_state(dev_priv, state);
588 if (state)
589 return VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM |
590 VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
591 else
592 return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
593 }
594
595 static int i915_resume_switcheroo(struct drm_device *dev);
596 static int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state);
597
i915_switcheroo_set_state(struct pci_dev * pdev,enum vga_switcheroo_state state)598 static void i915_switcheroo_set_state(struct pci_dev *pdev, enum vga_switcheroo_state state)
599 {
600 struct drm_device *dev = pci_get_drvdata(pdev);
601 pm_message_t pmm = { .event = PM_EVENT_SUSPEND };
602
603 if (state == VGA_SWITCHEROO_ON) {
604 pr_info("switched on\n");
605 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
606 /* i915 resume handler doesn't set to D0 */
607 pci_set_power_state(pdev, PCI_D0);
608 i915_resume_switcheroo(dev);
609 dev->switch_power_state = DRM_SWITCH_POWER_ON;
610 } else {
611 pr_info("switched off\n");
612 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
613 i915_suspend_switcheroo(dev, pmm);
614 dev->switch_power_state = DRM_SWITCH_POWER_OFF;
615 }
616 }
617
i915_switcheroo_can_switch(struct pci_dev * pdev)618 static bool i915_switcheroo_can_switch(struct pci_dev *pdev)
619 {
620 struct drm_device *dev = pci_get_drvdata(pdev);
621
622 /*
623 * FIXME: open_count is protected by drm_global_mutex but that would lead to
624 * locking inversion with the driver load path. And the access here is
625 * completely racy anyway. So don't bother with locking for now.
626 */
627 return dev->open_count == 0;
628 }
629
630 static const struct vga_switcheroo_client_ops i915_switcheroo_ops = {
631 .set_gpu_state = i915_switcheroo_set_state,
632 .reprobe = NULL,
633 .can_switch = i915_switcheroo_can_switch,
634 };
635
i915_load_modeset_init(struct drm_device * dev)636 static int i915_load_modeset_init(struct drm_device *dev)
637 {
638 struct drm_i915_private *dev_priv = to_i915(dev);
639 struct pci_dev *pdev = dev_priv->drm.pdev;
640 int ret;
641
642 if (i915_inject_load_failure())
643 return -ENODEV;
644
645 intel_bios_init(dev_priv);
646
647 /* If we have > 1 VGA cards, then we need to arbitrate access
648 * to the common VGA resources.
649 *
650 * If we are a secondary display controller (!PCI_DISPLAY_CLASS_VGA),
651 * then we do not take part in VGA arbitration and the
652 * vga_client_register() fails with -ENODEV.
653 */
654 ret = vga_client_register(pdev, dev_priv, NULL, i915_vga_set_decode);
655 if (ret && ret != -ENODEV)
656 goto out;
657
658 intel_register_dsm_handler();
659
660 ret = vga_switcheroo_register_client(pdev, &i915_switcheroo_ops, false);
661 if (ret)
662 goto cleanup_vga_client;
663
664 /* must happen before intel_power_domains_init_hw() on VLV/CHV */
665 intel_update_rawclk(dev_priv);
666
667 intel_power_domains_init_hw(dev_priv, false);
668
669 intel_csr_ucode_init(dev_priv);
670
671 ret = intel_irq_install(dev_priv);
672 if (ret)
673 goto cleanup_csr;
674
675 intel_setup_gmbus(dev_priv);
676
677 /* Important: The output setup functions called by modeset_init need
678 * working irqs for e.g. gmbus and dp aux transfers. */
679 ret = intel_modeset_init(dev);
680 if (ret)
681 goto cleanup_irq;
682
683 ret = i915_gem_init(dev_priv);
684 if (ret)
685 goto cleanup_modeset;
686
687 intel_setup_overlay(dev_priv);
688
689 if (INTEL_INFO(dev_priv)->num_pipes == 0)
690 return 0;
691
692 ret = intel_fbdev_init(dev);
693 if (ret)
694 goto cleanup_gem;
695
696 /* Only enable hotplug handling once the fbdev is fully set up. */
697 intel_hpd_init(dev_priv);
698
699 return 0;
700
701 cleanup_gem:
702 if (i915_gem_suspend(dev_priv))
703 DRM_ERROR("failed to idle hardware; continuing to unload!\n");
704 i915_gem_fini(dev_priv);
705 cleanup_modeset:
706 intel_modeset_cleanup(dev);
707 cleanup_irq:
708 drm_irq_uninstall(dev);
709 intel_teardown_gmbus(dev_priv);
710 cleanup_csr:
711 intel_csr_ucode_fini(dev_priv);
712 intel_power_domains_fini(dev_priv);
713 vga_switcheroo_unregister_client(pdev);
714 cleanup_vga_client:
715 vga_client_register(pdev, NULL, NULL, NULL);
716 out:
717 return ret;
718 }
719
i915_kick_out_firmware_fb(struct drm_i915_private * dev_priv)720 static int i915_kick_out_firmware_fb(struct drm_i915_private *dev_priv)
721 {
722 struct apertures_struct *ap;
723 struct pci_dev *pdev = dev_priv->drm.pdev;
724 struct i915_ggtt *ggtt = &dev_priv->ggtt;
725 bool primary;
726 int ret;
727
728 ap = alloc_apertures(1);
729 if (!ap)
730 return -ENOMEM;
731
732 ap->ranges[0].base = ggtt->gmadr.start;
733 ap->ranges[0].size = ggtt->mappable_end;
734
735 primary =
736 pdev->resource[PCI_ROM_RESOURCE].flags & IORESOURCE_ROM_SHADOW;
737
738 ret = drm_fb_helper_remove_conflicting_framebuffers(ap, "inteldrmfb", primary);
739
740 kfree(ap);
741
742 return ret;
743 }
744
745 #if !defined(CONFIG_VGA_CONSOLE)
i915_kick_out_vgacon(struct drm_i915_private * dev_priv)746 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
747 {
748 return 0;
749 }
750 #elif !defined(CONFIG_DUMMY_CONSOLE)
i915_kick_out_vgacon(struct drm_i915_private * dev_priv)751 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
752 {
753 return -ENODEV;
754 }
755 #else
i915_kick_out_vgacon(struct drm_i915_private * dev_priv)756 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
757 {
758 int ret = 0;
759
760 DRM_INFO("Replacing VGA console driver\n");
761
762 console_lock();
763 if (con_is_bound(&vga_con))
764 ret = do_take_over_console(&dummy_con, 0, MAX_NR_CONSOLES - 1, 1);
765 if (ret == 0) {
766 ret = do_unregister_con_driver(&vga_con);
767
768 /* Ignore "already unregistered". */
769 if (ret == -ENODEV)
770 ret = 0;
771 }
772 console_unlock();
773
774 return ret;
775 }
776 #endif
777
intel_init_dpio(struct drm_i915_private * dev_priv)778 static void intel_init_dpio(struct drm_i915_private *dev_priv)
779 {
780 /*
781 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
782 * CHV x1 PHY (DP/HDMI D)
783 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
784 */
785 if (IS_CHERRYVIEW(dev_priv)) {
786 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
787 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
788 } else if (IS_VALLEYVIEW(dev_priv)) {
789 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
790 }
791 }
792
i915_workqueues_init(struct drm_i915_private * dev_priv)793 static int i915_workqueues_init(struct drm_i915_private *dev_priv)
794 {
795 /*
796 * The i915 workqueue is primarily used for batched retirement of
797 * requests (and thus managing bo) once the task has been completed
798 * by the GPU. i915_retire_requests() is called directly when we
799 * need high-priority retirement, such as waiting for an explicit
800 * bo.
801 *
802 * It is also used for periodic low-priority events, such as
803 * idle-timers and recording error state.
804 *
805 * All tasks on the workqueue are expected to acquire the dev mutex
806 * so there is no point in running more than one instance of the
807 * workqueue at any time. Use an ordered one.
808 */
809 dev_priv->wq = alloc_ordered_workqueue("i915", 0);
810 if (dev_priv->wq == NULL)
811 goto out_err;
812
813 dev_priv->hotplug.dp_wq = alloc_ordered_workqueue("i915-dp", 0);
814 if (dev_priv->hotplug.dp_wq == NULL)
815 goto out_free_wq;
816
817 return 0;
818
819 out_free_wq:
820 destroy_workqueue(dev_priv->wq);
821 out_err:
822 DRM_ERROR("Failed to allocate workqueues.\n");
823
824 return -ENOMEM;
825 }
826
i915_engines_cleanup(struct drm_i915_private * i915)827 static void i915_engines_cleanup(struct drm_i915_private *i915)
828 {
829 struct intel_engine_cs *engine;
830 enum intel_engine_id id;
831
832 for_each_engine(engine, i915, id)
833 kfree(engine);
834 }
835
i915_workqueues_cleanup(struct drm_i915_private * dev_priv)836 static void i915_workqueues_cleanup(struct drm_i915_private *dev_priv)
837 {
838 destroy_workqueue(dev_priv->hotplug.dp_wq);
839 destroy_workqueue(dev_priv->wq);
840 }
841
842 /*
843 * We don't keep the workarounds for pre-production hardware, so we expect our
844 * driver to fail on these machines in one way or another. A little warning on
845 * dmesg may help both the user and the bug triagers.
846 *
847 * Our policy for removing pre-production workarounds is to keep the
848 * current gen workarounds as a guide to the bring-up of the next gen
849 * (workarounds have a habit of persisting!). Anything older than that
850 * should be removed along with the complications they introduce.
851 */
intel_detect_preproduction_hw(struct drm_i915_private * dev_priv)852 static void intel_detect_preproduction_hw(struct drm_i915_private *dev_priv)
853 {
854 bool pre = false;
855
856 pre |= IS_HSW_EARLY_SDV(dev_priv);
857 pre |= IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0);
858 pre |= IS_BXT_REVID(dev_priv, 0, BXT_REVID_B_LAST);
859
860 if (pre) {
861 DRM_ERROR("This is a pre-production stepping. "
862 "It may not be fully functional.\n");
863 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_STILL_OK);
864 }
865 }
866
867 /**
868 * i915_driver_init_early - setup state not requiring device access
869 * @dev_priv: device private
870 * @ent: the matching pci_device_id
871 *
872 * Initialize everything that is a "SW-only" state, that is state not
873 * requiring accessing the device or exposing the driver via kernel internal
874 * or userspace interfaces. Example steps belonging here: lock initialization,
875 * system memory allocation, setting up device specific attributes and
876 * function hooks not requiring accessing the device.
877 */
i915_driver_init_early(struct drm_i915_private * dev_priv,const struct pci_device_id * ent)878 static int i915_driver_init_early(struct drm_i915_private *dev_priv,
879 const struct pci_device_id *ent)
880 {
881 const struct intel_device_info *match_info =
882 (struct intel_device_info *)ent->driver_data;
883 struct intel_device_info *device_info;
884 int ret = 0;
885
886 if (i915_inject_load_failure())
887 return -ENODEV;
888
889 /* Setup the write-once "constant" device info */
890 device_info = mkwrite_device_info(dev_priv);
891 memcpy(device_info, match_info, sizeof(*device_info));
892 device_info->device_id = dev_priv->drm.pdev->device;
893
894 BUILD_BUG_ON(INTEL_MAX_PLATFORMS >
895 sizeof(device_info->platform_mask) * BITS_PER_BYTE);
896 BUG_ON(device_info->gen > sizeof(device_info->gen_mask) * BITS_PER_BYTE);
897 spin_lock_init(&dev_priv->irq_lock);
898 spin_lock_init(&dev_priv->gpu_error.lock);
899 mutex_init(&dev_priv->backlight_lock);
900 spin_lock_init(&dev_priv->uncore.lock);
901
902 mutex_init(&dev_priv->sb_lock);
903 mutex_init(&dev_priv->av_mutex);
904 mutex_init(&dev_priv->wm.wm_mutex);
905 mutex_init(&dev_priv->pps_mutex);
906
907 i915_memcpy_init_early(dev_priv);
908
909 ret = i915_workqueues_init(dev_priv);
910 if (ret < 0)
911 goto err_engines;
912
913 ret = i915_gem_init_early(dev_priv);
914 if (ret < 0)
915 goto err_workqueues;
916
917 /* This must be called before any calls to HAS_PCH_* */
918 intel_detect_pch(dev_priv);
919
920 intel_wopcm_init_early(&dev_priv->wopcm);
921 intel_uc_init_early(dev_priv);
922 intel_pm_setup(dev_priv);
923 intel_init_dpio(dev_priv);
924 intel_power_domains_init(dev_priv);
925 intel_irq_init(dev_priv);
926 intel_hangcheck_init(dev_priv);
927 intel_init_display_hooks(dev_priv);
928 intel_init_clock_gating_hooks(dev_priv);
929 intel_init_audio_hooks(dev_priv);
930 intel_display_crc_init(dev_priv);
931
932 intel_detect_preproduction_hw(dev_priv);
933
934 return 0;
935
936 err_workqueues:
937 i915_workqueues_cleanup(dev_priv);
938 err_engines:
939 i915_engines_cleanup(dev_priv);
940 return ret;
941 }
942
943 /**
944 * i915_driver_cleanup_early - cleanup the setup done in i915_driver_init_early()
945 * @dev_priv: device private
946 */
i915_driver_cleanup_early(struct drm_i915_private * dev_priv)947 static void i915_driver_cleanup_early(struct drm_i915_private *dev_priv)
948 {
949 intel_irq_fini(dev_priv);
950 intel_uc_cleanup_early(dev_priv);
951 i915_gem_cleanup_early(dev_priv);
952 i915_workqueues_cleanup(dev_priv);
953 i915_engines_cleanup(dev_priv);
954 }
955
i915_mmio_setup(struct drm_i915_private * dev_priv)956 static int i915_mmio_setup(struct drm_i915_private *dev_priv)
957 {
958 struct pci_dev *pdev = dev_priv->drm.pdev;
959 int mmio_bar;
960 int mmio_size;
961
962 mmio_bar = IS_GEN2(dev_priv) ? 1 : 0;
963 /*
964 * Before gen4, the registers and the GTT are behind different BARs.
965 * However, from gen4 onwards, the registers and the GTT are shared
966 * in the same BAR, so we want to restrict this ioremap from
967 * clobbering the GTT which we want ioremap_wc instead. Fortunately,
968 * the register BAR remains the same size for all the earlier
969 * generations up to Ironlake.
970 */
971 if (INTEL_GEN(dev_priv) < 5)
972 mmio_size = 512 * 1024;
973 else
974 mmio_size = 2 * 1024 * 1024;
975 dev_priv->regs = pci_iomap(pdev, mmio_bar, mmio_size);
976 if (dev_priv->regs == NULL) {
977 DRM_ERROR("failed to map registers\n");
978
979 return -EIO;
980 }
981
982 /* Try to make sure MCHBAR is enabled before poking at it */
983 intel_setup_mchbar(dev_priv);
984
985 return 0;
986 }
987
i915_mmio_cleanup(struct drm_i915_private * dev_priv)988 static void i915_mmio_cleanup(struct drm_i915_private *dev_priv)
989 {
990 struct pci_dev *pdev = dev_priv->drm.pdev;
991
992 intel_teardown_mchbar(dev_priv);
993 pci_iounmap(pdev, dev_priv->regs);
994 }
995
996 /**
997 * i915_driver_init_mmio - setup device MMIO
998 * @dev_priv: device private
999 *
1000 * Setup minimal device state necessary for MMIO accesses later in the
1001 * initialization sequence. The setup here should avoid any other device-wide
1002 * side effects or exposing the driver via kernel internal or user space
1003 * interfaces.
1004 */
i915_driver_init_mmio(struct drm_i915_private * dev_priv)1005 static int i915_driver_init_mmio(struct drm_i915_private *dev_priv)
1006 {
1007 int ret;
1008
1009 if (i915_inject_load_failure())
1010 return -ENODEV;
1011
1012 if (i915_get_bridge_dev(dev_priv))
1013 return -EIO;
1014
1015 ret = i915_mmio_setup(dev_priv);
1016 if (ret < 0)
1017 goto err_bridge;
1018
1019 intel_uncore_init(dev_priv);
1020
1021 intel_device_info_init_mmio(dev_priv);
1022
1023 intel_uncore_prune(dev_priv);
1024
1025 intel_uc_init_mmio(dev_priv);
1026
1027 ret = intel_engines_init_mmio(dev_priv);
1028 if (ret)
1029 goto err_uncore;
1030
1031 i915_gem_init_mmio(dev_priv);
1032
1033 return 0;
1034
1035 err_uncore:
1036 intel_uncore_fini(dev_priv);
1037 err_bridge:
1038 pci_dev_put(dev_priv->bridge_dev);
1039
1040 return ret;
1041 }
1042
1043 /**
1044 * i915_driver_cleanup_mmio - cleanup the setup done in i915_driver_init_mmio()
1045 * @dev_priv: device private
1046 */
i915_driver_cleanup_mmio(struct drm_i915_private * dev_priv)1047 static void i915_driver_cleanup_mmio(struct drm_i915_private *dev_priv)
1048 {
1049 intel_uncore_fini(dev_priv);
1050 i915_mmio_cleanup(dev_priv);
1051 pci_dev_put(dev_priv->bridge_dev);
1052 }
1053
intel_sanitize_options(struct drm_i915_private * dev_priv)1054 static void intel_sanitize_options(struct drm_i915_private *dev_priv)
1055 {
1056 /*
1057 * i915.enable_ppgtt is read-only, so do an early pass to validate the
1058 * user's requested state against the hardware/driver capabilities. We
1059 * do this now so that we can print out any log messages once rather
1060 * than every time we check intel_enable_ppgtt().
1061 */
1062 i915_modparams.enable_ppgtt =
1063 intel_sanitize_enable_ppgtt(dev_priv,
1064 i915_modparams.enable_ppgtt);
1065 DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915_modparams.enable_ppgtt);
1066
1067 intel_gvt_sanitize_options(dev_priv);
1068 }
1069
1070 /**
1071 * i915_driver_init_hw - setup state requiring device access
1072 * @dev_priv: device private
1073 *
1074 * Setup state that requires accessing the device, but doesn't require
1075 * exposing the driver via kernel internal or userspace interfaces.
1076 */
i915_driver_init_hw(struct drm_i915_private * dev_priv)1077 static int i915_driver_init_hw(struct drm_i915_private *dev_priv)
1078 {
1079 struct pci_dev *pdev = dev_priv->drm.pdev;
1080 int ret;
1081
1082 if (i915_inject_load_failure())
1083 return -ENODEV;
1084
1085 intel_device_info_runtime_init(mkwrite_device_info(dev_priv));
1086
1087 intel_sanitize_options(dev_priv);
1088
1089 i915_perf_init(dev_priv);
1090
1091 ret = i915_ggtt_probe_hw(dev_priv);
1092 if (ret)
1093 goto err_perf;
1094
1095 /*
1096 * WARNING: Apparently we must kick fbdev drivers before vgacon,
1097 * otherwise the vga fbdev driver falls over.
1098 */
1099 ret = i915_kick_out_firmware_fb(dev_priv);
1100 if (ret) {
1101 DRM_ERROR("failed to remove conflicting framebuffer drivers\n");
1102 goto err_ggtt;
1103 }
1104
1105 ret = i915_kick_out_vgacon(dev_priv);
1106 if (ret) {
1107 DRM_ERROR("failed to remove conflicting VGA console\n");
1108 goto err_ggtt;
1109 }
1110
1111 ret = i915_ggtt_init_hw(dev_priv);
1112 if (ret)
1113 goto err_ggtt;
1114
1115 ret = i915_ggtt_enable_hw(dev_priv);
1116 if (ret) {
1117 DRM_ERROR("failed to enable GGTT\n");
1118 goto err_ggtt;
1119 }
1120
1121 pci_set_master(pdev);
1122
1123 /* overlay on gen2 is broken and can't address above 1G */
1124 if (IS_GEN2(dev_priv)) {
1125 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(30));
1126 if (ret) {
1127 DRM_ERROR("failed to set DMA mask\n");
1128
1129 goto err_ggtt;
1130 }
1131 }
1132
1133 /* 965GM sometimes incorrectly writes to hardware status page (HWS)
1134 * using 32bit addressing, overwriting memory if HWS is located
1135 * above 4GB.
1136 *
1137 * The documentation also mentions an issue with undefined
1138 * behaviour if any general state is accessed within a page above 4GB,
1139 * which also needs to be handled carefully.
1140 */
1141 if (IS_I965G(dev_priv) || IS_I965GM(dev_priv)) {
1142 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1143
1144 if (ret) {
1145 DRM_ERROR("failed to set DMA mask\n");
1146
1147 goto err_ggtt;
1148 }
1149 }
1150
1151 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY,
1152 PM_QOS_DEFAULT_VALUE);
1153
1154 intel_uncore_sanitize(dev_priv);
1155
1156 i915_gem_load_init_fences(dev_priv);
1157
1158 /* On the 945G/GM, the chipset reports the MSI capability on the
1159 * integrated graphics even though the support isn't actually there
1160 * according to the published specs. It doesn't appear to function
1161 * correctly in testing on 945G.
1162 * This may be a side effect of MSI having been made available for PEG
1163 * and the registers being closely associated.
1164 *
1165 * According to chipset errata, on the 965GM, MSI interrupts may
1166 * be lost or delayed, and was defeatured. MSI interrupts seem to
1167 * get lost on g4x as well, and interrupt delivery seems to stay
1168 * properly dead afterwards. So we'll just disable them for all
1169 * pre-gen5 chipsets.
1170 *
1171 * dp aux and gmbus irq on gen4 seems to be able to generate legacy
1172 * interrupts even when in MSI mode. This results in spurious
1173 * interrupt warnings if the legacy irq no. is shared with another
1174 * device. The kernel then disables that interrupt source and so
1175 * prevents the other device from working properly.
1176 */
1177 if (INTEL_GEN(dev_priv) >= 5) {
1178 if (pci_enable_msi(pdev) < 0)
1179 DRM_DEBUG_DRIVER("can't enable MSI");
1180 }
1181
1182 ret = intel_gvt_init(dev_priv);
1183 if (ret)
1184 goto err_msi;
1185
1186 intel_opregion_setup(dev_priv);
1187
1188 return 0;
1189
1190 err_msi:
1191 if (pdev->msi_enabled)
1192 pci_disable_msi(pdev);
1193 pm_qos_remove_request(&dev_priv->pm_qos);
1194 err_ggtt:
1195 i915_ggtt_cleanup_hw(dev_priv);
1196 err_perf:
1197 i915_perf_fini(dev_priv);
1198 return ret;
1199 }
1200
1201 /**
1202 * i915_driver_cleanup_hw - cleanup the setup done in i915_driver_init_hw()
1203 * @dev_priv: device private
1204 */
i915_driver_cleanup_hw(struct drm_i915_private * dev_priv)1205 static void i915_driver_cleanup_hw(struct drm_i915_private *dev_priv)
1206 {
1207 struct pci_dev *pdev = dev_priv->drm.pdev;
1208
1209 i915_perf_fini(dev_priv);
1210
1211 if (pdev->msi_enabled)
1212 pci_disable_msi(pdev);
1213
1214 pm_qos_remove_request(&dev_priv->pm_qos);
1215 i915_ggtt_cleanup_hw(dev_priv);
1216 }
1217
1218 /**
1219 * i915_driver_register - register the driver with the rest of the system
1220 * @dev_priv: device private
1221 *
1222 * Perform any steps necessary to make the driver available via kernel
1223 * internal or userspace interfaces.
1224 */
i915_driver_register(struct drm_i915_private * dev_priv)1225 static void i915_driver_register(struct drm_i915_private *dev_priv)
1226 {
1227 struct drm_device *dev = &dev_priv->drm;
1228
1229 i915_gem_shrinker_register(dev_priv);
1230 i915_pmu_register(dev_priv);
1231
1232 /*
1233 * Notify a valid surface after modesetting,
1234 * when running inside a VM.
1235 */
1236 if (intel_vgpu_active(dev_priv))
1237 I915_WRITE(vgtif_reg(display_ready), VGT_DRV_DISPLAY_READY);
1238
1239 /* Reveal our presence to userspace */
1240 if (drm_dev_register(dev, 0) == 0) {
1241 i915_debugfs_register(dev_priv);
1242 i915_setup_sysfs(dev_priv);
1243
1244 /* Depends on sysfs having been initialized */
1245 i915_perf_register(dev_priv);
1246 } else
1247 DRM_ERROR("Failed to register driver for userspace access!\n");
1248
1249 if (INTEL_INFO(dev_priv)->num_pipes) {
1250 /* Must be done after probing outputs */
1251 intel_opregion_register(dev_priv);
1252 acpi_video_register();
1253 }
1254
1255 if (IS_GEN5(dev_priv))
1256 intel_gpu_ips_init(dev_priv);
1257
1258 intel_audio_init(dev_priv);
1259
1260 /*
1261 * Some ports require correctly set-up hpd registers for detection to
1262 * work properly (leading to ghost connected connector status), e.g. VGA
1263 * on gm45. Hence we can only set up the initial fbdev config after hpd
1264 * irqs are fully enabled. We do it last so that the async config
1265 * cannot run before the connectors are registered.
1266 */
1267 intel_fbdev_initial_config_async(dev);
1268
1269 /*
1270 * We need to coordinate the hotplugs with the asynchronous fbdev
1271 * configuration, for which we use the fbdev->async_cookie.
1272 */
1273 if (INTEL_INFO(dev_priv)->num_pipes)
1274 drm_kms_helper_poll_init(dev);
1275 }
1276
1277 /**
1278 * i915_driver_unregister - cleanup the registration done in i915_driver_regiser()
1279 * @dev_priv: device private
1280 */
i915_driver_unregister(struct drm_i915_private * dev_priv)1281 static void i915_driver_unregister(struct drm_i915_private *dev_priv)
1282 {
1283 intel_fbdev_unregister(dev_priv);
1284 intel_audio_deinit(dev_priv);
1285
1286 /*
1287 * After flushing the fbdev (incl. a late async config which will
1288 * have delayed queuing of a hotplug event), then flush the hotplug
1289 * events.
1290 */
1291 drm_kms_helper_poll_fini(&dev_priv->drm);
1292
1293 intel_gpu_ips_teardown();
1294 acpi_video_unregister();
1295 intel_opregion_unregister(dev_priv);
1296
1297 i915_perf_unregister(dev_priv);
1298 i915_pmu_unregister(dev_priv);
1299
1300 i915_teardown_sysfs(dev_priv);
1301 drm_dev_unregister(&dev_priv->drm);
1302
1303 i915_gem_shrinker_unregister(dev_priv);
1304 }
1305
i915_welcome_messages(struct drm_i915_private * dev_priv)1306 static void i915_welcome_messages(struct drm_i915_private *dev_priv)
1307 {
1308 if (drm_debug & DRM_UT_DRIVER) {
1309 struct drm_printer p = drm_debug_printer("i915 device info:");
1310
1311 intel_device_info_dump(&dev_priv->info, &p);
1312 intel_device_info_dump_runtime(&dev_priv->info, &p);
1313 }
1314
1315 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG))
1316 DRM_INFO("DRM_I915_DEBUG enabled\n");
1317 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1318 DRM_INFO("DRM_I915_DEBUG_GEM enabled\n");
1319 }
1320
1321 /**
1322 * i915_driver_load - setup chip and create an initial config
1323 * @pdev: PCI device
1324 * @ent: matching PCI ID entry
1325 *
1326 * The driver load routine has to do several things:
1327 * - drive output discovery via intel_modeset_init()
1328 * - initialize the memory manager
1329 * - allocate initial config memory
1330 * - setup the DRM framebuffer with the allocated memory
1331 */
i915_driver_load(struct pci_dev * pdev,const struct pci_device_id * ent)1332 int i915_driver_load(struct pci_dev *pdev, const struct pci_device_id *ent)
1333 {
1334 const struct intel_device_info *match_info =
1335 (struct intel_device_info *)ent->driver_data;
1336 struct drm_i915_private *dev_priv;
1337 int ret;
1338
1339 /* Enable nuclear pageflip on ILK+ */
1340 if (!i915_modparams.nuclear_pageflip && match_info->gen < 5)
1341 driver.driver_features &= ~DRIVER_ATOMIC;
1342
1343 ret = -ENOMEM;
1344 dev_priv = kzalloc(sizeof(*dev_priv), GFP_KERNEL);
1345 if (dev_priv)
1346 ret = drm_dev_init(&dev_priv->drm, &driver, &pdev->dev);
1347 if (ret) {
1348 DRM_DEV_ERROR(&pdev->dev, "allocation failed\n");
1349 goto out_free;
1350 }
1351
1352 dev_priv->drm.pdev = pdev;
1353 dev_priv->drm.dev_private = dev_priv;
1354
1355 ret = pci_enable_device(pdev);
1356 if (ret)
1357 goto out_fini;
1358
1359 pci_set_drvdata(pdev, &dev_priv->drm);
1360 /*
1361 * Disable the system suspend direct complete optimization, which can
1362 * leave the device suspended skipping the driver's suspend handlers
1363 * if the device was already runtime suspended. This is needed due to
1364 * the difference in our runtime and system suspend sequence and
1365 * becaue the HDA driver may require us to enable the audio power
1366 * domain during system suspend.
1367 */
1368 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NEVER_SKIP);
1369
1370 ret = i915_driver_init_early(dev_priv, ent);
1371 if (ret < 0)
1372 goto out_pci_disable;
1373
1374 intel_runtime_pm_get(dev_priv);
1375
1376 ret = i915_driver_init_mmio(dev_priv);
1377 if (ret < 0)
1378 goto out_runtime_pm_put;
1379
1380 ret = i915_driver_init_hw(dev_priv);
1381 if (ret < 0)
1382 goto out_cleanup_mmio;
1383
1384 /*
1385 * TODO: move the vblank init and parts of modeset init steps into one
1386 * of the i915_driver_init_/i915_driver_register functions according
1387 * to the role/effect of the given init step.
1388 */
1389 if (INTEL_INFO(dev_priv)->num_pipes) {
1390 ret = drm_vblank_init(&dev_priv->drm,
1391 INTEL_INFO(dev_priv)->num_pipes);
1392 if (ret)
1393 goto out_cleanup_hw;
1394 }
1395
1396 ret = i915_load_modeset_init(&dev_priv->drm);
1397 if (ret < 0)
1398 goto out_cleanup_hw;
1399
1400 i915_driver_register(dev_priv);
1401
1402 intel_runtime_pm_enable(dev_priv);
1403
1404 intel_init_ipc(dev_priv);
1405
1406 intel_runtime_pm_put(dev_priv);
1407
1408 i915_welcome_messages(dev_priv);
1409
1410 return 0;
1411
1412 out_cleanup_hw:
1413 i915_driver_cleanup_hw(dev_priv);
1414 out_cleanup_mmio:
1415 i915_driver_cleanup_mmio(dev_priv);
1416 out_runtime_pm_put:
1417 intel_runtime_pm_put(dev_priv);
1418 i915_driver_cleanup_early(dev_priv);
1419 out_pci_disable:
1420 pci_disable_device(pdev);
1421 out_fini:
1422 i915_load_error(dev_priv, "Device initialization failed (%d)\n", ret);
1423 drm_dev_fini(&dev_priv->drm);
1424 out_free:
1425 kfree(dev_priv);
1426 pci_set_drvdata(pdev, NULL);
1427 return ret;
1428 }
1429
i915_driver_unload(struct drm_device * dev)1430 void i915_driver_unload(struct drm_device *dev)
1431 {
1432 struct drm_i915_private *dev_priv = to_i915(dev);
1433 struct pci_dev *pdev = dev_priv->drm.pdev;
1434
1435 i915_driver_unregister(dev_priv);
1436
1437 if (i915_gem_suspend(dev_priv))
1438 DRM_ERROR("failed to idle hardware; continuing to unload!\n");
1439
1440 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
1441
1442 drm_atomic_helper_shutdown(dev);
1443
1444 intel_gvt_cleanup(dev_priv);
1445
1446 intel_modeset_cleanup(dev);
1447
1448 intel_bios_cleanup(dev_priv);
1449
1450 vga_switcheroo_unregister_client(pdev);
1451 vga_client_register(pdev, NULL, NULL, NULL);
1452
1453 intel_csr_ucode_fini(dev_priv);
1454
1455 /* Free error state after interrupts are fully disabled. */
1456 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
1457 i915_reset_error_state(dev_priv);
1458
1459 i915_gem_fini(dev_priv);
1460 intel_fbc_cleanup_cfb(dev_priv);
1461
1462 intel_power_domains_fini(dev_priv);
1463
1464 i915_driver_cleanup_hw(dev_priv);
1465 i915_driver_cleanup_mmio(dev_priv);
1466
1467 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
1468 }
1469
i915_driver_release(struct drm_device * dev)1470 static void i915_driver_release(struct drm_device *dev)
1471 {
1472 struct drm_i915_private *dev_priv = to_i915(dev);
1473
1474 i915_driver_cleanup_early(dev_priv);
1475 drm_dev_fini(&dev_priv->drm);
1476
1477 kfree(dev_priv);
1478 }
1479
i915_driver_open(struct drm_device * dev,struct drm_file * file)1480 static int i915_driver_open(struct drm_device *dev, struct drm_file *file)
1481 {
1482 struct drm_i915_private *i915 = to_i915(dev);
1483 int ret;
1484
1485 ret = i915_gem_open(i915, file);
1486 if (ret)
1487 return ret;
1488
1489 return 0;
1490 }
1491
1492 /**
1493 * i915_driver_lastclose - clean up after all DRM clients have exited
1494 * @dev: DRM device
1495 *
1496 * Take care of cleaning up after all DRM clients have exited. In the
1497 * mode setting case, we want to restore the kernel's initial mode (just
1498 * in case the last client left us in a bad state).
1499 *
1500 * Additionally, in the non-mode setting case, we'll tear down the GTT
1501 * and DMA structures, since the kernel won't be using them, and clea
1502 * up any GEM state.
1503 */
i915_driver_lastclose(struct drm_device * dev)1504 static void i915_driver_lastclose(struct drm_device *dev)
1505 {
1506 intel_fbdev_restore_mode(dev);
1507 vga_switcheroo_process_delayed_switch();
1508 }
1509
i915_driver_postclose(struct drm_device * dev,struct drm_file * file)1510 static void i915_driver_postclose(struct drm_device *dev, struct drm_file *file)
1511 {
1512 struct drm_i915_file_private *file_priv = file->driver_priv;
1513
1514 mutex_lock(&dev->struct_mutex);
1515 i915_gem_context_close(file);
1516 i915_gem_release(dev, file);
1517 mutex_unlock(&dev->struct_mutex);
1518
1519 kfree(file_priv);
1520 }
1521
intel_suspend_encoders(struct drm_i915_private * dev_priv)1522 static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
1523 {
1524 struct drm_device *dev = &dev_priv->drm;
1525 struct intel_encoder *encoder;
1526
1527 drm_modeset_lock_all(dev);
1528 for_each_intel_encoder(dev, encoder)
1529 if (encoder->suspend)
1530 encoder->suspend(encoder);
1531 drm_modeset_unlock_all(dev);
1532 }
1533
1534 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1535 bool rpm_resume);
1536 static int vlv_suspend_complete(struct drm_i915_private *dev_priv);
1537
suspend_to_idle(struct drm_i915_private * dev_priv)1538 static bool suspend_to_idle(struct drm_i915_private *dev_priv)
1539 {
1540 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
1541 if (acpi_target_system_state() < ACPI_STATE_S3)
1542 return true;
1543 #endif
1544 return false;
1545 }
1546
i915_drm_prepare(struct drm_device * dev)1547 static int i915_drm_prepare(struct drm_device *dev)
1548 {
1549 struct drm_i915_private *i915 = to_i915(dev);
1550 int err;
1551
1552 /*
1553 * NB intel_display_suspend() may issue new requests after we've
1554 * ostensibly marked the GPU as ready-to-sleep here. We need to
1555 * split out that work and pull it forward so that after point,
1556 * the GPU is not woken again.
1557 */
1558 err = i915_gem_suspend(i915);
1559 if (err)
1560 dev_err(&i915->drm.pdev->dev,
1561 "GEM idle failed, suspend/resume might fail\n");
1562
1563 return err;
1564 }
1565
i915_drm_suspend(struct drm_device * dev)1566 static int i915_drm_suspend(struct drm_device *dev)
1567 {
1568 struct drm_i915_private *dev_priv = to_i915(dev);
1569 struct pci_dev *pdev = dev_priv->drm.pdev;
1570 pci_power_t opregion_target_state;
1571
1572 disable_rpm_wakeref_asserts(dev_priv);
1573
1574 /* We do a lot of poking in a lot of registers, make sure they work
1575 * properly. */
1576 intel_display_set_init_power(dev_priv, true);
1577
1578 drm_kms_helper_poll_disable(dev);
1579
1580 pci_save_state(pdev);
1581
1582 intel_display_suspend(dev);
1583
1584 intel_dp_mst_suspend(dev_priv);
1585
1586 intel_runtime_pm_disable_interrupts(dev_priv);
1587 intel_hpd_cancel_work(dev_priv);
1588
1589 intel_suspend_encoders(dev_priv);
1590
1591 intel_suspend_hw(dev_priv);
1592
1593 i915_gem_suspend_gtt_mappings(dev_priv);
1594
1595 i915_save_state(dev_priv);
1596
1597 opregion_target_state = suspend_to_idle(dev_priv) ? PCI_D1 : PCI_D3cold;
1598 intel_opregion_notify_adapter(dev_priv, opregion_target_state);
1599
1600 intel_opregion_unregister(dev_priv);
1601
1602 intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
1603
1604 dev_priv->suspend_count++;
1605
1606 intel_csr_ucode_suspend(dev_priv);
1607
1608 enable_rpm_wakeref_asserts(dev_priv);
1609
1610 return 0;
1611 }
1612
i915_drm_suspend_late(struct drm_device * dev,bool hibernation)1613 static int i915_drm_suspend_late(struct drm_device *dev, bool hibernation)
1614 {
1615 struct drm_i915_private *dev_priv = to_i915(dev);
1616 struct pci_dev *pdev = dev_priv->drm.pdev;
1617 int ret;
1618
1619 disable_rpm_wakeref_asserts(dev_priv);
1620
1621 i915_gem_suspend_late(dev_priv);
1622
1623 intel_display_set_init_power(dev_priv, false);
1624 intel_uncore_suspend(dev_priv);
1625
1626 /*
1627 * In case of firmware assisted context save/restore don't manually
1628 * deinit the power domains. This also means the CSR/DMC firmware will
1629 * stay active, it will power down any HW resources as required and
1630 * also enable deeper system power states that would be blocked if the
1631 * firmware was inactive.
1632 */
1633 if (IS_GEN9_LP(dev_priv) || hibernation || !suspend_to_idle(dev_priv) ||
1634 dev_priv->csr.dmc_payload == NULL) {
1635 intel_power_domains_suspend(dev_priv);
1636 dev_priv->power_domains_suspended = true;
1637 }
1638
1639 ret = 0;
1640 if (IS_GEN9_LP(dev_priv))
1641 bxt_enable_dc9(dev_priv);
1642 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1643 hsw_enable_pc8(dev_priv);
1644 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1645 ret = vlv_suspend_complete(dev_priv);
1646
1647 if (ret) {
1648 DRM_ERROR("Suspend complete failed: %d\n", ret);
1649 if (dev_priv->power_domains_suspended) {
1650 intel_power_domains_init_hw(dev_priv, true);
1651 dev_priv->power_domains_suspended = false;
1652 }
1653
1654 goto out;
1655 }
1656
1657 pci_disable_device(pdev);
1658 /*
1659 * During hibernation on some platforms the BIOS may try to access
1660 * the device even though it's already in D3 and hang the machine. So
1661 * leave the device in D0 on those platforms and hope the BIOS will
1662 * power down the device properly. The issue was seen on multiple old
1663 * GENs with different BIOS vendors, so having an explicit blacklist
1664 * is inpractical; apply the workaround on everything pre GEN6. The
1665 * platforms where the issue was seen:
1666 * Lenovo Thinkpad X301, X61s, X60, T60, X41
1667 * Fujitsu FSC S7110
1668 * Acer Aspire 1830T
1669 */
1670 if (!(hibernation && INTEL_GEN(dev_priv) < 6))
1671 pci_set_power_state(pdev, PCI_D3hot);
1672
1673 out:
1674 enable_rpm_wakeref_asserts(dev_priv);
1675
1676 return ret;
1677 }
1678
i915_suspend_switcheroo(struct drm_device * dev,pm_message_t state)1679 static int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state)
1680 {
1681 int error;
1682
1683 if (!dev) {
1684 DRM_ERROR("dev: %p\n", dev);
1685 DRM_ERROR("DRM not initialized, aborting suspend.\n");
1686 return -ENODEV;
1687 }
1688
1689 if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
1690 state.event != PM_EVENT_FREEZE))
1691 return -EINVAL;
1692
1693 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1694 return 0;
1695
1696 error = i915_drm_suspend(dev);
1697 if (error)
1698 return error;
1699
1700 return i915_drm_suspend_late(dev, false);
1701 }
1702
i915_drm_resume(struct drm_device * dev)1703 static int i915_drm_resume(struct drm_device *dev)
1704 {
1705 struct drm_i915_private *dev_priv = to_i915(dev);
1706 int ret;
1707
1708 disable_rpm_wakeref_asserts(dev_priv);
1709 intel_sanitize_gt_powersave(dev_priv);
1710
1711 i915_gem_sanitize(dev_priv);
1712
1713 ret = i915_ggtt_enable_hw(dev_priv);
1714 if (ret)
1715 DRM_ERROR("failed to re-enable GGTT\n");
1716
1717 intel_csr_ucode_resume(dev_priv);
1718
1719 i915_restore_state(dev_priv);
1720 intel_pps_unlock_regs_wa(dev_priv);
1721 intel_opregion_setup(dev_priv);
1722
1723 intel_init_pch_refclk(dev_priv);
1724
1725 /*
1726 * Interrupts have to be enabled before any batches are run. If not the
1727 * GPU will hang. i915_gem_init_hw() will initiate batches to
1728 * update/restore the context.
1729 *
1730 * drm_mode_config_reset() needs AUX interrupts.
1731 *
1732 * Modeset enabling in intel_modeset_init_hw() also needs working
1733 * interrupts.
1734 */
1735 intel_runtime_pm_enable_interrupts(dev_priv);
1736
1737 drm_mode_config_reset(dev);
1738
1739 i915_gem_resume(dev_priv);
1740
1741 intel_modeset_init_hw(dev);
1742 intel_init_clock_gating(dev_priv);
1743
1744 spin_lock_irq(&dev_priv->irq_lock);
1745 if (dev_priv->display.hpd_irq_setup)
1746 dev_priv->display.hpd_irq_setup(dev_priv);
1747 spin_unlock_irq(&dev_priv->irq_lock);
1748
1749 intel_dp_mst_resume(dev_priv);
1750
1751 intel_display_resume(dev);
1752
1753 drm_kms_helper_poll_enable(dev);
1754
1755 /*
1756 * ... but also need to make sure that hotplug processing
1757 * doesn't cause havoc. Like in the driver load code we don't
1758 * bother with the tiny race here where we might loose hotplug
1759 * notifications.
1760 * */
1761 intel_hpd_init(dev_priv);
1762
1763 intel_opregion_register(dev_priv);
1764
1765 intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
1766
1767 intel_opregion_notify_adapter(dev_priv, PCI_D0);
1768
1769 enable_rpm_wakeref_asserts(dev_priv);
1770
1771 return 0;
1772 }
1773
i915_drm_resume_early(struct drm_device * dev)1774 static int i915_drm_resume_early(struct drm_device *dev)
1775 {
1776 struct drm_i915_private *dev_priv = to_i915(dev);
1777 struct pci_dev *pdev = dev_priv->drm.pdev;
1778 int ret;
1779
1780 /*
1781 * We have a resume ordering issue with the snd-hda driver also
1782 * requiring our device to be power up. Due to the lack of a
1783 * parent/child relationship we currently solve this with an early
1784 * resume hook.
1785 *
1786 * FIXME: This should be solved with a special hdmi sink device or
1787 * similar so that power domains can be employed.
1788 */
1789
1790 /*
1791 * Note that we need to set the power state explicitly, since we
1792 * powered off the device during freeze and the PCI core won't power
1793 * it back up for us during thaw. Powering off the device during
1794 * freeze is not a hard requirement though, and during the
1795 * suspend/resume phases the PCI core makes sure we get here with the
1796 * device powered on. So in case we change our freeze logic and keep
1797 * the device powered we can also remove the following set power state
1798 * call.
1799 */
1800 ret = pci_set_power_state(pdev, PCI_D0);
1801 if (ret) {
1802 DRM_ERROR("failed to set PCI D0 power state (%d)\n", ret);
1803 goto out;
1804 }
1805
1806 /*
1807 * Note that pci_enable_device() first enables any parent bridge
1808 * device and only then sets the power state for this device. The
1809 * bridge enabling is a nop though, since bridge devices are resumed
1810 * first. The order of enabling power and enabling the device is
1811 * imposed by the PCI core as described above, so here we preserve the
1812 * same order for the freeze/thaw phases.
1813 *
1814 * TODO: eventually we should remove pci_disable_device() /
1815 * pci_enable_enable_device() from suspend/resume. Due to how they
1816 * depend on the device enable refcount we can't anyway depend on them
1817 * disabling/enabling the device.
1818 */
1819 if (pci_enable_device(pdev)) {
1820 ret = -EIO;
1821 goto out;
1822 }
1823
1824 pci_set_master(pdev);
1825
1826 disable_rpm_wakeref_asserts(dev_priv);
1827
1828 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1829 ret = vlv_resume_prepare(dev_priv, false);
1830 if (ret)
1831 DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
1832 ret);
1833
1834 intel_uncore_resume_early(dev_priv);
1835
1836 if (IS_GEN9_LP(dev_priv)) {
1837 gen9_sanitize_dc_state(dev_priv);
1838 bxt_disable_dc9(dev_priv);
1839 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
1840 hsw_disable_pc8(dev_priv);
1841 }
1842
1843 intel_uncore_sanitize(dev_priv);
1844
1845 if (dev_priv->power_domains_suspended)
1846 intel_power_domains_init_hw(dev_priv, true);
1847 else
1848 intel_display_set_init_power(dev_priv, true);
1849
1850 intel_engines_sanitize(dev_priv);
1851
1852 enable_rpm_wakeref_asserts(dev_priv);
1853
1854 out:
1855 dev_priv->power_domains_suspended = false;
1856
1857 return ret;
1858 }
1859
i915_resume_switcheroo(struct drm_device * dev)1860 static int i915_resume_switcheroo(struct drm_device *dev)
1861 {
1862 int ret;
1863
1864 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1865 return 0;
1866
1867 ret = i915_drm_resume_early(dev);
1868 if (ret)
1869 return ret;
1870
1871 return i915_drm_resume(dev);
1872 }
1873
1874 /**
1875 * i915_reset - reset chip after a hang
1876 * @i915: #drm_i915_private to reset
1877 * @stalled_mask: mask of the stalled engines with the guilty requests
1878 * @reason: user error message for why we are resetting
1879 *
1880 * Reset the chip. Useful if a hang is detected. Marks the device as wedged
1881 * on failure.
1882 *
1883 * Caller must hold the struct_mutex.
1884 *
1885 * Procedure is fairly simple:
1886 * - reset the chip using the reset reg
1887 * - re-init context state
1888 * - re-init hardware status page
1889 * - re-init ring buffer
1890 * - re-init interrupt state
1891 * - re-init display
1892 */
i915_reset(struct drm_i915_private * i915,unsigned int stalled_mask,const char * reason)1893 void i915_reset(struct drm_i915_private *i915,
1894 unsigned int stalled_mask,
1895 const char *reason)
1896 {
1897 struct i915_gpu_error *error = &i915->gpu_error;
1898 int ret;
1899 int i;
1900
1901 GEM_TRACE("flags=%lx\n", error->flags);
1902
1903 might_sleep();
1904 lockdep_assert_held(&i915->drm.struct_mutex);
1905 GEM_BUG_ON(!test_bit(I915_RESET_BACKOFF, &error->flags));
1906
1907 if (!test_bit(I915_RESET_HANDOFF, &error->flags))
1908 return;
1909
1910 /* Clear any previous failed attempts at recovery. Time to try again. */
1911 if (!i915_gem_unset_wedged(i915))
1912 goto wakeup;
1913
1914 if (reason)
1915 dev_notice(i915->drm.dev, "Resetting chip for %s\n", reason);
1916 error->reset_count++;
1917
1918 disable_irq(i915->drm.irq);
1919 ret = i915_gem_reset_prepare(i915);
1920 if (ret) {
1921 dev_err(i915->drm.dev, "GPU recovery failed\n");
1922 goto taint;
1923 }
1924
1925 if (!intel_has_gpu_reset(i915)) {
1926 if (i915_modparams.reset)
1927 dev_err(i915->drm.dev, "GPU reset not supported\n");
1928 else
1929 DRM_DEBUG_DRIVER("GPU reset disabled\n");
1930 goto error;
1931 }
1932
1933 for (i = 0; i < 3; i++) {
1934 ret = intel_gpu_reset(i915, ALL_ENGINES);
1935 if (ret == 0)
1936 break;
1937
1938 msleep(100);
1939 }
1940 if (ret) {
1941 dev_err(i915->drm.dev, "Failed to reset chip\n");
1942 goto taint;
1943 }
1944
1945 /* Ok, now get things going again... */
1946
1947 /*
1948 * Everything depends on having the GTT running, so we need to start
1949 * there.
1950 */
1951 ret = i915_ggtt_enable_hw(i915);
1952 if (ret) {
1953 DRM_ERROR("Failed to re-enable GGTT following reset (%d)\n",
1954 ret);
1955 goto error;
1956 }
1957
1958 i915_gem_reset(i915, stalled_mask);
1959 intel_overlay_reset(i915);
1960
1961 /*
1962 * Next we need to restore the context, but we don't use those
1963 * yet either...
1964 *
1965 * Ring buffer needs to be re-initialized in the KMS case, or if X
1966 * was running at the time of the reset (i.e. we weren't VT
1967 * switched away).
1968 */
1969 ret = i915_gem_init_hw(i915);
1970 if (ret) {
1971 DRM_ERROR("Failed to initialise HW following reset (%d)\n",
1972 ret);
1973 goto error;
1974 }
1975
1976 i915_queue_hangcheck(i915);
1977
1978 finish:
1979 i915_gem_reset_finish(i915);
1980 enable_irq(i915->drm.irq);
1981
1982 wakeup:
1983 clear_bit(I915_RESET_HANDOFF, &error->flags);
1984 wake_up_bit(&error->flags, I915_RESET_HANDOFF);
1985 return;
1986
1987 taint:
1988 /*
1989 * History tells us that if we cannot reset the GPU now, we
1990 * never will. This then impacts everything that is run
1991 * subsequently. On failing the reset, we mark the driver
1992 * as wedged, preventing further execution on the GPU.
1993 * We also want to go one step further and add a taint to the
1994 * kernel so that any subsequent faults can be traced back to
1995 * this failure. This is important for CI, where if the
1996 * GPU/driver fails we would like to reboot and restart testing
1997 * rather than continue on into oblivion. For everyone else,
1998 * the system should still plod along, but they have been warned!
1999 */
2000 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2001 error:
2002 i915_gem_set_wedged(i915);
2003 i915_retire_requests(i915);
2004 goto finish;
2005 }
2006
intel_gt_reset_engine(struct drm_i915_private * dev_priv,struct intel_engine_cs * engine)2007 static inline int intel_gt_reset_engine(struct drm_i915_private *dev_priv,
2008 struct intel_engine_cs *engine)
2009 {
2010 return intel_gpu_reset(dev_priv, intel_engine_flag(engine));
2011 }
2012
2013 /**
2014 * i915_reset_engine - reset GPU engine to recover from a hang
2015 * @engine: engine to reset
2016 * @msg: reason for GPU reset; or NULL for no dev_notice()
2017 *
2018 * Reset a specific GPU engine. Useful if a hang is detected.
2019 * Returns zero on successful reset or otherwise an error code.
2020 *
2021 * Procedure is:
2022 * - identifies the request that caused the hang and it is dropped
2023 * - reset engine (which will force the engine to idle)
2024 * - re-init/configure engine
2025 */
i915_reset_engine(struct intel_engine_cs * engine,const char * msg)2026 int i915_reset_engine(struct intel_engine_cs *engine, const char *msg)
2027 {
2028 struct i915_gpu_error *error = &engine->i915->gpu_error;
2029 struct i915_request *active_request;
2030 int ret;
2031
2032 GEM_TRACE("%s flags=%lx\n", engine->name, error->flags);
2033 GEM_BUG_ON(!test_bit(I915_RESET_ENGINE + engine->id, &error->flags));
2034
2035 active_request = i915_gem_reset_prepare_engine(engine);
2036 if (IS_ERR_OR_NULL(active_request)) {
2037 /* Either the previous reset failed, or we pardon the reset. */
2038 ret = PTR_ERR(active_request);
2039 goto out;
2040 }
2041
2042 if (msg)
2043 dev_notice(engine->i915->drm.dev,
2044 "Resetting %s for %s\n", engine->name, msg);
2045 error->reset_engine_count[engine->id]++;
2046
2047 if (!engine->i915->guc.execbuf_client)
2048 ret = intel_gt_reset_engine(engine->i915, engine);
2049 else
2050 ret = intel_guc_reset_engine(&engine->i915->guc, engine);
2051 if (ret) {
2052 /* If we fail here, we expect to fallback to a global reset */
2053 DRM_DEBUG_DRIVER("%sFailed to reset %s, ret=%d\n",
2054 engine->i915->guc.execbuf_client ? "GuC " : "",
2055 engine->name, ret);
2056 goto out;
2057 }
2058
2059 /*
2060 * The request that caused the hang is stuck on elsp, we know the
2061 * active request and can drop it, adjust head to skip the offending
2062 * request to resume executing remaining requests in the queue.
2063 */
2064 i915_gem_reset_engine(engine, active_request, true);
2065
2066 /*
2067 * The engine and its registers (and workarounds in case of render)
2068 * have been reset to their default values. Follow the init_ring
2069 * process to program RING_MODE, HWSP and re-enable submission.
2070 */
2071 ret = engine->init_hw(engine);
2072 if (ret)
2073 goto out;
2074
2075 out:
2076 i915_gem_reset_finish_engine(engine);
2077 return ret;
2078 }
2079
i915_pm_prepare(struct device * kdev)2080 static int i915_pm_prepare(struct device *kdev)
2081 {
2082 struct pci_dev *pdev = to_pci_dev(kdev);
2083 struct drm_device *dev = pci_get_drvdata(pdev);
2084
2085 if (!dev) {
2086 dev_err(kdev, "DRM not initialized, aborting suspend.\n");
2087 return -ENODEV;
2088 }
2089
2090 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2091 return 0;
2092
2093 return i915_drm_prepare(dev);
2094 }
2095
i915_pm_suspend(struct device * kdev)2096 static int i915_pm_suspend(struct device *kdev)
2097 {
2098 struct pci_dev *pdev = to_pci_dev(kdev);
2099 struct drm_device *dev = pci_get_drvdata(pdev);
2100
2101 if (!dev) {
2102 dev_err(kdev, "DRM not initialized, aborting suspend.\n");
2103 return -ENODEV;
2104 }
2105
2106 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2107 return 0;
2108
2109 return i915_drm_suspend(dev);
2110 }
2111
i915_pm_suspend_late(struct device * kdev)2112 static int i915_pm_suspend_late(struct device *kdev)
2113 {
2114 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2115
2116 /*
2117 * We have a suspend ordering issue with the snd-hda driver also
2118 * requiring our device to be power up. Due to the lack of a
2119 * parent/child relationship we currently solve this with an late
2120 * suspend hook.
2121 *
2122 * FIXME: This should be solved with a special hdmi sink device or
2123 * similar so that power domains can be employed.
2124 */
2125 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2126 return 0;
2127
2128 return i915_drm_suspend_late(dev, false);
2129 }
2130
i915_pm_poweroff_late(struct device * kdev)2131 static int i915_pm_poweroff_late(struct device *kdev)
2132 {
2133 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2134
2135 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2136 return 0;
2137
2138 return i915_drm_suspend_late(dev, true);
2139 }
2140
i915_pm_resume_early(struct device * kdev)2141 static int i915_pm_resume_early(struct device *kdev)
2142 {
2143 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2144
2145 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2146 return 0;
2147
2148 return i915_drm_resume_early(dev);
2149 }
2150
i915_pm_resume(struct device * kdev)2151 static int i915_pm_resume(struct device *kdev)
2152 {
2153 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2154
2155 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2156 return 0;
2157
2158 return i915_drm_resume(dev);
2159 }
2160
2161 /* freeze: before creating the hibernation_image */
i915_pm_freeze(struct device * kdev)2162 static int i915_pm_freeze(struct device *kdev)
2163 {
2164 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2165 int ret;
2166
2167 if (dev->switch_power_state != DRM_SWITCH_POWER_OFF) {
2168 ret = i915_drm_suspend(dev);
2169 if (ret)
2170 return ret;
2171 }
2172
2173 ret = i915_gem_freeze(kdev_to_i915(kdev));
2174 if (ret)
2175 return ret;
2176
2177 return 0;
2178 }
2179
i915_pm_freeze_late(struct device * kdev)2180 static int i915_pm_freeze_late(struct device *kdev)
2181 {
2182 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2183 int ret;
2184
2185 if (dev->switch_power_state != DRM_SWITCH_POWER_OFF) {
2186 ret = i915_drm_suspend_late(dev, true);
2187 if (ret)
2188 return ret;
2189 }
2190
2191 ret = i915_gem_freeze_late(kdev_to_i915(kdev));
2192 if (ret)
2193 return ret;
2194
2195 return 0;
2196 }
2197
2198 /* thaw: called after creating the hibernation image, but before turning off. */
i915_pm_thaw_early(struct device * kdev)2199 static int i915_pm_thaw_early(struct device *kdev)
2200 {
2201 return i915_pm_resume_early(kdev);
2202 }
2203
i915_pm_thaw(struct device * kdev)2204 static int i915_pm_thaw(struct device *kdev)
2205 {
2206 return i915_pm_resume(kdev);
2207 }
2208
2209 /* restore: called after loading the hibernation image. */
i915_pm_restore_early(struct device * kdev)2210 static int i915_pm_restore_early(struct device *kdev)
2211 {
2212 return i915_pm_resume_early(kdev);
2213 }
2214
i915_pm_restore(struct device * kdev)2215 static int i915_pm_restore(struct device *kdev)
2216 {
2217 return i915_pm_resume(kdev);
2218 }
2219
2220 /*
2221 * Save all Gunit registers that may be lost after a D3 and a subsequent
2222 * S0i[R123] transition. The list of registers needing a save/restore is
2223 * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
2224 * registers in the following way:
2225 * - Driver: saved/restored by the driver
2226 * - Punit : saved/restored by the Punit firmware
2227 * - No, w/o marking: no need to save/restore, since the register is R/O or
2228 * used internally by the HW in a way that doesn't depend
2229 * keeping the content across a suspend/resume.
2230 * - Debug : used for debugging
2231 *
2232 * We save/restore all registers marked with 'Driver', with the following
2233 * exceptions:
2234 * - Registers out of use, including also registers marked with 'Debug'.
2235 * These have no effect on the driver's operation, so we don't save/restore
2236 * them to reduce the overhead.
2237 * - Registers that are fully setup by an initialization function called from
2238 * the resume path. For example many clock gating and RPS/RC6 registers.
2239 * - Registers that provide the right functionality with their reset defaults.
2240 *
2241 * TODO: Except for registers that based on the above 3 criteria can be safely
2242 * ignored, we save/restore all others, practically treating the HW context as
2243 * a black-box for the driver. Further investigation is needed to reduce the
2244 * saved/restored registers even further, by following the same 3 criteria.
2245 */
vlv_save_gunit_s0ix_state(struct drm_i915_private * dev_priv)2246 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2247 {
2248 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2249 int i;
2250
2251 /* GAM 0x4000-0x4770 */
2252 s->wr_watermark = I915_READ(GEN7_WR_WATERMARK);
2253 s->gfx_prio_ctrl = I915_READ(GEN7_GFX_PRIO_CTRL);
2254 s->arb_mode = I915_READ(ARB_MODE);
2255 s->gfx_pend_tlb0 = I915_READ(GEN7_GFX_PEND_TLB0);
2256 s->gfx_pend_tlb1 = I915_READ(GEN7_GFX_PEND_TLB1);
2257
2258 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2259 s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
2260
2261 s->media_max_req_count = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
2262 s->gfx_max_req_count = I915_READ(GEN7_GFX_MAX_REQ_COUNT);
2263
2264 s->render_hwsp = I915_READ(RENDER_HWS_PGA_GEN7);
2265 s->ecochk = I915_READ(GAM_ECOCHK);
2266 s->bsd_hwsp = I915_READ(BSD_HWS_PGA_GEN7);
2267 s->blt_hwsp = I915_READ(BLT_HWS_PGA_GEN7);
2268
2269 s->tlb_rd_addr = I915_READ(GEN7_TLB_RD_ADDR);
2270
2271 /* MBC 0x9024-0x91D0, 0x8500 */
2272 s->g3dctl = I915_READ(VLV_G3DCTL);
2273 s->gsckgctl = I915_READ(VLV_GSCKGCTL);
2274 s->mbctl = I915_READ(GEN6_MBCTL);
2275
2276 /* GCP 0x9400-0x9424, 0x8100-0x810C */
2277 s->ucgctl1 = I915_READ(GEN6_UCGCTL1);
2278 s->ucgctl3 = I915_READ(GEN6_UCGCTL3);
2279 s->rcgctl1 = I915_READ(GEN6_RCGCTL1);
2280 s->rcgctl2 = I915_READ(GEN6_RCGCTL2);
2281 s->rstctl = I915_READ(GEN6_RSTCTL);
2282 s->misccpctl = I915_READ(GEN7_MISCCPCTL);
2283
2284 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2285 s->gfxpause = I915_READ(GEN6_GFXPAUSE);
2286 s->rpdeuhwtc = I915_READ(GEN6_RPDEUHWTC);
2287 s->rpdeuc = I915_READ(GEN6_RPDEUC);
2288 s->ecobus = I915_READ(ECOBUS);
2289 s->pwrdwnupctl = I915_READ(VLV_PWRDWNUPCTL);
2290 s->rp_down_timeout = I915_READ(GEN6_RP_DOWN_TIMEOUT);
2291 s->rp_deucsw = I915_READ(GEN6_RPDEUCSW);
2292 s->rcubmabdtmr = I915_READ(GEN6_RCUBMABDTMR);
2293 s->rcedata = I915_READ(VLV_RCEDATA);
2294 s->spare2gh = I915_READ(VLV_SPAREG2H);
2295
2296 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2297 s->gt_imr = I915_READ(GTIMR);
2298 s->gt_ier = I915_READ(GTIER);
2299 s->pm_imr = I915_READ(GEN6_PMIMR);
2300 s->pm_ier = I915_READ(GEN6_PMIER);
2301
2302 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2303 s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
2304
2305 /* GT SA CZ domain, 0x100000-0x138124 */
2306 s->tilectl = I915_READ(TILECTL);
2307 s->gt_fifoctl = I915_READ(GTFIFOCTL);
2308 s->gtlc_wake_ctrl = I915_READ(VLV_GTLC_WAKE_CTRL);
2309 s->gtlc_survive = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2310 s->pmwgicz = I915_READ(VLV_PMWGICZ);
2311
2312 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2313 s->gu_ctl0 = I915_READ(VLV_GU_CTL0);
2314 s->gu_ctl1 = I915_READ(VLV_GU_CTL1);
2315 s->pcbr = I915_READ(VLV_PCBR);
2316 s->clock_gate_dis2 = I915_READ(VLV_GUNIT_CLOCK_GATE2);
2317
2318 /*
2319 * Not saving any of:
2320 * DFT, 0x9800-0x9EC0
2321 * SARB, 0xB000-0xB1FC
2322 * GAC, 0x5208-0x524C, 0x14000-0x14C000
2323 * PCI CFG
2324 */
2325 }
2326
vlv_restore_gunit_s0ix_state(struct drm_i915_private * dev_priv)2327 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2328 {
2329 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2330 u32 val;
2331 int i;
2332
2333 /* GAM 0x4000-0x4770 */
2334 I915_WRITE(GEN7_WR_WATERMARK, s->wr_watermark);
2335 I915_WRITE(GEN7_GFX_PRIO_CTRL, s->gfx_prio_ctrl);
2336 I915_WRITE(ARB_MODE, s->arb_mode | (0xffff << 16));
2337 I915_WRITE(GEN7_GFX_PEND_TLB0, s->gfx_pend_tlb0);
2338 I915_WRITE(GEN7_GFX_PEND_TLB1, s->gfx_pend_tlb1);
2339
2340 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2341 I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
2342
2343 I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
2344 I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
2345
2346 I915_WRITE(RENDER_HWS_PGA_GEN7, s->render_hwsp);
2347 I915_WRITE(GAM_ECOCHK, s->ecochk);
2348 I915_WRITE(BSD_HWS_PGA_GEN7, s->bsd_hwsp);
2349 I915_WRITE(BLT_HWS_PGA_GEN7, s->blt_hwsp);
2350
2351 I915_WRITE(GEN7_TLB_RD_ADDR, s->tlb_rd_addr);
2352
2353 /* MBC 0x9024-0x91D0, 0x8500 */
2354 I915_WRITE(VLV_G3DCTL, s->g3dctl);
2355 I915_WRITE(VLV_GSCKGCTL, s->gsckgctl);
2356 I915_WRITE(GEN6_MBCTL, s->mbctl);
2357
2358 /* GCP 0x9400-0x9424, 0x8100-0x810C */
2359 I915_WRITE(GEN6_UCGCTL1, s->ucgctl1);
2360 I915_WRITE(GEN6_UCGCTL3, s->ucgctl3);
2361 I915_WRITE(GEN6_RCGCTL1, s->rcgctl1);
2362 I915_WRITE(GEN6_RCGCTL2, s->rcgctl2);
2363 I915_WRITE(GEN6_RSTCTL, s->rstctl);
2364 I915_WRITE(GEN7_MISCCPCTL, s->misccpctl);
2365
2366 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2367 I915_WRITE(GEN6_GFXPAUSE, s->gfxpause);
2368 I915_WRITE(GEN6_RPDEUHWTC, s->rpdeuhwtc);
2369 I915_WRITE(GEN6_RPDEUC, s->rpdeuc);
2370 I915_WRITE(ECOBUS, s->ecobus);
2371 I915_WRITE(VLV_PWRDWNUPCTL, s->pwrdwnupctl);
2372 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
2373 I915_WRITE(GEN6_RPDEUCSW, s->rp_deucsw);
2374 I915_WRITE(GEN6_RCUBMABDTMR, s->rcubmabdtmr);
2375 I915_WRITE(VLV_RCEDATA, s->rcedata);
2376 I915_WRITE(VLV_SPAREG2H, s->spare2gh);
2377
2378 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2379 I915_WRITE(GTIMR, s->gt_imr);
2380 I915_WRITE(GTIER, s->gt_ier);
2381 I915_WRITE(GEN6_PMIMR, s->pm_imr);
2382 I915_WRITE(GEN6_PMIER, s->pm_ier);
2383
2384 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2385 I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
2386
2387 /* GT SA CZ domain, 0x100000-0x138124 */
2388 I915_WRITE(TILECTL, s->tilectl);
2389 I915_WRITE(GTFIFOCTL, s->gt_fifoctl);
2390 /*
2391 * Preserve the GT allow wake and GFX force clock bit, they are not
2392 * be restored, as they are used to control the s0ix suspend/resume
2393 * sequence by the caller.
2394 */
2395 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2396 val &= VLV_GTLC_ALLOWWAKEREQ;
2397 val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
2398 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2399
2400 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2401 val &= VLV_GFX_CLK_FORCE_ON_BIT;
2402 val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
2403 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2404
2405 I915_WRITE(VLV_PMWGICZ, s->pmwgicz);
2406
2407 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2408 I915_WRITE(VLV_GU_CTL0, s->gu_ctl0);
2409 I915_WRITE(VLV_GU_CTL1, s->gu_ctl1);
2410 I915_WRITE(VLV_PCBR, s->pcbr);
2411 I915_WRITE(VLV_GUNIT_CLOCK_GATE2, s->clock_gate_dis2);
2412 }
2413
vlv_wait_for_pw_status(struct drm_i915_private * dev_priv,u32 mask,u32 val)2414 static int vlv_wait_for_pw_status(struct drm_i915_private *dev_priv,
2415 u32 mask, u32 val)
2416 {
2417 /* The HW does not like us polling for PW_STATUS frequently, so
2418 * use the sleeping loop rather than risk the busy spin within
2419 * intel_wait_for_register().
2420 *
2421 * Transitioning between RC6 states should be at most 2ms (see
2422 * valleyview_enable_rps) so use a 3ms timeout.
2423 */
2424 return wait_for((I915_READ_NOTRACE(VLV_GTLC_PW_STATUS) & mask) == val,
2425 3);
2426 }
2427
vlv_force_gfx_clock(struct drm_i915_private * dev_priv,bool force_on)2428 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
2429 {
2430 u32 val;
2431 int err;
2432
2433 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2434 val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
2435 if (force_on)
2436 val |= VLV_GFX_CLK_FORCE_ON_BIT;
2437 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2438
2439 if (!force_on)
2440 return 0;
2441
2442 err = intel_wait_for_register(dev_priv,
2443 VLV_GTLC_SURVIVABILITY_REG,
2444 VLV_GFX_CLK_STATUS_BIT,
2445 VLV_GFX_CLK_STATUS_BIT,
2446 20);
2447 if (err)
2448 DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
2449 I915_READ(VLV_GTLC_SURVIVABILITY_REG));
2450
2451 return err;
2452 }
2453
vlv_allow_gt_wake(struct drm_i915_private * dev_priv,bool allow)2454 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
2455 {
2456 u32 mask;
2457 u32 val;
2458 int err;
2459
2460 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2461 val &= ~VLV_GTLC_ALLOWWAKEREQ;
2462 if (allow)
2463 val |= VLV_GTLC_ALLOWWAKEREQ;
2464 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2465 POSTING_READ(VLV_GTLC_WAKE_CTRL);
2466
2467 mask = VLV_GTLC_ALLOWWAKEACK;
2468 val = allow ? mask : 0;
2469
2470 err = vlv_wait_for_pw_status(dev_priv, mask, val);
2471 if (err)
2472 DRM_ERROR("timeout disabling GT waking\n");
2473
2474 return err;
2475 }
2476
vlv_wait_for_gt_wells(struct drm_i915_private * dev_priv,bool wait_for_on)2477 static void vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
2478 bool wait_for_on)
2479 {
2480 u32 mask;
2481 u32 val;
2482
2483 mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
2484 val = wait_for_on ? mask : 0;
2485
2486 /*
2487 * RC6 transitioning can be delayed up to 2 msec (see
2488 * valleyview_enable_rps), use 3 msec for safety.
2489 *
2490 * This can fail to turn off the rc6 if the GPU is stuck after a failed
2491 * reset and we are trying to force the machine to sleep.
2492 */
2493 if (vlv_wait_for_pw_status(dev_priv, mask, val))
2494 DRM_DEBUG_DRIVER("timeout waiting for GT wells to go %s\n",
2495 onoff(wait_for_on));
2496 }
2497
vlv_check_no_gt_access(struct drm_i915_private * dev_priv)2498 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
2499 {
2500 if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
2501 return;
2502
2503 DRM_DEBUG_DRIVER("GT register access while GT waking disabled\n");
2504 I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
2505 }
2506
vlv_suspend_complete(struct drm_i915_private * dev_priv)2507 static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
2508 {
2509 u32 mask;
2510 int err;
2511
2512 /*
2513 * Bspec defines the following GT well on flags as debug only, so
2514 * don't treat them as hard failures.
2515 */
2516 vlv_wait_for_gt_wells(dev_priv, false);
2517
2518 mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
2519 WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
2520
2521 vlv_check_no_gt_access(dev_priv);
2522
2523 err = vlv_force_gfx_clock(dev_priv, true);
2524 if (err)
2525 goto err1;
2526
2527 err = vlv_allow_gt_wake(dev_priv, false);
2528 if (err)
2529 goto err2;
2530
2531 if (!IS_CHERRYVIEW(dev_priv))
2532 vlv_save_gunit_s0ix_state(dev_priv);
2533
2534 err = vlv_force_gfx_clock(dev_priv, false);
2535 if (err)
2536 goto err2;
2537
2538 return 0;
2539
2540 err2:
2541 /* For safety always re-enable waking and disable gfx clock forcing */
2542 vlv_allow_gt_wake(dev_priv, true);
2543 err1:
2544 vlv_force_gfx_clock(dev_priv, false);
2545
2546 return err;
2547 }
2548
vlv_resume_prepare(struct drm_i915_private * dev_priv,bool rpm_resume)2549 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
2550 bool rpm_resume)
2551 {
2552 int err;
2553 int ret;
2554
2555 /*
2556 * If any of the steps fail just try to continue, that's the best we
2557 * can do at this point. Return the first error code (which will also
2558 * leave RPM permanently disabled).
2559 */
2560 ret = vlv_force_gfx_clock(dev_priv, true);
2561
2562 if (!IS_CHERRYVIEW(dev_priv))
2563 vlv_restore_gunit_s0ix_state(dev_priv);
2564
2565 err = vlv_allow_gt_wake(dev_priv, true);
2566 if (!ret)
2567 ret = err;
2568
2569 err = vlv_force_gfx_clock(dev_priv, false);
2570 if (!ret)
2571 ret = err;
2572
2573 vlv_check_no_gt_access(dev_priv);
2574
2575 if (rpm_resume)
2576 intel_init_clock_gating(dev_priv);
2577
2578 return ret;
2579 }
2580
intel_runtime_suspend(struct device * kdev)2581 static int intel_runtime_suspend(struct device *kdev)
2582 {
2583 struct pci_dev *pdev = to_pci_dev(kdev);
2584 struct drm_device *dev = pci_get_drvdata(pdev);
2585 struct drm_i915_private *dev_priv = to_i915(dev);
2586 int ret;
2587
2588 if (WARN_ON_ONCE(!(dev_priv->gt_pm.rc6.enabled && HAS_RC6(dev_priv))))
2589 return -ENODEV;
2590
2591 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2592 return -ENODEV;
2593
2594 DRM_DEBUG_KMS("Suspending device\n");
2595
2596 disable_rpm_wakeref_asserts(dev_priv);
2597
2598 /*
2599 * We are safe here against re-faults, since the fault handler takes
2600 * an RPM reference.
2601 */
2602 i915_gem_runtime_suspend(dev_priv);
2603
2604 intel_uc_suspend(dev_priv);
2605
2606 intel_runtime_pm_disable_interrupts(dev_priv);
2607
2608 intel_uncore_suspend(dev_priv);
2609
2610 ret = 0;
2611 if (IS_GEN9_LP(dev_priv)) {
2612 bxt_display_core_uninit(dev_priv);
2613 bxt_enable_dc9(dev_priv);
2614 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2615 hsw_enable_pc8(dev_priv);
2616 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2617 ret = vlv_suspend_complete(dev_priv);
2618 }
2619
2620 if (ret) {
2621 DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
2622 intel_uncore_runtime_resume(dev_priv);
2623
2624 intel_runtime_pm_enable_interrupts(dev_priv);
2625
2626 intel_uc_resume(dev_priv);
2627
2628 i915_gem_init_swizzling(dev_priv);
2629 i915_gem_restore_fences(dev_priv);
2630
2631 enable_rpm_wakeref_asserts(dev_priv);
2632
2633 return ret;
2634 }
2635
2636 enable_rpm_wakeref_asserts(dev_priv);
2637 WARN_ON_ONCE(atomic_read(&dev_priv->runtime_pm.wakeref_count));
2638
2639 if (intel_uncore_arm_unclaimed_mmio_detection(dev_priv))
2640 DRM_ERROR("Unclaimed access detected prior to suspending\n");
2641
2642 dev_priv->runtime_pm.suspended = true;
2643
2644 /*
2645 * FIXME: We really should find a document that references the arguments
2646 * used below!
2647 */
2648 if (IS_BROADWELL(dev_priv)) {
2649 /*
2650 * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
2651 * being detected, and the call we do at intel_runtime_resume()
2652 * won't be able to restore them. Since PCI_D3hot matches the
2653 * actual specification and appears to be working, use it.
2654 */
2655 intel_opregion_notify_adapter(dev_priv, PCI_D3hot);
2656 } else {
2657 /*
2658 * current versions of firmware which depend on this opregion
2659 * notification have repurposed the D1 definition to mean
2660 * "runtime suspended" vs. what you would normally expect (D3)
2661 * to distinguish it from notifications that might be sent via
2662 * the suspend path.
2663 */
2664 intel_opregion_notify_adapter(dev_priv, PCI_D1);
2665 }
2666
2667 assert_forcewakes_inactive(dev_priv);
2668
2669 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2670 intel_hpd_poll_init(dev_priv);
2671
2672 DRM_DEBUG_KMS("Device suspended\n");
2673 return 0;
2674 }
2675
intel_runtime_resume(struct device * kdev)2676 static int intel_runtime_resume(struct device *kdev)
2677 {
2678 struct pci_dev *pdev = to_pci_dev(kdev);
2679 struct drm_device *dev = pci_get_drvdata(pdev);
2680 struct drm_i915_private *dev_priv = to_i915(dev);
2681 int ret = 0;
2682
2683 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2684 return -ENODEV;
2685
2686 DRM_DEBUG_KMS("Resuming device\n");
2687
2688 WARN_ON_ONCE(atomic_read(&dev_priv->runtime_pm.wakeref_count));
2689 disable_rpm_wakeref_asserts(dev_priv);
2690
2691 intel_opregion_notify_adapter(dev_priv, PCI_D0);
2692 dev_priv->runtime_pm.suspended = false;
2693 if (intel_uncore_unclaimed_mmio(dev_priv))
2694 DRM_DEBUG_DRIVER("Unclaimed access during suspend, bios?\n");
2695
2696 if (IS_GEN9_LP(dev_priv)) {
2697 bxt_disable_dc9(dev_priv);
2698 bxt_display_core_init(dev_priv, true);
2699 if (dev_priv->csr.dmc_payload &&
2700 (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
2701 gen9_enable_dc5(dev_priv);
2702 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2703 hsw_disable_pc8(dev_priv);
2704 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2705 ret = vlv_resume_prepare(dev_priv, true);
2706 }
2707
2708 intel_uncore_runtime_resume(dev_priv);
2709
2710 intel_runtime_pm_enable_interrupts(dev_priv);
2711
2712 intel_uc_resume(dev_priv);
2713
2714 /*
2715 * No point of rolling back things in case of an error, as the best
2716 * we can do is to hope that things will still work (and disable RPM).
2717 */
2718 i915_gem_init_swizzling(dev_priv);
2719 i915_gem_restore_fences(dev_priv);
2720
2721 /*
2722 * On VLV/CHV display interrupts are part of the display
2723 * power well, so hpd is reinitialized from there. For
2724 * everyone else do it here.
2725 */
2726 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2727 intel_hpd_init(dev_priv);
2728
2729 intel_enable_ipc(dev_priv);
2730
2731 enable_rpm_wakeref_asserts(dev_priv);
2732
2733 if (ret)
2734 DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
2735 else
2736 DRM_DEBUG_KMS("Device resumed\n");
2737
2738 return ret;
2739 }
2740
2741 const struct dev_pm_ops i915_pm_ops = {
2742 /*
2743 * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
2744 * PMSG_RESUME]
2745 */
2746 .prepare = i915_pm_prepare,
2747 .suspend = i915_pm_suspend,
2748 .suspend_late = i915_pm_suspend_late,
2749 .resume_early = i915_pm_resume_early,
2750 .resume = i915_pm_resume,
2751
2752 /*
2753 * S4 event handlers
2754 * @freeze, @freeze_late : called (1) before creating the
2755 * hibernation image [PMSG_FREEZE] and
2756 * (2) after rebooting, before restoring
2757 * the image [PMSG_QUIESCE]
2758 * @thaw, @thaw_early : called (1) after creating the hibernation
2759 * image, before writing it [PMSG_THAW]
2760 * and (2) after failing to create or
2761 * restore the image [PMSG_RECOVER]
2762 * @poweroff, @poweroff_late: called after writing the hibernation
2763 * image, before rebooting [PMSG_HIBERNATE]
2764 * @restore, @restore_early : called after rebooting and restoring the
2765 * hibernation image [PMSG_RESTORE]
2766 */
2767 .freeze = i915_pm_freeze,
2768 .freeze_late = i915_pm_freeze_late,
2769 .thaw_early = i915_pm_thaw_early,
2770 .thaw = i915_pm_thaw,
2771 .poweroff = i915_pm_suspend,
2772 .poweroff_late = i915_pm_poweroff_late,
2773 .restore_early = i915_pm_restore_early,
2774 .restore = i915_pm_restore,
2775
2776 /* S0ix (via runtime suspend) event handlers */
2777 .runtime_suspend = intel_runtime_suspend,
2778 .runtime_resume = intel_runtime_resume,
2779 };
2780
2781 static const struct vm_operations_struct i915_gem_vm_ops = {
2782 .fault = i915_gem_fault,
2783 .open = drm_gem_vm_open,
2784 .close = drm_gem_vm_close,
2785 };
2786
2787 static const struct file_operations i915_driver_fops = {
2788 .owner = THIS_MODULE,
2789 .open = drm_open,
2790 .release = drm_release,
2791 .unlocked_ioctl = drm_ioctl,
2792 .mmap = drm_gem_mmap,
2793 .poll = drm_poll,
2794 .read = drm_read,
2795 .compat_ioctl = i915_compat_ioctl,
2796 .llseek = noop_llseek,
2797 };
2798
2799 static int
i915_gem_reject_pin_ioctl(struct drm_device * dev,void * data,struct drm_file * file)2800 i915_gem_reject_pin_ioctl(struct drm_device *dev, void *data,
2801 struct drm_file *file)
2802 {
2803 return -ENODEV;
2804 }
2805
2806 static const struct drm_ioctl_desc i915_ioctls[] = {
2807 DRM_IOCTL_DEF_DRV(I915_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2808 DRM_IOCTL_DEF_DRV(I915_FLUSH, drm_noop, DRM_AUTH),
2809 DRM_IOCTL_DEF_DRV(I915_FLIP, drm_noop, DRM_AUTH),
2810 DRM_IOCTL_DEF_DRV(I915_BATCHBUFFER, drm_noop, DRM_AUTH),
2811 DRM_IOCTL_DEF_DRV(I915_IRQ_EMIT, drm_noop, DRM_AUTH),
2812 DRM_IOCTL_DEF_DRV(I915_IRQ_WAIT, drm_noop, DRM_AUTH),
2813 DRM_IOCTL_DEF_DRV(I915_GETPARAM, i915_getparam_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2814 DRM_IOCTL_DEF_DRV(I915_SETPARAM, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2815 DRM_IOCTL_DEF_DRV(I915_ALLOC, drm_noop, DRM_AUTH),
2816 DRM_IOCTL_DEF_DRV(I915_FREE, drm_noop, DRM_AUTH),
2817 DRM_IOCTL_DEF_DRV(I915_INIT_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2818 DRM_IOCTL_DEF_DRV(I915_CMDBUFFER, drm_noop, DRM_AUTH),
2819 DRM_IOCTL_DEF_DRV(I915_DESTROY_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2820 DRM_IOCTL_DEF_DRV(I915_SET_VBLANK_PIPE, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2821 DRM_IOCTL_DEF_DRV(I915_GET_VBLANK_PIPE, drm_noop, DRM_AUTH),
2822 DRM_IOCTL_DEF_DRV(I915_VBLANK_SWAP, drm_noop, DRM_AUTH),
2823 DRM_IOCTL_DEF_DRV(I915_HWS_ADDR, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2824 DRM_IOCTL_DEF_DRV(I915_GEM_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2825 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER, i915_gem_execbuffer_ioctl, DRM_AUTH),
2826 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER2_WR, i915_gem_execbuffer2_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2827 DRM_IOCTL_DEF_DRV(I915_GEM_PIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2828 DRM_IOCTL_DEF_DRV(I915_GEM_UNPIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2829 DRM_IOCTL_DEF_DRV(I915_GEM_BUSY, i915_gem_busy_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2830 DRM_IOCTL_DEF_DRV(I915_GEM_SET_CACHING, i915_gem_set_caching_ioctl, DRM_RENDER_ALLOW),
2831 DRM_IOCTL_DEF_DRV(I915_GEM_GET_CACHING, i915_gem_get_caching_ioctl, DRM_RENDER_ALLOW),
2832 DRM_IOCTL_DEF_DRV(I915_GEM_THROTTLE, i915_gem_throttle_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2833 DRM_IOCTL_DEF_DRV(I915_GEM_ENTERVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2834 DRM_IOCTL_DEF_DRV(I915_GEM_LEAVEVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2835 DRM_IOCTL_DEF_DRV(I915_GEM_CREATE, i915_gem_create_ioctl, DRM_RENDER_ALLOW),
2836 DRM_IOCTL_DEF_DRV(I915_GEM_PREAD, i915_gem_pread_ioctl, DRM_RENDER_ALLOW),
2837 DRM_IOCTL_DEF_DRV(I915_GEM_PWRITE, i915_gem_pwrite_ioctl, DRM_RENDER_ALLOW),
2838 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP, i915_gem_mmap_ioctl, DRM_RENDER_ALLOW),
2839 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP_GTT, i915_gem_mmap_gtt_ioctl, DRM_RENDER_ALLOW),
2840 DRM_IOCTL_DEF_DRV(I915_GEM_SET_DOMAIN, i915_gem_set_domain_ioctl, DRM_RENDER_ALLOW),
2841 DRM_IOCTL_DEF_DRV(I915_GEM_SW_FINISH, i915_gem_sw_finish_ioctl, DRM_RENDER_ALLOW),
2842 DRM_IOCTL_DEF_DRV(I915_GEM_SET_TILING, i915_gem_set_tiling_ioctl, DRM_RENDER_ALLOW),
2843 DRM_IOCTL_DEF_DRV(I915_GEM_GET_TILING, i915_gem_get_tiling_ioctl, DRM_RENDER_ALLOW),
2844 DRM_IOCTL_DEF_DRV(I915_GEM_GET_APERTURE, i915_gem_get_aperture_ioctl, DRM_RENDER_ALLOW),
2845 DRM_IOCTL_DEF_DRV(I915_GET_PIPE_FROM_CRTC_ID, intel_get_pipe_from_crtc_id_ioctl, 0),
2846 DRM_IOCTL_DEF_DRV(I915_GEM_MADVISE, i915_gem_madvise_ioctl, DRM_RENDER_ALLOW),
2847 DRM_IOCTL_DEF_DRV(I915_OVERLAY_PUT_IMAGE, intel_overlay_put_image_ioctl, DRM_MASTER),
2848 DRM_IOCTL_DEF_DRV(I915_OVERLAY_ATTRS, intel_overlay_attrs_ioctl, DRM_MASTER),
2849 DRM_IOCTL_DEF_DRV(I915_SET_SPRITE_COLORKEY, intel_sprite_set_colorkey_ioctl, DRM_MASTER),
2850 DRM_IOCTL_DEF_DRV(I915_GET_SPRITE_COLORKEY, drm_noop, DRM_MASTER),
2851 DRM_IOCTL_DEF_DRV(I915_GEM_WAIT, i915_gem_wait_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2852 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_CREATE, i915_gem_context_create_ioctl, DRM_RENDER_ALLOW),
2853 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_DESTROY, i915_gem_context_destroy_ioctl, DRM_RENDER_ALLOW),
2854 DRM_IOCTL_DEF_DRV(I915_REG_READ, i915_reg_read_ioctl, DRM_RENDER_ALLOW),
2855 DRM_IOCTL_DEF_DRV(I915_GET_RESET_STATS, i915_gem_context_reset_stats_ioctl, DRM_RENDER_ALLOW),
2856 DRM_IOCTL_DEF_DRV(I915_GEM_USERPTR, i915_gem_userptr_ioctl, DRM_RENDER_ALLOW),
2857 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_GETPARAM, i915_gem_context_getparam_ioctl, DRM_RENDER_ALLOW),
2858 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_SETPARAM, i915_gem_context_setparam_ioctl, DRM_RENDER_ALLOW),
2859 DRM_IOCTL_DEF_DRV(I915_PERF_OPEN, i915_perf_open_ioctl, DRM_RENDER_ALLOW),
2860 DRM_IOCTL_DEF_DRV(I915_PERF_ADD_CONFIG, i915_perf_add_config_ioctl, DRM_UNLOCKED|DRM_RENDER_ALLOW),
2861 DRM_IOCTL_DEF_DRV(I915_PERF_REMOVE_CONFIG, i915_perf_remove_config_ioctl, DRM_UNLOCKED|DRM_RENDER_ALLOW),
2862 DRM_IOCTL_DEF_DRV(I915_QUERY, i915_query_ioctl, DRM_UNLOCKED|DRM_RENDER_ALLOW),
2863 };
2864
2865 static struct drm_driver driver = {
2866 /* Don't use MTRRs here; the Xserver or userspace app should
2867 * deal with them for Intel hardware.
2868 */
2869 .driver_features =
2870 DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_GEM | DRIVER_PRIME |
2871 DRIVER_RENDER | DRIVER_MODESET | DRIVER_ATOMIC | DRIVER_SYNCOBJ,
2872 .release = i915_driver_release,
2873 .open = i915_driver_open,
2874 .lastclose = i915_driver_lastclose,
2875 .postclose = i915_driver_postclose,
2876
2877 .gem_close_object = i915_gem_close_object,
2878 .gem_free_object_unlocked = i915_gem_free_object,
2879 .gem_vm_ops = &i915_gem_vm_ops,
2880
2881 .prime_handle_to_fd = drm_gem_prime_handle_to_fd,
2882 .prime_fd_to_handle = drm_gem_prime_fd_to_handle,
2883 .gem_prime_export = i915_gem_prime_export,
2884 .gem_prime_import = i915_gem_prime_import,
2885
2886 .dumb_create = i915_gem_dumb_create,
2887 .dumb_map_offset = i915_gem_mmap_gtt,
2888 .ioctls = i915_ioctls,
2889 .num_ioctls = ARRAY_SIZE(i915_ioctls),
2890 .fops = &i915_driver_fops,
2891 .name = DRIVER_NAME,
2892 .desc = DRIVER_DESC,
2893 .date = DRIVER_DATE,
2894 .major = DRIVER_MAJOR,
2895 .minor = DRIVER_MINOR,
2896 .patchlevel = DRIVER_PATCHLEVEL,
2897 };
2898
2899 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2900 #include "selftests/mock_drm.c"
2901 #endif
2902